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Abstract – A class IV flextensional device based on electrostrictive P(VDF-TrFE) copolymers was fabricated and 
characterized. As an actuator, the small device can produce a displacement of more than 1 mm in air with high load 
capability. As an underwater transducer, the device can be operated at frequencies of several kilohertz with high transmitting 
voltage response and low mechanical quality factor. Finite element analysis was used to model the flextensional device. The 
modeling indicates that the performance of the flextensional transducer could be readily tailored by adjusting the parameters 
of the flextensional metal shell to meet the requirement of different applications.  

 
I. INTRODUCTION 

 
Flextensional devices including actuators and transducers act as mechanical transformers, which transform and amplify 

the displacement and force generated in the active element to meet the demands of different applications. Structurally, the 
device consists of a driving element connected to a flexible shell structure that transforms the high impedance, small 
extensional motion of the active element into low impedance, large extensional motion of the shell, or vice versa. 
Flextensional transducers are now widely used for underwater transducers [1-3]. From the different designs of the 
flextensional shell structure, flextensional transducers were divided into five classes [1,3]. Among them, classes IV and V 
have received great attention in recent years. The Moonie and Cymbal developed by Newnham et al. at the Penn State 
University are essentially miniaturized version of class V flextensional transducers [3-5].  

 
In the traditional flextensional devices, i.e. Moony, Cymbal and Class IV flextensional transducers, piezoelectric 

ceramics are used as the driving elements [4-6], which have a strain level of 0.1%. Recently, we developed a class of 
electrostrictive polymers, the P(VDF-TrFE) based terpolymers and high-energy electron irradiated copolymers. In these 
polymers, electrostrictive strains of more than 7% have been observed with an elastic modulus of 1.0 GPa and elastic energy 
density of more than 0.5 J/cm2 [7-9]. In addition, it has been shown that this new class of materials can be operated to above 
100 kHz. These features make this new class of material attractive as the driving element for the flextensional devices.  

 
 In this paper, we will first briefly review the in-air and underwater experimental results of the flextensional transducers 

with the electrostrictive copolymer as the active element. Then the finite element analysis will be carried out to analyze the 
performance of the device and investigate how the performance depends on the parameters of the flextensional structure.  

 
II. IN-AIR AND UNDERWATER PERFORMANCE 

 
Using the electrostrictive P(VDF-TrFE) copolymer as a driving element, a flextensional transducer of class IV was 

fabricated and tested. This transducer consists of an active plate (area ~ 1 inch x 1 inch and thickness ~ 1-2 mm), which is in 
the multilayer form laminated from the electrostrictive P(VDF-TrFE) polymer films (each film thickness~30 �m), and two 
flextensional metal shells which were fixed at the two ends of the active polymer plate to amplify the displacement. Figure 1 
shows schematically the overall configuration of the transducer, where 2d=2 mm, L=26 mm, and w=31 mm are the 
thickness, length and width of the multilayer electrostrictive P(VDF-TrFE) plate (EAP plate), t=0.375 mm is the thickness 
of the metal shell, h=3 mm is the height of the arch, respectively. δL and δh are the displacement along the X and Z 
directions, respectively. δh/δL is the amplification ratio of the flextensional structure. The spring-steel sheets with modulus 
of 210GPa (Blue Tempered & Polished Spring Steel, Precision Brand Products, Inc.) were used as the metal shells.  

 
The results of in-air characterization of the device show that this transducer has a resonance frequency at about 4.5 kHz 

and can generate displacement 2�h of more than 1 mm in air (the transducer total thickness is 7 to 8 mm in the same z-
direction). Under different driving fields, 2δh is about 0.40 mm at 50V/µm, and the maximum displacement can reach more 
than 1 mm at a driving level of 90V/um.  
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When operated in water, the fundamental resonance frequency of the transducer is reduced to about 1.7 kHz due to the 
water load. To characterize the underwater performance, the transmitting voltage response (TVR) was measured. Figure 2 
shows the TVR results under two different applied DC bias fields. A broad resonance was observed which centers at 1.7 
kHz. The TVR near the resonance is 123 (dB re 1 µPa/V @1m) for the device. In the frequency range from 1 kHz to 5 kHz, 
it was found that the transducer shows an omnidirectional pattern, due to the fact that the dimension of the transducer is 
much smaller than the acoustic wavelength.  
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Figure 1: Sketch of flextensional transducer based on stretched electroactive polymers. 
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easured and calculated TVR of the flextensional transducer. Solid lines are
d values under DC bias, and the dash lines are the calculated values using
fferent meshing levels.  

 
 

INITE ELEMENT MODELING OF THE TRANSDUCER 

(FEA) has been used extensively in modeling complex transducer and actuator 
0]. The purpose of FEA is to numerically solve complex partial differential equations so 
predict the physical behaviors of an actual engineering system under various structures 
udy, Ansys 5.7 (Ansys, Inc., Canonsburg, PA) was used to simulate the in-air and 
nsducer. Since no commercial FEA code has been developed to model electrostrictive 

er was treated as an effective piezoelectric material (an electrostrictor under DC bias 

 



field). In the FEA modeling, the in-air directly measured data were used to validate the FEA model. Then the FEA model 
was used to predict the transducer underwater performance.  

 
Figure 3 shows the 3-D geometry and meshed elements created using Ansys, where the coupling field element SOLID 

5 [11] was used to simulate the electroactive polymer. For the underwater modeling, 2D model was used to reduce 
computing time. Fig. 3 also shows the deformed shape under electrical driving. The motion of the EAP plate in the X-
direction results in the amplified motion of the metal shell in the Z-direction. The FEA results show that at low frequencies, 
2δh is 0.41 mm, and the δh/δL is about 1.76. At the resonance frequency of 4.5 kHz, the maximum 2δh is up to 1.6 mm. 
These results are consistent with experimental data.   
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Figure 3: Meshed geometry and deformed shape of the transducer in air.  
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Figure 4: The geometry of the underwater model with infinite water media and structure-fluid interface.  
  
i-spheres of water with radius of 1 meter were placed in contact with the two 
hich the water semi-sphere is not drawn in proportion in order to show the small 
defined along the out surface of the metal shell between the transducer and water. 
d using acoustic element FLUID 29 (2D). In Ansys, there are specially designed 
 129 and FLUID 130 [11]. These infinite acoustic elements absorb the incident 
fects of a domain that extends to infinity beyond the FLUID 29 and FLUID 30 
he outer boundary of the hemisphere of water, an infinite fluid environment was 
After applying a voltage of one volt to the EAP plate, a harmonic analysis was 
pendent parameters, such as pressure in the water and the displacement of the 
presented in fig. 2 to be compared with the experimentally measured data. The 
ent with the measured data, with a resonance frequency around 1750 Hz and a 
.  

erformance of the device depends on the parameters of the flextensional metal 
rs of the flextensional transducer under different structure parameters, such as h, t 
arameters of EAP plate were kept as constant.  

 



Figure 5 shows the TVR of the flextensional transducer as a function of arch height h. When h varies from 1 to 8 mm, 
the resonance frequency changes in a large range from 700Hz to 5.3 kHz with a TVR from 116 to 123 dB re 1 µPa/V @1m, 
indicating the operation frequency can be adjusted in a large range. Similarly, other parameters such as t and d can also be 
changed to tailor the performance of the transducers.  

 
The results indicate that this kind of transducer can be operated at a frequency range of several hundreds of hertz to 

over 10 kHz with relatively high TVR (more than 115 dB re 1µPa/V @1m) by changing the parameters of the flextensional 
transducer. All these parameters can be utilized for the future flextensional transducer design. For instance, the results in 
figure 6 show that δh/δL can be djusted from 4.5 to less than 1 by increasing the arch height h from 1 mm to 8 mm.  
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Figure 5: TVR and sonance frequency fr of the transducer as a function of arch height h.   
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IV. CONCLUSIONS 

abricated and tested utilizing the newly developed high electrostriction electroactive 
 polymer materials are high strain level, high elastic energy density, and lightweight. 
″ in lateral dimension and a few mm thick) is capable of generating a displacement at 

al load capability (not shown in this paper), which is highly desirable for actuator 
ducer, the device exhibits a low frequency resonance (< 2 kHz) while generates a 
 dB re 1 µPa/V @1m. The FEA modeling indicates that the performance of this 
ored over a large range by changing the parameters of the flextensional metal shell. 
sducer can operate at the frequency range from several hundreds hertz to 10 kHz with 
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