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SENSING-COMPUTING-ACTUATING 
MULTI TARGET TRACKING SYSTEM 

AnaLogic Computers Inc. 

Introduction and Objectives 

The aim of the current project was to produce a system capable of tracking and 
visually tagging 6-8 targets maneuvering rapidly in a rectangular area at frame rates of up 
to 60 frames per second. To achieve this goal, the proposed system utilizes two different 
processors: a CNN-based mixed-signal image processor and a digital signal processor 
(DSP). Input is provided to the system from a high-speed CMOS imager and the targets are 
tagged by a laser deflector unit. 

We devised a simplified experimental setup to help us develop the algorithms and 
verify their behavior. In this setup, the targets are generated by a separate computer and 
displayed by a projector onto a screen. This has two advantages: all of the correct target 
positions are known so there is a baseline truth to which we can compare the output of the 
tracking algorithms. At the same time, the projector is capable of projecting targets very 
rapidly (up to 100 frames/sec) thus providing a way for us to test the speed of the tracking 
system in a controllable manner. 

We started development of the image processing algorithms on the Ace4k CNN-UM 
processor [4], because the software environment (programming SDK) for the Ace16k was 
still under development and we have not had access to sufficient number of chips. Chip 
supply problems have been resolved and the system now utilizes the Ace16k chip for 
critical image processing tasks. The main difference between the two processors is that 
while the Ace16k has 128x128 cells [6], the Ace4k has only 64x64. The target tracking 
algorithms and laser control are run on the DSP adjacent to the Ace16k chip.   

This report describes the algorithmic structure and the experimental results obtained 
with the final system. 

System architecture 

Figure 1 shows the main building units of the MTT system. The input image is 
acquired by a high-speed CMOS camera capable of capturing 128x128-sized images at 500 
frames/sec given sufficient illumination. This input is captured by an industrial PC that 
also houses the ACE-BOX visual computer. This contains the Ace4k or Ace16k processor, a 
Texas Instruments TMS320C6202 digital signal processor and 16 MB of RAM. It 
communicates with the host PC via a 33Mhz PCI bus interface. The CNN-UM chips are 
responsible for the image processing tasks and part of the feature extraction. After image 
acquisition, they perform image enhancement to compensate for ambient lighting changes, 
motion extraction, related image processing tasks and feature extraction for some types of 
features. The DSP runs the rest of the feature extraction routines, and the motion 
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correspondence algorithms such as distance calculation, gating, data assignment and target 
state estimation. The laser controller uses these target parameters to move the laser to the 
correct positions and illuminate the targets. 

ACE 
BOX (e)

Switchable
Laser (d)

Galvo
Mirror (a)

PC

Dichroic
Mirror (b)

High speed 
Camera (c)

 

Figure 1. Block diagram of the proposed MTT system 

The CNN-UM Algorithms 

We tried to capture the main ideas from the natural system by defining three “change 
enhancing” channels on the input image flow: a spatial, a temporal and a spatio-temporal 
channel. The spatial channel contains the response of filters that detect spatial i.e. 
brightness changes, revealing the edges in a frame. The temporal channel contains the 
result of computing the difference between two consecutive frames, thereby giving a 
response to motion, while the spatio-temporal channel contains the non-linear combination 
of the spatial and temporal filter responses. In a general scheme, it can also be assumed 
that the input flow is preprocessed (enhanced) by a noise suppressing reconstruction filter. 

The change enhancement on the parallel channels can be defined as causal recursive 
difference-type filtering using some linear or nonlinear filters as prototypes (e.g. DoG: 
difference of Gaussian filtered images implemented by constrained linear diffusion, or 
DoM: difference of morphology filtered images implemented by min-max statistical filters 
[5]). It is important to note that in all of these approaches the change enhancing filter 
channels can be described only by a spatial scale, temporal scale and an orientation 
parameter. The output of these channels is filtered through a sigmoid type characteristic 
specified by a threshold and slope parameter.  
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The output of the best performing individual channel could be used by itself as the 
output of the image processing front-end, if the conditions where the system is deployed are 
static and well controlled. If the conditions are dynamic or unknown a priori, then there is 
no way to predict the best performing channel in advance. Furthermore, even after the 
system is running, no automatic direct measurement of channel performance can be given 
short of a human observer deciding which output is the best. To circumvent this problem, 
we decided to combine the output of the individual channels through a so-called interaction 
matrix, and use the combined output for further processing. Our experimental results and 
measurements indicate that the combined output is on average more accurate, than each 
single channel for different image sequences. Figure 2 shows the conceptual block diagram 
of the multi-channel spatio-temporal algorithm with all computing blocks to be discussed 
in the following section. 

 

Channel processing
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Figure 2 Block overview of the channel-based image processing algorithm for motion 

detection 

 
The change enhancing channels are actually computed serially (time multiplexed) in 

any current implementation, but this is not a problem due to the high speed of the CNN-
UM chips used. The output of all three channels is a grayscale image that may be 
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thresholded or processed through a non-linear sigmoid type function. In the first stage of 
the on-going experiments, only isotropic spatio-temporal processing has been considered 
followed by crisp thresholding through a hard nonlinearity. Thus, the three types of 
general parameters used to derive and control the associated CNN templates (or 
algorithmic blocks) are the scale parameters and the threshold parameter. The 
enhancement (smoothing) techniques have been implemented in the form of nearest 
neighbor convolution filters (circular positive B template with entries normalized to 1) and 
applied to the actual frame. 

The spatio-temporal channel filtering (including the temporal filtering solution) has 
been implemented as a fading memory nearest neighbor convolution filter applied to the 
actual and previous frames. In temporal filtering configuration (no spatial smoothing), λ 
represents the fading rate (in temporal steps), thereby specifying the temporal scale of the 
difference enhancement. In the spatio-temporal filtering configuration (the fading rate is 
set to a fixed value), the scale parameter represents the spatial scale (in pixels) at which the 
changes are to be enhanced (the number of convolution operations on the current and the 
previous frame are calculated implicitly from this information). 

The pure spatial filtering is based on Sobel-type spatial processing of the actual frame 
along horizontal-vertical directions and combining the outputs into a single “isotropic” 
solution. 

The change enhancing channels are actually computed serially in the current 
implementation, but this is not a problem due to the high speed of the CNN-UM chips used. 
The output of all three channels is a grayscale image that may be thresholded or processed 
through a non-linear sigmoid type function.   

Channel Interaction and Detection Strategies 
The interaction between the channels may be Boolean logic based for binary images or 

fuzzy logic based for grayscale images, specified via the so-called channel interaction 
matrix. 

The interaction matrix is a square matrix where each row and column stands for a 
single channel in addition to the detection and prediction maps. A row-wise (R) and a 
column-wise (C) operator must be given that specifies the functions to be used within the 
rows and between the results. If a cell contains 1 then the given map in the given column 
must included as is, if it is 0, then it should not be included and if it is –1, then it should be 
inverted. The interaction matrix allows us to specify very different relationships between 
the channels within the same framework. For the R and C functions, meaningful spatial 
logic functions can be selected (e.g. AND – “excitation”, XOR – “suppression”, OR 
“summation”) resulting in the final output. We found during the experiments that setting 
R to AND and C to OR works well in most cases. 

The result of the channel interaction is a binary map called the detection map that will 
be the basis for further processing. Ideally, this contains only black blobs where the moving 
targets are located. 

Prediction Methods 
We also compute a prediction map that specifies the likely location of the targets in the 

image solely based on the current detection map and the previous prediction. This can then 
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be used (via the interaction matrix) as a mask to filter out spurious signals. It is extremely 
hard to include any kind of kinematical assumption at the cellular level of processing given 
the real-time constraints, since this would require the generation of a binary image based 
on the measurements, the current detection and the kinematical state parameters. 
Therefore, the algorithms only use isotropic maximum displacement estimation 
implemented by spatial logic and trigger-wave computing. However, the experiments 
indicate that even rudimentary input masking can be very helpful in obtaining better MTT 
results. 

Figure 3 shows sample frames and their processed output from a test video. This 
sequence contains 68 frames of seagulls moving rapidly in front of a cluttered background. 
The black blobs show the birds detected by the multi-channel image processing front-end. 
This input is used by the feature extractors to determine target positions. 
 

 

 

Figure 3 Sample frames from the “birds” test video and corresponding frames from the 
detection output of the system. Moving targets are circled on the original video 

Feature Extraction and Target Filtering 
The DSP state-estimation and data assignment algorithms operate on position 

measurements of the detected targets, therefore these have to be extracted from the 
detection map. During data extraction, it is also possible to filter targets according to 
certain criteria based on easily (i.e. rapidly) obtainable features. The set of features we are 
currently using are: area, centroid, bounding box, equivalent diameter (diameter of a circle 
with same area), extent (the proportion of pixels in the bounding box that are also in the 
object), major and minor axis length (the length of the major axis of the ellipse that has the 
same second-moments as the object), eccentricity (eccentricity of the ellipse that has the 
same second-moments as the object), orientation (the angle between the x-axis and the 
major axis of the ellipse that has the same second-moments as the object) and the extremal 
points. Filtering makes possible to concentrate on only a certain class of targets while 
ignoring others. 

The calculation of all of these features can be implemented on the DSP but some of the 
features (centroid, horizontal or vertical CCD etc.) can be efficiently computed on the 
CNN-UM as well. Since the detection map is already present on the CNN-UM, calculation 
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of these features can be extremely fast. It is also possible to calculate a set of features in 
parallel on the DSP and the CNN-UM, speeding up this processing step even further. The 
location of the center of gravity (centroid) of each target is usually considered the position 
of the target, unless special circumstances dictate otherwise. 

The DSP-based MTT algorithms 

The combined estimation and data association problem of MTT has traditionally been 
one of the most difficult problems to solve. To describe these algorithms, we need to define 
some terms and symbols. A track is a state trajectory estimated from the observations 
(measurements) that have been associated with the same target. Gating is a pruning 
technique to filter out highly unlikely candidate associations. A track gate is a region in 
measurement space in which the true measurement of interest will lie accounting for all 
uncertainties with a given high probability [8]. All measurements within the gating region 
are considered candidates for the data association problem. Once the existence of a track 
has been verified, its attributes such as velocity, future predicted positions and target 
classification characteristics can be established. The tracking function consists of the 
estimation of the current state of the target based on the proper selection of uncertain 
measurements and the calculation of the accuracy and credibility of the state estimate. 
Degrading this estimate are the model uncertainties due to target maneuvers and random 
perturbations, and measurement uncertainties due to sensor noise, occlusions, clutter and 
false alarms. 

Data association 
Data association is the linking of measurements to the measurement origin such that 

each measurement is associated with at most one origin. For a set of measurements and 
tracks each measurement/track pair must be compared to decide if measurement i is 
related to track j. For m measurements and n tracks, this means m*n comparisons, and for 
each comparison multiple hypotheses may be made. As n and m increase in number, the 
problem becomes computationally very intensive. Additionally, if the sensors are in an 
environment with significant noise and many targets, then the association becomes very 
ambiguous. 

There are two different approaches to solving the data association problem: (i) 
deterministic (assignment) – the best of several candidate associations is chosen based on a 
scoring function (accepting the possibility that this might not be correct) (ii) probabilistic 
(Bayesian) association – use classical hypothesis testing (Bayes’ rule), accepting the 
association hypothesis according to a probability of error, but treating the hypothesis as if 
it were certain.  

Based on data in the literature [8], we decided to work with assignment algorithms 
because they are high performance with calculable worst case performance since they have 
a computational complexity of Ο(n3) (where n is the number of tracks and measurements) 
which was essential given our real-time constraints. We also restricted ourselves to the so-
called 2-D assignment problems where the assignment depends only on the current and 
previous measurements (frames). The data assignment algorithms perform so-called 
unique assignment, where each measurement is assigned to one-and-only-one track as 
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opposed to non-unique assignment, when a measurement may belong to multiple tracks.  
We implemented two types of assignment algorithms a NN approach and the JVC 
algorithm. Since non-unique assignment would very useful in certain situations such as 
occlusions, we modified the NN algorithm and added a non-unique assignment mode to it.   

2-D Assignment algorithms 
The NN algorithm is the faster algorithm and for situations without clutter works 

adequately. It can be run in unique assignment mode, where each track is assigned one and 
only one measurement (the one closest to it) and in non-unique assignment mode, when all 
measurements within a track’s gate are assigned to the track which makes it possible 
handle cases of occlusion. 

The JVC algorithm is implemented as described in [7]. It seeks to find a unique one-to-
one track to measurement pairing as the solution ˆijx  to the following optimization problem: 

min
1 1

n n
c xij ij

i j

⎛ ⎞
⎜ ⎟∑ ∑
⎜ = =⎝

⎟
⎠

i

 (1) 

1 1
1, 1

n n

ij ij
i j

x x
= =

= =∑ ∑
 (2) 

0 1ijx≤ ≤    (3) ,i j∀

where n is the number of tracks and measurements (it is easy to generalize the 
algorithm if there are more measurements than tracks), i,j=1…n, cij is the probable cost of 
associating measurement i with track j calculated based on the distance between the track 
and the measurement and xij is a binary assignment variable such that 

1 if is assigned to
0 otherwiseij

j
x ⎧

= ⎨
⎩

 (4) 

The JVC algorithm consists of two steps, an auction-algorithm-like step [9] followed by 
a modified version of the Munkres algorithm [10] for sparse matrices. 

Our experiments indicate that the JVC algorithm is indeed superior to the nearest 
neighbor strategy while only affecting the execution time marginally. 

Track Maintenance 
We have devised a state machine for each track for easier management of a track’s 

state during its lifetime. Each track starts out in the ‘Free’ state. If there are unassigned 
measurements after an assignment run, the remaining measurements are assigned to the 
available ‘Free’ tracks and they are moved to the ‘Initialized’ state. If in the next frame the 
‘Initialized’ tracks are assigned measurements, they become ‘Confirmed’; otherwise, they 
are deleted and reset to ‘Free’. If a ‘Confirmed’ track is not assigned any measurement in a 
frame, the track becomes ‘Unconfirmed’. If in the next frame it still doesn’t get a 
measurement, it becomes ‘Free’, i.e. the track is deleted. 
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State Estimation 
In this first stage of the experiments, we assume that the target state evolves according 

to a known linear direct discrete time-varying model. The associated dynamic equations 
are: 

( 1) ( ) ( ) ( ) ( ) ( ) ( ); 0,1,...x k F k x k G k u k k v k k+ = + +Γ =  (5) 
( ) ( ) ( ) ( ); 1, ...z k H k x k k kω= + =  (6) 
[ ] [ ]( ) ( )´ ( ); ( ) ( )´ ( )E v k v k Q k E k k R kω ω= =  (7) 

where x(k) is the nx-dimensional state vector, u(k) is an nu-dimensional known input 
vector (control or sensor platform motion), while v(k) and ω(k) are the uncorrelated zero-
mean white Gaussian process noise and measurement noise, respectively (linear Gaussian 
assumption: Q(k) and R(k) are the corresponding covariance matrices). In the formulation 
above F(k) is the state transition matrix, G(k) is the input gain, Γ(k) is the process noise 
gain and H(k) is the measurement matrix that are all assumed to be known and possibly 
time-varying. 

The above description makes it possible to introduce the recursive discrete-time 
Kalman-filter (giving the MMSE estimate of the system under consideration) and derive 
steady-state filters for noisy kinematic models (alpha-beta and alpha-beta-gamma filters). 
These can be then further developed and combined in adaptive estimation of maneuvering 
targets (e.g. interacting multiple model – IMM - approaches). 

For the time being, we have embedded only a noiseless constant velocity kinematic state 
estimator while focusing on the implementation on efficient front-end filtering and data 
assignment strategies. Unfortunately, the more complex state estimators such as variants of 
the Kalman-filter or IMM state estimators [8] are computationally very intensive and will 
require a more advanced hardware environment for real-time MTT purposes. In order to 
meet these requirements we are planning to utilize a more powerful DSP (Texas C64 
family) to facilitate the inclusion of more accurate state estimators. 

Tracking algorithm performance 
Figure 4 shows the results of running the system on two video flows that contain 

targets which are maneuvering and sometimes move in front of each other, effectively 
stress testing the tracking algorithms. The measured track states show that the system 
tracked the targets fairly well. 
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Figure 4 Tracked target positions in a sample run. The different colors signify different 
tracks. The reference positions (‘ref’, upper left plot) were marked by a human observer 
while the measured track states (‘sta’, lower left plot) are the output of the system. The 

system’s tracking performance for different video flows: A) ‘birds’, B) ‘cells’.   
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The Laser Controller 

The laser controller contains the necessary electronics to translate the digital TTL 
signals (containing the coordinates) from the ACE-BOX into the analog voltages required 
to move the galvo-motors with the deflector mirrors. It also controls the ON/OFF operation 
of the laser itself. The galvo-mirrors are able to deflect the laser beam in ±20°-s 
horizontally and vertically. The whole laser apparatus can be seen on Figure 5. The laser 
and the deflector mirrors are affixed atop of the camera because this will keep parallax 
error* to the minimum possible. 

  
Figure 5 The laser controller and the high-speed CMOS camera (the ACE-BOX s

with the ACE4k chip is located in the PC) 

System speed analysis 
We measured the performance of the system at the ACE16k level to determ

running time of the image processing algorithms and at the MTT algorithm lev
computational time for the multi-channel algorithms running on the ACE16k c
approx. 4ms/channel for the image computations while the MTT algorithms take 3
run for 8 targets.   

The net speed of the system (for 6 targets) is approximately 60 fps as targeted
project specifications. Since the image processing speed does not change with the 
of targets, performance of the system for more targets should be equally good. 

                                                 
* This error arises because the optical center of the camera is not exactly aligned with that of the lase
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