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ABSTRACT

The EO-l satellite is part of NASA's New Millennium Program (NMP). It consists
of three imaging sensors: the multispectral Advanced Land Imager (ALI), Hyperion, and
Atmospheric Corrector. Hyperion provides a high-resolution hyperspectral imager
capable of resolving 220 spectral bands (from 0.4 to 2.5 micron) with a 30-m resolution.
The instrument images a 7.5 km by 100 km land area per image. Hyperion is currently
the only space-borne HSI data source since the launch of EO-1 in late 2000.

A cloud-cover detection algorithm was developed for application to EO-1 Hyperion
hyperspectral data. The algorithm uses only bands in the reflected solar spectral regions
to discriminate clouds from surface features and was designed to be used on board the
EO-1 satellite as part of the EO-1 Extended Mission Phase of the EO-1 Science Program.
The cloud-cover algorithm uses only 6 bands to discriminate clouds from other bright
surface features such as snow, ice, and desert sand. The technique was developed using
20 Hyperion scenes with varying cloud amount, cloud type, underlying surface
characteristics, and seasonal conditions. Results from the application of the algorithm to
these test scenes are given with a discussion on the accuracy of the procedure used in the
cloud cover discrimination. Compared to subjective estimates of the scene cloud cover,
the algorithm was typically within a few percent of the estimated total cloud cover.

The unique capability of hyperspectral sensing is well-suited to coastal
characterization: (1) most ocean feature algorithms are semi-empirical retrievals, and HSI
has all spectral bands to provide legacy with previous sensors and to explore new
information; (2) coastal features are more complex than those of deep ocean, and coupled
effects are best resolved with HIS; and (3) with contiguous spectral coverage,
atmospheric compensation can be done with more accuracy and confidence, especially
since atmospheric aerosol effects are the most pronounced in the visible region where
coastal features lie. To demonstrate the potential value of Hyperion (and HSI in general)
data to coastal characterization, EO-1 data from Chesapeake Bay from 19 February 2002
are analyzed. It is first illustrated that hyperspectral data inherently provide more
information for feature extraction than multispectral data provide although Hyperion has
lower SNR than ALI. Chlorophyll retrievals are also shown. The results compare
favorably with data from other satellite and aircraft data sources.

Finally, to demonstrate additional utility of EO-1 data, combined analysis of
panchromatic, multispectral (ALI, Advanced Land Imager) and hyperspectral (Hyperion)
data is conducted. Data sets from Coleambally Irrigation Area, Australia, on 7 March
2000 and San Francisco Bay area on 17 January 2000 are employed for the analysis. For
terrain characterization, various indices are used: normalized vegetation index, plant
liquid water index, and soil moisture index. Various fields are delineated according to
their moisture and vegetation states. Spectral unmixing of soil and vegetation is
illustrated. Anomaly detection of distinct roof material is also shown.
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1. INTRODUCTION

Hyperspectral imaging (HSI) sensors have been used for more than a decade to aid
in the detection and identification of diverse surface targets and topographical and
geological features. Techniques for scene characterization can utilize individual or
combinations of spectral bands to identify specific features in an image. Three examples
of surface characterization demonstrating utilities of the EO-I sensor data are included in
this report.

The first example deals primarily with the problem of discrimination of clouds
from surface features. A simplified cloud detection algorithm was developed that utilizes
only reflected solar measurements from the EO-1 Hyperion sensor to discriminate clouds
from all other features in the image (Griffin, et al., 2003). This cloud detection effort was
part of the EO-I Extended Mission Phase of the EO-1 Science Program. The overall
effort was designed to demonstrate the potential for performing cloud cover detection on
board the satellite to regulate which scenes would be transmitted for ground processing.
The effort involved retrieving a collected Hyperion image into onboard memory,
calibrating the image data to Level-i B radiances, converting the radiances to at-sensor or
top-of-the-atmosphere reflectances and performing the cloud cover detection. The last
two steps of this process: conversions of radiance to reflectance and cloud cover
detection are described here. This work represents the first time that an application such
as cloud detection is to be performed on-board a space-borne sensor.

The second example demonstrates the potential value of Hyperion (and HSI in
general) data to coastal characterization. Oceans comprise two-thirds of the Earth's
surface. Remote sensing provides the only reasonable way of monitoring and
understanding this majority part of our planet. Optical properties of natural bodies of
ocean water are influenced by many factors. Some of the key substances affecting ocean
characteristics are phytoplankton, suspended material, and organic substances. Spectral
remote sensing provides a means of routinely obtaining information of the ocean status
(IOCCG #1, 1998; IOCCG #2, 1999; IOCCG #3, 2000). EO-1 data from Chesapeake Bay
from 19 February 2002 are analyzed. Hyperion data are first compared with multispectral
ALI data to gain insights of the additional information content of hyperspectral data. A
simple algorithm for chlorophyll retrieval is also applied. The results compare favorably
with data from other sources.

In the third example, a combined analysis of panchromatic, multispectral (ALI),
and hyperspectral (Hyperion) data is shown to demonstrate additional utility of EO-1 data
for terrain characterization, anomaly detection and feature extraction, and spectral
unmixing. Data sets from Coleambally Irrigation Area, Australia, on 7 March 2000 and
the San Francisco Bay area on 17 January 2000 are employed for the analysis. Various
tools for terrain analysis to delineate and characterize vegetation and soil are applied.
These soil and vegetation fields are further clustered as their spectral characteristics vary.
Application of an anomaly detection algorithm successfully identified distinct roof
material.
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1.1 Hyperion Sensor

The NASA New Millennium Program's Earth Observing -1 Satellite (NMP EO-1)
was successfully launched on 21 November 2000. There are three primary instruments on
the EO-1 spacecraft: the Advanced Land Imager (ALI), Hyperion, and the Linear Etalon
Imaging Spectrometer Array (LEISA) Atmospheric Corrector (LAC). The EO- 1 platform
was positioned on orbit to be approximately one minute behind the Landsat 7 sensor at an
altitude of 705 km (Pearlman, et al., 2001). With the demise of the Lewis and Orbiview-4
spacecrafts, EO-1 uniquely offers a space-borne spectral imaging capability that is not
currently available from any other source (HTTP://EOI.USGS.GOV/). The essential
spatial and spectral characteristics of the EO-1 instrument suite in comparison to Landsat
7 are summarized in Table 1-1. The overlap in coverage of the ALI, Hyperion, and LAC,
compared to the Landsat 7 ground track is shown in Figure 1-1 (Ungar, 2002).

ALI consists of a 150 Wide-Field Telescope (WFT) and partially populated focal
plane occupying 1/5th of the field of view, giving a ground swath width of 37 km. The
Advanced Land Imager (ALI) was designed to be a Landsat follow-on type of sensor
with similar bands and spatial resolution to the Landsat 7 sensor. Hyperion is a grating
imaging spectrometer providing 10-nm (sampling interval) contiguous bands in the solar
reflected spectrum from 400-2500 nm with a spatial resolution of 30 meter (the same as
the ALI and Landsat sensors) over a 7.7-km swath. Each swath or line of data contains
256 pixels. LAC is an imaging spectrometer covering the spectral range from 900 to 1600
nm, but with a spatial coverage in the 100's of meters to monitor the atmospheric water
absorption lines for correction of atmospheric effects in multispectral imagers.

Table 1-1 EO-1 Instrument Overviews

Landat 7 EO-l EO-I

Parameters ETM+ ALI HYPERION AC

Spectral Range 0.4-2.4 /m* 0.4-2.4 /m 0.4-2.5 gm 0.9-1.6 prm

Spatial Resolution 30 m 30 mn 30 mn 250 m

Swath Width 185 Km 37 Km 7.7 Km 185 Km

Spectral Resolution Variable Variable 10 nm 3-9 nm**

Spectral Coverage Discrete Discrete Continuous Continuous

Pan Band Resolution 15 rn 10 m N/A N/A

Number of Bands 7 10 220 256
* Excludes thermal channel ** 35/55 cm- constant resolution
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Figure 1-1 EO- I and Landsat 7 instrument ground tracks. Hyperion is a pushbroom-imaging sensor with a
swath width of 7.5 km. The EO-1 platform was positioned on orbit to be approximately 1 minute behind the
Landsat 7 sensor at an altitude of 705 kin.
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2. HYPERION CLOUD-COVER ANALYSIS

This section deals primarily with the problem of discrimination of clouds from
surface features. Most cloud detection or cloud mask schemes utilize both solar reflected
(visible, near-infrared, and shortwave infrared) and thermal emitted (midwave and
longwave infrared) measurements (Ackerman, et al., 1998). LWIR data provides
information as to the physical temperature of the cloud and the surface, a useful
discrimination tool. Reflected solar measurements, which are common to many HSI
sensors, rely primarily on spectral reflectance differences to discriminate scene features.
A simplified cloud detection algorithm has been developed that utilizes only reflected
solar measurements from the EO-1 Hyperion sensor to discriminate clouds from all other
features in the image (Griffin, et al., 2003).

2.1 Algorithm Description

The Hyperion Cloud-Cover algorithm utilizes only six Hyperion bands to
discriminate all types of clouds from other surface features in a scene. The selection of
the six bands provided spectral information at critical wavelengths while keeping
processing costs to a minimum. This was a key aspect of the entire cloud-cover detection
process since both onboard computer memory and processing time were limited. The six
bands chosen for the initial form of the cloud-cover algorithm are given in Table 2-1.
They include two visible channels, a near-IR channel and three SWIR channels.

Table 2-1. Hyperion Bands Used in the Cloud-Cover Algorithm

Band (jL)Usage

0.55 Snow/ice/cloud test

Red reflectance test
Vegetation ratio test
Vegetation ratio test
Desert/sand test
Snow/ice/cloud test
Desert/sand test

1.38 High cloud test
Ice/low cloud test
Snow/ice/cloud test
Desert/sand test

Hyperion has two detectors: the first covers the visible and near-IR while the
second covers the SWIR bands. The current algorithm requires channels from both
detectors. An algorithm using only visible and near-IR bands was considered but cloud-
cover detection results were not good for scenes with bright surfaces (desert, snow, ice).
Utilizing these six channels, formulas have be adapted or developed relating the spectral
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measurements to discriminate and identify cloud features in a scene. Figure 2-1 provides
a flowchart of the Hyperion cloud-cover algorithm. A brief description of the
phenomenology behind the algorithm follows. Each test detailed below is designed to
eliminate specific non-cloud features for promising cloud pixels.

l lbu,
P"3 T, > D1T High/didClu

N N N NDSI-= p.56 P1.65
Vegetation N 2 ,l6

Bare Land NDSN PNr a> lz DSI DPie on S s a dWater / . •P1.,26 + P1.65,
Y PI 38 < Pr,vN

66

Y Al 25 > P7, N Snow I Ice

IDesert I Sand N DSI> T, Y y

NDSI: Normalized Difference Snow Index, DSlI DesetSand IndexI

Figure 2-1 Flowchart of the cloud-cover detection process
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2.1.1 Conversion of radiance to reflectance

Channels with center wavelengths up to 3 gam derive their signal from reflected
solar energy off land, water, and cloud features. The amount of solar energy that is
reflected provides information about surface and atmospheric feature characteristics such
as absorption and scattering properties. The reflectivity of an object in a scene is
generally not a function of the incident solar insolation (although it is a function of the
viewing geometry). Therefore, deriving the apparent or at-sensor reflectivity for a scene
can remove the variation in the solar illumination with wavelength.

For the Hyperion sensor, where reflected solar flux is the primary illumination
source, it is useful to convert the channel radiance Li to an at-sensor reflectance p,. This
can be accomplished by dividing the channel radiance by the incident solar flux Fo01
corrected for sun angle ,Uo and earth-sun distance d,.,_ (in Astronomical Units, A U),

A = oT , Li (2-1)

The sun angle is defined by gu0 = cos(Oo), where 00 is the solar zenith angle. The solar
zenith angle may be obtained through the EO-1 telemetry or it can be calculated from the
measurement date, time of day and geographical location. The earth-sun distance
measure des adjusts the mean solar flux Foi for orbital radius changes. The earth-sun
distance is a function of the Julian day and is computed using a parameterized function of
the actual earth-sun distance variation.

The incident solar flux as a function of wavelength Fo(A) can be obtained from a
number of sources; the MODTRAN radiative transfer model (Berk, et al., 1998) contains
a solar illumination database which can be easily adapted to the computation in the above
equation. The solar flux must be convolved with the Hyperion band spectral response
functions to obtain the channel solar flux F0 i. Equation (2-1) is then applied to each band
radiance image to obtain an equivalent set of reflectance images.

Hyperion measurements are distributed as scaled radiance. True radiance is
obtained by dividing the scaled radiance by a factor (either 40 or 80) based upon the
channel number. Hyperion radiances are archived in units of W/m2-sr-]pm. The popular
unit of radiance for hyperspectral and other applications is the ytflick (uW/cmn2-sr-/um),
which can be obtained by multiplying the Hyperion radiance values by 100.

2.1.2 High clouds

High clouds typically have spectral reflectance characteristics that are similar to
other cloud types. However, high, thin, predominantly ice clouds are generally not
opaque to underlying surface reflectance, such that surface features can be observed
through the clouds. This adds a level of difficulty in detecting high clouds, especially if
LWIR information is not available. Techniques using observations in the strong water
vapor absorption bands have provided a new method to discriminate high clouds from
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low clouds and surface features (Gao and Kaufman, 1995; Gao, et al., 1998). At these
wavelengths the water-vapor absorption is typically strong enough to completely
suppress the contribution from both the reflectance from the surface and low-altitude
clouds while adequately transmitting radiation scattered from high-altitude clouds. This
allows the possibility for discriminating high clouds from lower-altitude clouds and
surface features using only a simple reflectance threshold test.

However, in polar latitudes or at high elevations, the amount of moisture in the
atmosphere is greatly reduced, resulting in reduced water vapor absorption in the 1.38 pm
band. This increases the penetration of observations at these wavelengths and increases
the possibility of some significant surface reflectance contribution to the signal. For these
cases, bright surface features (snow or ice) may be mistaken for high clouds and further
testing is required to discriminate these features. A band ratio test is applied to eliminate
ice surfaces and the Normalized Differential Snow Index (NDSI) is used to eliminate
snow features. Both tests are also used later on in the processing and are described in
more detail below. All pixels that are not flagged as high cloud are passed on for further
testing.

2.1.3 Reflectance at 0.66irm

Clouds are typically one of the brightest features in a Hyperion image. The
reflectance from clouds is nearly invariant in the visible and near-IR window regions
since the size of the scatterers in the cloud are much larger (size parameter >> 1) than the
sensor wavelengths. This information can be used to discriminate clouds from darker
background objects and from bright but spectrally variable surface features.

In the visible spectral band, dark surface objects can be distinguished from bright
clouds by a simple reflectance threshold test. At 0.66 gim, many surface features such as
water, vegetation, shadowed areas, and soil exhibit low reflectance values (< 0.15) and
can be easily flagged. Pixels that fail (< threshold) this test are flagged clear; all other
pixels are passed on for further testing. Errors with this test can occur for low sun
conditions, which can reduce the cloud reflectance, or for some types of clouds (i.e.,
cumulus), which can self-shadow.

2.1.4 Vegetation index ratio

Vegetated surfaces exhibit a strong reflectance gradient near 0.7 4im, known as the
red edge (Tucker, 1979). The reflectance for vegetation changes from - 0.1 in the visible
to 0.4 or greater in the NIR depending on specific aspects of the vegetation cover (health,
greenness, etc.). Clouds on the other hand display a nearly constant reflectance signal
over this range. Therefore, a ratio of a visible to a NIR channel should be close to 1 for
clouds and less than 0.5 for vegetated surfaces. In general, clouds have slightly less
reflectance in the visible than in the NIR. Snow and ice surfaces have a similar behavior
to clouds in this spectral region. Figure 2-2 provides an example of Hyperion reflectance
values for clouds, vegetation and surface ice where the previously mentioned
relationships can be observed.
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Figure 2-2 Plot of the spectral signatures of threeifeatures in the visible and NIR: clouds, surface ice, and

vegetation. The red and orange vertical lines represent locations of the visible and NIR hands, respectively.
used in the vegetation index ratio test.

2.1.5 Desert sand index

Bright surface features such as snow, ice, and sand can easily be mistaken for cloud
features in the visible portion of the spectrum. It is important to be able to distinguish
bright surface features from similarly bright clouds. Desert sand is composed of
numerous minerals including quartz, which strongly reflect sunlight. In contrast to other
bright surface features such as snow and ice, desert sand tends to display the largest
reflectance near 1.6 g1m, whereas snow and ice show peaks in the visible and NIR.
Clouds also tend to display higher reflectance values in the NIR with a noticeable drop in
reflectance in the SWIR. These observations provide an empirical means to formulate a
discrimination index, or Desert Sand Index (DSI), similar to vegetation indices. The DSI
was derived to highlight the change from low to high reflectance in the visible and near-
IR spectral region for desert and sand surface types. It uses the change in reflectance from
the NIR to the SWIR as shown in the formula below,

DSI = PO.86 - P1.65 (2-2)
PO.86 + P1.65

In Figure 2-3, plots of the Hyperion-observed spectral reflectance for snow, ice, desert,
and cloud features are shown. Comparing values near the red (0.86 gm) and orange (1.65
ptm) vertical bands shows that the sand feature is the only one that will display a negative
DSI value. This provides a process for eliminating bright sand and desert surfaces from
consideration as cloud.
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2.1.6 Normalized snow index

The Normalized Difference Snow Index (NDSI) is used to identify snow- and ice-
covered surfaces and for separating snow/ice and cumulus clouds. The NDSI measures
the relative difference between the spectral reflectance in the visible and SWIR. The
technique is analogous to the normalized-difference vegetation index (NDVI), which
provides a measure of the health and greenness of vegetated surfaces (Tucker, 1979). The
formula commonly used for the NDSI is given by,

NDSI = Po.56 - P1.65 (2-3)
Po0 56 + P1,65

NDSI values greater than approximately 0.4 are representative of various snow-covered
conditions with pure snow having the highest NDSI values. The NDSI tends to decrease
as other features (such as soil and vegetation) are mixed in with the snow.

2.1.7 Reflectance at 1.25 rum

Some moderately bright surface features (such as aged or shadowed snow) may fail
the NDSI test. Many of these features can be eliminated from consideration as cloud by
comparing their reflectance at 1.25 pm to an empirically defined threshold. Most surface
features have reflectance values less than 0.4 at this wavelength while clouds still display
reflectances greater than 0.4 (see Fig. 2-3). The 1.25-pgm reflectance test is applied only
to potential cloudy pixels that have survived previous tests.

2.1.8 Ice discrimination

To further discriminate ice surfaces from water-cloud pixels, pixels that have
reflectance values at 1.37 pgm greater than 0.1 are assumed to be ice surfaces and
eliminated from consideration as cloudy. Referring to Fig. 2-3, it can be seen that for
water clouds and bright snow-covered surfaces, reflectance values at 1.37 Pim are quite
low, much less than 0.1. Ice surfaces, however, display a significant reflectance signal at
this wavelength. Since ice cover tends to occur during winter months when the air is
normally quite dry, this surface feature can often be seen in the 1.37-pm water vapor
band and can be mistaken for mid-high-level clouds.
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Figure 2-3 Plot of the spectral signatures for fbur features in the visible, NIR, and SWIR: clouds, surface
ice and snow, and desert sand. The red and orange vertical bands represent locations of the NIR and SWIR
channels, respectively, used in the desert sand index test. The green and orange bands represent channels
used in the snow/ice discrimination tests.

2.2 Algorithm Applications

The cloud-cover detection process defined in Fig. 2-1 has been applied to a set of
20 Hyperion scenes with varying cloud cover and type, surface characteristics, and
seasonal collection times. Each scene was converted from radiance to reflectance using
the technique described in Section 2.1.1. The cloud-cover detection algorithm was
applied independently to each pixel in a scene; effects from adjacent pixels did not
influence the computation. While the tests described in Section 2.1 discriminate specific
surface features from clouds, no attempt was made at this time to classify the surface
features based upon the results from the tests. A simple cloud/no-cloud mask was
provided as the primary output product along with line-by-line statistics of the presence
of cloud-free pixels, water-cloud, and ice-cloud covered pixels. Examples of the
Hyperion scenes that were used in the testing are shown below. An RGB rendition of the
scene is shown along with the computed cloud mask. While full Hyperion scenes
normally comprise over 3000 lines, only 1000 line subsets of each scene are shown for
display purposes. The computed cloud amount for the 1000 line scene subset is given in
the figure captions. For each of the cases below, the associated figure depicting the cloud
cover uses the following color scheme: blue - cloud-free, gray/maroon - low/mid cloud,
orange - mid/high cloud.
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2.2.1 Kokee, Hawaii

This scene was collected on 22 May 2002 at 2056 UTC over the island of Kauai,
HI. The scene is characterized by partly cloudy conditions with cumulus clouds present
over land and water (Fig. 2-4). Clear regions are also visible. The algorithm does well
detecting clouds over the land; over the water the main cloud region is masked, but some
areas of thin cloud cover may not be identified. The 0.66-gim threshold reflectance test is
the predominant test used over the water for non-ice clouds. Adjusting the threshold
value would allow the capture of more clouds over the water. Over the land area, both the
reflectance and ratio tests are primarily used to discriminate the clouds from underlying
vegetation. The routine seems to miss a small amount of cloud cover over land, mostly
cloud edges, which would support a slight reduction in the threshold value for the
reflectance test. The total computed cloud amount for this scene segment is 41.3%, which
appears to underestimate the actual cloud cover by, at most, a few percent.

2.2.2 Cheyenne, Wyoming

This scene was collected on 5 March 2002 at 1720 UTC near Cheyenne, WY. The
scene is characterized by partly cloudy conditions with high, thin clouds overlying snow-
covered hilly terrain (Fig. 2-5). The visible clouds are identified as mid-high-level clouds
by the 1.38-gim threshold reflectance test. The clouds are thin enough that some of the
underlying terrain is visible, especially near the bottom of the scene. The NDSI test
accurately identifies the bright snow-covered terrain as a surface feature with the possible
exception of some areas near the edge of the high clouds. Here, the snow-covered surface
is masked as a low-mid cloud. These areas seem to be shadowed either by the high clouds
or self-shadowed due to terrain variations and the moderate sun elevation (36 degrees
above the horizon). These regions of possible misidentification comprise only a small
percentage of the image (< 4 %). The overall computed cloud amount for the scene is
58.9%, which appears to be a slight overestimate in this case.

2.2.3 Kansas City

The scene depicted in Fig. 2-6 was collected near Kansas City, KS, on 4 March
2002 at 1638 UTC. The image is characterized by thin mid-level clouds overlying snow-
covered terrain. Some river and road features are observable. The algorithm correctly
identifies all of the thin cloud cover, but also misidentifies apparently clear areas as cloud
as well. These areas are located in the upper right quadrant of the image. As with the
Cheyenne, WY, scene, these seem to be areas of darker snow-covered terrain. The
algorithm fails to identify these regions as snow since the NDSI values fall below the
nominal threshold for snow. Further tests do not eliminate these features and they are
identified as low/mid cloud. For this case the amount of clear land that is misidentified as
cloud is approximately 3 - 7%. The overall computed cloud cover for this scene is 72.6%
and appears to be an overestimate by about 5%.
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Figure 2-4 Hyperion image collected over Kauai, HI, displaying partly cloudy conditions with cumulus
clouds over land and water. The scene was taken on 22 May 2002 at 2056 UTC. The algorithm computed
the cloud amount for the scene to be 41.3%.
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Figure 2-5 Hyperion image collected near Cheyenne. WY, displaying partly cloudy conditions with high
thin clouds over snow-covered hilly terrain. The scene was taken on 5 March 2002 at 1720 UTC. The
algorithm computed the cloud amount for the scene to be 58.9%.
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Figure 2-6 Hyperion image collected near Kansas City, KS, displaying partlv cloudy conditions with thin
mid-level clouds over snow-covered terrain. The scene was taken on 4 March 2002 at 1638 UTC. The
algorithm computed the cloud amount for the scene to be 72.6%.

2.2.4 Chiefs Island

This scene was collected on 16 April 2002 at 0821 UTC near Chiefs Island, South Africa.
Various types of cumulus clouds are present (see Fig. 2-7). The algorithm does an
adequate job of identifying the majority of the cloud fields although some of the cloud
street patterns near the center of the image are missing from the cloud mask. The
0.66-jim reflectance test is predominantly used to identify these types of clouds and a
lowering of the threshold might improve the cloud cover detection. The overall computed
cloud amount for this image is 68.9%, which seems to be an underestimate by about 5-7%.
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Fi gure 2-7 Hyperion image collected near C'hie Island, South Africa, displaying mostly cloudy conditions
with a variety of cumulus cloud fields present. The scene was taken on 16 April 2002 at 0821 UTC. The
algorithm computed the cloud amount for the scene to be 68. 9%.

2.2.5 Bering Sea

The scene depicted in Fig. 2-8 was collected in the Bering Sea on 20 April 2002 at
2318 UTC. This is one of a number of clear scenes over bright surfaces that were chosen
to test the ability of the algorithm to discriminate bright surface features from clouds. In
this case the scene is predominantly snow-covered ice and land with a coastline feature
running horizontally across the center of the image with ice towards the bottom of the
image. Some road and structure features are apparent near the center of the image. The
algorithm does an excellent job identifying the snow and ice features as cloud-free. A
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small amount of the dark features in the upper part of the image were misclassified as
cloud; the computed cloud amount for this image was 0.7%.

Y E Cloud-free

LI Low/mid cloud

Figure 2-8 Hyperion image collected in the Bering Sea, displatying clear conditions over both snow-
covered ice and land. The scene was taken on 20 April 2002 at 2318 UTC. The algorithm computed the
cloud amountf/or the scene to be 0. 7%.

2.2.6 Suez Canal

The scene depicted in Fig. 2-9 was collected over the Suez Canal on 23 April 2002
at 0813 UTC. This region is characterized by bright sand and desert conditions. The Suez
Canal is clearly observed, as is a ship in the canal near the center of the image. The
Desert Sand Index does well to identify the bright regions of the image as surface
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features. A small amount of the bright region in the lower part of the scene was identified
as cloud. The computed cloud amount for this image was 0.3%.

SCloud-free

D Low/mid cloud

Figure 2-9 Hyperion image collected of the Suez Canal, displaying clear conditions over a desert-ýtpe
scene. The scene was taken on 23 April 2002 at 0813 UTC. The algorithm computed the cloud amount for
the scene to be 0.3%.

2.3 Summary

A technique for estimating the cloud amount in a hyperspectral scene has been
described. The algorithm was designed to perform cloud-cover detection on board the
EO- I satellite, an achievement which has never been accomplished before. The technique
requires calibrated Level lB radiances, which are converted to reflectance values and
processed through the cloud-cover routine to produce a cloud mask for the observed
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image. The routine was tested on numerous Hyperion images collected over a wide range
of surface and atmospheric conditions.

The algorithm does remarkably well considering that no thermal infrared data is
available to assist in the cloud-cover determination. A set of seven tests is used to
discriminate surface features from clouds. Two types of clouds are identified in this
routine: low/mid (water) and mid/high (ice) clouds. Tests of the routine produced cloud-
cover estimates that were generally within 5% of the visually estimated cloud cover
amount. The algorithm has the most difficulty with shadowed or darkened snow-covered
surfaces that are not identified properly in the NDSI test.

The algorithm was uploaded and tested on board the EO-1 spacecraft in Spring
2003 and produced a successful cloud-cover estimate using a scene collected by the
Hyperion sensor. The results supported the use of onboard cloud-cover computation for
alternate scene selection, i.e., if the cloud cover estimate is greater than desired for a
particular scene, then a decision can be made to collect a different scene on the next
orbital pass. This would avoid the process of collecting, storing, transmitting to ground,
and processing the scene only to find out that the scene is obscured by clouds and not
usable.
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3. REMOTE SENSING OF COASTAL WATERS

Oceans comprise two-thirds of the Earth's surface. Remote sensing provides the
only reasonable way of monitoring and understanding this majority part of our planet.
Optical properties of natural bodies of ocean water are influenced by many factors. Some
of the key substances affecting ocean characteristics are phytoplankton, suspended
material, and organic substances. In general, ocean waters are partitioned into Case 1
(open ocean) and Case 2 (coastal) waters. Case 1 waters are those in which
phytoplankton are the principal agents responsible for variations in optical properties of
the water. On the other hand, Case 2 waters are influenced not just by phytoplankton and
related particles, but also by other substances, notably inorganic particles in suspension
and yellow substances. Figure 3-1 is a representation of Case I and Case 2 waters
according to their optical properties caused by phytoplankton (P), yellow substances (Y),
and suspended material (S). Coastal waters are more complex in their composition and
optical properties than open ocean waters are. Sensing requirements are more stringent
and interpretation of data is also a challenge due to the following points (Burke, et al.,
2003):

"* Ocean color in coastal waters is influenced in a nonlinear fashion by a number of
constituents in the water. In shallow waters, it is further influenced by the depth of the
water column and by the nature of the bottom.

"* Some of the inherent optical properties of the constituents that influence ocean color
can be similar to each other. The similarity may persist over the entire spectral range
of interest, as in the case of the absorption spectra of colored dissolved organic matter
and detrital particles. Similarities impede differentiation of the substances by remote
sensing.

"* The concentrations of in-water constituents have wide dynamic ranges. For example,
chlorophyll-a concentration varies over several orders of magnitude, from about 0.01
to 100 mg m-3.

"* Each of the three major components of the water that influence ocean color in Case 2
waters (phytoplankton, other suspended particulates, and yellow substances)
represents a group of substances rather than a single substance. A consequence is the
variability in their optical signatures.

These are points that have to be kept in mind when developing algorithms for
interpretation of ocean color in Case 2 waters.
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(From IOCCG Report #3, 2000)

Figure 3-1 Phytoplankton, yellow substances, and suspended material are the three key contributors to the
ocean color. Their relative contributions to Case 1 deep ocean and Case 2 coastal waters are depicted.

Looking back on the variety of ocean color sensors for the last 25 years (Figure 3-
2), it is noticed that the bands chosen generally vary between 0.4 and 1.0 um. These
multispectral sensors vary not only in the number of bands and exact band locations, but
also the bandwidths of respective bands. The bands are chosen to utilize the reflection,
backscatter, absorption, and fluorescence effects of the various species. While ocean-
product algorithms vary based on the parameer and scenario, most of them are semi-
empirical retrievals based on established climatological information. As previously
mentioned, a challenge to coastal remote sensing is that coastal features are more
complex than those of the open ocean. The small number of bands ultimately limits the
extent of retrievable products. It would be of great advantage if physics-based approaches
could be established as sensors with increasing number in spectral bands provide a
chance to solve the complex, coupled phenomena in coastal remote sensing.
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Figure 3-2 Ocean color sensors over the past 25 years.

To illustrate the point, the top of the atmosphere reflectance of ocean can be
expressed as (Liew, 2002),

where T,- and T, are atmospheric transmission factors due to Rayleigh scattering and
aerosol scattering, respectively; T. is the atmospheric gas transmittance, R, is the water
reflectance, R, is the reflectance of the skylight and direct sunlight from the water
surface, and Rr and R, are the atmospheric path reflectance due to Rayleigh scattering and
aerosol scattering, respectively.

Coupled effects can potentially be best resolved with hyperspectral imagery. To
begin with, a hyperspectral sensor covering the spectral range between 0.4 and 1 um has
all the bands necessary to provide legacy with previous sensors and explore new
information. Furthermore, most ocean characterization algorithms utilize water-leaving
radiance. The atmospheric aerosol effect is most pronounced in the shortwave visible
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where ocean color measurements are made. With contiguous spectral coverage,
atmospheric compensation can be done with more accuracy and precision.

3.1 EO-1 Data from Chesapeake Bay

To demonstrate the potential value of Hyperion (and HSI in general) data to coastal
characterization, EO-1 data from Chesapeake Bay from 19 February 2002 are analyzed.
Both ALI and Hyperion data were available. A common area was selected for analysis.
This area is approximately 6 km wide by 15 km long and consists of land, a marsh, a sand
bar, and shallow water. Figure 3-3 shows the coastal images of ALl and Hyperion from
the data set. Figure 3-4 is the nautical chart from Chesapeake Bay with an enlarged view
of the data area. The RGB composite images shown in Fig. 3-3 from ALI and Hyperion
look practically identical. For further analysis, spectral data between 430 and 930 nm
were utilized: 6 bands from ALl and 50 bands from Hyperion.

To compare the ALI and Hyperion data and to illustrate the dimensionality of data
with complex features, the Minimum Noise Fraction (MNF) algorithm is first applied to
both ALI and Hyperion data sets. Image reconstruction is then accomplished via the
inverse of the transformation matrix. It is compared to the original image to gain insight
of the feature space and the extent of the noise in the data. Results are shown in the next
section.
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ALl
• 200 samplesllbie
* 512 lines
- 6 bands
(MS-I .1.2.3,4,4")

Band Wavelength
Band (nm) GD(m)
Pan 480-690 10

MS-1' 433-453 30
MS-1 450-615 30
MS-2 525-605 30
MS-3 630-690 30
MS-4 775-805 30
MS-4' 8454990 30
MS-S' 1200-1300 30
MS-S 1550-1750 30
MS-7 2080-2350 30

Hyperion
.194 samples/line
* 496 lines
* 50 bands
(0.43-0.93 pJni)

Figure 3-3 EO-1 Data from Chesapeake Bay; selected area is -6 x 15 km in size; spectral bands

between 0.43 and 0.93 am are used for this study.

Figure 3-4 Location of EO-1 data from Chesapeake Bay.
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3.2 Feature Extraction and Investigation of Information Content

Multispectral and hyperspectral images render themselves amenable to spectral
transformations that generate new sets of image components. The transformed image
could make evident features not discernible in the original data, or, alternatively, it might
be possible to preserve the essential information content of the image with a reduced
number of the transformed dimensions.

Principal component analysis uses a linear transformation to translate and rotate
multiband data into a new coordinate system that maximizes the variance. This technique
is used to de-correlate data and maximize the information content in a reduced number of
features (Richards, 1994). The covariance matrix is first computed over the pixel spectra
contained in the HSI data cube of interest. Eigenvalues and eigenvectors are then
obtained for the covariance matrix X'as given below:

I = E{(X XmXX-X,,)T}= 0 A OT, (3-2)

where X represents the spectral vector data, X,, the mean spectral vector over the data
cube, anId E the average operator over the entire data cube. 1 is a matrix consisting of
columns of eigenvectors and A is a diagonal matrix of eigenvalues.

Using the eigenvectors as a new coordinate system, the HSI data cube is then
transformed into principal components, also called eigenimages. These components are
ranked in descending order of the eigenvalues (image variances). The eigenimages
associated with large eigenvalues contain most of the information while the eigenimages
associated with small eigenvalues are noise-dominated. Thus, principal component
transform allows for the determination of the inherent dimensionality and segregation of
noise components of the HSI data.

The MNF transform is essentially two cascaded principal component
transformations (Boardman and Kruse, 1994; Green, et al., 1988). The first
transformation, based on an estimated noise covariance matrix, decorrelates and rescales
the noise in the data. This first step results in transformed data in which the noise has unit
variance and no band-to-band correlations. The second step is a standard principal
components transformation of the noise-whitened data. The transformed data can be
divided into two parts: one part associated with large eigenvalues and coherent
eigenimages, and a complementary part with near-unity eigenvalues and noise-dominated
images. The associated eigenvalue of each eigenimage represents the signal-to-noise ratio
(SNR). The inherent dimensionality of the data can be determined from the number of
coherent eigenimages based on the quantitative SNR. Using the coherent eigenimages, an
inverse MNF transformation can be implemented to remove noise from data.

MNF transforms were applied to both ALl and Hyperion data. Results are shown in
Figure 3-5. Since only six ALl bands are used, six MNF components are obtained; for
Hyperion, there are more MNF components. It is observed that the first few components
compare closely with each other. It is noticeable that for the 5th and 6 1h components, ALl
component images are progressively more dominated by noise, while Hyperion
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component images suggest more features present. Beyond the 6 th component, the 8 th and
9 th component images, for example, still show discernible features.

It is recognized that the SNR for the Hyperion data is inferior to that for ALl.
However, this exercise demonstrated that the increased spectral coverage more than made
up for the low SNR and that Hyperion data could be potentially useful for coastal
characterization.

Owing to the information compression properties of the principal components
transformation, it lends itself to reduced representation of image data with reduced noise.
Results of Hyperion image reconstruction are shown in Fig. 3-6. Both 5 and 9
components are used for reconstruction and compared to the original image. As can be
seen, the six-component reconstruction clearly shows a sharper image compared to the
original, indicating the reduced noise level. However, in comparison to the nine-
component reconstruction, it is also evident that there are additional features that were
not present in the six-component image that are observed in the nine-component image.

This quick comparative analysis illustrates the potential utility of high
dimensionality hyperspectral data as compared to multispectral data even when SNR is
less favorable. Also, by transformation of the image data it is possible to enhance the
image quality by removing noise components and make features more distinguishable.
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Figure 3-5 Comparison ofJAMNF components from ALI and I-vperion.
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Figure 3-6 Reconstructed images from inverse MNF components and compared to the original image. The
false color selection is based on spectral bands commonly used for ocean color characterization.

3.3 Retrieval of Chlorophyll and Comparison with Supporting Data

We will illustrate the retrieval of chlorophyll-a as an example of Hyperion data
applications for coastal ocean waters. It is well understood that chlorophyll-a absorbs
relatively more blue and red light than green, and the spectrum of backscattered sunlight
or color of ocean water progressively shifts from deep blue to green as the concentration
of phytoplankton increases. A large data set containing coincident in situ chlorophyll and
remote sensing reflectance measurements was used to evaluate a wide variety of ocean
color chlorophyll algorithms for use by SeaWiFS (O'Reilly, et al., 1998). Two types of
algorithms, empirical and semi-analytical, were extensively reviewed. It was concluded
that Ocean Chlorophyll (OC)-2 and OC-4 are the two best estimators. Improved
performance was obtained with OC-4 algorithm, a four-band (443, 490, 520 and 555 nm),
maximum band ratio formulation.
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To apply OC-4 to the Chesapeake Bay data, we first use a standard atmospheric
correction algorithm to obtain the surface reflectance. The land mass is also masked out.
The resultant chlorophyll concentration map is shown in Figure 3-7, with white being the
lowest in value. Quantitative values are plotted for selected horizontal lines as well.

Fortuitously, there are supporting data that could be used as "surrogate" ground
truth. The first data set came from a routine low-altitude aircraft data collect on
19 February 2002 from the Chesapeake Bay Remote Sensing Program (CBRSP) (see
Figure 3-8). The second supporting data set was from the published weekly SeaWifs
products for the week of 18-25 February 2002 (see Figure 3-9). All derived values from
the various measurements are consistent: in the range from 2 to 4 mg/m3 . Certainly there
is much more to do towards validation of the applications of Hyperion data to coastal
ocean waters. However, this initial result is very encouraging.

Range: 2.1 to 3.6 mglm3

Calculated using SeaWlFS OC4

Figure 3-7 Chlorophyll-a retrieval results from Sea WIFS 0C4 algorithm.
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Figure 3-8 Supporting Data from Chesapeake Bay Remote Sensing Program CBRSP. Chlorophyll-a data
estimated from a SAS III instrument (Sea WIFS Aircraft Simulator) over well-maintained ground site, and
published from the Chesapeake Bay at http://wwwicbrsl.Ora/cbrsp mainbavintro page.htm. The aircraft
schedule is about twice a month. The flight Jollows an altitude of 500 ft. The picture in the figure is
reproduced from this site (same day as the Hyperion data, 19 February 2002).
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Figure 3-9 Sea WIFS data averaged for the week 2/1 8/2002 - 2/25/2002. Sea WIES products published
regularly at httD://thlue in.,gzs/t.nasa. !oV'/c'gi/leI'el 3.pl. The picture in the figure is for the week 2/18/2002 to
2/25/2002.

3.4 Summary

EO- I data from Chesapeake Bay from 19 February 2002 are analyzed todemonstrate the potential value of Hyperion (and HSI in general) data to coastal
characterization. It is first illustrated that hyperspectral data inherently provide more
information for feature extraction than multispectral data although Hyperion has lower
SNR than ALr. Chlorophyll retrievals are also shown. The results compare favorably
with data from other sources. Future measurement requirements (airborne and space-

borne) are also discussed.
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4. TERRESTRIAL ANALYSIS APPLICATIONS

To demonstrate the utility of EO-I data, combined analysis of panchromatic,
multispectral (ALI, Advanced Land Imager), and hyperspectral (Hyperion) data was
conducted. In particular, the value added by HSI with additional spectral information will
be illustrated (Hsu, et al., 2003).

As described earlier, Hyperion is a pushbroom-imaging spectrometer. Each square
pixel subtends 30 m, sampled every 30 m and measures a complete spectrum from 400 to
2500 nm in 220 spectral channels. Each image covers a ground area of 7.65 km x 185
km. Advanced Land Imager (ALI) is a co-incident multispectral imaging (MSI) sensor
also on board EO-1. ALI (see Table 4-1) covers a larger area (37-km swath width) with
the same spatial resolution but in nine broad bands. The area covered by ALI overlaps
approximately 80% with that of Hyperion. In addition, it has a high-resolution
panchromatic band of 10-m pixel resolution, which is three times better than that of the
ALI MSI and Hyperion HSI. The purpose of this section is to demonstrate the utility of
EO-I data with combined analysis of panchromatic, multispectral (ALI) and
hyperspectral (Hyperion) data.

Table 4-1 ALl Spectral Bands and Spatial Resolutions

Band Wavelength (gmn) GSD (mn)

Pan 0.48-0.69 10

MS-I' 0.43-0.45 30

MS-I 0.45-0.52 30

MS-2 0.53-0.61 30

MS-3 0.63-0.69 30

MS-4 0.78-0.81 30

mS-4, 0.85-0.89 30

MS-51 1.20-1.30 30

MS-5 1.55-1.75 30

MS-7 2.08-2.35 30

Data sets from Coleambally Irrigation Area, Australia, on 7 March 2000 and the
San Francisco Bay area on 17 January 2000 are analyzed. Atmospheric correction is first
applied to radiance data (used ATREM by Gao, et al., 1996). Hyperion and ALI data over
Coleambally Irrigation Area, Australia, are used for terrain characterization in terms of
soil moisture content and vegetation status. Hyperion data are also subject to spectral
unmixing to illustrate sub-pixel analysis. Abundance levels of lush vegetation and bare
soil are estimated for image pixels in different fields of crops. Anomaly detection
algorithms are applied to Hyperion data over the San Francisco Bay area. Detections
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from Hyperion data are compared with previous AVIRIS data and known library spectra
for material identification. In addition, pan-sharpened ALl is also shown for enhanced
visualization of spatial features.

4.1 Terrain Characterization

Vegetation status and soil moisture content are two major factors determining
terrain trafficability. As an example, EO-1 data from Coleambally Irrigation Area,
consisting both of bare soil and various types of vegetation, are used to illustrate
applications of terrain characterization. Simultaneous multispectral and hyperspectral
data are also compared.

In the vegetation spectra shown in Figure 4-1, we observe a decrease in the
radiance at 0.68 gim and a large increase at near infrared since chlorophyll in the
vegetation absorbs visible light from the sun and reflects the infrared radiation. The
Normalized Difference Vegetation Index (NDVI) measuring spectral differences around
the red edge is commonly used to represent the health and amount of vegetation.

NDVI = p(0.86#um) - p(O.66,tm) (4-1)
p(0.86flm) + p(0.66,um)

where, p(0.66 gm) and p(O.86 lgm) are reflectance at 0.66 g-m and 0.86 Pim, representing
red and near-infrared band reflectance, respectively.

Under smoky or cloudy conditions, both obscurants tend to mask the underlying
signal at visible and near IR wavelengths (Griffin, et al., 2000). However, information
identifying vegetation can be retrieved from spectral channels at longer wavelengths,
which are transmitted through some smoke. The Liquid Water Index (LWI) estimates
water content based on reflectance differences between 1.1 gtm and 2.2 gim.

L WI = p(l. 1,um) - p(2.2ynm) (4-2)
p(l. lflm) + p(2.2,um)

A comparison of the spectral characteristics of the channels used in the LWI
(1. .Igm and 2.2 gim) and those used for the NDVI (0.64 gim and 0.86 pim) shows a similar
but reversed trend between dense and sparse or no vegetation conditions (see Figure 4-1).
While NDVI captures the state of vegetation via chlorophyll content, LWI is indicative of
the liquid water content in the vegetation. Therefore, it is not surprising that LWI, like
NDVI, has the capability to discriminate between vegetation conditions, but with the
added benefit of operating under obscured conditions.
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Figure 4-1 Sample vegetation and soil spectra. The Normalized Difference Vegetation Index (NDVI)
measuring spectral differences around the red edge is commonly used to represent the health and amount
of vegetation. The Liquid Water Index (LWI) estimates water content based on reflectance di[flrences
bemteen 1. 1 pm and 2.2 pm.

Another index based on Landsat 7 ETM+ bands 5 and 7 is the Soil Moisture Index
(SMI) (Musick and Pelletier, 1986).

SMI = p(l.55 -1.75,m) (4-3)
p(2.08 - 2.35prm)

These indices are calculated for the Coleambally image using both Hyperion and ALI
data. ALI bands closest to the wavelengths indicated in the index formulae are used.
Bands MS-3 and MS-4' are employed for NDVI and MS-5, and MS-7 for LWI. For
comparison, Hyperion spectral data are averaged over the bandwidth of corresponding
ALL bands before index calculation. Figure 4-2 shows line profiles of NDVI, LWI and
SMI over areas of soil, corn, rice, and soybean in the image. The LWI profile appears to
closely follow the NDVI profile, except for some small deviations. The SMI profile also
resembles the NDVI profile in overall shape but has a different scale since it is calculated
as a band ratio rather than as a normalized band difference like the NDVI and LWI. The
indices are high at the soybean area, indicating most lush condition, and low at the two
soil areas for little or no vegetation. Comparing the profiles derived from Hyperion and
ALI data, the two sets are nearly identical although some noise is apparent from pixel to
pixel in the profiles derived from Hyperion data.
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Figure 4-2 Line profiles of ND VI, L WI, and SMI over areas of soil, corn, rice, soybean, and a second plot
of soil. The LW! profile appears to closely follow the ND VI profile, except/bor some small deviations. The
SMI profile also resembles the NDVIlprofile in overall shape but has a difJfrent scale.

To further examine the correlations between LWI and NDVI, we plot the indices
derived from Coleambally Hyperion data in a scatter plot (see Figure 4-3). Separate
clusters can be delineated from the index plot due to various LWI-NDVI correlations of
different material. The cluster located at lower left-low LWI and NDVI less than 0.2-
consists of data from soil. In this region, there is little change in NDVI. Some spread in
the LWI dimension is seen, indicating different levels of moisture content in the soil. The
cluster in the middle extends LWI values from approximately 0.15 to 0.45 and NDVI
from 0.2 to 0.5. This cluster results from pixel data with mixtures of soil and vegetation.
The cluster at the top represents data from vegetation and has a larger extent in NDVI
than in LWI. This indicates that LWI, while strongly correlated with NDVI, is less
sensitive to vegetative state than the vegetation index. Reexamination of Figure 4-2 in
this light reinforces this conclusion, as deviations from 0.5 in the index are more
exaggerated by NDVI than by the LWI.
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Figure 4-3 Scatter plot of L WI and ND VI derived fiom Hvperion data over Coleambally. Separate clusters
can be delineated from the index plot as shown on the right. The cluster located at lower left consists of
data from soil. Some spread in the L WI dimension is seen, indicating different levels of moisture content in
the soil. The cluster at the top represents data from vegetation and has a larger response in ND VI than in
L WL

The soil and vegetation clusters are further divided into smaller regions to observe
the progressive change in spectral characteristics. As shown in Figure 4-4, the regions
colored in orange, light sienna, and dark sienna represent soil while five shades from
yellow to dark green delineate vegetation conditions. Image pixels contributing to the
various regions defined in the scatter plot in Figure 4-4 are mapped with the
corresponding colors as shown on the right in Figure 4-4. Most mapped fields are mono-
or dichromatic, representing certain soil or vegetation status, not a random mixture of
several colors. This indicates these fields are relatively uniform. The areas not mapped
are mostly mixtures of soil and vegetation. The mean spectra of different regions are
plotted in Figure 4-5. The soil with less moisture has a higher reflectance in SWIR (1-2.5

iim). In the vegetation spectra, the different changes of reflectance between 0.64 Ptm and
0.86 pm agree well with the NDVI values defined for the regions. Dividing the entire
LWI-NDVI space (scatter plot at left of Figure 4-4) allows for characterization of the
fields. As illustrated in the case of Coleambally Irrigation Area, different fields are
characterized with the moisture content and vegetation status.
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Figure 4-4 Soil and vegetation clusters in the scatter plot on the left are divided in eight regions. Regions
colored in orange, light sienna, and dark sienna represent soil while five shades from yellow to (lark green
delineate vegetation. Image pixels contributing to the various regions defined in the scatter plot are
mapped with the corresponding colors on the right. The areas not mapped are mostly mixtures of soil and
vegetation.
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Figure 4-5 Mean spectra of soil and vegetation regions. The soils with less moisture content
have higher reflectance in SWIR (1-2.5 pro). In the vegetation spectra, the different changes of

reflectance between 0.64 pm and 0.86 pm agree well with the NDVI values defined.[br
the regions.

4.2 Spectral Unmixing

The pixel resolution of both Hyperion HSI and ALI MSI is 30 m on the ground. If
there are different types of material in the pixel, each contributes to the combined spectral
measurement. Assuming linear combination of M types of material and each material
occupies am fraction of the pixel, the pixel spectrum, PT can be written as below:

M

p1  L a,,, Pm (4-4)
m=1

where m = 1 ...M, representing the material type; 0 _< am < 1, Eam = 1, am is a different
fraction of each material m within the pixel.

Given the contributing materials, the material abundance in a pixel can be
recovered from HSI data with various least-squared-error unmixing algorithms (Keshava
and Mustard, 2002). An unmixing algorithm is unconstrained when the fractions are not
limited to the conditions of 0 < am < I and Yam = 1.

Figure 4-6 shows sample areas of soybean and soil in the Coleambally image.
Regions of interest are selected as shown on the Hyperion image to include a lush
vegetative area in the soybean field and a bare region in the soil area. The mean spectra
of the regions are used to demonstrate a two-class unmixing analysis of lush vegetation
and bare soil. The unconstrained least-squares unmixing algorithm is applied to the image.
The retrieved soybean and soil abundances are shown at the left side of Figure 4-7.
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Abundance values of pixels at the horizontal line indicated in the abundance images are
plotted at the right side of Figure 4-7. Results show 100% soybean for samples 15 to 20,
mixtures of soybean and soil for samples 21 to 34, and 100% soil for samples 35 to 42.
The abundance of soybean decreases progressively from left to right while soil increases
in the mixture at the transitional region. Sample number 28 appears near the middle of the
transition. The abundance retrieval quantifies the amount of soybean and bare soil in the
transitional region. This illustrates how an unmixing algorithm can be applied to HSI data
to obtain quantitative information of different materials in a given pixel.
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Figure 4-6 Sample areas olsoybean and soil in the Coleambally image. Regions of interest are selected as
shown on the Hyperion image to include a lush vegetative area in the soybean field and a bare region in
the soil area. The mean spectra of the regions are used to demonstrate a two-class unmixing analysis of
lush vegetation and bare soil.
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Figure 4-7 Retrieved soybean and soil abundances from the Hyperion data. The plot at right shows
abundances for pixels at the horizontal line of the image. The abundance of soybean decreases
progressively from left to right while soil increases in the mixture at the transitional region. Sample
number 28 appears near the middle of the transition.
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4.3 Spectral Feature Analysis

Hyperion data were collected over San Francisco Bay on 17 January 2000. There
have been several AVIRIS collects over the same area. One of the earlier AVIRIS
collects, from 20 June 1997, is used here for comparison with Hyperion. Some common
features, such as water, runway, and grass, are selected for comparison. ATREM (Gao, et
al., 1996) was first applied to both data sets for atmospheric compensation so that both
data sets are reduced to spectral reflectance values. As shown in Figure 4-8, spectral
features from both data sets appear very similar except that Hyperion data are lower in all
reflectance values.

The Minimum Noise Fraction (MNF) transformation (Green, et al., 1988)
algorithm is then applied for further feature extraction. Clusters of anomalous pixels are
detected in the loth component. Analysis of the AVIRIS data also found anomalies
detected at the same location as in the Hyperion data. The common detection is shown in
Figure 4-9. The sharpened ALl image with the high-resolution panchromatic band
included in the figure shows similar spatial features as the AVIRIS image at the
detection. (Note: AVIRIS spatial resolution is 20 m.) Spectral signatures of the detections
from both Hyperion and AVIRIS data are plotted in Figure 4-10.
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Figure 4-8 Hyperion and A VIRIS data on selected features. HVPerion and A VIRIS data appear similar in
overall spectral shapes, except that the Hyperion data are consistently lower in their reflectance
signatures.
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Figure 4-9 Anomaly detections in Hyperion and A VIRIS data. The sharpened ALl image with the high-
resolution panchromatic band included on the right shows similar spatial features as the A VIRIS image at
the detection.
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Figure 4-10 Spectral signatures of anomaly detections from -lperion and A VIRIS data. The detections
appear similar in spectral shapes to a type of paint in our spectral library.
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A photograph of the building at the detected site was obtained (see Figure 4-11).
The detections in the HSI data appear to be of the blue roofs of the building. For
verification, sample panels of material similar to the roofs were acquired and measured
with a handheld spectrometer. The spectral signatures of the roof panels are plotted
together with the detected data from both Hyperion and AVIRIS images in Figure 4-12.
The Spectral Angle Mapper (SAM) algorithm is also applied to the panel signatures with
reference to the AVIRIS signature. The resulting spectral angles vary from 0.162 to 0.307
radians (9.30 to 17.60). The signatures compare well in overall shape, with a smaller
vertical offset than is apparent in Figure 4-8.

Figure 4-11 Photo of building at the detected site. The detections in the HSI data appear to be of the blue
roofs of the building.
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Figure 4-12 Spectral signatures of the roo panels plotted together with the detected data from Hvperion
and A VIRIS images. The signatures compare well in overall shape, but are somewhat different in details.

4.4 Terrestrial Analysis Summary

Examples of EO-1 Hyperion data applications are shown for terrain
characterization, spectral unmixing, and anomaly detection. Data used include those from
Coleambally Irrigation Area, Australia, (7 March 2000) and San Francisco Bay area (17
January 2000). For terrain characterization, it is illustrated that various simple indices can
be used to characterize the soil and vegetation conditions. They include the Normalized
Difference Vegetation Index (NDVI), the Liquid Water Index (LWI) and the Soil
Moisture Index (SMI). Consistent results were demonstrated between Hyperion and ALl.
These indices were further used to map the bare and vegetated fields with promising
results. For spectral unmixing, some adjacent fields with distinctly different materials
(soil and verdant soybean) were used for sub-pixel analysis. The results illustrate how
unmixing algorithms can be applied to HSI data to obtain quantitative abundance
information of the materials contained in a given pixel.

The Hyperion data from San Francisco Bay area were used first to compare with
AVIRIS data collected some two-and-a-half years earlier. Anomaly detection algorithms
were then applied to both data sets. A building complex with distinct roof material was
detected using both images. Subsequently, samples of similar roof panels were acquired
and their spectral signatures measured with a handheld spectrometer, thus corroborating
the detections by Hyperion and AVIRIS.
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5. SUMMARY

Three examples demonstrating utilities of the EO-l sensor data in different
applications are described in this report: cloud-cover analysis, coastal-water feature
extraction, and terrestrial analysis applications.

Cloud-cover analysis deals primarily with the problem of discrimination of clouds
from surface features. A simplified cloud-detection algorithm was developed that utilizes
only six bands in reflected solar measurements from the EO-1 Hyperion sensor to
discriminate clouds from all other features in the image. The selection of the six bands
provided spectral information at critical wavelengths while keeping processing costs to a
minimum since both onboard computer memory and processing time are limited for this
intended application. The cloud-cover detection process was applied to a set of 20
Hyperion scenes with varying cloud cover and type, surface characteristics, and seasonal
collection times.

Coastal-water feature extraction analysis was performed on EO-I data over
Chesapeake Bay on 19 February 2002 to demonstrate the potential value of Hyperion
data to coastal characterization. Spectral applications for ocean waters were briefly
discussed. EO-1 data from both multispectral (ALl) and hyperspectral (Hyperion) sensors
were compared to establish the relative quality and additional feature-extraction potential
for Hyperion data. Chlorophyll retrieval was carried out using an existing simple
algorithm. The results compared favorably with data from other satellite and aircraft
sources.

For the additional utility of EO-1 data, application examples are shown for terrain
characterization, spectral unmixing and anomaly detection. Data sets from Coleambally
Irrigation Area, Australia, on 7 March 2000 and the San Francisco Bay area on 17
January 2000 were employed for the analysis. Soil and vegetation properties, such as soil
moisture, vegetation chlorophyll, and plant liquid water, were explored to characterize
various agriculture fields. Spectral unmixing, feature extraction, and anomaly detection
algorithms were also applied for different applications.

In each of the applications considered, it is shown that hyperspectral data provide
utility; in some cases only a few selected bands were used, while in other applications full
spectral information is explored. The ultimate strength of hyperspectral remote sensing is
exactly its versatility in data use: simple band thresholds, ratios, and differences are used
to take advantage of known phenomenology. Signal processing approaches, such as
anomaly detection and matched-filtering algorithms, take advantage of the full spectral
data such that subtle differences can be explored. This report explores both approaches
and a variety of applications are illustrated.
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ACRONYMS

AC Atmospheric Compensation

ALI Advanced Land Imager

ATREM ATmosphere REMoval program

AU Astronomical Units

AVHRR Advanced Very-High-Resolution Radiometer

AVIRIS Airborne Visible-InfraRed Imaging Spectrometer

BI Burn Index

DEM Digital Elevation Model
GOES Geostationary Operational Environmental Satellite

HSI HyperSpectral Imagery

HTAP Hyperspectral Technology Assessment Program

JPL Jet Propulsion Laboratory

K Kelvin

LWI Liquid Water Index

MNF Minimum Noise Fraction

MSI MultiSpectral Imagery

MODTRAN MODerate resolution TRANsmission model

MSL Mean Sea Level

NDVI Normalized Difference Vegetation Index

NIR Near InfraRed

NOAA National Oceanic and Atmospheric Administration

PC Principal Component

PCA Principal Component Analysis

RGB Red Green Blue

SAM Spectral Angle Mapper

SCAR-B Smoke, Cloud, Aerosol and Radiation Experiment - Brazil

SMI Soil Moisture Index

SNR Signal-to-Noise Ratio

SWIR Shortwave InfraRed

UTC Universal Time Coordinated

VIS Visible

WNW West North West

uflicks Radiation Units of tW cm 2 sr- 1 4m-1
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