
Australian Government

Department of Defence
Defence Science and

Technology Organisation

Estimation of False Alarm
Probabilities in Cell
Averaging Constant False
Alarm Rate Detectors via
Monte Carlo Methods

Graham V. Weinberg

DSTO-TR-1624w !4



Australian Government

Department of Defence
Defence Science and

Technology Organisation

Estimation of False Alarm Probabilities in Cell
Averaging Constant False Alarm Rate Detectors

via Monte Carlo Methods

Graham V. Weinberg

Electronic Warfare and Radar Division
Systems Sciences Laboratory

DSTO-TR-1624

ABSTRACT

Monte Carlo Methods are introduced and used to estimate false alarm proba-
bilities. The estimation of the latter is important in the context of performance
analysis of Constant False Alarm Rate (CFAR) radar detection processes. A
CFAR detector estimates the clutter level, producing a threshold, and a target
is declared present if the statistic representing the test observation exceeds this
threshold. The latter is adjusted adaptively, so that the rate of false alarms is
held constant. Hence, in a radar analysis context, the performance of a CFAR
process can be determined from whether it maintains a constant false alarm
rate. In order to compare the performance of a number of different CFAR
schemes, in a common clutter environment, we need to estimate these false
alarm probabilities. This can be done quite easily using a basic Monte Carlo
estimator. However, the latter may require a very large number of iterations in
order to produce a reasonable estimate. To reduce this number of iterations,
importance sampling techniques can be used. To illustrate these techniques,
we consider the simple case of cell averaging CFAR in a Gaussian environ-
ment, with square law detection. This enables comparison of estimators with
an exact result.
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Estimation of False Alarm Probabilities in Cell Averaging
Constant False Alarm Rate Detectors via Monte Carlo

Methods

EXECUTIVE SUMMARY

Constant False Alarm Rate (CFAR) detectors use an adaptive threshold to compare the
estimated clutter level with a test statistic, the latter representing the cell under test.
When this test statistic exceeds the threshold, a target is declared present. The adaptive
threshold is adjusted so that the probability of false alarm, that is, the probability of
declaring a target present when there is actually no target, remains fixed. Performance
analysis of various CFAR schemes focuses on whether the sample false alarm rate remains
constant. Thus, in order to compare CFAR schemes in various clutter environments, a
comparison of the false alarm probabilities is required.

Estimation of false alarm probabilities, and definite integrals in general, can be performed
using a class of techniques known as Monte Carlo Methods. A key issue with such tech-
niques is that the estimators based upon them may require a large number of iterations
to produce a good estimate. In order to improve this situation, by reducing the number
of iterations, Importance Sampling (IS) can be used.

This report will examine the estimation of false alarm probabilities for performance analy-
sis of CFAR detection processes, using Monte Carlo methods. In particular, we will be
interested in the performance of a number of importance sampling estimators. A key is-
sue to be considered is whether the number of iterations needed to produce a reasonable
estimate can be significantly reduced. Attention will be restricted to the case of a cell-
averaging (CA) CFAR, in a Gaussian clutter environment. This enables comparison of
estimated results to precise probabilities of false alarm.

This report begins with an outline of CA-CFAR techniques, and Monte Carlo Methods,
followed by a derivation of an exact analytic relationship between false alarm probabilities
and thresholds, in the Gaussian clutter environmnent. Monte Carlo IS techniques are then
introduced and used to estimate false alarm probabilities. Finally, simulation studies are
used to demonstrate the power of the Monte Carlo IS approach.
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1 Introduction

1.1 Monte Carlo Methods

In a realistic mathematical model of any real world phenomenon, it can be expected that
the model complexity will often translate to difficulty in applying it to applications of
interest. As an example, in the context of [Tonkin and Dolman 1990], where models
are constructed for the radar signal return from a submarine periscope, parameters in the
model may be difficult to estimate precisely. A sample of observations can be used, together
with an appropriate estinmator, to obtain an approximation to the unknown parameters.
Due to their statistical nature, the estimator of a parameter will have a level of variance,
and it is thus desirable to minimise this, in order to achieve a good approximation.

In many cases, these estimators are improved as the sample size increases. However, this

can present a number of technical, as well as practical, problems. As an example of this,
from a practical perspective, it may lbe difficult to obtain a large sequence of accurate
observations. Consequently, an estimator may not be able to provide an acceptable level
of accuracy.

The techniques known as Monte Carlo Methods provide a systematic way of estimating
unknown parameters via simulation. Based upon the Law of Large Numbers, sample
averages are used to estimate unknown parameters. The power of the method comes
from the fact that it permits the estimation of integrals, and consequently can be used
to approximate statistical expectations, and hence probabilities. The basic Monte Carlo
techniques have existed for centuries, but the systematic development began during the
1940s, with the development of the atomic bomb. The name was coined by Metropolis,
in the course of the Manhattan Project of the Second World War, due to the similarity
between statistical simulation and games of chance. In 1948 Monte Carlo simulations
were used by Fermi, Metropolis and Ulamn to obtain estimates for the eigenvalues of the
Schridinger Equation.

The focus here will be on the idea of improving Monte Carlo simulations via a procedure
known as Importance Sampling (IS), which from a mathematical perspective, involves a
change in the underlying probability distribution associated with the estimator.

From a practical point of view, the idea is that certain observations will have more relevance
to the estimation than others, and hence these "important observations" are emphasized.
Additionally, since a new estimator is constructed, which focuses on only a subset of
the sample points, the simulation run time should be reduced. In order to unbias this
estimator, it must therefore be weighted to compensate for the reduction in sample size.
It is also an objective of IS to reduce the variance of the estimator, and so IS methods are
often referred to as variance reduction techniques.

As reported in [Smith, Shafi and Gao 1997], Importance Sampling (IS) began during the
1940s with the ideas of von Neumann applied in the context of particle splitting and
Russian roulette. Prior to 1970 the main development of IS was in the context of nuclear
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physics, with the work of [Kahn 1950, 1956] and [Kahn and Mann 1957]. Applications

in the communications modelling context began to appear in the literature (luring the

1970s, with the work of [Balaban 1976]. An early application to the subject of false

alarm probability estimation appears in [Mitchell 1981]. The latter application of IS

techniques will be the main practical focus of this report. [Shanmugani and Balaban 1980]
is attributed with popularising the use of IS in bit error rate estimations. [Cottrell, Fort
and Malgouyres 1983] introduced the idea of using large deviation theory to construct an

IS simulation of rare events. This resulted in a systematic development of the method,
with applications to comnmnications problems, with work such as [Sadowsky and Bucklew
1990]. Later developments include investigations of suboptimal biasing densities, as in

[Orsak and Aazhang 1989] and [Gerlach 1999], as well as a number of different other
techniques, which will be subsequently considered.

In IS, a change of probability measure is performed through a biasing distribution. The
choice of an appropriate biasing distribution is the main problem in the design of an

effective and efficient Monte Carlo (MC) simulator. The "art" of good MC simulation
via IS is to choose an appropriate biasing density for the problem under consideration. A

large percentage of the IS literature after 1987 focuses on the selection of biasing densities,
such as [Orsak 1993] and [Orsak and Aazhang 1989, 1991, 1993]. As will be observed,

in cases of interest there exists an optimal IS biasing density, which is not suitable for

use in practice because it depends on the parameter being estimated. This has resulted
in designing suboptimal biasing densities, based on this ideal form. In many cases this
approach has generated improved MC simulations.

As remarked previously, a biasing distribution is used to emphasize regions of importance
to the estimation process. Modification of an unbiased estimator, by reducing its input
sample size, will result in a biased estimate. The resulting estimator is then unbiased

through pointwise weightings. The correct choice for the weighting function, to produce

aii unbiased estimator, turns out to be the Radon-Nikodymn derivative of the original
distribution, with respect to the biasing distribution. Equivalently, when densities exist,

this reduces to a ratio of the original density and the biasing density.

As pointed out in [Smith, Shafi and Gao 1997], IS is not without its limitations. A key
problem is designing suitable biasing densities as system complexities increase. It may in

fact be very difficult to apply the method successfully to complex systems, as illustrated
in [Hopmans and Kleijnen 1979]. However, this does not mean IS is completely useless iii
complex system modelling. An example of IS applied to a complex system, in the setting
of simulating Viterbi decoders, is [Sadowsky 1990]. The relevant point to keep in mind
is that the method is system dependent, and there nay be successes or failures in its
application, depending on the specific system under consideration.

This study will focus on IS applications to the estimation of false alarm probabilities inl

a signal detection context. The interest in estimating such probabilities is to facilitate
the performance analysis of radar detection schemes. In particular, we are interested iii
the analysis of Constant False Alarn Rate (CFAR) detection schemes. Such a detector
compares a test observation with an adaptive threshold, the latter produced so that the
rate of false alarms remains constant. A false alarm is the declaring of a target present

2
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when in fact there is only clutter and noise present. Two different CFAR schemes can
be compared by looking at the rate of false alarms, in a common clutter environment. In
this case, we need to control the clutter environment, so that a valid comparison can be
performed. We will be interested in the performance of estimators of the probability of
false alarm. False alarm probabilities are typically set to small numbers, so that Monte
Carlo estimators may require a very large number of iterations to produce a reasonable
estimate. We will be interested in examining the possibility of significantly improving this
drawback, using IS.

We will restrict our attention to a Gaussian clutter and noise model. An advantage in
doing this is that the exact probability of false alarm is available, providing a gauge to
measure the performance of estimators.

The IS techniques considered here can be, and have been, applied to more general CFAR
schemes, with non-Gaussian clutter models. See [Srinivasan 2000, 2001] for examples of
this. In this report, we investigate a very simple CFAR scheme to compare these IS
estimators.

We now briefly introduce CA-CFAR schemes, followed by an introduction to Monte Carlo
techniques.

1.2 CA-CFAR Context

A CFAR processor is a signal processing tool which enables the automatic detection of tar-
gets in clutter and noise. It uses an adaptive threshold, where targets are declared present
when a detection statistic exceeds this threshold value. This threshold is determined so
that the rate of false alarms is held constant.

For a specified level of false alarm probability and noise level, a radar system must increase
its transmitted power in order to increase the probability of target detection at a prescribed
range. Thus we have an optimisation problem where we seek to maximise the detection
probability subject to a false alarm probability constraint. In terms of producing optimum
detection criteria, this suggests the usage of a Neyman-Pearson test, or Bayes decision
strategy.

The Neynman-Pearson Theorem provides a mechanism for determining the form of the
uniformly most powerful test between two statistical hypotheses. The following result is
from [Beaumont 1980]:

Theorem 1.1 Let X 1, X,2,..., X,, have joint probability density function
f (xI, x 2 .... xn i01,02 ,. . . , Ok), and suppose we want to test the null hypothesis HO : Oi = 09
against the alternative H, : Oi = 09, where the 0° and ol are known constants for each
i E {1, 2, ... , k}, representative of predetermined possible states. Suppose further that U
is the set of points (XI, x 2 ,... , xP) such that:

3
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1. fýx1,x2 ..... xHo) > (, for some ( > 0;

2. P((XI,X 2 ,... ,X,) E UIHo) =.

Then U is a decision region of size a that has the greatest power'.

The ratio of joint densities in Theorem 1.1 is a ratio of likelihood functions, andl hence

this test is often called a likelihood ratio criterion test. This methodology can be used to

construct a standard test format in the context of interest. [Minkler and Minkler 1990]2

contains a detailed description of this, to which the reader is referred.

In the case of detection of a single target observation, within a series of clutter and

noise observations, in a single radar return, we are interested in testing the hypothesis:
H0 : r = i/ against the alternative H, : r = v + yq, where r(t) denotes the radar signal

return, over a time observational window [0, ¢] , v = v(t) is a target observation and
S= rl(t) is clutter and noise. It will be necessary to assum e som e statistical properties of

the clutter and noise are known, such as their distributions are at least partially known,
and distributional parameters can be estimated from radar returns. This is in particular
very important in the context of determining the adaptive threshold. There are a number
of models that can be used to simulate clutter. In the work to follow, we will focus on

the simple case where the clutter and noise are modelled as Gaussian. This restriction is
applied because it is possible to find, in this case, an analytical relationship between the
false alarm probability and threshold parameter, for a given signal to noise ratio. This

allows easy performance analysis of Monte Carlo estimators. The Importance Sampling
techniques considered here readily apply in the case of non-Gaussian noise and clutter
models. The difficulty is that it can be hard to derive an approximate analytical solution
for comparison.

Returning to the hypothesis test context, suppose we have a sample of m clutter and
noise observations X 1 , X 2,..., Xm, and based upon these we construct a test statistic
Y = Y(XI, X 2 ,... , Xm). VWe assume we have a test observation X 0 , which is either a
target or noise/clutter observation. This observation is referred to as the statistic of the
cell under test (CUT). Using the approach of Theorem 1.1, it can be shown that the form of
the best test is to reject H0 if X0 > TY, where 7- is a constant. The physical interpretation

of this rejection criterion is that we compare the observation under test to a normalised
test statistic, the latter being based upon the clutter and noise observations. The statistic
Y gives an estimate of the magnitude of the clutter. In the present context we will only be
interested in the case where Y is a mean or average value, so that it gives a mean estimate
of the noise and clutter. Figure 3 1 contains an illustration of this CA-CFAR process. As
Figure 1 illustrates, a series of radar returns are passed to a square law detector. Although

not clearly illustrated in Figure 1, the CA-CFAR process actually has a number of buffer
cells separating the CUT and the observational cells.

1 Recall that the power of a statistical hypothesis test is the probability of rejecting the null hypothesis

when the alternative is actually true. Thus it statistically measures the likelihood of making a correct
decision.

2 See Chapter 3 of this book for a full mathematical treatment of the classical detection problem.
3 Ail figures and plots have been placed in the appendix at the end of the report.

4
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The processed returns are then averaged, normalised and compared to the observation
under test. It then outputs a detection decision. A radar detector divides a scan region up
into a number of small sets of observational cells, and this process would be run a number
of times over a scan region to determine the false alarm probability.

We now introduce the basic ideas in Monte Carlo estimation of probabilities and integrals.

1.3 Monte Carlo Fundamentals

Monte Carlo Methods use simulation techniques to estimate integrals. An integral can be
estimated via a summation of functions evaluated at randomly generated numbers. Since
a probability or an expectation can be written as an integral, the techniques can be applied
in this context too.

Monte Carlo estimation is based upon the Strong Law of Large Numbers (SLLN):

Theorem 1.2 Suppose ill, r12,..., ti,, is a sequence of independent and identically distrib-
uted random variables with finite mean E[i]j. Then

jfl

lir E[rj] almost surely. (1)

In a probability context, the phrase almost surely (a.s.) means that the result holds except
on a set of (probability) measure zero. Thus, for sufficiently large m, the average of the
random variables in (1) can be approximated by the mean value. To clarify this, consider
the integral I = fn w(x)f(x)d:r, where f is a density on Q, and w is a deterministic
function. Here Q may be a vector space, so that x may be a vector. Hence integral I is
an expectation: suppose rl is a random variable on Q with density f. Then we can write
I = E[w(7i)]. Now suppose I, 172,... I/rn is an independent and identically distributed
(IID) sequence of random variables. Then the SLLN (1) implies that

E 1 i(1j)

lim j=l - E[w(i;)] = I, a.s. (2)

in

E W(Zj)
I = j (x)f(x)dx , m (3)

771

where the sequence z., Z2,..., Z, consists of realisations of the variables Ill-i2,., ,2re.

The approximation in (3) is called a Monte Carlo estimate. This can be used to estimate
integrals in a number of different contexts. This method can be used to easily estimate

5
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analytically difficult integrals. As an example, consider the integral I = fo e-X 2 dx. Since
we can write the integrand as e-x 2+Xe-X, and the function f(x) = e--' is a density on
Q = [0, co), it follows that the integral can be estimated by - 1 -e-[log(rj)j 2 I where

mit j-=1 ri

for each j, rj are realisations of a uniform random variable4 on the unit interval [0, 1]. A
simulation of 1000 results gave I ; 0.8710 while a sample of size 10,000 yielded I • 0.8854.
Almost a quarter of a million simulations produced the estimate I ; 0.8865. This compares
to the exact value of I = 0.5v r • 0.8862. While it may take a large number of simulations
to produce an accurate result, the technique is quite easy to implement, and can be used
to estimate analytically intractable integrals.

The Monte Carlo estimate in (3) can also be used to estimate probabilities, with the choice
of w(x) = I[x E A], where I is an indicator function, defined by

I A c ] 1 if x E A;

0 otherwise.

Let X be a random variable on Q with density f. Suppose we want to estimate the
probability P(X E A), for some set A. Then an application of (3) yields

P(X E A) I[x E A]f(x)dx

(4)
in

SI[xrj E A]
j=l

where the sample x1, 12,....,.r.is IID generated from X. To illustrate, consider the case
where X is an exponential random variable with parameter 1, so f(x) = c-x, x > 0.

Suppose we want to estimate P(X < 1). It is not difficult to show that P(X < 1) =
1 - eC-1 0.6321. Now A = [0, 1] and Q = [0, sc), so a Monte Carlo estimator of this
probability is PMci = I L I[rj < 1], where the xj are generated from the exponential

distribution. However, there is ail alternative estimator, since P(X < 1) = € e-Xldxr
and g(x) = 1 is a density on the unit interval [0, 1]. Thus an alternative estimator is

PMC72 = 1 EZj= e-xi, where the xj are random numbers in the interval [0, 1].

A difficulty with the Monte Carlo approach is that it can take a considerable number of
simulations to achieve a reasonable level of accuracy. To illustrate this, recall that the
Central Limit Theorem (CLI) states that for a series {ji } of IID random variables with
finite first and second moments,

M1 E ITtj-

lim f j=ir/i - JL d N(0, 1), (5)

where. p = E[71] and a' = V[rq]. Using a moment generating function expansion of the
sum of random variables in (5), it can be shown that the rate of convergence is roughly

'This is because an exponential random variable with parameter 1 can be simulated by -log(r), with

r a random number between 0 and 1.

6
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of the order 7'. Hence, for an accuracy of 10-6, the number of Monte Carlo runs can he

roughly of the order of 1012. This can result in considerably long run times. To counteract
this, the techniques of Importance Sampling (IS) are used. This involves generating the
random variables in (4) from a biasing distribution, f,. The latter is chosen to emphasize
points in the estimation that are more important to the simulation. The effect of this
is that the simulation is using less points than the standard Monte Carlo estimator. To
balance the estimation, and to produce an unbiased estimate, the estimator is weighted
at each point. Thus, an IS estimate of the probability in (4) is given by

1 T

Pis = - E I[zj E A]W(zj), (6)
-j=1

where the zj are generated from a distribution with biasing density f., and W is a weighting

function. To produce an unbiased estimator, it can be shown that W(z) = f.zz" As an
example, consider the problem again of estimating P(X < 1) where X is an exponential
random variable with parameter 1. Choose as biasing distribution a uniform random
variable on the interval [0,11 . Now f(z) = e-z and f.(z) = 1 on the unit interval, and
so the IS estimator is pis = ET, e-'J. This is the same as the second Monte Carlo
estimator PMC2 considered previously.

Before considering IS estimation in more detail, we firstly derive an analytical expression
for the probability of false alarm in a CA-CFAR, in the case of Gaussian clutter and noise.

7
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2 A Cell Averaging CFAR Model

In this section we will construct a model for a CA-CFAR detector operating in the presence
of Gaussian clutter and noise. A useful relationship between the CA-CFAR probability of
false alarm, and the threshold multiplier will be derived. The latter will provide a useful
inechanism for testing the efficiency and accuracy of Monte Carlo estimators considered

in this report.

2.1 From Signal Return to Envelope Detection Output

To give a context to the analysis to follow, we briefly consider the radar signal return
and its characteristics under some assumptions. [Levanon 1988] and [Minkler and Minkler
19901 both contain good discussions on time processing of the signal return before it is
passed into the CFAR detector. In a simulation of a CA-CFAR system, one can generate

results from the point of view of simulating the process after square law detection, since
the statistics introduced previously were defined in this part of the CFAR model.

A case in which the threshold parameter -r can be obtained analytically in terms of the
false alarm probability, is when the clutter/noise is assumed to be Gaussian. In this

case, the resulting randomr variables from the square law detector are exponential. We
now demonstrate this, based ut)on the approach of [Levanon 1988], and also derive an

expression for the probability of false alarm as a function of the threshold parameter.

The following is for single pulse detection. The transmitted signal is a sine wave of duration

ýb and frequency wc. The returned signal will be a phased shifted version of the originally
transmitted signal, except with the addition of noise and clutter. The radar return is

passed to a narrow bandpass filter, with centre frequency wco:. We assume this filter has a
rectangular response with bandwidth fB. Then assuming that f, > ± the returned pure

signal can be described by

so(t) = A cos(wc((t) - Os) = a cos(wct) + b sin(wct), (7)

where 0s = arctan a is the phae shift of the signal, and the amplitude A = a + b2 .

When Gaussian noise is passed through a narrow bandpass filter, the output can be written

as
no(t) = X(t) cos(wCet) + Y(t) sin(Wct), (8)

where X(t) and Y(t) are both independent Gaussian random variables with mean 0 and

equal variance, a 2 . By combining (7) and (8), the radar signal return at the detector can

then be written as

((t) = 80(t) + no(t)

= (a + X(t)) cos(wo(,'t) + (b + Y(t)) sini(wct) (9)

= R(t) cos(wct + 1(t)),

8
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where

R(t) = V(a + X(t))2 + (b + Y(t)) 2 and 1(t) = arctan b + Y(t) (1)
[a+ X(t) ]

It is desirable to obtain an understanding of the distribution of the amplitude R(t) in
equation (10), since amplitude characteristics of return signals are used in the detection
of targets. Note that the square of R(t) is a sum of the squares of two Gaussian random
variables: let X1 = a + X(t) and Y1 = b + Y(t). Using the joint distribution of (X 1 , YI),
and changing to polar coordinates (R, D) defined through the transformations implied by
(10), it can be easily shown that the transformed joint density is

=(r exp r2 + a2 + b2 - 2racos -ri (11)f(RAI) (r, 0) ý-, 2 -2 ex 2o,2,

where a 2 is the common variance of X 1 and Y1. To obtain the probability density function
(pdf) of the amplitude R(t), we integrate the density (11) over all phases to obtain

fR(7) Jf(R,4) (r )

.r exp r2 +A2 ] go E ,-A (12)

where I0 is the nmodified Bessel function of order zero5 . Note from (12) that in the case of
no signal present in the return, so that A = 0, the pdf of the amplitude of the return is
Rayleigh with parameter aT.

The amplitude is then passed through a square law detector, so we are interested in the
resulting distribution from squaring R. Consider the normalised variable Z = R2 . It can
be shown 6 that its pdf is given by

fz(z) = 2al2 (11+ [ )

Hence the radar returns, processed through the square law detector, are exponentially
distributedl. The ratio - := S is a measure of the signal to noise strength. Thuis,

based upon (13), we can simulate the CFAR system with Gaussian noise and clutter,
by simulating exponentially distributed variables. In the case of no target in the CUT,

the statistic for it will have an exponential distribution with parameter - I , since the
amplitude A = 0. When there is a target in the CUT, this distribution is the same, except

the parameter becomes S, with the parameter S controlling the significance of the
target return.

In the next section we use this result to formulate a statistical test for the presence of a
target in Gaussian noise.

5 Se'e [Levanon 19881 for an integral expression for this. This integral depends on the initial phase 6s.
"6See [Levanon 19881, problem 3.1 for the details.

9
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2.2 Exponentially Distributed Post-Envelope Returns

To illustrate the CFAR detection scheme for a single pulse, we consider the simple case
formulated in [Gandhi and Kassam 1994]. In the latter, it is shown that the CA-CFAR
detector is optimal for the detection of Swerling 1 type targets. This is in the case where
Gaussian noise is passed into a square law envelope detector, equivalent to homogeneous
exponential clutter. The set up of the previous Subsection provides the framework for this
approach. Here we suppose the radar signal returns, already processed by a square law
detector, are IID exponential random variables, motivated from the above analysis.

Suppose X 1, X 2 , ... , Xm is a sample of such a return of pure clutter/noise observations,
so that each Xj has an exponential distribution, with parameter !. This implies the mean
of this distribution is •i. With reference to (13), and the comments proceeding (12), it
follows that it = 2a 2 (since A = 0). The latter is the mean noise plus clutter power. The
CUT statistic X0 is either noise and clutter, and so is identically distributed to the sample
above, or a radar target return in the presence of noise and clutter. We assume in the

latter case that X0 has an exponential distribution withl parameter 7A1+75 where is

signal to noise ratio of a Swerling 1 target, as defined previously, and motivated from (13).

Hence, to test for the presence of a target, we perform a test of H0 : p = It against
the alternative H, : p = I(l + S), assuming the test observation X0 has an exponential
distribution with paramieter 1.. The form of the test is to reject H0 if

P
X0 r

ZjlXj

where r is a threshold multiplier. Thus the adaptive threshold for this CA-CFAR scheme
is m-jZL xj, based upon a realised sample x 1 , x 2 ,..., x,,. The prol)ability of false alarm
PFA can be determined through

PFA = P(rejectHolHo is true)

(14)

= P (Xo> Xj Ho is true).m, j=l

Under Ho, X 0 has an exponential distribution with parameter •. The sum -jL Xj of

similarly defined independent exponential random variables has a Gamma Distribution7

-(in. 1). Such a distribution has density

fzw(Z)here (15)

where F is the Gamma function, defined as the integral

F'(r) = j Xt?-IeXdx = (in - 1)!,

7 See [Beaumont 1980], Appendix 1, noting that an exponential variable is also Gamnma.

10
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where the latter equality holds only if rn is a nonnegative integer. Here the random variable
Z = •ZI Xj. Hence, applying (15) to (14), we obtain

PFA = P (Xo > Z Ho)

= 1j P(X0> -TZ Ho) fz(z)dz

1IF(m) 1 ( m/

(11(1 + r)y . (16)

Thus, for a given threshold multiplier 7 and number of cells m, the probability of false
alarm can be obtained exactly, as given by (16). This result provides a means of testing
the performance of Monte Carlo estimators for both the probability of false alarm and the
threshold, in the case of Gaussian clutter and noise.

From the CA-CFAR detector point of view, a target in the CUT is declared present if

X(' FAI -- I)-

)j=l

It is also interesting to note that the probability of detection, PD, can be found in a similar
manner. Noting that this is the probability that H0 is rejected when H 1 is true, it follows
that

PD P Xo > - T- XXo Expt 1
m nfj{1 +{1 S}

1 e1 -P T I-+S 5 z " ' e _ d z

ptm'(at) 10 r(m)

(1 (17)

Observe that both the probability of false alarm and detection are independent of the
mean clutter and noise parameter p. The probability of detection (17) has been included
for completeness. We will not investigate it further in this report.

We now turn to Monte Carlo techniques for the estimation of false alarm probabilities in
CA-CFAR detectors.

11
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3 Estimation of False Alarm Probabilities

The purpose of this Section is to illustrate the application of Monte Carlo methods to the

estimation of false alarm probabilities, in a CA-CFAR context. The problem is formulated
as a statistical test, and standard Monte Carlo and Importance Sampling estimators are
introduced. Two biasing densities are then considered, as well as simulation gain analysis.

Finally, an alternative method of performing IS simulations is introduced. Simulation
studies of the performance of these estimators will be the subject of the final Section.

3.1 Standard Monte Carlo Methods

Suppose we have at observational cells, with observational cell statistics X£1,X2,... xm.

Let xO be the statistic for the cell under test (CUT). For ease of notation, let x =
(x0, x,....,xn). Additionally, let To = '. We perform a test of H0 : no target in the

CUT, against the alternative Hl: there is a target in the CUT. The test statistic is
D(x) = xo - To Z=1 xj. Based upon the analysis in Subsection 1.2, the form of the test is
to reject H 0 if D(x) > 0. The region where we reject H0 is called the critical region. The

CA-CFAR adaptive threshold is 7O E"'LI xj, with T0 called a threshold multiplier. The
threshold multiplier is used to control the false alarmn probability, so that the rate of false
alarms is constant in the CFAR process.

The probability of false alarm PFA is the probability of declaring a target present in the
CUT, when there is actually no target present. Mathematically, this can be written

PFA = P(reject HoI H0 is true ) = P(D(X) > 01 Ho is true ),

where X = (X 0 ,Xt,..., Xm). Assume X has density f on Q under Ho. Typically, for
the purposes of modelling, we assume the observational cell statistics are independent
and identically distributed. Hence, under H 0 , the nmarginal statistics in vector X are IID
clutter statistics. Thus the probability of false alarm can be written

PFA = j I[D(x) > O]f(x)d£

(18)

= jiI,(x)f(x)dx,

where

p(x) = I[D(x) > 0] { 0 otherwise.

and is called an indicator function. Hence, applying the Strong Law of Large Numbers
(1), and using the approximation (3), a Monte Carlo estimate of the probability of false
alarm

8

N
NM(= = Nv) (19)

N '

'Throughout, a hat over a variable will indicate that it is an estimate or estimator. Thus, . is an
estimate, and X is an estimator.

12
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where xj = (xxi,... xi) is generated from a distribution with density f. Here, the

notation x• refers to the ith element of the jth simulation vector. N is the number of
simulations/recursions in the Monte Carlo estimate. The estimator version of this is

N

"C , 1'(X- ) (20)N '
j=1

with Xj a random vector version of xj. It is not difficult to show that PAw( is an unbiased
estimator of PFA, with variance that decreases to zero as the sample size increases:

PFA(l - PI.A) (1
E[,15"c:] = PFA and V[PAJ5:c] = N (21)

As pointed out previously, the difficulty with this estimator is its rate of convergence.
Thus we look at alternative ways of estimating false alarm probabilities.

3.2 Importance Sampling Estimators

From a purely mechanical perspective, the idea of importance sampling is to generate the
sample vectors xj in the estimate (19) from a different density. In a simulation, certain
values of the input variables will have more importance to the estimation than others.
In IS, one chooses a new density to emphasize these important points. Since one is then
sampling from a smaller population, it is possible to gain a reduction in variance.

To clarify, consider the problem of integral estimation via Monte Carlo methods, as out-
lined in Section 1.3. In many cases, a function of interest has most of its mass located-- 2

within a certain region, such as the function f(x) = c-, for x E R. In this particular
case, the function is bell shaped with most of its mass lying within an interval symmetric
about the origin. Importance sampling attempts to increase the density of points within
these important regions.

The effect on the estimator (20), when simulating from a different density, is that it is no
longer an unbiased estimator for the probability of false alarm. To address this issue, each
sample point in the series of (20) is weighted to produce a centered estimate. The new
distribution used for simulation is called a biasing distribution, and its density is referred
to as a biasing density. Wev now turn to a mathematical treatment of these ideas.

Suppose we sample from a biasing distribution with density f.. Then the modified esti-
mator for probability of false alarm is

AI

Pis = E lt(Zj)W(Zj) (22)
j=l

where Zj = (Zj, Zj,. . . , Zjn) is generated from a distribution with density f., and W(z) is
a weighting function. In order to produce an unbiased estimator for PF'A, it can be shown
that

f(Z)
f() (z)

13
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With this choice, the variance of estimator (22) is

v,. (ý)10 [jt(xF)! 2vdx -PFA1. (23)

Observe that in the case where the biasing density is
f.(x) = PFJtL(x)f(r), (24)

the variance in (23) is reduced to zero. This is known as the optimal solution. It is, however,
not implementable because it depends on the unknown probability of false alarm. However,
its form indicates the characteristics of a good suboptimal biasing density. It suggests that
a suboptimal biasing density should be proportional to the original density f. Additionally,
all of its mass is concentrated on the critical region. A function constructed according to
these specifications must then be weighted by a constant to produce a probability density.

Using these considerations, a number of authors have produced suboptimal biasing den-
sities [Gerlach 1999, Orsak 1993 and Orsak and Aazhang 1989]. Two such densities are
now considered, in the context of the CA-CFAR model we are examining.

3.2.1 Ad Hoc Biasing Density

A simple and widely used biasing density is the so-called Ad Hor or variance scaled density.
It is often used because of its simplicity, but does not always result in consistently improved
results. Scaling the input vector of samples by a constant produces the biasing density.
Although not attributed to a single author, it is discussed in a number of publications
[Gerlach 1999, Smith, Shafi and Gao 1997, and Srinivasan 2000]. In view of Section 2,
assume the clutter observations are IID exponential with parameter 10 for some fixed 11.
This means the clutter mean value is also It. Hence, the joint density of (X0. X 1 ,... X,,)
under H0 is

,X1 - Xi (25)f(")=]Jf(x�) =-Im~ e
j=0

The biasing density, for some a < 1, is

f,(x) = a'+ f(ax) i ( a) x(26)
j=0(p

Hence the biasing distribution has exponential marginals, with parameter d, (lue to the fact
that it is a product of independent exponential random variable densities. The weighting
function is

f(x) Em\m+l - -- Zmx
W(X) - = (I -- _ - (27)

Now it can be shown, by applying (25) and (26) to (23), that for this Ad Hoc biasing
density,

V.(PIs) = - ([ - )1 PFA --PA) • (28)

14
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Since (I < 1, MV*(PiS) > PVA - P2A = NV(PvMC), so that for the same nmnber of
simulations, the IS estimator has larger variance than the standard MC estimator.

Tile simulation gain F gives a measure of the number of standard Monte Carlo simulations
that are required to perform with the same level of variation as an IS estimator. We are
thus looking for cases where the gain is large, since this will imply the IS estimator will
perform, with the same level of accuracy as a standard Monte Carlo estimator, for less
simulation runs. Mathematically, the gain is obtained by equating the variance expressions
in (21) and (23), and solving for the ratio of simulation runs, namely N. For the same
level of variance, the simulation gain in the current context is

N 1 '- PEA

F -= - [_ _ (29)M a(2 
-a PFA

and since 0 < a < 1, it follows that F < 1. Thus, for the same level of variation, the IS
Ad Hoc approach does not reduce the number of simulation runs. This does not mean
that this approach is entirely useless. In some cases, an Ad Hoc biasing density has been
found to provide improvements in estimation, when compared to the standard Monte Carlo
estimator.

3.2.2 Chernoff Biasing Density

The Chernoff IS method was introduced in [Gerlach 1999]. In this case, the indicator
function in the optimal solution (24) is replaced by an exponential function of the detec-
tion statistic. It then turns out that the simulation gain is inversely proportional to the
simulation reduction factor. The latter is referred to as a Chernoff-like bound [see Van
Trees 1971]. In some cases, this can result in quite substantial simulation savings.

Observe that, for a fixed A > 0, e AD(x) > /1(x). Thus we introduce a biasing density

f i(X) f 0  (X ) (30)

for some A > 0, such that P(,.(A) = fr, f(x)eAD(x)dx < oc. It is not difficult to see that
PEA < Pc()(A). Hence we choose a A to minimise Pc!(A). Assuming the same clutter model
(25), and using the fact that D(x) = x0 - To xjL ,j, it cali be shown that

1 _n+l A] + ATO] (31)

and

f~~()A e [I -AlcAx-) j[I+ ATro] e17- r~I (32)
S(R[1

j=lA

Hence the biasing distribution of X = (X 0 , X1,.... , X,) has IID marginals, with X0 having
an exponential distribution with parameter - A, and each Xj having an exponential

distribution also, but with parameter - + ATO, for j E {1, 2,.... Mi.

15
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The weight function for the IS estimator can be shown to be

W(x) - [1 - pA][1 + ,Ao]m" (33)

By applying (30) to (23), it can be shown that

V.(PA) < - [PFAPc(A) - P'A],

and so for the same level of variance as the standard MC estimator, we have

N 1 (34)

F l Pc(A)

Thus, depending on whether Pc(A) is sufficiently small or not, there is a possibility of
improved performance with this IS biasing density. [Gerlach 1999] points out that, in
some cases, Pc(A) is within a few orders of magnitude of PFA, and so the simulation gain
(34) can be large. We now demonstrate this for the particular case of CA-CFAR under
consideration.

In view of (34), we want to minimise Pc(A). It can be shown a local minimum exists and
occurs at

A0  o T0 - 1I35Aopt = "ITOm+1] (35)
/ITO Int ± 11

Substituting (35) into the Chernoff factor (31), we obtain

Pc1 (Aopt)=(To+ 1= [T + [)o-" 1 . (36)

Observe that (36) is independent of the clutter parameter It. Hence, with reference to
(16), we can write (36) as

Pc(Aopt) = PEA -.A.) (m + 1) 1 + , (37)

where we have used the fact 9 that 0 = An application of (37) to (34), together with
a geometric series expansion , establishes that the simulation gain will be

pr "P-1 1 - 1 +-F = PFj4(1-- FA >>(1±l m

PFA(1+P +PT A + .) 1 (1+11) (38)

Thus the gain can be of the order of the reciprocal of the probability of false alarm,
and hence can be quite large. Although the gain (38) can provide substantial simulation
savings, it turns out that an alternative scheme provides a larger gain over all other IS
estimators.

"9See Section 3.1.
"'Recall that 1 + r + r2 +r r provided +.. < 1.
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3.3 The G-Function Method

We. now consider an alternative approach to Importance Sampling. A number of authors
have suggested modification of the form of the IS estimator (22). [Smith and Orsak 1995
and Srinivasan 2000] are examples, and here we will focus on the G-Function method of
[Srinivasan 2000]. This approach involves biasing only the observational cell statistics,
and then estimating a mean value of a function of a conditional cumulative. distribution
function. Although this method may seem somewhat complicated, its appeal is that it
can be shown that for the same number of simulation trials, it will always perform better
than any other IS technique. [Srinivasan 2000] contains a mathematical proof of this.

We begin by returning to the basic expression for the probability of false alarm. Let

Y= •kI Xj. Then observe that

PFA = P(XO > TOYJ HO)

= 1 - E(I[Xo < ToY]I H0 ) (39)

= 1 -Eo(I[Xo -oY]IHo, Y),

where Eo is expectation under H0 . Define the function g(x) = 1 - Fxo1HoY(x), where
FxoIHo,Y (1) is the conditional cumulative distribution function of the statistic of the CUT,
given Ho is true and given Y. Hence

P'A = Eo [g(7oY)],

suggesting that IS estimation can be performed by biasing Y and estinmating the expecta-
tion of g(roY).

The corresponding IS estimator is

M (T°YJ)W((Y"" Y11)) (40)
j=1 A

where Yj = , YiL 1'j', amid (Y1J, ... , YJ') is a vector of length m generated from a biasing
distribution with density f.. The weight function in (40) is the same as before, except it
is now a function of the observational cell statistics only. The function f is also now a
density of ti variables, since the CUT is not biased.

The variance of this estimator is given by

V,(PFA) = -• [E,[g2(ToY)W((ym,.. .,Yi))]- PtA] . (41)

Assume a biasing density that involves a single biasing parameter 0. As an example, this
could be aim Ad Hoc biasing density, as considered previously. Let

Iq(O) = E.[g2 (oY)W((Ym,... ,rYn), 0)]. (42)

17



DSTO-TR 1624

In view of (41) and (42), we want to find a 0 that minimises I(0). Hence want to solve for
dOJI 9(0) = 0. This will often be quite difficult to do analytically. Hence, a Newton-Raphson
scheme can be implemented, so that starting with an initial approximation 0o,

T,9jg(Oj) for j E {1, 2,... (43)Oj+1 = Oj .- (d2

The parameter ( is used to speed up the convergence, but can be set to 1. In practice, we
will need to estimate I(0) and its derivatives. This can also be done using Monte Carlo
simulations. Note that

= g2(7-:,J)w '2((Yl, ,,.... y.), O) f.(yJ) d

= jF g2(Toy)W((yl, Y2 ,..., y..), )f(y)dy (44)

= E[g2 (moy)W((y1, Y2 Y ... i),,0)].

Hence, differentiating the last equality in (44), and changing variables in terms of the
expectation,

d Ig(0) (TrOy) a W((yI ý 2 , ) -m,0)]

jg2(Toy) {aW((Y,,Y2•. Y,,,O)}W((yi-...y,,),O)f.(y)dy (45)

= E [9g2(TOY) {W((Yl, Y 2 .... , Ym, 0) }W ((YI, Y... ), O)]

Similarly, it can be shown that

d2 zg(0)= E ,, [ 2(ToY) a2 W ((Y ,Y2,... IY,,, )} W ((Y1 ,... u,,),O) (46)
dO02 '90 , •

Monte Carlo techniques can be applied to estimate (45) and (46). Simlations are based
upon

T0 1ig(0)d = ll j Ig2(7"0yJ) 0--W ((y II' Y•2' " "" jtm 1j 0) T'i(I,..,• )O

=1 Zgaoh ~ ( v~ ~ I .. ~ ~ ~ ) W ((7dj.... yj 1), 9)

(47)

d2  
- 1 K2 JO2

2 y g2 (TzJ W ((zz,... W ((zj,. . . , z4 ),O)

where, for each j, the vectors (y,..-yj ) and (z, ... ,z) are independently generated
from a distribution with the biasing density f.. These are standard Monte Carlo esti-
mates, even though they are based upon the biasing density, due to the fact that they are
estimating an expectation with respect to this density. In principle, IS techniques could
also be employed here, but it makes the simulation much more complicated.

18
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Thus, an optimum 0 is estimated via the recursion

0j+1 = 03 - d( j ), for j E {1,2,...}. (48)

Figure 2 in the Appendix contains plots of successive recursions of the scheme (48). It is
for the case of Gaussian clutter, with square law detection. The three cases considered
are mrn = 4 and PFA = 10-4, m = 5 and PFA = 10-6, and m = 6 and PFA = 10-8. The

parameter ( = 1, and the number of recursions refers to the parameter j in (48). The
derivatives in (48) were estimated using (47). The plots show that after approximately 10
recursions, a reasonable estimate of 0 is obtained in each case.

The simulation gain is
PEA -- P'FA (49)

and as before, we can estimate Iq(O) via a Monte Carlo simulation:
SNK3

Iq(o) g2 (ToW).., ,)) (50)
K3 j=1

with (wJ, wJ,) generated from f,.

Thus the G-Function method is quite involved, but the level of simulation improvement
can be quite considerable, as will be demonstrated in Section 4.

3.3.1 Example: CA-CFAR with Gaussian Clutter

We now turn to the CA-CFAR model under investigation, where we assume the clutter
and noise is IID exl)onentially distributed with parameter -1. Since we are looking at
developing techniques to compare CFAR schemes in known clutter conditions, we assume
this parameter is known and fixed.

The clutter density is ,n 1 1 ,

f(x) = 171 f 3 (xj) = -n (51)

j=1

[Srinivasan 2000] suggests using a single parameter Ad Hoc biasing density: the marginal
density will be 1

f'J, (z) = -To-, with 0 < 0 < 1.

and so the joint density is

f,(y,O) = I-I fJ(y.,O) _ 1 -•z;'LYn (52)j=l 1O~

Since we are assuming IID clutter observations, independent of the CUT, the g-function
us simp)ly

g(x) = 1 - FxoyHo(x) = -7. 
(53)
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The weight function can be shown to be

W((yI, Y2, , Y), 0) = ne-[I-[¼]! Em (54)

Finally, the simulation gain is

PFA -- P2A (55)
-2( +)_l-W PF'

Figure 3 in the Appendix shows the simulation gain (55), as a function of 0. in a typical
scenario. There is clearly a 0 that will provide a huge simulation gain. With the corre-
sponding choice for 0, this implies that for the same level of variation, this IS estimator
will require significantly less simulation runs.

The next section contains an analysis of some simulations of the IS estimators introduced
in this Section.
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4 Simulation Comparison of Estimators

In this section we briefly examine four simulations of the estimators introduced in Section
3. Mathematical analysis implies that the G-function estimator will have superior perfor-
mance in the context of interest. Hence we expect it to provide good estimates of the false
alarm probability for less simulation recursions.

Each G-function estimate has been produced with an independent estimate of the biasing
parameter 0. In the Newton-Raphson scheme (48), ( has been set to 1, and the derivative
estimates (47) have been generated with 100 recursions. That is, Ni = K2 = 100.

Figures 4 7 in the Appendix contain a sample of simulations of the three estimators. Figure
4 contains the result of 15 simulations of each estimator. In each case, 10 recursions are
used to generate the estimate. The Ad Hoc density parameter was chosen to be (v = 0.05.
Also, m = 5 and PFA = 10-6, and the latter is plotted on the graph at each simulation
point, to provide a comparison of the estimates. The Ad Hoc estimates are all zero, because
10 recursions are not sufficient for this estimator. Simulation experiments showed that it
can take an enormous number of simulations for this estimator to produce a non-zero
estimate. The Chernoff estimator performs quite well, especially given the small recursion
size used. However, the G-function estimator has superior performance.

Figure 5 is a comparison of the estimators in the case where n = 4 and PFA = 10-4. The
Ad Hoc density parameter is a = 0.9, and again, 10 recursions are used to generate the
estimates. As in the previous simulation, we see the same behaviour in the estimators.

Figure 6 is a comparison of estimators for larger recursions. In this case, the number of
recursions used to generate the estimates is 100. In this case, we set rn = 5, PFA = 10-3

and a = 0.05. The same behaviour in the estimators is repeated.

The final simulation is in Figure 7, where rn = 5 and PFA = 10-3. 10 simulation recursions
are used to generate the estimates, and the Ad Hoc estimate is not included. The G-
function estimator again has the expected superior performance.

An interesting observation is that the Ad Hoc biasing density has performed poorly when
used in a standard IS scheme, but when coupled with the G-function technique, it has had
superior performance.
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5 Conclusions

This report has analysed Monte Carlo methods used for the estimation of false alarm
probabilities in a simple CA-CFAR radar detection scheme. Performance analysis of radar
detection schemes requires the estimation of such probabilities. Since the false alarm
probabilities are typically very small, standard Monte Carlo estimators require a very large
number of runs to produce a reasonable estimate. Hence methods that can provide a high
level of accuracy on small sample sizes are desired. Importance Sampling techniques permit

such estimations to be made. Three IS estimators were introduced: Ad Hoc, Chernoff and
G-Function approaches. Both the Chernoff and G-Function methods perform extremely
well. The G-Function method clearly has superior performance, and can provide accurate
estimates on very small sample sizes.

Although attention was restricted to the simple case of Gaussian noise and clutter, it is
important to reiterate that these techniques can be applied in cases where the clutter and
noise is non-Gaussian. The IS estimation techniques are also not restricted to CA-CFAR,
but can be applied to other CFAR schemes. This will be investigated in future work.

Acknowledgements

I would like to thank Paul Berry, Brett Haywood, Stephen Howard and Andrew Shaw for
advice and comments on this report. Thanks are also due to Yunhan Doug, who vetted
the report.

22



DSTO-TR-1624

References

1. Balaban, P. (1976), Statistical Evaluation of the Error Rate of the Fibre-Guide Re-

peater Using Importance Sampling. Bell Syst.Tech. J. Vol. 55, No. 6, pp. 745-766.

2. Beaumont, G. P. (1980), Intermediate Mathematical Statistics. Chapman and Hall,

London.

3. Cottrell, M., Fort, J. C. and Malgouyres, G. (1983). Large Deviations and Rare Events

in the Study of Stochastic Algorithms. IEEE Trans. Automat. Contr. Vol. AC-28,

pp. 907-920.

4. Gandhi, P. P. and Kassam, S. A. (1994), Optiniality of the Cell Averaging CFAR

Detector. IEEE Trans. Inf. Theor. Vol. 40, No. 4, pp. 1226-1228.

5. Grajal, J. and Asensio, A. (1999). Multiparametric Importance Sampling for Sim-
ulation of Radar Systems. IEEE Trans. Aero. Elec. Sys. Vol. 35, No. 1, pp.

123-136.

6. Gerlach, K. (1999). New Results in Importance Sampling. IEEE Trans. Aero. Elec.
Sys., Vol. 35, No. 3, pp. 917-925.

7. Hopmans, A. C. M. and Kleijnen, J. P. C. (1979), Importance Samplings in Systems

Simulation: A Practical Failure. Math. and Comput. in Simulation, Vol. 31, pp.
209-220.

8. Kahn, H. (1950), Random Sampling (Monte Carlo) Techniques in Neutron Attenuation

Problems-I. Nucleonics, pp. 27-37.

9. Kahn, H. (1956), Use of Different Monte Carlo Sampling Techniques, Symp. Monte

Carlo Methods, H. A. Meyer, Ed. New York, Wiley.

10. Kahn, H. and Mann, 1. (1957), Military Planning in an Uncertain World: Part II.

Technical Report P-1165, The Rand Corporation.

11. Levanon, N. (1988), Radar Principles. John Wiley & Sons, New York.

12. Minkler, G. and Minkler, J. (1990). CFAR: The Principles of Automatic Radar De-
tection in Clutter. Magellan Book Company, Baltimore, MD.

13. Orsak, G. (1993), A Note on Estimating False Alarm Rates via Importance Sampling.

IEEE Trans. Comms. Vol. 41, No. 9, pp. 1275-1277.

14. Orsak, G. and Aazhang, B. (1989), On the Theory of Importance Sampling Applied to
the Analysis of Detection Systems. IEEE Trans. Commns, Vol. 37, No. 4, pp.3 3 2-3 3 9 .

15. Orsak, G. and Aazhang, B. (1991), Constrained Solutions in Importance Sampling via
Robust Statistics. IEEE Trans. Inform. Theory, Vol. 37, No. 2, pp.307-316.

16. Orsak, G. and Aazhang, B. (1993), A New Class of Optimum Importance Sampling

Strategies Derived from Statistical Distance Measures. Proceed. IEEE Inter. Symp.
Info. Theory, p 206.

17. Sadowsky, J. S. (1990), A New Method for Viterbi Decoder Simulation using Impor-
tance Sampling. IEEE Trans. Commun., Vol. 38, pp. 1341-1351.

23



DSTO-TR-1624

18. Sadowsky, J. S. and Bucklew, ,J. A. (1990), On Large Deviations Theory and Asymp-
totically Efficient Monte Carlo Estimation. IEEE Trans. Inform. Theory, Vol. 36,
No. 3, pp. 579-588.

19. Shanmugam, K. S. and Balaban, P. (1980). A Modified Monte Carlo Simulation
Technique for the Evaluation of Error Rate in Digital Communication Systems. IEEE
Trans. Commun. Vol. COM-28, pp. 1916-1924.

20. Skolnik, M. (2001), Introduction to Radar Systems. 3rd Ed., McGraw-Hill, New York.

21. Smith, P. L., Shafi, M. and Gao, H. (1997), Quick Simulation: A Review of Importance
Sampling Techniques in Communications Systems. IEEE J. Selected Areas Coinms.,
Vol. 15, No. 4, pp. 597-613.

22. Smith, S. L. and Orsak, G. (1995), A Modified Importance Sampling Scheme for the
Detection of System Performance. IEEE Trans. Comms, Vol. 43, No. 2/3/4, pp.
1341-1346.

23. Srinivasan, R. (2000), Simulation of CFAR detection algorithms for arbitrary clutter
distributions. IEE. Proc.-Radar, Sonar Navig., Vol. 147, No. 1, pp. 31-40.

24. Srinivasan, R. (2001), Fast simulation of smallest-of and geometric-mean CFAR de-
tectors. IEE. Proc.-Radar, Sonar Navig., Vol. 148, No. 3, pp. 186-191.

25. Tonkin, S. P. and Dolman, D. L. (1990), Sea Surface Effects on the Radar Return
from a Periscope. IEEE Proceed. Vol. 137, Pt. F., No. 2, pp. 149-156.

26. Van Trees, H. L. (1971), Detection, Estimation and Modulation Theory, Vol. 1. New
York, Wiley.

24



DSTO-TR 1624

Appendix A: Figures

Sdefiedor

FEqure 1: A standard GA-C'FAR Detector. The input signal is passed throiugh th~e square
law dletector, and the processed return is separated into three components. The cell under
test (CUT), and two .sets of observations (UTst cells A and B), from which a clutter measure

is extracted. A CFAR process is then performed on these test cells, with the result passed

into a third process that combined these to produce an average clutter measure. In the case
illustrated, this is summing. The result is then multiplied by a threshold constant, and this
is compared to the CUT statistic. The output is the declaring of a raet present, or not

present, in the CUT.
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Figure 2: convergence of 0, as estimated from the Ne'wton-Raphson scheme (48), for thr e
particular cases. As can be observed, a r"easonable estimate is obtained after approximately
10 recursions.
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Figure 3: Simulation gain for the G-Function estimator, as a function of 9. There is a 0
that will provide a gain of the order 107 , which will result in huge simulation savings.
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x U Comparison of Estimaor
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Figure 4: A comparisonz of the three IS estimators considered in this report. In each
case 15 simulation runs are plotted for each estimator, with each IS estimator using 10
recursions to generate the estimate. The ad hoc parameter was chosen to be a(= 0.05.
Additionally, m = 5 and PEA =10'6. The exact false alarm probability is also plotted at
each simulation point, for comparison.
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Figure 5: Comparison of the three estimators in the case where mr = 4, PFA 10-4 and
a = 0.9. Each estimator uses 10 recursions to produce the estimate.
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Figure 6: A comparison of the estimators for larger recursions. Here m 5, PFA 10-,
S= 0.05 and the number of simulation recursions is 100.
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Figure 7.: This is a comparison of the G-function and Chernoff IS estimators, for the case

where m = 5 and PFA = 10)-3, with 10 recursions used to generate the estimates.

31



DSTO-TR-1624

:2



DISTRIBUTION LIST

Estimation of False Alarm Probabilities in Cell Averaging Constant False Alarm Rate
Detectors via Monte Carlo Methods

Graham V. Weinberg

AUSTRALIA

No. of copies

DEFENCE ORGANISATION

Task Sponsor

Commander, Maritime Patrol Group, RAAF Edinburgh

S&T Program

Chief Defence Scientist 1
FAS Science Policy I

AS Science Corporate Management

Director General Science Policy Development

Counsellor, Defence Science, London Doc Data Sheet

Counsellor, Defence Science, Washington Doc Data Sheet

Scientific Adviser to MRDC, Thailand Doc Data Sheet

Scientific Adviser Joint 1

Navy Scientific Adviser Doc Data Sheet

Scientific Adviser, Army Doc Data Sheet

Air Force Scientific Adviser Doc Data Sheet

Scientific Adviser to the DMO M&A Doc Data Sheet

Scientific Adviser to the DMO ELL Doc Data Sheet

Systems Sciences Laboratory

EWSTIS 1 (t)df format)

Chief, Electronic Warfare and Radar Division, Dr Len Sciacca Doc Data Sheet
& Dist List

Research Leader, Microwave Radar, Dr Andrew Shaw Doc: Data Sheet
& Dist List

Head, Radar Modelling and Analysis 1

Task Manager, Dr Brett Haywood 1

Author, Dr Graham Weinberg 1

DSTO Library and Archives

Library, Edinburgh 1

Defence Archives 1

Capability Development Group

Director General Maritime Development Doc Data Sheet



Director General Capability and Plans Doc Data Sheet

Assistant Secretary Investment Analysis Doc Data Sheet

Director Capability Plans and Programming Doc Data Sheet

Director Trials Doc Data Sheet

Chief Information Officer Group

Deputy CIO Doc Data Sheet

Director General Information Policy and Plans Doc Data Sheet

AS Information Strategies and Futures Doc Data Sheet

AS Information Architecture and Management Doc Data Sheet

Director General Australian Defence Simulation Office Doc Data Sheet

Director General Information Services Doc Data Sheet

Strategy Group

Director General Military Strategy Doc Data Sheet

Director General Preparedness Doc Data Sheet

Assistant Secretary Strategic Policy Doc Data Sheet

Assistant Secretary Governance and Counter-Proliferation Doc Data Sheet

Navy

Maritime Operational Analysis Centre, Building 89/90 Garden Doc Data Sheet
Island Sydney NSW & Dist List

Deputy Director (operations) & Deputy Director (Analysis) Doc Data Sheet
k Dist List

Director General Navy Capability, Performance and Plans, Doe Data Sheet
Navy Headquarters

Director General Navy Strategic Policy and Futures, Navy Doe Data Sheet
Headquarters

Air Force

SO (Science), Headquarters Air Combat Group, RAAF Base, Doc Data Sheet
Williamtown NSW 2314 & Exec Suimn

Army

ABCA National Standardisation Officer, Land Warfare Devel- Doe Data Sheet
opment Sector, Puckapunyal e-mailed

SO (Science), Land Headquarters (LHQ), Victoria Barracks, Doc Data Sheet
NSW & Exec Suinin

SO (Science), Deployable Joint Force Headquarters (DJFHQ)(L), Doc Data Sheet
Enoggera QLD

Joint Operations Command

Director General Joint Operations Doc Data Sheet

Chief of Staff Headquarters Joint Operations Command Doc Data Sheet



Commandant ADF Warfare Centre Doc Data Sheet

Director General Strategic Logistics Doc Data Sheet

Intelligence and Security Group

DGSTA, Defence Intelligence Organisation 1

Manager, Information Centre, Defence Intelligence Organisa- 1 (pdf format)
tion

Assistant Secretary Capability Provisioning Doc Data Sheet

Assistant Secretary Capability and Systems Doc Data Sheet

Assistant Secretary Corporate, Defence Imagery and Geospa- Doc Data Sheet
tial Organisation

Defence Materiel Organisation

Deputy CEO Doc Data Sheet

Head Aerospace Systems Division Doc Data Sheet

Head Maritime Systems Division Doc Data Sheet

Chief Joint Logistics Command Doc Data Sheet

Head Materiel Finance Doc Data Sheet

Defence Libraries

Library Manager, DLS-Canberra 1

Library Manager, DLS-Sydney West Doc Data Sheet

OTHER ORGANISATIONS

National Library of Australia 1

NASA (Canberra) 1

UNIVERSITIES AND COLLEGES

Australian Defence Force Academy Library 1

Head of Aerospace and Mechanical Engineering, ADFA 1

Hargrave Library, Monash University Doc Data Sheet

Librarian, Flinders University 1

OUTSIDE AUSTRALIA

INTERNATIONAL DEFENCE INFORMATION CENTRES

US Defense Technical Information Center 2

UK DSTL Knowledge Services 2

Canada Defence Research Directorate R&D Knowledge & In- 1 (pdf format)
formation Management (DRDKIM)

NZ Defence Information Centre 1



ABSTRACTING AND INFORMATION ORGANISATIONS

Library, Chemical Abstracts Reference Service 1

Engineering Societies Library, US 1

Materials Information, Cambridge Scientific Abstracts, US 1

Documents Librarian, The Center for Research Libraries, US 1

INFORMATION EXCHANGE AGREEMENT PARTNERS

National Aerospace Laboratory, Japan 1

National Aerospace Laboratory, Netherlands 1

SPARES

DSTO Edinburgh Library 5

Total number of copies: 34



Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION 1. CAVEAT/PRIVACY MARKING

DOCUMENT CONTROL DATA

2. TITLE 3. SECURITY CLASSIFICATION

Estimation of False Alarm Probabilities in Cell Document (U)
Averaging Constant False Alarm Rate Detectors Title (U)
via Monte Carlo Methods Abstract (U)
4. AUTHOR 5. CORPORATE AUTHOR

Graham V. WSXeinberg Systems Sciences Laboratory
PO Box 1500
Edinburgh, South Australia, Australia 5111

6a. DSTO NUMBER 6K. AR NUMBER 6c. TYPE OF REPORT 7. DOCUMENT DATE

DSTO-TR-1624 AR-013-220 Technical Report November, 2004
8. FILE NUMBER 9. TASK NUMBER 10. SPONSOR 11. No OF PAGES 12. No OF REFS

E-9505-28-31 AIR 01/217 CDR MPG 32 26
13, URL OF ELECTRONIC VERSION 14. RELEASE AUTHORITY

http://www.dsto.defence.gov.au/corporate/ Chief, Electronic Warfare and Radar Division
reports/DSTO TR 1624.pdf

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved For Public Release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500,
EDINBURGH, SOUTH AUSTRALIA 5111

16. DELIBERATE ANNOUNCEMENT

No Limitations
17. CITATION IN OTHER DOCUMENTS

No Limnitations
18. DEFTEST DESCRIPTORS

Monte Carlo methods, false alarms, probability
theory, detection probability
19. ABSTRACT

Monte Carlo Methods are introduced and used to estimate false alarm probabilities. The estimation of
the latter is important in the context of performance analysis of Constant False Alarm Rate (CFAR)
radar detection processes. A CFAR detector estimates the clutter level, producing a threshold, and a
target is declared present if the statistic representing the test observation exceeds this threshold. The
latter is adjusted adaptively, so that the rate of false alarms is held constant. Hence, in a radar analysis
context, the performance of a CFAR process can be determined from whether it maintains a constant
false alarm rate. In order to compare the performance of a number of different CFAR schemes, in a
common clutter environment, we need to estimate these false alarm probabilities. This can be done
quite easily using a basic Monte Carlo estimator. However, the latter may require a very large number
of iterations in order to produce a reasonable estimate. To reduce this number of iterations, importance
sampling techniques can be used. To illustrate these techniques, we consider the simple case of cell
averaging CFAR in a Gaussian environment, with square law detection. This enables comparison of
estimators with an exact result.

Page classification: UNCLASSIFIED



Australan Government
Department of Defence

Defence Science and
Technology Organisation

SYSTEMS SCIENCES LABORATORY
PO BOX 1500. EDINBURGH. SOUTH AUJSTRALIA 5111

AUSTRALIA. TELEPHONE (08) 8259 5555


