

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited.

DISTRIBUTED DEPLOYMENT OF THERMINATORS IN
THE NETWORK

by

Cheng Kah Wai

December 2004

 Thesis Advisor: John C. McEachen
 Second Reader: Su Wen

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time
for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing
and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington headquarters Services,
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2004

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
Distributed Deployment of Therminators in the Network
6. AUTHOR(S)
Cheng Kah Wai

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The idea of deploying a distributed network intrusion system using Therminator is explored in this thesis. There are
many advantages in having a distributed system compared to a standalone network intrusion system. The underlying
principle of Therminator is modeling network traffic on conversation exchange models. Using Zippo, a new
implementation of Therminator, the experimental setup consisted of multiple sensors reporting individual findings to a
central server for aggregated analysis. Different scenarios of network attacks and intrusions were planned to investigate
the effectiveness of the distributed system. The network attacks were taken from the M.I.T Lincoln Lab 1999 Data Sets.
The distributed system was subjected to different combinations of network attacks in various parts of the network. The
results were then analyzed to understand the behavior of the distributed system in response to the different attacks. In
general, the distributed system detected all attacks under each scenario. Some surprising observations also indicated
attack responses occurring in unanticipated scenarios. These results are subject to further investigation.

15. NUMBER OF
PAGES

 107

14. SUBJECT TERMS
Distributed, Network Intrusion System, Therminator, Zippo, Lincoln Lab Data

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited.

DISTRIBUTED DEPLOYMENT OF THERMINATORS IN THE NETWORK

Cheng Kah Wai
Defence Science & Technology Agency Singapore

B.E., Nanyang Technological University, 1999

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2004

Author: Cheng Kah Wai

Approved by: John C. McEachen

Thesis Advisor

Su Wen
Second Reader

Peter J. Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The idea of deploying a distributed network intrusion system using

Therminator is explored in this thesis. There are many advantages in having a

distributed system compared to a standalone network intrusion system. The

underlying principle of Therminator is modeling network traffic on conversation

exchange models. Using Zippo, a new implementation of Therminator, the

experimental setup consisted of multiple sensors reporting individual findings to a

central server for aggregated analysis. Different scenarios of network attacks and

intrusions were planned to investigate the effectiveness of the distributed system.

The network attacks were taken from the M.I.T Lincoln Lab 1999 Data Sets. The

distributed system was subjected to different combinations of network attacks in

various parts of the network. The results were then analyzed to understand the

behavior of the distributed system in response to the different attacks. In general,

the distributed system detected all attacks under each scenario. Some surprising

observations also indicated attack responses occurring in unanticipated

scenarios. These results are subject to further investigation.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1

A. INTRUSION DETECTION SYSTEMS.. 1
B. THERMINATOR... 1
C. ZIPPO... 1
D. THESIS RESEARCH ... 2
E. THESIS ORGANIZATION.. 2

II. INTRUSION DETECTION SYSTEMS... 3
A. GENERAL.. 3
B. STRUCTURE OF IDS .. 4
C. CLASSIFICATION OF IDS .. 5
D. DISTRIBUTED IDS (DIDS) .. 7
E. SUMMARY... 9

III. THERMINATOR AND ZIPPO ... 11
A. GENERAL.. 11
B. CONVERSATION EXCHANGE MODEL ... 11
C. THERMINATOR... 13

1. Architecture of Therminator ... 13
2. Limitations of Therminator ... 15

D. ZIPPO – THE NEW THERMINATOR... 15
1. Architecture of Zippo .. 15
2. Zippo Application .. 16

a. Sensor Component ... 17
b. Core Component... 18
c. GUI Component... 18

3. Zippo Control Center (ZCC) .. 18
a. Configuration of Core Component 18
b. Definition of PID Instances... 20
c. Sensor Listener... 21
d. Thermal Canyon and Thermal Tower Displays 21

E. SUMMARY... 23

IV. NETWORK AND SYSTEM SETUPS.. 25
A. NETWORK SETUP.. 25
B. NETWORK ATTACK REPLAY.. 26

1. Mailbomb Attack .. 27
2. Smurf Attack .. 27
3. Apache2 Attack.. 27

C. SYSTEM SETUP.. 28
1. Core Component.. 28
2. Sensor Component.. 29
3. GUI Component ... 29

 viii

D. DEFINED PID INSTANCES ... 29
1. SMTP PID Instance .. 30
2. ICMP PID Instance ... 31
3. HTTP PID Instance... 32

E. CONFIGURATION PARAMETERS FOR CORE 33
F. SUMMARY... 35

V. EXPERIMENT AND ANALYSIS I – SINGLE SENSOR................................ 37
A. EXPERIMENT SETUP ... 37
B. MAILBOMB ATTACK .. 37
C. SMURF ATTACK... 40
D. APACHE2 ATTACK... 41
E. SUMMARY... 43

VI. EXPERIMENT AND ANALYSIS II – DUAL SENSORS WITH THE SAME
ATTACK ... 45
A. EXPERIMENT SETUP ... 45
B. MAILBOMB ATTACK .. 46
C. SMURF ATTACK... 49
D. APACHE2 ATTACK... 51
E. ANALYSIS OF RESULTS.. 54
F. SUMMARY... 55

VII. EXPERIMENT AND ANALYSIS III – DUAL SENSORS WITH
DIFFERENT ATTACKS.. 57
A. EXPERIMENT SETUP ... 57
B. SMURF AND MAILBOMB ATTACKS ... 58

1. SMTP PID Instance .. 58
2. ICMP PID Instance ... 62

C. SMURF AND APACHE2 ATTACKS.. 67
1. ICMP PID Instance ... 67
2. HTTP PID Instance... 71

D. MAILBOMB AND APACHE2 ATTACKS... 75
1. SMTP PID Instance .. 75
2. HTTP PID Instance... 79

E. ANALYSIS OF RESULTS.. 82
F. SUMMARY... 83

VIII. REPORT SUMMARY AND FUTURE RESEARCH 85
A. REPORT SUMMARY... 85
B. FUTURE RESEARCH.. 86

LIST OF REFERENCES.. 87

INITIAL DISTRIBUTION LIST ... 89

 ix

LIST OF FIGURES

Figure 1. Interaction of CIDF components in an IDS. .. 5
Figure 2. Classification of IDS. .. 5
Figure 3. A decision tree with four defined buckets. .. 12
Figure 4. Therminator System ... 13
Figure 5. Interaction between MVC components... 16
Figure 6. Distributed IDS using Zippo.. 17
Figure 7. Examples of the a) Thermal Canyon. And b) Thermal Tower............. 19
Figure 8. A PID instance named SMTP... 20
Figure 9. Thermal Canyon... 22
Figure 10. Thermal Tower ... 22
Figure 11. Thermalate data ... 23
Figure 12. Network Topology of Experiment Setup ... 25
Figure 13. DARPA Simulation Network (Source:[8]).. 26
Figure 14. SMTP PID Instance. ... 30
Figure 15. ICMP PID Instance. .. 31
Figure 16. HTTP PID Instance... 32
Figure 17. Thermal Canyon Displays for Mailbomb attack with (a) Number of

Time Slices = 120, Slide Length = 1, (b) Number of Time Slices =
60, Slide Length = 2, (c) Number of Time Slices = 200, Slide Length
= 2, (d) Number of Time Slices = 100, Slide Length = 2. 35

Figure 18. Experiment Setup for a Single Sensor.. 37
Figure 19. (a)Thermal Canyon and (b)Thermal Tower for SMTP PID Instance

during the Mailbomb Attack. ... 38
Figure 20. Patterns of Conversation Exchanges during the Mailbomb Attack. 39
Figure 21. (a)Thermal Canyon and (b)Thermal Tower for ICMP PID Instance

during the Smurf Attack. ... 40
Figure 22. (a)Thermal Canyon and (b)Thermal Tower for HTTP PID Instance

during the Apache2 Attack. .. 41
Figure 23. Patterns of Conversation Exchanges during the Apache2 Attack. 42
Figure 24. Experiment Setup for Dual Sensors with the Same Attack................. 45
Figure 25. Thermal Canyon and Tower Displays for (a) and (c) Single Sensor,

(b) and (d) Dual Sensors during a Mailbomb attack. 48
Figure 26. Thermal Canyon and Tower Displays for (a) and (c) Single Sensor,

(b) and (d) Dual Sensors with Smurf attacks. 51
Figure 27. Thermal Canyon and Tower Displays for (a) and (c) Single Sensor,

(b) and (d) Dual Sensors with Apache2 attacks. 54
Figure 28. Experiment Setup for Dual Sensors with Different Network Attacks... 57
Figure 29. Thermal Canyons and Thermal Tower for SMTP PID Instance

during (a), (b) Mailbomb attack; (c), (d) Smurf attack and (e), (f)
combined Mailbomb and Smurf attacks.. 61

 x

Figure 30. Thermalate contributing to the canyon peak of the SMTP PID
Instance during the combined Mailbomb and Smurf attacks. 62

Figure 31. Thermalate Contributing to the Canyon Floor of the SMTP PID
Instance during the combined Mailbomb and Smurf Attacks.............. 62

Figure 32. Thermal Canyons and Thermal Tower for ICMP PID Instance
during (a), (b) Smurf attack; (c), (d) Mailbomb attack and (e), (f)
combined Mailbomb and Smurf attacks.. 66

Figure 33. Thermalate Contributing to the Canyon Peak of the ICMP PID
Instance during the combined Mailbomb and Smurf attacks. 67

Figure 34. Thermal Canyons and Thermal Tower for ICMP PID Instance
during (a), (b) Smurf attack; (c), (d) Apache2 attack and (e), (f)
combined Smurf and Apache2 attacks. .. 71

Figure 35. Thermal Canyons and Thermal Tower for HTTP PID Instance
during (a), (b) Apache2 attack; (c), (d) Smurf attack and (e), (f)
combined Apache2 and Smurf attacks. .. 74

Figure 36. Thermal Canyons and Thermal Tower for SMTP PID Instance
during (a), (b) Mailbomb attack; (c), (d) Apache2 attack and (e), (f)
combined Mailbomb and Apache2 attacks. .. 78

Figure 37. Thermal Canyons and Thermal Tower for HTTP PID Instance
during (a), (b) Apache2 attack; (c), (d) Mailbomb attack and (e), (f)
combined Apache2 and Mailbomb attacks. .. 82

 xi

LIST OF TABLES

Table 1. Denotation of Buckets for SMTP PID Instance. Buckets 0 and 4 are
not applicable (N.A.) because they represent classifications that
cannot occur (i.e. – a port number 25, 110, 113 or 161 that is at the
same time not 25, 110, 113, or 161)... 31

Table 2. Denotation of Buckets for ICMP PID Instance.................................... 32
Table 3. Denotation of Buckets for HTTP PID Instance. Similar to table 1,

buckets 0 and 4 represent classifications that cannot occur............... 33
Table 4. Flows of Ball Transfer between Defined Buckets of SMTP PID

Instance during the Mailbomb Attack.. 39
Table 5. Flows of Ball Transfer between Defined Buckets during the

Apache2 Attack. ... 43
Table 6. State Changes with a Single Network Packet from A to B.................. 55
Table 7. State Changes with Duplicate Network Packets from Node A to B. ... 55
Table 8. Summary of Responses to attacks. .. 82

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

I would like to thank Dr John McEachen and Dr Su Wen for their kind

guidance and support, and also Dr John Zachary and Junling for their help in the

installation of Zippo. Last but not least, I would like to thank my husband, Kim

Pin, for his unwavering support and sacrifices made during the past year.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACRONYMS AND ABBREVIATIONS

DARPA Defense Advanced Research Projects Agency

DIDS Distributed Intrusion Detection System

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IP Internet Protocol

HTTP Hypertext Transfer Protocol

PID Patternless Intrusion Detection

SMTP Simple Mail Transfer Protocol

TCP Transmission Control Protocol

ZCC Zippo Control Center

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. INTRUSION DETECTION SYSTEMS
Intrusion Detection Systems (IDS) have gained increasing importance in

ensuring the overall security of organizations. They act as an additional layer of

security to the organization’s perimeter defense, which usually, is implemented

using firewalls. Firewalls are effective in preventing unauthorized entry into the

organization’s network. However, firewalls cannot detect unauthorized behavior

that is present in network traffic they allow to go through.

The role of detecting anomalous behavior is performed by IDS, which try

to identify and report attacks and security incidents [1]. There are two categories

of IDS: network-based IDS and host-based IDS [2]. Network-based IDS monitor

and analyze network traffic in the network segments where they are installed.

Host-based IDS monitor and analyze network traffic that goes in and out of

specific hosts.

B. THERMINATOR
The Therminator is a network-based IDS created by Stephen Donald and

Robert McMillen [3], using a mathematical model developed by Dr David Ford

[4]. In the model, buckets represent classifications of network nodes and balls

represent IP (Internet Protocol) packets. Conversations between network nodes

are modeled by the movement of balls between buckets. Network intrusions

result in anomalies in the conversation exchange between nodes. Therminator

provides a graphical means of displaying the intrusions in real time.

C. ZIPPO
ZIPPO is a newer version of Therminator, developed by the University of

South Carolina (USC). Written in a mix of Java and C++ languages, ZIPPO

provides a more user-friendly interface and consists of three components: the

sensor, the core and the graphical user interface (GUI). With a modular design,

2

ZIPPO offers better robustness and portability. ZIPPO was the first version of

Therminator to aggregate input from multiple sensors into one display. This new

aspect of ZIPPO will be the focus of thesis.

D. THESIS RESEARCH
The area of interest in this research is implementing, analyzing and

validating a distributed IDS using ZIPPO. This is achieved by distributing the

sensors on different network segments to monitor the traffic in different parts of

the network. The sensors relay the information to the core component, which

converts it into a pre-defined format before analyzing it and displaying it on the

GUI.

This research will be accomplished by analyzing the response of the

distributed IDS to network attacks under a variety of conditions. In particular, the

Smurf, Mailbomb and Apache2 attacks extracted from the MIT Lincoln Lab IDS

datasets will be used to generate a distinctive response [5].

E. THESIS ORGANIZATION
Chapter II looks into the different types of IDS currently available, and

compares central and distributed IDS. It also explains the conversation exchange

model in more depth.

Chapter III discusses the architecture of ZIPPO, while Chapter IV explains

the experiment setup and methodology.

Chapters V to VII present and analyze the results that were obtained from

the experiments. Chapter VIII concludes the report with a summary of the

findings obtained, and discusses the possible areas of future research.

3

II. INTRUSION DETECTION SYSTEMS

A. GENERAL
The aim of IDS is to detect, and possibly prevent an on-going network

attack on one or more systems. Network attacks can generally be classified as

passive or active. Passive attacks gain access to systems without compromising

any resources, while active attacks will result in unauthorized changes to the

resources. These attacks can be executed either from outside the organization

network (often via the Internet), or from inside the network by employees, trusted

users, etc.

The types of network attacks which IDS can identify are [6]:

i. Unauthorized Access to Resources. The intruder attempts to

gain access to systems using password cracking, Trojan horses,

interceptions of TCP sessions, spoofing, etc. He may also stealthily

probe for information using port scans, IP scans, operating system

fingerprinting, etc.

ii. Unauthorized Modification of Resources. The intruder may

make unauthorized configuration changes to systems and network

resources, alter or delete information on systems after gaining

unauthorized access to them.

iii. Denial of Service (DoS). A targeted system is flooded with

unnecessary information to block out legitimate traffic and deny

services, e.g. ping and mail flood. The system can also be

compromised by exploiting its vulnerabilities, e.g. buffer overflow.

In examining the network traffic or systems for anomalous behavior, an

IDS may not be entirely correct in their diagnoses. False positives are generated

when IDS wrongly identify particular events as intrusions or attacks. False

negatives occur when IDS overlook an attack and let it go through without

sounding any alarms.

4

B. STRUCTURE OF IDS
Many different types of IDS are available in the market, be it commercially

or academically developed. Each has its own design and implementation, but in

general, IDS are made up of similar components as defined by the Common

Intrusion Detection Framework (CIDF) [7]. These include:

i. Event generators (E-Boxes). These are sensors in the networks

which monitor network traffic and activities, and generate events

accordingly. These events are then passed to the other parts of the

IDS.

ii. Event Analyzers (A-Boxes). These boxes process and analyze

data that is sent from the E-boxes. The processed information may

be summarized, statistically profiled, or correlated to obtain further

information.

iii. Event Databases (D-Boxes). The huge amount of data that may

be produced by E-boxes and A-boxes are stored in D-boxes, which

can be assessed anytime by system administrators.

iv. Response Units (R-Boxes). These provide countermeasures to

attacks, such as killing processes, resetting connections, altering

file permissions, etc.

Figure 1 shows how these boxes interact with each other in an intrusion

detection system.

5

Figure 1. Interaction of CIDF components in an IDS.

C. CLASSIFICATION OF IDS
There are many ways to classify IDS [8], as shown in Figure 2.

Figure 2. Classification of IDS.

Intrusion Detection
Systems (IDS)

Data Source
Network packets, Audit

Trail & System State
Information

Structure

Centralized & Distributed

Detection Method
Signature-based
& Anomaly-based

Architecture
Network-based,

Host-based & Hybrid

Time of Analysis
Real-time &

Interval-based

Action Taken
Active & Passive

Event
Generator

(E-box)

Event
Database
(D-box)

Event
Analyzer
(A-box)

Response
Unit

(R-box)

6

i. Architecture. Network-based IDS (NIDS) monitor and analyze

inbound and outbound network traffic on the network segments

where they are installed. Each data packet is examined in real time

for signs of intrusion. Though NIDS may be effective in monitoring

an entire, large network with only a few well-placed nodes, they are

unable to analyze encrypted data. Host-based IDS (HIDS) analyze

inbound and outbound network traffic of specific systems which

they are installed on, check the integrity of system files and look out

for suspicious process activities. Most importantly, they can

examine encrypted traffic, data, storage and activities. However

HIDS do consume a lot of resources, e.g. processing time, storage,

memory, etc, on the systems they operate on. Hybrid IDS combine

HIDS technology with the ability to monitor inbound and outbound

network traffic of specific hosts using NIDS technology.

ii. Detection Method. Signature-based IDS analyze network traffic

or activities based on matches for patterns of events known to

specific attacks. This type of IDS is effective against known attacks.

One major disadvantage is that signature databases must

constantly be updated, otherwise new attacks will not be detected.

Anomaly-based IDS compare network traffic or activities against

normal usage profiles. By creating baselines of normal behavior,

these IDS can observe when current behavior differs from normal

behavior, and determine if attacks are underway. The advantage is

that both known and new attacks may be detected easily. However,

as normal behavior can change easily, these IDS may set off false

alarms when there is normal network traffic which contributes to

deviations.

iii. Structure. Centralized IDS operate standalone, with centralized

applications physically integrated within a box, while Distributed
IDS consist of multiple IDS over a large network, all of which

7

communicate with each other. More information on distributed IDS

will be provided in Section D.

iv. Data Source. The data which IDS analyze can either be raw

network packets, event logs and alarms from audit trail, or

system state information.

v. Action Taken. Active IDS respond to attacks proactively once they

are detected, e.g. log out potential intruders, block services or even

reset a TCP connection on behalf of the victim. They attempt to

stop the attacks before more damage is caused. Passive IDS only

generate alerts and log network packets when attacks are detected.

vi. Time of Analysis. IDS which process data in real-time, monitor

the data constantly and analyze current information to sense

possible attack attempts. This is useful in stopping attacks that are

underway. Interval-based IDS monitor periodic feeds of

information such as event logs, system alarms and other system

information from audit trail. The advantage is events can be

correlated to detect an attack trend, especially if the attacker tries to

masquerade attack attempts over an extended period of time.

D. DISTRIBUTED IDS (DIDS)

The biggest shortcoming in centralized, standalone IDS is that they are

built on a single physical entity, which is responsible for both collecting and

analyzing data. This can impose severe limitations on efficiency and the system

resources, especially when a high volume of data needs to be processed. DIDS

can overcome this shortcoming, by performing distributed data collection and

possibly preprocessing, depending on the design of the system.

DIDS consist of multiple sensors deployed in different areas of a large

network, all of which report to a central server that aggregates the information

and processes it. The sensors should ideally be deployed on separate network

segments and geographical locations.

8

These are many benefits which DIDS offer as compared to the

centralized, standalone IDS:

i. Efficiency. As explained earlier, higher efficiency can be achieved

with distributed data collection and preprocessing.

ii. Holistic View of the Entire Network. By placing sensors in

strategic locations in different parts of the network, the DIDS can

provide a holistic view of the entire network, which will allow

administrators and analysts to make better judgments.

iii. Early Detection. By placing sensors in different geographical

locations, attack patterns may be detected across the entire

organization network. It may be possible to have early detections of

coordinated attacks on the organization. This allows network and

system administrators to secure targeted systems and arrest

intruders at the different entry points of the network.

iv. Scalability and Configurability. Sensors can be easily added to

or removed from the network. As changes to the network topology

and configurations are common, especially in large organization

networks, this allows more flexibility for the network and system

administrators.

v. Reliability. There is no single point of failure as different parts of

the network are monitored by different sensors. Even if a sensor is

brought down by a network attack, the information will have been

sent to the centralized host for alerting and forensic analysis.

vi. Extensibility. New features and changes can be made to the

sensors one at a time, without much interruption to the monitoring

of the network.

9

E. SUMMARY
This chapter explained the underlying structure of IDS, and gave an

overview of the types of network attacks which can be detected. There are

several methods of classifying IDS, such as by their architecture, method of

detection and structure, etc. When the structure of the IDS is used for

classification, IDS can either be centralized or distributed. Distributed IDS offer

many advantages over centralized IDS.

The next chapter will explore Therminator, an IDS that is developed by

Naval Postgraduate School, and Zippo, that is a new implementation of

Therminator, in greater details.

10

THIS PAGE INTENTIONALLY LEFT BLANK

11

III. THERMINATOR AND ZIPPO

A. GENERAL
Therminator is a network-based IDS that was originally developed at

Naval Postgraduate School. It is based on a conversation exchange model, and

uses statistical mechanics and thermodynamic principles to detect anomalous

behavior in a monitored network. Many tests were conducted on Therminator,

which has been proven to be successful in detecting different types of network

intrusions.

In spite of Therminator’s success, there were several shortcomings in the

program. A research team from University of Southern Carolina was contracted

to address these inadequacies by developing a new version of the program,

which they codenamed Zippo. New capabilities were also added to this new

version of Therminator.

B. CONVERSATION EXCHANGE MODEL
The underlying concept of Therminator and Zippo is based on the

conversation exchange model, which is used to model network traffic. It defines a

conversation exchange as an exchange of information between two conversation

groups. These conversation groups may represent network nodes, protocols or

the tasks which network nodes perform (e.g. client or server). This model uses

buckets to represent conversation groups and balls to represent the information

that is exchanged between the conversation groups.

Network traffic analysis is based on decision trees that have buckets as

leaf nodes. At the beginning of the analysis, each bucket starts off with an initial

number of balls. These balls are dynamically moved around in accordance with

conversation exchanges that are modeled on information extracted from the

network traffic. For instance, the buckets in Figure 3 represent four network

nodes. A conversation exchange of n network packets between nodes A and B

will result in the movement of n balls from bucket BA to bucket BB. However, the

12

number of balls in each bucket cannot decreased below a minimum level or

increased beyond a maximum level, as pre-defined in the decision tree.

Figure 3. A decision tree with four defined buckets.

During the network traffic analysis, the number of balls in each bucket is

constantly varying. A network state is the combination of the number of balls in

each bucket at any given time. The state space covers the entire range of

possible number of states, N, which is determined by the formula [9]:








 +
=

1-M
1-KM

N (3.1)

where M is the number of buckets, and K is the total number of balls in the

system. A state space walk traces all the states that were visited during a given

period of time.

The average number of balls in the buckets can be represented in real

time on a 3-D graphical display, known as thermal tower. Information about the

network states visited and the number of occurrences can also be accumulated

and plotted on a 3-D graphical display, known as a thermal canyon. When there

are unusually high counts of certain states, or when there are a large number of

states that are usually not visited, it can be an indication of anomalous network

Decision Node Decision Node

A B C D

Yes Yes No No

Yes No

Decision Node

13

activity. Thermodynamic principles of energy, entropy and temperature can be

applied to the thermal canyon, which reveal more information about the network

health.

C. THERMINATOR
1. Architecture of Therminator
Therminator was developed using C programming language, and

comprises of 3 components: the Sucker, the Patternless Intrusion Detection

System (PID) and the GUI, as illustrated in Figure 4.

Figure 4. Therminator System

The Sucker, also known as a sensor, is basically a sniffer which captures

or “sucks” every IP packet off the network. Sucker captures the network packets

using libpcap and analyzes the protocols using a custom packet decoder.

Sucker extracts essential components of the decoded information,

including IP header length, TCP header length and protocol used. It also

analyses the information and sets the values of defined variables FLOW,

MATCH, BROADCAST and NEW FRIEND. The BROADCAST bit is set if the

destination IP address in the packet is a broadcast address. The FLOW field

indicates if the packet is traveling in or out of the monitored network. The MATCH

thermalate

Sucker

PID

GUI

Internet

14

bit is set if the packet is a response to a stimulus, after a state inspection. Lastly,

the NEW FRIEND bit indicates if a visiting host is new to the monitored network.

These pieces of information are then put together in a new data format, known as

thermalate.

Thermalate is sent to the PID at regular intervals through a TCP socket

connection, where it undergoes thermodynamic analysis based on pre-defined

configuration files. A typical configuration file defines the decision tree, and the

initial, minimum and maximum number of balls in the buckets. After the

thermodynamic analysis, the data is stored and processed according to the

SLIDELENGTH (SL) and WINDOWLENGTH (WL) parameters also specified in

the configuration file.

The SL defines the single display time interval on the thermal canyon and

thermal tower, while the WL is the period of time which the data is averaged

over. Another parameter, the smoothing ratio (SR) [10], is derived from the

following formula:

SL
WLSR = (3.2)

The SL, WL and SR are important parameters that affect how the data is

represented in the thermal canyon. Inappropriate settings can result in false

positives or missed intrusions. Marinovich and Walch [11] showed in their

investigations that small values for SL and WL could result in missed intrusions,

while large SL and WL values presented late information.

 The GUI allows different configuration settings for the plotting of the

thermal canyon and the thermal tower. It retrieves the output data files from the

PID and presents the graphic displays using the XRT/3d 3.0 widget, formerly

from KL Group Inc.

15

2. Limitations of Therminator
Therminator has proven to be highly successful, as it accurately picked up

signs of intrusions and network attacks in the many tests that were conducted.

There are, however, limitations to the program which are briefly described below:

a. The configurations of the decision tree and the bucket space cannot be

changed on the “fly”. The program has to be stopped and restarted to

effect the new changes.

b. The graphics for the thermal canyons and towers are created using a

commercial graphical widget, the XRT/3d 3.0. The license for this

widget is limited to a Solaris 8 system; it cannot be run on any other

platforms.

c. The PID is programmed to receive data only from one sensor.

Therminator is not capable of supporting a DIDS architecture, whereby

multiple sensors report to a central server and information is

aggregated for analysis.

D. ZIPPO – THE NEW THERMINATOR
When Zippo was being developed, the goal was to build a software

system which is robust, high performing, portable and scalable, and able to

overcome the limitations of Therminator.

1. Architecture of Zippo
ZIPPO is written in a mix of Java and C++ languages, and is based on a

Model-View-Controller (MVC) software architecture, which separates the

application into three distinct components: data model, user interface and control

logic [12].

The Model object is the core of the system, which implements the state

space model and executes the complex operations of the underlying

thermodynamics model. It takes in information about its data elements from the

Controller, and passes computed information to the View object for display.

16

The View object takes the responsibility of presenting data from the

Controller and the Model in a combination of graphics and text, (e.g. the Zippo

Control Center GUI and the 3-D displays of the thermal canyons and towers.)

The Controller mainly translates interactions with the View object into

actions to be performed by the Model. It is responsible for the configuration of the

application, extraction and conversion of the data from network packets into

thermalate, and storage of thermalate for later analysis. The Controller

implements the sensor and the core functions of the application, which will be

explained in the next section. Figure 5 shows the interaction between the MVC

components.

Figure 5. Interaction between MVC components.

2. Zippo Application
The Zippo application consists of three components: the sensor, the core

and the GUI. The MVC architecture of Zippo allows these components to reside

on separate host machines. Most importantly, the core is able to receive data

from multiple sensors. This demonstrates that Zippo is capable of supporting a

DIDS architecture, which is the focal point of this thesis. In addition, there can be

multiple GUI displays for each core instance. Figure 6 shows how a DIDS

architecture can be achieved using Zippo.

View

Controller

Model

17

Figure 6. Distributed IDS using Zippo.

a. Sensor Component
The sensor component can be installed locally (on the same host

machine as the core component) or remotely (on a different host machine as the

core component). A local sensor and a remote sensor perform the same

functions. The only difference between them is that the former is coded in C++

language, while the latter is coded in Java language for tighter coupling to the

core component.

The sensor captures network packets from a live network using

libpcap. It then converts the captured data into thermalate before sending it to the

core component for processing. The sensor component has a configuration file in

Remote
Sensor

Local
Sensor

CORE

Local
GUI

Internet

Remote
Sensor

Remote
GUI

18

which the IP address of the machine hosting the core component and the

communicating TCP port number have to be specified.

As an added measure of security, communications between the

sensor and core components is encrypted via OpenSSL. OpenSSL is an open

source implementation of Secure Sockets Layer (SSL) and Transport Layer

Security (TSL). The installation of Zippo comes with the default private and public

keys for the sensor and core components and a self-signed Certificate Authority

(CA). Users of Zippo can implement their own Public Key Infrastructure (PKI) in

the system if it is desired.

b. Core Component
The core component is written in Java language, and hence is OS

independent. However, the machine that hosts the core component is required to

install Java 2 SDK. The core component aggregates thermalate that is received

from the various sensors, and performs the thermodynamic analysis. The results

from the complex computations are then sent to the GUI component for display.

c. GUI Component
The GUI component provides interaction between the user and

Zippo through Zippo Control Center (ZCC), which allows the user to administer

the configuration of the sensor and the core components, and to display results

on the thermal canyons and thermal towers. The GUI component needs to be

connected to the core process by specifying the IP address of the machine

hosting the core component, and the TCP socket to connect through.

3. Zippo Control Center (ZCC)
ZCC provides an intuitive and user-friendly interface for users to configure

the application according to their needs. The key components of ZCC are

described in this section:

a. Configuration of Core Component
The parameters which can be configured for the core component

are: number of states, number of time slices, slide length and Smoothing Factor

(SF). These parameters affect the displays on the thermal canyon and thermal

tower.

19

 (a) (b)

Figure 7. Examples of the a) Thermal Canyon. And b) Thermal Tower

Figure 7 shows a thermal canyon and a thermal tower, with the

following parameters: number of states = 100; number of time slices = 60; slide

length = 2; and SF = 0.7. The specification of the number of states sets the limit

on the states scale on the thermal canyon, which is 100 in this case. The number

of time slices sets the length of the time display on both the thermal canyon and

thermal tower. The slide length is defined in seconds, and indicates the time

width of each time slice. Hence in this example, the length of the time display is

120s (the number of time slices multiplied by the slide length).

Zippo uses an exponential weighted averaging mechanism to

process and display state information on the thermal canyon. The SF is a

variable used in the following formula:

 eValuexSFLastAveragSFexActualValuueAverageVal +−=)1(

The SF can take any values between zero and one. Different

values of SF affect the display of the results on the thermal canyon. Larger

values of SF will produce “smoother” thermal canyons.

20

b. Definition of PID Instances
The definition of a PID instance starts with the building of a decision

tree for the thermodynamic analysis of thermalate and the corresponding bucket

space. The PID instance can be given a meaningful name to reflect its

characteristic. For example, it can be named SMTP if it is to be used to analyze

thermalate for SMTP-based attacks, as shown in Figure 7. Starting from the top

of the decision tree, a decision node can be based on any of these parameters:

IP List, Port List, New Friend, Matched, Protocol List. The buckets at the bottom

of the decision tree need to be defined with the ball parameters, and can be

assigned with different colors, which will be reflected in the thermal towers

display.

Figure 8. A PID instance named SMTP.

A PID instance functions as a service, which can be started and

stopped at any point in time. This facilitates making instantaneous changes to the

PID instance, without any interruptions to the core process. Multiple PID

21

instances can be created and started at the same time. Each instance will

process and analyze the same set of thermalate and interpret the results

accordingly.

c. Sensor Listener
The Sensor Listener is also a start/stop service, which controls

local and remote sensors. When the service is started, the IP addresses of the

connected sensors will be displayed. Several parameters of the Sensor Listener

can be configured including the key store password. The key store password is a

shared password between the sensor and the core components, which allows

the sensor component to authenticate with the core component.

d. Thermal Canyon and Thermal Tower Displays
For each PID instance that is started, a thermal canyon and a

thermal tower can be generated to display the results. Hence, on the same

monitor display there can be multiple thermal canyons to detect different forms of

network attacks (e.g. Smurf and mailbomb attacks.)

The thermal canyon displays the state information in real-time, as

shown in Figure 9. Each point on the z-axis shows a unique state that was

visited, while the number of occurrences of each visited state is plotted along the

y-axis.

22

Figure 9. Thermal Canyon

The thermal tower shows the average number of balls in each

bucket in real-time. Each bucket is represented by a different color, as defined in

the PID instance. During each time slice, the buckets are sorted along the z-axis

in decreasing order of the number of balls, as shown in Figure 10.

Figure 10. Thermal Tower

X Z

Y

X Z

Y

23

Both the thermal canyon and thermal tower displays can be rotated

in any angle, and zoomed in for a close-up look. The scale on the y-axis for both

displays is variable and adjusts according to the highest value that is shown at

the time of interest. The user can also click on a point of interest on the thermal

canyon or thermal tower to display the thermalate data for more detailed

information, as shown in Figure 11.

Figure 11. Thermalate data

E. SUMMARY

This chapter reviewed the conversation exchange model, which is the

underlying concept of Therminator and Zippo, and looked into the implementation

details of each. Compared to Therminator, Zippo is much more user-friendly and

has the added feature of receiving and aggregating information from multiple

sensors. The next chapter will describe how this feature is analyzed and the

setup of the experiments.

24

THIS PAGE INTENTIONALLY LEFT BLANK

25

IV. NETWORK AND SYSTEM SETUPS

A. NETWORK SETUP
The focus of the thesis is to implement and validate a DIDS using Zippo.

Figure 12 shows the network topology of the experiment setup. The network

attack replay workstation has two network interface cards, which separately send

out pre-recorded network traffic containing both normal user traffic and simulated

network attacks. The hubs receive and broadcast the network packets, which are

then picked up by sensors A and B.

Sensor A and the Zippo core component reside on Network A, while

sensor B resides on Network B. This demonstrates that a remote sensor is

capable of routing thermalate to the core component. The two sensors sniff every

network packet on their respective network segments and produce thermalate

that is sent to the Zippo core. Upon processing and analysis, the Zippo core

generates thermal canyons and thermal towers that reflect the state of the

networks. These results are verified and validated.

Figure 12. Network Topology of Experiment Setup

Router

Network A Network B

Sensor A

Zippo Core
& GUI

Network Attack
Replay Workstation

Sensor B

Hub A Hub B

]
de

a

26

In particular, three scenarios are tested:

i. Sensor A alone detects a network attack.

ii. Sensors A and B detect the same network attack concurrently.

iii. Sensors A and B detect different network attacks concurrently.

These experiments are explained in more detail in later chapters.

B. NETWORK ATTACK REPLAY
In their thesis research, Marinovich and Walch [11] made use of the 1999

DARPA Intrusion Detection Evaluation Data Set from the M.I.T Lincoln

Laboratory for their experiments. Figure 13 shows the diagram of the simulation

network that was set up by Lincoln Laboratory. The monitored or “inside” network

consisted of machines with IP prefixes 172.16.112.* - 172.16.118.*.

locke
172.16.112.10

Sniffer

plato

Ethernet Hub
Router

192.168.1.2

192.168.1.1

172.16.112.5

172.16.0.1

Router
CISCO

HP HP

attacker

attackerattackerattacker

hobbes
172.16.112.20
Gateway

pascal
172.16.112.50

Victim

zeno
172.16.113.50
Victim

marx
172.16.114.50
Victim

hume
172.16.112.100

Victim

kant
172.16.112.110

Victim

NTNT 9898

monitor
192.168.1.30

SNMP Monitor

solomon
192.168.1.90

Sniffer

calvin
192.168.1.10

Gateway

aesop
192.168.1.20
Web Server

attacker

NTNT

Virtual Inside
Hosts

Virtual Outside
Hosts

Cisco 2514

Linux Linux

Linux Linux NT

SunOS MacOS SunOS Linux Solaris SunOS Linux NT Win98

. . .
. . .

Figure 13. DARPA Simulation Network (Source:[8]).

The data set contains recorded network traffic, which includes scripted

attacks conducted from both inside and outside of the monitored network.

Marinovich and Walch [11] downloaded the data set and further edited them to

obtain tcpdump files containing specific attacks.

27

In this thesis, three of the tcpdump files are used to simulate Mailbomb,

Smurf and Apache2 attacks, which are all denial-of-service attacks. The purpose

of choosing these attacks is to test the ability of Zippo in the analysis of SMTP,

ICMP and HTTP traffic.

1. Mailbomb Attack
The Mailbomb attack is contained in the file named 42155148.tcpdump. In

this attack, thousands of machines flood the email server with e-mail messages

in an attempt to overwhelm the server, which has the IP address 172.16.114.50.

These malicious network packets are either authentications to the email server

using TCP port 113 or actual mail transfer using TCP port 25.

The file 42155148.tcpdump contains 19 minutes worth of network traffic,

with the Mailbomb attack being launched five minutes from the start of the packet

stream. The attack lasts for about 10 minutes.

2. Smurf Attack
The Smurf attack uses spoofed broadcast ping messages to flood a target

system. The attacker sends a large amount of ICMP ping packets to IP broadcast

addresses, and spoofs the source address by masquerading as the victim. The

result is that every machine on the broadcast network will send an ICMP reply

packet to the victim, thus overwhelming the victim.

The file 41213446.tcpdump contains the Smurf attack, which has 10

minutes worth of recorded network traffic in total. The Smurf attack starts after 5

minutes of the network traffic replay, and lasts only for 15s. The IP address of the

victimized machine is 172.16.112.50, and the attack occurs when multiple

computers bombard the victim with ICMP reply packets.

3. Apache2 Attack
In the Apache2 attack, the victim, with IP address 172.16.114.50, is a web

server that is subjected to numerous concurrent HTTP requests (at TCP port 80)

from various attack machines.

28

The attack is contained in the file 51140100.tcpdump which reproduces 21

minutes worth of network traffic. The Apache2 attack appears 5 minutes from the

start of the network traffic replay and lasts for 11 minutes.

C. SYSTEM SETUP
The Zippo core component is installed on a Sun Microsystems Sun Blade

2000 Workstation, which runs on dual Ultra-Sparc III processors and 4 Gigabytes

of RAM in a Solaris 9 operating environment. The GUI component is co-located

with the core component. Two Dell Systems servers running on Red Hat Linux

8.0 operating system are installed with the Zippo sensor component and are

named sensors A and B. The network attack replay workstation is a Dell

Dimension 4100 running on Red Hat Linux 8.0 operating system, which has been

pre-installed with the program, TCPreplay, and has two network interface cards.

All three components of Zippo – the core, sensor and GUI, are packaged

in a single jar file (zippo.jar). The file contains Java class files for the core and the

GUI, as well as the source codes for all the components. The installation of each

component is simple, which only requires the files to be unpackaged in a chosen

directory, using the command:

#jar xvf zippo.jar

1. Core Component
The core component is installed in the /export/home/usc/zippo directory on

the Sun Blade 2000. As Zippo Core is written in Java code, it requires Java Run

Time in its execution. The Sun Blade 2000 has Java 2 SDK 1.4.2 installed for this

purpose. The commands to set the environment and start the core component

are:

#ZIPPO_BASE=/export/home/usc/zippo

#export ZIPPO_BASE

#./start_core

29

2. Sensor Component
The sensor components are installed in the /usr/zippo directory on both

Dell Systems servers. The /etc subdirectory contains the configuration file

(sensor.conf), where the IP address of the machine hosting the core component

and the socket for communications have to be specified. The commands to set

the environment and start the sensor component are:

#ZIPPO_BASE=/usr/zippo

#export ZIPPO_BASE

#./sensor

3. GUI Component
Like the core component, the GUI component requires Java 2 SDK 1.4.2

or above to function. In addition, Java 3D has to be installed to display the 3-D

graphics of the Thermal Canyon and Thermal Tower. The commands to set the

environment and start the GUI component are:

#ZIPPO_BASE=/usr/zippo

#export ZIPPO_BASE

#./start_gui

This command brings up the ZCC, which is the main interface of the

program. ZCC can be executed on multiple machines at the same time. Multiple

instances of ZCC can also be run concurrently on the same machine.

D. DEFINED PID INSTANCES
Different PID instances are created for the detection of SMTP, ICMP and

HTTP attacks. The decision trees and bucket spaces are constructed based on

reference [11], and the PID instances are named SMTP, ICMP and HTTP

respectively. The top-level decision node of all three PID instances separate

network packets according to their origin (i.e. if they originate from the monitored

network.)

30

All three PID instances are multi-tier decision trees with eight buckets

each. Each bucket is initialized with 5 balls, and can have a minimum of 0 balls

and a maximum of 10 balls.

1. SMTP PID Instance
The SMTP PID instance is a 3-tier decision tree, as shown in Figure 14.

The lower level decision nodes further differentiate the packets by their ports.

Table 1 explains what each bucket denotes.

Figure 14. SMTP PID Instance.

31

Bucket No. Classification

0 N.A.

1 Insider IP address with TCP ports no. 25, 110, 113 or 161

2 Insider IP address with TCP port no. lower than 1024, excluding 25,

110, 113 and 161.

3 Insider IP address that does not have TCP port no. lower than 1024.

4 N.A.

5 Outsider IP address with TCP ports no. 25, 110, 113 or 161.

6 Outsider IP address with TCP port no. lower than 1024, excluding 25,

110, 113 and 161.

7 Outsider IP address that does not have TCP port no. lower than 1024.

Table 1. Denotation of Buckets for SMTP PID Instance. Buckets 0 and 4 are

not applicable (N.A.) because they represent classifications that cannot
occur (i.e. – a port number 25, 110, 113 or 161 that is at the same time not

25, 110, 113, or 161).

2. ICMP PID Instance
The ICMP PID instance is a 4-tier decision tree, which classifies network

traffic according to ICMP packet types: error, request and reply (see Figure 15).

Table 2 explains what each bucket represents.

Figure 15. ICMP PID Instance.

32

Bucket No. Classification

0 Insider IP address with ICMP type 3, 4, 5, 11 or 12.

1 Insider IP address with ICMP type 8 or 17.

2 Insider IP address with ICMP type 0 or 18.

3 Outsider IP address with ICMP type 3, 4, 5, 11 or 12.

4 Outsider IP address with ICMP type 8 or 17.

5 Outsider IP address with ICMP type 0 or 18.

6 Insider IP address that does not have ICMP type 0, 3, 4, 5, 8, 11, 12,

17 or 18.

7 Outsider IP address that does not have ICMP type 0, 3, 4, 5, 8, 11, 12,

17 or 18.

Table 2. Denotation of Buckets for ICMP PID Instance.

3. HTTP PID Instance
The HTTP PID instance is also a 3-tier decision tree, with buckets that are

designed to sort traffic into HTTP and non-HTTP traffic, as shown in Figure 16.

Table 3 explains the denotation of each bucket.

Figure 16. HTTP PID Instance.

33

Bucket No. Classification

0 N.A

1 Insider IP address with TCP port no. lower than 1024, excluding 80 and

443.

2 Insider IP address with TCP port no. 80 or 443.

3 Insider IP address that does not TCP port no. lower than 1024.

4 N.A

5 Outsider IP address with TCP port no. lower than 1024, excluding 80

and 443.

6 Outsider IP address with TCP port no. 80 or 443.

7 Outsider IP address that does not TCP port no. lower than 1024.

Table 3. Denotation of Buckets for HTTP PID Instance. Similar to table 1,

buckets 0 and 4 represent classifications that cannot occur.

E. CONFIGURATION PARAMETERS FOR CORE
Experiments were conducted varying the parameters for configuration of

the core to investigate the effect on the thermal canyon displays. In this side

experiment, sensor A is activated to listen for network intrusions, while the SMTP

PID instance was started on Zippo core to analyze the data received from sensor

A. From the ZCC, the core was configured with a SF fixed at 0.7 and the number

of displayed states at 100. The number of time slices and the slide length were

varied.

The Mailbomb attack was replayed several times under different

configuration settings and the corresponding thermal canyon displays were

collected, as shown in Figure 17. All four diagrams show the presence of the

Mailbomb attack, as evident from the sudden increase of the number of visited

states.

Figures 17(a) and (b) show two thermal canyons with the same time

length display of 120s, but with a different number of time slices and slide length.

34

The slide length parameter affects the computation of the number of states and

the number of counts. Figure 17(b) shows a thermal canyon with a higher

number of states and a higher number of counts, which enables an administrator

to discern the attack profile more easily.

Figures 17(c) and (d) show two thermal canyons with time length displays

of 400 secs and 200 secs respectively. The canyons appear more “spiky”

compared to Figure 17(b), as more data is packed onto the same display space.

Comparing all four thermal canyons, Figure 17(b) gives the best graphical

representation of the same network attack, which shows a relatively “smooth”

canyon with a discernible attack profile. Hence the optimum setting for the core

component parameters is: number of time slices = 60, slide length = 2, SF = 0.7.

This setting is repeated for all subsequent tests.

35

(a) (b)

(c) (d)

Figure 17. Thermal Canyon Displays for Mailbomb attack with (a) Number
of Time Slices = 120, Slide Length = 1, (b) Number of Time

Slices = 60, Slide Length = 2, (c) Number of Time Slices = 200,
Slide Length = 2, (d) Number of Time Slices = 100, Slide Length

= 2.

F. SUMMARY
This chapter gave an overview of the network and system setups, and

explained how two Zippo sensors are set up in the experiment network to

simulate a DIDS architecture. The Zippo core is configured with different PID

instances to detect Mailbomb, Smurf and Apache2 attacks. These attacks are

taken from M.I.T. Lincoln Laboratory data set.

In the next chapter, the Zippo system is tested in the detection of

Mailbomb, Smurf and Apache2 attacks.

36

THIS PAGE INTENTIONALLY LEFT BLANK

37

V. EXPERIMENT AND ANALYSIS I – SINGLE SENSOR

A. EXPERIMENT SETUP
The purpose of this experiment is to test the effectiveness of Zippo in the

detection of some known attacks. The three network attacks, the Mailbomb,

Smurf and Apache2 attacks are separately sent from the network attack replay

workstation to hub A. Sensor A sniffs the packets broadcast by hub A, converts

the necessary information into thermalate and sends it to the Zippo core

component.

Figure 18. Experiment Setup for a Single Sensor.

B. MAILBOMB ATTACK
Figures 19(a) and (b) show the thermal canyon and thermal tower displays

generated from the SMTP PID instance, when the file 42155148.tcpdump

containing the Mailbomb attack is replayed.

Router

Network A Network B

Sensor A

Zippo Core
& GUI

Network Attack
Replay Workstation

Sensor B

Hub A

Attack Flow
Thermalate Flow

1 □

38

During the attack, there is a sudden increase in the ball transfer activity

between the buckets, as seen from the thermal tower. This translates to more

bucket states, which affirms with the sudden increase in visited states on the

thermal canyon display. The terrain during the attack is rather flat, as there are

relatively low counts of the bucket states. This contrasts with the few bucket

states (but with high counts for each state) during the period of normal traffic.

 (a) (b)

Figure 19. (a)Thermal Canyon and (b)Thermal Tower for SMTP PID
Instance during the Mailbomb Attack.

Ethereal is used to further examine the conversation exchanges between

the attacker and the victim during the attack. Figure 20 shows the observed

patterns of the conversation exchanges and Table 4 explains the flow of ball

transfer between the defined buckets of the SMTP PID instance.

39

Figure 20. Patterns of Conversation Exchanges during the Mailbomb

Attack.

Source

Address

Source

Port

Destination

Address

Destination

Port

Line

Color

 Ball Transfer

From

194.27.251.21 Ephemeral 172.16.114.50 25 Bucket 7 to 1

172.16.114.50 25 194.27.251.21 Ephemeral Bucket 1 to 7

172.16.114.50 Ephemeral 194.27.251.21 113 Bucket 3 to 5

194.27.251.21 113 172.16.114.50 Ephemeral Bucket 5 to 3

Table 4. Flows of Ball Transfer between Defined Buckets of SMTP PID

Instance during the Mailbomb Attack.

As seen from Figure 20, there are more SMTP port 25 packets originating

from 172.16.114.50 to 194.27.251.21, than the other way round. Thus more balls

are transferred from Bucket 7 (maroon-colored bar) to Bucket 1 (turquoise-

Ethereal 10 Graphs: 42155148.tcpdump BE
- :o

;:IJI:K 350s •IIJIJ:,

Graphs
"II

Graph 1 Color Filter

Graph2 Color ^Filter

Graph 3 ß Filter

Graph4 Color ^Filter

Graph 5 ßT) Filter

ip.src==194.27.251.21 8<&ip.d Style:

ip.src==172.16.114.508<&ip.d Style:

ip.src==172.16.114.508<&ip.d Style:

ip.src==194.27.251.21 8<&ip.d Style:

Style:

Line (w

Line

Line

Line

Line

XAxiS

Tick interval:

Pixels per tick:

lsec

X Close

40

colored bar), resulting in fewer balls in Bucket 7 compared to Bucket 1. Similarly,

there are more ball transfers from Bucket 3 (lime green) to Bucket 5 (light green)

than the other way round. The thermal tower shows fewer balls in Bucket 3

compared to Bucket 5.

This is dramatically reflected in the thermal canyon because several more

state combinations are being visited due to the activity in bucket 7 and bucket 5.

Prior to the attack there was very little activity in bucket 7. The attack induces

large variations in the bucket flow – indicated by the turbulence in the thermal

towers – that cause an increase in state entropy and is reflected by the run out in

the thermal canyon.

C. SMURF ATTACK
The file 41213446.tcpdump which contains the Smurf attack produces the

thermal canyon and thermal tower in Figures 20(a) and (b) when it is replayed

and the ICMP PID instance is activated.

 (a) (b)

Figure 21. (a)Thermal Canyon and (b)Thermal Tower for ICMP PID
Instance during the Smurf Attack.

The most indicative sign of an anomaly in the behavior of the network is

the sudden peak on the thermal canyon, jumping from virtually 0 to 2200 counts.

During the attack, the ICMP reply packets (with type 0) from the various attackers

41

to the victim translate to ball transfers from Bucket 5 to 2. This is reflected in the

thermal tower as indicated by the red circles, where Bucket 5 (maroon-colored

bar) is empty during the attack, while Bucket 2 (green-colored bar) is filled with

the maximum number of balls.

Due to the characteristic of the Smurf attack, ball transfer between the

buckets is only one way, i.e. from Bucket 5 to 2. After the buckets hit the

boundary conditions, they remain at this state throughout the duration of the

attack due to the large number of malicious packets sent from the attackers to

the victim. This results in few bucket states, but with very high counts.

D. APACHE2 ATTACK
Figures 22(a) and (b) show a snapshot of the thermal canyon and thermal

tower displays during an Apache2 attack when the file 51140100.tcpdump is

replayed.

(a) (b)

Figure 22. (a)Thermal Canyon and (b)Thermal Tower for HTTP PID
Instance during the Apache2 Attack.

The sudden increases in both the number of bucket states and the counts

of bucket states on the thermal canyon are matched by the increased variations

in ball transfer activities as shown on the thermal tower.

42

Figure 23 shows the pattern of conversation exchanges between the

attacker and the victim using Ethereal, and Table 5 explains the flow of transfer

between the buckets. As there are more packets originating from the attacker to

the victim than the other way, the number of balls in Bucket 7 (turquoise-colored

bar on the thermal tower) is less than Bucket 2 (blue-colored bar). Additionally,

since a large number of packets are being sent to the non-HTTP ports, there is

high variability in the thermal towers plot and a significant run out in the thermal

canyon plot.

Figure 23. Patterns of Conversation Exchanges during the Apache2

Attack.

O Ethereal 10 Graphs: 51140100.tcpdump B@®

300s

Graphs

Graph 1

Graph 2

Graph 3

Graph 5

— 1000

- 500

3505

X Axis

Color [JO E'lter Style: Line ▼ 1 Tick interval: 1 sec ▼

Line ▼ Pixels per tick: 5 ▼ Color W\ Filter Style:
|

Line » ÖQ Biter .104&&ip.dst==172.16.114.50 Style: V Axis

Line $
Unit: Packets/Tick $

Color ß Biter .1048<8<ip.src--172.16.114.50 Style:

Scale: Auto t
Line t ßD<er Style:

X Close

43

Source Address Source

Port

Destination

Address

Destination

Port

Line

Color

 Ball Transfer

From

152.169.215.104 Ephemeral 172.16.114.50 113 Bucket 7 to 2

172.16.114.50 113 152.169.215.104 Ephemeral Bucket 2 to 7

Table 5. Flows of Ball Transfer between Defined Buckets during the

Apache2 Attack.

E. SUMMARY
The results above show that Zippo is effective in the analysis of SMTP,

ICMP and HTTP traffic, as demonstrated in the successful detection of

Mailbomb, Smurf and Apache2 attacks. Indications of anomalies in the network

behavior are most obvious when the thermal canyon shows either a sudden

increase in the number of states visited or a sharp increase in the number of

occurrences of visited states over a prolonged period of time.

The next chapter describes experiments that investigate the response of

Zippo when two sensors detect the same type of attacks.

44

THIS PAGE INTENTIONALLY LEFT BLANK

45

VI. EXPERIMENT AND ANALYSIS II – DUAL SENSORS WITH
THE SAME ATTACK

A. EXPERIMENT SETUP
In this experiment, the same network attack is sent out of the two network

interfaces of the network attack replay workstation at the same time. The

purpose is to investigate the response of the Zippo when two sensors detect the

same network attack at the same time. Figure 24 shows the experiment setup.

Both sensors A and B sniff the same packets and produce the same set of

thermalate which is routed to the Zippo core. The Zippo core then performs an

aggregated analysis on the thermalate received from both sensors.

Figure 24. Experiment Setup for Dual Sensors with the Same Attack.

Router

Network A Network B

Sensor A

Zippo Core
& GUI

Network Attack
Replay Workstation

Sensor B

Hub A

Attack Flow
Thermalate Flow

a i
n»

46

B. MAILBOMB ATTACK
The thermal canyon and tower on Figures 25(a) and (c) have been

repeated from Chapter V for ease of comparison, which are produced from the

detection of a Mailbomb attack by sensor A alone.

(a)

47

(b)

(c)

48

(d)
Figure 25. Thermal Canyon and Tower Displays for (a) and (c) Single

Sensor, (b) and (d) Dual Sensors during a Mailbomb attack.

Figures 25(b) and (d) show the results of the aggregated analysis when

both sensors A and B detect the Mailbomb attack at the same time. This is

achieved by having the network attack reply workstation replay two instances of

42155148.tcpdump at the same time. The Zippo core receives two sets of

thermalate with the same information, and as the thermal tower in Figure 25(d)

shows, the ball transfers between the buckets have increased compared to

Figure 25(c).

Comparing the thermal canyons, it can be observed the shapes of both

canyons are very similar. The difference between the two canyons is that the

number of bucket states and the counts for each bucket state have doubled in

Figure 25(b). For instance, the highest peak on the canyon floor in Figure 25(a)

indicates 80 visited states. The corresponding peak in Figure 25(b) is double that

of Figure 25(a), at approximately 160 states.

49

C. SMURF ATTACK
The thermal canyon and tower in Figures 26 (a) and (c) reflect a Smurf

attack detected by sensor A alone, while Figures 26(b) and (d) show the

response when the same Smurf attack is detected by both sensors A and B.

(a)

50

(b)

(c)

51

(d)

Figure 26. Thermal Canyon and Tower Displays for (a) and (c) Single
Sensor, (b) and (d) Dual Sensors with Smurf attacks.

It is easily observed from the thermal towers, that ball movement between

buckets increased considerably when two attacks are launched (see Figure

26(d)). Although there are few bucket states on both thermal canyons, Figure

26(b) shows more spreading of redness on the thermal canyon floor, indicating

more bucket states compared to Figure 26(a). As there are double the number of

malicious packets, the peak number of counts on the thermal canyon in Figure

26(b) is also doubled.

D. APACHE2 ATTACK
Figures 27(a) and (c) show the results from the detection of an Apache2

attack by sensor A. When both sensors detect the same attack, a similar thermal

canyon landscape is produced. Figures 27(b) shows a thermal canyon that

appears to be an enlarged version of Figure 27(a), with a much wider and longer

canyon floor, and higher peaks. The highest peak in Figure 27(a) is about 600

52

counts, while the highest peak in Figure 27(b) is almost 1200, double that of

Figure 27(a). Comparing the two red circles in Figures 27(a) and (b), the number

of visited states in Figure 27(b) at that point is 300, which is approximately

double that of Figure 27(a). This corresponds with more rapid changes in the

number of balls in the buckets of the thermal tower in Figure 27(d).

(a)

53

(b)

(c)

54

(d)

Figure 27. Thermal Canyon and Tower Displays for (a) and (c) Single
Sensor, (b) and (d) Dual Sensors with Apache2 attacks.

E. ANALYSIS OF RESULTS
The results from all three attacks show that when two Zippo sensors

detect the same attack concurrently, the thermal canyon produced has the same

landscape as when only one sensor detects the attack. However, as there is

double the quantity of thermalate produced, the number of bucket states and the

counts of each bucket state are increased proportionately.

To use a simple illustration, consider two buckets BA and BB which

represent Nodes A and B respectively. Let there be two balls in each bucket.

Suppose A sends a network packet to B, and B replies to A. The state changes,

corresponding to the number of balls in the two buckets are as shown in Table 6.

Excluding the initial state (2,2), there is one new state, which is (1,3) with only

one count.

55

Table 6. State Changes with a Single Network Packet from A to B.

If each packet is duplicated, the state changes will be as follows (see

Table 7). Excluding the initial state condition (2,2), there are two new states: (1,3)

and (0,4). The number of counts for state (1,3) in particular is 2.

Table 7. State Changes with Duplicate Network Packets from Node A to B.

This simple example shows how the number of states visited and the

number of counts of the visited states can be doubled with double the network

packets.

F. SUMMARY

This chapter investigates the response of the Zippo core component when

both its sensors detect the same attack. The conclusion is that, as the Zippo core

receives double the amount of thermalate, the thermal canyon and thermal tower

display a proportionate increase in the bucket states and state counts.

Event No. of Balls in BA No. of Balls in BB

Initial Condition 2 2

A sends packet to B 1 3

B replies 2 2

Event No. of Balls in BA No. of Balls in BB

Initial Condition 2 2

 A sends packet to B 1 3

A sends packet to B (duplicate) 0 4

B replies 1 3

B replies (duplicate) 2 2

56

The next chapter discusses the experiment conducted to investigate the

response of Zippo to concurrent different attacks.

57

VII. EXPERIMENT AND ANALYSIS III – DUAL SENSORS WITH
DIFFERENT ATTACKS

A. EXPERIMENT SETUP
The purpose of this experiment is to examine the ability of Zippo to deal

with different and concurrent network attacks. Figure 28 shows the network

attack replay workstation launching two different network attacks at the same

time. Sensors A and B detect the different attacks, and send the thermalate to

Zippo core. Zippo core performs an aggregated analysis and the results are

presented in the following sections. The thermal canyons and thermal towers

produced in this experiment are also compared and contrasted with results

obtained from earlier experiments.

Figure 28. Experiment Setup for Dual Sensors with Different Network
Attacks.

Router

Network A Network B

Sensor A

Zippo Core
& GUI

Network Attack
Replay Workstation

Sensor B

Hub A

Attack Flow 1
Attack Flow 2
Thermalate Flow

^ a
i n

58

B. SMURF AND MAILBOMB ATTACKS
In this section, the network attack replay workstation replays both Smurf

and Mailbomb attacks at the same time. The SMTP and ICMP PID instances are

activated on the Zippo core to perform an aggregated analysis on the thermalate

sent from sensors A and B.

1. SMTP PID Instance
Figures 29(a) to (f) show the different thermal canyon and thermal tower

displays for the SMTP PID instance when the Mailbomb attack, the Smurf attack

and the combined Mailbomb and Smurf attacks are launched respectively.

Looking at Figures 29(c) and (d), during the Smurf attack, the large

number of ICMP reply packets from the attackers to the victim result in ball

transfers from Bucket 7 (represented by the maroon-coloured bar on the thermal

tower) to Bucket 3 (represented by the dark green-colored bar). There are few

ball exchanges between the other buckets, which is why there are few bucket

states on the thermal canyon.

 (a)

59

(b)

(c)

60

(d)

(e)

61

(f)

Figure 29. Thermal Canyons and Thermal Tower for SMTP PID Instance
during (a), (b) Mailbomb attack; (c), (d) Smurf attack and (e), (f)

combined Mailbomb and Smurf attacks.

The thermal canyon in Figure 29(e) appears to be a superposition of the

thermal canyons in Figure 29(a) and (c). The wide spreading of bucket states on

the canyon floor are caused by the Mailbomb attack, while the huge peaks

against the vertical plane are due to the Smurf attack. This is verified by the two

sets of thermalate shown in Figures 31 and 32, which are obtained by clicking on

the canyon peak and the canyon floor respectively.

62

Figure 30. Thermalate contributing to the canyon peak of the SMTP PID

Instance during the combined Mailbomb and Smurf attacks.

Figure 31. Thermalate Contributing to the Canyon Floor of the SMTP PID

Instance during the combined Mailbomb and Smurf Attacks.

2. ICMP PID Instance
The thermal canyon and thermal tower displays in Figures 32(a) to (f) are

produced by the ICMP PID instance when the Smurf attack, the Mailbomb attack

and the combined Mailbomb and Smurf attacks are launched respectively.

During the Mailbomb attack, the thermal canyon in Figure 32(c) does not

display any obvious signs of anomaly. The network traffic during the attack

63

results in ball exchanges between Buckets 6 (represented by the yellow-colored

bar) and 7 (represented by the red-colored bar).

The scale on the y-axis automatically scales to accommodate the highest

value. It should be noted that the scale on Figures 32(a) and (c) are very

different.

 (a)

64

(b)

(c)

65

(d)

(e)

66

(f)

Figure 32. Thermal Canyons and Thermal Tower for ICMP PID Instance
during (a), (b) Smurf attack; (c), (d) Mailbomb attack and (e), (f)

combined Mailbomb and Smurf attacks.

The thermal canyon in Figure 32(e) has a landscape that is similar to

Figure 32(a). The thermalate contributing to the canyon peak in Figure 32(e) is

shown in Figure 33, which consists mostly of ICMP packets. The Smurf attack

has completely overshadowed the Mailbomb attack.

67

Figure 33. Thermalate Contributing to the Canyon Peak of the ICMP PID

Instance during the combined Mailbomb and Smurf attacks.

C. SMURF AND APACHE2 ATTACKS
In this section, the network attack replay workstation replays the Smurf

and the Apache2 attacks concurrently. The HTTP and ICMP PID instances are

activated on the Zippo core to analyze the aggregated thermalate sent from

sensors A and B.

1. ICMP PID Instance
Figure 34(a) to (f) compare the thermal canyon and thermal tower displays

of the ICMP PID Instance to a Smurf attack, an Apache2 attack and combined

Smurf and Apache2 attacks respectively.

The Apache2 attack results in ball transfers between Buckets 6 (yellow-

coloured bar) and 7(red-colored bar), as shown in Figure 34(d). The peaks on the

thermal canyon clearly indicate an anomalous situation.

68

During the combined Smurf and Apache2 attacks, the peaks on the

thermal canyon are much higher, due to the large combined volume of traffic.

Balls are transferred mainly between Buckets 5 and 2, and Buckets 6 and 7. It is

difficult to tell from the thermal canyon alone that there are two attacks going on,

unless the details about the network packets are obtained from the thermalate.

(a)

69

(b)

(c)

70

(d)

(e)

71

(f)

Figure 34. Thermal Canyons and Thermal Tower for ICMP PID Instance
during (a), (b) Smurf attack; (c), (d) Apache2 attack and (e), (f)

combined Smurf and Apache2 attacks.

2. HTTP PID Instance
Figures 35(a) to (f) show different thermal canyons and tower displays of

the HTTP PID Instance, corresponding to the detection of Apache2 attack, Smurf

attack and a combination of the two attacks.

The Smurf attack results in high peaks on the thermal canyon, as shown

in Figure 35(c). The high counts of the states visited are due to massive ball

transfers from Bucket 7 (turquoise-colored bar) to 3 (maroon-colored bar).

72

(a)

(b)

73

(c)

(b)

74

(e)

(f)

Figure 35. Thermal Canyons and Thermal Tower for HTTP PID Instance
during (a), (b) Apache2 attack; (c), (d) Smurf attack and (e), (f)

combined Apache2 and Smurf attacks.

75

The combined Smurf and Apache2 attacks produce a thermal canyon that

is a combination of their individual thermal canyons. Balls are transferred

between Buckets 2, 3 and 7. This results in a thermal canyon that has more

bucket states than Figure 35(a), and lower peaks than Figure 35(c).

D. MAILBOMB AND APACHE2 ATTACKS
In this section, the network attack replay workstation replays the Mailbomb

and the Apache2 attacks concurrently. The SMTP and HTTP PID instances are

activated on the Zippo core to analyze the aggregated thermalate sent from

sensors A and B.

1. SMTP PID Instance
The SMTP PID instance produce different thermal canyon and tower

displays, in consequence to the detection of Mailbomb, Apache2 and a

combination of the two attacks, as shown in Figures 36(a) to (f).

The Apache2 attack causes balls to be moved between Buckets 7 and 2,

which result in an increase in the bucket states, and high peaks on the thermal

canyon, as shown in Figure 36(c).

The combined attacks result in ball transfers between Buckets 1, 2, 3, 5

and 7. The many permutations of the number of balls in each bucket lead to wide

spreading of the bucket states, but narrower peaks on the thermal canyon.

76

 (a)

(b)

77

(c)

(d)

78

(e)

(f)

Figure 36. Thermal Canyons and Thermal Tower for SMTP PID Instance
during (a), (b) Mailbomb attack; (c), (d) Apache2 attack and (e),

(f) combined Mailbomb and Apache2 attacks.

79

2. HTTP PID Instance
Figures 37(a) to (f) show the response of the HTTP PID instance to

Apache2, Mailbomb and combined Apache2 and Mailbomb attacks. The

Mailbomb attack results in the transfer of balls between Buckets 1, 3, 5 and 7

and leads to an increase in the bucket states.

The combined attacks result in a thermal canyon (see Figure 37(e)) that is

a combination of the thermal canyons in Figure 37(a) and (c).

(a)

80

(b)

(c)

81

(d)

(e)

82

(f)

Figure 37. Thermal Canyons and Thermal Tower for HTTP PID Instance
during (a), (b) Apache2 attack; (c), (d) Mailbomb attack and (e),

(f) combined Apache2 and Mailbomb attacks.

E. ANALYSIS OF RESULTS
The above results show the responses of the SMTP, ICMP and HTTP PID

instances to different attacks. Table 8 shows a summary of the results – a ‘Y’

indicates that the PID instance gave an indication of the anomalous behavior on

the corresponding thermal canyon, and an ‘N’ indicates otherwise.

PID Instance Smurf Attack Mailbomb Attack Apache2 Attack

ICMP Y (4 states,

7200 counts)

N (15 states,

90 counts)

Y (10 states,

1200 counts)

SMTP Y (10 states,

2500 counts)

Y (90 states,

50 counts)

Y (200 states,

550 counts)

HTTP Y (10 states,

2000 counts)

N (50 states,

90 counts)

Y (150 states,

700 counts)

Table 8. Summary of Responses to attacks.

83

With the exception of the Mailbomb attack with the ICMP and HTTP PID

instances, all other PID instances yielded a response, even when they are

subjected to attacks which they are not designed to detect. The Mailbomb attack

in the HTTP PID instance could be considered a borderline detection response.

The response was certainly strongest in PID instances designed to services

being monitored. To correctly identify the attack, the thermalate has to be

examined in order to understand the nature of the network packets.

F. SUMMARY
This chapter presents the findings of the experiment to investigate the

response of Zippo to concurrent attacks of differing nature. The results show that

each PID instance is able to detect the attack that it is designed to look out for,

even in the presence of another attack. The downside, however, is that most of

the PID instances yield a response even to attacks which they not designed to

detect.

The next chapter summarizes the findings from this thesis and discusses

possible areas for future research.

84

THIS PAGE INTENTIONALLY LEFT BLANK

85

VIII. REPORT SUMMARY AND FUTURE RESEARCH

A. REPORT SUMMARY
The main objective of this thesis is to implement a DIDS using

Therminator. Zippo, a newer version of Therminator, is tried and tested instead.

The modular software design of Zippo facilitates the task of deploying a DIDS, as

the sensing, core and GUI components can function separately on different host

operating systems.

The experimental network was setup for the deployment of a distributed

Zippo system. It consisted of two remote sensors which report to the Zippo core.

The GUI, which displays the thermal canyons and thermal towers, was co-

located with the Zippo core. A separate machine was set up to replay pre-

recorded network traffic containing various network attacks.

The first experiment on the Zippo system was to test the response to

Mailbomb, Smurf and Apache2 attacks. In order to correctly identify the attacks,

the Zippo system had to be configured to analyze and differentiate SMTP, ICMP

and HTTP traffic from other traffic. This was achieved with the construction of

three decision trees, named as SMTP, ICMP and HTTP PID instances. When the

attacks were launched, the thermal canyons and thermal towers of the

corresponding PID instances gave correct responses.

The next experiment was to investigate the response of the Zippo system

when both remote sensors were subjected to the same network traffic containing

the same attack. The Zippo core had to perform aggregated analyses of the

thermalate received from both sensors The results showed that in general, the

thermal canyons produced similar landscapes as when only one sensor detected

the attack. But due to the double volume of traffic, the number of bucket states

and the counts of the bucket states were doubled.

The last experiment was to investigate the response of the Zippo system

when the remote sensors were subjected to different network traffic containing

different attacks at the same time. The results showed that the PID instances

86

could still identify the attacks which they were designed for, even in the presence

of other attacks. However, it led to the discovery that the PID instances could

also respond to attacks which they were not meant to detect.

Overall, the objective of the thesis research has been met. A DIDS has

been successfully implemented using Zippo. Interesting results have been

obtained and discussed from the various experiments conducted on the

distributed Zippo system.

B. FUTURE RESEARCH
In Chapter III, the configuration parameters of the Zippo core were briefly

experimented with. More work could be carried out in this area, to find out the

most optimum set of parameters to use in order to obtain the most optimum

response. In particular, the SL and SF could be varied to investigate the effect on

the thermal canyon displays.

The existence of borderline response emphasizes the need for robust

detection techniques. The area of attack detection is not addressed in the thesis

but holds significant potential for future research.

Another area to research is the optimum design of the PID instances to

identify only the type of attack which it is designed to detect. This ensures better

accuracy in the detection of attacks, instead of having every PID instance

respond to an attack.

87

LIST OF REFERENCES

[1] Dorothy E. Denning, “An Intrusion-Detection Model,“ Proc. Of IEEE
Symposium on Security and Privacy, pp. 118 131, 1986.

[2] Stephen Northcutt and Judy Novak, Network Intrusion Detection, 3rd

Edition, Sams, August 2002.

[3] Donald, Stephen D. and McMillen, Robert V., “Therminator 2: Developing
a Real Time Thermodynamic Based Patternless Intrusion Detection
System,” Master’s Thesis, Naval Postgraduate School, Monterey,
California, September 2001.

[4] John C. McEachen, Stephen D. Donald, Robert V. McMillen, David K.

Ford, “Using Thermodynamics to Model Network Conversation Flux for
Intrusion Detection”, IEEE MILCOM 2002, Los Angeles, CA, October
2002.

[5] Massachusetts Institute of Technology, Lincoln Laboratory, DARPA

Intrusion Detection Evaluation, http://www.II.mit.edu/IST/ideval/index.html,
last accessed 14 September 2004.

[6] Przemyslaw Kazienko and Piotr Dorosz, “Intrusion Detection Systems

(IDS) Part I – (network intrusions; attack symptoms; IDS tasks; and IDS
architecture),”

 http://www.windowsecurity.com/articles/Intrusion_Detection_Systems_IDS
Part_I__network_intrusions_attack_symptoms_IDS_tasks_and_IDS_archi
tecture.html, last accessed 2 October 2004.

[7] Phil Porras, Dan Schnackenberg, Stuart Staniford-Chen, Maureen

Stillman and Felix Wu, “The Common Intrusion Detection Framework
Architecture,” http://www.isi.edu/gost/cidf/drafts/architecture.txt, last
accessed 2 October 2004.

[8] Przemyslaw Kazienko and Piotr Dorosz, “Intrusion Detection Systems

(IDS) Part 2 – Classification; methods; techniques,”
http://www.windowsecurity.com/articles/IDS-Part2-Classification-methods-
techniques.html, last accessed 2 October 2004.

[9] John Zachary, John McEachen, Dan Ettlich, “Conversation Exchange

Dynamics for Real-Time Network Monitoring and Anomaly Detection,”
Second IEEE International Information Assurance Workshop, April 2004.

88

[10] Daniel W. Ettlich, “Therminator: Configuring the Underlying Statistical
Mechanics Model”, M.S. Thesis, Department of Electrical and Computer
Engineering, Naval Postgraduate School, Monterey, California, December
2003.

[11] John Marinovich and Stefan Walch, “Analysis of Initial and Boundary

Conditions in Therminator Conversation Exchange Dynamics,” Master’s
Thesis, Naval Postgraduate School, Monterey, California, March 2004.

[12] John Zachary, “Zippo: A Robust and Portable Network Anomaly Detection

System,” May 2004.

89

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Dr. John C. McEachen
Naval Postgraduate School
Monterey, California

4. Dr. Su Wen
Naval Postgraduate School
Monterey, California

