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Compensation of charge fluctuations in quantum wells with dual tunneling 
and photon-assisted escape paths 

Danhong Huang,a) Anjali Singh,b) D. A. Cardimona, and Christian Morath 
Air Force Research Laboratory (AFRUVSSS), 3550 Aberdeen Avenue S.E., Building 426, Kirtland Air 
Force Base, New Mexico 87117 

(Received 8 August 2000; accepted for publication 2 January 2001) 

In our previous article [D. H. Huang, A. Singh, and D. A. Cardimona, J. Appl. Phys. 87, 2427 
(2000)], we explained the experimentally observed zero-bias residual tunneling current [A. Singh 
and D. A. Cardimona, Opt. Eng. 38, 1424 (1999)] in quantum-well photodetectors biased by an ac 
voltage. In this article, we extend our theory to include the photoemission current and reproduce our 
recent findings on the dynamical drop of photoresponsivity Ityit) from its static value 7£ph in 
quantum-well photodetectors as a function of the chopping frequency of the incident optical flux. In 
this theory, we derive a dynamical equation for a nonadiabatic space-charge field fM(r) in the 
presence of an applied electric field £b(t) and an incident optical flux $op(f). From it, a 
compensation of the charge fluctuations in quantum wells is predicted as a result of dual tunneling 
and photon-assisted escaping paths. We also find a suppression of the nonadiabatic deviation of 
TZpb(t) from 11 ph due to a charge-depletion effect in the quantum wells. © 2001 American Institute 
of Physics.   [DOI: 10.1063/1.1351867] 

I. INTRODUCTION 

In two recent articles,1'2 we found a residual tunneling 
current in multiple quantum wells when an ac bias voltage 
sweeps through zero. A circuit model1 including an impor- 
tant tunneling resistance in series with a quantum-well ca- 
pacitance was devised to explain this phenomenon,1 and a 
satisfactory numerical simulation was obtained by using this 
phenomenological model. It indicates that a physical process 
with a very large time constant is involved in transport 
through multiple quantum wells (MQWs). The microscopic 
origin of this observation was explored thereafter,2 and a 
current instability and hysteresis, as well as a current "arch" 
and "ripple," were predicted and confirmed experimentally. 

It is well known that resonant electron tunneling in 
MQWs can occur only when the barrier between adjacent 
quantum wells is thin. If the barrier is very thick, the phase 
of the wave function will be completely lost as an electron 
tunnels from one well to another. As a result, only sequential 
electron tunneling exists for thick barriers. If a dc electric 
field £b is applied to the system, electrons in quantum wells 
simply respond to it through an adiabatic tunneling current 
h\.£b\ which is a nonlinear function of £b due to sequential 
electron tunneling. We have found that when a time- 
dependent electric field £b(t) is applied to the system, it 
induces a fluctuation in the charge density inside the quan- 
tum wells around the equilibrium value n2o- This gives rise 
to a nonadiabatic space-charge field £m(t) which modifies 
the adiabatic tunneling current I,[£b(t)] by adding a nona- 
diabatic correction A/,(r). Under this situation, Mr(t) re- 
mains in-phase with £m(t), and the dynamics of £na(t) are 

"Electronic mail: danhong.huang@lcirtland.af.mil 
Also at: JDS Uniphase Corporation. Monmonth Executive Center, 100 
Willowbrook Road. Building 1, Freehold, NJ 07728-2879. 

determined by the source term d£b(t)/dt and the usual 
quantum-well charging/discharging process. If £m(t) is 
positive, which shifts the Fermi energy down, the quantum 
well is discharged with its transient charge density lower 
than «2D • The quantum well can also be charged when £na(0 
becomes negative. 

When one uses a quantum-well photodetector to look for 
a distant target buried in cold outer space (~4 K), the device 
temperature must be kept very low (re~40 K) in order to 
minimize the noise and enhance the signal-to-noise ratio. In 
addition, when the target is moving, a multiple sampling 
process is required to detect the target motion and reduce the 
noise by turning the shutter of a photodetector on and off. 
However, a drop of the photoresponsivity of the device was 
found3 when the shutter frequency exceeded a threshold 
value. This threshold frequency ß^ depended on the device 
temperature, the external bias voltage and the incident opti- 
cal flux. The effect of a shutter can be simulated by a 
chopped incident optical flux <&op(t). When the quantum- 
well photodetector is exposed to *op(0, the charge density 
in the quantum wells again fluctuates around n2D. As ex- 
plained in the tunneling case earlier, a nonadiabatic space- 
charge field ^(r) will be induced in the system. Here, the 
dynamics of ^(t) are determined by the source term 
d^op(t)/dt and the usual quantum-well charging/dis- 
charging process with its decay-time depending on $>op(t). 
Moreover, £m(t) not only modifies the adiabatic photoemis- 
sion current /e[£t,$op(0] by subtracting an out-of-phase 
correction AIe(t) relative to <J>op(r), but also modifies the 
tunneling current by adding an in-phase correction A/,(f). 

When the charge fluctuates in the quantum wells, the 
photoresponsivity of the detectors gains a nonadiabatic de- 
viation from the adiabatic value occurring when no charge 
fluctuation (CF) is present. This will cause a deformation in 
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the detected images. We know that the quantum-well CF can 
be individually controlled by either d$op(t)/dt for a dc elec- 
tric field or d£b(t)ldt with no incident photons. When both a 
time-dependent electric field £b(t) and a time-dependent in- 
cident optical flux $Op(0 are applied to the system, the CF 
in the quantum wells will be determined by d£b(t)ldt and 
d$op(t)/dt simultaneously. In this case, both the tunneling 
and photon-assisted escape channels are open to electron 
transport. In order to minimize the image deformation, we 
need to maintain the phase of £b(t) opposite to that of 
<J>op(0- Under this condition, the CF from these two sources 
will compensate each other in the quantum wells, and both 
A//f) and AIe(t) can be greatly reduced. As a result, the 
photoresponsivity of the device will approach its adiabatic 
value and the system will behave close to an ideal adiabatic 
one. 

The organization of this article is as follows. In Sec. II, 
we present our model beyond the adiabatic limit by deriving 
a general nonlinear dynamical equation for the nonadiabatic 
space-charge field in the presence of both a time-dependent 
electric field and a time-dependent incident optical flux. For 
the special case with a dc electric field and a time-dependent 
incident optical flux, the experimentally observed drop of the 
photoresponsivity as a function of the chopping frequency of 
the optical flux is reproduced. Numerical results and discus- 
sions are given in Sec. HI for the nonadiabatic space-charge 
field, total nonadiabatic photoemission current, and dynami- 
cal photoresponsivity when both the electric field and the 
incident optical flux are time dependent. The article is finally 
concluded in Sec. IV. 

II. MODEL AND THEORY 

In this section, we will first study the CF resulting from 
tunneling transport in the presence of a time-dependent elec- 
tric field £b(t) and no incident photons. Next, the CF result- 
ing from photon-assisted escape will be explored when the 
only time dependence arises from an incident optical flux 
<E>op(0. Finally, the compensation of the CF in quantum 
wells will be investigated when both £b(t) and 4>opO) are 
present. 

A. Tunneling 

In order to introduce notations and make a comparison 
between the CFs resulting from either the tunneling or 
photon-assisted escape, we begin by deriving some of the 
equations in our previous article.2 

Let us first consider the tunneling transport of electrons 
in a MQW system under a bias field £b(t). We find that the 
tunneling current depends not only on £b(t) which produces 
a sequential tunneling current, but also on d£b(t)/dt.2 In the 
nonadiabatic Unfit, the charge density in each quantum well 
fluctuates around n2u- It results in a nonadiabatic space- 
charge field £m(t) which can be either positive or negative 
when the charge density in the quantum wells is lower or 
higher than «2D- 

To derive the dynamical equation for £na(t), we use Le- 
vine's sequential electron tunneling model4 to write down 
the adiabatic tunneling current lt[£b(0] under the influence 
of £b{t) in MQWs as 

It[£b(t)] = eS vd[£b(t)]nefl£b(t),Te], (1) 

where Te is the electron temperature (or the device tempera- 
ture under thermal balance), <S is the sample cross-sectional 
area, vd[£b(t)~\ is the electron drift velocity related to £b(t) 
by a saturation model, and «effföW. Te] is the effective 
three-dimensional tunneling electron density. In the satura- 
tion model, vd[£b(t)] is given by 

vl£b{t)V 
vs £b{t) 

[ £, J j\+[£b{t)i£sf 
(2) 

where vs and £s are the saturation velocity and field, respec- 
tively. Moreover, we have defined in Eq. (1): 

"esC4W,re] = 
m 

irh- 

*    \  f+° 

Lwj Jo 
dET[E,£b(t)] 

X(/o[ 

-/o 

lE+E.-MTe) 

kBTe 

E+E^eLB^W-MTe) 
kBTe 

(3) 

where fo(X) is the Fermi-Dirac distribution function and 
fxc(Te) is the chemical potential of electrons in each quan- 
tum well. When £b(t) is applied, the electrons in the quan- 
tum wells will produce a steady-state current flowing in the 
system. Although the ground-state wave function of the elec- 
trons inside the quantum wells can be modified by £b(t), the 
electron density in each well will not change. As a result, 
Ei[£b({)]~Pc\Te >£&(*)] becomes independent of £b(t) and 
thus is simply denoted by Ex-fji,c(Te). In Eq. (3), m* is the 
effective mass of electrons, Lw is the width of the quantum 
well, and LB is the thickness of the barrier between adjacent 
quantum wells. Ex is the ground-state energy evaluated at 
£b(t) = 0, and 7[E,£b(t)] is the transmission coefficient of 
electrons with incident energy E through a barrier biased by 
£b(t). The difference of the Fermi-Dirac distribution func- 
tions in Eq. (3) comes from the requirement of an occupied 
initial state in one well and an unoccupied final state in ad- 
jacent well for the sequential tunneling process. 

When d£b(t)/dt=£0, there exists a surge tunneling cur- 
rent Is

t(t) flowing out of the quantum wells in addition to 
•^[£&(0]-2 By working in the nonadiabatic limit, Is

t(t) is 
given by 

Is,(t) = -eS)im -J- 
( m*\ r+° 

dE 

X/c 

= -/o 

E+Ex + eLBkt d£b(t)/dt-/jc.c(Te) 

-fic(Te) 

kBTe 

kBTe 

'm*e2SLB\ d£b{t) 

TTh2 dt (4) 

The existence of Is
t(t)<xd£b(t)/dt causes the imbalance of 

the tunneling current flowing into and out of a quantum well, 
which drives the charge density away from «2D • The charge 
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fluctuation AQ(t) in the quantum wells induces a nonadia- 
batic space-charge field £aa(t). This gives rise to a nonadia- 
batic correction to the tunneling current 

Mt(t) = eS{vd[£b(t) + £aa(t)] n^£b(t)+£na(t),Te] 

-vd[£b(t)]nefl£b(t),Te]}. (5) 

In terms of £n!l(t), AQ(t) in each quantum well can be ex- 
pressed as 

Aß(H--& 
X r Jo 

dEfr 
E+E^eLB£Ji)-p.c{Te) 

kBTe 
(6) 

Consequently, the quantum-mechanical continuity equation 
Alt(t)+Is

t(t) + d&Q(t)/dt=0 leads us to the foUowing 
dynamical equation for £na(t): 

r     d£b(t)     (eS\ 
=cQW[o] -^- - ^JM^O+^WKrfW 

+£n*(t), Te] - vl£b{t)MA£b(t), Te]}, (7) 

where    CoW[£na(/)]    is    the    dynamical    quantum-well 
capacitance given by 

CQwC^naW]— /o 
Ei + eLB£^{t)-pic(Te) 

kBTe 

m*e2S 

,     7TÄ2 

(8) 

which is different from the QW capacitance CQW[0]. If 
KaWN^COl and fic(Te)/eLB for a slowly varying £b(t), 
we can expand Eq. (7) to first order in £m(t) and arrive at a 
linear approximation 

d£JLt)    d£b(t) £Ut) 
(9) dt        dt     Rl^mc^oy 

where Rj_£b(t)]  is the differential tunneling' resistance, 
given by 

Umi =(z3 i£-b
{vlSb{t^ n^£^ T<& ■ 

(10) 

Here, Te is kept constant, and its dependence is not explicitly 
written out. Equation (9) is a circuit equation with respect to 
£nü(t) in the presence of a source term d£b(t)/dt, in which 
•fftr[£fcW]CQw[0] plays the role of a charging/discharging 
time constant. This uncovers the microscopic origin of our 
previous circuit model1 and explicitly relates the charging/ 
discharging time constant to the change of microscopic tun- 
neling current in MQWs. 

Using Eq. (9), we have predicted a current hysteresis and 
a current arch for a sinusoidal £b(t), as well as a current 
ripple for a step-like £b(t). A current instability is also found 
by using Eq. (7). All of these predictions have been con- 
firmed by our previous experiments.1,2 

• Huang et al.       4431 

B. Photon-assisted escape 

In the presence of incident photons, electrons in the 
ground state can transit to the upper excited state by absorb- 
ing photons. From this excited state, they can easily tunnel 
out to the continuum states above the barrier with help from 
a dc electric field £b. Consequently, a photon-assisted escape 
channel is opened for electrons to get out of quantum wells 
in addition to the previous tunneling channel. 

In the adiabatic limit, by using Levine's electron photo- 
emission model4, we can write the adiabatic photo-emission 
current as 

Ie[£b, 3>op«] = eS Pe[4]o-op[cü, £b]n2D <Dop(r) ,  (11) 

where <a is the frequency of the incident light, Pe[£b] is the 
escape probability of electrons from the upper excited state 
to the continuum states above the barriers, o-opO, £b] is the 
optical cross section which is related to the absorption coef- 
ficient by o-op[w,£,

6] = ^abs[ü),£rfe]Lw/n2D in the limit of 
ßabsC^'^^w^l. and <&op(r) is the incident optical flux. 
For the escape probability, we use the following empirical 
formula4 

PJL£b]= 1+A0 expl - j- 
'es 

(12) 

where A 0 is the zero-field escape time ratio and £^ is the 
effective barrier lowering field. A more accurate escape 
probability can be calculated by using the time evolution 
method.6 However, the use of Eq. (12) is adequate for eluci- 
dating the basic physics for the compensation of CF in quan- 
tum wells. For the absorption coefficient, we have7 

A*sl>,£i,] = 
Ve* CO 

"rl>, £bl\Cl 

X[l+Pph(ÄW^re)]/m aL[a>,£„] , 

(13) 

where pph(Z) is the Bose-Einstein distribution function for 
photons. In Eq. (13), eb is the relative dielectric constant of 
quantum wells, 

«,.[>, £6] = [i+i Re aL[a>,£b] 

+ W(l+Re «d>,56])
2 

+ i (Im aL[a>, £b])2] 2-11/2 (14) 

is the dynamical refractive index function, and the Lorentz 
ratio is given by 

„2 
aL[<o,£b]=- 

X 

"2pg 

e0€bLW 

1 

K£i(z)|z|fo(z»l5 

(hco-mw[£b]) + iy    (hco + hn,w[£b]) + iy\ ' 
(15) 

where hO,w[£b] is the energy separation between the ground 
and upper excited states, y is the homogeneous energy-level 
broadening, and \<%i(z)\ez\£0{z)>\2 is the square of the 
transition dipole moment between the ground state £0(z) and 



4432        J. Appl. Phys., Vol. 89, No. 8, l^rfil 2001 Huang et al. 

excited state £i(z). Here, g0(z) and £t(z) depend on £b due 
to the Stark effect. In Eq. (15), the Coulomb renormalization 
of the electron energy levels can be included using the self- 
consistent Hartree-Fock calculation.7 The many-body depo- 
larization effect7 has been neglected. It will shift the absorp- 
tion peak slightly due to the screening of the Coulomb 
interaction between electrons. 

Because 4>op(0 varies with time, it induces a CF in the 
quantum wells in the nonadiabatic limit, once again giving 
rise to a AQ(t) and a A/,(0 as given in Eqs. (5) and (6). In 
this case, however, we have an additional nonadiabatic cor- 
rection to the photoemission current flowing out of the quan- 
tum wells, given by 

AIe(t) = eSPe[£b]aJi<o,£b]^0Jt) 

X i "2D- 

X/c 
E+Ei+eLB£aa(t)-fic(Te) 

kBTe 
(16) 

Here, we have neglected the secondary corrections due to 
£na0) to the escape probability and optical cross section. 

Moreover, because d<bop{t)ldt=£0, there exists a surge es- 
caping current Is

e(t) flowing out of quantum wells 

ISe(t) = -eS Pe[£b]o-0J(o, £b]n2D r, 
^op(0 

dt 
(17) 

where r,- is the lifetime of the excited electrons. The exis- 
tence of re(t)<xd<&op(t)/dt induces the imbalance between 
the emission and capture currents flowing out of and into a 
quantum well, which deviates the charge density away from 
n2D- The capture probability in Eq. (17) is given by the 
empirical formula4 

pjL£by- 1+BX exp — 
-cp 

(18) 

with I?«, and £cp being the high-field capture coefficient and 
effective well capturing field, respectively. Capture probabil- 
ity can be more accurately calculated by adopting the Fermi 
golden rule method.8 Applying the quantum-mechanical con- 
tinuity equation Alt(t) + AIe(t)+Is

e(t) + dAQ(t)/dt=0, 
with AIt(t) and AQ(t) given by Eqs. (5) and (6), leads to the 
following dynamical equation for £„a(r): 

J 

rf£naW     leS' <**»(') 
CQw[£na(0] ~di~\L'J p££i>]cr°i£<0> £b]n2r> Ti—Jjr 

'eS 

-B 
j{vd[£b+£m(t)] nel££b+£m(t), Te]-vd[£b] «efi[£6, rj} 

'-'ft ' 

m*eS\ 
—^J Pe[£b]<Tor!L<o,£b] *op(0 

X r Jo 
dEifo 

E + Ex-nc{Te) 

kBTe 
-/o 

E+Ei + eLBSJLV-ftciT,) 

kBTe 
(19) 

In the limit of \£J,t)\<\£b\ and /u.c(Te)/eLB for a slowly 
varying 3>op(0, we can expand Eq. (19) to first order in 
£aa(t) and arrive at a linear equation 

c w[o] d€p>WJeST°££d\ '^opW 
dt 

"$»(') ■ + 
1 

Rl£b\   Äop[^,*«W]   ' 

(20) 

where the optoresistance and phototraverse time are defined, 
respectively, by 

1 
jij^^ör^w». w *4o C

QW[O] 

■>"op[£&] = Tt Pe[£h]o-op[&>, £fc]n2D. 

(21) 

(22) 

In Eq. (21), l/Rop[£b, 3>op(0] describes how easy one 
electron can transit from the ground state to the upper 
excited state and then escape out to the continuum state 
above the barrier. By comparing Eq. (20) with Eq. (9), we 
get the effective resistance VRe!l£b, $>op(t)] = VRtl£b] 
+ l/Rop[£b,$op(t)] in the circuit equation for the dual tun- 
neling and photon-assisted escape channels, the source term 
(eSTop[£fc]/LBCQW[0])d<I>Op(0Afr, and the charging/ 
discharging time constant Refl£b ,<E>op(r)]CQW[0]. 

C. Compensation of charge fluctuations 

In the presence of both £b(t) and <&op(t), from the 
quantum-mechanical continuity equation AIt(t) + Is

t(t) 
+ Ale(t)+fe(t) + dAQ(t)/dt=0 we get the dynamical 
equation for £m(t) by combining Eqs. (7) and (19): 
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_    XF(f.d£m{t)_ dSb{t)    (eSrop[£b(t)]\d<t>op(t) 
CqwIAaW J —fi- ~ CQWL0 j —£- + ^ j— 

*e£ 

' m*eS 

dt 

{vd[£b{t)+SJ,t)-\ ne{££b(t) + £aa(t),Te-]-vd[£b(t)] nefl£b(t), TeJ} 

1 

7Til2LB) KpföW, 3>op(0]CQW[0] 

X r Jo <H?/c 
E+E^fi^T,) 

kBTe 
-/o 

E+Ei+eL^CO-^^) 
*/>re 

(23) 

In the limit of slowly varying £b(t) and &op(t), by combin- 
ing Eqs. (9) and (20) we are led to the linear approximation 
of Eq. (23): 

CQW[0] 
d£Jjt) 

dt 

-^    rn,
d£b(t) , leSrop[£b(t)]} <f<Eop(r) 

-cQW[o] -#-+[    z-B   j ~~d~r 

-£J.t) 
i 

■+ 
i 

RopiSbit), $op(')]j ' 

terms      d£b(t)/dt 

(24) 

The individual source terms d£b(t)/dt and 
{eSrop[£b(t)]/LBCQW[01i}d^op(t)/dt in Eq. (24) can be 
either in-phase or out-of-phase with each other. When they 
are in-phase, the effects of the CF from these two channels 
become constructive. When they are out-of-phase, the effects 
are destructive. This gives rise to a compensation of the CF 
in quantum wells from dual tunneling and photon-assisted 
escape channels. 

Since the general nonlinear Eqs. (7) and (19) and their 
linear approximations in Eqs. (9) and (20) are all confirmed 
by our experiments, the validity of Eq. (23) by combining 
Eqs. (7) and (19) or its linear approximation in Eq. (24) by 
combing Eqs. (9) and (20) is guaranteed. Therefore, we be- 
lieve that the prediction made from Eqs. (23) and (24) in our 
numerical results later for the compensation of the CF in 
quantum wells should be observable in a future experiment. 

D. Photoresponsivity 

The dynamical photoresponsivity of the system in the 
presence of £b(t) and <&op(0 is denned by the photoemission 
current with transient charge density at time t in each quan- 
tum well4 and is given by 

ftph(?) = 

Ie[£b(t),®op(t)-\-AIe(t) 

ha>Pc[£b(t)-\S<S>op(t) 
(25) 

In the special case of d£b(t)/dt=0 and a slowly varying 
S>op(f), we find from Eq. (25) 

1 
X 

[Rop[£b,®op(t)] 

where the static photoresponsivity is 

o ^g^e[£fc]o-0p[>,5,>2D 
/ V r 

£na(0     , 

"ph- Ka>Pc[£b] 

(26) 

(27) 

By assuming an optical flux $op(r) = <I>o + ^>
mexp(iflc?), 

where ft c and <&m are the frequency and modulation ampli- 
tude of $>op(t) and <t>0 is the background optical flux, we 
take the Fourier transform of Eq. (20) in the limit of weak 
modulation <l>m /$0< 1 and get the leading term of £na(dF): 

^(fif) = « 
eSTop[£b-]nc<t>mR*[£blS(tiF-nc) 

L5(i+;nV?*[^]cQW[o]) 

'**[£,] \/*m\ eSrop[£binc<i>mR*[£b]S(CiF-mc) 
1 \<[56]/\«>o/LB(l + zflf/?*[4]CQW[0]){l + f(0F-ftc)i?*[^]CQW[0]} 

(28) 

Here, l//?*[5fc]=l/i?tI[£
,
i>]+l//?°p[5fe] with l/ÄoP[4] = /'e[^]crop[&), £b] O0CQW[0]. Moreover, we take the Fourier trans- 

form of Eq. (26) and get 

nph(üF)=n°p^s(CiF)-
LB^^] gna(fif)|. 

From Eqs. (28) and (29), we find the drop of the photoresponsivity to be 

(29) 
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Aftph(ftc) = 

1" 

J — CO 

= K 
Ph 

«2D 

ft. 

Vi/(**[£fc]cQW[o])2+ft2 

Huang ef a/. 

_    o |^gCQw[0]\| 
_7M    *«2DS   j f J — CO 

rfflF 4a(ßf) 

[1 -(R*[eb]/R0
op[£b]K^J^o)]2+4(R-*[£b-]CQ^0])2nc 

i+4(Ä*[fjcQW[o])2n?. j' 
(30) 

which is zero for ftc=0 and ^^h(4>mTop[£'t]/«2D) for ^c 
S>1/(ä*[£6]CQW[0]). The chopping frequency at which the 
photoresponsivity has dropped halfway between the maxi- 
mum and minimum values is found to be 

III. NUMERICAL RESULTS AND COMPARISONS 

In this section, we will present some numerical results to 
demonstrate the compensation of CF in quantum wells in the 

th l/(/?*[4]CQW[0]) (31) 

Figure 1 is taken from an early measurement performed 
by Arlington, et al? and shows the quantum efficiency-gain 
product in (a) as a function of fte and the extracted ft£ in 
(b). In Fig. 1(a), the dynamical suppression of the photore- 
sponsivity is clearly seen as a function of ftc for various 

average incident photon irradiances <f> = yj([^op(t)]
z). In 

Fig. 1(b), ft£ is plotted as a function of <5 at T=40 K for 
different dc bias voltages Vb. For Vj=-1.5V, ftjj; appears 
as a linear function of <5. When Vb is increased to —3.5 V, 
we find ftj£ is a linear function of <E> only when <& is large 
but becomes independent of «5 when $ is small. We know 
that at low biases, RJi^^R^h] and l//?*[^] 
«l//?°p[£fe] where Rlp[£h] is proportional to <P. This leads 
to ft£oc<5 shown in Fig. 1(b) as predicted by Eq. (31). At 

high biases, the situation is less straightforward. When <5 is 
small, we find that RjL£b]<^Rlj.£b] and &± is independent 
of <5. At higher flux, RjL£b]P-R0

op[£b] and ft£ is again lin- 
early dependent on <t>. Consequently, Eq. (31) is verified 
experimentally, which proves the validity of Eqs. (19) and 
(20), as well as the dynamical photoresponsivity TZph(t) de- 
fined in Eq. (25). 

In order to further verify the relationship in Eq. (32) 
beyond the limitation of 3>m /<J>0<^ 1, we present in Fig. 2 the 
numerical results for Allph(Q,c)/7l°h with $m/<J)0=l and 
various optical fluxes, device temperatures and bias voltages. 
From the solid curve, we find a rolling-off feature of 
A^ph(ftc)/^°h at ft^=0.3 Hz. As <&m decreases from 5 
X10" cm-z s_I to 1X1012 cm-2 s_I (dashed curve), the 
rolling-off point is shifted down because l//?*[£6] 
~ l/i?op[£fe] is reduced as predicted by Eq. (32). When Te 

increases from 40 to 50 K (dash-dotted curve), ft^ is shifted 
up because l/R*[£b']~ \IR^£b"\ increases with Te rapidly as 
seen from Eq. (32). Finally, when we reduce £b from 25 to 5 
kV/cm (dash-dot-dotted curve), we find a down-shift of ft^ 
since l/R*[£b']~l/RtJ[£1)'] decreases with £b as implied by 
Eq. (32). All of these features found in our calculations are 
consistent with the experimental observations in Figs. 1(a) 
and 1(b). 

Frequency (Hz) 

1 1 1 1 i     ■    •   i  . i i i             , 
'■ 

■ • 
■ 

_ »- . 100 

■ ^^•"^ \ 
• 
■ 

■ 
^m 

Detector B 

- 10 

• 

... 1 

A   Bias = -3 JS Volts 
■   Bias = -Z5 Volts 
•   Bias = -1.5 Volts 

1 1 

A-wrogcInadjaoce (ph/s-cm") 

FIG. 1. Measured quantum efficiency-gain product of a sample (see Ref. 3) 
at r,=40 K and central wavelength \0=1.\ yum as a function of the chop- 

ping frequency ftc in (a) for different average photon irradiances <P, and the 
extracted chopping frequency ftj£ at which the quantum efficiency-gain 
product reaches halfway between the maximum and minimum values as a 

function of $ in (b) for different bias voltages Vb. In (a), Vb is fixed at 

-2.5 V and $ is varied between 3.4X 1013 and 2. IX1015 ph/s cm2. In (b), 
the halfway chopping frequency with three various bias voltages Vb 

= —1.5, —2.5, and —3.5 V are displayed as a function of $. 
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- 
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\      \       \        \ 
\       \        \           \ 

TABLE Dt. List of external parameters. 

10J 10' 10° 10' 

Frequency Q     (Hz) 

FIG. 2. Comparison of the average photoresponsivity ^([^(flf)]2)/^",, 
as a function chopping frequency flc for various optical fluxes, device tem- 
peratures and bias voltages. Here, we set <!>,„ /<1>0= 1 in our calculation. The 
solid curve corresponds to <J>m = 5X 1012 cm-2 s-1, £s=25 kV/cm and Tt 

= 40 K; the dashed curve to <J>m= 1X1012 cm-2 s"1 but the same Sb and 
Te; the dash-dotted curve to Te=50 K but the same <J>m and £b; and the 
dash-dot-dotted curve to Sb = 5 kV/cm but the same *m and Te. Other 
parameters have been given in Tables I-HI. 

presence of both £b(t) and <E>op(?). The nonlinear effect be- 
yond the linear model will be considered thereafter. 

In our numerical calculation, we have assigned the fol- 
lowing forms to £b(t) and <J>op(r): 

Sb{t) 

£0+£m sin[(27rr/r„) + a0] ,    jTp^t^(j+ l/2)Tp 

0,    others (32)' 

for 7 = 0, 1,2, 

*opW 

and 

$o+^>m sin[27rr/rp] 

0,    others 

jTp^t^(j+V2)T. 

(33) 

where a0 is the phase difference between Sb{t) and <&op0) 
and Tp = 2ir/Q,c is the time period for both £b(t) and 
<&Op0). £Q 

md £m we the dc component and the amplitude 
of the ac component of £b(t). <]>0 and <E>m are the back- 
ground flux and the amplitude of the modulation component 
of $>op(t). Here, we take T,-= 1 ps. The other sample param- 
eters used in our calculation are listed in Tables I-HI, where 
the photon energy is in resonance with the energy separation 
between the ground and excited states of a QW. 

A. Compensation of charge fluctuations 

In this part, we present the numerical results in Figs. 3-5 
from the linear model in Eq. (24). 

A« (meV)     £g (kV/cm)     a0     *0, <Dm (10n cm"2)     T  (s)    T„ (K) 

168 25 400 40 

Figure 3 presents the numerical solutions of Eq. (24) for 
£na(0 as a function of time t for different values of £m, the 
ac component amplitude. When £m = 0 (dash-dot-dotted 
curve), due to CF in the quantum wells, the induced nona- 
diabatic space-charge field S^t) is driven by d<&op(t)/dt 
over the first half period. This is followed by a decay in the 
second half-period when cpop(?) = $0. The deviation of 
£na(0 from zero measures the effect of the CF, which is 
gradually reduced with the increase of £m from zero. Be- 
cause the phase difference a0=ir, £b(t) and <&op(0 are 
completely out-of-phase with each other and the effects of 
the CF from the dual tunneling and photon-assisted escape 
are compensated, leading to a decrease of the deviation of 
£m(t) from zero. 

We show in Fig. 4 the total nonadiabatic photoemission 
currents Ie[£b(t), <&op(t)]-AIe(t) as a function of time t 
for different values of £m. Within the adiabatic limit with 
£m~0 (dotted curve), the photoemission current is simply 
•fe[£o'*op(0]> and it is proportional to 3>op(t). Beyond the 
adiabatic limit, the total nonadiabatic photoemission current 
is dramatically reduced compared to the adiabatic value in 
the first half period, but is enhanced in the second half pe- 
riod. This is due to the fact that Ie[£b(t),®op(t)]-AIe(t) 
always remains out-of-phase with d<£>op(t)/dt. When an out- 
of-phase electric field £b(t) is applied to the system, AIe(t) 
which results from CF in the quantum wells in both the first 
and second half periods, becomes smaller with increasing 
£m. We attribute this to the cancellation of CF in the quan- 
tum wells from the dual tunneling and photon-assisted es- 
cape paths. 

The results of the dynamical photoresponsivity TZ^it) 
from Eq. (25) as a function of t for different values of £m are 
compared in Fig. 5. In the adiabatic case with £m = 0, 72ph(0 
(dotted line) equals its static value 7£ph, and is independent 
of 3>op(0- In the nonadiabatic case, TZpb(t) dramatically de- 
creases compared to 7£ph in the first half period, but in- 
creases in the second half period. In the first period where 
£na(0>0, the total nonadiabatic photoemission current is re- 
duced compared to its adiabatic value as shown in Fig. 4. 
However, £m(t) switches its sign in the second half period as 
shown in Fig. 3, which increases the photoemission current. 
These two factors together give rise to the features of TZph(t) 
seen in Fig. 5. When an out-of-phase electric field £b{t) is 
applied to the system, TZpb(t) gradually approaches 7£ph with 
the increase of £m due to the compensation of the CF. We 
have noted that the dynamical change of 7£ph(r) at £b(t) 

TABLE I. List of internal parameters for GaAs/Al0 3Gao 7As MQWs. 

Lw 

(Ä) (A) 
*2D 

(10" cm" "2)   (10_4cm- 2)    (106 cm/s) (kV/cm) y (meV) 

50 500 8 2.25 2 2 1 

TABLE HI. List of emission and capture parameters. 

£K (kV/cm)                   A0                    5cp (kV/cm) B» 

4.73                          36                          2.67 11.5 
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FIG. 3. Nonadiabatic space-charge field £m(t) as a function of time for 
different ac-component amplitudes £m=0, 1, 2, and 3 kV/cm.. 

= £0 reaches approximately as high as 40% of its adiabatic 
value lZph. However, this dynamical change is greatly sup- 
pressed by the nonlinearity as discussed next. 

B. Effect beyond linear model . 

In this part, we present the numerical results in Figs. 6-9 
which compare the linear model in Eq. (20) with the nonlin- 
ear model in Eq. (19) at £b(t) = £0. 

Figure 6 compares the calculated total electric field £0 

+ £na(t) as a function of t from both the nonlinear model in 
Eq. (19) and linear model in Eq. (20). In the adiabatic limit, 
the total electric field (dash-dot-dotted line) is simply £0. The 
linear model introduces a large CF in the quantum wells, 
which enhances £m(t) in the system. The nonlinearity 
greatly suppresses the CF (solid curve) resulting from 
d^op(t)/dt¥=0, giving rise to only a small deviation of the 
total electric field from £0. We know that the positive £aa(t) 
indicates the shift down of the Fermi energy Ef which results 
from charge depletion in the quantum wells. This will reduce 
the dynamical QW capacitance CQW[£na(f)] compared with 
CQW[0] at finite temperatures but not at Te = 0K if 
eLB£aa(t)<Ef-El. From this figure, we see that the dis- 
charging process \_d£J<t)ldt>0'] is accelerated'in the non- 

ac-Comporrent Amplitude: 
u 

— •—0 (Non-adiabatic) i\ 
-• — 1 (kWcm| i. \ 
 2 (kV/an) ;.'\ \ 
 3(kWcm) !l   \ • 

M'K   \ 

FIG. 5. Dynamical photoresponsivity 7eph(f) as a function of time for dif- 
ferent ac-component amplitudes £m=0, 1, 2, and 3 kV/cm. The static pho- 
toresponsivity 7e.°h with £m=0 (dotted curve) is also included in the figure 
for the sake of convenience. 

linear model due to CQW[5na(0]<CQW[0] in Eq. (8), which 
produces a small discharging constant in Eq. (19). 

The normalized ratio of the CF in quantum wells, 1 
-[hQ(t)/eSn2D], with £b(t) = £0 using the nonlinear model 
is presented in Fig. 7. The whole fluctuation process within a 
period can be described in three successive steps (see Fig. 6): 
(1) the initial discharging process d£na(t)/dt>0, (2) the 
intermediate charging process d£aa(t)/dt<0, and (3) the fi- 
nal discharging process d£Jj)ldt>0.' The maximum 
"charge depletion" in quantum wells is about 10% of n2D in 
the initial discharging process and the maximum "charge 
accumulation" is 15% of n2D at the end of the intermediate 
charging process. 

Because the dynamical photoresponsivity Tlph(t) only 
depends on the total nonadiabatic photoemission current, we 
show in Fig. 8 the results of the calculated Ie[£b, <£op(?)] 
-AIe(t) as a function of t with £b(t) = £0 using both the 
nonlinear model in Eq. (19) and the linear model in Eq. (20). 
In the adiabatic case, the photoemission current 
lelZo&opW] (dash-dot-dotted curve) is proportional to 
4>op(f). Although the CF in the quantum wells induces a 

3.0x10" 

2.8x10'" 

h 2.6x10" 

2.4x10" 

2.2x10'" 

2.0x10'" 

1.8x10° 

1.6x10'" 

1.4x10" 

1.2x10'° 

-1- 

ac-Component Amplitude: 
 0 (Adiabatic) 
 0 (Non-AdlabaMc) 
 1 (kV/cm) 
 2(kV/cm) 
 3(kV/cm) 

100   200   300   400   500   600   700   800 
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FIG. 4. Total nonadiabatic photoemission current Ie[£b(t), 4>0 (t)] 
-A/C(r) as a function of time for different ac-component amplitudes £m 

= 0, 1, 2, and 3 kV/cm. For convenience, the adiabatic photoemission cur- 
rent Ie[£0, <l>op(r)] with £m=0 (dotted curve) is also included in the figure. 

28.0 

27.5 

27.0 

26.5 

26.0 

25.5 

25.0 

24.5 

24.0 

23.5 

23.0 

22.5 

22.0 

•^^— Nonlinear 
 Linear 
 Adiabatic 

_1_ 
00 400 51 

Time    (sec) 

J 
800 

FIG. 6. Total nonadiabatic electric fields £0 + £m(t) as a function of time 
from the nonlinear model in Eq. (19) and linear model in Eq. (20), respec- 
tively. The dc electric field £0 (dash-dot-dotted line) is also included in the 
figure as a comparison. 
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100    200   300   400   500    600    700   800 

Time    (sec) 

FIG. 7. Normalized ratio of charge fluctuation [l-AQityeSn^] calcu- 
lated from Eq. (6) using the nonlinear model in Eq. (19) as a function of 
time for £b(t)=£0. 

Nonlinear 
Linear 

 Adiabatic 

300 400 500 
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FIG. 8. Total nonadiabatic photoemission current Ie[£b(t), $0 (t)] 
-AIe(t) from the nonlinear and linear models as a function of time 
for £b(t) = £0. The adiabatic photoemission current Ie[£b, 4>opM] with 
£*W=£o (dash-dot-dotted curve) is also included in the figure for the 
comparison. 

largevalue of AIe(t) in the linear model, it is dramatically 
suppressed by the nonlinearity. This results in the time- 
dependent photoresponsivity li^t) (solid curve) approach- 
ing its static value K°h (dash-dot-dotted line), as can be seen 
from Fig. 9. From Fig. 9 we also see that the dynamical 
change of K^t) compared with K°h has been greatly sup- 
pressed by the nonlinearity from 40% to 10%. Moreover, the 
discharging process is finished with a much higher rate due 
to CQW[5na(r)]<CQW[0]. 

IV. CONCLUSIONS AND REMARKS 

In conclusion, by deriving the general dynamical equa- 
tion for £m(t) in Eqs. (23) and (24) in the presence of both a 
time-dependent electric field Sb(t) and a time-dependent in- 
cident optical flux <J>op(f) which provides dual tunneling and 
photon-assisted escape channels to the system, we have 
found a compensation of the CF in quantum wells when 
£b(t) and <&op(0 become out-of-phase with each other. By 
working beyond the linear model in Eq. (20), we have found 
from a nonlinear model in Eq. (19) a large suppression of the 
nonadiabatic deviation of the photoresponsivity and a 
speed-up of the discharging process due to the depletion of 
charge in the quantum wells. For a special case with a dc 
bias voltage and a time-dependent incident optical flux, the 
experimentally observed drop of the photoresponsivity as a 
function of the chopping frequency has been reproduced suc- 
cessfully by our theory. The compensation of the CF in 
quantum wells predicted in this article will be verified by a 
future experiment. 

ACKNOWLEDGMENTS 

0.80 

0.75 

0.70 

0.65 

0.60 

0.55 

0.50 

0.45 

0.40 

0.35 

0.30 

-^— Nonlinear 
 Linear 
 Adiabatic 

300 400 500 

Time    (sec) 

FIG. 9. Dynamical photoresponsivity 7?ph(f) from the nonlinear and linear 
models as a function of time for £b(t) = £0. For convenience, the static 
photoresponsivity 7j°, with £b(t) = £0 (dash-dot-dotted line) is also in- 
cluded in the figure. 

The authors gratefully acknowledge many helpful dis- 
cussions with D. C. Arlington and J. E. Hubbs and some of 
their data before publication. 

'A. Singh and D. A. Cardimona, Opt. Eng. 38, 1424 (1999). 
D. H. Huang, A. Singh, and D. A. Cardimona, J. Appl. Phys. 87, 2427 
(2000). 

D. C. Arrington, J. E. Hubbs, M. E. Grammer, G. A. Dole, and A. Singh, 
Proceedings of the Sixth International Symposium on Long Wavelength 
Infrared Detectors and Arrays: Physics and Applications, edited by S. S. 
Li, H. C. Liu, M. Z. Tidrow, and S. D. Gunapala, (1999) Vol. 98-21, pp. 
29-48; J. E. Hubbs, D. C. Arrington, M. E. Grammer, and G. A Dole 
Opt. Eng. 39, 2660 (2000). 

4B. F. Levine, J. Appl. Phys. 74, Rl (1993). 
5P. Denk, M. Härtung, M. Streibl, A. Wixforth, K. L. Campman, and A. C. 
Gossard, Phys. Rev. B 57, 13094 (1998). 

6David M.-T. Kuo and Y.-C. Chang, Phys. Rev. B 60, 15957 (1999). 
7D. Huang and M. O. Manasreh, Phys. Rev. B 54, 5620 (1996). 
8L. El Mir and J. C. Bourgoin, Phys. Status Solidi B 207, 577 (1998). 


