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Chapter 1

Executive Summary

Hyperspectral Imagery (HSI) remains the most advanced tool for passive remote sensing.
A hyperspectral data cube can contain a vast range of spatial, spectral, and temporal
information. Interest in Hyperspectral imagery is creating markets for such applications
as military intelligence, tactical military operations, geology, forestry, cultural studies, and
environmental studies. These disparate remote sensing communities require sophisticated
hyperspectral techniques to solve intrinsically difficult problems such as automated local area
change detection, small target detection in clutter, material identification at the sub-pixel
scale, target class discrimination for targeting, and geophysical or biochemical parameter
estimation for natural resource development or environmental monitoring.

However there are limitations. Hyperspectral imaging systems are usually of lower spatial
resolution than multi-spectral or panchromatic (broadband) imaging systems. The low
to medium spatial resolution of hyperspectral imagery limits its application to real-world
problems such as scene spatial change detection or image analysis.

In completing this Phase 2 SBIR, ATK Mission Research with help from the University
of Dayton, has accomplished the intended goal of the SBIR program by developing a com-
mercially marketable Hyperspectral Image Enhancement system. This system implements
a coherent and rigorous physics model for HSI spatial resolution enhancement on a Mercury
Multi-Computer platform. While initial development was accomplished using the 8-node
Mercury AdapDev 1280 computer system, we have demonstrated that our code easily scales
to larger vector processing clusters such as the 96 (Titan) and 64 (Hawk) node Mercury
systems residing at the Wright Patterson Air Force Base Computer Facility.

Our SBIR research effort has led to the completion of a Maximum A Posteriori (MAP)
algorithm for constructing a high-spatial resolution hyperspectral enhancement from a low-
spatial resolution hyperspectral image, by incorporating registered higher-resolution imagery
from an auxiliary sensor. Although we have focused on the enhancement of a hyperspectral
image using high-resolution panchromatic data, the estimation software delivered allows for
any number of spectral bands to be employed from the auxiliary sensor.
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The technique is suitable when some correlation exists between the auxiliary image
and the image being enhanced. For example, LWIR HSI may be improved using MWIR
broadband imagery as shown in Figures 1.1 and 1.2. Using principle component analysis,
we have shown that our MAP estimator produces a hyperspectral image with enhanced
sub-pixel content evident not only in the first principal component image, but in lower
components as well. Typical principal component substitution methods seek to enhance only
the first principal component and do not enhance lower components at all. Any enhancement
of these low-signal lower components indicates a promising result.

Figure 1.1: SEBASS imagery: band 50 LWIR 4x degraded resolution (10.37 m)

Figure 1.2: SEBASS imagery: MWIR broadband
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Figure 1.3: SEBASS imagery: MAP estimate of band 50 LWIR using MWIR broadband
imagery

Figure 1.4: SEBASS imagery: True band 50 LWIR
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We believe that our MAP approach represents the best results from the most theoreti-
cally sound method proposed to date for merging hyperspectral imagery with an auxiliary
sensor. In any applications where panchromatic sharpening is used for human interpreta-
tion, our method offers improved performance. A technical strength of our MAP estimation
framework is that it allows for the incorporation of alternate methods of parameter estima-
tion into the existing code. This modifiable estimation framework will allow AFRL/SN to
explore new methods for estimating statistical parameters which hold the promise of still
better image enhancement.

The original proposal objectives follow. We believe that we have successfully addressed
the tasks defined in the initial proposal and outlined below. As the tasks evolved, we
reassigned resources to Objective 1 in order to meet the primary emphasis of the contract,
to develop the prototype system.

Objective 1: Develop a prototype near real time hyperspectral resolution enhancement
system that implements the algorithm developed during Phase I.

Complete: This task represented 80% of our technical effort. The Mercury 1280 AdapDev
system we are delivering is a prototype multi-computer resolution enhancement system
incorporating the final and improved version of our algorithm.

Objective 2: Further develop the MAP estimator to take advantage of any a priori spectral
information such as known spectral signatures in the scene.

Complete: The final algorithm incorporates capabilities for incorporating user-selectable
multi-spectral imagery and for outputting Principal Component imagery. We have also
included the capability for users to incorporate their own linear observation models
for combinations of endmember spectra.

Objective 3: Incorporate techniques for Temperature/Emissivity Separation (TES) for
calibrated high-resolution hyperspectral data. The goal is to recover land surface
temperature from the calibrated resolution enhanced hyperspectral data.

Complete: Although not implemented in the final product, a technique was researched
and detailed in Appendix C. It is anticipated that future customers will have their
own favored TES algorithms that we can implement as required.

Objective 4: Incorporate multi-frame enhancement techniques to be applied to the broad-
band imagery prior to hyperspectral fusion.

Complete: Again, our final algorithm includes the capability for users to incorporate their
own linear observation models for combinations of endmember spectra. We have not
specifically included multi-frame enhancement techniques in the final product as most
hyperspectral and high-resolution panchromatic imaging systems incorporate scanning
technology rather than focal plane arrays suitable for multi-frame enhancement.
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Objective 5: Incorporate Air Force Research Laboratories atmospheric radiance and trans-
mission models to allow atmospheric correction for raw hyperspectral data.

Complete: During this task we ran a NASA/JPL parallelized version of MODTRAN 3
on our multi-node Beowulf Cluster. We stopped short of fully incorporating parallel
FLAASH code into the AdapDev due to funding constraints. Our implementation
plan was to first operate the parallel FLAASH code on a multi-node Beowulf cluster
and then to migrate the code to the Mercury platform. We still believe that this is a
feasible approach and propose to investigate it as a follow-on step.

Objective 6: Incorporate image registration capability in the prototype to align low-resolution
hyperspectral imagery with high-resolution broadband imagery.

Complete: We started this task with a simple registration error analysis. Our results
demonstrated that if the panchromatic auxiliary image is perturbed by even 1 full
pixel from the HSI data our MAP algorithm is no longer any more effective than simple
interpolation. Even a registration error of a fraction of a pixel degrades performance
substantially. Because the MAP algorithm is so sensitive to registration we conclude
that our Image Enhancement product is best suited to improving HSI collocated with
the auxiliary sensor and sharing common viewing optics. This platform architecture
will reduce registration error upfront.

Future Work

1. Explore other forms for the critical MAP algorithm conditional covariance matrix
and imply other assumptions regarding the nature of the high-resolution hyper-pixels.
There is on-going work in the area of Blind Source Separation that may help with the
hyperspectral pixel unmixing problem.

2. Develop a covariance matrix partitioning scheme that increases MAP algorithm per-
formance, subject to speed and memory tradeoffs. The results will depend on the
specific scene used and the relative quantities of the spectra present.

3. Incorporate the parallelized version of the atmospheric correction code FLAASH into
the MAP enhancement algorithm on a Mercury platform.
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Chapter 2

Introduction and Overview

The inherent trade-off between spatial and spectral resolution in hyperspectral sensors has
prompted the development of remote sensing systems that include low-resolution hyperspec-
tral coupled with high-resolution panchromatic and/or multispectral imaging subsystems.
An example is the NASA Earth Observer 1 satellite, which includes a 30 m hyperspectral
sensor and a 10 m panchromatic imager. Commercial panchromatic satellite imagery ap-
proaching 1 m spatial resolution is also available. This provides the opportunity to jointly
process the hyperspectral and higher resolution panchromatic imagery to potentially achieve
improved detection and/or classification performance, improved change detection, and im-
proved visual imagery for human interpretation.

A variety of techniques have been presented in the literature for merging imagery of dif-
ferent spatial and spectral resolution [1–15]. Many of these techniques have been designed
to sharpen multispectral imagery for human interpretation using broadband panchromatic
data. Component substitution methods transform the multispectral imagery and replace
one component with the broadband high-resolution imagery [4,6,16]. Commonly used trans-
formations are intensity-hue-saturation (IHS), where the intensity is replaced, or principal
component analysis (PCA), where the first principal component is replaced. Clearly, infor-
mation in the lower components, that may be critical in classification and detection, is not
enhanced with such an approach.

High pass techniques add high spatial frequency content from the high-resolution image
to the bands of the low-resolution data [3, 5, 8, 9, 16]. The technique in [1] uses a statistical
approach that adds a linear combination of the high-resolution data to a pixel replicated
version of the low-resolution imagery. This technique was designed to enhance the spatial
resolution of the Landsat Thematic Mapper thermal band from the remaining bands. The
method described in [2] and [7] models the relationship between the high-resolution image
and the image to be estimated. Regression techniques are used at the available lower
resolution to obtain the model parameters.

Another approach to hyperspectral resolution enhancement is based on spectral mixture
analysis. A method based on the linear mixing model has been investigated that employs
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Figure 2.1: Block diagram illustrating the flow of information in the MAP estimation frame-
work.

constrained nonlinear optimization techniques to obtain high resolution endmember frac-
tions [12–14]. Even with the physical constraints that assure radiometric validity of the
derived sub-pixel spectra, the optimization is underdetermined and not always able to ar-
rive at a sharpened solution. An alternative approach appends the high resolution image
to the hyperspectral data and computes a mixture model based on the joint data set [15].
A high resolution hyperspectral image, however, is not explicitly estimated.

Our approach is based on a novel maximum a posteriori (MAP) estimation frame-
work [17] for enhancing the spatial resolution of an image using co-registered high spatial-
resolution imagery from an auxiliary sensor. The estimation framework developed allows
for any number of spectral bands in the primary and auxiliary sensor. The technique is
suitable for applications where some correlation, either localized or global, exists between
the auxiliary image and the image being enhanced. A spatially varying statistical model is
used to help exploit localized correlation between the primary and auxiliary image. Another
important aspect of the algorithm is that it allows for the use of an accurate observation
model relating the “true” scene with the low-resolutions observations. This means that
a potentially wavelength-dependent spatially-varying system point spread function (PSF)
can be incorporated into the estimator. Figure 2.1 illustrates the flow of information in the
estimation framework.

Figures 2.2, 2.3, 2.4, and 2.5 introduce some terminology and notation used throughout
the report. Figure 2.2 shows a low resolution hypercube consisting of M = mvmh spatial
coordinates and P spectral coordinates. When represented as a one dimensional vector, a
low resolution hypercube is denoted by:

y = [y1,1, ..., yP,1, y1,2, ..., yP,2, ..., y1,M , ..., yP,M ]T . (2.1)

Similarly, Figure 2.3 shows a multispectral data cube with N = nvnh spatial coordinates
(N > M) and ν spectral coordinates (ν < P ). For a panchromatic image, ν = 1. The one
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dimensional vector representing a multispectral data cube is denoted by:

x = [x1,1, ..., xν,1, x1,2, ..., xν,2, ..., x1,N , ..., xν,N ]T . (2.2)

High resolution hypercubes are denoted by z or ẑ. As depicted in Figure 2.4, they have
N spatial coordinates and P spectral coordinates. A high resolution hypercube in one
dimension is denoted by:

z = [z1,1, ..., zP,1, z1,2, ..., zP,2, ..., z1,N , ..., zP,N ]T . (2.3)

Other terminology used throughout is shown in Figure 2.5. Note that high and low
resolution hyper-pixels are one dimension vectors of length P that vary in the spectral
dimension and correspond to a given spatial coordinate. A super-pixel is a collection of
adjacent high resolution hyper-pixels that exactly fit into a single corresponding low reso-
lution hyper-pixel. We require that each super-pixel correspond to a unique low resolution
hyper-pixel which is equivalent to nv

mv
and nh

mh
being integers.

In Equations (2.1) and (2.3), hyper-pixels are listed in column order and similarly for
Equation (2.2). For example, the first nv hyper-pixels listed in Equation (2.3) represent the
first column of hyper-pixels shown in Figure 2.4.

M low resolution hyper-pixels

P
bands

Figure 2.2: Low Resolution Hypercube y

Throughout various portions of the report, we make references to Mercury computers,
on which certain CPU intensive parts of the MAP algorithm were implemented. The Mer-
cury compute system consists of multiple compute nodes interconnected by a high speed
interconnect fabric called the Raceway. Each compute node consists of a high speed floating
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bands

N high resolution multispectral pixels

Figure 2.3: Multispectral Data Cube x

point processor with an attached vector processor unit (VPU). Each node also contains local
memory and an interconnection to the Raceway.

This report contains 8 chapters including this introduction. Chapter 3 discusses the
delivered software, including highlighted features, installation procedure, and software use.
Chapter 4 presents carefully derived explicit formulas directly implemented in the software
provided. It also answers some practical questions that arose during the initial phases of im-
plementation. Chapter 5 analyzes the performance of the algorithm and Chapter 6 presents
additional analysis of the MAP algorithm with emphasis on Mercury timing. Chapter 7
discusses Stochastic Mixing Models and provides information related to interfacing them
with our MAP software. Chapter 8 discusses mis-registration between input data cubes and
its effect on estimation performance. Appendices A and B detail a mathematical analysis
of alternate forms of the MAP algorithm, and Appendix C gives a atmospheric analysis
preformed by the Nashua office of ATK Mission Research.
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P bands

N    high resolution hyper-pixels

Figure 2.4: High Resolution Hypercube z

Super-pixel

Low resolution hyper-pixel

Multispectral pixel

High resolution hyper-pixel

Figure 2.5: Notation and Terminology
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Chapter 3

Hyperspectral Image Enhancement
Software Installation and Use

A main concentration of the Phase II effort was to deliver a working implementation of
the MAP algorithm on the Mercury Platform. Since one of the goals was for the delivered
software to be easily accessible as a research tool, we have chosen to write all but the
most CPU intensive portions in MATLAB. Secondly, due to the potentially long run times
that might occur, we offload the CPU intensive parts of the implementation to a network
of compute nodes running in parallel. Thirdly, because there are a number of variations
of the MAP code, we incorporate them all into a single code that could be called as a
function from MATLAB. Lastly, due to the complexity of inputs and calling arguments and
the relationships between them, we developed a GUI interface that will reduce the time it
might take for a new user to begin using the software.

We want to emphasize that we have provided a powerful tool that is a blend of code
written in MATLAB (for ease of use and portability across computing architectures) and
C (for speed and computing power on a Mercury system). The use of MATLAB as a user
interface drastically simplifies the use of this algorithm and relieves the user from having
to know details concerning the use of Mercury systems. All the user has to know is how to
run MATLAB and they can tap into the power of the Mercury system.

The intensive portions of the MAP Algorithm are implemented on a Mercury computer
system. However, the MATLAB scripts and GUI supplied should run on any computing
hardware with MATLAB installed.1 The user only need set the number of available Mercury
CE’s (Computational Elements) equal to 0. In the case of a Mercury computer system whose
host computer has MATLAB installed, any number of available CE’s may be used. Whether
it’s through the supplied MAP_Algorithm.m function or the GUI interface, the full use of all
nodes on a Mercury computer has been made simple for the user.

We have tested the software on four Mercury computer systems (two with a Windows

1The GUI requires MATLAB version 6.5 or higher.
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2000 PC host and two with a Unix Sun host) and as a result are confident that our parallel
implementation is portable to any Mercury system with MATLAB installed on the host
computer.2 One such Mercury system (the AdapDev 1280) is scheduled for delivery at
the end of the contract and will come with all required software pre-installed (excluding
MATLAB).

As discussed below, we provide a single MATLAB function MAP_Algorithm.m that may
be directly called by the user. Since the interface is through MATLAB, the analyst need
not be concerned with the details of parallel programming, but can still benefit from the
fast response times resulting from it. Other advantages of using MATLAB include plotting
capabilities and a familiar computing environment.

3.1 Major Functions, Inputs, and Outputs

MAP_Algorithm
Matlab

Wrapper

User created. Typically plots
of SNR, images, or timing.

Function called by user.
Calling arguments prescribe

features selected.

MAP_Estimate_Host
(Matlab on Host)

MAP_Estimate_Merc
(C on Mercury)

Estimates statistical parameters
and calls Mercury C code

 parallelized over superpixels.

Estimates statistical parameters
and loops over superpixels serially.

Figure 3.1: Major Functions of the MAP Algorithm

Figure 3.1 depicts the major functions of the MAP Algorithm. We see from the figure
that the main function provided is MAP_Algorithm, which may be called directly by the
user through use of a user supplied wrapper function. We have supplied several example
wrapper scripts, including an easy to use GUI. The two other main functions depicted
compute estimates of statistical parameters as well as the MAP estimate. The “host”
function is written solely in MATLAB and is portable to any hardware platform running
MATLAB. The host function makes a call to another function that computes the MAP
estimate by looping over super-pixels. The “merc” function runs on a Mercury platform. It
computes the statistical estimates in MATLAB and the MAP estimate through a parallel
computation over super-pixels.

Figure 3.2 depicts the major inputs and outputs of MAP_Algorithm. Perhaps the most
important inputs are a low resolution hypercube y and either a panchromatic or multispec-

21 GB or more of physical memory on the host computer is recommended.
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High Res
Hyperspectral

Data Cube
zhat

Figure 3.2: Major Inputs and Outputs of the MAP Algorithm

tral image array x. These may come in the form of collected data from a two sensor platform
or as degraded images from a known high resolution hypercube z. The main output is the
MAP estimate ẑ of a (possibly hypothetical) hypercube z. Some of the other inputs of
Figure 3.2 are briefly discussed below.

The point spread function is linear and maps a hypothetical vector z to a vector y
according to the statistical model y = Wz + n. We take W to be a weighted averaging
process on z. The entries of each super-pixel are spatially averaged one band at a time
in order to obtain the corresponding low resolution hyper-pixel. Assuming super-pixels
do not overlap spatially yields a sparse matrix W with orthogonal rows and columns. It
may be partitioned so that each block is a (possibly 0) multiple of an identity matrix of
appropriate size. This special form of W facilitates PCA subspace analysis, because the
model y = Wz + n is preserved.

The spectral weight matrix is optional and corresponds to a similar linear model x =
Sz + η. Intuitively, this model should be assumed when frequencies corresponding to x
and y overlap significantly and should not be assumed when they do not. Optionally, the
matrix S may be supplied by the user or else computed from x and y using a least squares
technique.
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We have provided a total of four options for computing statistical parameters, three of
which are self contained, and one of which requires an external Stochastic Mixing Model
computation. The statistical parameter estimation plays a significant role in the determining
the quality of the resulting map estimate ẑ. Consequently, we have anticipated the desire to
interface new parameter estimation algorithms and have designed the software accordingly.

There are three PCA options available. The first option is to not use PCA at all,
but rather compute solely in the original “spectral components”. The second option is to
compute the MAP estimate in a PCA vector space and return the MAP estimate ẑ in the
same space. The third option is a combination of the first two, namely to compute the
MAP estimate in PCA space, but return the MAP estimate as spectral components. Any
number of PCA components may be chosen.

Another option allows the application of a hybrid MAP-Interpolation algorithm. After
specifying the number of components to be used for MAP estimation, the remaining com-
ponents specified are generated using a simple interpolation method. Although the hybrid
method works in both PCA space and spectral space, it is probably most useful in conjunc-
tion with PCA. Generally, there is little to gain when using the MAP estimation technique
with lower ordered PCA components. When using PCA, a hybrid approach typically pro-
duces answers that compare favorably with a non-hybrid approach, but runs faster than the
non-hybrid approach.

3.2 Software Highlights

As shown in Figure 3.3, MAP_Algorithm.m logically breaks up into 2 major components
depending on whether the underlying broadband frequencies overlap or are disjoint. In the
former case, a linear model x = Sz + η between the broadband (or multispectral) image
and the unknown high resolution hyperspectral image is assumed; in the later it is not. As
detailed in Chapter 4 and Appendices A and B, all three forms of the MAP algorithm have
been analyzed mathematically. Under the assumption of a linear model x = Sz + η, we
have proved that all three forms of our MAP estimator are identical (Section 4.5). If no
such linear model is assumed, only the Form 1 MAP estimator is applicable. Therefore,
the Form 1 estimator alone is sufficient for implementation, although it requires different
implementations depending on whether the linear model is assumed or not.

Each implementation above breaks down further into a General Form 1 implementation
and a Simplified Form 1 implementation. The latter assumes a more restricted structure of
the associated covariance matrix and will run faster. Thus, there are 4 major components of
the Form 1 MAP estimator that have been implemented, and all four have been integrated
into the single user interface MAP_Algorithm.m.

Referring to Figure 3.3, the fastest run times are realized when the Simplified Form 1
Implementation is exercised. This occurs when a simplified zero-nonzero structure of the
covariance matrix is assumed, and the noise parameter σn is zero. The simplified structure
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Figure 3.3: Logical Break up of the MAP Algorithm

of the covariance matrix is referred to as the “special case assumption”, and the requirement
that σn = 0 is referred to as the “noise free condition”. If both the special case assumption
and the noise free condition hold, a matrix inverse is avoided for each super-pixel resulting
in a fast MAP estimation. Assuming a fast method of estimating covariance matrices is
available, a real time Mercury implementation is feasible based on, for example, Equation
(4.70).

The Simplified Form 1 implementation is automatically detected by MAP_Algorithm.m.
All the user need do is set var_y=0 (σ2

n is the input parameter var_y of MAP_Algorithm.m)
and specify a covariance estimation technique consistent with the special case assumption.
Speed improvements are automatically enabled when the noise free condition and special
case assumptions are encountered.

In general, the code structure assumes all covariance matrices are block diagonal, where
all blocks have the same size, but may otherwise be different from one another. However,
the special case assumption requires additional structure. While the blocks need not be
identical, they are required to be “identical within super-pixels”. Details are presented in
Section 4.11 of Chapter 4.

As seen in Figure 3.3, the covariance estimate required is unconditional when x = Sz+η
is assumed, and is conditional otherwise. In either case, a conditional covariance estimate
is ultimately used as part of the Form 1 MAP Estimate. If the linear model x = Sz + η is
assumed, we convert it to the conditional version using Equation (4.27). This is desirable
since an unconditional covariance is easier to specify than a conditional covariance.

There are presently two ways to specify a conditional covariance matrix when x = Sz+η
is not assumed. Both are based on VQ partitioning. In one case (ccov_meth=1), VQ clas-
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sification is based on the input hypercube y and in the other case (ccov_meth=2) VQ clas-
sification is based on an estimate of the conditional mean. The trade-off between these two
methods is speed versus image enhancement quality. In the first method (ccov_meth=1),
the special case assumption holds so that no matrices are inverted, and the MAP algorithm
runs quickly.

There is presently one self contained algorithm for estimating the unconditional covari-
ance matrix when x = Sz + η is assumed. This is a simple estimation technique where all
blocks of the block diagonal covariance matrix are identical, so that the special case assump-
tion is met in this case as well. The Stochastic Mixing Model (SMM) interface discussed
later, also falls under the assumption x = Sz + η, and it may be thought of as a second
method for estimating the unconditional covariance matrix. However, this method is not
self-contained since it requires input from an external SMM algorithm.

We have established a software framework for incorporating new covariance estimation
techniques. A MATLAB programmer can incorporate the new estimation technique by
adding a new function call to the existing MATLAB function param_est.m. Any new
technique that adheres to the general input and output data structures established in
param_est.m can be incorporated in a straightforward manner. We believe that these data
structures are sufficiently general for the easy incorporation of new covariance estimation
techniques as they become available.

The code that runs on a Mercury system makes extensive use of the Scientific Algo-
rithm Library (SAL), which is a C library provided by Mercury. SAL is a floating point
library specifically optimized for AltiVec equipped PowerPC processors. It has proven to
significantly speed up codes residing on a single node. However, the functions available are
somewhat limited as compared to a more mature library such as LAPACK.

We also make extensive use of another C library provided by Mercury called the Parallel
Acceleration System (PAS). The PAS library is a means by which the available nodes pass
data to one another. An advantage of using PAS as opposed to another communication
library (e.g. DX) is its ability to scale. For example, we developed our C code on the 8 node
Mercury AdapDev 1280, and then we successfully ported it to both the 96 node (Titan) and
64 node (Hawk) computer systems at Wright-Patterson Air Force Base (WPAFB). Due to
the scalability of PAS, the port was accomplished with minimal changes. A disadvantage
of PAS is that its portability is limited to Mercury machines, while DX is standard.

Through use of the PAS communication library, we have developed a scalable framework
for projects implemented on Mercury computer systems. The intention of this framework is
to allow programmers with little or no knowledge specific knowledge of Mercury computers
to develop applications relatively quickly. The framework also facilitates swapping alterna-
tive functions with different argument lists as separate building blocks. As new functions are
developed, swapping them with existing functions is accomplished with minimum impact
to the PAS framework that surrounds them.

Other highlights include the many options available within MAP_Algorithm.m, some of
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which are listed below:

• Work in either the spectral domain or PCA domain.

• Use MAP estimation on leading components and interpolation on the rest.

• Stochastic Mixing Model interface.

• Flexibility in specifying PSF or spectral response functions.

• Work with either panchromatic or multispectral input data.

These options are discussed further in the documentation below.

3.3 Installation

All required software has been placed in a single file. When installed (as directed below),
the result is a subdirectory named mapalgorithm. Once you have generated this directory,
all of the required files will be available to MATLAB. Windows based machines require the
Winzip utility (a scaled down version of Winzip comes with Windows XP), and Linux/Unix
machines require the tar utility.

For Windows based machines, unzip the compressed file mapalgorithm.zip to c:\

thereby generating the directory c:\mapalgorithm. For Linux/Unix based machines, untar
the mapalgorithm.tar file by issuing the command tar xvf mapalgorithm.tar.

In MATLAB, change the working directory to mapalgorithm and begin running the
code using either the graphical user interface or the provided MATLAB script wrappers.
For Windows based machines, the byte format option (specified within the GUI for example)
should be set as little endian (LE), and for Linux/Unix based machines it should be set as
big endian (BE).

3.4 Use of the GUI

Figure 3.4 displays a GUI wrapper of MAP_Algorithm.m named HyperViewer.m. It has the
same functionality as the MATLAB script MAP_Wrapper.m described in Section 3.5, however,
it is more intuitive and simpler to use. Certain options automatically become inaccessible
as appropriate when other options are selected, relieving the user of remembering how the
various options relate to one another.

An underlying assumption is that a known z is available to aid us in determining the
performance of the MAP Algorithm. This known z will be used to generate y and x. Using
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Figure 3.4: HyperViewer GUI

x and y as input, the MAP Algorithm is used to estimate a high resolution hypercube ẑ.
Then, z and ẑ are compared in order assess the effectiveness of MAP_Algorithm.m.

The starting point is a MATLAB “.mat” file containing a high resolution hypercube,
which may be reduced either spatially or spectrally in order to form z. This is useful if a
large data set is stored, but only a subset of it is desired for analysis. The “.mat” file must
contain the “full scale” hypercube as a three dimensional variable with vertical dimension
first, horizontal dimension next, and spectral dimension last. An example is provided in the
file aviris.mat.

After loading the “.mat” file with the MATLAB Load command, HyperViewer GUI is
started by typing HyperViewer(Z) at the MATLAB prompt where Z is the name of the full
scale hypercube stored. The variable name supplied may be anything, but it is identified in
HyperViewer as hyp. In Figure 3.4 we see the full scale hypercube being displayed, indicated
by the drop down window in the upper left hand corner showing the word “hyp”.

Once the MAP Algorithm is run by clicking the Run button, the scaled down hypercube
z, the degraded images x and y, and the MAP estimate ẑ all become available for display
in the same fashion as hyp. The low resolution hypercube y is returned as two possibly
different hypercubes, one (yIn) being input to Map_Algorithm.m and the other (yOut) being
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output from Map_Algorithm.m. They will be different only if PCA analysis is specified by
taking pcaMode=1.

The image corresponding to any band may be selected for viewing simply by selecting a
band appearing in the scroll bar immediately to the right of the image. If RGB is checked,
then three bands must be selected in order to produce an RGB image. This is done by
selecting the band first within the same scroll bar, and then clicking one of the R, G, or B
buttons, to assign the band to Red, Green, or Blue respectively. Alternately, these may be
entered manually. Two dimensional plots of band number versus intensity may be plotted
by checking “zPlot”, and then clicking on the desired pixel.

The spatial dimensions of the initial scaled down hypercube z are specified as nv and nh

for vertical and horizontal respectively. These dimensions must be less than or equal to the
dimensions of the full scale hypercube hyp. The spectral dimension of z (denoted by P ) is
determined by specifying Start, Increment, and Stop bands of hyp. For the data specified
in Figure 3.4, the bands of z will be 1, 6, 11, . . . , 221 so that P = 45. Thus, z is simply a
restricted version of the full scale hypercube hyp.

The creation of y and x depend on the dimension parameters mv, mh, and ν (displayed
as mv, mh, and nu resp.) as well as the point spread function PSF and the spectral response
matrix s. The high resolution nv×nh×P hypercube z is degraded spatially using the PSF
to obtain the mv×mh×P hypercube y. Similarly, z is degraded spectrally using s in order
to obtain the nv × nh × ν multispectral data cube x. The user has the flexibility to define
his own PSF or spectral response matrix s by editing a script. Scripts yielding the default
PSF and matrix s are provided as examples.

The PSF used to determine y from z should be thought of as a two-dimensional Finite
Impulse Response (FIR) filter. Such a filter may be represented as an Lv×Lh matrix where
Lv = nv/mv and Lh = nh/mh. The spectral response function s is represented as a P × ν
matrix. The kth column of s consists of the spectral weights used to determine the kth

multispectral value of x via weighted averaging of high resolution hyper-pixels. The only
general requirements for s are that each entry be nonnegative and each column sum be 1.
Both of these functions are discussed in detail in Chapter 4.

After selecting a PCA mode option, a covariance estimation technique, the number of
VQ partitions (if applicable), and a designation of whether the linear model relating x and
z is assumed, the user may run the MAP algorithm by clicking the run button. After the
run is complete, an SNR plot indicating the effectiveness of MAP_Algorithm.m is obtained
by clicking the SNR button, or a time line plot may be displayed if numCE > 0. Example
SNR plots are presented in Chapter 5 and example time line plots are presented in Chapter
6.

After clicking the run button, all inputs and outputs of MAP_Algorithm.m are returned
to the MATLAB base. The user may then execute any additional MATLAB functions or
scripts at hand. For example, the user may wish to issue the MATLAB SAVE command in
order to save all inputs and outputs of MAP_Algorithm.m to a “.mat” file. Since y can be
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changed by MAP_Algorithm.m, input and output versions of y reside in different structures.
Similarly, input and output versions of s reside in different structures. Under the file menu
of the HyperViewer GUI, the user may also print a screen shot of the current state of the
GUI to help document what went into generating outputs of MAP_Algorithm.m. The screen
shot looks best if printed in landscape format.

Documentation for many of the options appearing in Figure 3.4 may be retrieved by
resting the mouse cursor over the corresponding variable. In addition, GUI variables are
a subset of the input variables of MAP_Algorithm.m, which are described in detail within
Section 3.5 as well as the code comments of MAP_Algorithm.m.

Also appearing in Figure 3.4 is an option to supply a Stochastic Mixing Model (SMM)
file. The format of the required file is detailed in Section 3.5, and a general description SMM
is presented in Chapter 7. An SMM file named Eismann.mat is included as an example.

The byte format option little endian (LE) or big endian (BE), is dictated by whether
the host computer is operating under Windows or Linux/Unix respectively. It must be set
by the user as appropriate whenever a Mercury system is being used. The input cfg_file
is described in the next section and also applies solely to Mercury systems. It may be set
for the HyperViewer GUI by editing HyperViewer.m.

3.5 Direct Use of the MAP Algorithm Function

In addition to the HyperViewer GUI, we have created the MATLAB script MAP_Wrapper.m.
Both HyperViewer and MAP_Wrapper.m may be viewed as alternative wrappers of the un-
derlying function MAP_Algorithm.m. The wrapper MAP_Wrapper.m should be helpful as a
guideline to users who wish to write their own wrapper of MAP_Algorithm.m. It is set up to
make changing inputs relatively easy, and is more transparent from a programmers perspec-
tive than HyperViewer. The script is run merely by typing MAP_Wrapper at the MATLAB
prompt.

The underlying assumption made by MAP_Wrapper.m is the same as that made by
HyperViewer, namely that we begin with a full scale hypercube hyp and optionally re-
duce it to a sub-hypercube named z. The inputs y and x are created by degrading z
through use of the PSF and s respectively. The function MAP_Algorithm.m is then run to
produce the MAP estimate ẑ, which is compared with z in order to assess the effectiveness
of MAP_Algorithm.m.

After calling the function MAP_Algorithm.m, MAP_Wrapper.m automatically plots images
for bands 1,2,3, the average over all bands of ẑ, and an SNR plot comparing z with ẑ. If
ẑ has been transformed into its PCA components (i.e. pca_mode==1), transforming z
into its PCA components is required before a meaningful SNR plot can be made. This
transformation is performed automatically by MAP_Wrapper.m as needed. Whenever one or
more CEs are specified, MAP_Wrapper.m finishes by plotting a time line similar to the output
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of Mercury’s TATLView program. This allows for a detailed timing analysis such as that
presented in Chapter 6.

Other wrappers that might be considered could involve different underlying assumptions.
For example, in a realistic situation, the user would not have a high resolution hypercube
(hyp) to start with. The assumption then would be that y and x are known a priori and
would not be created by degrading a known z. Assuming x and the hypothetical z are
related through a linear model x = Sz + η, the matrix S (created from the smaller matrix
s) may not be known. In this case, the user may choose to have s created by supplying it
to MAP_Algorithm.m as an empty matrix.

Optionally in MAP_Algorithm.m, a hybrid MAP/interpolation may be specified where
the first Phyb components are computed using the MAP estimate and the last P − Phyb

are interpolated. For simplicity, this option is not exercised in either HyperViewer or
MAP_Wrapper.m, however it has been thoroughly tested and works with either spectral or
PCA components. The utility of the hybrid option is that it is very fast compared to the
general MAP algorithm where many P × P matrices are inverted. Of particular interest is
the hybrid option in conjunction with PCA analysis, since interpolation on higher ordered
components gives essentially the same SNR as the MAP estimate.

We conclude this section by describing all input and output arguments of MAP_Algorithm.m.
As of the writing of this document, the description below matches the code comments ex-
actly.

%

% Usage: mapStructOut = MAP_Algorithm (mapStructIn)

%

% The I/O arguments to map algorithm are in the form of Structures where

% the fields of the structures are given below (i.e. y = mapStructIn.y).

%

% Input (mapStructIn):

% y: Low resolution hypercube (mv x mh x P).

%

% x: Co-registered and aligned high-resolution multispectral cube

% (nv x nh x nu). Here aligned means that x and y span the

% *exact* same field of view and nv/mv and nh/mh are integers.

% Such alignment is crucial to performance. For a panchromatic

% image, nu = 1.

%

% hybrid: 1 to apply MAP/interpolation hybrid, 0 for MAP alone.

%

% P_hyb: Number of components used in MAP portion of hybrid. The

% remaining P - P_hyb components are 3d interpolated.

% Requirements: 0 <= P_hyb < P if hybrid = 1,

% P_hyb <= Npca if hybrid = 1 & pca_mode > 0.
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% Set P_hyb = 0 for pure interpolation (no MAP estimation).

%

% pca_mode: > 0 for applying MAP algorithm to principal components, 0

% for applying MAP algorithm to original spectral components.

% Set pca_mode=1 to return PCA coordinates and set pca_mode=2

% to return spectral coordinates.

%

% Npca: Number of principal components computed if pca_mode > 0.

% Requirements: 1 <= Npca <= P if pca_mode > 0,

% P_hyb <= Npca if hybrid = 1, pca_mode > 0.

%

% SMM_file: A MATLAB ’.mat’ file containing high res abundance maps,

% end-member mean vectors, end-member covariances, and a

% PCA transformation matrix if pca_mode == 1. If there is

% no SMM file, set SMM_file = ’none’. An SMM file is expected

% to contain the following variables with the exact names and

% sizes as specified below (also see MAP_SMM.m):

% a_smm = High resolution abundance mapping (nv x nh x Ne)

% where Ne is the number of end members.

% m_eps = End member mean vectors (K x Ne) where K = P if

% pca_mode = 0, and K = Npca otherwise.

% C_eps = End member covariances (K x K x Ne)

% E_smm = PCA transformation matrix (P x Npca). Take E_smm

% as an empty matrix if no PCA analysis was

% performed, in which case K = P and a_smm, m_eps,

% C_eps are all ’spectral domain’ quantities.

%

% Caution: If an SMM file is provided, other input parameters to

% this function must be provided in a consistent manner. Of

% particular concern is the consistency of x, y, s, and nu. In

% general, whatever (overlapping) input parameters used in the

% creation of a_smm, m_eps, C_eps, and E_smm, should be exactly

% the same parameters provided to this function.

%

% Jseed: Initial random number seed for VQ partitioning.

%

% var_y: Noise variance for all pixels and bands in y. In the final

% report, this is defined as the variance of n = y - Wz. It

% is also a diagonal load of an inverted matrix appearing in

% the MAP estimate. Increasing var_y will improve the

% conditioning of the matrix being inverted.

%

% var_x: Noise variance for all pixels and bands in x. In the final
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% report, this is defined as the variance of eta = x - Sz. It

% is also a diagonal load of an inverted matrix appearing in

% the equation that relates conditional parameter estimates

% (which are required for our Form 1 implementation) with the

% corresponding unconditional parameters. Increasing var_x

% will improve the conditioning of the matrix being inverted.

%

% psf: FIR point spread function of size Lv x Lh where Lv = nv/mv,

% and Lh = nh/mh.

%

% As described in the final report, specification of a psf matrix of size

% Lv x Lh is equivalent to taking all rows of the M x L matrix omega_hat

% to be psf(:)’ where M = mv*mh and L = Lv*Lh. As presented in the

% report, omega_hat contains the non-zero entries of the M x N matrix

% omega and the MP x NP matrix W is given in terms of omega by:

% W = Q*kron(omega,eye(P)).

%

% xeqSz: 1 if x and z are linearly related by x = Sz + eta.

% 0 otherwise.

%

% cov_meth: Method of estimating the (unconditional) covariance matrix Cz

% This method applies only when xeqSz=1. Presently one type:

% cov_meth = 1: all PxP blocks are identical.

%

% ccov_meth: Method of estimating the conditional covariance matrix Cz|x

% This method applies only when xeqSz = 0. Presently two types:

% ccov_meth = 1: VQ partitioning, classification on y.

% ccov_meth = 2: VQ partitioning, classification on Muz|x.

%

% I_meth: Method of interpolation for obtaining mean images from

% down sampled images. Same options as interp2 (e.g.’linear’).

%

% NVQ: Number of partitions in VQ (if applicable).

%

% s: Spectral response matrix if applicable (i.e. if xeqSz = 1).

% Specify as an empty matrix in order to compute it using

% a constrained least squares technique. If nonempty, the

% size of s should be P x nu unless both hybrid=1 and

% pca_mode=0, in which case the size should be P_hyb x nu.

% Each entry of s must be nonnegative and each column must

% sum to unity.

%

% The P x nu spectral response matrix s (if provided at all)
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% should be provided in the spectral domain. If PCA analysis

% is to be performed (i.e. pca_mode > 0), s will be

% automatically transformed into PCA space. Therefore, if

% pca_mode > 0, s will be transformed by s = Ey’*s, where Ey

% is the P x Npca matrix described below. The resulting size

% of s is Npca x nu.

%

% If hybrid = 1 and pca_mode > 0, the Npca x nu matrix s is

% later restricted to its first P_hyb components. Thus,

% regardless of the value of pca_mode, the final size of

% s is P_hyb x nu whenever xeqSz = hybrid = 1.

%

% num_CE: Number of nodes (CE’s) to use on a Mercury computer system.

% Set this input to 0 if not running on a Mercury. Otherwise,

% setting this to 0 will run MAP_Algorithm on whatever host

% computer is being used as interface to the Mercury.

%

% Input required if running on a Mercury computer system:

% WorkerStack: size of the stack on each worker CE (# bytes)

% WorkerHeap: size of the heap on each worker CE (# bytes)

% ControlStack: size of the stack on the controller CE (# bytes)

% ControlHeap: size of the heap on the controller CE (# bytes)

% The controller heap size may need to increase when the controller

% is the only node specified for execution. It may be decreased

% proportionally as worker nodes are specified, because each node

% will need proportionally less memory to hold its assigned

% super-pixels. Page faults and resources exhausted errors can

% many times be corrected by adjusting the controller heap size.

% ceid_wkrs: array of worker nodes to run on the Mercury system

% ceid_ctrl: the CE id of the control node on the Mercury system

% byte_format: Byte format of host: 1 = little endian (e.g. Intel host)

% 2 = big endian (e.g. Sun host)

% cfg_file: Name and location of Mercury ’.cfg’ file for application

% of a configmc command on the Mercury host. For example,

% cfg_file = ’C:\MercurySoftware\AdapDev\AdapDev.cfg’

% will issue the following command from MAP_estimate_merc.m:

% configmc -cf C:\MercurySoftware\AdapDev\AdapDev.cfg init

% The intent is to have an automatic way of avoiding "out of

% resources" crashes on the Mercury. The variable cfg_file is

% ignored if not running on a Mercury (designated by taking

% numCE = 0). To avoid the application of a configmc command

% when running on a Mercury, set cfg_file = ’skip’.

%
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%

% Output (mapStructOut):

%

% Pzhat: Size of the spectral dimension of the MAP estimate. It is

% identical to the input P (i.e. third dim of input y) unless

% pca_mode = 1. If pca_mode = 1, then Pzhat = Npca.

%

% y: Low resolution hypercube of size mv x mh x Pzhat. If

% pca_mode = 1, y is transformed into PCA space. Otherwise, it

% is identical to the input y.

%

% s: Spectral response matrix (if applicable) adjusted according to

% a principal component transformation if pca_mode = 1. The

% output size is Pzhat x nu unless hybrid = 1, in which

% case the output size is P_hyb x nu.

%

% zhat: The MAP estimate: a high resolution hypercube of size

% nv x nh x Pzhat. If pca_mode = 1, principal components are

% returned. If pca_mode = 2, processing is performed in PCA

% coordinates but the resulting MAP estimate is returned in the

% original spectral coordinates.

%

% Cy: P x P spectral covariance matrix used for PCA transformation.

% Returned as an empty matrix if pca_mode = 0. Here, P is the

% size of the spectral dimension of the input y.

%

% Ey: P x Npca matrix of eigenvectors of Cy. The jth column of Ey

% is the eigenvector corresponding to the jth eigenvalue of Cy

% where the Npca eigenvalues sorted from largest to smallest.

% Returned as an empty matrix if pca_mode = 0.

%

3.6 Other Wrappers

Also provided is a third wrapper of MAP_Algorithm.m, named MAP_Wrapper_diagnostic.m,
whose purpose is to provide the user with diagnostic information about the magnitude of
differences between running on the host and running on the network of CEs. An important
application of this is to identify malfunctioning nodes. We have used the diagnostic wrapper
to identify a bad node (node 77 as determined by the default configuration file) on the Titan
96 node Mercury system at WPAFB. The cause is likely to be faulty local memory at that
node.
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Code run on the network of CEs is written in single precision C. Conversely, code run on
the host computer is written in double precision MATLAB. Due to the different precisions
involved, there will be differences between the resulting ẑ that each produces. In order to
quantify these differences, MAP_Wrapper_diagnostic.m calls the MAP_Algorithm twice in
succession: first on the host computer, and the next on the network of CEs. Afterward, a
plot is produced, showing the magnitude of the (mean) differences on the vertical axis and
the CE identification on the horizontal axis.

Editing the script MAP_Wrapper_diagnostic.m, the user may specify any desired input
parameters. The value of mapStructIn.num_ce is automatically set to zero for the first
call to MAP_Algorithm.m, and automatically set to the user specified value of the variable
num_ce for the second call. After the desired inputs are supplied, the diagnostic wrapper is
run as a MATLAB script simply be typing MAP_Wrapper_diagnostic.m at the MATLAB
prompt.

Figure 3.5 shows an example of running MAP_Wrapper_diagnostic.m on the Mercury
AdapDev 1280. Each marker on the plot represents the difference in ẑ corresponding to a
particular super-pixel. The CE that processed the super-pixel lies directly underneath the
marker. We see in Figure 3.5 that all differences between the two runs are relatively small,
indicating that both implementations agree with one another and that all nodes tested are
functioning properly. An unusually large difference at a particular CE would indicate a
problem at that CE.

A fourth wrapper of MAP_Algorithm.m, named plot_timing.m, generates timing plots
as a function of available nodes. In this wrapper, several runs of MAP_Algorithm.m are
made is succession, where the number of nodes used for a given run varies while the other
input variables are fixed. These plots help access the utility of the Mercury platform as it
pertains to this project. Several examples are presented in Chapter 6.
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Figure 3.5: Diagnostics on the AdapDev 1280
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Chapter 4

Mathematical Derivations and
Analysis

This chapter presents the mathematical framework relating to the theory and computer
implementation of a Maximum A Posteriori (MAP) algorithm for image enhancement. A
number of practical questions that arose during the initial phases of implementation are
addressed and answered here. Some of the topics addressed are the singular or non-singular
status of certain matrices that require inversion, the implication of making various covari-
ance matrices diagonal, the relationship between conditional independence and diagonal
covariance matrices, and the conditions under which the various forms of the MAP algo-
rithm are identical. Careful attention has been paid to accurately detail the mathematical
equations required for implementation on either a serial or parallel computer system.

Almost universally, we assume the same notation that appears in the article [18]. In
particular, a broadband image array x (which is generalized to a multispectral image in
Sections 4.14 and 4.13), a low resolution hypercube y, and a high resolution hypercube z
have entries in band-sequential lexicographical order:

x = (x1, x2, . . . , xN)T ,

y = (y1,1, y2,1, . . . , yP,1, y1,2, y2,2, . . . , yP,2, . . . , y1,M , y2,M , . . . , yP,M)T ,

z = (z1,1, z2,1, . . . , zP,1, z1,2, z2,2, . . . , zP,2, . . . , z1,N , z2,N , . . . , zP,N)T .

Thus, a broadband image array consists of N pixels, a high resolution hypercube con-
sists of P bands with N pixels in each band, and a low resolution hypercube has P

bands with M < N pixels in each band. The mth low resolution hyper-pixel is given

by ~ym = (y1,m, y2,m, . . . , yP,m)T , and the ith high resolution hyper-pixel is given by ~zi =
(z1,i, z2,i, . . . , zP,i)

T . A super-pixel is a collection of adjacent high resolution hyper-pixels
and are associated with a given low resolution hyper-pixel as described in Section 4.2.

As seen in the above ordering for y and z, the spectral dimension of length P is listed
first. We denote the vertical and horizontal spatial dimensions of y by mv and mh and
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those of z by nv and nh so that M = mvmh and N = nvnh. Referring to Figure 4.1 (where
nv = 4, nh = 6, mv = 2, and mh = 3), we see that the high resolution hyper-pixel ~zi lying in
row k and column j has index i = (j − 1)nv + k for 1 ≤ k ≤ nv and 1 ≤ j ≤ nh. Similarly,
the low resolution hyper-pixel ~ym lying in row k and column j has index m = (j− 1)mv + k
for 1 ≤ k ≤ mv and 1 ≤ j ≤ mh. Therefore, hyper-pixels ~y1, ~y2, . . . , ~yM and ~z1, ~z2, . . . , ~zN

are listed in column order. The entries of the broadband image array x are listed in column
order as well.

We assume that z is a multivariate random variable with a prior Gaussian distribution
and further assume Bayesian general linear models (see 10.6 of [17]):

x = Sz + η,

y = Wz + n,

where S denotes an N × NP spectral response matrix1, and W denotes the MP × NP
matrix form of a point spread function. By definition of a Bayesian general liner model, the
vectors η and n are zero mean multivariate Gaussian random variables and are independent
of z. It follows from these assumptions that x and z are jointly Gaussian as are y and z.

The model x = Sz+η is only assumed optionally, since we also want to examine the case
where it may not hold. The model would most naturally be assumed when the frequency
band associated with the known hypercube y contains the frequency band associated with
the panchromatic image x. The model would most likely not be assumed if these frequency
bands are disjoint. Much of this chapter applies regardless of whether or not the model is
assumed. The way to decern if an equation depends on the model is by simply observing
whether the matrix S (or its related quantity s) appears.

Although some results are presented in terms of arbitrary covariance matrices Cη and
Cn of η and n, we will typically make the additional assumption that they are multiples of
the appropriate identity matrix:

Cη = σ2
ηIN ,

Cn = σ2
nIMP .

There are three equivalent forms of MAP estimators address here. Each form is rep-
resented in terms of a product of probability density functions that is to be maximized
over all possible z. The argument z for which maximum is attained, is expressed as the
solution to a matrix equation. The derivation of each such matrix equation from its PDF
representation, and a proof of their equivalence, is presented in Section 4.5.

1The way S is defined later in Equation (4.43), x − η = Sz will provide x − η in super-pixel ordering
(defined later), assuming z is given lexicographically.
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4.1 Kronecker Products

Since significant use is made of the direct sum and the Kronecker tensor product [19], we
define them below and list some of their properties. The direct sum of any matrices A and
B is given by:

A
⊕

B = diag(A,B) =

[
A 0
0 B

]
.

Extending this in the obvious way to a direct sum of M matrices we have:
(

M⊕
m=1

Am

)(
M⊕

m=1

Bm

)
=

M⊕
m=1

AmBm,

(
M⊕

m=1

Am

)T

=
M⊕

m=1

AT
m,

(
M⊕

m=1

Am

)−1

=
M⊕

m=1

A−1
m ,

where Am and Bm are assumed to have compatible sizes for matrix multiplication.

For any matrices A and B, the (right) Kronecker tensor product of A and B is defined
by:

A⊗B =




a1,1B a1,2B . . . a1,nB
a2,1B a2,2B . . . a2,nB

...
...

...
am,1B am,2B . . . am,nB


 ,

where ai,j denotes the (i, j) entry of the m× n matrix A. The Kronecker product is an
intrinsic MATLAB function “kron” where:

A⊗B = kron(A,B).

Several useful facts concerning Kronecker tensor products are:

(A⊗B)⊗ C = A⊗ (B ⊗ C), (4.1)

A⊗ (B + C) = A⊗B + A⊗ C, (4.2)

(B + C)⊗ A = B ⊗ A + C ⊗ A, (4.3)

(A⊗B)T = AT ⊗BT , (4.4)

(A1 ⊗B1)(A2 ⊗B2) = A1A2 ⊗B1B2, (4.5)

where the matrices appearing within ordinary matrix operations have compatible sizes. The
additional property (A⊗ v)B = AB⊗ v where v is a column or row vector, may be derived
from (4.5) by setting B = B ⊗ 1, and similarly for the property (v ⊗ A)B = v ⊗ AB.
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4.2 Super-pixel Ordering
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Figure 4.1: Hypercube partitioned into super-pixels

Figure 4.1 depicts a high resolution hypercube with N = 24, M = 6, and P = 4
partitioned into super-pixels. The column ordering of the high resolution hyper-pixels is z =
(~z1; ~z2; . . . ; ~z24), where the semicolon denotes vertical concatenation. The above partitioning
defines a new ordering given by listing super-pixels in column order. Defining q to be the
permutation

q =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 2 5 6 3 4 7 8 9 10 13 14 11 12 15 16 17 18 21 22 19 20 23 24

)
,

the super-pixel ordering of z is given by z̃ = (~zq(1); ~zq(2); . . . ; ~zq(24)). Note that the ordering
of y is unaffected since super-pixels are listed in column order. These remarks extend to
the general case where N = nhnv and M = mhmv provided that nv

mv
and nh

mh
are integers.

In this case, each super-pixel is a nv

mv
× nh

mh
× P hypercube and the hyper-pixels of adjacent

super-pixels do not overlap. In the above example nv = 4, nh = 6, mv = 2, and mh = 3. The
subscripts h and v are used to represent horizontal and vertical directions of a hypercube.

The NP × NP permutation matrix corresponding to q is obtained by partitioning the

NP × NP identity matrix into P × P blocks and for 1 ≤ j ≤ N , placing its jth block
column into block column number q(j). Denoting the resulting permutation matrix by Q,
the high resolution hypercube in the super-pixel ordering is simply z̃ = Qz. Since Q is an
orthogonal matrix, Q−1 = QT will always hold. In the above example, we have in addition
Q = QT , however, this is not true in general (the case (nv, nh,mv,mh) = (9, 2, 3, 1) is a
counterexample). For programming efficiency, any matrix operation involving Q may be
replaced by a corresponding operation with q.
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4.3 Point Spread Functions

The matrix W appearing in the Bayesian general linear model y = Wz + n represents the
Point Spread Function (PSF). It is an MP ×NP matrix that when applied to z performs
blurring and down-sampling. For the purposes of discussion and introduction, we assume
for the moment that W represents an un-weighted averaging transformation: the high
resolution hyper-pixels belonging to a super-pixel are averaged to obtain the corresponding
low resolution hyper-pixel. This will subsequently be generalized to a weighted average. In
terms of the permuted high resolution hyper-pixel z̃, the linear model is y = WQT z̃ + n,
or equivalently y = W̃ z̃ + n where W̃ = WQT .

Since both W and W̃ are MP ×NP matrices, they may partitioned into P × P blocks
where each block acts on a high resolution hyper-pixel. Since W represents an averaging of
super-pixels and there are N/M hyper-pixels per super-pixel, each block is either the zero

matrix or else is M
N

IP . The nonzero blocks of W̃ have a simpler form than those of W . For

the previous example of N = 24, M = 6, and P = 4, the matrix W̃ has the form:

W̃ =




∗ ∗ ∗∗
∗ ∗ ∗∗ 0

∗ ∗ ∗∗
∗ ∗ ∗∗

0 ∗ ∗ ∗∗
∗ ∗ ∗∗




, (4.6)

where each ∗ represents 1
4
I4.

This simple form is preserved whenever super-pixels are non-overlapping. When this
occurs, each row of W̃ consists of N

M
nonzero P × P blocks M

N
IP placed diagonally as in

Equation (4.6). Now let L = N
M

and define WL to be the P × LP matrix consisting of L
copies of 1

L
IP concatenated horizontally. Then, WL may be succinctly denoted by:

WL =
1

L
J1×L ⊗ IP , (4.7)

where J1×L is the 1×L vector of all ones and ⊗ is the Kronecker tensor product. Likewise,

the point spread function W̃ is:

W̃ = IM ⊗WL =
M⊕

m=1

WL. (4.8)

Thus, W̃ consists of M non square blocks on the diagonal (each of size P × LP ) resulting
in a matrix of size MP ×NP . We will refer to this example as the un-weighted averaging
PSF.

We now relax the assumption that W̃ has the form (4.8) but still insist on:
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1. Super-pixels do not overlap.

2. The PSF does not vary spectrally.

As we have seen, the first assumption permits the use of a permutation q to describe the
super-pixel ordering of high resolution hyper-pixels. The second assumption means that the
PSF is fully prescribed by an arbitrary M×N matrix ω. If we fix a specific spectral value λ
from among the P available, and consider the N vector zλ and M vector yλ corresponding
to it, then yλ = ωzλ + nλ where nλ is the associated noise. The meaning of the second
assumption is that ω does not depend on λ.

For general ω, the PSF matrix W̃ is given by:

W̃ = ω ⊗ IP .

In particular, from Equations (4.7) and (4.8),

W̃ = IM ⊗
(

1

L
J1×L ⊗ IP

)
,

=

(
1

L
IM ⊗ J1×L

)
⊗ IP ,

so that the M ×N matrix ω of the un-weighted averaging example is given by:

ω =
1

L
IM ⊗ J1×L. (4.9)

To see how the PSF not varying spectrally affects W̃ , we partition it into P × P blocks
W̃i,j where 1 ≤ i ≤ M and 1 ≤ j ≤ N . The second assumption is equivalent to:

W̃i,j = ωi,jIP (1 ≤ i ≤ M, 1 ≤ j ≤ N),

where ωi,j is the (i, j) entry of ω and IP is the P ×P identity matrix. This simple structure

of W̃i,j will be important when the Form 1 MAP estimate is considered in conjunction with
principle component analysis.

If we make no additional assumptions regarding W̃ , the matrix inversions appearing
in the MAP estimates are potentially full MP ×MP matrices, even when the associated
covariance matrices have simple structures such as being block diagonal with P ×P blocks.
In order to avoid working with full MP × MP matrices, we are led to consider a third
assumption:

3. The PSF combines only the high resolution hyper-pixels making up a super-pixel in
order to form the corresponding low resolution hyper-pixel.
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This is equivalent to assuming that W̃ is an appropriately generalized version of the form
(4.6), namely:

W̃ =
M⊕

m=1

Wm, (4.10)

where Wm is the P × LP matrix given by:

Wm = (ωm,(m−1)L+1IP , ωm,(m−1)L+2IP , . . . , ωm,mLIP ), 1 ≤ m ≤ M. (4.11)

Here, the matrices Wm play the role of the matrix WL introduced previously. The third
assumption is characterized by the condition that ω is block diagonal with 1× L blocks:

ωm,k 6= 0 only for (m− 1)L + 1 ≤ k ≤ mL (1 ≤ m ≤ M),

or equivalently:

ω =
M⊕

m=1

~ωT
m

where

~ωm = (ωm,(m−1)L+1, ωm,(m−1)L+2, . . . , ωm,mL)T .

To simplify the notation, define ω̂m,j = ωm,(m−1)L+j so that ω̂ is M × L and

~ωm = (ω̂m,1, ω̂m,2, . . . , ω̂m,L)T ,

making ~ωT
m the mth row of ω̂.

For the un-weighted averaging PSF given by Equation (4.9), ω̂m,j = 1
L

for 1 ≤ m ≤ M
and 1 ≤ j ≤ L. For a weighted averaging PSF, we may define the M × L matrix ω̂ in any
fashion.

An alternate notation for Wm is:

Wm = ~ωT
m ⊗ IP ,

so that

W̃ =
M⊕

m=1

(
~ωT

m ⊗ IP

)
. (4.12)

Conditions 1, 2 & 3 are summarized by the assertion that each entry of y corresponds to
a unique band/super-pixel pair and is determined from y = Wz + n as a weighted average
of only those entries of z that lie in the corresponding band and super-pixel.
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Throughout the remainder of this chapter, we assume all three of the above conditions
on the PSF. If they don’t hold in practice, it will be desirable to approximate the true PSF
with one where they do hold.

In our MATLAB implementation of the MAP algorithm, we have chosen to think of
a PSF as a Finite Impulse Response (FIR) filter. Such a filter may be represented as an
Lv×Lh matrix where Lv = nv/mv, and Lh = nh/mh (so L = LvLh). In the present context,
this is equivalent to taking all rows of the M × L matrix ω̂ to be identical, where each row
consisting of the entries of the Lv × Lh FIR matrix representation listed in column order.

4.4 Three Forms of MAP Estimators

The maximum a posteriori (MAP) estimate ( [17], p.350) of z given y and x is defined by:

ẑ = arg max
z

Pr (z|ψ) , (4.13)

where

ψ =

(
y
x

)
,

and Pr denotes the probability density function of the continuous random variable z|ψ. We
derive three alternate forms of this estimate, each corresponding to it own function of z to
be maximized. It will be seen in Section 4.5 that all three are equal to E(z|ψ).

The three forms are most easily derived in reverse order as follows. From Bayes rule:

Pr (z|ψ) =
Pr (ψ|z) Pr(z)

Pr (ψ)
, (4.14)

where we have chosen not give different names to different density functions since the func-
tion argument will make it clear which PDF is being referred to. Since Pr (ψ) is not a
function of z, the MAP estimate (4.13) is unaffected if it is ignored, thus giving the Form
3 MAP estimate:

ẑ3 = arg max
z

Pr (ψ|z) Pr(z). (4.15)

Making the reasonable assumption that y|z and x|z are independent, Equation (4.14)
yields:

Pr (z|ψ) =
Pr (y|z) Pr (x|z) Pr(z)

Pr (ψ)
. (4.16)

Dropping Pr (ψ) as before yields the Form 2 MAP estimate:

ẑ2 = arg max
z

Pr (y|z) Pr (x|z) Pr(z). (4.17)
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Another application of Bayes rule to Equation (4.16) gives the following representation:

Pr (z|ψ) =
Pr (y|z) Pr (z|x) Pr(x)

Pr (ψ)
,

from which Pr (ψ) and Pr(x) may be dropped to obtain the Form 1 MAP estimate:

ẑ1 = arg max
z

Pr (y|z) Pr (z|x) . (4.18)

4.5 Derivation of Matrix Equations

From Section 4.4, the Form 1 MAP estimate of z in terms of probability density functions
is given by:

ẑ = arg max
z

Pr(y|z)Pr(z|x), (4.19)

A Bayesian general linear model is assumed:

y = Wz + n,

meaning that the noise vector n is independent of z and has a Gaussian distribution with
mean 0 and covariance Cn. This leads to the following probability density function for y|z:

Pr(y|z) =
1√

(2π)MP |Cn|
exp

[
−1

2
(y −Wz)T C−1

n (y −Wz)

]
. (4.20)

We also assume the Bayesian general linear model x = Sz + η which implies that the
joint distribution of (x, z) is multivariate Gaussian. By Theorem 10.2 of [17], this implies
that the conditional distribution function of z|x is multivariate Gaussian as well. The
relationship between the joint and conditional distributions functions is presented below.

Let µx and µz denote the means of x and z and let C(x,z) denote the covariance matrix
of (x,z). Then,

Pr(x,z) =
1√

(2π)N+NP |C(x,z)|
exp

[
−1

2

(
x− µx

z − µz

)T

C−1
(x,z)

(
x− µx

z − µz

)]
,

where |C(x,z)| denotes the determinant of C(x,z).

The covariance matrix C(x,z) is an (N +NP )×(N +NP ) real symmetric positive definite
matrix. We partition C(x,z) as follows:

C(x,z) =

(
Cx CT

zx

Czx Cz

)
,
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where Cx is N ×N , Czx is NP ×N , and Cz is NP ×NP . The sub matrices Cx and Cz are
positive definite symmetric since C(x,z) is.

By Theorem 10.2 of [17], the conditional mean vector and covariance matrix are given
by:

µz|x = µz + CzxC
−1
x (x− µx) (4.21)

Cz|x = Cz − CzxC
−1
x CT

zx. (4.22)

From the model x = Sz + η, we have the following relationships (see [17], p.326):

µx = Sµz (4.23)

Cx = SCzS
T + Cη (4.24)

Czx = CzS
T , (4.25)

implying that the conditional mean and covariance are:

µz|x = µz + CzS
T

[
SCzS

T + Cη

]−1
(x− Sµz) (4.26)

Cz|x = Cz − CzS
T

[
SCzS

T + Cη

]−1
SCz. (4.27)

Therefore, the conditional PDF of z|x is given by:

Pr(z|x) =
1√

(2π)NP |Cz|x|
exp

[
−1

2

(
z − µz|x

)T
C−1

z|x
(
z − µz|x

)]
, (4.28)

where µz|x and Cz|x are given by Equations (4.26) and (4.27).

It is seen from Equations (4.20), and (4.28) that maximizing the product Pr(y|z)Pr(z|x)
of Equation (4.19) is equivalent to minimizing the cost function:

F1(z) =
1

2
(y −Wz)T C−1

n (y −Wz) +
1

2

(
z − µz|x

)T
C−1

z|x
(
z − µz|x

)
, (4.29)

so that

ẑ = arg min
z

F1(z). (4.30)

The cost function F1 may be minimized by the standard multivariate calculus technique
of taking setting the gradient of F1 equal to zero and solving for critical points. Two useful
results for this purpose are as follows:

g(z) = 1
2
(z − µ)T A(z − µ) =⇒ 5zg(z) = A(z − µ)

g(z) = 1
2
(y −Wz)T A(y −Wz) =⇒ 5zg(z) = −W T A(y −Wz).

Applying these yield the following Form 1 matrix equation whose solution is the value of ẑ
defined in Equation (4.30):

ẑ =
[
W T C−1

n W + C−1
z|x

]−1 [
W T C−1

n y + C−1
z|xµz|x

]
. (4.31)
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The matrix inversion lemma (see [17], appendix A1.1.3) is:

(A + BCD)−1 = A−1 − A−1B(DA−1B + C−1)−1DA−1, (4.32)

where the indicated inverses are assumed to exist and the matrix sizes are compatible with
the indicated products. Applying the matrix inversion lemma yields:

ẑ =
[
Cz|x − Cz|xW

T (WCz|xW
T + Cn)−1WCz|x

]
(W T C−1

n y + C−1
z|xµz|x).

Let E = WCz|xW T + Cn and simplify the above equation as follows:

ẑ =
[
Cz|x − Cz|xW

T E−1WCz|x
]
(W T C−1

n y + C−1
z|xµz|x)

= µz|x + Cz|xW
T

[
C−1

n y − E−1WCz|xW
T C−1

n y − E−1Wµz|x
]

= µz|x + Cz|xW
T

[
C−1

n y − E−1 (E − Cn) C−1
n y − E−1Wµz|x

]

= µz|x + Cz|xW
T

[
C−1

n y − (
I − E−1Cn

)
C−1

n y − E−1Wµz|x
]

= µz|x + Cz|xW
T

[
C−1

n y − C−1
n y + E−1y − E−1Wµz|x

]

= µz|x + Cz|xW
T E−1(y −Wµz|x).

Therefore,
ẑ = µz|x + Cz|xW

T [WCz|xW
T + Cn]−1(y −Wµz|x), (4.33)

which is the starting point of Section 4.11.

From Section 4.4, the Form 2 MAP estimator in terms of PDF functions is given by:

ẑ = arg max
z

Pr(y|z)Pr(x|z)Pr(z), (4.34)

where

Pr(x|z) =
1√

(2π)N |Cη|
exp

[
−1

2
(x− Sz)T C−1

η (x− Sz)

]
, (4.35)

Pr(z) =
1√

(2π)NP |Cz|
exp

[
−1

2
(z − µz)

T C−1
z (z − µz)

]
. (4.36)

Analogous to Form 1, the cost function for Form 2 is obtained from Equations (4.34), (4.20),
(4.35), and (4.36):

F2(z) =
1

2
(y −Wz)T C−1

n (y −Wz) +
1

2
(x− Sz)T C−1

η (x− Sz)

+
1

2
(z − µz)

T C−1
z (z − µz) . (4.37)

Minimizing the cost function F2 of Equation (4.37) yields the Form 2 MAP estimate:

ẑ =
[
C−1

z + W T C−1
n W + ST C−1

η S
]−1 [

C−1
z µz + W T C−1

n y + ST C−1
η x

]
, (4.38)
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which is identical to Equation (A.1) and is the starting point of Appendix A. In Appendix
A, the matrix inversion lemma is applied twice in succession resulting in a simplified version
of the above Form 2 matrix equation.

From Section 4.4, the Form 3 MAP estimator in terms of PDF functions is given by:

ẑ = arg max
z

Pr (ψ|z) Pr(z), where ψ =

(
y
x

)
.

Making the associations y ←→ ψ and z|x ←→ z, we see from Equation (4.19) that Form
3 and Form 1 have the same structure. If we further associate:

W ←→
(

W
S

)

Cn ←→
(

Cn 0
0 Cη

)
,

then we may use Equation (4.29) to obtain the Form 3 cost function:

F3(z) =
1

2

[(
y
x

)
−

(
W
S

)
z

]T (
Cn 0
0 Cη

)−1 [(
y
x

)
−

(
W
S

)
z

]

+
1

2
(z − µz)

T C−1
z (z − µz) ,

and use Equation (4.33) to obtain the Form 3 matrix equation:

ẑ = µz + Cz

(
W
S

)T
[(

W
S

)
Cz

(
W
S

)T

+

(
Cn 0
0 Cη

)]−1 [(
y
x

)
−

(
W
S

)
µz

]
.

(4.39)

We have assumed that η and n are independent in order to use

(
Cn 0
0 Cη

)
as the covari-

ance matrix of ψ|z.

Since Form 1 is the only form that is applicable when the model x = Sz + η is not
assumed, the following theorem proves that it is sufficient to program just Form 1 in order
to incorporate all three forms of the MAP algorithm.

Theorem 4.5.1 Under the assumption x = Sz + η, the three forms of MAP estimators
defined above are equivalent and each is equal to E(z|ψ).

Proof. The Form 2 and Form 3 MAP estimates are easily seen to be identical by checking
that their associated cost functions F2(z) and F3(z) are identical. We may prove that the
Form 1 and Form 2 MAP estimates are equivalent either by proving that the gradient of the
difference of their cost functions is zero, or by proving the equivalence of Equations (4.31)
and (4.38) directly. The latter approach is taken below.
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Applying the matrix inversion lemma to Equation (4.27) yields:

C−1
z|x = C−1

z + ST C−1
η S,

and substituting this into Equation (4.31) gives:

ẑ =
[
W T C−1

n W + C−1
z + ST C−1

η S
]−1 [

W T C−1
n y +

(
C−1

z + ST C−1
η S

)
µz|x

]
.

Comparing the above with Equation (4.38), we see that the Form 1 and Form 2 MAP
estimates are equivalent provided that:

(
C−1

z + ST C−1
η S

)
µz|x = C−1

z µz + ST C−1
η x,

where µz|x is given by Equation (4.26). The following calculation verifies this:

(
C−1

z + ST C−1
η S

)
µz|x =

(
C−1

z + ST C−1
η S

) [
µz + CzS

T
[
SCzS

T + Cη

]−1
(x− Sµz)

]

= C−1
z µz + ST

[
SCzS

T + Cη

]−1
(x− Sµz) + ST C−1

η Sµz

+ ST C−1
η SCzS

T
[
SCzS

T + Cη

]−1
(x− Sµz)

= C−1
z µz + ST

[
SCzS

T + Cη

]−1
(x− Sµz) + ST C−1

η Sµz

+ ST C−1
η

[(
SCzS

T + Cη

)− Cη

] [
SCzS

T + Cη

]−1
(x− Sµz)

= C−1
z µz + ST

[
SCzS

T + Cη

]−1
(x− Sµz) + ST C−1

η Sµz

+
[
ST C−1

η − ST C−1
η Cη

[
SCzS

T + Cη

]−1
]
(x− Sµz)

= C−1
z µz + ST C−1

η x.

Since we have shown that all three forms are identical, the fact that each is equal to
E(z|ψ) is established by showing it for any one of the forms. A straightforward application
of Theorem 10.3 of Kay [17] shows that the Form 3 MAP estimate given by Equation (4.39)
is equal to E(z|ψ).

4.6 Estimation of the Spectral Response Matrix

In Section 4.7, we will use the relationship x = Sz + η to estimate the covariance matrix
Cz̃|x in terms of the covariance matrix Cz̃. For this, it will be important to know how the
spectral response matrix S is estimated and what its resulting structure is.

For each low resolution hyper-pixel ym, let x̄m denote the average of the corresponding
broadband image data:

x̄m =
1

L

L∑
j=1

xq((m−1)L+j). (4.40)
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Consider the equations:
x̄m = 〈~ym, s〉 (1 ≤ m ≤ M), (4.41)

where the angle brackets denote the standard inner product and s = (s1, s2, . . . , sP )T . In
matrix form Equation (4.41) is:

Y s = x̄, (4.42)

where x̄ = (x̄1, x̄2, . . . , x̄M)T and Y is the M × P matrix determined by placing ~yT
m in row

m for 1 ≤ m ≤ M .

Equation (4.42) is solved in the least squares sense, subject to
∑P

j=1 sj = 1 and sj ≥ 0 for
1 ≤ j ≤ P , in order to determine a normalized spectral response vector s. The normalized
spectral response vector is used to form an N ×NP matrix S̃ = SQT as follows:

S̃ =
N⊕

n=1

sT = IN ⊗ sT . (4.43)

Observe that for the no noise case, x = Sz + η is equivalent to:

xi = 〈~zi, s〉 (1 ≤ i ≤ N),

which may be viewed as Equation (4.41) extended from low resolution hyper-pixels to high
resolution hyper-pixels. Also observe that the assumed form of S dictates that xi is de-
termined solely from ηi and the hyper pixel ~zi corresponding to xi. Thirdly, note that
x = Sz + η determines x − η in super-pixel ordering while x = S̃z + η determines it in
lexicographical order.

In MATLAB, the computation of s is given by:

s = LSQLIN(Y, x̄, [ ], [ ], ones(1, P ), 1, zeros(1, P ), ones(1, P ));

where LSQLIN is a function available in the MATLAB optimization toolbox.

Since
||Y s− x̄||2 = sT Y T Y s− 2x̄T Y s + x̄T x̄,

the problem may be formulated as a convex quadratic optimization problem. In this for-
mulation, let C = Y T Y , d = −Y T x̄ and compute s such that:

1

2
sT Cs + dT s

is minimized subject to the linear constraint
∑P

j=1 sj = 1 and the bound constraints sj ≥ 0,
1 ≤ j ≤ P . The freely available C program QLD [20] may be used to solve this equivalent
problem. We have determined through numerical experimentation that the computations
of C and d incur excessive round off errors if performed in single precision.
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4.7 Estimation of Conditional Covariance from Un-

conditional Covariance

In this section, we assume the linear model x = Sx + η holds, which implies that the
relationship between the covariance matrices Cz|x and Cz given by Equation (4.27) holds:

Cz|x = Cz − CzS
T (SCzS

T + Cη)
−1SCz. (4.44)

Therefore, the relationship between the covariance matrices Cz̃|x and Cz̃ is given by:

Cz̃|x = Cz̃ − Cz̃S̃
T (S̃Cz̃S̃

T + Cη)
−1S̃Cz̃ , (4.45)

where S̃ = SQT , Cz̃ = QCzQ
T , Cz̃|x = QCz|xQT , and ẑ gives the super-pixel ordering of z

as defined in Section 4.2.

An assumption that will facilitate the parallel implementation of the Form 1 MAP
estimate is that Cz̃|x be block diagonal with P × P blocks. Due to the special form of S̃
given by Equation (4.43), we will see below that Cz̃|x has this form if Cz̃ has it. Accordingly,
let

Cz̃ =
N⊕

i=1

Bi, (4.46)

where each Bi is a P ×P matrix. From Equation (4.43), the N ×N matrix S̃Cz̃S̃
T is given

by:

S̃Cz̃S̃
T =

N⊕
i=1

sT Bis.

Assuming that Cη = σ2
ηIN , it follows that

(S̃Cz̃S̃
T + Cη)

−1 =
N⊕

i=1

d−1
i ,

where di = (sT Bis + σ2
η). Therefore Equation (4.44) becomes

Cz̃|x = Cz̃ − Cz̃S̃
T D−1S̃Cz̃,

where D =
⊕N

i=1 di. Since S̃ T D−1S̃ =
⊕N

i=1 d−1
i ssT , it follows from Equation (4.46) that:

Cz̃|x =
N⊕

i=1

[
Bi − d−1

i Bis (Bis)
T
]
, (4.47)

and we see that the desired structure for Cz̃|x is inherited from Cz̃.
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Starting with Equation (4.26), the following expression for µz̃|x is obtained in a similar
way:

µz̃|x =
(
µT

z̃1|x, µ
T
z̃2|x, . . . , µ

T
z̃N |x

)T
,

µz̃i|x = µi + (xi − sT µi)d
−1
i Bis, (4.48)

where µi is a P×1 vector that denotes the mean of the high resolution hyper-pixel z̃i = ~zq(i).
Note that the same coefficient d−1

i Bis appears in both (4.47) and (4.48) which may be
utilized for computational efficiency.

For 1 ≤ m ≤ M and 1 ≤ j ≤ L, define the P × P matrix Bm,j = Bj+(m−1)L. The Bm,j

merely represent an alternative indexing of the Bi, convenient when identifying super-pixel
components. Thus,

Cz̃ =
M⊕

m=1

B̂m, (4.49)

B̂m =
L⊕

j=1

Bm,j. (4.50)

A similar notation is used for Cz̃|x:

Cz̃|x =
M⊕

m=1

Ĝm, (4.51)

Ĝm =
L⊕

j=1

Gm,j. (4.52)

Equation (4.47) implies:

Gm,j = Bm,j − (sT Bm,js + σ2
η)
−1 (Bm,js) (Bm,js)

T . (4.53)

Starting with estimates Bm,j we use Equation (4.53) to obtain Gm,j which results in an
estimation of Cz̃|x. Thus, obtaining a good estimate of Cz̃|x comes down to obtaining good
estimates of the Bm,j. There is a caveat however: the matrix given by Equation (4.53) is
singular when ση = 0. To see this, let am,j = sT Bm,js and v = Bm,js. It is easily verified that
am,j is an eigenvector of Bm,jss

T with eigenvector v. Therefore, det(am,jIP −Bm,jss
T ) = 0,

which implies that Gm,j is singular when ση = 0.

The Form 1, 2, and 3 MAP estimates are sensitive to a condition we refer to as the
special case condition (or assumption). Explicitly, this is the condition:

Bm,j = Bm,1 (1 ≤ m ≤ M, 1 ≤ j ≤ L).

We colloquially refer to this by stating that the P × P diagonal blocks of Cz̃ are identical
within super-pixels. It is readily seen from Equation (4.53) that Cz̃|x inherits the special
case condition from Cz̃.
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4.8 Consequences of Making the Conditional Covari-

ance Matrix Diagonal

In this section we discuss how making Cz̃|x a diagonal matrix implies an undesired restric-
tion on the spectral response matrix S. In particular, such a diagonal structure imposes
restrictions that are most likely inconsistent with an estimation of S such as that given in
Section 4.6.

We begin by examining Equation (4.53) for the case that Bm,j is a diagonal matrix.
In this case, it is shown below (see Theorem 4.8.1) that s has only one nonzero entry,
which must be 1 due to the normalization

∑P
j=1 sj = 1. As another case (see Theorem

4.8.2), assuming (4.53) is diagonal when P = 2 leads to the result that s1s2 is a multiple
of σ2

η where the multiple depends only on the entries of Bm,j. Either case leads to the
conclusion that Gm,j (and hence the conditional covariance matrix Cz̃|x) may not be taken
as a diagonal matrix without limiting the entries of s in a manner most likely inconsistent
with an estimation of S such as that given in Section 4.6.

Theorem 4.8.1 If Gm,j and Bm,j are diagonal then s = ei for some i ∈ {1, 2, . . . , P} where

ei denotes the unit vector with a one in its ith entry and zeros elsewhere.

Proof. From Equation (4.53), we see that Bm,js(Bm,js)
T is diagonal. Let υ = Bm,js so

that υnυk = 0 for n 6= k. Since s 6= 0, υ 6= 0 and we may choose i such that υi 6= 0. There-
fore, υ = υiei. However, υ = (b1s1, b2s2, . . . , bP sP )T where Bm,j = diag(b1, b2, . . . , bP ), so
it follows that bksk = 0 whenever k 6= i. Since Bm,j is positive definite, bk > 0 for all k.

Therefore, sk = 0 for k 6= i and since
∑P

j=1 sj = 1, si = 1.

Theorem 4.8.2 If Gm,j is diagonal and P = 2, then

s1s2 =
b1,2σ

2
η

|B|
where

B = Bm,j =

(
b1,1 b1,2

b1,2 b2,2

)
.

Proof. Using Equation (4.53), we set the (1, 2) entry of Gm,j equal to zero:

b1,2 − (b1,1s
2
1 + 2b1,2s1s2 + b2,2s

2
2 + σ2

η)
−1(b1,1s1 + b1,2s2)(b1,2s1 + b2,2s2) = 0.

and the result easily follows.

For the general case when Bm,j is any positive definite symmetric matrix and P is any
positive integer, we argue heuristically as follows. Setting the off diagonal entries of the
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symmetric matrix Gm,j equal to zero leads to the following system of P (P − 1)/2 nonlinear
equations in P unknowns:

P∑

`=1

P∑
n=1

(bi,nbk,` − b`,nbi,k)s`sn = σ2
ηbi,k, 1 ≤ i < k ≤ P.

Because of the condition
∑P

j=1 sj = 1, each of these equations represents a P−2 dimensional
surface that lies in a P − 1 dimensional space. The intersection of all P (P − 1)/2 surfaces
represents the set of solutions s for which Gm,j is diagonal. Intersecting these surfaces will
result in a solution set of dimension P − 2 or less, most likely of dimension much less than
P − 2 for sufficiently large P . (We see from the examples given above that solution spaces
of dimension 0 occur when Bm,j is diagonal or when P = 2.) We conclude that since the
solution set is of dimension P − 2 or less, a procedure for determining s such as that of
Section 4.6 will most likely be inconsistent with the assumption that conditional covariance
matrix Cz̃|x is diagonal.

4.9 Conditional Independence

This section defines two levels of conditional independence and relates them to the assumed
structures of associated matrices. The first level factors the probability distribution function

of z|x into the conditional distribution functions of ~zn|xn, where ~zn is the nth hyper-pixel
of z, and the second level factors it further into the conditional distribution functions of
zp,n|xn where ~zn = (z1,n, z2,n, . . . , zP,n)T . The first level of conditional independence follows
from assumptions previously made concerning the P × P diagonal block structure of the
covariance matrix Cz̃ and the Bayesian general linear model x = Sz + η, while the second
level is equivalent to the assumption that the conditional covariance matrix Cz̃|x is diagonal.

Explicitly, the two levels of conditional independence are:

Level 1 : Pr(z|x) =
N∏

n=1

Pr(~zn|xn), (4.54)

Level 2 : Pr(~zn|xn) =
P∏

p=1

Pr(zp,n|xn), n = 1, 2, . . . , N. (4.55)

We show below that conditional independence level 1 is implied by the Bayesian general
linear model x = Sz+η and the assumed structures of Cz̃ and S. Since Cz̃ is block diagonal
with P × P blocks, and the entries of Cz̃ corresponding to ~zn and ~zk are proportional to
the correlations ρ(zi,n, zj,k) where 1 ≤ i, j ≤ P and 1 ≤ n, k ≤ N , it follows that these
correlations are zero whenever n 6= k. We express this succinctly as: ρ(~zn, ~zk) = 0 whenever
(n 6= k).
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From Equation (4.24) and Cz = QT Cz̃Q, it easily follows that:

Cx = S̃Cz̃S̃
T + Cη,

where S̃ = SQT is given by Equation (4.43). This and Equation (4.46) imply that Cx is a
diagonal matrix:

Cx =
N⊕

n=1

(
sT Bns

)
+ Cη,

so that ρ(xn, xk) = 0 whenever n 6= k. Similarly, equation (4.25) easily implies:

Czx = QT

(
N⊕

n=1

Bns

)
,

so that ρ(xn, ~zk) = 0 whenever n 6= k. Collecting the above results we have:

ρ(xn, xk) = ρ(xn, ~zk) = ρ(~zn, ~zk) = 0 (n 6= k).

For Gaussian distributions, a zero correlation between two random variables implies
independence between them. Therefore,

Pr(x) =
N∏

n=1

Pr(xn)

Pr(x, z) =
N∏

n=1

Pr(xn, ~zn),

and equation (4.54) readily follows:

Pr(z|x) =
Pr(x, z)

Pr(x)

=
N∏

n=1

Pr(xn, ~zn)

Pr(xn)

=
N∏

n=1

Pr(~zn|xn).

Since ~z1 and x1 are independent of (x2, x3, . . . , xN) we have:

Pr(~z1|x) =
Pr(~z1,x)

Pr(x)
,

=
Pr(~z1, x1)Pr(x2, x3, . . . , xN)

Pr(x1)Pr(x2, x3, . . . , xN)
,

= Pr(~z1|x1),
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and similarly,

Pr(~zn|x) = Pr(~zn|xn), (1 ≤ n ≤ N).

Arguing in the same manner yields:

Pr(zp,n|x) = Pr(zp,n|xn), (1 ≤ n ≤ N, 1 ≤ p ≤ P ).

Using the fact that for Gaussian distributions, zero correlation and independence are
equivalent, it follows that Cz̃|x is diagonal if and only if

Pr(~zn|x) =
P∏

p=1

Pr(zp,n|x), n = 1, 2, . . . , N.

From the above results it follows that Cz̃|x is diagonal if and only if conditional independence
level 2 (i.e. Equation (4.55)) holds for n = 1, 2, . . . , N .

As remarked in Section 4.8, the assumption that Cz̃|x is diagonal is likely to be inconsis-
tent with the estimation given in Section 4.6, making level 2 conditional independence an
undesirable assumption.

4.10 Principal Component Analysis

Principal component analysis (PCA) starts with the construction of a P × P “spectral”
covariance matrix C that represents the covariance among the entries of a high resolution
hyper-pixel. Since z is presumed unknown, the hyper-pixels of y may be used to compute
an estimate of C. Using an eigenvalue decomposition algorithm, an orthonormal set of
eigenvectors of C is obtained and is used to construct an orthogonal matrix E whose columns
are the eigenvectors. The unknown high resolution hyper-pixels zi (i = 1, 2, . . . , N) are
related to a different set of unknowns z̄i through the transformation zi = Ez̄i. The problem
of computing z such that y = Wz + n and x = Sz + η is transformed into computing z̄
such that ȳ = W z̄ + n̄ and x = S̄z̄ + η, where the quantities with bars are defined below.

Let EN =
⊕N

n=1 E and EM =
⊕M

m=1 E and define z̄ = ET
Nz, ȳ = ET

My, n̄ = ET
Mn,

S̄ = SEN , and W = ET
MWEN . Since E−1 = ET , the same is true of EN and EM , making

it straightforward to show the equivalence of x = Sz + η and x = S̄z̄ + η as well as the
equivalence of y = Wz + n and ȳ = W z̄ + n̄. Since n represents white Gaussian noise,
so does n̄ and it follows that an image enhancement algorithm for computing z may be
applied to obtain z̄, where the relevant input quantities are substituted with their barred
counterparts. We also observe that since E is orthogonal, ||n̄|| = ||n|| so that noise is
not magnified when working in the principal component domain. Although z̄ may be used
directly for producing images, z may be obtained from z = EN z̄ if desired.
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The spectral response matrices in their respective domains being related by S̄ = SEN

implies that the P × 1 corresponding spectral response vectors are related by:

s̄ = ET s (4.56)

If the PSF matrix W satisfies assumption 2 of Section 4.3 (i.e. does not vary spectrally),
then W = W . This is important since many of the image enhancement algorithms we
have examined take advantage of special assumed forms of W for efficiency purposes. In
particular, the current version of the Form 1 MAP algorithm makes use of PSF assumptions
1, 2, and 3 of Section 4.3 for efficient coding. We prove below that assumption 2 implies
W = W .

As in Section 4.3, we partition W into P × P blocks Wi,j where 1 ≤ i ≤ M and
1 ≤ j ≤ N . It is easily seen that the corresponding (i, j) block of W is given by ET Wi,jE.
The assumption that W does not vary spectrally is equivalent to Wi,j being a multiple of IP

for all (i, j). Therefore, Wi,j commutes with E. Since E is orthogonal, ET E = IP . Hence,
the (i, j) block of W is Wi,j implying that W = W .

Since the eigenvectors of E corresponding to the smaller eigenvalues are not expected to
contribute to the enhancement of images, we now examine a “limited” PCA where only the
largest eigenvalues are computed. The intent is to improve performance without degrading
image quality. Accordingly, choose p (1 ≤ p ≤ P ) and compute the eigenvectors of C belong-
ing to the largest p eigenvectors. Let E be the P ×p matrix defined by E = (E1, E2, . . . , Ep)
where the Ei are P × 1 eigenvectors sorted by eigenvalue from largest to smallest. Using
the same definitions given in above, EN becomes NP ×Np, EM is MP ×Mp, z̄ is Np× 1,
S̄ is N ×Np, ȳ is Mp× 1, and n̄ is Mp× 1.

After applying an estimate such as the Form 1 MAP estimate, we obtain an estimate
of z̄. As before, z̄ may be used directly to obtain images. Optionally, the corresponding
estimate of z is given by ẑ = EN z̄. We note that the resulting size of z is NP × 1 even if
p < P . For efficiency, the product EN z̄ may be obtained from the product E[z̄1, z̄2, . . . , z̄N ],
where each z̄i is p× 1 and z̄ = (z̄1; z̄2; . . . ; z̄N). The resulting P ×N matrix may then be
reshaped to a NP × 1 vector to obtain ẑ.

There is a less efficient, but perhaps more intuitive way to perform limited PCA analysis.
In this formulation, ȳ is kept as MP × 1, but with each low resolution hyper-pixel having
a zero in its last P − p entries. We also leave E as a P × P matrix but take its last P − p
columns to be zero vectors of length P . This results in essentially the same ẑ as above, but
now each z̄i is a P × 1 vector with zeros in the last P − p entries. The resulting limited
PCA computation of ẑ is identical to the one obtained above. The advantages of the former
method is not only that it takes less storage, but that it also takes less time to compute,
because calculations that multiply zero times itself are eliminated.

The advantage of PCA space processing lies in the fact that most of the signal energy lies
in the PCA subspace corresponding to the top eigenvalues. The lower principal component
dimensions can be treated with a simpler algorithm, such as interpolation, or even set to zero
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if they are deemed to be primarily noise. Processing in a lower dimension PCA subspace
reduces the size of the matrix inverse required in the closed form solution and requires the
estimation of fewer statistical parameters. In addition to the benefit in terms of processing
time, this tends to lead to covariance estimates that are better conditioned, making the
resulting MAP algorithm more robust.

4.11 Analysis of the Form 1 MAP Estimate

Starting with the Form 1 MAP estimate presented in Section 4.5, this section derives an
equivalent expression that is suitable for parallel implementation. Assuming the special
case where the P ×P blocks of Cz̃ are identical within super-pixels, we then prove that the
matrix appearing as an inverse in the new expression is singular if and only if σn = ση = 0
(i.e. there is no noise). A separate expression is developed under the noise free and special
case assumptions and in this expression, no matrix inverses whatsoever appear. Having
no matrix inverses to compute leads to an algorithm whose complexity is low enough to be
considered for real time implementation on a parallel computer system.

In order to facilitate parallel computations, each of these Form 1 MAP expressions are
broken down into super-pixel components. This allows the work to be distributed among
the available processors in a convenient and efficient fashion. Throughout this section, the
three conditions of Section 4.3 are assumed and the definitions of Bm,j given by Equations
(4.49) and (4.50) are adopted.

As derived in Section 4.5, the Form 1 MAP estimator is given by:

ẑ = µz|x + Cz|xW
T [WCz|xW

T + Cn]−1(y −Wµz|x). (4.57)

If
z̃ = Qz, µz̃|x = Qµz|x, and Cz̃|x = QCz|xQT ,

where Q is the super-pixel permutation matrix defined in Section 4.2, then Equation (4.57)
becomes

z̃ = µz̃|x + Cz̃|xW̃
T [W̃Cz̃|xW̃

T + Cn]−1(y − W̃µz̃|x), (4.58)

and we see that Equations (4.57) and (4.58) have the same form. Equation (4.58) is much

easier work with than (4.57) due to the simple structure of W̃ . The estimate ẑ is given by
ẑ = QT z̃ which may be implemented in an efficient manner by permuting the hyper-pixels
of z̃ as follows:

ẑ = (z̃q−1(1); z̃q−1(2); . . . ; z̃q−1(N)),

where the semi-colon denotes vertical concatenation and q denotes the super-pixel permuta-
tion corresponding to Q defined in Section 4.2. In the notation above, z̃q−1(n) = ~zn represents

the nth hyper-pixel for n = 1, 2, . . . N .
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A simplifying assumption, which appears to be necessary for efficient parallel compu-
tations, is that Cz̃ = QCzQ

T be block diagonal with P × P blocks. From Section 4.7, we
know that Cz̃ having this structure implies that Cz̃|x = QCz|xQT will as well. Since pre
multiplication by Q followed by post multiplication by QT permutes the P ×P blocks along
the macro diagonal of such matrices, it follows that Cz, Cz̃|x, and Cz|x all inherit the same
P × P block diagonal structure from Cz̃.

Let L = N/M and partition Cz̃|x into diagonal blocks Ĝ1, Ĝ2, . . . , ĜM where each Ĝm is
a LP × LP block diagonal matrix with P × P blocks. Thus,

Cz̃|x =
M⊕

m=1

Ĝm, (4.59)

and each Ĝm for m = 1, 2, . . . , M has the form:

Ĝm =
L⊕

j=1

Gm,j, (4.60)

where Gm,j is a P × P matrix. It follows from Equations (4.12) and (4.59) that

W̃Cz̃|xW̃
T =

M⊕
m=1

Gm

where Gm is the P × P matrix given by:

Gm = (~ωT
m ⊗ IP )Ĝm(~ωm ⊗ IP ) =

∑L
j=1 ω̂2

m,jGm,j. (4.61)

Due to the simplifying assumption that the noise covariance matrix Cn is a multiple σ2
n

of the MP ×MP identity matrix, the inverted matrix of Equation (4.58) becomes:

[W̃Cz̃|xW̃
T + Cn]−1 =

M⊕
m=1

(Gm + σ2
nIP )−1. (4.62)

Similarly, the NP ×MP product Cz̃|xW̃ T appearing in Equation (4.58) is given by:

Cz̃|xW̃
T =

M⊕
m=1

Ĝm(~ωm ⊗ IP ). (4.63)

The matrix Cz̃|xW̃ T of Equation (4.63) is a non square (NP ×MP ) matrix that consists of
M blocks on the diagonal, each of size LP × P .

Using the superscript (1) to designate a quantity that pertains to the Form 1 MAP
estimate, define the NP ×MP matrix A(1) by:

A(1) = Cz̃|xW̃
T [W̃Cz̃|xW̃

T + Cn]−1,
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so that the Form 1 MAP estimate is given by:

z̃ = µz̃|x + A(1)(y − W̃µz̃|x).

Putting Equations (4.62) and (4.63) together yield:

A(1) =
M⊕

m=1

Ĝm(~ωm ⊗ IP )(Ḡm + σ2
nIP )−1

=
M⊕

m=1

A(1)
m .

The LP × P matrix A
(1)
m is defined by:

A(1)
m = Ĝm(~ωm ⊗ IP )(Ḡm + σ2

nIP )−1, (4.64)

which when written out becomes:

A(1)
m =




ω̂m,1Gm,1(Ḡm + σ2
nIP )−1

ω̂m,2Gm,2(Ḡm + σ2
nIP )−1

...
ω̂m,LGm,L(Ḡm + σ2

nIP )−1


 . (4.65)

From Equation (4.58), we see that the Form 1 estimator is given by:

z̃ = µz̃|x +

(
M⊕

m=1

A(1)
m

)
(y − W̃µz̃|x).

Breaking this up into M super-pixel components yields:

z̃m = µz̃m|x + A(1)
m

[
~ym −

(
~ωT

m ⊗ IP

)
µz̃m|x

]
, (4.66)

or equivalently:

z̃m =
[
ILP − A(1)

m

(
~ωT

m ⊗ IP

)]
µz̃m|x + A(1)

m ~ym, (4.67)

where z̃m and µz̃m|x are LP × 1 and ~ym is a P × 1 hyper-pixel. The breakdown of z̃ into
M super-pixel vectors is:

z̃ =
(
z̃T

1 , z̃T
2 , . . . , z̃T

M

)T
,

and the breakdown of the super-pixel z̃m into L hyper-pixels is:

z̃m =
(
z̃ T
(m−1)L+1, z̃

T
(m−1)L+2, . . . , z̃

T
mL

)T
,

=
(
~z T

q((m−1)L+1), ~z
T
q((m−1)L+2), . . . , ~z

T
q(mL)

)T
.
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Similarly, the breakdown of the conditional mean µz̃|x into M super-pixel components is:

µz̃|x =
(
µT

z̃1|x,µ
T
z̃2|x, . . . , µ

T
z̃M |x

)T
,

where the mth conditional mean super-pixel (derived from Equation (4.26)) is given by:

µz̃m|x = µz̃m
+ B̂mS̃ T

L

[
S̃LB̂mS̃ T

L + σ2
ηIL

]−1

(xm − S̃Lµz̃m
), (4.68)

which may be broken down further to hyper-pixels resulting in Equation (4.48). The quan-
tities appearing in Equation (4.68) are defined by:

S̃L = IL ⊗ sT ,
(
S̃L is L× LP, S̃ = SQT = IM ⊗ S̃L

)
,

x =
(
xT

1 ,xT
2 , . . . , xT

M

)T
, (xm is L× 1) ,

µz̃ =
(
µT

z̃1
,µT

z̃2
, . . . , µT

z̃M

)T
,

(
µz̃m

is LP × 1
)
,

Cz̃ =
M⊕

m=1

B̂m,

(
B̂m =

L⊕
j=1

Bm,j is LP × LP

)
.

The inverted quantity in Equation (4.68) reduces to:

S̃LB̂mS̃ T
L + σ2

ηIL =
L⊕

j=1

(
sT Bm,js + σ2

η

)
.

Therefore, the computation of µz̃m|x reduces to inverting diagonal matrices.

The computation of z̃m using Equations (4.64), (4.67), and (4.68) may be accomplished
in parallel by assigning a different set of m to each processing unit. This means that no
parallel matrix algorithms need be considered, making coding a task considerably simpler
than it would otherwise be. It is important to remark that Equations (4.64) and (4.67)
apply even if the relationship x = Sz + η is not assumed. This facilitates the construction
of a single computer code that applies to the case where x = Sz + η is assumed as well as
to the case where it is not.

We now assume the special case where the P ×P diagonal blocks of Cz̃ (and hence Cz̃|x)
are identical within super-pixels. Thus, for each m = 1, 2, . . . , M :

Bm,1 = Bm,2 = · · · = Bm,L,
Gm,1 = Gm,2 = · · · = Gm,L.

Under the special case condition, we may characterize the definiteness of the inverted matrix
of Equation (4.58) in terms of σn and ση. For this purpose, we establish the following lemma.

Lemma 4.11.1 Given any nonzero vector v of length P , the matrix Γ = IP − vvT

vT v + ε
is

positive definite if ε > 0, and nonnegative definite if ε = 0.
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Proof. First assume that ε > 0 and let Ψ =
vvT

vT v + ε
so that

‖Ψ‖F =

∥∥∥∥
vvT

vT v + ε

∥∥∥∥
F

=
‖vvT‖F

vT v + ε
=

vT v

vT v + ε
< 1.

where ‖‖F denotes the Frobenius norm. It follows that Γ = IP − Ψ is nonsingular and the
inverse of Γ is given by the Neumann series:

Γ−1 =
∞∑

n=0

Ψn.

For any nonzero vector x of length P ,

xT Ψx =
xT vvT x

vT v + ε
=

‖xT v‖2

vT v + ε
> 0,

which proves Ψ is positive definite. Since Ψ is symmetric, it follows that Ψn is positive
definite for all nonnegative integers n, which proves from the Neumann series that Γ−1 and
hence Γ is positive definite.

Since a matrix is positive definite if and only if its eigenvalues are positive, and the
eigenvalues of a matrix are continuous functions of its entries, it follows that the eigenvalues
of Γ, are positive or zero when ε = 0. This proves that Γ is nonnegative definite if ε = 0.

The fact that a zero eigenvalue of Γ actually occurs when ε = 0 is established by observing
that vT v is an eigenvalue of vvT with eigenvector v, making det(vT vIP−vvT ) = 0. Therefore
Γ is singular and hence has at least one zero eigenvalue when ε = 0.

Theorem 4.11.2 Under the special case condition, the (inverted) matrix W̃Cz̃|xW̃ T +Cn of
Equation (4.58) is positive definite if either σn > 0 or ση > 0 and is singular if σn = ση = 0.

Proof. From Equation (4.62), it is equivalent to prove that Ḡm + σ2
nIP is singular if

σn = ση = 0 and positive definite otherwise. Under the special case assumption, Equation
(4.61) becomes:

Ḡm = γmGm,1 where γm = ~ωT
m~ωm.

In Section 4.7, we proved that Gm,1 is singular when ση = 0. It follows that Ḡm + σ2
nIP is

singular when σn = ση = 0. Therefore, we turn to the case where either σn > 0 or ση > 0.

From Equation (4.53),

Ḡm + σ2
nIP = γmGm,1 + σ2

nIP

= γm

[
Bm,1 − Bm,1ss

T Bm,1

sT Bm,1s + σ2
η

]
+ σ2

nIP ,

= B
1/2
m,1

[
γm

(
IP − vvT

vT v + σ2
η

)
+ σ2

nB
−1
m,1

]
B

1/2
m,1,
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where v = B
1/2
m,1s. Since the sum of a positive definite matrix with a nonnegative definite

matrix is positive definite, Lemma 4.11.1 implies that the matrix quantity within the square
brackets of the last expression is positive definite when either σn > 0 or ση > 0. From this,
it easily follows that Ḡm + σ2

nIP is positive definite and the theorem is proven.

Experience with a computer implementation of the Form 1 MAP algorithm shows that
the matrix W̃Cz̃|xW̃ T + Cn (regardless of whether x = Sz + η is assumed and regardless of
the special case condition) may be poorly conditioned when σn = 0. In fact, taking σn > 0

is a mechanism one can use for diagonally loading W̃Cz̃|xW̃ T + Cn. When diagonal loading
is used in this manner, better performance of the algorithm is observed, as measured by
signal to noise ratio determined by comparing the true z (assuming it is known) with the
Form 1 MAP estimate ẑ.

Although W̃Cz̃|xW̃ T + Cn is singular under the special case and noise free assumptions,

that singularity cancels when combined with Cz̃|xW̃ T via Equation (4.57). The remainder
of this section derives an expression for the Form 1 MAP estimator under the special case
and noise free assumptions. We will see that no matrix inversions are required.

Under the noise free assumption (σn = ση = 0), we see from Equation (4.65) that

A(1)
m =

1

γm

(~ωm ⊗ IP ) , (4.69)

and Equation (4.67) becomes:

z̃m =

[
ILP − 1

γm

(~ωm ⊗ IP )
(
~ωT

m ⊗ IP

)]
µz̃m|x +

1

γm

(~ωm ⊗ IP ) ~ym

Applying the properties of the Kronecker tensor product listed in the beginning of this
chapter yields:

z̃m =

[(
IL − 1

γm

~ωm~ωT
m

)
⊗ IP

]
µz̃m|x +

1

γm

(~ωm ⊗ IP ) ~ym,

which is applicable even if the model x = Sz + η is not assumed. Similarly, from Equation
(4.68) we have:

µz̃m|x = µz̃m
+

1

am

(IL ⊗Bm,1s)
(
xm −

(
IL ⊗ sT

)
µz̃m

)
,

where am = sT Bm,1s. Substituting the latter expression into the former and collecting terms
yields the super-pixel breakdown of the Form 1 MAP estimator under the noise free and
special case assumptions:

z̃m =

[
(IL − 1

γm

~ωm~ωT
m)⊗ (IP − 1

am

Bm,1ss
T )

]
µz̃m

+
1

am

[(
IL − 1

γm

~ωm~ωT
m

)
⊗Bm,1s

]
xm +

1

γm

(~ωm ⊗ IP )~ym. (4.70)
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Since this expression is free of matrix inverses, it is a candidate for real time imple-
mentation. It is expected that it will provide a better result than interpolation of y alone
(without use of x) while keeping complexity to a level suitable for real time implementation.
This expectation is based on the assumption that estimates of the covariance matrix are
performed in parallel in an efficient manner.

4.12 Lagrange Multiplier Optimization

In this section, we present an alternate derivation of the Form 1 MAP estimate using the
optimization technique of Lagrange multipliers. The derivation applies only to the case
of no noise present in the observed data. Rather than an unconstrained minimization of
(4.29), we wish to minimize

C(z) =
1

2
(z − µz|x)

T C−1
z|x(z − µz|x) (4.71)

subject to the constraint that y = Wz. Multiplying out the terms and keeping only those
that are functions of z, we arrive at an equivalent cost function

C(z) =
1

2
zT C−1

z|xz −
(
µT

z|xC
−1
z|x

)
z. (4.72)

Thus, we are faced with a minimization of a quadratic form with linear constraints. We
can solve the problem using the method of Lagrangian multipliers [17]. The Lagrangian is
formed as

L(z, λ) =
1

2
zT C−1

z|xz −
(
µT

z|xC
−1
z|x

)
z + λT (Wz − y), (4.73)

where λ is an MP × 1 vector of Lagrangian multipliers. The gradient with respect to z is
given by

∇zL(z,λ) = C−1
z|xz − (C−1

z|x)T µz|x + W T λ. (4.74)

Setting this equal to zero and solving for z yields

ẑ = µz|x − Cz|xW
T λ. (4.75)

Now let us find the λ that allows our solution to meet the linear constraint. To do so we
impose the linear constraint on (4.75) and solve for λ. This gives us

y = W ẑ = W
(
µz|x − Cz|xW

T λ
)
. (4.76)

Solving for λ we get

λ =
(
WCz|xW

T
)−1 (

Wµz|x − y
)
. (4.77)

Plugging this into (4.75) yields our final solution

ẑ = µz|x − Cz|xW
T

[(
WCz|xW

T
)−1 (

Wµz|x − y
)]

. (4.78)

This result matches Equation (4.57) when the covariance of the noise is set to zero.

61



4.13 Generalization to Multispectral Images

Up to this point, the N×1 vector x has represented an nv×nh (i.e. panchromatic) image. We
now generalize the most important equations (those required for computer implementation)
to the case where x has additional spectral content. In particular, we assume that x is an
nv × nh × ν data cube written as an Nν × 1 vector. In reference [18], the quantity ν is
denoted by Q. We chooses a different variable name in order to avoid confusion with the
NP ×NP permutation matrix Q.

We adopt the following ordering and notation for the Nν × 1 multispectral vector x:

x =
[
x(1); x(2); . . . ; x(ν)

]
,

where x(k) for 1 ≤ k ≤ ν is an N × 1 vector whose entries are denoted by

x(k) =
(
x

(k)
1 , x

(k)
2 , . . . , x

(k)
N

)T

.

Thus, x(k) contains the spatial content of x corresponding to multispectral band k. When
thought of as an nv × nh matrix, the entries of x(k) are stored in column order.

Our existing MATLAB code implements the Form 1 MAP algorithm through the use
of Equation (4.67). Fortunately, the generalization to multispectral data cubes does not
alter this equation. However, under the assumption x = Sz + η, the matrix S and the
vector η take on new meaning, and this has an impact on how the various terms and factors
of Equation (4.67) are computed. Also affected is the least squares approach presented in
Section 4.6 for estimating the spectral response matrix from x and y.

The matrix S changes from an N ×NP matrix to an Nν ×NP matrix and η changes
from an N×1 vector to an Nν×1 vector. In accordance with S, the P ×1 spectral response
vector s becomes a P ×ν matrix whose entries are nonnegative and whose column sums are
unity.

For k = 1, 2, . . . , ν, let s(k) denote the kth column of the P × ν matrix s. Define the
N ×NP matrix S̃(k) by:

S̃(k) =
N⊕

n=1

[s(k)]T (4.79)

= IN ⊗ [s(k)]T . (4.80)

Now define the Nν ×NP matrix S̃ by vertical concatenation of the S̃(k):

S̃ =
[
S̃(1); S̃(2); . . . ; S̃(ν)

]
. (4.81)

The Nν ×NP matrix S for the multispectral case is given by S = S̃Q.
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One consequence of changing s to a P ×ν matrix is that the algorithm for its estimation
as given in Section 4.6 changes slightly. We define x̄

(k)
m analogous to Equation (4.40) as

follows:

x̄(k)
m =

1

L

L∑
j=1

x
(k)
q((m−1)L+j).

In analogy to Equation (4.41)we set:

x̄(k)
m =

〈
~ym, s(k)

〉
(1 ≤ m ≤ M).

In matrix form (analogous to Equation (4.42)) this becomes:

Y s(k) = x̄(k),

where x̄(k) = (x̄
(k)
1 , x̄

(k)
2 , . . . , x̄

(k)
M ) and Y is the same as before. Thus, there are now ν systems

of equations to solve in the least squares sense. Each system is subject to the constraints
that s(k) contain nonnegative entries that sum to unity. The MATLAB function LSQLIN

may still be used, but now it appears within a loop over k.

Equation (4.67), which we used for programming the Form 1 MAP algorithm, ultimately
depends on the P × 1 conditional hyper-pixel means µz̃i|x and the P ×P conditional covari-

ance matrices Gm,j (i.e. the jth P ×P block of Cz̃|x corresponding to the mth super-pixel).
Under the assumption x = Sz+η, these are estimated by their (unconditional) counterparts
µz̃i

and Bm,j through use of Equations (4.48) and (4.53). However, these equations were de-
rived under the assumption of x being panchromatic and do not apply to the multispectral
case.

To derive the generalized versions of Equations (4.48) and (4.53), we start with the
more fundamental Equations (4.26) and (4.27). Let D denote the Nν × Nν matrix in
square brackets that appears in both of these equations:

D = S̃Cz̃S̃
T + Cη,

where Cη = σ2
η INν . Our first problem will be to invert D.

From Equation (4.81), D is naturally partitioned into ν2 N × N blocks, where block
(i, j) is defined by:

Di,j = S̃(i)Cz̃[S̃
(j)]T + δi,j σ2

η IN ,

and δi,j denotes the usual Kronecker delta function (1 if i = j and 0 otherwise).

Equations (4.80) and (4.46) yield the following expression for Di,j:

Di,j =
N⊕

n=1

dn(i, j),

dn(i, j) = [s(i)]T Bns(j) + δi,j σ2
η.
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It follows that for each n = 1, 2, . . . , N , the ν × ν matrix dn is given by:

dn = sT Bns + σ2
η Iν . (4.82)

Note that these matrices reduce to the scalars di of Section 4.7 for the case of ν = 1.

Denote the Nν × Nν inverse of D by U and partition it in a manner consistent with
D, using Ui,j to denote its (i, j) N × N block. We now assume that the zero/nonzero
structure of U is identical to that of D. Our assumption will be justified if the resulting
nonzero entries of U are uniquely determined. Accordingly, assume Ui,j is given in terms of
unknown scalars un(i, j) by:

Ui,j =
N⊕

n=1

un(i, j),

and compute the un(i, j) such that DU = INν . The matrix equation DU = INν is equivalent
to:

ν∑

k=1

Di,kUk,j = δi,j IN ,

where i and j run over 1, 2, . . . , ν. Given the assumed form of Ui,j, this becomes:

N⊕
n=1

[
ν∑

k=1

dn(i, k)un(k, j)

]
= δi,j IN .

This however is equivalent to

ν∑

k=1

dn(i, k)un(k, j) = δi,j,

as n runs over 1, 2, . . . , N , which is just another way of asserting that the ν × ν matrices
dn and un are inverses of each other. Thus, the elements of un are uniquely determined by
un = d−1

n and the inversion of D reduces to the inversion of the ν×ν matrices d1, d2, . . . , dN .
It is seen from Equation (4.82) that the condition of dn will improve as σ2

η increases. Just
as the noise variance σ2

n may be considered a diagonal load to improve the condition of

W̃Cz̃|xW̃ T , the noise variance σ2
η may be considered a diagonal load to improve the condition

of S̃Cz̃S̃
T .

Continuing with the generalization of Equations (4.48) and (4.53), we derive expressions
in terms of the scalars un(i, j), which we now know how to compute. We proceed by
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dissecting the factor S̃T D−1S̃ appearing in Equation (4.27):

S̃T D−1S̃ =
ν∑

j=1

ν∑
i=1

[S̃(i)]T Ui,jS̃
(j)

=
ν∑

j=1

ν∑
i=1

(
N⊕

n=1

s(i)un(i, j)[s(j)]T

)

=
N⊕

n=1

(
ν∑

j=1

ν∑
i=1

un(i, j)s(i)[s(j)]T

)
.

Substituting this factor into Equation (4.27) yields:

Cz̃|x = Cz̃ − Cz̃

(
S̃T D−1S̃

)
Cz̃

=
N⊕

n=1

(
Bn −Bn

ν∑
j=1

ν∑
i=1

un(i, j)s(i)[s(j)]T Bn

)

=
N⊕

n=1

(
Bn −

ν∑
i=1

ν∑
j=1

un(i, j)Bns(i)[Bns
(j)]T

)
.

It follows that the conditional covariance matrices Gm,j representing the jth P × P

matrix within the mth super-pixel of Cz̃|x is given by:

Gm,j = Bm,j −
ν∑

i=1

ν∑

k=1

(
un(i, k)Bm,js

(i)
)
[Bm,js

(k)]T , (4.83)

which generalizes Equation (4.53).

We conclude with deriving a generalization of Equation (4.48). Dissecting the factor

Cz̃S̃
T D−1 of Equation (4.26), we have:

Cz̃S̃
T D−1 =

(
N⊕

n=1

ν∑
i=1

un(i, 1)Bns(n),

N⊕
n=1

ν∑
i=1

un(i, 2)Bns(n), . . . ,

N⊕
n=1

ν∑
i=1

un(i, ν)Bns(n)

)
.

Similarly, the factor x− S̃µz̃ of Equation (4.26) is:

x− S̃µz̃ =
(
x(1) − S̃(1)µz̃; x

(2) − S̃(2)µz̃; . . . ; x
(ν) − S̃(ν)µz̃

)

x(k) − S̃(k)µz̃ =
(
x

(k)
1 − [s(k)]T µz̃1 , x

(k)
2 − [s(k)]T µz̃2 , . . . , x

(k)
N − [s(k)]T µz̃N

)T

.
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Putting the factors together yields:

Cz̃S̃
T D−1

(
x− S̃µz̃

)
=

ν∑

k=1




(
N⊕

n=1

ν∑
i=1

un(i, k)Bns
(i)

)



x
(k)
1 − [s(k)]T µz̃1

x
(k)
2 − [s(k)]T µz̃2

...

x
(k)
N − [s(k)]T µz̃N







=
N⊕

n=1

[
ν∑

i=1

ν∑

k=1

(
x(k)

n − [s(k)]T µz̃n

)
un(i, k)Bns(i)

]
.

Therefore, through the use of Equation (4.26), the nth P×1 conditional mean high resolution
hyper-pixel is given in terms of the corresponding (unconditional) mean high resolution
hyper-pixel by:

µz̃n|x = µz̃n +
ν∑

i=1

ν∑

k=1

(
x(k)

n − [s(k)]T µz̃n

)
un(i, k)Bns

(i), (4.84)

which generalizes Equation (4.48). Equations (4.82), (4.83), and (4.84) are some of the more
important equations relevant to programming a generalized MAP algorithm that applies to
both multispectral and panchromatic inputs.

4.14 Estimation of Conditional Parameters

We now discuss our approach to estimating conditional statistical parameters Cz|x and µz|x
under the assumption that the linear model x = Sz + η does not hold. In this section and
in Section 4.13, we generalize the single band panchromatic array x to a multispectral array
with ν bands. Thus,

x = (~xT
1 , ~xT

2 , . . . , ~xT
N)T ,

where each ~xn is a ν × 1 vector (for a panchromatic image, ν = 1).

Estimating the full NP×NP covariance matrix Cz|x, used in Equation (4.28), is imprac-
tical for a typical size hyperspectral image. To make the problem manageable, constraints on
the form of this covariance are required to bring down the number of statistical parameters
to be estimated. While there may be numerous ways to accomplish this, we believe that a
reasonable approach is to model the unknown high-resolution hyper-pixels as conditionally
independent spatially, yielding

Pr(z|x) =
N∏

n=1

Pr(~zn|~xn), (4.85)
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which is the multispectral version of Level 1 conditional independence presented in Section
4.9. Writing out the individual conditional PDFs yields

Pr(z|x) =
N∏

n=1

1√
(2π)P |Czn|xn |

exp

{
−1

2
(~zn − µzn|xn

)T C−1
zn|xn

(~zn − µzn|xn
)

}
, (4.86)

where µzn|xn
= E{~zn|~xn} and Czn|xn is the P×P covariance matrix for ~zn given ~xn. The rela-

tionship between the individual hyper-pixel statistical parameters and the global statistical
parameters in Equation (4.28) is given by

Cz|x =




Cz1|x1 0 · · · 0

0 Cz2|x2

...
...

. . . 0
0 · · · 0 CzN |xN


 =

N⊕
n=1

Czn|xn , (4.87)

and
µz|x =

[
µT

z1|x1
,µT

z2|x2
, . . . , µT

zN |xN

]T
. (4.88)

Furthermore, applying the results in Equations (4.21) and (4.22) on the hyper-pixels yields

µzn|xn
= E{~zn}+ Czn,xnC−1

xn
[~xn − E{~xn}] (4.89)

and
Czn|xn = Czn − Czn,xnC−1

xn
CT

zn,xn
. (4.90)

Note that the covariance matrix of the joint random vector, ψn =
[
~xT

n , ~zT
n

]T
, is related to

the cross-covariance matrices in Equations (4.89) and (4.90) as follows

Cψn =

[
Cxn,xn CT

zn,xn

Czn,xn Czn,zn

]
. (4.91)

With the simplifying assumption of conditional independence, Cz|x is block diagonal,
reducing the number of statistical parameters from (NP )2 to NP 2. That is, the problem
reduces to estimating the hyper-pixel conditional statistics in Equations (4.89) and (4.90).
The number of statistical parameters may be further reduced by assuming some or all
hyper-pixels as having the same conditional covariance. If, for example, all hyper-pixels
have the same covariance, then we have only P 2 statistical parameters in the conditional
covariance matrix to estimate. An area of future work might be to explore other forms for
the conditional covariance matrix (implying other assumptions regarding the nature of the
high-resolution hyper-pixels).

To estimate E{~zn}, we propose using the spatially interpolated observed hyperspectral
imagery, denoted µ̂zn

. We have found that spline interpolation tends to yield the best
results here. To estimate E{~xn}, we use a spatially smoothed version of the band or bands
in x. We have observed that the best results are obtained when the smoothing is done to
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mimic the way in which µ̂~zn
relates to ~zn. That is, we degrade ~xn with a PSF and down-

sampling factor similar to that defined by W . This degraded image is interpolated using
spline interpolation to produce the estimate of E{~xn}, which we will denote µ̂xn

, for all n.
In this fashion it may be said that µ̂xn

relates to ~xn as µ̂zn
relates to ~zn. These estimates

tend to track the non-stationarity in the mean exhibited by most natural images [21].

The joint covariance in Equation (4.91) must also be estimated in order to get the
conditional statistics in (4.89) and (4.90). In most cases it will not be possible to obtain
statistically similar data at the high resolution required. Thus, we attempt to estimate
the required joint covariance from the observed imagery. To do so, we will estimate a
joint covariance at the lower resolution of the observed hyperspectral imagery and apply
it at the higher resolution. While the joint statistics may differ at different resolutions,
it is hoped that there is sufficient symmetry of spatial scale in the statistical parameters
to provide a useful result. In particular, we artificially degrade the spatial resolution and

size of x to match that of y. Let this degraded image be denoted x̃ =
[
x̃T

1 , x̃T
2 , ..., x̃T

M

]T
.

The local means at this resolution, obtained using the same method applied to the original
resolution, are removed from x̃ and y. Now, the joint covariance information is estimated.
One relatively simple approach seeks a single global covariance using a sample covariance
estimate. This covariance is used as an estimate of Cψn for all n.

However, in order to more fully exploit the information in x, we wish to capture the
changing joint covariance as the spectral content in the scene varies spatially. Since it is
impractical to estimate a joint covariance for each hyper-pixel, we use a simple clustering

approach based on vector quantization. To begin, we form joint vector ψ̃m =
[
x̃T

m,yT
m

]T ∈
Rν+P for m = 1, 2, . . . , M , where Rν+P represents the ν + P dimensional real space. These
vectors are grouped into K clusters (or classes) using the Linde-Buzo-Gray (LBG) algorithm
[22]. The cluster centroids define the Voronoi partitions of the spectral space. That is, a
given vector in Rν+P space is assigned to class k if it lies closest, in a Euclidean sense, to the
centroid of cluster k. For each cluster, the sample joint covariance is computed using ψ̃m for
m ∈ Ωk, where Ωk is the set of all indices corresponding to Voronoi partition k. To estimate

the joint covariance, Cψn , we assign ψ̂n =
[
~xT

n , µ̂T
zn

]T
to a partition and let the covariance

for this high-resolution spatial position n be the corresponding cluster covariance. With
these covariance estimates in hand, the final MAP estimate can be formed. In some cases
we have observed improvement in performance if we form an estimate of the conditional
mean in Equation (4.89), µ̂zn|xn

, and then re-classify the image using ψ̂n = [~xT
n , µ̂T

zn|xn
]T for

the purpose of assigning cluster covariances to each high-resolution position.
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Chapter 5

MAP Algorithm Performance

Focusing on the use of high-resolution panchromatic (single band) data to enhance hyper-
spectral imagery, we show that the MAP estimator produces an estimate with enhanced
sub-pixel spectral content that is evident not only in the first principal component image,
but in lower components as well. The relationship of the proposed method to some prior
methods is discussed in Section 5.1. Experimental results are presented in Section 5.2.
Finally, conclusions are given in Section 5.3.

5.1 Relationship to Other Approaches

It is interesting to explore the relationship between the proposed MAP estimate and some
previously proposed approaches. Consider that if one neglects the observation model for y
in the MAP formulation, the resulting cost function would simply be the second term in
Equation (4.29). This would lead to an estimate that is the conditional mean in Equation
(4.89). This result is essentially the same as that derived by Nishii et al. [1] for Landsat
Thematic Mapper thermal band estimation, given specific choices for the estimates of E{~zn}
and E{~xn}. In particular, one must use zero-order-hold (ZOH) interpolation (i.e., pixel
replication) on each band of the observed hyperspectral image to estimate E{~zn} and average
the auxiliary image pixels within the span of each low-resolution hyper-pixel to estimate
E{~xn}. Using these estimates for E{~zn} and E{~xn} guarantees that the average of the
estimated hyper-pixels within the span of a low-resolution hyper-pixel will be equal to
the low-resolution hyper-pixel. Nishii et al. [1] explore the use of both local and global
covariances. Thus, in comparison to their method, the proposed MAP framework is novel
in how it explicitly incorporates an arbitrary system PSF and in how it allows for various
statistical models and estimates of the statistical parameters. We will use the method of
Nishii et al. [1] as one of our performance benchmarks for comparison in Section 5.2.

Another method used as a benchmark is the estimator proposed by Price [2, 7]. This
method was designed to combine multispectral imagery with a panchromatic auxiliary image
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(i.e., ν = 1). For bands strongly correlated with the panchromatic sensor, the estimate is
based on a linear mapping of the panchromatic image, yielding

ẑp,n = apx1,n + bp, (5.1)

for n = 1, 2, ..., N and p = 1, 2, ..., P . This estimate is then scaled so that the average of
the high-resolution hyper-pixels within the span of a low-resolution hyper-pixel is equal to
the low-resolution hyper-pixel. The coefficients, ap and bp are estimated with least-squares
regression using low-resolution hyperspectral band p and a degraded version of the panchro-
matic image (degraded to match the spatial resolution of the low-resolution hyperspectral
band). For weakly correlated bands, a look-up-table (LUT) method is employed [2,7]. The
LUT is created based on the relationship between the low-resolution pixel values in a given
band and the corresponding pixel values in the degraded panchromatic image. Once the
LUT is generated it is applied to the full-resolution panchromatic image to form a high res-
olution estimate of the desired band. As before, this estimate is scaled so that the average
of the high-resolution hyper-pixels within the span of a low-resolution hyper-pixel is equal
to the low-resolution hyper-pixel.

5.2 Experimental Results

In this section, we present a number of experimental results in order to demonstrate the
efficacy of the proposed estimator in comparison to the benchmark techniques. Simulated
data are used here to allow for quantitative performance analysis. The details of the data
set are provided in Section 5.2.1. In Sections 5.2.2 and 5.2.3, quantitative error analysis is
presented in the spectral band space and in the principal component space, respectively.
Finally, noise analysis is presented in Section 5.2.4.

5.2.1 Simulated Data

The simulated data sets are derived from a hyperspectral image collected by the Airborne
Visible-Infrared Imaging Spectrometer (AVIRIS) sensor [23]. AVIRIS is a scanning disper-
sive hyperspectral imaging sensor that flies on the NASA ER-2 aircraft at approximately
20 km above sea level with a spatial resolution of approximately 6 m per pixel. The sensor
collects 224 contiguous spectral bands in the range of 0.4 to 2.5 µm. The specific scene used
has been collected over Yorktown Virginia (Flight F980703T01, Run 02, ID 1828000ST23).

A 256×256 portion of the scene is used as the true high spatial resolution hyperspectral
image z. This is artificially degraded to form y. A simple rectangular detector model is
used for the system PSF [24]. In particular, the PSF is a 4 × 4 kernel with equal weights
of 1/16. The image is subsampled by a factor of 4 in both spatial dimensions. This PSF
model leads to a simple structure in the matrix W described in Section 4.3. This structure,
combined with the spatial conditional independence assumption, allows us to process each
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Figure 5.1: Simulated observed images derived from AVIRIS data. (a) False color image of
principal components one, two, and three of the low spatial resolution hyperspectral data.
(b) High spatial resolution panchromatic image.

low-resolution hyper-pixel to form a corresponding 4 × 4 set of hyper-pixels independently
(after the mean estimates are formed using interpolation). For imagery in the mid- and long-
wave infrared, diffraction effects tend to become larger and can be added to the observation
model [24]. The associated high resolution sensor in this case is modeled as a panchromatic
broadband imager (ν = 1). These data are formed by averaging the 224 AVIRIS bands at
the original resolution. A false color image, formed by mapping the first three principal
components of the low-resolution hyperspectral data to red, green and blue, respectively, is
shown in Figure 5.1(a). The simulated broadband image is shown in Figure 5.1(b).

The eigenvalue (variance) associated with each principal component of the low-resolution
hyperspectral data is plotted in Figure 5.2. This clearly indicates that the vast majority
of signal power is contained in the leading components. For example, after 20 components,
the eigenvalue has dropped by approximately five orders of magnitude from the top com-
ponent. In order to reduce the computational burden, we process the imagery in the PCA
space in the top twenty dimensions. The lower 204 dimensions are processed using spline
interpolation. The processed components are then transformed back to the original spectral
space. Note that due to the nature of the PCA transformation, the estimation algorithm
applies identically in the principal component space as shown in Section 4.10.

5.2.2 Spectral Space Performance Analysis

To quantitatively assess the performance of the MAP estimator, we compare the estimates
with the “true” hyperspectral image (the original resolution AVIRIS image). Our image
fidelity metric is signal-to-noise ratio (SNR), where “noise” here refers to estimation error.
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Figure 5.2: Eigenvalue versus component number for the low-resolution hyperspectral image.

This metric is computed as the sample variance of the “desired” image divided by the mean
squared error (MSE). Scaling the reciprocal of the MSE by the variance of the desired image
is helpful in allowing one to compare performance between bands with significantly different
signal powers. This is particularly useful in principal component space, where power in the
bands can vary by orders of magnitude.

The SNR versus wavelength is shown in Figure 5.3 for the MAP estimator (K = 16)1,
the method of Nishii et al. (with global covariance statistics) [1], Price’s method [2], and
spline interpolation. For Price’s method, both the linear model and LUT approach are used
and the best of the two SNRs for each band is reported. Here no noise is introduced to either
the low-resolution hyperspectral imagery or the panchromatic imagery. The effects of noise
are studied in Section 5.2.4. Note that significant improvement over spline interpolation is
obtained in many bands with all the techniques. Not surprisingly, the bands with the highest
correlation with the panchromatic image tend to have the highest SNRs. The spectral band
estimates with very low SNR are a result of the original data having very low signal power
due to atmospheric absorption. It can be seen from Figure 5.3 that the MAP estimate with
(K = 16) provides the highest SNRs for these data.

1K refers to the number of VQ clusters as described in Section 4.14
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Figure 5.3: SNR versus AVIRIS band wavelength for the MAP estimator (K = 16), the
method of Nishii et al. (with global covariance statistics) [1], Price’s method [2], and spline
interpolation.

5.2.3 Principal Component Space Performance Analysis

The spectral domain error analysis indicates that many spectral bands can be significantly
enhanced with the use of the panchromatic imagery. However, it is insightful to examine the
performance in the principal component space. Table 5.1 shows the SNR in the first 5 prin-
cipal components for spline interpolation, the method of Nishii et al. (with global covariance
statistics) [1], Price’s method [2], and the MAP estimator for K = 1 and K = 16. Clearly
the top principal component is dramatically improved by incorporating information from
the panchromatic image. However, the lower components are far more difficult to enhance
due to the weak correlation with the broadband image. The MAP estimator does provide
a modest increase in SNR over spline interpolation for some of the lower components, while
the benchmark techniques have lower SNRs than that obtained with spline interpolation.
Note also that principal component substitution methods typically seek to enhance only the
principal component, and do not enhance the lower components at all. Thus, we believe
that any enhancement in these lower components is a promising result. The use of mul-
tispectral high-resolution imagery (rather than panchromatic) could provide the means to
better improve these lower components. To focus on these lower components, Figure 5.4
shows the percentage SNR improvement over spline interpolation for the various estimators

73



Table 5.1: SNRs for estimates of the top 5 principal component images

Method PC 1 PC 2 PC 3 PC 4 PC 5

Spline Interpolation 5.87 6.36 2.86 4.86 3.90

Conditional Mean 26.92 5.69 2.48 4.21 3.62

(Nishii et al. [1])

Linear Regression Method 27.92 5.81 2.48 4.24 3.36

(Price [2])

MAP (K = 1) 34.74 7.42 2.99 5.04 4.44

MAP (K = 16) 38.97 8.37 3.05 5.24 4.48

in components 2 through 20. Note that the MAP estimator with K = 16 generally shows
the most improvement. We believe that the improvement seen with K = 16 versus K = 1
is because more correlation is present in the individual classes than exists globally.

False color images formed with the top three principal components mapped to red, green,
and blue are shown in Figure 5.5. In particular, the true high resolution hyperspectral
image components are shown in Figure 5.5(a). Spline interpolated components are shown
in Figure 5.5(b). The estimate using Price’s method is shown in Figure 5.5(c). Finally, the
MAP estimate for K = 16 is shown in Figure 5.5(d). An enlargement of the upper right
corner of the image is shown in Figure 5.6 for principal components two, three, and four.
We believe that the MAP estimates generally appear sharper than the spline interpolated
images and exhibit less prominent block artifacts than the estimates using Price’s method
(an observation consistent with the quantitative analysis).

The number and locations of the vector quantization code words that define the Voronoi
partitions has a significant impact on the performance of the algorithm. Figure 5.7 shows
the SNR versus the number of partitions for principal components 1, 2, and 3 for a larger
portion (512 × 1536) of the AVIRIS scene. Note that for 8 and more partitions, the SNRs
are markedly higher than with fewer partitions. However, the SNR does not appear to
increase linearly with number of partitions, as one might expect. First, the performance
of the LBG algorithm is somewhat sensitive to the initial starting point. The starting
vectors are selected by uniformly subsampling the scene. Thus, with different numbers
of partitions, different initial codewords are automatically selected. Secondly, the LBG
algorithm is designed to find the most representative codewords (spectra). It is not designed
to optimize the MAP algorithm performance. However, choosing a partitioning scheme
to maximize the MAP algorithm performance is a daunting, possibly intractable, task.
Furthermore, these results will depend on the specific scene used and the relative quantities
of the spectra present. Alternative methods for partitioning the observation space may be
an interesting area for further research.
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Figure 5.4: Percentage improvement in SNR over straight spline interpolation for estimates
of principal components two through twenty.

5.2.4 Noise Analysis

In this section we consider how noise impacts the performance of the MAP estimator. First,
we consider the impact of noise in the observed hyperspectral imagery, and then, we consider
noise in the panchromatic imagery. The SNRs of the estimates of principal component two
as a function of the average SNR of the observed low-resolution hyperspectral bands are
shown in Figure 5.8. Here no noise in the panchromatic image is introduced. One curve
shows the SNRs for the MAP estimates with K = 16 when zero noise variance is assumed.
Another curve shows the SNRs when the correct noise variance is known and used.

The SNRs of the estimates of principal component two as a function of the panchromatic
image SNR are shown in Figure 5.9. Here no noise in the hyperspectral image is introduced.
Note that the spline interpolator does not depend on x, and thus, is not affected by noise in
the panchromatic image. Also note that when the SNR of the panchromatic image is low,
little improvement is possible as correlation with the hyperspectral bands is reduced. With
very low SNR panchromatic imagery, the correlation at the lower resolution is not indicative
of the correlation at the higher resolution. This is because the noise at the lower resolution
is reduced as the panchromatic image is artificially degraded to the lower resolution. The
use of pre-filters for noise reduction could help to mitigate this effect.
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5.2.5 Multispectral Auxiliary Sensor

We examined the performance of the MAP estimator using a multispectral auxiliary sensor.
Figure 5.10 shows the SNR for the MAP estimator (K = 16) for a different 256×256 portion
of the AVIRIS scene. We simulated a panchromatic sensor (averaging all AVIRIS bands),
a visible/near infrared dual-band sensor (averaging the visible bands, and the remaining
bands), and finally a six-band multispectral sensor with bands similar to those of the Landsat
Thematic Mapper sensor (excluding the thermal band). Note that significant improvement
is possible in some of the lower components, but the number of significantly improved
principal components is approximately equal to the number of bands in the auxiliary sensor
in these results. Modest improvement in many components is possible, however, as shown
with the six-band auxiliary sensor results.

Figures 5.11 and 5.12 show some image results comparing panchromatic enhancement
with multispectral enhancement. In particular, Figure 5.11(a) shows the raw low-resolution
principal components 1, 2 and 3 in a false color composite. Figure 5.11(b) shows the same
same components for the spline interpolated imagery. The high resolution components are
shown in Figure 5.11(c). The MAP estimate with K = 16 and panchromatic sharpening is
shown in Figure 5.11(d). The dual-band sharpened result is shown in Figure 5.11(e) and
the six-band sharpened result is shown in Figure 5.11(f). The images are dominated by the
principal component so that all look quite good. However, some improvement is seen with
the dual-band and multispectral auxiliary sensor over the panchromatic sensor. Figure 5.12
shows the same set of results as Figure 5.11, except principal components 2, 3 and 4 are
used in the false color composites. Here a more dramatic improvement can be seen when
the dual-band and multispectral auxiliary sensor are used.

5.2.6 Matched Filter Analysis

To investigate the potential benefit of the processed imagery on spectral detection and
land-cover classification, several matched filter experiments have been conducted. To begin,
an area within the lake region of the AVIRIS imagery has been selected and the spectra
in this area are averaged to form a target spectrum. A spectral matched filter using this
target spectrum is applied to the high-resolution imagery, yielding the result shown in
Figure 5.13(a). To cast this into a detection framework, this matched filter image has been
thresholded to produce a truth mask, shown in Figure 5.13(b). Using the target spectrum,
the matched filter result using the MAP estimate with K = 16 and panchromatic auxiliary
sensor is obtained and shown in Figure 5.13(c). For comparison, the matched filter result
using the spline interpolated imagery is shown in Figure 5.13(d). It is clear from the matched
filter results that the matched filter using the MAP imagery does a much better job with
the boundary of the lake region than the interpolated imagery.

A receiver operating characteristic (ROC) curve for the lake target is shown in Figure
5.14. This is based on the truth mask shown in Figure 5.13(b). Note that the area under the
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ROC curve for the MAP estimate imagery is clearly higher than that for the interpolated
imagery. This demonstrates a definite improvement in matched filter detection performance
using the MAP imagery for this land-cover class. The most benefit has been observed for
large landcover classes that are well represented in the vector quantization codebook and
the corresponding class statistics. Rare spectra objects comprising only a small number of
hyper-pixels in the scene may not be enhanced by this approach, relative to spline interpo-
lation. One possible approach to enhancing rare spectra objects is to hand select some of
the codewords that define the partitioning and providing sufficient training data for these
rare spectra objects. If the objects are only present in a few hyper-pixels in the current im-
agery, additional imagery may be required showing the rare spectra objects amongst various
backgrounds likely to be encountered in the real data (the mixing aspect is as important as
the rare spectra itself).

5.3 Performance Summary and Conclusions

This research effort led to the development of a MAP estimation framework for estimat-
ing an enhanced resolution image using co-registered high-resolution imagery from another
sensor. Here we have focused on the enhancement of a hyperspectral image using high-
resolution panchromatic data. However, the estimation framework developed allows for
any number of spectral bands in the primary and auxiliary image. We believe that the
proposed technique is suitable for applications where some correlation exists between the
auxiliary image and the image being enhanced. The results with AVIRIS imagery indicate
that a number of methods do well enhancing the top principal component image, where
strong global correlation exists with the panchromatic image. The lower component im-
ages are much more difficult to enhance. Notwithstanding this, we have demonstrated that
the proposed estimator is capable of providing modest improvement in some of these lower
components (something not seen with the benchmark techniques). The spatially varying
statistical model (i.e., K = 16), using vector quantization, does provide some additional
performance gain over global statistics (i.e., K = 1). We believe this is a result of exploiting
the higher correlations present within the spectral classes (correlations that get “washed
out” in the global statistics).

We believe that one of the merits of the proposed estimation framework is that it allows
for an arbitrary linear observation model. Furthermore, the estimation framework opens up
opportunities to improve upon these results with the use of more sophisticated statistical
models and methods for estimating the statistical parameters for those models. For example,
improved performance may be possible using a spatial-spectral model for the desired high-
resolution image (i.e., not assuming the desired hyper-pixels are conditionally independent,
given the auxiliary image).

The big question surrounding this research is: what benefit does this processing bring to
the utility of the processed imagery? Clearly the imagery is enhanced for subjective human
interpretation. We believe that the MAP approach arguably represents the most theoretically
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sound method proposed to date for merging hyperspectral imagery with an auxiliary sensor.
Thus, in any applications where panchromatic sharpening is used for human interpretation,
our method could offer improved performance. In addition to the subject enhancement,
we have demonstrated that some improvement, if only modest, is possible in several of the
principal component images (not just the leading component). This in turn, may allow
spectral based classifiers and detectors to yield superior results. We demonstrated that,
with large landcover classes, boundaries are significantly enhanced. Admittedly, rare spec-
tra objects may not be enhanced (without modification to the present algorithm). In light
of this observation, change detection may be a particularly good application for the MAP
processed imagery. With enhanced boundaries between landcover classes, such as the lake,
subtle changes in these boundaries will be detectable and more accurately quantified. Fi-
nally, landcover classification and segmentation (possibly using unsupervised clustering for
example), may yield more accurate and precise boundaries between large landcover classes.
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Figure 5.5: False color images showing the top three principal components for (a) the true
high-resolution hyperspectral image (b) spline interpolated components (c) linear regression
method (Price [2]) (d) the MAP estimate with K = 16.
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Figure 5.6: False color images showing principal components two, three, and four for (a)
the true high-resolution hyperspectral image (b) spline interpolated components (c) linear
regression method (Price [2]) (d) the MAP estimate with K = 16.
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Figure 5.7: SNR versus the number of vector quantization partitions for (a) principal com-
ponent one (b) principal component three.
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Figure 5.11: Principal components one, two, and three for (a) low resolution hyperspectral
imagery (b) spline interpolation (c) true high resolution imagery (d) MAP estimate using
a panchromatic auxiliary sensor (K = 16). (e) MAP estimate using a dual band auxiliary
sensor (f) MAP estimate using a six-band auxiliary sensor.
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Figure 5.12: Principal components two, three, and four for (a) low resolution hyperspectral
imagery (b) spline interpolation (c) true high resolution imagery (d) MAP estimate using
a panchromatic auxiliary sensor (K=16). (e) MAP estimate using a dual band auxiliary
sensor (f) MAP estimate using a six-band auxiliary sensor.
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Figure 5.13: Matched filter results with target spectrum sampled from lake. (a) Matched
filter output using the true high resolution imagery. (b) Binary detection map obtained by
thresholding the matched filter output. Matched filter output using the (c) MAP estimator
(K=16) and (d) spline interpolation.
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Chapter 6

Mercury Multi Computer
Implementation

Due to the assumptions made in Sections 4.3 and 4.11 regarding the PSF and covariance
matrix structures, the algorithm for computing the MAP estimate ẑ may proceed one super-
pixel at a time. On a serial machine, a loop over super-pixels is required which is the most
CPU intensive portion of MAP_Algorithm.m.1 Therefore, it is the loop over super-pixels
which warrants a parallel implementation. Section 6.1 presents the speed improvements
gained by use of the Mercury system as applied to the super-pixel loop. An important
related topic is the use of single precision and its effects on timing and algorithm stability.
This is discussed in Section 6.2 where diagonal loading is introduced to improve stability.

6.1 Timing Study

All timing results given in this section correspond to the most general (i.e. slowest) case
where the P × P diagonal blocks of the conditional covariance matrix Cz̃|x are different
from one another (i.e. vary within super-pixels). Therefore, as a function of the number
of PCA components chosen, all timings of the super-pixel loop represent the worst case.
Due to having discovered a new way to speed up the super-pixel loop for the general case
algorithm, these timing results are considerably better than what was earlier thought to be
the case.

In our MAP implementation, one node was designated as the controller. The controller
node receives input data from the host PC, and provides overall system control for the other
nodes. After the other nodes receive partitioned data from the controller, all nodes then
perform the desired processing in parallel.

1This assumes covariance inverses are required within the super-pixel loop, occurring for example when
the linear model x = Sz + η is not assumed and VQ estimation of the conditional covariance is method 2.
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We implemented our application using the Parallel Acceleration System (PAS), which is
a C library provided by Mercury. Residing as an application layer over the standard Mercury
operating system (MC/OS), PAS provides a convenient mechanism for writing code that
scales to any number of nodes. It also allows for data to be sent from the controller to
the processing nodes in either a BLOCKED or WHOLE manner, with usec synchronization
between nodes.

All inputs necessary for computing the MAP estimate are written to a file by the host
computer which is read by the controller node. The controller node then scatters the input
to the worker nodes which (along with the controller) work on their share of super-pixels.
Since the number of super-pixels is typically very large in comparison with the number
of available nodes, super-pixels can be evenly spread among them. Since each super-pixel
takes the same time to process as any other super-pixel, the work load will automatically
be balanced.

Figures 6.1-6.4 show timing results as a function of available computational nodes. Since
the curves shown were run on the AdapDev 1280, we were able to vary the number of
available nodes from 0 to 8. The data plotted above 0 nodes is timing results for the host
computer alone, which is an Intel machine running at 1266 MHz under Windows 2000. Data
plotted above 1 node corresponds to running the entire super-pixel loop on one node (the
controller node). Data plotted above 8 nodes corresponds to all 8 nodes computing the
super-pixels MAP estimates in parallel.
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Figure 6.1: Timing of MAP Algorithm on AdapDev 1280 (100 PCA Components)

The blue curves represent the total time in minutes taken to run MAP_Algorithm as
determined by the MATLAB tic and toc functions. The green curves represent the time
taken to perform the CPU intensive loop over super-pixels, which is computed in parallel
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Figure 6.2: Timing of MAP Algorithm on AdapDev 1280 (110 PCA Components)
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Figure 6.3: Timing of MAP Algorithm on AdapDev 1280 (120 PCA Components)
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Figure 6.4: Timing of MAP Algorithm on AdapDev 1280 (130 PCA Components)

whenever the number of nodes is two or more. This does not include overhead time taken
on the controller for file I/O from and to the host. However, it does include other small
overhead times, such as communication between the controller and worker nodes, and the
time to initialize nodes. The black curves represent total file I/O time between the host
and controller nodes, and the cyan curve represents the time taken by the host to estimate
parameters. Since parameter estimation is solely a MATLAB computation (i.e. not paral-
lelized), and file I/O time is strictly between the host and the controller (i.e independent
of the number of worker nodes), we see the cyan and black curves are nearly constant.
The blue curve is well approximated as sum of the cyan, black, and green curves. That is,
the total runtime of MAP_Algorithm consists mainly of three disjoint processes: parameter
estimation, file I/O, and super-pixel computation.

The red curves represent a theoretical lower bound on the parallelized super-pixel loop,
ignoring file I/O time on the controller from and to the host. The red curve is computed
simply by dividing the green time for a single node, by the number of available nodes. Thus,
the green and red data point for 1 node are identical. In each of Figures 6.1-6.4, the red
curve is seen to follow the green curve quite closely, indicating that the work load is well
balanced.

In Figures 6.1 and 6.3, we note that the time taken to run the super-pixel loop entirely
on the host is significantly longer than the time taken to run it on a single compute node of
the AdapDev 1280. This occurs even though the host runs at 1266 MHz while each Mercury
CE runs at 500 MHz. The reason is the use of single precision and SAL function calls on the
Mercury CE, which can dramatically speed up computations. However, in Figures 6.2 and
6.4, we see the reverse: the host runs faster than a single CE. Timing results on Mercury
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compute nodes are very sensitive to data lengths coming into the various memory caches.
Since the number of PCA components changes among the figures, so do the data lengths
entering memory caches. Therefore, variation in runtime between the host and a single CE,
is almost certainly due to changing data lengths entering memory caches.

The green curves of Figures 6.1-6.4 show exactly what we would expect if the work load
is well balanced among the compute nodes. That is, the curves have a 1/N behavior just as
the theoretical lower bound (red) curve has. Also, we see that the red and green curves are
always close, which is further evidence of efficient load balancing. We may also ascertain
that work loads are well balanced by examining Figure 6.5, where 150 PCA components
have been processed on 8 nodes. In that figure, we see a time line of events for each
computation node. In particular, the green segments of the plot represent the processing
time of a node, i.e. the time it took to process all of its assigned super-pixels, not counting
any communication time or idle time. The start of a green bar represents the time at which
a node received all data necessary to compute its super-pixels, and the end of one represents
the time at which the node finished its last super-pixel. Since the green bars across each
node have essentially the same length (about 246 seconds), we see that the work loads are
well balanced.
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Figure 6.5: Time Line for 150 PCA components on the AdapDev 1280

Also seen in Figure 6.5 are blue bars representing communication time and red bars
representing idle wait time. The controller (i.e. CE2) spends about 40 seconds during its
initial communication phase. This consists mostly of reading data from the host computer
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but also includes a small amount of time pushing data to the local memory of the worker
nodes. Each of the 7 worker nodes (i.e. CE3-CE9) spends about the same amount of
time waiting for the controller node to finish its initial communication phase. After a
worker finishes processing its super-pixels, it has a short wait while the controller pulls data
from its local memory. Since the controller was the first to finish its processing of super-
pixels, it also has a short wait while the worker nodes to complete their processing. The
final communication time of the controller consists of a negligible time pulling data from
the workers, followed by a much longer time writing a file used by the host computer. No
communication time is seen at any worker node because data is pulled by the controller from
the local memory of each worker, as opposed to pushed to the controller by the workers.

In order to generate Figure 6.5, a series of time stamps are inserted into C code for
running on the Mercury. These time stamps are identical to those for use with Mercury’s
TATLView post processing program. After running the code, a series of event times are
written to an ASCII file. Although this file can be read by the TATLView program to view
the resulting time line, we have instead chosen to read and process it with MATLAB. The
result is a plot such as that given by Figure 6.5.
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Figure 6.6: Time Line for 224 PCA components run on the AdapDev 1280

Figure 6.6 shows another example running the AdapDev 1280 with 8 nodes. By taking
the number of PCA components to be 224, we have increased the size of the matrices
to invert to 224. Qualitatively, the green, red, and blue bars show the same behavior as
Figure 6.5. Quantitatively, we see that the super-pixel loop took approximately 445 seconds
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and file I/O on the controller took about 132 seconds. The entire run of MAP_Algorithm
including parameter estimation and file I/O on the host, took about 11.7 minutes. This
case constitutes the full AVIRIS data set, and is the largest problem we have run to date.

Figure 6.7 shows the same example (P = 224, N = 2562, and M = 642), run on the 64
node Mercury (Hawk) located at WPAFB. Each node of Hawk is a G4 Power PC running
at 400 MHz and has 128MB of memory per node. This run was important in order to verify
the portability (and scalability) of the code, and to verify that memory limitations on Hawk
are not exceeded. Memory is a concern because the input data for all super-pixels resides
in the local memory of the controller prior to scattering it to the worker nodes. The fact
that the program ran, is conformation that we did not exceed the 128MB upper limit.

It is seen in Figure 6.7 that each of 64 nodes took approximately 63 seconds to complete
the parallelized super-pixel loop. From Figure 6.6, we see it took each of 8 nodes 445 seconds
for the same computation. Since each machine processed 642 super-pixels, the AdapDev
1280 processed approximately 1.15 super-pixels per second per node, while Hawk processed
approximately 1.02 super-pixels per second per node. The different rates are explained by
the different processing speeds of the nodes: 500 MHz for the AdapDev 1280 and 400 MHz
for Hawk. We also see that file I/O between the host of Hawk and the controller CE is
considerably slower than that of the AdapDev 1280. The host of Hawk runs under a Solaris
operating system with limited memory and slow disk access. While Hawk might be useful
for testing a real time implementation of a MAP algorithm based on Equation (4.70), further
use of Hawk for the existing implementation is unwarranted.

6.2 Effects of Single Precision and Diagonal Loading

Our approach to developing code to run on a Mercury system consists of five basic steps.
First develop a working code in MATLAB, second write a C-version to run under Windows,
third modify the Windows C code to make (emulated) SAL function calls, fourth port this
code to the Mercury for running on a single node, and fifth use PAS library calls to parallelize
it for use on several nodes. Each step in the process required checking the answers obtained
with the original MATLAB version.

Of the four Mercury systems we tested, the compute nodes have been G4 Power PC 7400
microprocessor (or compatible) with AltiVec technology. In order to take better advantage
of this architecture, running in single precision is important. Our experiments indicate that
a 5 fold speed increase can be expected in changing from single precision to double precision.
There are several reasons for this:

• Use of the vector processing unit (VPU) is restricted to single precision.

• AltiVec language extensions are restricted to single precision.

• The floating point unit is twice as fast for single precision.
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Figure 6.7: Time Line for 224 PCA components run on Hawk using 64 Nodes

• Memory caches are twice as efficient (each element takes half as much space).

• The RACEway is twice as efficient (half as many bits per word).

Fortunately, the use of double precision is not necessary for the portion of the code that
was parallelized. This is true even in light of the fact that poorly conditioned matrices may
arise whose inverses are required. If nothing is done to improve the conditioning of these
matrices, the inverse computation becomes unstable resulting in MAP estimates that do not
match double precision MATLAB code. However, the matrices to be inverted are diagonally
loaded when a positive value of σ2

n (input variable var_y of MAP_Algorithm.m) is supplied,
resulting in improved conditioning. The single precision C code running in parallel on a
Mercury and the MATLAB version on the host PC yield nearly identical results in all cases
tested provided an appropriate diagonal load σ2

n is applied.

Applying a diagonal load does raise some issues. One issue is that supplying a diagonal
load may conceivably have a negative effect on SNR. This fortunately does not occur. In
fact, supplying a diagonal load has a positive effect on average SNR as indicated in Figures
6.8-6.11, where all computations were performed in double precision MATLAB. Another
issue is how to set the diagonal load. From the same figures we see that there are a wide
range of values we may use for the diagonal load, all of which improve average SNR.

As shown in Figure 6.8 for example, we see that any diagonal load greater than 0 and less
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than or equal to 30 results in an improved average SNR. The optimal load as determined by
the maximum average SNR is somewhere near 12. Although the optimal load is not readily
determined a priori, our experimentation indicates that just about any number between say
1 and 50 should improve average SNR (compared to no loading) while providing acceptable
conditioning for single precision matrix inversion.
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Figure 6.8: Effect of Diagonal Loading on SNR (25 PCA Components)

An additional advantage to using single precision over double precision is the size of
the problem that can be loaded onto the Mercury system. Since a single precision variable
takes half the memory of a double, the matrices involved can be twice as big. This is
particularly important because the local memory on a node is limited. On the AdapDev
1280 and the 96 node Mercury at WPAFB (Titan), it is 256MB per node, and on the 64
node system at WPAFB (Hawk) it is 128MB per node. Since the controller must hold data
for all super-pixels, the size of the problem is limited to the available memory of one node.

In summary, the use of single precision is desirable on two fronts: speed and memory.
Although its use requires diagonally loading, that requirement is desirable on its own merits
as measured by improved average SNR. The only drawback to diagonally loading is the
additional user input of specifying the load. However, our experimentation indicates that
there is a wide range of acceptable loads, any of which will improve average SNR while
simultaneously conditioning the matrices involved for a stable inverse in single precision.
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Figure 6.9: Effect of Diagonal Loading on SNR (35 PCA Components)
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Figure 6.10: Effect of Diagonal Loading on SNR (35 Spectral Components)
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Figure 6.11: Effect of Diagonal Loading on SNR (56 Spectral Components)
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Chapter 7

Stochastic Mixing Model: Interface
to the MAP Algorithm

Two separate interfaces are presented, one where the linear model x = Sz + η is assumed
and one where it is not. In the former case, we provide the expressions necessary for
estimating the required unconditional means and covariances and in the later for the required
conditional means and covariances. In either case, high resolution abundance maps, end-
member mean vectors, end-member covariances, and a PCA transformation matrix are
required as input. Only the case where the linear model is assumed (discussed first) has
been incorporated into MAP_Algorithm.m.

7.1 SMM Interface Assuming a Linear Model

The stochastic mixing model [25–28], is similar to the well-developed linear mixing model in
that it attempts to decompose spectral data in terms of a linear combination of endmember
spectra. However, in the case of the stochastic mixing model, the endmembers εk are
P × 1 normally-distributed random vectors, parameterized by their mean vector mεk

and
covariance matrix Cεk

, instead of deterministic spectra. The endmember index k ranges
from one to Ne, the number of endmembers assumed in the scene. A finite number, Nc, of
mixture classes are defined as linear combinations of the endmember random vectors. These
mixture class random vectors are defined as

ωq =
Ne∑

k=1

ak(q)εk, (7.1)

where ak(q) are the endmember abundances associated with the mixture class, and q =
1, 2, . . . , Nc is the mixture class index. The endmember abundances comprising the mixture
classes are assumed to conform to the physical constraints of being between zero and one,
and summing to unity, and are quantized at a specified level. This is done by a structured,
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iterative search algorithm that determines all the possible combinations of quantized abun-
dances (i.e., discrete levels between zero and one) for the specified number of endmembers
that satisfy the physical constraints. The result is a finite and discrete set of mixture classes.

Each low resolution hyper-pixel ~ym of the observed hyperspectral image is then assumed
to be a realization of a particular mixture class random vector. Thus, after the SMM algo-
rithm converges, ~ym is assigned to a corresponding mixture classe qm, for m = 1, 2, . . . ,M .
From this low resolution mixture class map, low resolution abundance maps, ak(qm) are
formed. That is, there are Ne abundance maps giving the spatial abundance distributions
for each endmember. Treating ~ym as a random vector, we have

~ym =
Ne∑

k=1

ak(qm)εk, (7.2)

The endmember statistics are estimated from a subset of the observed spectra. Specif-
ically, the sample mean and covariance estimated are computed for each endmember from
the observations ~ym for m ∈ Ωk, where Ωk is the set of spatial positions assigned to end-
member class k in the SMM algorithm. For more detail on the estimation processes involved
in formulating an SMM, see [25–28].

To get a spatially-varying statistical model at the high resolution, we begin by bilinearly
interpolating the low resolution abundance maps to give the high resolution abundance
maps ai,k, for i = 1, 2, . . . , N , and k = 1, 2, . . . , Ne. Next we assume that the high resolution
hyper-pixels obey the linear mixing relationship using the endmembers estimated from the
low-resolution data. Treating the high resolution hyper-pixel ~zi as a random vector, we
have:

~zi =
Ne∑

k=1

ai,kεk, (7.3)

Thus, the spatially-varying mean and covariance for the high resolution hyper-pixels are
given by:

mzi
=

Ne∑

k=1

ai,kmεk
, (7.4)

Czi
=

Ne∑

k=1

a2
i,kCεk

. (7.5)

To incorporate the SMM into the MAP estimator when the model x = Sz + η is
assumed, the means and covariances of the pdf for ~zi are given by (7.4) and (7.5). Thus,
what would be needed from the SMM is the endmember means and covariances and the high-
resolution abundance maps (or the low-resolution abundance maps, that we could bilinearly
interpolate). The endmember mean vectors and covariance matrices could be provided in
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the spectral space or the PCA space (or simply the leading PCA subspace). If provided in
spectral space, and processing is to be done the PCA space, they can be transformed (using
the PCA transformation matrix).

If the endmember means and covariances and abundance maps are provided in a leading
PCA subspace, we need the PCA transformation matrix used as well. This way we are sure
to transform the imagery to be processed in a manner consistent with that used to compute
the SMM parameters. This is due to possible variation in how the Eigen vectors of the
spectral data are computed in performing the PCA transformation. Estimates of the lower
PCA subspace can be done using interpolation.

7.2 SMM Interface Without Assuming a Linear Model

Incorporating the SMM into the MAP estimator when x = Sz + η is not assumed requires
a somewhat more complex process. In this case, consider joint endmember random vectors
containing the hyperspectral endmember and the corresponding spectra for the auxiliary
image. In particular, let the joint endmembers be (P + ν)× 1 random vectors

uk =
[
εT

k ,αT
k

]T
, (7.6)

where αk is a ν × 1 random endmember vector associated with the auxiliary sensor. The
joint endmember random vector has mean muk

and covariance Cuk
. The joint endmember

statistics are estimated using the sample mean and covariance from the observations w̄m =
[~yT

m, x̄T
m]T for m ∈ Ωk, where the x̄m are artificially degraded spectra from the auxiliary

sensor. That is, the high resolution multispectral sensor data are degraded to a spatial
resolution to match the observed hyperspectral data. Now define a joint random vector at
the high resolution as follows

wi =
[
~zT

i , xT
i

]T
. (7.7)

We will model this as a linear combination of the joint endmember random vectors. As
before, the relative abundances will be given from the high resolution abundance maps, ai,k,
for i = 1, 2, . . . , N and k = 1, 2, . . . , Ne. Thus,

wi =
Ne∑

k=1

ai,kuk. (7.8)

Note that we are using joint endmember statistics estimated at the lower resolution for
the higher resolution estimation problem. We are also relying on bilinear interpolation
to generate high resolution abundance maps. Given the linear relationship in (7.8), the
spatially-varying mean and covariance for wi is related to the joint endmember class statis-
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tics by

mwi
=

Ne∑

k=1

ai,kmuk
, (7.9)

Cwi
=

Ne∑

k=1

a2
i,kCuk

, (7.10)

where i = 1, 2, . . . , N . Because wi is a joint random vector, the means and covariances will
be of the form

mwi
=

[
mT

zi
,mT

xi

]T
, (7.11)

Cwi
=

[
Czi,zi

Cxi,zi

Czi,xi
Cxi,xi

]
. (7.12)

The conditional mean vector and covariance matrix for each spatial position are related
to the joint statistics extracted from the right-hand-side of (7.11) and (7.12) using

mzi|xi
= mzi

+ Czi,xi
C−1

xi,xi
[xi −mxi

] (7.13)

Czi|xi
= Czi,zi

−Czi,xi
C−1

xi,xi
Cxi,zi

(7.14)

Thus, to incorporate the SMM statistics into the MAP estimator when the linear model
relating x and z is not assumed, we require the joint endmember statistics muk

and Cuk
.

We would also require the high resolution abundance maps. With this information we
would employ (7.9) and (7.10). Next we would use the right hand side of (7.11) and (7.12)
to complete (7.13) and (7.14). Again, if the information is provided in a leading PCA
subspace, we would require the PCA transformation matrix used to ensure consistency.
Interpolation would be used for the lower PCA subspace.
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Chapter 8

Misregistration Effects

During the course of hyperspectral image collection, the high-resolution broadband image
(x) and low-resolution hyperspectral image (y) can become misregistered, which means that
the spatial alignment of the two images is no longer consistent. Misregistration can occur
for reasons such as a slight sensor misalignment or noise from various origins. One of the
primary assumptions of the enhancement algorithm developed under this program effort
is that the two images are in perfect alignment. The purpose, then, of the examining the
performance of the algorithm under less-than-ideal misregistration/misalignment conditions
is discover the algorithm’s robustness to this effect, given that there exists a real chance of
image misregistration in fielded hyperspectral sensor systems.

There are many types of misregistration that can occur such as translation, rotation,
stretching, and shear, or any combination thereof. For these misalignment types, the mis-
registration errors that occur in-plane are by far the easiest to compensate for, because an
inverse transformation exists if the mapping is one-to-one. Translation and rotation are in-
plane transformations for which a simple inverse transformation usually exists. This inverse
transformation can easily be applied to undo the misregistration, and consequently, bring
the images back into alignment. Conversely, out-of-plane transformations are very difficult
to deal with given that the mapping is usually one-to-many/many-to-one, and finding the
inverse transformation can be impossible.

The types of misregistration explored here are restricted to translation and rotation
(in-plane transformations), although in fielded systems any type is possible. The rationale
for restricting the misregistration types is predicated on the fact that if the algorithm is
sensitive to even these types of errors, it will definitely be sensitive to other types such as
shear or stretching given these errors are generally more severe.

For the experiments presented, the enhancement quality was measured on a pixel-by-
pixel basis between the original high-resolution hyperspectral image (z) and MAP enhanced
hyperspectral image (ẑ). The error metrics were the mean squared error (MSE), the mean
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absolute error (MAE), and the signal-to-noise ratio (SNR) given by Equation 8.1.

MSE = 1
N

P∑
i=1

N∑
n=1

(zi,n − ẑi,n)2,

MAE = 1
N

P∑
i=1

N∑
n=1

|zi,n − ẑi,n|,

SNR =
∑P

i=1

∑N
n=1 (zi,n − µi)

2/
∑P

i=1

∑N
n=1 (zi,n − ẑi,n − µ∗i )

2,

(8.1)

where µi = 1
N

∑N
n=1 zi,n and µ∗i = 1

N

∑N
n=1(zi,n − ẑi,n).

The data utilized was a single AVIRIS image, where the broadband image was created by
averaging the hyperspectral bands of the original image. The low-resolution hyperspectral
image was created by applying a 4x4 averaging PSF to the original hyperspectral image. For
comparison, the enhancement algorithm was evaluated against a random broadband image
as well as spline interpolation of the low-resolution hyperspectral image. The enhancement
algorithm was run in PCA mode, keeping P = 40 principal components.

8.1 Rotation Experiments

The first set of experiments conducted involved rotating the high-resolution broadband
image a small amount about the center of the image to bring the imagery out of alignment.
The rotation transformation is defined by Equation 8.2

[
i′

j′

]
=

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
i
j

]
, (8.2)

where θ is the angle of rotation, [i j]T are the original coordinates, and [i′ j′]T are the
coordinates of the rotated broadband image. After the image was rotated, the image was
cropped back to the original image dimensions and imputed in the enhancement algorithm.
Figure 8.1 shows the enhancement results as a function of rotation angle (θ).

Figure 8.1 clearly demonstrates that even a small misregistration error can reduce per-
formance significantly. After about 1o of rotation, the map algorithm performs at the level
of the baseline techniques.

8.2 Translation Experiments

The next experiments were conducted for the case of translation (both vertical and hori-
zontal simultaneously) of the broadband panchromatic image relative to the low resolution
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 Figure 8.1: Rotation misregistration

hyperspectral image. The simple equation for this transformation is given by:

[
i′

j′

]
=

[
a
a

]
+

[
i
j

]
, (8.3)

where a is translation offset factor. The results are summarized in the Figure 8.2.

These results reflect the rotation results showing that once the broadband image is
perturbed by even 1 pixel, the map algorithm is no longer effective. Even a misregistration
error of a fraction of a pixel can degrade performance substantially.

8.3 Misregistration Conclusion

Overall then, these results demonstrate the algorithm requires well-aligned and registered
images to be effective. The effects due to out-of-plane misregistration were not tested, but it
is likely that algorithm sensitivity would be comparable to the in-plane case. If it is known
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that target sensor platform can fall out of alignment, it is necessary to add some front-end
preprocessing to register the images.
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Appendix A

Analysis of the Form 2 MAP
Estimate

As we saw in Section 4.5, the Form 1 and Form 2 MAP estimates are identical and equal to
the expected value of z|ψ under the assumption x = Sz + η. This appendix may therefore
be considered as redundant, however it does present alternate derivations that might be
useful at the coding level. It also serves as a check on the derivations presented in Section
4.11. The three conditions of Section 4.3 are assumed and the definitions of Bm,j given by
Equations (4.49) and (4.50) are adopted.

Starting with the Form 2 MAP estimate presented in Section 4.5, this section derives
an equivalent expression that requires fewer matrix inversions (from 4 to 2). Assuming
the special case where the P × P blocks of Cz̃ are identical within super-pixels, we then
prove that the matrix appearing as an inverse in the new expression is singular if and only
if σn = ση = 0. A separate expression is developed under the noise free and special case
assumptions and in this expression which is identical to that of the previous section.

From Section 4.5, the Form 2 MAP estimate is given by:

ẑ =
[
C−1

z + W T C−1
n W + ST C−1

η S
]−1 [

C−1
z µz + W T C−1

n y + ST C−1
η x

]
(A.1)

Let R =
[
C−1

z + W T C−1
n W

]−1
and use the matrix inversion lemma (see Equation (4.32)) to

obtain1 :
R = Cz − CzW

T (WCzW
T + Cn)−1WCz. (A.2)

Apply the matrix inversion lemma again to obtain:

[
R−1 + ST C−1

η S
]−1

= R−RST (SRST + Cη)
−1SR.

1Comparing with Equation (4.27), we see that the matrix R is really Cz|y.
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Then,

ẑ =
[
R−RST (SRST + Cη)

−1SR
] [

C−1
z µz + W T C−1

n y + ST C−1
η x

]

=
[
R−RST (SRST + Cη)

−1SR
] (

C−1
z µz + W T C−1

n y
)

+
[
R−RST (SRST + Cη)

−1SR
] (

ST C−1
η x

)

= u + v −RST (SRST + Cη)
−1Su, (A.3)

where

u = R
(
C−1

z µz + W T C−1
n y

)
,

v =
[
R−RST (SRST + Cη)

−1SR
] (

ST C−1
η x

)
.

After some algebra, new expressions for u and v may be derived 2:

u = µz + CzW
T (WCzW

T + Cn)−1(y −Wµz) (A.4)

v = RST (SRST + Cη)
−1x. (A.5)

Substituting (A.5) into Equation (A.3) yields:

ẑ = u + RST (SRST + Cη)
−1(x− Su). (A.6)

Equations (A.2), (A.4), and (A.6) taken together specify the Form 2 MAP estimate. It

is now straightforward to derive analogous results in terms of the simpler quantities W̃ =
WQT , S̃ = SQT , R̃ = QRQT , Cz̃ = QCzQ

T , ũ = Qu, µz̃ = Qµz, z̃ = Qẑ, and x =
(x1, x2, . . . , xN)T :

R̃ = Cz̃ − Cz̃W̃
T (W̃Cz̃W̃

T + Cn)−1W̃Cz̃, (A.7)

ũ = µz̃ + Cz̃W̃
T (W̃Cz̃W̃

T + Cn)−1(y − W̃µz̃), (A.8)

z̃ = ũ + R̃S̃ T (S̃R̃S̃ T + Cη)
−1(x− S̃ũ). (A.9)

Combining Equations (A.7), (A.8), and (A.9) and collecting terms yields:

z̃ = (INP − A(2)W̃ )(INP −ΘS̃)µz̃ + (INP −ΘS̃)A(2)y + Θx, (A.10)

where the NP ×MP matrix A(2) and the NP ×N matrix Θ are given by:

A(2) = Cz̃W̃
T (W̃Cz̃W̃

T + Cn)−1,

Θ = R̃S̃ T (S̃R̃S̃ T + Cη)
−1.

Comparing Equations (A.1) and (A.10), we see that the number of matrix inversions
has been reduced from 4 to 2. Since the two eliminated are inverses of Cn and Cη, this is
advantageous when either Cn or Cη is not taken as a multiple of the identity matrix. In

2Comparing with Equation (4.26), we see that the vector u is really µz|y.

111



analogy with the Form 1 MAP estimate, the Form 2 MAP estimate first computes z̃ using
Equation (A.10) and then computes ẑ from ẑ = QT z̃.

Analogous to Equation (4.61) of Section 4.11, let

B̄m =
L∑

j=1

ω̂2
m,jBm,j, (A.11)

where Bm,n is the P × P matrix given by Equations (4.49) and (4.50).

The results of Section 4.11 (with Cz̃|x replaced by Cz̃) prove that:

A(2) = Cz̃W̃
T (W̃Cz̃W̃

T + Cn)−1 =
M⊕

m=1

A(2)
m , (A.12)

where A
(2)
m is the LP × P matrix given by:

A(2)
m =




ω̂m,1Bm,1(B̄m + σ2
nIP )−1

ω̂m,2Bm,2(B̄m + σ2
nIP )−1

...
ω̂m,LBm,L(B̄m + σ2

nIP )−1


 . (A.13)

From (4.10), (A.7), and (A.12):

R̃ =

[
INP −

M⊕
m=1

A(2)
m Wm

]
Cz̃. (A.14)

It is readily seen from Equation (A.14) that R̃ is block diagonal with LP × LP blocks.

However, the LP × LP matrix A
(2)
m Wm is not block diagonal with P × P blocks which

implies that R̃ is not block diagonal with P × P blocks. Nevertheless, we will still be able
to establish a super-pixel breakdown of the Form 2 MAP estimate, valid under the special
case assumption which will be similar to the Form 1 breakdown given by Equation (4.67).

Notice that B̄m is positive definite since each Bm,j is positive definite. This implies that
the matrices B̄m +σnIP appearing in Equation (A.13) are nonsingular regardless of whether

σ2
n = 0 or σn > 0, proving that W̃Cz̃W̃

T + Cn is nonsingular regardless of whether σn = 0

or σn > 0. However, the inverse of S̃R̃S̃ T +Cη also appears in the Form 2 MAP estimate as
specified by Equation (A.10). We will prove below that under the special case assumption,

the singular or nonsingular status of S̃R̃S̃ T + Cη depends on the zero or nonzero status of
both ση and σn. With this in mind we prove the following preliminary results, which will
also be utilized when the Form 3 MAP estimate is analyzed. As before, γm denotes the
inner product ~ωT

m~ωm.
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Lemma A.0.1 ‖Λm‖F < 1 whenever ση > 0 or σn > 0 where

Λm =
sT Bm,1 (γmBm,1 + σ2

nIP )
−1

Bm,1s

sT Bm,1s + σ2
η

(
~ωm~ωT

m

)
, (A.15)

and ‖‖F denotes the Frobenius norm.

Proof. Since γm = ~ωT
m~ωm = ‖~ωm~ωT

m‖F ,

‖Λm‖F =
sT Bm,1 (Bm,1 + δmIP )−1 Bm,1s

sT Bm,1s + σ2
η

,

where δm = σ2
n/γm. Adding and subtracting δmIP gives the following:

Bm,1 (Bm,1 + δmIP )−1 = [−δmIP + (Bm,1 + δmIP )] (Bm,1 + δmIP )−1

= −δm (Bm,1 + δmIP )−1 + IP .

Therefore,

‖Λm‖F =
sT

[−δm (Bm,1 + δmIP )−1 + IP

]
Bm,1s

sT Bm,1s + σ2
η

,

=
−δmsT (Bm,1 + δmIP )−1 Bm,1s + sT Bm,1s

sT Bm,1s + σ2
η

,

and ‖Λm‖F < 1 if and only if:

−δmsT (Bm,1 + δmIP )−1 Bm,1s < σ2
η.

Since δm ≥ 0, we see that this last inequality holds if ση > 0. It also holds if σn > 0 since
in this case δm > 0.

Lemma A.0.2 IL − Λm is singular if and only if σn = ση = 0.

Proof. By Lemma A.0.1, it is enough to prove that IL − Λm is singular whenever σn =
ση = 0. Assuming σn = ση = 0, we have from Equation (A.15) that

Λm =
sT Bm,1 (γmBm,1)

−1 Bm,1s

sT Bm,1s

(
~ωm~ωT

m

)
,

=
1

γm

~ωm~ωT
m.

Therefore,

IL − Λm =
1

γm

(γmIL − ~ωm~ωT
m).

Since γm is an eigenvalue of ~ωm~ωT
m (with eigenvector ~ωm), it follows that the determinant

of IL − Λm is zero making IL − Λm singular.

The following theorem establishes sufficient conditions under which all matrices appear-
ing as inverses in the Form 2 MAP estimate of Equation (A.10) are nonsingular.
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Theorem A.0.3 For the special case Bm,j = Bm,1 (1 ≤ j ≤ L, 1 ≤ m ≤ M), the matrix

H = S̃R̃S̃ T +Cη appearing as an inverse in the Form 2 MAP estimate is nonsingular when
either σn > 0 or ση > 0, and is singular if σn = ση = 0.

Proof. Since the matrix S̃R̃S̃ T + Cη is block diagonal with LP ×LP blocks, its invert-

ibility is determined from the invertibility of each block. From Equation (A.14), the mth

diagonal block of S̃R̃S̃ T + Cη is given by:

Hm = S̃L(ILP − A(2)
m Wm)B̂mS̃ T

L + σ2
ηIL,

= S̃LB̂mS̃ T
L + σ2

ηIL − S̃LA(2)
m WmB̂mS̃ T

L , (A.16)

and we wish prove that σn = ση = 0 is equivalent to Hm being singular for m = 1, 2, . . . ,M .

Since under the special case assumption,

B̂m =
L⊕

j=1

Bm,j = IL ⊗Bm,1,

it easily follows (using S̃L = IL ⊗ sT ) that:

B̂mS̃ T
L = IL ⊗Bm,1 s

S̃LB̂mS̃ T
L =

(
sT Bm,1s

)
IL,

S̃LB̂mS̃ T
L + σ2

ηIL =
(
sT Bm,1s + σ2

η

)
IL.

Likewise, from Equations (A.11) and (A.13):

B̄m = γmBm,1 with γm = ~ωT
m~ωm,

A(2)
m = ~ωm ⊗

[
Bm,1

(
γmBm,1 + σ2

nIP

)−1
]
,

it easily follows (using Wm = ~ωT
m ⊗ IP ) that:

A(2)
m Wm = ~ωm~ωT

m ⊗Bm,1

(
γmBm,1 + σ2

nIP

)−1
.

Thus,

A(2)
m WmB̂m = ~ωm~ωT

m ⊗Bm,1

(
γmBm,1 + σ2

nIP

)−1
Bm,1,

S̃LA(2)
m WmB̂mS̃ T

L = ~ωm~ωT
m ⊗

(
sT Bm,1

(
γmBm,1 + σ2

nIP

)−1
Bm,1s

)
,

=
(
sT Bm,1

(
γmBm,1 + σ2

nIP

)−1
Bm,1s

)
~ωm~ωT

m,

and substitution into Equation (A.16) yields:

Hm =
(
sT Bm,1s + σ2

n

)
IL −

(
sT Bm,1

(
γmBm,1 + σ2

nIP

)−1
Bm,1s

)
~ωm~ωT

m.
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Therefore,

Hm =
(
sT Bm,1s + σ2

η

)
(IL − Λm) ,

where Λm is given by Equation (A.15). By Lemma A.0.2, the theorem is proven.

As we will see in Appendix B, the proof of Theorem B.0.5 shows that IL−Λm is positive
definite. This implies that Hm and hence H = S̃R̃S̃ T + Cη is positive definite under the
special case assumption and the assumption that either σn > 0 or ση > 0.

Below, the Form 2 MAP estimate given by Equation (A.10) is broken down into super-
pixel components, making it amenable to parallel processing. By Theorem A.0.3, it is valid
under the special case assumption and the assumption that either σn > 0 or ση > 0. As with
super-pixel breakdown of the Form 1 MAP estimate, the LP × 1 super-pixel components
are denoted by z̃m and are given in terms of the P × 1 low resolution hyper-pixel ~ym. Also
appearing is the L×1 vector xm. The lack of a tilde on xm is intentional since it represents

the mth set of L consecutive entries of x itself and not a permuted version of x. From

Equation (A.10), the mth super-pixel Form 2 MAP estimate is given by:

z̃m =
(
ILP − A(2)

m Wm

) (
ILP −ΘmS̃L

)
µz̃m

+
(
ILP −ΘmS̃L

)
A(2)

m ~ym + Θmxm.(A.17)

where

Θ = R̃S̃ T (S̃R̃S̃ T + Cη)
−1 =

⊕M
m=1 Θm.

From equation (A.14):

Θm = (ILP − A(2)
m Wm)B̂mS̃ T

L H−1
m ,

Hm = S̃L(ILP − A(2)
m Wm)B̂mS̃ T

L + σ2
ηIL.

The special case assumption provides significant simplifications of Hm, Θm, and A
(2)
m :

Hm =
(
sT Bm,1s + σ2

η

)
(IL − Λm) , (A.18)

Θm =
(
IL ⊗Bm,1s− ~ωm~ωT

m ⊗ Cms
)
H−1

m , (A.19)

A(2)
m = ~ωm ⊗

[
Bm,1

(
γmBm,1 + σ2

nIP

)−1
]
. (A.20)

where

Λm =
sT Cms

sT Bm,1s + σ2
η

(
~ωm~ωT

m

)
, (A.21)

Cm = Bm,1

(
γmBm,1 + σ2

nIP

)−1
Bm,1. (A.22)

Alternate expressions for A
(2)
m and Cm are more efficient computationally:

A(2)
m = ~ωm ⊗ 1

γm

[
IP − δm (Bm,1 + δmIP )−1] ,

Cm =
1

γm

(
Bm,1 − δmIP + δ2

m (Bm,1 + δmIP )−1) .
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where δm = σ2
n/γm. These may be derived from Equations (A.20) and (A.22) by adding

and subtracting δmIP from Bm,1 and distributing the factor (Bm,1 + δmIP )−1.

Equation (A.17) is valid whenever either σn > 0 or ση > 0 and the P × P blocks of
Cz̃ are assumed to be identical within super-pixels. As was the case for the Form 1 MAP
estimate, the computation of z̃m using Equation (A.17) may be accomplished in parallel by
assigning a different set of m to each processing unit, thereby avoiding the need for parallel
matrix algorithms.

It was shown in Theorem A.0.3 that Hm is singular when ση = σn = 0, which would
seem to indicate that the noise free case is incompatible with the Form 2 MAP estimate.
However, as we prove below, the singularity represented in Θm cancels in the noise free
case, allowing the estimate to be expressed in a way that no inverse matrix appears. The
following lemma facilitates the argument used.

Lemma A.0.4 For any β with 0 < β < 1
γm

,

(IL − 1

γm

Ωm)(IL − βΩm)−1 = IL − 1

γm

Ωm,

where Ωm = ~ωm~ωT
m.

Proof. For 0 ≤ β < 1
γm

,

‖βΩm‖F = β‖Ωm‖F = βγm < 1,

proving that IL − βΩm is nonsingular. Therefore, it is equivalent to prove that:

(IL − 1

γm

Ωm) = (IL − 1

γm

Ωm)(IL − βΩm),

Multiplying this out and cancelling terms shows that the above condition is equivalent to
Ωm

γm
being a projection map:

(
Ωm

γm

)2

=
Ωm

γm

,

which is easily verified.

We will conclude the section by deriving a single expression for z̃ that is free of any matrix
inverses and applies under the special case and noise free assumptions. To accomplish this,
we take σn = 0 in Equations (A.18) to (A.22):

Cm =
1

γm

Bm,1,

A(2)
m = ~ωm ⊗ 1

γm

IP ,

Λm = βm~ωm~ωT
m,

Hm = dm

(
IL − βm~ωm~ωT

m

)
,
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where

dm = sT Bm,1s + σ2
η,

βm =
dm − σ2

η

dmγm

.

By Lemma A.0.4, when σn = 0 and ση > 0, Equation (A.19) becomes:

Θm =
1

dm

(
IL ⊗Bm,1s− ~ωm~ωT

m ⊗
1

γm

Bm,1s

) (
IL − βm~ωm~ωT

m

)−1
,

=
1

dm

[(
IL − 1

γm

~ωm~ωT
m

)
⊗Bm,1s

] (
IL − βm~ωm~ωT

m

)−1
,

=
1

dm

[(
IL − 1

γm

~ωm~ωT
m

) (
IL − βm~ωm~ωT

m

)−1
]
⊗Bm,1s

=
1

dm

(
IL − 1

γm

~ωm~ωT
m

)
⊗Bm,1s.

It follows that as ση → 0:

Θm −→ 1

am

(
IL − 1

γm

~ωm~ωT
m

)
⊗Bm,1s,

where am = sT Bm,1s.

Substituting these results into Equation (A.17) and simplifying yields the super-pixel
breakdown of the Form 2 MAP estimate valid under the noise free special assumptions:

z̃m =

[
(IL − 1

γm

~ωm~ωT
m)⊗ (IP − 1

am

Bm,1ss
T )

]
µz̃m

+
1

am

[(
IL − 1

γm

~ωm~ωT
m

)
⊗Bm,1s

]
xm +

1

γm

(~ωm ⊗ IP )~ym. (A.23)

As a check, we see that Equations (4.70) and (A.23) are identical.
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Appendix B

Analysis of the Form 3 MAP
Estimate

The analysis of the Form 3 MAP estimate presented in this appendix is analogous to that
of the Form 1 and Form 2 MAP estimate presented in Section 4.11 and Appendix A. We
first express the estimate in terms of simpler matrix quantities by applying the permutation
matrix Q. Then, we break down the coefficient matrix of the system into super-pixel
blocks, and analyze the special case where the P ×P blocks of the covariance matrix Cz̃ are
identical within super-pixels. The section concludes by providing a simplified expression for
the Form 3 MAP estimate broken down into super-pixel components, applicable under the
special case nose free assumption. Significant use is made of the properties of the Kronecker
tensor product listed in the Chapter 4.

Starting with Equation (4.39) of Section 4.5, we apply the permutation matrix Q to
derive the equivalent expression:

z̃ = µz̃ + A(3)

[(
y
x

)
−

(
W̃

S̃

)
µz̃

]
, (B.1)

where

A(3) = Cz̃

(
W̃

S̃

)T



(
W̃

S̃

)
Cz̃

(
W̃

S̃

)T

+

(
Cn 0
0 Cη

)

−1

.

Similar to the Form 2 MAP estimate, we examine the conditions under which:

H =

(
W̃

S̃

)
Cz̃

(
W̃

S̃

)T

+

(
Cn 0
0 Cη

)
(B.2)
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is singular or nonsingular. The three conditions of Section 4.3 are assumed and the defini-
tions of Bm,j, and B̄m given by Equations (4.49), (4.50), (A.11) are adopted. Thus,

S̃ = IM ⊗ S̃L =
M⊕

m=1

S̃L,

S̃L = IL ⊗ sT =
L⊕

j=1

sT ,

and

W̃ =
M⊕

m=1

(
~ωT

m ⊗ IP

)
.

From equation (B.2),

H =

[
W̃Cz̃W̃

T + Cn W̃Cz̃S̃
T

S̃Cz̃W̃
T S̃Cz̃S̃

T + Cη

]
.

Using

W̃Cz̃W̃
T =

M⊕
m=1

B̄m,

S̃Cz̃S̃
T =

M⊕
m=1

S̃LB̂mS̃ T
L ,

W̃Cz̃S̃
T =

M⊕
m=1

(~ωT
m ⊗ IP )B̂mS̃ T

L ,

we break down H into blocks:

H =




M⊕
m=1

(
B̄m + σ2

nIP

) M⊕
m=1

(
(~ωT

m ⊗ IP )B̂mS̃ T
L

)

M⊕
m=1

(
S̃LB̂m(~ωm ⊗ IP )

) M⊕
m=1

(
S̃LB̂mS̃ T

L + σ2
ηIL

)




.

Since both B̄m +σ2
nIP and S̃LB̂mS̃ T

L +σ2
ηIL are positive definite matrices, we may define:

U = UT =




M⊕
m=1

(B̄m + σ2
nIP )−1/2 0

0
M⊕

m=1

(S̃LB̂mS̃ T
L + σ2

ηIL)−1/2




, (B.3)
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so that

UT HU =




IMP

M⊕
m=1

Fm

M⊕
m=1

F T
m IN




,

where

Fm = (B̄m + σ2
nIP )−1/2(~ωT

m ⊗ IP )B̂mS̃ T
L (S̃LB̂mS̃ T

L + σ2
ηIL)−1/2. (B.4)

Defining

V =




IMP −
M⊕

m=1

Fm

0 IN


 , (B.5)

we apply V T on the left of UT HU and V on the right to obtain the block diagonal matrix
D:

D = (UV )T H(UV ) = V T (UT HU)V =




IMP 0

0
M⊕

m=1

(IL − F T
mFm)


 . (B.6)

The inverse of U is obtained by replacing the exponent −1/2 with 1/2 in Equation
(B.3) and the inverse of V by replacing −⊕ with ⊕ in Equation (B.5). Therefore, UV is
nonsingular and we may solve for H:

H =
[
(UV )T

]−1
D(UV )−1.

We see that H is nonsingular if and only if D is nonsingular and in that case:

H−1 = (UV )D−1(UV )T .

Thus, determining the singular or nonsingular status of H reduces to determining the sin-
gular or nonsingular status of IL − F T

mFm for m = 1, 2, . . . , M . For the special case where
the P × P diagonal blocks of Cz̃ are identical within super-pixels, this allows the singular
or nonsingular status of H to be characterized in terms of σn and ση as indicated in the
following theorem:

Theorem B.0.5 For the special case Bm,j = Bm,1 (1 ≤ j ≤ L, 1 ≤ m ≤ M), the matrix H
of Equation (B.2) is positive definite (hence non-singular) when either σn > 0 or ση > 0,
and is singular whenever σn = ση = 0.
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Proof. From the development above, H is positive definite if and only if IL − F T
mFm is

positive definite for m = 1, 2, . . . , M . In general,

F T
mFm =

(
L⊕

j=1

d
−1/2
m,j sT Bm,j

)
(
~ωm~ωT

m ⊗ (B̄m + σ2
nIP )−1

)
(

L⊕
j=1

d
−1/2
m,j Bm,js

)
,

where dm,j = sT Bm,js + σ2
η. Under the special case assumption this reduces to:

F T
mFm =

sT Bm,1 (γmBm,1 + σ2
nIP )

−1
Bm,1s

sT Bm,1s + σ2
η

(
~ωm~ωT

m

)
, (B.7)

where γm = ~ωT
m~ωm = ‖~ωm~ωT

m‖F . Comparing with Equation (A.15), we see that F T
mFm = Λm.

To prove that IL − F T
mFm is positive definite, let u be any unit vector of length L and

show

uT (IL − F T
mFm)u > 0.

Since, uT (IL − F T
mFm)u = 1 − ‖Fmu‖2

2, this reduces to showing ‖Fmu‖2 < 1. Using the
observation that the 2-norm and Frobenius norm are identical when applied to vectors, it
follows that:

‖Fmu‖2 ≤ ‖Fm‖F ‖u‖2 = ‖Fm‖F .

By Lemma A.0.1, ‖F T
mFm‖F < 1 and

‖F T
mFm‖F < 1 =⇒ ‖F T

m‖F ‖Fm‖F < 1 =⇒ ‖Fm‖2
F < 1 =⇒ ‖Fm‖F < 1.

Therefore, ‖Fmu‖2 < 1.

In the proof of Theorem B.0.5, it is shown that IL−F T
mFm = IL−Λm is positive definite.

It follows that the matrix S̃R̃S̃ T +Cη appearing in the Form 2 MAP estimate (see Theorem
A.0.3) not only is nonsingular under the special case assumption and the assumption that
either σn > 0 or ση > 0, it is in fact positive definite under these assumptions.

We now derive the Form 3 MAP estimate for the noise free case (σn = ση = 0), under
the special case assumption that the P × P blocks of Cz̃ are identical within super-pixels.
As before, we take σn = 0 and examine A(3) in the limit as ση → 0. Thus for the remainder
of this section, we assume σn = 0 and Bm,j = Bm,1 for 1 ≤ m ≤ M and 1 ≤ j ≤ L.

We successively derive expressions for D−1, V D−1V T , H−1 = U(V D−1V T )UT and finally

A(3) =
[
Cz̃W̃

T , Cz̃S̃
T
]
H−1, taking the limit as ση → 0 in the final expression. Using

B̄m = γmBm,1,

S̃L = IL ⊗ sT ,

B̂mS̃ T
L = IL ⊗Bm,1s,
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and the properties of the Kronecker tensor product, we derive from Equation (B.4) the
following expression for Fm:

Fm =
~ωT

m ⊗B
1/2
m,1s√

γmdm

, (B.8)

where dm = sT Bm,1s + σ2
η. Either of Equations (B.7) or (B.8) yields:

IL − F T
mFm = IL − βm

(
~ωm~ωT

m

)
,

where

βm =
dm − σ2

η

γmdm

→ 1

γm

(as ση → 0).

Defining Em = IL − βm~ωm~ωT
m we have:

D−1 =




M⊕
m=1

IP 0

0
M⊕

m=1

E−1
m




, and

V D−1V T =




M⊕
m=1

(
IP + FmE−1

m F T
m

) −
M⊕

m=1

FmE−1
m

−
M⊕

m=1

E−1
m F T

m

M⊕
m=1

E−1
m




.

Since U = UT is given by:

U =




M⊕
m=1

γ−1/2
m B

−1/2
m,1 0

0
M⊕

m=1

d−1/2
m IL




,

it follows that H−1 = U(V D−1V T )UT is given by:

H−1 =




M⊕
m=1

1

γm

B
−1/2
m,1

(
IP + FmE−1

m F T
m

)
B
−1/2
m,1 −

M⊕
m=1

1√
γmdm

B
−1/2
m,1 FmE−1

m

−
M⊕

m=1

1√
γmdm

E−1
m F T

mB
−1/2
m,1

M⊕
m=1

1

dm

E−1
m




.
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Using Equation (B.8) and properties of the Kronecker tensor product, this reduces to:

H−1 =




M⊕
m=1

1

γm

[
B−1

m,1 +
1

γmdm

(
~ωT

m ⊗ s
)
E−1

m

(
~ωm ⊗ sT

)] −
M⊕

m=1

1

γmdm

(
~ωT

m ⊗ s
)
E−1

m

−
M⊕

m=1

1

γmdm

E−1
m

(
~ωm ⊗ sT

) M⊕
m=1

1

dm

E−1
m




.

In order facilitate the matrix algebra, we partition A(3) into blocks A
(3)
1 of size NP ×MP

and A
(3)
2 of size NP ×N :

A(3) = Cz̃

(
W̃

S̃

)T

H−1 =
[
A

(3)
1 , A

(3)
2

]
.

Since

Cz̃

(
W̃

S̃

)T

=

[
M⊕

m=1

(~ωm ⊗Bm,1) ,

M⊕
m=1

(IL ⊗Bm,1s)

]
,

we have:

A
(3)
1 =

M⊕
m=1

{
1

γm

(~ωm ⊗Bm,1)

[
B−1

m,1 +
1

γmdm

(
~ωT

m ⊗ s
)
E−1

m

(
~ωm ⊗ sT

)]

− 1

γmdm

(IL ⊗Bm,1s) E−1
m

(
~ωm ⊗ sT

)}
,

A
(3)
2 =

M⊕
m=1

{
− 1

γmdm

(~ωm ⊗Bm,1)
(
~ωT

m ⊗ s
)
E−1

m +
1

dm

(IL ⊗Bm,1s) E−1
m

}
.

Applying the properties of the Kronecker tensor product, these reduce to the following:

A
(3)
1 =

M⊕
m=1

1

γm

(~ωm ⊗ IP )− 1

γmdm

[(
IL − 1

γm

~ωm~ωT
m

)
E−1

m ⊗Bm,1s

] (
~ωm ⊗ sT

)

A
(3)
2 =

M⊕
m=1

1

dm

[(
IL − 1

γm

~ωm~ωT
m

)
E−1

m ⊗Bm,1s

]
.

By Lemma A.0.4:

(
IL − 1

γm

~ωm~ωT
m

)
E−1

m = IL − 1

γm

~ωm~ωT
m (for ση > 0).
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Therefore, for ση > 0, we have:

A
(3)
1 =

M⊕
m=1

1

γm

(~ωm ⊗ IP )− 1

γmdm

[(
IL − 1

γm

~ωm~ωT
m

)
⊗Bm,1s

] (
~ωm ⊗ sT

)

=
M⊕

m=1

1

γm

(~ωm ⊗ IP )

A
(3)
2 =

M⊕
m=1

1

dm

[(
IL − 1

γm

~ωm~ωT
m

)
⊗Bm,1s

]
.

Taking the limit as ση → 0, the coefficient matrix A(3) under the special case and noise free
assumptions is:

A(3) =
M⊕

m=1

[
1

γm

(~ωm ⊗ IP ),
1

am

(
IL − 1

γm

~ωm~ωT
m

)
⊗Bm,1s

]
, (B.9)

where am = sT Bm,1s. Breaking Equation (B.1) into super-pixel components yields:

z̃m = µz̃m
+ A(3)

m

[(
~ym

xm

)
−

(
~ωT

m ⊗ IP

IL ⊗ sT

)
µz̃m

]
,

where A
(3)
m is the mth component of Equation (B.9). Simplification of this yields the mth

super-pixel of the Form 3 MAP estimate under the special case and noise free assumptions:

z̃m =

[
(IL − 1

γm

~ωm~ωT
m)⊗ (IP − 1

am

Bm,1ss
T )

]
µz̃m

+
1

am

[(
IL − 1

γm

~ωm~ωT
m

)
⊗Bm,1s

]
xm +

1

γm

(~ωm ⊗ IP )~ym. (B.10)

As a check on our work, we see that Equations (4.70), (A.23), and (B.10) are identical.
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Appendix C

Temperature/Emissivity Separation
and Atmospheric Correction

C.1 Introduction

This appendix contains a literature review and preliminary experiments done to compensate
for atmospheric effects in hyperspectral data. This preliminary work was carried out by
Precila C. Ip at Alliant Techsystems - Mission Research in Nashua, New Hampshire, 03062-
1323. It is not intended to be a complete study of atmospheric effects, but rather a modest
supplement to the primary effort described in the majority of the report.

C.2 Temperature/Emissivity Separation Algorithms

C.2.1 Problem Statement

The general problem of Temperature/Emissivity Separation (TES) is a challenging one. The
challenge arises because it is inherently an underdetermined problem: in a multispectral or
hyperspectral radiance measurement with N channels, there are N+1 unknowns. There is
one unknown emissivity per channel and one surface temperature unknown. For specific
cases, such as hyperspectral data collected over oceans where the emissivity of water is
known, the problem is easily solved. However, for data taken over land surfaces where the
emissivity of the background materials are unknown or highly variable, the problem is solv-
able only when additional assumptions or approximations are made concerning background
materials and their emissivity. Many iterative solutions have been proposed that constrain
the extra degree of freedom.
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C.2.2 Literature Review

In 1993, Kealy and Hook [29] evaluated three methods for recovery of temperature and
emissivity from multispectral thermal infrared (TIR) radiance spectra acquired over land
surfaces. The instruments for data collection for this study were the Thermal Infrared Mul-
tispectral Scanner (TIMS) and the Advanced Spaceborne Thermal Emission Reflectance
Radiometer (ASTER). ASTER is a scanning instrument on the NASA’s Terra Satellite
for recording thermal IR data to obtain surface temperatures and emissivity spectra. For
ASTER, there are 5 channels, therefore the radiance estimation problem contains 5 measure-
ments, but 6 unknowns when surface temperature is included. The three methods evaluated
by Kealy and Hook were: (1) reference channel, (2) normalized emissivity (NEM), and (3)
alpha-derived emissivity (ADE). The result of their study showed that NEM and ADE are
more accurate than the reference channel method. Between NEM and ADE, ADE is supe-
rior for terrain backgrounds with widely varying material emissivity such as vegetation and
igneous rocks. The ADE method is also equally accurate for data that was convolved with
the filter response functions of the TIMS and ASTER instruments.

In 1994, a working group (ASTER Temperature/Emissivity Separation Algorithm Fea-
sibility Study) was formed to evaluate ten existing algorithms for obtaining temperatures
and emissivity. For each of the ten algorithms, [30] listed the reasons for rejection of the
particular algorithm by the ASTER working group. The reviewed algorithms were:

1. Alpha-derived emissivity (ADE) method

2. Classification method

3. Day-night measurement

4. Emissivity bounds method

5. Graybody emissivity method

6. Mean-MMD method (MMD)

7. Model emissivity method

8. Normalized emissivity method (NEM)

9. Ratio algorithm (RAT)

10. Split-window algorithm

The members of this group consisted of experts in the field from U.S. and Japan. Since
this initial meeting, the group has met regularly to develop, improve, and validate algorithms
for high accuracy land surface temperature and emissivity computation. There other pri-
mary function is to distribute the products to the user community. The websites for the
ASTER data products and the working group are:

http://asterweb.jpl.nasa.gov/products/data products.htm

http://www.science.aster.ersdac.or.jp/en/science info/te WG.html
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Available data products relevant to the work presented here are AST08 (surface kinetic
temperature), AST05 (surface emissivity), and AST09T (atmospheric corrected surface ra-
diance). These three products have been validated for cloud-free pixels.

C.2.3 The Hybrid TES Algorithm

Based on the reviews, the ASTER working group developed a hybrid algorithm based on
two algorithms: NEM and MMD (the latter is based on ADE). The advantages of this
hybrid TES algorithm over NEM or MMD alone are greater accuracy and precision for
temperature and emissivity recovery. The goals of the hybrid TES algorithm are to obtain
surface temperatures especially over vegetation, water, and snow as well as to obtain surface
emissivity for mineral substrates.

In 2002, Dash et al. [31] did a comprehensive review of methods on estimating land
surface temperature (LST) and emissivity using passive sensor data. He concluded that the
hybrid TES algorithm is applicable and viable if information on the atmosphere and the
multiple IR channels are available. The main disadvantage for using hybrid TES algorithm
is that accurate determination of the downwelling atmospheric irradiance is critical to the
results.

Most recently, in 2004, Payan et al. [32] evaluated the hybrid TES algorithm for both
hyperspectral and multispectral data. They confirmed the applicability of the algorithm in
both long-wave infrared (LWIR) and mid-wave infrared (MWIR) for shaded surfaces. How-
ever, this study [32] found that the methods cannot retrieve emissivity for high contrast
surfaces such as metal. It also showed that the algorithms cannot be used to estimate emis-
sivity for hyperspectral data in the MWIR for cases where the sun is directly illuminating
the surface.

Based on the studies and review in [30–32], we concluded that the hybrid TES algorithm
is the most robust for emissivity and temperature calculation in hyperspectral data. In
future work, we would like to implement and exhaustively test this hybrid algorithm for
various temperature/emissivity separation tasks.

The steps for implementing the TES algorithm, which is a combination of the NEM,
RAT, and MMD modules are [30]:

1. Estimate the surface temperature and subtract the reflected sky irradiance iteratively
(NEM). This method first removes the atmospheric radiance and then estimates the
temperature and emissivity using an assumed maximum emissivity.

2. Obtain relative emissivities and spectral shape by performing a ratio of the emissivities
from NEM to the average emissivity (RAT).

3. Estimate the TES emissivities and temperature using regression analysis (MMD). This
method obtains the minimum emissivity empirically and then calculates the absolute
emissivity.
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Detailed flow charts and description of the hybrid TES algorithm is available in [30].
This algorithm may become available as a consumer off-the-shelf product in the near future.

C.2.4 Preliminary Temperature/Emissivity Separation Results

As a preliminary and exploratory experiment, we decided to verify the performance of
the Reference Channel Method and the Normalized Emissivity Method used by Kealy and
Hook [29] on a representative hyperspectral data cube. To perform this task, we used ENVI
(the Environment for Visualizing Images) Version 3.6 to generate surface temperatures from
radiance data and apply the algorithms described. It should be noted that ENVI 3.6 does
not generate temperature using the Alpha Residual algorithm (the third method discussed
in [29]), although it is likely that it will be incorporated into a future release of ENVI.

The hyperspectral data set utilized was taken by the NASA MODIS/ASTER Airborne
Simulator (MASTER) scanner over the Cuprite Mining District in Nevada. This scanner
covers 50 bands in the spectral range 0.46-12.845 microns. For retrieving surface temper-
ature, only the 9 thermal bands from 8.2-12.845 microns are used. The results of these
algorithms are shown in Figure C.1-C.2. Surface temperature (K) statistics derived using
these algorithms are shown in Table C.1.

Figure C.1: The temperature histogram for a 716 by 2028 image using the Reference Channel
algorithm assuming an emissivity of 0.96.

Table C.1: Derived Surface Temperature (K) Statistics versus method Algorithm
Algorithm Min Max Mean Stdev

Reference Channel 287.323212 323.351776 309.294547 3.189591
Normalized Emissivity 292.194824 331.534668 319.103284 3.652123
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Figure C.2: The temperature histogram for a 716x2028 image using the Normalized Emis-
sivity algorithm assuming an emissivity of 0.96.

C.3 Atmospheric Correction

In addition to investigating Temperature/Emissivity Separation Algorithms, we explored at-
mospheric correction algorithms that might be integrated into the MAP algorithm presented
in the main body of the report. Two candidate algorithms were identified: FLAASH (Fast
Line-of-sight Atmospheric Analysis of Spectral Hypercubes), and Parallel MODTRAN. The
details of the algorithms are not presented here, but are available in [33] and [34].

The FLAASH algorithm may be used to retrieve reflectance data from radiance data. To
demonstrate this, an representative example of AVIRIS data collected over Fort AP Hill in
Virginia on September 26, 2001, was processed by FLAASH . Figure C.3 shows the radiance
spectrum from 400 to 2500 nm for a vegetation pixel, and Figure C.4 shows the reflectance
spectrum after FLAASH was applied for the same vegetation pixel.

For future work, there are parallel versions of FLAASH and MODTRAN 3 that might
be incorporated into a parallel MAP algorithm. As a preliminary step, we implemented the
NASA/JPL parallel version of MODTRAN 3 on a Beowulf Cluster. Figure C.5 shows the
processing time versus the number of processors.
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Figure C.3: AVIRIS Radiance Spectrum at Fort AP Hill.

Figure C.4: AVIRIS Reflectance Spectrum at Fort AP Hill obtained from FLAASH.

130



MODTRAN3 on MRC NSH Beowulf  System

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10 12

Number of Processors

T
o

ta
l T

im
e 

(s
)

Figure C.5: Time as a function of number of processors

C.4 Summary

In this appendix, we reviewed and identified several algorithms for temperature/emissivity
separation. The hybrid algorithm described in Section C.2.3 emerged as the current state-of-
the-art algorithm for this purpose. For atmospheric correction, we identified parallel versions
of the FLAASH and MODTRAN algorithms. Future work would include incorporating
parallel implementations of the hybrid TES algorithm and FLAASH, as parts of a complete
MAP enhancement of hyperspectral imagery.
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