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ABSTRACT 
 
 
The idea of deploying a distributed network intrusion system using 

Therminator is explored in this thesis. There are many advantages in having a 

distributed system compared to a standalone network intrusion system. The 

underlying principle of Therminator is modeling network traffic on conversation 

exchange models. Using Zippo, a new implementation of Therminator, the 

experimental setup consisted of multiple sensors reporting individual findings to a 

central server for aggregated analysis. Different scenarios of network attacks and 

intrusions were planned to investigate the effectiveness of the distributed system. 

The network attacks were taken from the M.I.T Lincoln Lab 1999 Data Sets. The 

distributed system was subjected to different combinations of network attacks in 

various parts of the network. The results were then analyzed to understand the 

behavior of the distributed system in response to the different attacks. In general, 

the distributed system detected all attacks under each scenario. Some surprising 

observations also indicated attack responses occurring in unanticipated 

scenarios. These results are subject to further investigation. 
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I. INTRODUCTION  

A. INTRUSION DETECTION SYSTEMS  
Intrusion Detection Systems (IDS) have gained increasing importance in 

ensuring the overall security of organizations. They act as an additional layer of 

security to the organization’s perimeter defense, which usually, is implemented 

using firewalls. Firewalls are effective in preventing unauthorized entry into the 

organization’s network. However, firewalls cannot detect unauthorized behavior 

that is present in network traffic they allow to go through.  

The role of detecting anomalous behavior is performed by IDS, which try 

to identify and report attacks and security incidents [1]. There are two categories 

of IDS: network-based IDS and host-based IDS [2]. Network-based IDS monitor 

and analyze network traffic in the network segments where they are installed. 

Host-based IDS monitor and analyze network traffic that goes in and out of 

specific hosts.  

 

B. THERMINATOR 
The Therminator is a network-based IDS created by Stephen Donald and 

Robert McMillen [3], using a mathematical model developed by Dr David Ford 

[4]. In the model, buckets represent classifications of network nodes and balls 

represent IP (Internet Protocol) packets. Conversations between network nodes 

are modeled by the movement of balls between buckets. Network intrusions 

result in anomalies in the conversation exchange between nodes. Therminator 

provides a graphical means of displaying the intrusions in real time. 

 

C. ZIPPO 
ZIPPO is a newer version of Therminator, developed by the University of 

South Carolina (USC). Written in a mix of Java and C++ languages, ZIPPO 

provides a more user-friendly interface and consists of three components: the 

sensor, the core and the graphical user interface (GUI). With a modular design, 
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ZIPPO offers better robustness and portability. ZIPPO was the first version of 

Therminator to aggregate input from multiple sensors into one display.  This new 

aspect of ZIPPO will be the focus of thesis. 

  

D. THESIS RESEARCH 
The area of interest in this research is implementing, analyzing and 

validating a distributed IDS using ZIPPO. This is achieved by distributing the 

sensors on different network segments to monitor the traffic in different parts of 

the network. The sensors relay the information to the core component, which 

converts it into a pre-defined format before analyzing it and displaying it on the 

GUI. 

This research will be accomplished by analyzing the response of the 

distributed IDS to network attacks under a variety of conditions. In particular, the 

Smurf, Mailbomb and Apache2 attacks extracted from the MIT Lincoln Lab IDS 

datasets will be used to generate a distinctive response [5]. 

 

E. THESIS ORGANIZATION 
Chapter II looks into the different types of IDS currently available, and 

compares central and distributed IDS. It also explains the conversation exchange 

model in more depth. 

Chapter III discusses the architecture of ZIPPO, while Chapter IV explains 

the experiment setup and methodology. 

Chapters V to VII present and analyze the results that were obtained from 

the experiments. Chapter VIII concludes the report with a summary of the 

findings obtained, and discusses the possible areas of future research. 
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II. INTRUSION DETECTION SYSTEMS 

A. GENERAL 
The aim of IDS is to detect, and possibly prevent an on-going network 

attack on one or more systems. Network attacks can generally be classified as 

passive or active. Passive attacks gain access to systems without compromising 

any resources, while active attacks will result in unauthorized changes to the 

resources. These attacks can be executed either from outside the organization 

network (often via the Internet), or from inside the network by employees, trusted 

users, etc.  

The types of network attacks which IDS can identify are [6]: 

i. Unauthorized Access to Resources. The intruder attempts to 

gain access to systems using password cracking, Trojan horses, 

interceptions of TCP sessions, spoofing, etc. He may also stealthily 

probe for information using port scans, IP scans, operating system 

fingerprinting, etc. 

ii. Unauthorized Modification of Resources. The intruder may 

make unauthorized configuration changes to systems and network 

resources, alter or delete information on systems after gaining 

unauthorized access to them. 

iii. Denial of Service (DoS).  A targeted system is flooded with 

unnecessary information to block out legitimate traffic and deny 

services, e.g. ping and mail flood. The system can also be 

compromised by exploiting its vulnerabilities, e.g. buffer overflow. 

In examining the network traffic or systems for anomalous behavior, an 

IDS may not be entirely correct in their diagnoses. False positives are generated 

when IDS wrongly identify particular events as intrusions or attacks. False 

negatives occur when IDS overlook an attack and let it go through without 

sounding any alarms. 
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B. STRUCTURE OF IDS 
Many different types of IDS are available in the market, be it commercially 

or academically developed. Each has its own design and implementation, but in 

general, IDS are made up of similar components as defined by the Common 

Intrusion Detection Framework (CIDF) [7]. These include: 

i. Event generators (E-Boxes). These are sensors in the networks 

which monitor network traffic and activities, and generate events 

accordingly. These events are then passed to the other parts of the 

IDS. 

ii. Event Analyzers (A-Boxes). These boxes process and analyze 

data that is sent from the E-boxes. The processed information may 

be summarized, statistically profiled, or correlated to obtain further 

information. 

iii. Event Databases (D-Boxes). The huge amount of data that may 

be produced by E-boxes and A-boxes are stored in D-boxes, which 

can be assessed anytime by system administrators. 

iv. Response Units (R-Boxes). These provide countermeasures to 

attacks, such as killing processes, resetting connections, altering 

file permissions, etc. 

Figure 1 shows how these boxes interact with each other in an intrusion 

detection system. 
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Figure 1.   Interaction of CIDF components in an IDS. 

 

C. CLASSIFICATION OF IDS 
There are many ways to classify IDS [8], as shown in Figure 2.  

 
Figure 2.   Classification of IDS. 
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i. Architecture. Network-based IDS (NIDS) monitor and analyze 

inbound and outbound network traffic on the network segments 

where they are installed. Each data packet is examined in real time 

for signs of intrusion. Though NIDS may be effective in monitoring 

an entire, large network with only a few well-placed nodes, they are 

unable to analyze encrypted data. Host-based IDS (HIDS) analyze 

inbound and outbound network traffic of specific systems which 

they are installed on, check the integrity of system files and look out 

for suspicious process activities. Most importantly, they can 

examine encrypted traffic, data, storage and activities. However 

HIDS do consume a lot of resources, e.g. processing time, storage, 

memory, etc, on the systems they operate on. Hybrid IDS combine 

HIDS technology with the ability to monitor inbound and outbound 

network traffic of specific hosts using NIDS technology. 

ii. Detection Method. Signature-based IDS analyze network traffic 

or activities based on matches for patterns of events known to 

specific attacks. This type of IDS is effective against known attacks. 

One major disadvantage is that signature databases must 

constantly be updated, otherwise new attacks will not be detected. 

Anomaly-based IDS compare network traffic or activities against 

normal usage profiles. By creating baselines of normal behavior, 

these IDS can observe when current behavior differs from normal 

behavior, and determine if attacks are underway. The advantage is 

that both known and new attacks may be detected easily. However, 

as normal behavior can change easily, these IDS may set off false 

alarms when there is normal network traffic which contributes to 

deviations.  

iii. Structure. Centralized IDS operate standalone, with centralized 

applications physically integrated within a box, while Distributed 
IDS consist of multiple IDS over a large network, all of which 
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communicate with each other. More information on distributed IDS 

will be provided in Section D. 

iv. Data Source. The data which IDS analyze can either be raw 

network packets, event logs and alarms from audit trail, or 

system state information.  

v. Action Taken. Active IDS respond to attacks proactively once they 

are detected, e.g. log out potential intruders, block services or even 

reset a TCP connection on behalf of the victim. They attempt to 

stop the attacks before more damage is caused. Passive IDS only 

generate alerts and log network packets when attacks are detected. 

vi. Time of Analysis. IDS which process data in real-time, monitor 

the data constantly and analyze current information to sense 

possible attack attempts. This is useful in stopping attacks that are 

underway. Interval-based IDS monitor periodic feeds of 

information such as event logs, system alarms and other system 

information from audit trail. The advantage is events can be 

correlated to detect an attack trend, especially if the attacker tries to 

masquerade attack attempts over an extended period of time. 

 
D. DISTRIBUTED IDS (DIDS) 

The biggest shortcoming in centralized, standalone IDS is that they are 

built on a single physical entity, which is responsible for both collecting and 

analyzing data. This can impose severe limitations on efficiency and the system 

resources, especially when a high volume of data needs to be processed. DIDS 

can overcome this shortcoming, by performing distributed data collection and 

possibly preprocessing, depending on the design of the system.  

DIDS consist of multiple sensors deployed in different areas of a large 

network, all of which report to a central server that aggregates the information 

and processes it. The sensors should ideally be deployed on separate network 

segments and geographical locations.  



8 

These are many benefits which DIDS offer as compared to the 

centralized, standalone IDS: 

i. Efficiency. As explained earlier, higher efficiency can be achieved 

with distributed data collection and preprocessing. 

ii. Holistic View of the Entire Network. By placing sensors in 

strategic locations in different parts of the network, the DIDS can 

provide a holistic view of the entire network, which will allow 

administrators and analysts to make better judgments. 

iii. Early Detection. By placing sensors in different geographical 

locations, attack patterns may be detected across the entire 

organization network. It may be possible to have early detections of 

coordinated attacks on the organization. This allows network and 

system administrators to secure targeted systems and arrest 

intruders at the different entry points of the network.  

iv. Scalability and Configurability. Sensors can be easily added to 

or removed from the network. As changes to the network topology 

and configurations are common, especially in large organization 

networks, this allows more flexibility for the network and system 

administrators.  

v. Reliability. There is no single point of failure as different parts of 

the network are monitored by different sensors. Even if a sensor is 

brought down by a network attack, the information will have been 

sent to the centralized host for alerting and forensic analysis.  

vi. Extensibility. New features and changes can be made to the 

sensors one at a time, without much interruption to the monitoring 

of the network. 
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E. SUMMARY 
This chapter explained the underlying structure of IDS, and gave an 

overview of the types of network attacks which can be detected. There are 

several methods of classifying IDS, such as by their architecture, method of 

detection and structure, etc. When the structure of the IDS is used for 

classification, IDS can either be centralized or distributed. Distributed IDS offer 

many advantages over centralized IDS.  

The next chapter will explore Therminator, an IDS that is developed by 

Naval Postgraduate School, and Zippo, that is a new implementation of 

Therminator, in greater details. 
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III. THERMINATOR AND ZIPPO 

A. GENERAL 
Therminator is a network-based IDS that was originally developed at 

Naval Postgraduate School. It is based on a conversation exchange model, and 

uses statistical mechanics and thermodynamic principles to detect anomalous 

behavior in a monitored network. Many tests were conducted on Therminator, 

which has been proven to be successful in detecting different types of network 

intrusions.  

In spite of Therminator’s success, there were several shortcomings in the 

program. A research team from University of Southern Carolina was contracted 

to address these inadequacies by developing a new version of the program, 

which they codenamed Zippo. New capabilities were also added to this new 

version of Therminator.   

 

B. CONVERSATION EXCHANGE MODEL 
The underlying concept of Therminator and Zippo is based on the 

conversation exchange model, which is used to model network traffic. It defines a 

conversation exchange as an exchange of information between two conversation 

groups. These conversation groups may represent network nodes, protocols or 

the tasks which network nodes perform (e.g. client or server). This model uses 

buckets to represent conversation groups and balls to represent the information 

that is exchanged between the conversation groups. 

Network traffic analysis is based on decision trees that have buckets as 

leaf nodes. At the beginning of the analysis, each bucket starts off with an initial 

number of balls. These balls are dynamically moved around in accordance with 

conversation exchanges that are modeled on information extracted from the 

network traffic. For instance, the buckets in Figure 3 represent four network 

nodes. A conversation exchange of n network packets between nodes A and B 

will result in the movement of n balls from bucket BA to bucket BB. However, the 
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number of balls in each bucket cannot decreased below a minimum level or 

increased beyond a maximum level, as pre-defined in the decision tree. 

  
Figure 3.   A decision tree with four defined buckets. 

 

During the network traffic analysis, the number of balls in each bucket is 

constantly varying. A network state is the combination of the number of balls in 

each bucket at any given time. The state space covers the entire range of 

possible number of states, N, which is determined by the formula [9]: 








 +
=

1-M
1-KM

N                                               (3.1) 

where M is the number of buckets, and K is the total number of balls in the 

system. A state space walk traces all the states that were visited during a given 

period of time. 

The average number of balls in the buckets can be represented in real 

time on a 3-D graphical display, known as thermal tower. Information about the 

network states visited and the number of occurrences can also be accumulated 

and plotted on a 3-D graphical display, known as a thermal canyon. When there 

are unusually high counts of certain states, or when there are a large number of 

states  that  are  usually  not visited, it can be an indication of anomalous network  

Decision Node Decision Node 
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Yes Yes No No 

Yes No 

Decision Node 
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activity. Thermodynamic principles of energy, entropy and temperature can be 

applied to the thermal canyon, which reveal more information about the network 

health.  

 

C. THERMINATOR 
1. Architecture of Therminator 
Therminator was developed using C programming language, and 

comprises of 3 components: the Sucker, the Patternless Intrusion Detection 

System (PID) and the GUI, as illustrated in Figure 4. 

 
Figure 4.   Therminator System 

 

The Sucker, also known as a sensor, is basically a sniffer which captures 

or “sucks” every IP packet off the network. Sucker captures the network packets 

using libpcap and analyzes the protocols using a custom packet decoder.  

Sucker extracts essential components of the decoded information, 

including IP header length, TCP header length and protocol used. It also 

analyses the information and sets the values of defined variables FLOW, 

MATCH, BROADCAST and NEW FRIEND. The BROADCAST bit is set if the 

destination IP address in the packet is a broadcast address. The FLOW field 

indicates if the packet is traveling in or out of the monitored network. The MATCH 

thermalate 
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bit is set if the packet is a response to a stimulus, after a state inspection. Lastly, 

the NEW FRIEND bit indicates if a visiting host is new to the monitored network. 

These pieces of information are then put together in a new data format, known as 

thermalate. 

Thermalate is sent to the PID at regular intervals through a TCP socket 

connection, where it undergoes thermodynamic analysis based on pre-defined 

configuration files. A typical configuration file defines the decision tree, and the 

initial, minimum and maximum number of balls in the buckets. After the 

thermodynamic analysis, the data is stored and processed according to the 

SLIDELENGTH (SL) and WINDOWLENGTH (WL) parameters also specified in 

the configuration file.  

The SL defines the single display time interval on the thermal canyon and 

thermal tower, while the WL is the period of time which the data is averaged 

over. Another parameter, the smoothing ratio (SR) [10], is derived from the 

following formula: 

SL
WLSR =                                                     (3.2) 

The SL, WL and SR are important parameters that affect how the data is 

represented in the thermal canyon. Inappropriate settings can result in false 

positives or missed intrusions. Marinovich and Walch [11] showed in their 

investigations that small values for SL and WL could result in missed intrusions, 

while large SL and WL values presented late information.   

 The GUI allows different configuration settings for the plotting of the 

thermal canyon and the thermal tower. It retrieves the output data files from the 

PID and presents the graphic displays using the XRT/3d 3.0 widget, formerly 

from KL Group Inc. 
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2. Limitations of Therminator 
Therminator has proven to be highly successful, as it accurately picked up 

signs of intrusions and network attacks in the many tests that were conducted. 

There are, however, limitations to the program which are briefly described below: 

a. The configurations of the decision tree and the bucket space cannot be 

changed on the “fly”. The program has to be stopped and restarted to 

effect the new changes. 

b. The graphics for the thermal canyons and towers are created using a 

commercial graphical widget, the XRT/3d 3.0. The license for this 

widget is limited to a Solaris 8 system; it cannot be run on any other 

platforms. 

c. The PID is programmed to receive data only from one sensor. 

Therminator is not capable of supporting a DIDS architecture, whereby 

multiple sensors report to a central server and information is 

aggregated for analysis. 

 

D. ZIPPO – THE NEW THERMINATOR 
When Zippo was being developed, the goal was to build a software 

system which is robust, high performing, portable and scalable, and able to 

overcome the limitations of Therminator.  

1. Architecture of Zippo 
ZIPPO is written in a mix of Java and C++ languages, and is based on a 

Model-View-Controller (MVC) software architecture, which separates the 

application into three distinct components: data model, user interface and control 

logic [12].  

The Model object is the core of the system, which implements the state 

space model and executes the complex operations of the underlying 

thermodynamics model. It takes in information about its data elements from the 

Controller, and passes computed information to the View object for display. 
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The View object takes the responsibility of presenting data from the 

Controller and the Model in a combination of graphics and text, (e.g. the Zippo 

Control Center GUI and the 3-D displays of the thermal canyons and towers.) 

The Controller mainly translates interactions with the View object into 

actions to be performed by the Model. It is responsible for the configuration of the 

application, extraction and conversion of the data from network packets into 

thermalate, and storage of thermalate for later analysis. The Controller 

implements the sensor and the core functions of the application, which will be 

explained in the next section. Figure 5 shows the interaction between the MVC 

components. 

 
Figure 5.   Interaction between MVC components. 

 

2. Zippo Application 
The Zippo application consists of three components: the sensor, the core 

and the GUI. The MVC architecture of Zippo allows these components to reside 

on separate host machines. Most importantly, the core is able to receive data 

from multiple sensors. This demonstrates that Zippo is capable of supporting a 

DIDS architecture, which is the focal point of this thesis. In addition, there can be 

multiple GUI displays for each core instance. Figure 6 shows how a DIDS 

architecture can be achieved using Zippo. 

 

View 
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Figure 6.   Distributed IDS using Zippo. 

 

a. Sensor Component 
The sensor component can be installed locally (on the same host 

machine as the core component) or remotely (on a different host machine as the 

core component). A local sensor and a remote sensor perform the same 

functions. The only difference between them is that the former is coded in C++ 

language, while the latter is coded in Java language for tighter coupling to the 

core component.  

The sensor captures network packets from a live network using 

libpcap. It then converts the captured data into thermalate before sending it to the 

core component for processing. The sensor component has a configuration file in 
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which the IP address of the machine hosting the core component and the 

communicating TCP port number have to be specified. 

As an added measure of security, communications between the 

sensor and core components is encrypted via OpenSSL. OpenSSL is an open 

source implementation of Secure Sockets Layer (SSL) and Transport Layer 

Security (TSL). The installation of Zippo comes with the default private and public 

keys for the sensor and core components and a self-signed Certificate Authority 

(CA). Users of Zippo can implement their own Public Key Infrastructure (PKI) in 

the system if it is desired. 

b. Core Component 
The core component is written in Java language, and hence is OS 

independent. However, the machine that hosts the core component is required to 

install Java 2 SDK. The core component aggregates thermalate that is received 

from the various sensors, and performs the thermodynamic analysis. The results 

from the complex computations are then sent to the GUI component for display.  

c. GUI Component 
The GUI component provides interaction between the user and 

Zippo through Zippo Control Center (ZCC), which allows the user to administer 

the configuration of the sensor and the core components, and to display results 

on the thermal canyons and thermal towers. The GUI component needs to be 

connected to the core process by specifying the IP address of the machine 

hosting the core component, and the TCP socket to connect through. 

3. Zippo Control Center (ZCC) 
ZCC provides an intuitive and user-friendly interface for users to configure 

the application according to their needs. The key components of ZCC are 

described in this section: 

a. Configuration of Core Component 
The parameters which can be configured for the core component 

are: number of states, number of time slices, slide length and Smoothing Factor 

(SF). These parameters affect the displays on the thermal canyon and thermal 

tower. 
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   (a)      (b) 

Figure 7.   Examples of the a) Thermal Canyon. And b) Thermal Tower 
 

Figure 7 shows a thermal canyon and a thermal tower, with the 

following parameters: number of states = 100; number of time slices = 60; slide 

length = 2; and SF = 0.7. The specification of the number of states sets the limit 

on the states scale on the thermal canyon, which is 100 in this case. The number 

of time slices sets the length of the time display on both the thermal canyon and 

thermal tower. The slide length is defined in seconds, and indicates the time 

width of each time slice. Hence in this example, the length of the time display is 

120s (the number of time slices multiplied by the slide length).    

Zippo uses an exponential weighted averaging mechanism to 

process and display state information on the thermal canyon. The SF is a 

variable used in the following formula: 

 eValuexSFLastAveragSFexActualValuueAverageVal +−= )1(  

The SF can take any values between zero and one. Different 

values of SF affect the display of the results on the thermal canyon. Larger 

values of SF will produce “smoother” thermal canyons. 
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b. Definition of PID Instances 
The definition of a PID instance starts with the building of a decision 

tree for the thermodynamic analysis of thermalate and the corresponding bucket 

space. The PID instance can be given a meaningful name to reflect its 

characteristic. For example, it can be named SMTP if it is to be used to analyze 

thermalate for SMTP-based attacks, as shown in Figure 7. Starting from the top 

of the decision tree, a decision node can be based on any of these parameters: 

IP List, Port List, New Friend, Matched, Protocol List. The buckets at the bottom 

of the decision tree need to be defined with the ball parameters, and can be 

assigned with different colors, which will be reflected in the thermal towers 

display. 

 
Figure 8.   A PID instance named SMTP. 

 

A PID instance functions as a service, which can be started and 

stopped at any point in time. This facilitates making instantaneous changes to the 

PID instance, without any interruptions to the core process. Multiple PID  
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instances can be created and started at the same time. Each instance will 

process and analyze the same set of thermalate and interpret the results 

accordingly.  

c. Sensor Listener 
The Sensor Listener is also a start/stop service, which controls 

local and remote sensors. When the service is started, the IP addresses of the 

connected sensors will be displayed. Several parameters of the Sensor Listener 

can be configured including the key store password. The key store password is a 

shared password between the sensor and the core components, which allows 

the sensor component to authenticate with the core component.  

d. Thermal Canyon and Thermal Tower Displays 
For each PID instance that is started, a thermal canyon and a 

thermal tower can be generated to display the results.  Hence, on the same 

monitor display there can be multiple thermal canyons to detect different forms of 

network attacks (e.g. Smurf and mailbomb attacks.)  

The thermal canyon displays the state information in real-time, as 

shown in Figure 9. Each point on the z-axis shows a unique state that was 

visited, while the number of occurrences of each visited state is plotted along the 

y-axis.  
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Figure 9.   Thermal Canyon 

The thermal tower shows the average number of balls in each 

bucket in real-time. Each bucket is represented by a different color, as defined in 

the PID instance. During each time slice, the buckets are sorted along the z-axis 

in decreasing order of the number of balls, as shown in Figure 10. 

   
Figure 10.   Thermal Tower 
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Both the thermal canyon and thermal tower displays can be rotated 

in any angle, and zoomed in for a close-up look. The scale on the y-axis for both 

displays is variable and adjusts according to the highest value that is shown at 

the time of interest. The user can also click on a point of interest on the thermal 

canyon or thermal tower to display the thermalate data for more detailed 

information, as shown in Figure 11. 

 

 
Figure 11.   Thermalate data 

 
E. SUMMARY 

This chapter reviewed the conversation exchange model, which is the 

underlying concept of Therminator and Zippo, and looked into the implementation 

details of each. Compared to Therminator, Zippo is much more user-friendly and 

has the added feature of receiving and aggregating information from multiple 

sensors. The next chapter will describe how this feature is analyzed and the 

setup of the experiments. 
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IV. NETWORK AND SYSTEM SETUPS 

A. NETWORK SETUP 
The focus of the thesis is to implement and validate a DIDS using Zippo. 

Figure 12 shows the network topology of the experiment setup. The network 

attack replay workstation has two network interface cards, which separately send 

out pre-recorded network traffic containing both normal user traffic and simulated 

network attacks. The hubs receive and broadcast the network packets, which are 

then picked up by sensors A and B. 

Sensor A and the Zippo core component reside on Network A, while 

sensor B resides on Network B. This demonstrates that a remote sensor is 

capable of routing thermalate to the core component. The two sensors sniff every 

network packet on their respective network segments and produce thermalate 

that is sent to the Zippo core. Upon processing and analysis, the Zippo core 

generates thermal canyons and thermal towers that reflect the state of the 

networks. These results are verified and validated.  

 
Figure 12.   Network Topology of Experiment Setup 
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In particular, three scenarios are tested: 

i. Sensor A alone detects a network attack. 

ii. Sensors A and B detect the same network attack concurrently. 

iii. Sensors A and B detect different network attacks concurrently. 

These experiments are explained in more detail in later chapters. 

 

B. NETWORK ATTACK REPLAY 
In their thesis research, Marinovich and Walch [11] made use of the 1999 

DARPA Intrusion Detection Evaluation Data Set from the M.I.T Lincoln 

Laboratory for their experiments. Figure 13 shows the diagram of the simulation 

network that was set up by Lincoln Laboratory. The monitored or “inside” network 

consisted of machines with IP prefixes 172.16.112.* - 172.16.118.*. 
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Figure 13.   DARPA Simulation Network (Source:[8]). 

 
The data set contains recorded network traffic, which includes scripted 

attacks conducted from both inside and outside of the monitored network. 

Marinovich and Walch [11] downloaded the data set and further edited them to 

obtain tcpdump files containing specific attacks.  



27 

In this thesis, three of the tcpdump files are used to simulate Mailbomb, 

Smurf and Apache2 attacks, which are all denial-of-service attacks. The purpose 

of choosing these attacks is to test the ability of Zippo in the analysis of SMTP, 

ICMP and HTTP traffic. 

1. Mailbomb Attack 
The Mailbomb attack is contained in the file named 42155148.tcpdump. In 

this attack, thousands of machines flood the email server with e-mail messages 

in an attempt to overwhelm the server, which has the IP address 172.16.114.50. 

These malicious network packets are either authentications to the email server 

using TCP port 113 or actual mail transfer using TCP port 25. 

The file 42155148.tcpdump contains 19 minutes worth of network traffic, 

with the Mailbomb attack being launched five minutes from the start of the packet 

stream. The attack lasts for about 10 minutes. 

2. Smurf Attack 
The Smurf attack uses spoofed broadcast ping messages to flood a target 

system. The attacker sends a large amount of ICMP ping packets to IP broadcast 

addresses, and spoofs the source address by masquerading as the victim. The 

result is that every machine on the broadcast network will send an ICMP reply 

packet to the victim, thus overwhelming the victim.  

The file 41213446.tcpdump contains the Smurf attack, which has 10 

minutes worth of recorded network traffic in total. The Smurf attack starts after 5 

minutes of the network traffic replay, and lasts only for 15s. The IP address of the 

victimized machine is 172.16.112.50, and the attack occurs when multiple 

computers bombard the victim with ICMP reply packets. 

3. Apache2 Attack 
In the Apache2 attack, the victim, with IP address 172.16.114.50, is a web 

server that is subjected to numerous concurrent HTTP requests (at TCP port 80) 

from various attack machines.  
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The attack is contained in the file 51140100.tcpdump which reproduces 21 

minutes worth of network traffic. The Apache2 attack appears 5 minutes from the 

start of the network traffic replay and lasts for 11 minutes. 

 

C. SYSTEM SETUP 
The Zippo core component is installed on a Sun Microsystems Sun Blade 

2000 Workstation, which runs on dual Ultra-Sparc III processors and 4 Gigabytes 

of RAM in a Solaris 9 operating environment. The GUI component is co-located 

with the core component. Two Dell Systems servers running on Red Hat Linux 

8.0 operating system are installed with the Zippo sensor component and are 

named sensors A and B. The network attack replay workstation is a Dell 

Dimension 4100 running on Red Hat Linux 8.0 operating system, which has been 

pre-installed with the program, TCPreplay, and has two network interface cards. 

All three components of Zippo – the core, sensor and GUI, are packaged 

in a single jar file (zippo.jar). The file contains Java class files for the core and the 

GUI, as well as the source codes for all the components. The installation of each 

component is simple, which only requires the files to be unpackaged in a chosen 

directory, using the command: 

#jar xvf zippo.jar 

 

1. Core Component 
The core component is installed in the /export/home/usc/zippo directory on 

the Sun Blade 2000. As Zippo Core is written in Java code, it requires Java Run 

Time in its execution. The Sun Blade 2000 has Java 2 SDK 1.4.2 installed for this 

purpose. The commands to set the environment and start the core component 

are: 

#ZIPPO_BASE=/export/home/usc/zippo 

#export ZIPPO_BASE 

#./start_core 
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2. Sensor Component 
The sensor components are installed in the /usr/zippo directory on both 

Dell Systems servers. The /etc subdirectory contains the configuration file 

(sensor.conf), where the IP address of the machine hosting the core component 

and the socket for communications have to be specified. The commands to set 

the environment and start the sensor component are: 

#ZIPPO_BASE=/usr/zippo 

#export ZIPPO_BASE 

#./sensor 

 

3. GUI Component 
Like the core component, the GUI component requires Java 2 SDK 1.4.2 

or above to function. In addition, Java 3D has to be installed to display the 3-D 

graphics of the Thermal Canyon and Thermal Tower. The commands to set the 

environment and start the GUI component are: 

#ZIPPO_BASE=/usr/zippo 

#export ZIPPO_BASE 

#./start_gui 

This command brings up the ZCC, which is the main interface of the 

program. ZCC can be executed on multiple machines at the same time. Multiple 

instances of ZCC can also be run concurrently on the same machine.   

 

D. DEFINED PID INSTANCES 
Different PID instances are created for the detection of SMTP, ICMP and 

HTTP attacks. The decision trees and bucket spaces are constructed based on 

reference [11], and the PID instances are named SMTP, ICMP and HTTP 

respectively. The top-level decision node of all three PID instances separate 

network packets according to their origin (i.e. if they originate from the monitored 

network.) 
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All three PID instances are multi-tier decision trees with eight buckets 

each. Each bucket is initialized with 5 balls, and can have a minimum of 0 balls 

and a maximum of 10 balls. 

 

1. SMTP PID Instance 
The SMTP PID instance is a 3-tier decision tree, as shown in Figure 14. 

The lower level decision nodes further differentiate the packets by their ports. 

Table 1 explains what each bucket denotes. 

 
Figure 14.   SMTP PID Instance. 
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Bucket No. Classification 

0 N.A. 

1 Insider IP address with TCP ports no. 25, 110, 113 or 161 

2 Insider IP address with TCP port no. lower than 1024, excluding 25, 

110, 113 and 161. 

3 Insider IP address that does not have TCP port no. lower than 1024. 

4 N.A. 

5 Outsider IP address with TCP ports no. 25, 110, 113 or 161. 

6 Outsider IP address with TCP port no. lower than 1024, excluding 25, 

110, 113 and 161. 

7 Outsider IP address that does not have TCP port no. lower than 1024. 

 
Table 1.   Denotation of Buckets for SMTP PID Instance. Buckets 0 and 4 are 

not applicable (N.A.) because they represent classifications that cannot 
occur (i.e. – a port number 25, 110, 113 or 161 that is at the same time not 

25, 110, 113, or 161). 
 
2. ICMP PID Instance 
The ICMP PID instance is a 4-tier decision tree, which classifies network 

traffic according to ICMP packet types: error, request and reply (see Figure 15). 

Table 2 explains what each bucket represents. 

 
Figure 15.   ICMP PID Instance. 



32 

Bucket No. Classification 

0 Insider IP address with ICMP type 3, 4, 5, 11 or 12. 

1 Insider IP address with ICMP type 8 or 17. 

2 Insider IP address with ICMP type 0 or 18. 

3 Outsider IP address with ICMP type 3, 4, 5, 11 or 12. 

4 Outsider IP address with ICMP type 8 or 17. 

5 Outsider IP address with ICMP type 0 or 18. 

6 Insider IP address that does not have ICMP type 0, 3, 4, 5, 8, 11, 12, 

17 or 18. 

7 Outsider IP address that does not have ICMP type 0, 3, 4, 5, 8, 11, 12, 

17 or 18. 

 
Table 2.   Denotation of Buckets for ICMP PID Instance. 

 

3. HTTP PID Instance 
The HTTP PID instance is also a 3-tier decision tree, with buckets that are 

designed to sort traffic into HTTP and non-HTTP traffic, as shown in Figure 16. 

Table 3 explains the denotation of each bucket. 

 
Figure 16.   HTTP PID Instance. 
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Bucket No. Classification 

0 N.A 

1 Insider IP address with TCP port no. lower than 1024, excluding 80 and 

443. 

2 Insider IP address with TCP port no. 80 or 443. 

3 Insider IP address that does not TCP port no. lower than 1024. 

4 N.A 

5 Outsider IP address with TCP port no. lower than 1024, excluding 80 

and 443. 

6 Outsider IP address with TCP port no. 80 or 443. 

7 Outsider IP address that does not TCP port no. lower than 1024. 

 
Table 3.   Denotation of Buckets for HTTP PID Instance. Similar to table 1, 

buckets 0 and 4 represent classifications that cannot occur. 
 

E. CONFIGURATION PARAMETERS FOR CORE 
Experiments were conducted varying the parameters for configuration of 

the core to investigate the effect on the thermal canyon displays. In this side 

experiment, sensor A is activated to listen for network intrusions, while the SMTP 

PID instance was started on Zippo core to analyze the data received from sensor 

A. From the ZCC, the core was configured with a SF fixed at 0.7 and the number 

of displayed states at 100. The number of time slices and the slide length were 

varied.  

The Mailbomb attack was replayed several times under different 

configuration settings and the corresponding thermal canyon displays were 

collected, as shown in Figure 17. All four diagrams show the presence of the 

Mailbomb attack, as evident from the sudden increase of the number of visited 

states. 

Figures 17(a) and (b) show two thermal canyons with the same time 

length display of 120s, but with a different number of time slices and slide length. 
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The slide length parameter affects the computation of the number of states and 

the number of counts. Figure 17(b) shows a thermal canyon with a higher 

number of states and a higher number of counts, which enables an administrator 

to discern the attack profile more easily. 

Figures 17(c) and (d) show two thermal canyons with time length displays 

of 400 secs and 200 secs respectively. The canyons appear more “spiky” 

compared to Figure 17(b), as more data is packed onto the same display space. 

Comparing all four thermal canyons, Figure 17(b) gives the best graphical 

representation of the same network attack, which shows a relatively “smooth” 

canyon with a discernible attack profile. Hence the optimum setting for the core 

component parameters is: number of time slices = 60, slide length = 2, SF = 0.7. 

This setting is repeated for all subsequent tests.  
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(a)   (b)   

(c)   (d)  

Figure 17.   Thermal Canyon Displays for Mailbomb attack with (a) Number 
of Time Slices = 120, Slide Length = 1, (b) Number of Time 

Slices = 60, Slide Length = 2, (c) Number of Time Slices = 200, 
Slide Length = 2, (d) Number of Time Slices = 100, Slide Length 

= 2. 
 

F. SUMMARY 
This chapter gave an overview of the network and system setups, and 

explained how two Zippo sensors are set up in the experiment network to 

simulate a DIDS architecture. The Zippo core is configured with different PID 

instances to detect Mailbomb, Smurf and Apache2 attacks. These attacks are 

taken from M.I.T. Lincoln Laboratory data set. 

In the next chapter, the Zippo system is tested in the detection of 

Mailbomb, Smurf and Apache2 attacks. 
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V. EXPERIMENT AND ANALYSIS I – SINGLE SENSOR 

A. EXPERIMENT SETUP 
The purpose of this experiment is to test the effectiveness of Zippo in the 

detection of some known attacks. The three network attacks, the Mailbomb, 

Smurf and Apache2 attacks are separately sent from the network attack replay 

workstation to hub A. Sensor A sniffs the packets broadcast by hub A, converts 

the necessary information into thermalate and sends it to the Zippo core 

component. 

 
Figure 18.   Experiment Setup for a Single Sensor. 

 

B. MAILBOMB ATTACK 
Figures 19(a) and (b) show the thermal canyon and thermal tower displays 

generated from the SMTP PID instance, when the file 42155148.tcpdump 

containing the Mailbomb attack is replayed.  
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During the attack, there is a sudden increase in the ball transfer activity 

between the buckets, as seen from the thermal tower. This translates to more 

bucket states, which affirms with the sudden increase in visited states on the 

thermal canyon display. The terrain during the attack is rather flat, as there are 

relatively low counts of the bucket states. This contrasts with the few bucket 

states (but with high counts for each state) during the period of normal traffic. 

 (a)   (b)  

Figure 19.   (a)Thermal Canyon and (b)Thermal Tower for SMTP PID 
Instance during the Mailbomb Attack. 

 
Ethereal is used to further examine the conversation exchanges between 

the attacker and the victim during the attack. Figure 20 shows the observed 

patterns of the conversation exchanges and Table 4 explains the flow of ball 

transfer between the defined buckets of the SMTP PID instance. 
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Figure 20.   Patterns of Conversation Exchanges during the Mailbomb 

Attack. 
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 Ball Transfer 

From  

194.27.251.21 Ephemeral 172.16.114.50 25  Bucket 7 to 1 

172.16.114.50 25 194.27.251.21 Ephemeral  Bucket 1 to 7 

172.16.114.50 Ephemeral 194.27.251.21 113  Bucket 3 to 5 

194.27.251.21 113 172.16.114.50 Ephemeral  Bucket 5 to 3 

 
Table 4.   Flows of Ball Transfer between Defined Buckets of SMTP PID 

Instance during the Mailbomb Attack. 
 

As seen from Figure 20, there are more SMTP port 25 packets originating 

from 172.16.114.50 to 194.27.251.21, than the other way round. Thus more balls 
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colored bar), resulting in fewer balls in Bucket 7 compared to Bucket 1. Similarly, 

there are more ball transfers from Bucket 3 (lime green) to Bucket 5 (light green) 

than the other way round. The thermal tower shows fewer balls in Bucket 3 

compared to Bucket 5.  

This is dramatically reflected in the thermal canyon because several more 

state combinations are being visited due to the activity in bucket 7 and bucket 5.  

Prior to the attack there was very little activity in bucket 7.  The attack induces 

large variations in the bucket flow – indicated by the turbulence in the thermal 

towers – that cause an increase in state entropy and is reflected by the run out in 

the thermal canyon. 

 

C. SMURF ATTACK 
The file 41213446.tcpdump which contains the Smurf attack produces the 

thermal canyon and thermal tower in Figures 20(a) and (b) when it is replayed 

and the ICMP PID instance is activated. 

 (a)   (b)  
 

Figure 21.   (a)Thermal Canyon and (b)Thermal Tower for ICMP PID 
Instance during the Smurf Attack. 

 

The most indicative sign of an anomaly in the behavior of the network is 

the sudden peak on the thermal canyon, jumping from virtually 0 to 2200 counts. 

During the attack, the ICMP reply packets (with type 0) from the various attackers 
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to the victim translate to ball transfers from Bucket 5 to 2. This is reflected in the 

thermal tower as indicated by the red circles, where Bucket 5 (maroon-colored 

bar) is empty during the attack, while Bucket 2 (green-colored bar) is filled with 

the maximum number of balls. 

Due to the characteristic of the Smurf attack, ball transfer between the 

buckets is only one way, i.e. from Bucket 5 to 2. After the buckets hit the 

boundary conditions, they remain at this state throughout the duration of the 

attack due to the large number of malicious packets sent from the attackers to 

the victim. This results in few bucket states, but with very high counts. 

 

D. APACHE2 ATTACK 
Figures 22(a) and (b) show a snapshot of the thermal canyon and thermal 

tower displays during an Apache2 attack when the file 51140100.tcpdump is 

replayed.  

(a)   (b)  
 

Figure 22.   (a)Thermal Canyon and (b)Thermal Tower for HTTP PID 
Instance during the Apache2 Attack. 

 

The sudden increases in both the number of bucket states and the counts 

of bucket states on the thermal canyon are matched by the increased variations 

in ball transfer activities as shown on the thermal tower. 
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Figure 23 shows the pattern of conversation exchanges between the 

attacker and the victim using Ethereal, and Table 5 explains the flow of transfer 

between the buckets. As there are more packets originating from the attacker to 

the victim than the other way, the number of balls in Bucket 7 (turquoise-colored 

bar on the thermal tower) is less than Bucket 2 (blue-colored bar). Additionally, 

since a large number of packets are being sent to the non-HTTP ports, there is 

high variability in the thermal towers plot and a significant run out in the thermal 

canyon plot. 

 
Figure 23.   Patterns of Conversation Exchanges during the Apache2 

Attack. 
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Source Address Source 

Port 

Destination 

Address 

Destination 

Port 

Line 

Color 

 Ball Transfer 

From  

152.169.215.104 Ephemeral 172.16.114.50 113  Bucket 7 to 2 

172.16.114.50 113 152.169.215.104 Ephemeral  Bucket 2 to 7 

 
Table 5.   Flows of Ball Transfer between Defined Buckets during the 

Apache2 Attack. 
 

E. SUMMARY 
The results above show that Zippo is effective in the analysis of SMTP, 

ICMP and HTTP traffic, as demonstrated in the successful detection of 

Mailbomb, Smurf and Apache2 attacks. Indications of anomalies in the network 

behavior are most obvious when the thermal canyon shows either a sudden 

increase in the number of states visited or a sharp increase in the number of 

occurrences of visited states over a prolonged period of time. 

The next chapter describes experiments that investigate the response of 

Zippo when two sensors detect the same type of attacks. 
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VI. EXPERIMENT AND ANALYSIS II – DUAL SENSORS WITH 
THE SAME ATTACK 

A. EXPERIMENT SETUP 
In this experiment, the same network attack is sent out of the two network 

interfaces of the network attack replay workstation at the same time. The 

purpose is to investigate the response of the Zippo when two sensors detect the 

same network attack at the same time. Figure 24 shows the experiment setup. 

Both sensors A and B sniff the same packets and produce the same set of 

thermalate which is routed to the Zippo core. The Zippo core then performs an 

aggregated analysis on the thermalate received from both sensors. 

 
Figure 24.   Experiment Setup for Dual Sensors with the Same Attack. 
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B. MAILBOMB ATTACK 
The thermal canyon and tower on Figures 25(a) and (c) have been 

repeated from Chapter V for ease of comparison, which are produced from the 

detection of a Mailbomb attack by sensor A alone.  

(a)    
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(b)    

(c)   
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(d)  
Figure 25.   Thermal Canyon and Tower Displays for (a) and (c) Single 

Sensor, (b) and (d) Dual Sensors during a Mailbomb attack. 
 

Figures 25(b) and (d) show the results of the aggregated analysis when 

both sensors A and B detect the Mailbomb attack at the same time. This is 

achieved by having the network attack reply workstation replay two instances of 

42155148.tcpdump at the same time. The Zippo core receives two sets of 

thermalate with the same information, and as the thermal tower in Figure 25(d) 

shows, the ball transfers between the buckets have increased compared to 

Figure 25(c). 

Comparing the thermal canyons, it can be observed the shapes of both 

canyons are very similar. The difference between the two canyons is that the 

number of bucket states and the counts for each bucket state have doubled in 

Figure 25(b). For instance, the highest peak on the canyon floor in Figure 25(a) 

indicates 80 visited states. The corresponding peak in Figure 25(b) is double that 

of Figure 25(a), at approximately 160 states.  
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C. SMURF ATTACK 
The thermal canyon and tower in Figures 26 (a) and (c) reflect a Smurf 

attack detected by sensor A alone, while Figures 26(b) and (d) show the 

response when the same Smurf attack is detected by both sensors A and B. 

(a)  



50 

(b)  

(c)  
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(d)  

Figure 26.   Thermal Canyon and Tower Displays for (a) and (c) Single 
Sensor, (b) and (d) Dual Sensors with Smurf attacks. 

 

It is easily observed from the thermal towers, that ball movement between 

buckets increased considerably when two attacks are launched (see Figure 

26(d)). Although there are few bucket states on both thermal canyons, Figure 

26(b) shows more spreading of redness on the thermal canyon floor, indicating 

more bucket states compared to Figure 26(a). As there are double the number of 

malicious packets, the peak number of counts on the thermal canyon in Figure 

26(b) is also doubled. 

 

D. APACHE2 ATTACK 
Figures 27(a) and (c) show the results from the detection of an Apache2 

attack by sensor A. When both sensors detect the same attack, a similar thermal 

canyon landscape is produced. Figures 27(b) shows a thermal canyon that 

appears to be an enlarged version of Figure 27(a), with a much wider and longer 

canyon floor, and higher peaks. The highest peak in Figure 27(a) is about 600 



52 

counts, while the highest peak in Figure 27(b) is almost 1200, double that of 

Figure 27(a). Comparing the two red circles in Figures 27(a) and (b), the number 

of visited states in Figure 27(b) at that point is 300, which is approximately 

double that of Figure 27(a). This corresponds with more rapid changes in the 

number of balls in the buckets of the thermal tower in Figure 27(d).  

 

 

 

 

(a)   
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(b)  

(c)  
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(d)  

Figure 27.   Thermal Canyon and Tower Displays for (a) and (c) Single 
Sensor, (b) and (d) Dual Sensors with Apache2 attacks. 

 

 

E. ANALYSIS OF RESULTS 
The results from all three attacks show that when two Zippo sensors 

detect the same attack concurrently, the thermal canyon produced has the same 

landscape as when only one sensor detects the attack. However, as there is 

double the quantity of thermalate produced, the number of bucket states and the 

counts of each bucket state are increased proportionately. 

To use a simple illustration, consider two buckets BA and BB which 

represent Nodes A and B respectively. Let there be two balls in each bucket. 

Suppose A sends a network packet to B, and B replies to A. The state changes, 

corresponding to the number of balls in the two buckets are as shown in Table 6. 

Excluding the initial state (2,2), there is one new state, which is (1,3) with only 

one count. 
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Table 6.   State Changes with a Single Network Packet from A to B. 
 

If each packet is duplicated, the state changes will be as follows (see 

Table 7). Excluding the initial state condition (2,2), there are two new states: (1,3) 

and (0,4). The number of counts for state (1,3) in particular is 2. 

Table 7.   State Changes with Duplicate Network Packets from Node A to B. 
 

This simple example shows how the number of states visited and the 

number of counts of the visited states can be doubled with double the network 

packets.  

 
F. SUMMARY 

This chapter investigates the response of the Zippo core component when 

both its sensors detect the same attack. The conclusion is that, as the Zippo core 

receives double the amount of thermalate, the thermal canyon and thermal tower 

display a proportionate increase in the bucket states and state counts.  

Event No. of Balls in BA No. of Balls in BB 

Initial Condition 2 2 

A sends packet to B 1 3 

B replies 2 2 

Event No. of Balls in BA No. of Balls in BB 

Initial Condition 2 2 

 A sends packet to B 1 3 

A sends packet to B (duplicate) 0 4 

B replies  1 3 

B replies (duplicate) 2 2 
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The next chapter discusses the experiment conducted to investigate the 

response of Zippo to concurrent different attacks.  
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VII. EXPERIMENT AND ANALYSIS III – DUAL SENSORS WITH 
DIFFERENT ATTACKS 

A. EXPERIMENT SETUP 
The purpose of this experiment is to examine the ability of Zippo to deal 

with different and concurrent network attacks. Figure 28 shows the network 

attack replay workstation launching two different network attacks at the same 

time. Sensors A and B detect the different attacks, and send the thermalate to 

Zippo core. Zippo core performs an aggregated analysis and the results are 

presented in the following sections. The thermal canyons and thermal towers 

produced in this experiment are also compared and contrasted with results 

obtained from earlier experiments. 

 

 

Figure 28.   Experiment Setup for Dual Sensors with Different Network 
Attacks. 
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B. SMURF AND MAILBOMB ATTACKS 
In this section, the network attack replay workstation replays both Smurf 

and Mailbomb attacks at the same time. The SMTP and ICMP PID instances are 

activated on the Zippo core to perform an aggregated analysis on the thermalate 

sent from sensors A and B.  

1. SMTP PID Instance 
Figures 29(a) to (f) show the different thermal canyon and thermal tower 

displays for the SMTP PID instance when the Mailbomb attack, the Smurf attack 

and the combined Mailbomb and Smurf attacks are launched respectively. 

Looking at Figures 29(c) and (d), during the Smurf attack, the large 

number of ICMP reply packets from the attackers to the victim result in ball 

transfers from Bucket 7 (represented by the maroon-coloured bar on the thermal 

tower) to Bucket 3 (represented by the dark green-colored bar). There are few 

ball exchanges between the other buckets, which is why there are few bucket 

states on the thermal canyon. 

 (a)    
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(b)  

(c)    
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(d)  

(e)    
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(f)  

Figure 29.   Thermal Canyons and Thermal Tower for SMTP PID Instance 
during (a), (b) Mailbomb attack; (c), (d) Smurf attack and (e), (f) 

combined Mailbomb and Smurf attacks. 
 

The thermal canyon in Figure 29(e) appears to be a superposition of the 

thermal canyons in Figure 29(a) and (c). The wide spreading of bucket states on 

the canyon floor are caused by the Mailbomb attack, while the huge peaks 

against the vertical plane are due to the Smurf attack. This is verified by the two 

sets of thermalate shown in Figures 31 and 32, which are obtained by clicking on 

the canyon peak and the canyon floor respectively.  
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Figure 30.   Thermalate contributing to the canyon peak of the SMTP PID 

Instance during the combined Mailbomb and Smurf attacks. 
 

 
Figure 31.   Thermalate Contributing to the Canyon Floor of the SMTP PID 

Instance during the combined Mailbomb and Smurf Attacks. 
 
2. ICMP PID Instance 
The thermal canyon and thermal tower displays in Figures 32(a) to (f) are 

produced by the ICMP PID instance when the Smurf attack, the Mailbomb attack 

and the combined Mailbomb and Smurf attacks are launched respectively. 

During the Mailbomb attack, the thermal canyon in Figure 32(c) does not 

display any obvious signs of anomaly. The network traffic during the attack 
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results in ball exchanges between Buckets 6 (represented by the yellow-colored 

bar) and 7 (represented by the red-colored bar).  

The scale on the y-axis automatically scales to accommodate the highest 

value. It should be noted that the scale on Figures 32(a) and (c) are very 

different. 

 (a)    
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(b)  

(c)    
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(d)  

(e)    
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(f)  

Figure 32.   Thermal Canyons and Thermal Tower for ICMP PID Instance 
during (a), (b) Smurf attack; (c), (d) Mailbomb attack and (e), (f) 

combined Mailbomb and Smurf attacks. 
 

The thermal canyon in Figure 32(e) has a landscape that is similar to 

Figure 32(a). The thermalate contributing to the canyon peak in Figure 32(e) is 

shown in Figure 33, which consists mostly of ICMP packets. The Smurf attack 

has completely overshadowed the Mailbomb attack. 
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Figure 33.   Thermalate Contributing to the Canyon Peak of the ICMP PID 

Instance during the combined Mailbomb and Smurf attacks. 
 

C. SMURF AND APACHE2 ATTACKS 
In this section, the network attack replay workstation replays the Smurf 

and the Apache2 attacks concurrently. The HTTP and ICMP PID instances are 

activated on the Zippo core to analyze the aggregated thermalate sent from 

sensors A and B. 

1. ICMP PID Instance 
Figure 34(a) to (f) compare the thermal canyon and thermal tower displays 

of the ICMP PID Instance to a Smurf attack, an Apache2 attack and combined 

Smurf and Apache2 attacks respectively. 

The Apache2 attack results in ball transfers between Buckets 6 (yellow-

coloured bar) and 7(red-colored bar), as shown in Figure 34(d). The peaks on the 

thermal canyon clearly indicate an anomalous situation. 
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During the combined Smurf and Apache2 attacks, the peaks on the 

thermal canyon are much higher, due to the large combined volume of traffic. 

Balls are transferred mainly between Buckets 5 and 2, and Buckets 6 and 7. It is 

difficult to tell from the thermal canyon alone that there are two attacks going on, 

unless the details about the network packets are obtained from the thermalate.  

(a)    
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(b)  

(c)    
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(d)  

(e)    
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(f)  

Figure 34.   Thermal Canyons and Thermal Tower for ICMP PID Instance 
during (a), (b) Smurf attack; (c), (d) Apache2 attack and (e), (f) 

combined Smurf and Apache2 attacks. 
 

2. HTTP PID Instance 
Figures 35(a) to (f) show different thermal canyons and tower displays of 

the HTTP PID Instance, corresponding to the detection of Apache2 attack, Smurf 

attack and a combination of the two attacks. 

The Smurf attack results in high peaks on the thermal canyon, as shown 

in Figure 35(c). The high counts of the states visited are due to massive ball 

transfers from Bucket 7 (turquoise-colored bar) to 3 (maroon-colored bar). 
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(a)    
 

(b)  
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(c)    

(b)  
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(e)    

(f)  

Figure 35.   Thermal Canyons and Thermal Tower for HTTP PID Instance 
during (a), (b) Apache2 attack; (c), (d) Smurf attack and (e), (f) 

combined Apache2 and Smurf attacks. 
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The combined Smurf and Apache2 attacks produce a thermal canyon that 

is a combination of their individual thermal canyons. Balls are transferred 

between Buckets 2, 3 and 7. This results in a thermal canyon that has more 

bucket states than Figure 35(a), and lower peaks than Figure 35(c). 

 

D. MAILBOMB AND APACHE2 ATTACKS 
In this section, the network attack replay workstation replays the Mailbomb 

and the Apache2 attacks concurrently. The SMTP and HTTP PID instances are 

activated on the Zippo core to analyze the aggregated thermalate sent from 

sensors A and B. 

1. SMTP PID Instance 
The SMTP PID instance produce different thermal canyon and tower 

displays, in consequence to the detection of Mailbomb, Apache2 and a 

combination of the two attacks, as shown in Figures 36(a) to (f).  

The Apache2 attack causes balls to be moved between Buckets 7 and 2, 

which result in an increase in the bucket states, and high peaks on the thermal 

canyon, as shown in Figure 36(c). 

The combined attacks result in ball transfers between Buckets 1, 2, 3, 5 

and 7. The many permutations of the number of balls in each bucket lead to wide 

spreading of the bucket states, but narrower peaks on the thermal canyon. 
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 (a)    

(b)  
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(c)    

(d)  
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(e)    

(f)  

Figure 36.   Thermal Canyons and Thermal Tower for SMTP PID Instance 
during (a), (b) Mailbomb attack; (c), (d) Apache2 attack and (e), 

(f) combined Mailbomb and Apache2 attacks. 
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2. HTTP PID Instance 
Figures 37(a) to (f) show the response of the HTTP PID instance to 

Apache2, Mailbomb and combined Apache2 and Mailbomb attacks. The 

Mailbomb attack results in the transfer of balls between Buckets 1, 3, 5 and 7 

and leads to an increase in the bucket states.  

The combined attacks result in a thermal canyon (see Figure 37(e)) that is 

a combination of the thermal canyons in Figure 37(a) and (c).  

(a)    
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(b)  

(c)    
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(d)  

(e)    



82 

(f)  

Figure 37.   Thermal Canyons and Thermal Tower for HTTP PID Instance 
during (a), (b) Apache2 attack; (c), (d) Mailbomb attack and (e), 

(f) combined Apache2 and Mailbomb attacks. 
 

E. ANALYSIS OF RESULTS 
The above results show the responses of the SMTP, ICMP and HTTP PID 

instances to different attacks. Table 8 shows a summary of the results – a ‘Y’ 

indicates that the PID instance gave an indication of the anomalous behavior on 

the corresponding thermal canyon, and an ‘N’ indicates otherwise. 

PID Instance Smurf Attack Mailbomb Attack Apache2 Attack 

ICMP Y (4 states,    

7200 counts) 

N (15 states,        

90 counts) 

Y (10 states,  

1200 counts) 

SMTP Y (10 states,  

2500 counts) 

Y (90 states,        

50 counts) 

Y (200 states,  

550 counts) 

HTTP Y (10 states,  

2000 counts) 

N (50 states,        

90 counts) 

Y (150 states,  

700 counts) 

Table 8.   Summary of Responses to attacks. 
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With the exception of the Mailbomb attack with the ICMP and HTTP PID 

instances, all other PID instances yielded a response, even when they are 

subjected to attacks which they are not designed to detect. The Mailbomb attack 

in the HTTP PID instance could be considered a borderline detection response. 

The response was certainly strongest in PID instances designed to services 

being monitored. To correctly identify the attack, the thermalate has to be 

examined in order to understand the nature of the network packets. 

 

F. SUMMARY 
This chapter presents the findings of the experiment to investigate the 

response of Zippo to concurrent attacks of differing nature. The results show that 

each PID instance is able to detect the attack that it is designed to look out for, 

even in the presence of another attack. The downside, however, is that most of 

the PID instances yield a response even to attacks which they not designed to 

detect. 

The next chapter summarizes the findings from this thesis and discusses 

possible areas for future research.  
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VIII. REPORT SUMMARY AND FUTURE RESEARCH 

A. REPORT SUMMARY 
The main objective of this thesis is to implement a DIDS using 

Therminator. Zippo, a newer version of Therminator, is tried and tested instead. 

The modular software design of Zippo facilitates the task of deploying a DIDS, as 

the sensing, core and GUI components can function separately on different host 

operating systems. 

The experimental network was setup for the deployment of a distributed 

Zippo system. It consisted of two remote sensors which report to the Zippo core. 

The GUI, which displays the thermal canyons and thermal towers, was co-

located with the Zippo core. A separate machine was set up to replay pre-

recorded network traffic containing various network attacks.  

The first experiment on the Zippo system was to test the response to 

Mailbomb, Smurf and Apache2 attacks. In order to correctly identify the attacks, 

the Zippo system had to be configured to analyze and differentiate SMTP, ICMP 

and HTTP traffic from other traffic. This was achieved with the construction of 

three decision trees, named as SMTP, ICMP and HTTP PID instances. When the 

attacks were launched, the thermal canyons and thermal towers of the 

corresponding PID instances gave correct responses.  

The next experiment was to investigate the response of the Zippo system 

when both remote sensors were subjected to the same network traffic containing 

the same attack. The Zippo core had to perform aggregated analyses of the 

thermalate received from both sensors The results showed that in general, the 

thermal canyons produced similar landscapes as when only one sensor detected 

the attack. But due to the double volume of traffic, the number of bucket states 

and the counts of the bucket states were doubled.  

The last experiment was to investigate the response of the Zippo system 

when the remote sensors were subjected to different network traffic containing 

different attacks at the same time. The results showed that the PID instances 
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could still identify the attacks which they were designed for, even in the presence 

of other attacks. However, it led to the discovery that the PID instances could 

also respond to attacks which they were not meant to detect. 

Overall, the objective of the thesis research has been met. A DIDS has 

been successfully implemented using Zippo. Interesting results have been 

obtained and discussed from the various experiments conducted on the 

distributed Zippo system. 

 

B. FUTURE RESEARCH 
In Chapter III, the configuration parameters of the Zippo core were briefly 

experimented with. More work could be carried out in this area, to find out the 

most optimum set of parameters to use in order to obtain the most optimum 

response. In particular, the SL and SF could be varied to investigate the effect on 

the thermal canyon displays.  

The existence of borderline response emphasizes the need for robust 

detection techniques. The area of attack detection is not addressed in the thesis 

but holds significant potential for future research. 

Another area to research is the optimum design of the PID instances to 

identify only the type of attack which it is designed to detect. This ensures better 

accuracy in the detection of attacks, instead of having every PID instance 

respond to an attack. 
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