Australian Government

Department of Defence

Defence Science and
Technology Organisation

XQuery Engine Prototype
Egon Kuster and Andrew Roff

>
A
-

Australian Government
Department of Defence
Defence Science and
Technology Organisation

XQuery Engine Prototype

Coalition Theatre Logistics (CTL)
Advanced Concept Technology Demonstrator (ACTD)

Egon Kuster® and Andrew Roff*

*Command and Control Division
Information Sciences Laboratory

*Command and Control Division vacation student

TECHNICAL NOTE
DSTO-TN-0577

Abstract

During the architectural design of the Coalition Theatre Logistics (CTL) Advanced
Concept Technology Demonstrator (ACTD) it was identified that a data query
capability that operates over XML-based web services was required. This document
outlines how a new technology called XQuery could provide this XML-based query
capability over web service oriented communication. Also outlined is a possible
solution along with a discussion of its limitations and capabilities. A successful
implementation of the XQuery engine was developed with performance metrics and
architectural designs of the implemented system included within.

RELEASE LIMITATION

Approved for public release.

/4@ Fos-04- O3

Published by

DSTO Information Sciences Laboratory
PO Box 1500

Edinburgh, South Australia, 5111
Australia

Telephone: (08) 8259 5555
Fax: (08) 8259 6567

© Commonuwealth of Australia 2004
AR-013-071
November 2004

APPROVED FOR PUBLIC RELEASE.

XQuery Engine Prototype

Coalition Theatre Logistics (CTL)
Advanced Concept Technology Demonstrator (ACTD)

Executive Summary

Australia is involved in a joint project called CTL ACTD. The CTL ACTD project is
responsible for researching the policy and technical issues with sharing logistic data
between multiple nations that operate together in coalition operations. CTL ACTD has
three main objectives:

1. Coalition Movement Planning - To provide the ability to plan and monitor
movement of troops, equipment and supplies in and out of the Area of
Operations (AO).

Supply and Sustainment (with In-Transit Visibility (ITV)) - Allow the
coalition task commander the ability to plan the supply and sustainment
requirements of the coalition force. This objective is also striving to provide ITV
feeds to track troops, equipment, and supplies in and out of the AO for plan
execution monitoring.

Infrastructure Visibility - Allow the Coalition Task Force Commander the
ability to view details about infrastructure required to support the logistics of
the coalition operation. This includes information about roads, warehouses,
airports, seaports, etc.

During the architectural design phase of CTL a number of capabilities were identified
that require further analysis before integration. One such capability is a query and
search component for data exposed by web services. In the CTL architecture all data
communication is handled via the use of web services. Web services allow for
applications to request data in the form of XML documents. Within the architecture
there are numerous web services implemented providing different information or
functionality. Some web services allow data to be received for storage in a database,
while others allow for particular types of data to be requested. For this XQuery
prototype we are only interested in the latter type of web service.

In the current CTL architecture when a client requests an XML document it calls a web
service to return the required XML. For example if the client is interested in movement
requests it would call the movement request web service to return the movement
request XML documents. The problem with this method of operation is that the web
service does not discriminate and returns all documents it can access. This can lead to
extremely large results, even if the client only requires part of the data returned. To
constrain the results the client needs to send its selection criteria in its initial request.
XQuery could be used to define the criterion. The XQuery Prototype described in this
document defines how the XQuery standard can be incorporated with the CTL web
services.

The XQuery Prototype is implemented as a web service that sits on top of a database
allowing the advanced XQuery searching capabilities to be applied to the XML data
returned. Data contained in the database is stored in a relational structure while XML
documents that XQuery operates on is hierarchical. To support the mapping between
the relational and hierarchical structures an additional component was built so that the
XQuery statements could be applied. The XQuery enhanced web services then operate
by extracting the XML documents using the mapping component and applying the
XQuery statement so only required data is returned to the client.

Testing performed on the prototype showed that the XQuery Engine is quite fast, and
that the relational to hierarchical mapping transformation is the actual bottleneck in the
system. More than half of the total time of a query is spent transforming the data and,
when there are many records in the database, this transformation time can become
unacceptably high. The tests also revealed that the transformation takes much longer
with Oracle than it does with SQL Server databases.

Although the relational data to XML transformation took considerable time, this time
lag is already present in the current CTL architecture. Therefore the addition of the
XQuery capability provides extra functionality with similar performance.

The XQuery Prototype successfully demonstrated that XQuery could be used to search
and constrain results from web services. With performance improvements the XQuery
capability will prove to be a valuable capability for use in CTL or other web service
deployments.

Contents

1. INTRODUCTION o cvnsmisunmmormssissmnminimmisssmmssaisasmisiomniin . — |
CTL Architecture A SO AT NSNS SRS RSSO SRRSO YOS 2

T L BRIBLOTY ..o inessrsesosssasansmsssonmsssnsansusonsassssortuntassssnsesssessss sasmsssmspensmsnasssussnensnsssnines 8

2, XQUERY ENGINE STRUCTURE .c...cusununmssiisnmesinsmmossmmmmssirsssiivaess 4
21 Technologies Uséd.....ouusiimsmecs 4
211 SOAPR and WSDLaiuviimsaisesmassismmssssmssssssmsmesssissessissmpmsissing 4

L2 O i s AR s 4

S s I —— 4

2.2 XQuery Implementation 5
221 DIREsB I oo maara i e e S D ATy 5

Bk CRHBNE. s A A R ST F oS AT 6

223 TIOREERIRIBL. ... oo s o T AT IS TR TN 6

224 Oracle/ M5 SOL SErvIBE.... i mmivssiomsatnisssmssiassaom asissmss 6

2.3 Reasons for Technology Choices.... 7
230 DaaBBEE ..o imiismmsmiam s o mm e T sy A 7

282 MBSRREIIE. .. o coousvimommmnssssori s s oo oA TSN o ST SRS s EERR AR 8

233 ‘Database to XML CORVERMION .omuwammmmimmmns s 8

234 XCOuEry BRI o musmomiimas i s o axsasdosip saissstassswrsessisissenss 9

3. PERFORMANCE.cinsicisssssciosss EE AR SRS WS SR, 9
SQL Server Version.......ccccecrcananenns =T . 11

oLl Local NebwWork (1OOMBIDEY.....sciiminamiimmmisimsamisismossmamossinims 11

S111 Soal Dets (10 rechras in AadMRge) . .o unaaamimmimsmsnmasmtiss 11

3.1.1.2 Large Data (100 records in database)...........ccccesunsseeniassessusssssasssasusnsonns 11

312 Dial Up Network [S6EDPS)cccomumsmmmanissinsmmnssinssimmeissonio 12

3.1.2.1 Small Data (10 records in database)ccceeevureeririmrennerenrcnnrininssnnnes 12

3.1.2.2 Large Data (100 records in database)..........cccccoevururmvererunennnnrnnnnninnns 12

3.2 Oracle Version..... " J - 12
321 Local Network (J00MBPE)...onsssammsmmmnnnnosamsoaraemsisrensssssons 12

3.21.1 Small Data (10 records in database)cccocovivniiininniiinnienicinnieninns 19

3.21.2 Large Data (100 records in Datibase)owomnsmmsnsmsssiossmmmsiones 13

322 Dial Up Network (BOEDPS) i cunomnisnmminsnmiisanimmiamsmmmoiiis 13

3221 Small Data (10 récords in DatBbase)owsaumsmsncascssonsssissioons 14

3:22.2 Large Data (100 records i1 DataAbAse) ...quwumaissisunmmmsmssisssssimsinons 14

3.3 Summary of results 15

4, CONCLUSION onsuiamnnmnmsimmssisminissiiss s 16
AFPENDIX A DATABASE SCHENMR cooviccinnmimiimssmsvssssvm s 19
APPENDIX B: WEB SERVICE WEDL ccvisnnrmmiscsmsmonamisississimisissossnsiain 20
APPENDIX C: SAMPLE XML DATA ..cnnunmansnmsnsmsss o |

APPENDIXD: SAMPLE XQUERY STATEMENTS ...cccocsumomissisosssorssossoosissrsasssssisssses 26

ACTD
AO
API
CIE
CJLOG
CKO
CORBA
CTF
CTL
DOM
HQ USCINCPAC
TV
JDBC
JDOM
MS
NRP
RDBMS
RMI
SOAP
SQL
TCN
W3C
WG
WSDL
XML

Abbreviations

Advanced Concept Technology Demonstrator
Area of Operations

Application Programming Interface
Coalition Information Environment
Commander Joint Logistics

Chief Knowledge Officer

Common Object Request Broker Architecture
Coalition Task Force

Coalition Theatre Logistics

Document Object Model

U.S. Commander-In-Chief Pacific
In-Transit Visibility

Java Database Connectivity

Java Document Object Model

Microsoft

National Release Point

Relational Database Management System
Remote Method Invocation

Simple Object Access Protocol
Structured Query Language

Troop Contributing Nation

World Wide Web Consortium

Working Group

Web Service Definition Language
Extensible Mark-up Language

DSTO-TN-0577

1. Introduction

In February 2000, Australia accepted a Headquarters, U.S. Commander-In-Chief,
Pacific (HQ USCINCPAC J4) invitation to participate in a project to improve logistics
interoperability and situational awareness between coalition partners. At the
subsequent Staff Level Meeting, Under Secretary Materiel agreed to Australian
partnership in a US project to be known as CTL-ACTD.

A CTL-ACTD Working Group (WG) was established in February 2001 to steer the
project. Terms of Reference were signed on 25 May 2001.

The CTL-ACTD initiative was introduced to enhance combat service support to
coalition forces by providing operational and logistic staff with access to timely,
integrated and accurate logistic information. A suite of decision-making support tools
will be included to complete the utility of the system provided.

In order to achieve the objective of generating timely and accurate coalition logistics
information for the Coalition Task Force (CTF) and the respective Troop Contributing
Nation (TCN) chain of commands, CTL ACTD demonstrates the following capabilities:

e Coordinated multinational system(s) and decision support tools for deployment
planning and sustainment across the full spectrum of military operations.

* Information generation and dissemination tools that support situational
awareness among coalition partners.

* Tools that provide multinational logistics analysis.

The combination of these capabilities addresses shortfalls in coalition logistics
information sharing and decision-making.

A studylll was conducted by both Australia and the U.S. on the coalition logistics
requirements. From the comprehensive list, three high priority requirements were
selected for CTL ACTD, these were:

CTLREQ1 - Coalition Movement Planning - To allow the CTF commander to
plan and monitor movement of troops, equipment and supplies in and out of the
Area of Operations (AO).

CTLREQ2 - Supply and Sustainment - To allow the CTF commander to plan the
supply and sustainment requirements for the coalition force. This objective also
covers the implementation of In-Transit Visibility (ITV) feeds for tracking
personnel, equipment and supplies for plan execution monitoring.

CTLREQ3 - Infrastructure Visibility - To allow the CTF commander to view
details about infrastructure required to support the logistics of the coalition
operation. This includes information about roads, warehouses, airports, seaports,
etc.

DSTO-TN-0577

Many of the technologies and concepts in this document are described at a high level.
It is assumed that the readers are familiar with Web Services, Relational Databases and
XML. For more information about these topics please read the references for this
document first.

1.1 CTL Architecture

The CTL architecture is comprised of three key components, the Coalition Server,
National Release Points (NRP) and national release components (see Figure 1 below).
These components are spread across two environments, the national domain that
identifies the national classified network (for example SIPRNET - US National
Domain) and the Coalition Information Environment (CIE), which is the coalition
network. Each national domain contains national tools, systems and services used for
day-to-day national operations, while the CIE contains the coalition services, tools and
coalition releasable data provided by coalition nations. The CIE operates on the
coalition network that provides the physical network connection between all coalition
nations.

Figure 1 - CTL Architecture

The CIE contains both the coalition server and each nation’s NRP. These components
coupled with the web service communication layer provide the framework for sharing
and distributing data and applications between nations. Each nation owns their own
NRP, therefore Australia and the US would each own an NRP. Each nation is
responsible for maintaining their NRP. These NRPs contain web services, application
servers and databases to store coalition releasable data and applications for sharing
with other coalition users. Web services are used to expose data contained in the NRP
database for use by coalition applications or foreign NRPs.

The key to the data communication in the CIE is the use of standardised web services
and XML documents. This allows for a common data representation to be used for all
data contained or transmitted in the CIE. The web service standards define the mothod
of accessing the data while the data standards define what format and type of
information is delivered by the web services. The web service infrastructure exploits

DSTO-TN-0577

the use of a component called the Information Manager contained in the Coalition
Server. The information manager can broker web services transactions by collating
coalition data within the CIE. As data can be stored in multiple places applications and
services are required to extract the data from all these locations to get a complete data
set. The Information Manager helps by providing services to execute the distributed
fetch and collating of data.

The Information Manager is contained in the Coalition Server component. The
Coalition Server also contains other coalition services including an application server,
the Coalition Information Database (CID), File Server, Notification Server, Portal Server
and Security Services. These components help tie the whole CTL CIE infrastructure
together and provide the required services to view and run coalition applications. For a
more detailed description of these components please refer to the CTL architecture
paperl2.

For the purpose of the XQuery Engine the important components are the web services
and databases. In the current version of the CTL architecture data is extracted from the
databases by calling the local web service. For each database there can be many
different web services, each providing different data from the database. For instance
one web service may expose all the movement requests while another may expose all
the equipment from the database. A shortfall of the current web services is that they do
not provide any querying capability. The XQuery prototype has been developed to
overcome this shortfall. The prototype explores the viability of using the XQuery
language in conjunction with web services to provide query capabilities on XML
documents.

1.2 CTL History

Joint Warrior Interoperability Demonstration (JWID) 2002 included the first
demonstration of CTL's capabilities. This demonstration proved the concept although
there were some fundamental problems with the underlying architecture. These were
addressed through a rework of the CTL architecture, which was agreed at the June
2002 Technical Working Group held in Canberra, Australia.

The second half of 2002 was spent fleshing out the details of the CTL architecture and
identifying shortfalls in the design. One such shortfall was the ability to query the web
services to customise the eXtensible Mark-up Language (XML) data being sent. This
query capability led to the development of this XQuery Engine Prototype project.

For three months, starting in December 2002, Andrew Roff worked with Egon Kuster
in the development of the XQuery Engine Prototype. This document outlines the
architecture, technology and results of this project. This report will also be used to
better inform how the query capability can be incorporated into the overall CTL
architecture.

DSTO-TN-0577

2. XQuery Engine Structure

The XQuery Engine uses a variety of technologies to supply the querying capability on
the CTL web services. This section first describes the technologies used and then how
the prototype was implemented. Reasons for developing and using the selected
technologies are included at the end of this section. Detailed descriptions of the
technologies used is beyond this document’s scope, for more details please visit the
resources provided in the references section of this document.

2.1 Technologies Used

There are three relatively new technologies employed in the XQuery prototype: SOAP,
JDOM and XQuery. Each is briefly described below.

2.1.1 SOAP and WSDL

SOAP (Simple Object Access Protocol) defines the message structure and client/server
components for accessing and sending information between services as shown in
Figure 2. SOAP is an XML based messaging protocol and is a useful tool for the
exchange of information between remote, decentralised locations. SOAP messages can
be simple, but because a SOAP message has an XML-like structure, it is also capable of
communicating complex multi-part messages. In the XQuery prototype SOAP is used
to send data requests containing the XQuery statement and respond with an XML
document. For more information about the SOAP standard see reference [4].

WSDL (Web Services Description Language) provides a language for defining a web
service. A WSDL document contains a description of a web services method including
the input it expects and the output it will provide. The XQuery prototype’s WSDL is
included in appendix B of this document. For more information about WSDL see
reference [5].

212 JDOM

Java Document Object Model (JDOM) is an Application Programming Interface (API)
for building a Java representation of XML documents. JDOM allows the application
programmer to create or manipulate XML documents using familiar java object
constructs rather than the more difficult World Wide Web Consortium (W3C)
Document Object Model (DOM). In the XQuery Prototype, JDOM is used to create
XML documents from the relational data contained in either an Oracle of SQL Server
database. For more information about JDOM see reference [6].

2.1.3 XQuery

XQuery is a query language created by the W3C as a way of searching through XML
documents to find relevant information. It is an extension of XPath[7] version 2.0, with
powerful searching capabilities. XQuery[8] uses XPath to select specific elements in

DSTO-TN-0577

XML documents to either select or search for. This allows XQuery to be used to search
through XML documents for specific elements or data and then customise what is
returned. To learn more about the syntax of the XQuery language, refer to Appendix D.
Although a relatively new standard, there are already many prototypes and
implementations of XQuery available.

The XQuery Implementation used in the prototype is called XQEngine, designed by
Howard Katz. This engine uses the power of XQuery to search through an XML
document and output the results of the query. More information on XQEngine is
available at http:/ /www .fatdog.com/. For more detailed information about XQuery
see reference [10].

2.2 XQuery Implementation

The XQuery prototype has been implemented to use both the Oracle and SQL Server
databases so that speed differences between implementations could be measured.
Figure 2 below outlines the implementation structure of the XQuery prototype. There
are four key components, the client, the front servlet, oracle servlet and Microsoft (MS)
SQL Server servlet. Each is described in more detail later.

Web Service

@
v
£
]
a
2
=

[(Web Service

Figure 2 - Overview XQuery Engine Architecture

2.2.1 Process Flow

There are five steps involved in processing an XQuery statement on data stored in the
relational databases to return the required XML results:
1. The user selects the database to be searched and inputs his or her query. This is
done via the client web page.
2. The query is inserted into a SOAP message and sent to the appropriate data
servlet.

DSTO-TN-0577

T

An XML document is created from the data in the database using JDOM.

4. The data servlet extracts the query from the SOAP message and applies it to
query the newly created XML document.

5. The resulting XML document is sent back to the Front servlet as a SOAP

message and returned to the client.

2.2.2 Client

The client consists of a web page that allows the user to enter a query and specify a
database to search. This information is sent to the application server (see Figure 2) for
inclusion in a SOAP message to be sent to the Data Server. When the results of the
query are sent back to the application server, it is passed back to the client and
displayed in the client web browser as an XML document.

2.2.3 Front Servlet

The front servlet receives information from the client about the query and which
database to search. Based on this information the servlet then sends a SOAP message
containing the query to a servlet deployed on the data server (see Figure 2). The choice
of servlet depends on which database the user selected on the client web page.

When the data servlet sends back the results of the query as another SOAP message,
the front servlet extracts the XML results and sends it back to the client for display in
the client’s web browser.

The front servlet essentially acts as a broker between the client web page and the data
server to convert between HTTP requests and SOAP messages.

2.24 Oracle/MS SQL Servlet

Whether the user selects an Oracle or SQL Server database, the execution of the query
is virtually identical. The servlet receives SOAP messages from the application server
and extracts the queries. Using a series of SQL queries and JDOM, the servlet generates
an XML document containing all of the movement requests stored in the database. The
XQuery prototype uses the CTL movement request data for sample data, a sample of
this data is contained in appendix C. The resulting XML document and extracted
XQuery statement is then fed into the XQEngine application, which searches the XML
document using the XQuery, outputting the XML results. A SOAP message is then
created to send the resulting XML file back to the application servlet.

The conversion from relational database to XML involves the creation of a series of
XML elements using JDOM. The structure of these elements is dictated in the
Movement Request List schema. To create an element in JDOM a series of Structured
Query Language (SQL) queries are executed, the results yield the data to be stored in
the element. When the construction of the JDOM XML document is completed, the
result is converted into an XML string for use in the XQuery Engine.

DSTO-TN-0577

The implementation of XQuery used in the prototype is known as XQEngine. The
engine uses an XQuery query string and XML string as input and executes the query
on the XML string. The result from this process is another XML document. These
results are returned to the front servlet wrapped up in a SOAP message.

2.3 Reasons for Technology Choices

In the development of the XQuery prototype there were a number of technology
choices. Many of the solutions selected were based on the requirement to closely align
the XQuery prototype with the environment used in the CTL project. This section
describes the technologies chosen and why they were selected.

2.3.1 Database

Oracle and SQL server are the two primary large Relational Database Management
Systems (RDBMS) in use by both the US and Australian Departments of Defence and
therefore were the natural choices for creating test databases to use with the prototype.
However, with minimal adjustment, the prototype could be adapted to make use of
any relational database with a JDBC (Java Database Connectivity)'!] driver. JDBC is
used within the prototype to allow the data servlets to communicate with the database
to run SQL queries and return the results. Most modern relational databases support
the JDBC standard.

While some native XML database options were explored, it became apparent that this
solution would not be suitable for all of the services within CTL that would be
referencing the database. The advantage of a traditional relational database is that
when data is altered, the change is reflected in all applications referencing the data.
This is not necessarily possible with a native XML solution as there is no inter-
dependency between data elements. Because of the relational nature of the data and
that the XML documents map to overlapping tables if data changes in one XML
document then this will also change data in another XML document. This is because
the XML schema to relational database mapping is not mutually exclusive. This is
visually represented in Figure 3 below. As shown schema 1 maps onto tables 1, 2, 3, 4
and 6 while schema 2 maps onto tables 4, 5, 6 and 7, which means that the two schemas
share the use of tables 4 and 6. This is only an example and therefore does not
represent the real database structure used but it does display the overlapping nature of
the database to XML schema mapping used in this prototype and in the CTL system.
The real database schema used in this example can be seen in Appendix A.

DSTO-TN-0577

D XML Schema 1 - XML Schema 2 n XML Schema 1 & 2

Figure 3 - XML Schema to Database Map (example only)

The overlapping nature of the data contained in the database does not allow any
relational to XML mapping technologies currently available to be used, this is explored
further in Section 2.3.3.

2.3.2 Messaging

SOAP is fast becoming a widely used commercial standard for transferring messages
across networks and the Internet. Because SOAP messages are XML encoded, there is
scope for extending the format and sending more complex and detailed messages if
required in the future. SOAP is also being used for all data communication in CTL, so it
will be easier to integrate code from the prototype into already existing applications.
Finally, there is a large amount of support for SOAP available, with a large number of
toolkits that make developing SOAP applications easier. SOAP is platform and
implementation independent, which means that it can be used on any type of platform
(eg. Intel, Unix, MacOS, etc.) and developed using any programming language (eg.
C++, Java, C#, VB, etc.). This flexibility allows for the integration and communication
between many different applications and services. Other communication methods
were considered, including CORBA (Common Object Request Broker Architecture)
and RMI (Remote Method Invocation) although none matched the portability and
flexibility allowed with the use of SOAP.

2.3.3 Database to XML Conversion

In exploring the transformation from relational data to XML, a number of options were
investigated. Both Oracle and SQL Server have their own tools for use with their
databases. Without employing its object-relational capabilities, Oracle’s XML SQL
Utility (XSU) was only capable of producing flat (2 elements deep) XML documents.
SQL Server’s built in XML transformation tool is sufficiently powerful but because of
the method in which the process is controlled, the code for any transformation would
be incredibly complex and lengthy. This in turn would make it exceedingly difficult to
modify if the structure of the database or XML schema changed. The SQL Server

DSTO-TN-0577

approach would also have taken considerable implementation time which was
unsatisfactory for this short prototype project.

The solution settled on was a combination of JDOM and many small SQL queries over
JDBC connections to the database. The transformation code is relatively simple and
concise, so that if there are any changes made to the database the code can be easily
updated. Also, by changing the connection details, the same program can be used to
query any relational database with an identical table structure. This allowed for
multiple database to be used in the prototype without having to rewrite the data
extraction code for each database.

234 XQuery Engine

A search of implemented XQuery engines uncovered the XQEngine software
developed by a Howard Katz. The XQEngine has a number of advantages over other
XQuery implementations. It is built to handle large XML documents (up to 32,000
elements, although in the next version the maximum limit is expected to be abolished)
and a large number of documents (up to 32,000 documents can be searched in one
query). Secondly, XQEngine is fast. Timing tests of the prototype have shown that the
bottleneck of the process was the transformation to XML not in processing the query,
this is discussed further in section 3 on the systems performance. Therefore the
XQEngine provided the speed and features that were required in the XQuery

prototype.

3. Performance

Performance tests were run on the prototype under a number of different conditions.
Speed differences with data stored in Oracle and SQL server databases were compared
as well as differing connection speeds. The computer for the databases and data
servlets was a Pentium III 900 Mhz with 1024 MB RAM.

For each database, tests were run with 10, 50 and 100 records in the database. For 10
records the size of the transformed XML document was 82 KB, or 3744 lines of text. For
100 records, the transformation produced a 967 KB document, with 19,634 lines.

To measure the time the prototype took to run the system time was recorded at five
stages during execution:

When the front servlet received a request from the client,

Immediately before the database was queried for the XML transformation,
After the transformation was complete,

After the XQEngine had executed its query, and

Just before the front servlet displayed the output on the screen.

DSTO-TN-0577

In the following tables the ‘Database to XML’ column records the time taken for the
transformation of the relational data into XML. The “XQuery Engine” column records
the time spent querying the generated XML document. Finally, the ‘Data Transfer’
column records the time interval from when the front servlet is activated to when the
database transformation is started. This is added to the time taken for the results of the
query to be transmitted back to the front servlet.

There were four queries used in the tests. For more information about creating
XQueries see appendix D.

The first query:
/IMoveRequestList

returns every movement request in the database. This produces the same result to the
current CTL web services. The second query:

for $i in /RequestToMove where $i/@requestID [. &= 'test03'] return $i
returns only the movement request that has a requestID of “test03’. The third query:
for $i in /RequestToMove where $i/Organization/Person/First [. &= 'Ron‘] return $i

returns the movement request where the first name of one of the people in the
organization involved is Ron. Finally, the last query:

for $i in //Person where $i/First [. &= 'Ron'] return $i
only returns Ron’s details, not a whole movement request.

‘First time queried’ indicates that this was the first time that a query was executed after
the server (Tomcat) and browser (Internet Explorer) had been started. ‘Subsequent
queries’” were those that were executed after an identical query had already been
performed. The performance difference between the first and subsequent requests is
because the application server that runs the servlets initialises various objects in the
system to process the request. These objects stay initialised after execution and
therefore do not need re-initialisation for the second and subsequent requests
shortening the execution time.

This section is split into three parts, SQL Server version, Oracle Version and a
summary of results. The SQL Server and Oracle sections detail the performance metrics
collected on the two different databases. The performance tests manipulated two
variables, the network bandwidth and the number of records contained in the
database. The network bandwidth was altered to indicate the differences in time it
would take to send and receive responses if the system was used over either
intermittent or poor network bearers. The two networks it was tested on was either an
100Mbps local area network or over a 56Kbps dial-up modem. The summary section at
the end of this chapter summarises the performance results.

DSTO-TN-0577

3.1 SQL Server Version

Test performed on an instance of Microsoft SQL Server 2000.

3.1.1 Local Network (100Mbps)

Tests were run over the local DSTO network, which is a 100Mbps local area network.

3.1.1.1 Small Data (10 records in database)

Table 3-1: SQL Server Database, Local Network, Small Data

Query Database toXML. XQuery Engine Data Transfer Total Time
First Time Queried /MoveRequestList 2534 ms 631ms 182 ms 5047 ms
Subsequent Queries /MoveRequestList 991 ms 451 ms 89ms 1831 ms
First Time Queried for $i in //RequestToMove where S/@equestiD [. &= 'test03'] retum $i 741 ms 120ms 45ms 06 ms
Subsequent Queries for $i in /RequestTolMove where $i/@wequestiD [. &= 'test03'] retum $i 71M1ms 70ms 3M1ms 812ms
First Time Queried for §i in /RequestTolVove where $i/Organization/PersorvFirst [. &='Ron’] retum $i M ms 70ms 520ms 1831 ms
Subsequent Queries for $i in //RequestTolViove where $i/Organization/Persor/First [. &= 'Ron] retum $i 531ms 70ms 5 ms 657 ms
First Time Queried for §i in//Person where $i/First [. &= 'Ron] retum $i 611ms 60ms 501 ms 1172ms
Subsequent Queries for $i in /Person where $i/First [. &= 'Ron’] retum $i 611ms 60ms 17ms 688 ms

As shown in Table 3-1, when only 10 records are in the database, most queries executed
in around one second. The first query, when executed for the first time, took 5 seconds
because of the large result size. In all queries, more than half the total time was
consumed by the database to XML conversion. In each query the XQuery Engine took
only about one tenth of the total time.

3.1.1.2 Large Data (100 records in database)

Table 3-2: SQL Server Database, Local Network, Large Data

Query Database to XML XQuery Engine Data Transfer Total Time
First Time Queried /MoveRequestList 4607 ms 751 ms 9845 ms 15203 ms
Subsequent Queries //MoveRequestList 4997 ms 751 ms 6690 ms 12438 ms
First Time Queried for $i in /RequestToMove where $i/@request!D [. &= 'test03'] retum $i 4086 ms HM1ms 67 ms 5094 ms
Subsequent Queries for $i in /RequestToMove where $i/@requestiD [. & 'test03'] retum $i 4276 ms 500 ms 37T ms 4813 ms
First Time Queried for $i in //RequestToMove where $i/Organization/PersorvFirst [. &= 'Ron’] retum $i 4196 ms 511ms 4% ms 5203 ms
Subsequent Queries for $i in /RequestToMove where $i/Organization/Person/First [. &= 'Ron’] retum $i 4086 ms 521 ms HAms 4641 ms
First Time Queried for $i in /Person where $i/First [. & 'Ron’] retum $i 4076 ms 511ms 491 ms 5078 ms
Subsequent Queries for $i in //Person where $i/First [. & 'Ron’] retum $i 4256 ms 1032 ms 9ms 5297 ms

As shown in Table 3-2, although there was ten times as much data in the database as
the previous test, the total time for the query was only increased by a factor of five,
with the last three queries only taking approximately five seconds each to complete.
Once again, the first query took considerably longer to execute, at 15 seconds for the
first time queried.

11

DSTO-TN-0577

3.1.2 Dial Up Network (56Kbps)

Lists test that were conducted over a dial-up connection using a 57Kbps modem.

3121

Small Data (10 records in database)

Table 3-3: SQL Server, Dial up connection, Small Data

First Time Queried
Subsequent Queries

First Time Queried
Subsequent Queries

First Time Queried
Subsequent Queries

First Time Queried
Subsequent Queries

Query
/MoveRequestList
INMoveRequestList

for $i in //RequestToMove where $i/@requestiD [. &= 'test03'] retum $i
for $i in //RequestToMove where $i/@equestiD . &= 'test03'] retum $i

for $i in //RequestToMove where $i/Organization/PersorvFirst [. &= 'Ron’] retum $i
for $i in /RequestToMove where $i/Organization/Person/First [. &= 'Ron’] retum $i

for $i in //Person where $i/First [. & 'Ron’] retum $i
for $i in //Person where $i/First [. & 'Ron’] retum $i

Database to XML XQuery Engine Data Transfer Total Time

590 ms
601 ms

41 ms
601 ms

501 ms
601 ms

581 ms
521 ms

91 ms
541 ms

70ms
60ms

70ms
50 ms

50 ms
70ms

94426 ms
90249 ms

7951 ms
6858 ms

6540 ms
6218 ms

2254 ms
1205ms

95107 ms
91301 ms

8462 ms
7519 ms

7111 ms
6869 ms

2885 ms
17% ms

Predictably, the majority of the total time in this test was taken up by transferring the
data over the modem, as shown in Table 3-3. The smaller the data was, the faster the

results were returned because the transfer did not take as long,.

o A

Large Data (100 records in database)

Table 3-4:SQL Server, Dial up connection, Small Data

First Time Queried
Subsequent Queries

First Time Queried
Subsequent Queries

First Time Queried
Subsequent Queries

First Time Queried
Subsequent Queries

Query
/MoveRequestList
/MoveRequestList

for $i in //RequestToMove where $i/@requestiD [. &= 'test03'] retum $i
for $i in //RequestToMove where $i/@requestiD [. &= 'test03'] retum $i

for $i in //RequestToMove where $i/Organization/Person/First [. &= 'Ron’] retum $i
for $i in //RequestToMove where $i/Organization/Person/First [. &= 'Ron’] retum $i

for $i in /Person where $i/First [. &= 'Ron'] retum $i
for $i in /Person where $i/First [. & 'Ron’] retum $i

Database to XML XQuery Engine Data Transfer Total Time

8753 ms
4997 ms

4166 ms
4877 ms

4957 ms
4406 ms

4296 ms
5157 ms

1712ms
741 ms

511ms
500 ms

501 ms
561 ms

481 ms
491 ms

436207 ms
432412 ms

4987 ms
4978 ms

4877 ms
3546 ms

2093 ms
982 ms

446672 ms
438150 ms

9664 ms
10355 ms

10335 ms
8513 ms

6870 ms
6630 ms

Once again, a large amount of time was taken up in the transfer of data (see Table 3-4).
Along with the data transfer, the database to XML conversion also took a substantial
amount of time because of the large number of records in the database.

3.2 Oracle Version

3.21 Local Network (100Mbps)

Just as with the SQL Server version, tests were run over a 100Mbps local area network
with the same machine as in the SQL Server tests.

12

DSTO-TN-0577

3.2.1.1 Small Data (10 records in database)

Table 3-5: Oracle Database, Local Network, Small Data

Query Database to XML. XQuery Engine Data Transfer Total Time
First Time Queried /MoveRequestList 3936 ms 450ms 1317 ms 5708 ms
Subsequent Queries //MoveRequestList 1582 ms 381ms 287 ms 250ms
First Time Queried for $i in //RequestToVove where $i/@vequestiD[. &= test03] retum $i %15 451ms 1075ms 5141 ms
Subsequent Queries for $i in //RequestTolViove where Si/@vequestiD[. &= 'test03'] retum $i 2053 ms 60ms 43ms 2158 ms
First Time Queried for $i in /RequestTolVove where $/Organization/Person/First [. &= "Ron’] reum $i 3575ms 461 ms 1057 ms 508 ms
Subsequent Queries for $i in /RequestTolVove where $i/Organization/Person/First [. &= "Ron’] retum $i 1943 ms 350ms 51ms 2344 ms
First Time Queried for $i in //Person where $ifFirst [. &= 'Ron] retum $i 34%5ms 441ms 1001 ms 4937 ms
Subsequent Queries for $i in //Person where $i/First [. &= 'Ron’] retlum $i 2053 ms 60ms 28ms 2141 ms

As shown in Table 3-5, the first thing that becomes apparent about the Oracle version is
that the Database to XML transformation is much slower in comparison to the SQL
Server version. The transformation takes two to three times as long, stretching the total
time to around five seconds, which seems to be a surprisingly long time for only ten
records.

3.2.1.2 Large Data (100 records in Database)

Table 3-6: Oracle Database, Local Network, Large Data

Query Database to XML, XQuery Engine Data Transfer Total Time
First Time Queried /MoveRequestList 27239 ms 132ms RB2ms 37843 ms
Subsequent Queries //MoveRequestList 21001 ms 721ms 8855 ms 30577 ms
First Time Queried for i in /RequestTolVibve where $i@-equestiD[. &= test03] retum $i 20530 ms 470ms 49ms 2149 ms
Subsequent Queries for $i in /RequestToMove where $/@requestiD [. &= "test03'] retum $i 19979 ms B1ms 43ms 20953 ms
First Time Queried for $i in /RequestTolViove where $iOrganization/Person/First . &="Ron] reum$i 19508 ms 481ms 26ms 20515ms
Subsequent Queries for $i in /RequestTolVove where $i/Organization/Person/First [. &= "Ron'] retum $i 20018 ms 531ms 60ms 20609 ms
First Time Queried for §i in /Person where $i/First [. &= 'Ron] retum $i 19888 ms 461 ms 510ms 208589 ms
Subsequent Queries for $i in /Person where $i/First [. &= 'Ron] retum $i 2049 ms 461 ms 40ms 21000 ms

With 100 records in the database, each query is taking more than 20 seconds to process,
as shown in Table 3-6. This is almost entirely due to the database to XML
transformation, which is more than four times slower than the SQL server version.

3.2.2 Dial Up Network (56Kbps)

As with the SQL Server version, a 56k modem connection dialling in from a remote
location was tested.

13

DSTO-TN-0577

3.2.2.1 Small Data (10 records in Database)

Table 3-7: Oracle Database, Dial up connection, Small Data

Query Database toXML. XQuery Engine Data Transfer Total Time
First Time Queried //MoveRequestList 1402 ms 60ms 3632 ms 3784 ms
Subsequent Queries /MoveRequestList 1R ms S0ms 34690 ms 355382 ms
First Time Queried for §i in/RequestTolVove where $i/@vequestiD . &= 'test03'] retum $i 132ms 40ms 6629 ms 7801 ms
Subsequent Queries for i in /RequestToMove where $i/@equestiD[. 8= test03] retum $i 1232 ms 50ms 5328 ms 7210ms
First Time Queried for §i in /RequestTolVove where $i/Organization/Persan/First [&= 'Ron] reum §i 122 ms 50ms 4867 ms 6169 ms
Subsequent Queries for $i in /RequestTolVove where $i/Organization/Person/First [. &= 'Ron’] retum §i 1172ms 40ms 3775ms 4987 ms
First Time Queried for $i in /Person where $i/First [. & 'Ron] retum $i 122ms 30ms 2324 ms 3606 ms
Subsequent Queries for $i in/Person where $i/First [. &= 'Ron] retum $i 1462 ms 0ms 1561 ms 2553 ms

As with the SQL server version, the data transfer was the part of the process that took
the most time over a 56K modem (see Table 3-7). The database to XML transformation
was once again slower than it was using SQL server.

3.2.2.2 Large Data (100 records in Database)

Table 3-8: Oracle Database, Dial up connection, Large Data

Query Databaseto XML XQuery Engine Data Transfer Total Time
First Time Queried /MoveRequestList 19528 ms 13Rms 428656 ms 449446 ms
Subsequent Queries //MoveRequestList 153421ms 541ms 426223ms 442116 ms
First Time Queried for §i in/RequestTolVbve where i/@equestiD . &='test03 | reum $i 14441 s 30ns 7461 ms 222ms
Subsequent Queries for § in /RequestTalVive where SV@wequestiD . &='test03] rem § 14781 ms 3B1ms 5377 ms 20509 ms
First Time Queried for §i in //RequestTalViove where $/Organization/Person/First [. 8="Ron] retum $i 1492 s 701ms 6038ms 21701 ms
Subsequent Queries for $i in /RequestTalViove where $i/Organization/Person/First [&= "Ron’] rebum $ 14240 ms 681 ms 3776 ms 18697 ms
First Time Queried for $i in /Ferson where $/First [. &= "Ron] reum § 14440 ms 671ms 3055ms 18166 ms
Subsequent Queries for §i in//Ferson where $/First [. &= 'Ron] retum § 14691 ms 330ms 1098 ms 16114 ms

As Table 3-8 shows, these results are similar to the SQL Server version, with the data
transfer taking the most time, although once again, the transformation to XML was
slower using Oracle.

14

DSTO-TN-0577

3.3 Summary of results

SQL Server and Oracle Databases - Test Times for First Time
Queried

40000¢7}

35000171

30000+

2500041

2000047 |
- i G : L O Data Transfer

15000 SR |} | |®XQueryEngine

/ e : @ Database to XML

Milliseconds

SQL Server DB QOracle DB

Figure 4: Graph of test times comparing SQL Server and Oracle Databases over 100Mbs
network with 100 records in the Databases

A number of trends in the test results are apparent. Firstly, over a reasonably fast
connection, the bottleneck of the process can be attributed to the transformation from
relational data to XML. This is especially true when querying an Oracle database,
which took up to four times longer to complete the transformation when compared to
the SQL Server database (see Figure 4). By comparison the XQuery Engine takes very
little time to get the query results from the XML data once it has been transformed.
Over a slower connection the size of the results begins to have a more significant effect
on the overall performance, and returning all the records over a modem can take
several minutes.

15

DSTO-TN-0577

16

4. Conclusion

The XQuery prototype has achieved what it set out to demonstrate, namely that
XQuery is an effective and useful tool for returning selected parts of an XML
document. Although there are still some drawbacks associated with the
implementation of the prototype, overall the project has been a success.

By far the largest issue yet to be resolved is how to transform the relational data
residing in the database into XML. Currently the transformation is ‘hard-coded’, so
that if the structure of the database or XML changes, the code will need to be updated.
A way of mapping the transformation between the database and XML structures must
be found to improve the maintainability of the system.

Aside from considerations of flexibility, the current transformation process is simply
too slow, especially with large amounts of data and using an Oracle database. Over a
network connection, querying an Oracle database, the transformation process took
about 90% of the total time it to return the results of a query. While there may be a
number of ways to cut down this time, the main reason for the delay is that the
prototype extracts all the information from the database, transforming it into XML and
then queries it. This process is an inherently inefficient way of querying the data
especially when databases provide querying capabilities. A better method would be to
allow the database to apply the XQuery statements on the data contained within
although no current database allows this on relational data. It is recommended that
future research be conducted into querying databases and providing relational to XML
translations that are quicker and more efficient.

Apart from this issue, a number of positives have come out of the development of the
prototype. The XQuery implementation, XQEngine, has met all requirements and has
proven to be fast and powerful. The use of the XQuery language enables flexible and
precise searches, so that the data returned is exactly what the user requires.

The XQuery Prototype has demonstrated that it is possible to utilise XQuery to search
through transformed relational data, and that there are significant advantages to be
gained by using this method. There remain some faults and omissions in the prototype
that would need to be rectified before a true web service for CTL could be established,
but the work done so far will provide a solid basis for future implementation and
exploration of this new technology. It is therefore recommended that CTL integrate the
XQuery capability to provide querying functionality on all web services provided.

10.

1.

7

DSTO-TN-0577

References

G. Clare, M. Schenk (April 2001), Coalition Theatre Logistics Requirement Study,
Produced by SMS Consulting for the Defence Knowledge Improvement Team

Egon Kuster (2002), CTL Architecture Overview (Draft), DSTO, Command and
Control Division

Egon Kuster (December 2002), DSTO CTL Web Site, http:/ / ctl-
web.dsto.defence.gov.au/CTL/

W3C (May 2000), Simple Object Access Protocol (SOAP) 1.1,
http:/ /www.w3.org/TR/SOAP/

W3C (March 2001), Web Services Description Language (\WSDL) 1.1,
http:/ /www.w3.org/TR/wsdl

Jason Hunter and Brett McLaughlin (February 2003), JDOM Homepage,
http:/ /www .jdom.org/

W3C (November 1999), XML Path Language (XPath),
http:/ /www.w3.org/ TR/ xpath

W3C (November 2002), XQuery 1.0: An XML Query Language,
http:/ /www.w3.org/TR/xquery/

Howard Katz (September 2002), DeveloperWorks: XML Zone: An Introduction to
XQuery, http:/ /www-106.ibm.com/ developerworks/library/x-xquery.html

Howard Katz (December 2002), XQEngine, http:/ /www fatdog.com/

Sun Microsystems (December 2002), JDBC Technology,
http:/ /java.sun.com/ products/jdbc/

Directorate of Military Strategy and Strategic Doctrine (October 2001), ADP
00.03 Coalition Operations — Draft 04, Australian Defence Doctrine Publication

17

DSTO-TN-0577

Appendix A: Database Schema

This is the schema for the database within which the relational data for the movement
requests was stored.

REASON

STATE

EQUIPMENT_LIST_CRG_1D

PAX
L_L_LAT_DEGREE PAX_ORGID
L_L_LAT_MINUTE < ARRIVAL_LOC_NAME
L_L_LAT ¢ i ARRIVAL_LOC_DESC
L_L_LAT_DIRECTION ARRIVAL_LOC_TIMEZONE
L_L_LONG_DEGREE ARRIVAL_LOC_LOCATIONID EQUIP_ID
L_L_LONG_MINUTE DEPART_LOC_NAME
L_L_LONG_SECOND DEPART_LOC_DESC EQUIP_ID_TYPE
L_L_LONG_OIRECTION DEPART_LOC_TIMEZONE NAME
L_L_ELEVATION DEPART_LOC_LOCATIONID DESCRIFTION

2
5
H
§
z
3

LENGTH_MEAS_SYS
LENGTH_LENGTH_UNIT
HEIGHT

L_L_ELEVATION_LENGTH_UNIT
5o PKFK1 | CODE 10

HEIGHT_MEAS_SYS
HEIGHT_LENGTH_UNIT

1503168_CITY_REGION WIOTH
15C3186_CITY_REGION_CODE WIDTH_MEAS_SYS
1503166_SUBDIVL: WIDTH_LENGTH_UNIT
1S03166_FUNCTION WEIGHT

WEIGHT_MEAS_SYS
WEIGHT_WEIGHT_UNIT
VOLUME

GE VOLUME_MEAS_SYS
VOLUME_VOLUME_UNIT

CARGO CODE_TRANS_DIMENSION

CARGO _CODE_CONTAINERIZATION
& > HAZ_CARGO_C
PKFK1 L HAZ CARGO_CODE_TYPE
PKFK2 L FKY [m."’ NET_EXPLOSIVE_QUANTITY
L _DATE } QUANTITY
L_ARR_DATE REL_DATE TIMEZONE SPECIAL_HANDLING
- _DATE CONFIGURATION
VERSION
4
C_CONTAINS €
PKFK2 | CONTAINER 1D
PKFKY [EQUIP 1D
PKFK2 | PERSON 1D
PKFK1 | LANGUAGE 1D FK1 |REQUEST 1D
PK PRFK2 lmm CONTANER _ID_TYPE
FK1__|Request 1o E:?r:'(un svs
LENGTH_LENGTH_UNIT
HEIGHT
TYP
ity ot HEIGHT_MEAS_SYS
HEIGHT_LENGTN_UNIT
_IVPE MISSION_CONST
BLOOD_TYPE_RH_STATUS AUTHORIZATION
RELIGION COUNTRY_ST_NAME
OCCUPATION COUNTRY_ST_DESC =
RANK COUNTRY_ST_TIMEZONE
COUNTRY_ST_LOCATIONID
ORG_TYPE_MiL_SERVICE_CODE
ORG_TYPE_MIL_NAT_SERVICE ::;"m
ORG_TY
- mo:;vg:ajg:g,cuss EQUIP_LIST_ORG_ID
,__;‘w.ﬂ ¢ ORG_TYPE_NON_MIL_ORG = T DESCRIPTION
PK.FK1 [ORG 1D ORG_TYPE_NON_MiL_ORG_CLASS 3 4 - . T
PK.FK2 | PERSON 1D > cL
CAPABILITY PK.FK2 | QUTER CONTAINER ID

DSTO-TN-0577

Appendix B: Web Service WSDL

A Web Service Description Language (WSDL) file describes a web service, providing
information on the uses of the service and how it is called. This is the WSDL file for the
XQuery Prototype.

<?xml version="1.0"?>

<wsdl:definitions name="xQueryPrototype"
targetNamespace="http://shapecharge.dsto.defence.gov.au/schemas/XQueryPrototype.wsdl"
xmins="http://schemas.xmlsoap.org/wsdl/" xmins:soap="http://schemas.xmisoap.org/wsdl/soap/"
xmins:xs="http://www.w3.0rg/2001/XMLSchema">

<wsdl:message name="getOracleXQResultsRequest">
<wsdl:part name="query" type="xs:string"/>
</wsdl:message>

<wsdl:message name="getOracleXQResultsResponse">
<wsdl:part name="results" type="xs:string"/>
</wsdl:message>

<wsdl:message name="getMSSQLXQResultsRequest">
<wsdl:part name="query" type="xs:string"/>
</wsdl:message>

<wsdl:message name="getMSSQLXQResultsResponse">
<wsdl:part name="results" type="xs:string"/>
</wsdl:message>

<wsdl:portType name="listResults">
<wsdl:operation name="getOracleXQResults">
<wsdl:input message="getOracleXQResultsRequest"/>
<wsdl:output message="getOracleXQResultsResponse"/>
</wsdl:operation>
<wsdl:operation name="getMSSQLXQResults">
<wsdl:input message="getMSSQLXQResultsRequest"/>
<wsdl:output message="getMSSQLXQResultsResponse"/>
</wsdl:operation>
</wsdl:portType>

<wsdl:binding type="listResults" name="xQueryPrototypeSoap">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="getOracleXQResults">
<soap:operation style="document"
soapAction="http://shapecharge:80/query_test/servlet/OracleBackServiet'/>
<wsdl:input>
<soap:body parts="body" use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</wsdl:input>
<wsdl:output>
<soap:body parts="body" use="literal" encodingStyle="http//schemas.xmlsoap.org/soap/encoding/"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="getMSSQLXQResults">
<soap:operation style="document"
soapAction="http://shapecharge2:8080/query_test/serviet/SQLServerBackServiet"/>
<wsdl:input>
<soap:body parts="body" use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</wsdl:input>
<wsdl:output>
<soap:body parts="body" use="literal" encodingStyle="http//schemas.xmlsoap.org/soap/encoding/"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
</wsdl:definitions>

20

Appendix C: Sample XML Data

DSTO-TN-0577

The following example of a movement request list document contains three movement

requests.

<MoveRequestList>
<RequestToMove requestiD="movemf18326a9a50000">
<Reason>To move the Med Coy 5 CSSB into the coalition</Reason>
<State>PENDING</State>
<Organization orglD="organf18326a9b90007">

<Name>Med Coy 5 CSSB</Name>
<Echelon>COMPANY </Echelon>
<Version>1.5</\VVersion>
<FuncDesc>Medical Company</FuncDesc>
<CountrySt>
<Name>Queenbeyan</Name>
<Desc>Queenbeyan, NSW, Australia</Desc>
<TimeZone>+10</TimeZone>
</CountrySt>
<OrgType>
<Military milOrgClass="COMBAT SUPPORT">
<ServiceCode>LAND</ServiceCode>
<NationalService>ARMY </NationalService>
<MilitaryOrg>MEDICAL</MilitaryOrg>
</Military>
</OrgType>
<Classification>COALITION_PARTNER</Classification>
<NumPeople>55</NumPeople>
<DefMeasSys>Metric</DefMeasSys>
<Equipment equiplD="equipf18326a9cd0013">
<Name>LR 110</Name>
<Length measSys="METRIC" lengthUnit="METER">4.83</Length>
<Height measSys="METRIC" lengthUnit="METER">2.04</Height>
<Width measSys="METRIC" lengthUnit="METER">2.06</Width>
<Weight measSys="METRIC" weightUnit="KILOGRAM">2250.0</Weight>
<CargoCode>
<Category>OTHER NON-VEHICLE</Category>
</CargoCode>
<Quantity>3</Quantity>
</Equipment>
<Equipment equip|D="equipf18326a9cd0014">
<Name>Ambulance</Name>
<Length measSys="METRIC" lengthUnit="METER">6.0</Length>
<Height measSys="METRIC" lengthUnit="METER">2.59</Height>
<Width measSys="METRIC" lengthUnit="METER">2.16</Width>
<Weight measSys="METRIC" weightUnit="KILOGRAM">5800.0</Weight>
<CargoCode>
<Category>VEHICLES NON-SELF DEPLOYING</Category>
</CargoCode>
<Quantity>4</Quantity>
</Equipment>
<Equipment equipiD="equipf18326a9cd0015">
<Name>Unimog</Name>
<Length measSys="METRIC" lengthUnit="METER">6.75</Length>
<Height measSys="METRIC" lengthUnit="METER">3.13</Height>
<Width measSys="METRIC" lengthUnit="METER">2.47</Width>
<Weight measSys="METRIC" weightUnit="KILOGRAM">6800.0</Weight>
<CargoCode>
<Category>VEHICLES NON-SELF DEPLOYING</Category>
</CargoCode>
<Quantity>4</Quantity>
</Equipment>
<Equipment equiplD="equipf18326a9cd0016">
<Name>Bx Lithium Battery</Name>
<Length measSys="METRIC" lengthUnit="METER">0.42</Length>

21

DSTO-TN-0577

<Height measSys="METRIC" lengthUnit="METER">0.25</Height>
<Width measSys="METRIC" lengthUnit="METER">0.15</Width>
<Weight measSys="METRIC" weightUnit="KILOGRAM">13.5</Weight>
<CargoCode>

<Category>OTHER NON-VEHICLE</Category>
</CargoCode>
<HazCargo codeType="UN">9</HazCargo>
<NetExplosiveQuantity>0.0</NetExplosiveQuantity>
<Quantity>5</Quantity>

</Equipment>
<Equipment equiplD="equipf18326a9cd0017">

<Name>30KVA</Name>
<Length measSys="METRIC" lengthUnit="METER">0.0</Length>
<Height measSys="METRIC" lengthUnit="METER">0.0</Height>
<Width measSys="METRIC" lengthUnit="METER">0.0</Width>
<Weight measSys="METRIC" weightUnit="KILOGRAM">0.0</Weight>
<CargoCode>

<Category>OTHER NON-VEHICLE</Category>
</CargoCode>
<HazCargo codeType="UN">9</HazCargo>
<NetExplosiveQuantity>0.0</NetExplosiveQuantity>
<Quantity>2</Quantity>

</Equipment>
<Equipment equiplD="equipf18326a9¢cd0018">

<Name>16KVA</Name>
<Length measSys="METRIC" lengthUnit="METER">1.57</Length>
<Height measSys="METRIC" lengthUnit="METER">1.17</Height>
<Width measSys="METRIC" lengthUnit="METER">0.88</Width>
<Weight measSys="METRIC" weightUnit="KILOGRAM">450.0</Weight>
<CargoCode>

<Category>OTHER NON-VEHICLE</Category>
</CargoCode>
<HazCargo codeType="UN">9</HazCargo>
<NetExplosiveQuantity>0</NetExplosiveQuantity>
<Quantity>5</Quantity>

</Equipment>
<Equipment equiplD="equipf18326a9cd0019">

<Name>Gas Cylinder</Name>
<Length measSys="METRIC" lengthUnit="METER">0.5</Length>
<Height measSys="METRIC" lengthUnit="METER">1.2</Height>
<Width measSys="METRIC" lengthUnit="METER">0.5</Width>
<Weight measSys="METRIC" weightUnit="KILOGRAM">35.0</Weight>
<CargoCode>

<Category>OTHER NON-VEHICLE</Category>
</CargoCode>
<HazCargo codeType="UN">9</HazCargo>
<NetExplosiveQuantity>4</NetExplosiveQuantity>
<Quantity>6</Quantity>

</Equipment>
<Container containeriD="contaf18860840d0000" containerType="ISO Pallet">

<Length measSys="METRIC" lengthUnit="METER">1.1</Length>
<Height measSys="METRIC" lengthUnit="METER">0.0</Height>

<Width measSys="METRIC" lengthUnit="METER">1.1</Width>

<Weight measSys="METRIC" weightUnit="KILOGRAM">1000.0</Weight>
<OrglD>organf18326a9b90007</OrglD>

<Quantity>8</Quantity>

</Container>

</Organization>

<ArrivalLoc>
<Name>Tindoro</Name>
<Timezone>+10</Timezone>

</ArrivalLoc>

<DepartLoc>
<Name>Sydney</Name>
<Timezone>+10</Timezone>

</DepartLoc>

<PrefTransportMode>ANY </PrefTransportMode>

<PointOfContact>
<Title>Captain</Title>
<FirstNm>E.</FirstNm>

DSTO-TN-0577

<LastNm>Collins</LastNm>
<PhoneNum>(02) 6265 1003</PhoneNum>
<Address>HMAS Harman, Queenbeyan, NSW, 2456, Australia</Address>
</PointOfContact>
<Comments>Exercise Only</Comments>
<AvailLoadDate>
<CalDate>2002-12-03</CalDate>
</AvailLoadDate>
<LatestArrivalDate>
<CalDate>2002-12-06</CalDate>
</LatestArrivalDate>
<RequestDate>2002-08-13</RequestDate>
<Version>1.5</Version>
</RequestToMove>
<RequestToMove requestiD="movemf18326a9a50001">
<Reason>| am not sure what the reason is :)</Reason>
<State>PENDING</State>
<Organization orglD="organf18326a9b90008">
<Name>A Coy 2/17 RNSWR</Name>
<Echelon>COMPANY </Echelon>
<Version>1.5</Version>
<FuncDesc>Not sure what this does talk to the Point of Contact</FuncDesc>
<CountrySt>
<Name>Canberra</Name>
<Desc>Canberra City, Canberra, ACT, Australia</Desc>
<TimeZone>+10</TimeZone>
</CountrySt>
<OrgType>
<Military milOrgClass="COMBAT">
<ServiceCode>LAND</ServiceCode>
<NationalService>ARMY </NationalService>
<MilitaryOrg>MISC, CMBT, CMBT SPT, CMBT SERV SPT, UNIT HQ</MilitaryOrg>
</Military>
</OrgType>
<Classification>COALITION_PARTNER</Classification>
<NumPeople>117</NumPeople>
<DefMeasSys>Metric</DefMeasSys>
<Equipment equiplD="equipf18326a9cd0020">
<Name>LR 110</Name>
<Length measSys="METRIC" lengthUnit="METER">4.83</Length>
<Height measSys="METRIC" lengthUnit="METER">2.04</Height>
<Width measSys="METRIC" lengthUnit="METER">2.06</Width>
<Weight measSys="METRIC" weightUnit="KILOGRAM">2250.0</Weight>
<CargoCode>
<Category>OTHER NON-VEHICLE</Category>
</CargoCode>
<Quantity>5</Quantity>
</Equipment>
<Container containerlD="contaf18860840d0001" containerType="ISO Pallet">
<Length measSys="METRIC" lengthUnit="METER">1.1</Length>
<Height measSys="METRIC" lengthUnit="METER">0.0</Height>
<Width measSys="METRIC" lengthUnit="METER">1.1</Width>
<Weight measSys="METRIC" weightUnit="KILOGRAM">1000.0</Weight>
<OrglD>organf18326a9b90008</OrglD>
<Quantity>10</Quantity>
<Desc>This is a description about the pallet and its contents</Desc>
</Container>
</Organization>
<ArrivalLoc>
<Name>Sydney Pymble Bks</Name>
<Timezone>+10</Timezone>
</ArrivalLoc>
<DepartLoc>
<Name>Arden Street, Canberra</Name>
<Timezone>+10</Timezone>
</DepartLoc>
<PrefTransportMode>ORGANIC_LAND</PrefTransportMode>
<PointOfContact>
<Title>Capt</Title>
<FirstNm>E.</FirstNm>

23

DSTO-TN-0577

24

<LastNm>Collins</LastNm>
<PhoneNum>(02) 6265 1003</PhoneNum>
<Address>1 Arden St, Canberra City, Canberra, ACT, 2600</Address>
</PointOfContact>
<Comments>This is Exercise Only. Bn to provide 3 x buses and 3 x macks for stores and pers
from unit 1st line. Bn concentration in Sydney Bks</Comments>
<AvailLoadDate>
<CalDate>2002-12-01</CalDate>
</AvailLoadDate>
<LatestArrivalDate>
<CalDate>2002-12-01</CalDate>
</LatestArrivalDate>
<RequestDate>2002-08-13</RequestDate>
<Version>1.5</Version>

</RequestToMove>
<RequestToMove requestiD="movemf18326a9a50002">

<Reason>| am not sure what the reason is :)</Reason>
<State>PENDING</State>
<Organization orglD="organf18326a9b90009">
<Name>A Coy 2/17 RNSWR</Name>
<Echelon>COMPANY </Echelon>
<Version>1.5</Version>
<FuncDesc>Not sure what this does talk to the Point of Contact</FuncDesc>
<CountrySt>
<Name>Canberra</Name>
<Desc>Canberra City, Canberra, ACT, Australia</Desc>
<TimeZone>+10</TimeZone>
</CountrySt>
<OrgType>
<Military milOrgClass="COMBAT">
<ServiceCode>LAND</ServiceCode>
<NationalService>ARMY </NationalService>
<MilitaryOrg>MISC, CMBT, CMBT SPT, CMBT SERV SPT, UNIT HQ</MilitaryOrg>
</Military>
</OrgType>
<Classification>COALITION_PARTNER</Classification>
<NumPeople>117</NumPeople>
<DefMeasSys>Metric</DefMeasSys>
<Equipment equiplD="equipf18326a9cd0021">
<Name>LR 110</Name>
<Length measSys="METRIC" lengthUnit="METER">4.83</Length>
<Height measSys="METRIC" lengthUnit="METER">2.04</Height>
<Width measSys="METRIC" lengthUnit="METER">2.06</Width>
<Weight measSys="METRIC" weightUnit="KILOGRAM">2250.0</Weight>
<CargoCode>
<Category>OTHER NON-VEHICLE</Category>
</CargoCode>
<Quantity>5</Quantity>
</Equipment>
<Equipment equip!D="equipf18326a9cd0022">
<Name>0.5/1t</Name>
<Length measSys="METRIC" lengthUnit="METER">3.15</Length>
<Height measSys="METRIC" lengthUnit="METER">1.37</Height>
<Width measSys="METRIC" lengthUnit="METER">1.57 </Width>
<Weight measSys="METRIC" weightUnit="KILOGRAM">255.0</Weight>
<CargoCode>
<Category>VEHICLES NON-SELF DEPLOYING</Category>
</CargoCode>
<Quantity>5</Quantity>
</Equipment>
<Equipment equiplD="equipf18326a9cd0023">
<Name>Bx Lithium Battery</Name>
<Length measSys="METRIC" lengthUnit="METER">0.42</Length>
<Height measSys="METRIC" lengthUnit="METER">0.25</Height>
<Width measSys="METRIC" lengthUnit="METER">0.15</Width>
<Weight measSys="METRIC" weightUnit="KILOGRAM">13.5</Weight>
<CargoCode>
<Category>OTHER NON-VEHICLE</Category>
</CargoCode>
<HazCargo codeType="UN">9</HazCargo>

DSTO-TN-0577

<Quantity>10</Quantity>
</Equipment>
<Equipment equipID="equipf18326a9cd0024">
<Name>Bx Hexamine</Name>
<Length measSys="METRIC" lengthUnit="METER">0.45</Length>
<Height measSys="METRIC" lengthUnit="METER">0.28</Height>
<Width measSys="METRIC" lengthUnit="METER">0.35</Width>
<Weight measSys="METRIC" weightUnit="KILOGRAM">75.0</Weight>
<CargoCode>
<Category>OTHER NON-VEHICLE</Category>
</CargoCode>
<HazCargo codeType="UN">4</HazCargo>
<NetExplosiveQuantity>0.0</NetExplosiveQuantity>
<Quantity>50</Quantity>
</Equipment>
<Container containerlD="contaf18860840d0002" containerType="ISO Pallet">
<Length measSys="METRIC" lengthUnit="METER">1.1</Length>
<Height measSys="METRIC" lengthUnit="METER">0.0</Height>
<Width measSys="METRIC" lengthUnit="METER">1.1</Width>
<Weight measSys="METRIC" weightUnit="KILOGRAM">1000.0</Weight>
<OrglD>organf18326a9b90009</OrglD>
<Quantity>10</Quantity>
<Desc>This is a description about the pallet and its contents</Desc>
</Container>
</Organization>
<ArrivalLoc>
<Name>Tindoro</Name>
<Timezone>+10</Timezone>
</ArrivalLoc>
<DepartLoc>
<Name>Sydney</Name>
<Timezone>+10</Timezone>
</DepartlLoc>
<PrefTransportMode>AIR</PrefTransportMode>
<PointOfContact>
<Title>Capt</Title>
<FirstNm>E.</FirstNm>
<LastNm>Collins</LastNm>
<PhoneNum>(02) 6265 1003</PhoneNum>
<Address>1 Arden St, Canberra City, Canberra, ACT, 2600</Address>
</PointOfContact>
<Comments>This is Exercise Only.</Comments>
<AvailLoadDate>
<CalDate>2002-12-05</CalDate>
</AvailLoadDate>
<LatestArrivalDate>
<CalDate>2002-12-07</CalDate>
</LatestArrivalDate>
<RequestDate>2002-08-13</RequestDate>
<Version>1.5</Version>
</RequestToMove>
</MoveRequestList>

25

DSTO-TN-0577

26

Appendix D: Sample XQuery Statements

The simplest XQuery statement one can enter is to return all of the data in the database,
that is, all of the movement requests in the database. To do this we select the root
element from the generated XML document:

/ /MoveRequestList

This statement simply tells the XQEngine to return all <MoveRequestList> elements
and their contents. The two forward slashes indicate that this is the topmost element,
or starting element, for the search, something that will become more meaningful in
more advanced searches.

The criterion for selecting a movement request out of the list can be based on the
content of any element or attribute within the request. The following query selects a
movement request based on the number of passengers to be transported:

for $i in //RequestToMove where $i/Pax [. &='55] return $i

The first part of the query declares a variable, $i, and gives it the value
/ /RequestToMove. The second part of the query asks the XQEngine to return $i when
the Pax element in $i has a value of ‘55’. The ‘[. &= "value’] syntax is XQuery’s way of
specifying the value (or values) to search for. Thus the search

for $i in / /RequestToMove where $i/Reason [. &= "conflict medicine’] return $i

Would return all movement requests where the Reason element contained the words
‘conflict’ and ‘medicine’. Note that the XQuery language, like XML is case sensitive, so
care must be taken when describing elements and attributes to search, as well as the
values to be searched for.

One advantage of using XQuery is that you do not necessarily need to know the exact
location of an element in the structure of the XML document to search it. For example,
the Person element resides in the Organization element, which in turn is a child to the
RequestToMove element. The following search will return data about a person based
on their last name.

for $i in //RequestToMove/Organization/Person where $i/Last [. &= ‘Smith’] return
$i

The following search will return exactly the same results:

for $i in / /Person where $i/Last [. &= ‘Smith’] return $i

DSTO-TN-0577

However, neither of these queries would yield the same results as the following search:

for $i in / /RequestToMove where $i/Organization/Person/Last [. &= ‘Smith’] return
$i

This query returns all RequestToMove elements and everything inside them where the
last name of a person is ‘Smith’, compared to only the Person element as in the
previous two queries. This demonstrates that it is the value of the variable that
determines how much of the document is returned. Apart from a general knowledge of
the structure of the XML document, this is all the information required to perform
effective queries of a movement request list. For more information on XQuery, and a
quick tutorial, visit the IBM DeveloperWorks tutorial on XQuery at http://www-
106.ibm.com/ developerworks/library /x-xquery.html .

27

DISTRIBUTION LIST

XQuery Engine Prototype
Coalition Theatre Logistics (CTL)
Advanced Concept Technology Demonstration (ACTD)

Egon Kuster and Andrew Roff

Information Sciences Laboratory

Chief Command & Control Division

Research Leader Command Decision
Environments Branch

Research Leader Information Enterprises Branch

Research Leader Joint Command Analysis Branch

Research Leader Intelligence Information Branch

Head Human Systems Integration

Head Information Exploitation

Head Effects-Based Modelling and Analysis

Head Information Systems

Head Distributed Enterprises

Head Joint Operations Analysis and Support

Head Command Concepts and Architectures

AUSTRALIA
DEFENCE ORGANISATION
No. of copies
Task Sponsor
DGICD 1
S&T Program
Chief Defence Scientist
FAS Science Policy shared copy
AS Science Corporate Management
Director General Science Policy Development
Counsellor Defence Science, London Doc Data Sheet
Counsellor Defence Science, Washington Doc Data Sheet
Scientific Adviser to MRDC, Thailand Doc Data Sheet
Scientific Adviser Joint 1
Navy Scientific Adviser Doc Data Sheet &
Distribution List
Scientific Adviser - Army Doc Data Sheet &
Distribution List
Air Force Scientific Adviser Doc Data Sheet &
Distribution List
Scientific Adviser to the DMO M&A Doc Data Sheet &
Distribution List
Scientific Adviser to the DMO ELL Doc Data Sheet &

Distribution List

Doc Data Sheet

1

1
Doc Data Sheet
Doc Data Sheet
Doc Data Sheet
Doc Data Sheet
Doc Data Sheet

1
Doc Data Sheet
Doc Data Sheet
Doc Data Sheet

Head Command Process Integration and Analysis
Head Intelligence Analysis

Dr Andrew Au, CCA Fernhill (Task Manager)
Egon Kuster (Author)

Publications and Publicity Officer, C2D/EOC2D

DSTO Library and Archives
Library Edinburgh
Defence Archives
Library Canberra

Capability Development Group
Director General Maritime Development
Director General Land Development
Director General Capability and Plans
Assistant Secretary Investment Analysis
Director Capability Plans and Programming
Director Trials
Australian CTL Project Manager - Mr Selby Dyer

Chief Information Officer Group
Deputy CIO
Director General Information Policy and Plans
AS Information Strategy and Futures
AS Information Architecture and Management
Director General Australian Defence Simulation Office
Director General Information Services

Strategy Group
Director General Military Strategy
Director General Preparedness
Assistant Secretary Strategic Policy
Assistant Secretary Governance and Counter-Proliferation

Navy
Maritime Operational Analysis Centre, Building 89/90 NSW
Garden Island Sydney

Director General Navy Capability, Performance and Plans,
Navy Headquarters

Director General Navy Strategic Policy and Futures,
Navy Headquarters

Air Force
SO (Science) - Headquarters Air Combat Group, RAAF Base,
Williamtown NSW 2314

Doc Data Sheet
Doc Data Sheet
1
2

1 shared copy

1
1
Doc Data Sheet

Doc Data Sheet
il

Doc Data Sheet

Doc Data Sheet

Doc Data Sheet

Doc Data Sheet
1

Doc Data Sheet
Doc Data Sheet
Doc Data Sheet
Doc Data Sheet
Doc Data Sheet
Doc Data Sheet

Doc Data Sheet
Doc Data Sheet
Doc Data Sheet
Doc Data Sheet

Doc Data Sht &
Distribution List

Doc Data Sheet

Doc Data Sheet

Doc Data Sht &

Exec Summary

Army

SO (Science) - Land Headquarters (LHQ), Victoria Barracks NSW
Doc Data & Exec Summ

SO (Science), Deployable Joint Force Headquarters
(DJFHQ) (L), Enoggera QLD

Joint Operations Command
Director General Joint Operations
Chief of Staff Headquarters Joint Operations Command
Commandant ADF Warfare Centre
Director General Strategic Logistics

Intelligence and Security Group
DGSTA Defence Intelligence Organisation
Manager, Information Centre, Defence Intelligence
Organisation
Assistant Secretary Capability Provisioning
Assistant Secretary Capability and Systems

Doc Data Sheet

Doc Data Sheet
Doc Data Sheet
Doc Data Sheet
Doc Data Sheet

1
1 (PDF)

Doc Data Sheet
Doc Data Sheet

Assistant Secretary Corporate, Defence Imagery and Geospatial Organisation

Doc Data Sheet

Defence Materiel Organisation
Deputy CEO
Head Aerospace Systems Division
Head Maritime Systems Division
Chief Joint Logistics Command
Head Materiel Finance

Defence Libraries
Library Manager, DLS-Canberra
Library Manager, DLS - Sydney West

OTHER ORGANISATIONS
National Library of Australia
NASA (Canberra)

UNIVERSITIES AND COLLEGES
Australian Defence Force Academy
Library
Head of Aerospace and Mechanical Engineering
Hargrave Library, Monash University
Librarian, Flinders University

OUTSIDE AUSTRALIA

INTERNATIONAL DEFENCE INFORMATION CENTRES
US Defense Technical Information Center
UK Dstl Knowledge Services
Canada Defence Research Directorate R&D Knowledge
& Information Management (DRDKIM)
NZ Defence Information Centre

Doc Data Sheet
Doc Data Sheet
Doc Data Sheet
Doc Data Sheet
Doc Data Sheet

1
Doc Data Sheet

1
1

Doc Data Sheet
1

NN

ABSTRACTING AND INFORMATION ORGANISATIONS
Library, Chemical Abstracts Reference Service
Engineering Societies Library, US
Materials Information, Cambridge Scientific Abstracts, US
Documents Librarian, The Center for Research Libraries, US

SPARES

Total number of copies: Printed36 PDF1 =

U U G

37

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

DOCUMENT CONTROL DATA 1. PRIVACY MARKING/CAVEAT (OF DOCUMENT)
2. TITLE 3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT
XQuery Engine Prototype CLASSIFICATION)
Coalition Theatre Logistics (CTL)
Advanced Concept Technology Demonstrator (ACTD) Document L)
Title ((9)]
Abstract L)
4. AUTHOR(S) 5. CORPORATE AUTHOR
Egon Kuster and Andrew Roff Information Sciences Laboratory
PO Box 1500
Edinburgh South Australia 5111 Australia
6a. DSTO NUMBER 6b. AR NUMBER 6¢c. TYPE OF REPORT 7. DOCUMENT DATE
DSTO-TN-0577 AR-013-071 Technical Note October 2004
8. FILE NUMBER 9. TASK NUMBER 10. TASK SPONSOR 11. NO. OF PAGES 12. NO. OF REFERENCES
9505-25-44 01/307 DGICD 25 9
13. URL on the World Wide Web 14. RELEASE AUTHORITY
http:/ /www.dsto.defence.gov.au/ corporate/ reports/ DSTO-TN-0577.pdf Chief, Command and Control Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, EDINBURGH, SA 5111

16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS Yes

18. DEFTEST DESCRIPTORS

Joint Military Activities, Joint Operations, Logistics Information Systems, Computer Network Architecture

19. ABSTRACT

During the architectural design of the Coalition Theatre Logistics (CTL) Advanced Concept Technology Demonstrator (ACTD) it was
identified that a data query capability that could operate over XML-based web services was required. This document outlines how a
new technology called XQuery could provide this XML-based query capability over web service oriented communication. Also outlined
is a possible solution along with a discussion of its limitations and capabilities. A successful implementation of the XQuery engine was
developed with performance metrics and architectural designs of the implemented system included within.

Page classification: UNCLASSIFIED

Department of Defence

Defence Science and
Technology Organisation

INFORMATION SCIENCES LABORATORY
PO BOX 1500, EDINBURGH, SOUTH AUSTRALIA 5111
AUSTRALIA. TELEPHONE (08) 8259 5555

Y002 4380100 TLO-€TO-HV LLSO-N1-01SA 3I1ON TVIINHO3L

