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1    INTRODUCTION 
The spherical-wave source scattering-matrix description of electroacoustic transducers [1] and 
antennas [2] is ideally suited for the analysis of arrays of small radiators and scatterers. In [1], 
it formed the basis of the analysis that determined a simple, explicit, closed-form expression 
for the propagation constants (kd — ßd diagram) of the traveling waves on an infinite linear 
periodic array of isotropic acoustic scatterers. And in [2], it was applied to obtain implicit 
transcendental expressions for the kd — ßd diagrams of the traveling waves on infinite linear 
periodic arrays of electric (or magnetic) dipole scatterers oriented perpendicular, parallel, 
and skew to the direction of propagation of the traveling waves. The analyses in these two 
previous applications of the spherical-wave source scattering-matrix description simplified 
greatly by assuming the scatterers were small enough that only the fields with the lowest 
order radial dependence were significant. 

In the present report, we apply the spherical-wave source scattering-matrix description 
to obtain an implicit transcendental equation for the propagation constants of the traveling 
waves that can exist on an infinite linear periodic array of lossless penetrable (magnetodi- 
electric) spheres. Although a framework is presented for all orders of vector spherical waves, 
only the electric and magnetic dipole waves are included in the detailed analysis. The exclu- 
sion of higher-order vector spherical waves restricts the scope of this paper either to spheres 
sufficiently small that only the dipole scattered fields can be excited, or to frequencies for 
which all the scattered multipole fields are negligible except the dipole fields. In all the par- 
ticular numerical examples we shall consider, the magnitudes of the dipole wave scattering 
coefficients are much larger than those of the higher-order multipole wave coefficients, and 
consequently the dipole vector spherical waves give an accurate description of the traveling 
waves that can exist on the array. It should be kept in mind, however, that there may 
well be traveling waves associated with the higher-order vector spherical waves for arrays of 
penetrable spheres in the general range of sizes we consider in some of our numerical exam- 
ples. Although three-dimensional arrays of periodic penetrable spheres have been analyzed 
in the past [3], [4], [5], the present analysis concentrates on determining kd — ßd diagrams 
for the traveling waves on a single linear periodic array of penetrable spheres with arbitrary 
separation and arbitrary values of real permeability and permittivity. 

The report begins with a brief review of the spherical-wave source scattering-matrix de- 
scription of electromagnetic scatterers and then goes on to simplify the equations for spheres 
that involve only electric and magnetic dipole vector spherical waves. Next these simplified 
equations are applied to an infinite linear periodic array of these spheres. The resulting 
equations are combined, rearranged, and reduced to a single transcendental equation, which 
is solved numerically, to obtain kd — ßd diagrams for a number of different values of the 
relative permeability and permittivity of the spheres in the infinite linear array. Two-layered 
(coated) spheres are considered as well as homogeneous spheres. Notably, the kd — ßd di- 
agrams predict that both forward and backward dipolar traveling waves can be excited on 
linear periodic arrays of penetrable spheres, depending on the frequency and the values of 
the permeability and permittivity of the spheres. In contrast, we showed in [2] that only 
forward traveling waves are possible on linear periodic arrays of unloaded short-wire dipoles. 



2    SOURCE SCATTERING-MATRIX DESCRIPTION 
OF A GENERAL SCATTERER 

Consider a general scatterer bounded by the surface S as pictured in Figure 1. The Maxwell 
equations that govern the time-harmonic electromagnetic fields (e-^.w > 0) in the source- 
free free space between the surface 5 and a spherical surface Sr of radius r enclosing the 
scatterer and extending to the nearest external source are [6, sec. 7.1] 

V x E(r) = ikZoH (la) 

V x H(r) = -ifcE(r)/Z0 (lb) 

which imply that 
V • E(r) = 0 (2a) 

V • H(r) = 0 (2b) 

where E(r) and H(r) are the electric and magnetic fields, Z0 is the free space impedance, 
k = uj/c = 27r/A is the free space propagation constant, A is the free-space wavelength, and c 
is the speed of light. Eliminating either H(r) or E(r) from these equations yields the vector 
wave equations 

-V x V x E(r) + fc2E(r) = 0 (3a) 

-V x V x H(r) + A;2H(r) = 0 (3b) 

which imply 
V2E(r) + fc2E(r) = 0,    V-E(r) = 0 (4a) 

V2H(r) + Jfc2H(r) = 0,    V • H(r) = 0. (4b) 

Since the electric field satisfies (4a) in the source-free free space region between the surface 
S and the spherical surface Sr, the electric field in this region can be expanded in a complete 
set of divergenceless vector spherical wave functions [6],[7] 

E(r)=EE [«2M2w+«ffiw2w+«2NSw+»2*2«]•       (5) 
1=1 m=-l 

The spherical-wave expansion of the magnetic field then follows from (la) 

H(r) = -lYo£ £ [offiNfiW + &>N2(r) + «2^« + €*€(.")] (6) 
i=i m=-i 

where Y0 = 1/Z0 is the free-space admittance. The vector spherical harmonics MJ^(r) and 
Nä(r) are defined in Appendix A. They satisfy the equations 

N£(r) = \V x M« (r) (7a) 

M£(r) = ^ x Nfm(r). (7b) 



Figure 1: Schematic diagram of the scattering problem. 



The M^(r) spherical wave functions have no radial component. Because of that the M^(r) 
functions in (5) and the N^> (r) functions in (6) are often referred to as TE waves while the 
NJ£(r) functions in (5) and the MJJJ(r) functions in (6) are often referred to as TM waves. 
The Mlx)(r) and N,(^(r) functions have the radial dependence jt{kr) where j, is the spherical 

till V      * »T#* V     / ___ (*)\ /     \ i   -^ TI 21 /     \ 

Bessel function of order I and are referred to as "incoming" waves. The MJ^(r) and Nim(r) 
functions have the radial dependence h^ikr) where fy(1) is the spherical Hankel function of 
the first kind of order I and are referred to as "outgoing" waves. The expansions in (5) and 
(6) are known as multipole expansions. The / = 1 terms are the dipole terms, the I = 2 
terms are the quadrupole terms, etc. The summations containing the modal coefficients a^ 
in (5) and (6) equal the electromagnetic fields produced by the sources that reside outside 
the surface Sr. The summations containing the modal coefficients &£> in (5) and (6) are the 
outgoing electromagnetic fields scattered from the surface 5. 

The "outgoing" modal coefficients (&j£) of the scatterer are related to the "incoming" 
modal coefficients (a|J>) of the scatterer by a linear matrix transformation termed the "source 
scattering-matrix equation" [8], [9] for the spherical-wave representation of the scatterer. 
This source scattering-matrix equation can be written as 

tö-E E E*öö«fö- <8> 
J'=l m!=-V s'=\ 

The coefficients Sß'ö in the source scattering matrix embody the scattering properties of 
the scatterer. 

The spherical-wave source scattering matrix given in (5)-(8) for scatterers differs from 
the classical spherical-wave scattering-matrix given in [10, sees. 9.18-9.24] because the clas- 
sical scattering matrix uses (fy(2),fy(1)) radial basis functions instead of {jiMP)- This small 
mathematical change from hf] to jt appreciably simplifies the analysis by relating all the 
scattering-matrix coefficients directly to the physical sources. 

3    DIPOLAR SCATTERING FROM LOSSLESS 
SPHERES 

We now specialize our general source scattering-matrix framework to scattering from a loss- 
less penetrable sphere of radius a with relative (to free space) permittivity er and relative 
permeability nr. The center of the sphere is assumed located at the origin of a spherical 
polar coordinate system as shown in Figure 2. The radial dependence of the incoming vector 
spherical wave functions M^(r) is j^kr) while that of the incoming wave functions N,m(r) 

is ji(kr)/(kr) for the radial component and ^dlkr)[(kr)ji(kr)] for the angular components. 

As kr —► 0 , 
. /; >. fcr-*o (kr)  /q \ 

Jl{kr)   ~   1.3-5-(« + l) (   J 



Figure 2: Schematic diagram of a lossless sphere of radius a with relative permittivity er 

and relative permeability (ir, with center at the origin of a spherical polar coordinate system 
(r,9,<f>). 



ji(kr) MI (kr) 
i-i 

r^j     .. _ (9b) 
kr 1 • 3 • 5 • • • (2/ + 1) 

^K^l^T^W^1 (9c) 

so that only the incoming N^(r) wave functions are non-zero at the center of the sphere. 
We assume that either the sphere is sufficiently small that only the dipole scattered fields are 
excited, or the frequency is such that all the scattered multipole fields are negligible except 
the dipole fields. Then from the Mie theory of scattering from a sphere [11, sec. 9.25], if the 
scattered electromagnetic field is that of a magnetic dipole 

[Eac, Hac] = of [Mg, -iy„Ng> ] (10a) 

the incident field that excites this magnetic dipole is 

[Einc, Hinc] = [MS, -iFoNS] (10b) 

while if the scattered electromagnetic field is that of an electric dipole 

[E8C, KT] = ftflNffi, -AToMä] (10C) 

the incident field that excites this electric dipole is 

[E<nc, Hinc] = [N&, -ir0MgJ] (10d) 

m = -1,0,1. The Mie dipole scattering coefficients of and 6f in (10a) and (10b) are given 

by 
ac =       /irji(mfcq)[(fri)Ji(fcQ)]' - ji(m(mfca)ji(mfc")l' (Ua) 

01 firji(mka)[(ka)h?(ka)}' - h?](ka^mkaMmka)}' 

=       /irii(fca)[(mfca)ji(mfca)]/ - m2j1(mfca)[(fca)ji(fca)]' ^^ 
1 ~ ^("(teJlWjiW - m2j1(mfca)[(fca)/li

1)(fca)]' 

where m is the relative refractive index m = ^/i^:. Note that the one-to-one relation of the 
scattered field wave functions to the incoming field wave functions, and hence the restriction 
of the relevant spherical wave functions to those with / = 1 and the same values of the 
index m as those of the assumed scattered dipole fields, is a consequence of our considering 
scattering by a homogeneous sphere. Homogeneity can be replaced with radial symmetry 
and the same conclusion holds. If, however, we were to consider a scatterer of non-spherical 
shape, or for that matter a penetrable sphere with a non-radial variation of permittivity or 
permeability, then even if the only scattered electromagnetic field were that, say, of (10a), 
the exciting incident field would no longer be limited to (10b) and would in general include 
higher-order wave functions as well. (Conversely, for these asymmetric scatterers, an incident 
dipole field of the form (10b) or (lOd) can excite higher-order multipole fields in addition to 
the dipole fields of (10a) and (10c).) 

Useful properties of the Mie coefficients are [12, sec. 10.21] 

of = -i (l - e"2iai) (12a) 



|aff = sin2a! (12b) 
_    lirji(mka)[(ka)ji(ka)]' - j1(fca)[(mfca)ji(mfcQ)]/ _. 

1        nrji(mka) [(ka)yi(ka)]' - yx(ka) [(mka)ji (mka)]' 

sin(arg[ar]-|) = |ari (12d) 

sin2Ql   1 (12e) arg [a[c] — tan l 

and 

.-2sin2ai. 

b\c = -i (l - e"2^) (13a) 

|6jf = sin2A (13b) 

tan/?         Mi(ka)[(vcLka)j1(w.ka)] - m2jl(mka)\(ka)j1(ka)]' .^ 
ßrUi (ka) [(mka)jx (mka)]' - m2ji (mka) [(ka)yi (ka)]' 

Bin (arg [6TI - |) = l*TI (13d) 

sin2A (13e) arg [b{c] = tan" 
-2sin^/?i 

In (12c) and (13c), y\(z) is the spherical Neumann function. Similar relationships hold for 
all the Mie coefficients of lossless scatterers [12, sec. 10.21].x Note that the magnitude of the 
Mie scattering coefficients is at most equal to one. The values of ka for which the magnitude 
of the Mie coefficients a*c and b[c equals one correspond to resonances of the free magnetic 
or electric dipole oscillations of the sphere, respectively [11, sec. 9.25]. As examples of 
these resonances, in Figures 3, 4, and 5 we show plots of the magnitudes of the Mie dipole 
coefficients af and bf for a sphere with er = 10, ßr = 10, a sphere with er = 40, \xr = 1, and 
a sphere with er = 10, fir = 1, respectively. (The Mie electric and magnetic coefficients for 
a sphere with equal relative permittivity and permeability are identical.) In our treatment 
below of traveling waves on a linear periodic array of spheres, the resonances of the Mie 
coefficients will play an important role since it is only when the spheres are close to a 
resonance that there is sufficient scattering from the spheres to support a traveling wave. 

Let us now assume that at the center of the sphere the incoming electric and magnetic 
fields are polarized in the x and y directions, respectively. Then the incoming electromagnetic 
field can be represented as a linear combination of the fields [see (22a) and (22b)] 

[E™ Hfc] = [M^(r) + MgUr), -iY0 (Nf^r) + N^r))] (14a) 

[Er, H*i = [NjJ.xW - N&Cr), -iYo (M^r) - MJJUr))]. (14b) 

(s) 1For scattering from homogeneous lossless spheres, the "outgoing" spherical mode with coefficient blm in 
(5)-(6) is excited only by the corresponding "incoming" spherical mode with coefficient a}^ in (5)-(6) so that 

all the S^lfy m (8) are zero except for (s' = «,!' = l,m' = m). The general power conservation relations 

given in [2, eq. (33)] then reduce to Re (sfäjjfy + Isfyfä = 0, a relationship that can be rewritten in the 

form of (12d) and (13d). Also, (5)-(6), (8), and (10) show that s[%im = < and Sim?l = &ic- m = -1,0,1. 
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The corresponding scattered fields axe then a linear combination of the fields 

[Ef.Hf| = [M^x(r) + MgUr), -iF0 (NgUW + N^r))] (15a) 

[Ef,Hfl = [N^r) - N^r), -iTo (M^r) - M^x(r))]. (15b) 

Because these fields will play a central role in what follows it is convenient to define a set of 
"combination modes" 

Ng-(r) = N« i(r) - N» x(r),     N« (r) = N« x(r) + N« x(r) (16a) 

M«(r) = M» x(r) - M«+1(r),     M« (r) = M^r) + M«+1(r) (16b) 

i = 1,2. These combination modes are directly related to the vector wave functions n and 
m used by Stratton [11, p. 416]: 

Ng.(r) = ^nffi (r) (17a) 

N&(r) = ^n.%(r) (17b) 

M}?_ (r) = ^/fmg\(r) (17c) 

M&(r) = ^«ÄiW (17d) 

where (i) = 1 «-► (J) = 1 and (i) = 2 <-»■ (?) = 3.  Explicit expressions for the outgoing 
combination modes are as follows: 

N&«=S H (x+*)sinöcos#+K1+i - (^?)(cosöcos^ - sM*} 
(18a; 

(18b) 

M^(r) = U-^r (l + -j^) (sin<j>9 + cosÖcos^) (18c) 

Mg.(r) = -^^ (l + ^) (cos^ - cos0sin^>). (18d) 

The scattered electromagnetic fields of (15a) and (15b), now written as 

[Ef, Hf] = [Mg(r), -inN^(r)] (19a) 

and 
[Ef, Hf ] = [NgL(r), -iKoMg>.(r)] (19b) 

11 



are proportional to the fields radiated by an infinitesimal y directed magnetic dipole and x 
directed electric dipole respectively. 

Explicit expressions for the incoming combination modes are 

N?!(r) V! h{kr) .  Q       ,.11 J v    ysin0cos0rH  
kr 2*rd(faö(COsScOS^-Sin 

AT d(Ar) 

M^l(r) = -i-zJ-ji(kr) (sin<£0 + cos0cos(^>) 

M?i(r) = l\-ji(kr) (cos<f>0 - cosflsi 
' Z V 7T x 

where sin z     cos 2 
*(*) = 

jx(z) _ sinz     cosz 

and Id,  . , >,     cos z     sin 
¥('-?)■ 

(20a) 

(20b) 

(20c) 

(20d) 

(21a) 

(21b) 

(21c) 

(22a) 

(22b) 

MS(r) kr=°0(kr). (22c) 

Prom the Mie theory of scattering from a sphere (10a)-(10d), the source scattering-matrix 
equations for the combination modes can be written as 

i,(i) _ c(i)>(D a0) (23a) °1,+ - öl,+;l,+ "1,+ v       ' 

6(2)   = 5(2),(2)   a(2)_ (23b) 

where ajj. is the coefficient of the incoming electromagnetic field (M}J+(r), -i*oN1)+(r)], bh+ 

the coefficient of the corresponding outgoing electromagnetic field [Mlj+(r), -iY0Mlt+(r)], 

Limiting expressions for the incoming combination modes as kr -»• 0 are 

and 

is 
tfi) a^l is the coefficient of the incoming electromagnetic field [N1_(r),-iloM1_(r)], 6x_ is 

the coefficient of the corresponding outgoing electromagnetic field [Ni2_(r),-iF0M1)_(r)], 
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and the scattering coefficients £>[]+$+ and S[^l^- are equal to the Mie coefficients given by 
(11a) and (lib) 

SgJ« = < (24a) 

S^l = blc. (24b) 

Note from Footnote 1 that S[%\ = SJÜ'S and s[^l = Sgil m = ±1. 
It will be convenient to normalize the scattering-matrix equations. As r —* 0 the incoming 

electric field E°(r) = a^N^r) reduces to 

E0(r)r~0aV-±=Z (25a) 
y/dir 

and the incoming magnetic field H°(r) = a^(-iF0)N^(r) reduces to 

H°(r)^04:i(-iFo)^y. (25b) 

The incident electric and magnetic dipole spherical waves are the only multipoles with 
nonzero fields at the center of the sphere (r = 0). Let 

*-*7sr ^^w* (26) 

Then 0 

„(2) _ JEL     „(2) _    Hv (27) 

Now let 6_ be the coefficient of -— in the transverse component of the outgoing electric 
kr 

e 
field 6^iN^i(r) [see (18a)] and b+ be the coefficient of -j— in the outgoing electric field 

&£}.M£J.(r) [see (18d)] so that 

b. = bt\^~ (28a) 

6+=-6(ä^/!- (28b) 

Then the scattering matrix equations (23a) and (23b) become 

6- = -i§Sff-3S <29a> 

i+ = -ifs&&f. (29b) 

Finally, normalize the scattering coefficients by letting 

S. = -i|^£_ = -iffiP (30a) 
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S+ = -ifsö«=-if<- <30b> 
Then the normalized form of the scattering matrix equations is simply 

6_ = S. E°x (31a) 

b+ = S+ S. (31b) 

Since these equations form the basis of our treatment of dipolar traveling waves on an 
infinite linear periodic array of penetrable spheres it is worthwhile to elucidate their meaning. 
Equation (31a) says that if the electric field incident on a penetrable sphere has the value 
E° x at r = 0, then the corresponding scattered electric and magnetic dipole fields are [see 
(18a) and (18c)] 

E8C = b —  -2— (l + ■?-) sin0cos# + (1 + ^- - jj-rx) (cos0cosc£0 - sin^) 
kr        kr\      krJ Y      \      kr     {krf J L (32a) 

Hsc = YQb- — (l + -M (sin (j>0 + cos 9 cos <j>4>). (32b) 
kr \      krJ 

Equation (31b) says that if the magnetic field incident on a penetrable sphere has the value 
H° y at r = 0, then the corresponding scattered electric and magnetic dipole fields are [see 
(18d) and (18b)] 

Eac = b + — (1 + ■?-) (cos(f>9 - cosBsin4>4) (33a) 
kr \      kr) 

H« = -.Y^ \l (l + £) sinösin# + i (l + ^ - j^) (cosösin^ + cos^)   . 
L (33b) 

The scattered fields in (32) and (33) are those of an x directed electric dipole and y directed 
magnetic dipole, respectively. In treating on-axis scattering from an infinite linear periodic 
array of penetrable spheres in the next section it will be useful to have expressions for the 
special cases of equations (32) and (33) when 9 = 0 and 6 = v, that is, on the axis of 
the array. Prom the standard expressions relating the unit vectors in spherical polar and 
cartesian coordinates we obtain from (32) 

(34a) 

(34b) 

(35a) 

(35b) 

■(1+F)*'-°-* HSC = ±y06_ 

and from (33) we obtain 

W 

B« = ±&+^ (l-.4) *,* = <),, 

,-y*£(1 + SF-(Sp)*'-0',r- 
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4 ON-AXIS DIPOLAR SCATTERING EQUATIONS 
FOR AN INFINITE LINEAR PERIODIC ARRAY 
OF LOSSLESS PENETRABLE SPHERES 

The on-axis dipole scattering-matrix equations for a infinite linear periodic array of lossless 
penetrable spheres with radius o, relative permittivity er and relative permeability fir can 
now be easily obtained. These equations are the basis for the treatment of dipolar traveling 
waves on an infinite linear periodic array of lossless penetrable spheres given in Section 5. 
We denote the separation between the centers of adjacent spheres by d, take the z axis to be 
the axis of the array, and assume an excitation of the array with an x directed electric field 
and a y directed magnetic field (see Figure 6). The x directed electric field at the center 
of the nth sphere resulting from the electric fields scattered by all the other spheres in the 
array is then, from (34a) and (35a), 

oo eikd\j-n\    / } i \ 

E? =  E b-Ju*A_n\ [X + kd\j-n\ ~ (fcd)2|j-n|2J 
j=-oo 'kd\j 

n-l eikd(n-j)     / j \ oo eikd<j-n)     / [ \ 
+iLfew w5T=J) I1 + rn^T)) ~ jZ^WTZJ V + MJ^) j •    (36) 

Since 6_.n = S-E& 

6_,n = 5_ 

+ 

eiMi-n|    / 

~Jkd\j-n\ [ 

n-l eifed(n-j)     / j \ oo 

i=-oo kd\j-n\     {kdf\j 

eifed(i-n) 

j-n?) 

»>   h |        i       V 
n) \      kd(j-n)J.' 

(37) 
kd(n-j)J    j^+^kdij-n) y ' kd(j 

Similarly the y directed magnetic field at the center of the nth sphere resulting from the 
magnetic fields scattered by all the other spheres in the array is, from (34b) and (35b), 

 ,u_ 1 

'Mi 
pjOn oo y = E& 

eifcd|j-n|     / 

,=-.    ,+Jkd\T^\ [ 
n-l 

+ E Ki 
j=—oo 

Yo 

gifed(n-i) 

kd(n — j) \      kd(n 

kd\j-n\     (kdy\j-n\2 
) 

j \ oo eifc<i(j-n)     / i \ 

^T))'M1
b-jm^){1+'m^r))-  (38) 

H0n 

Since 6+|Tl = S+^^ 
Yo 

eikd\j-n\     / 

1 + 
3=—oo li-nlO 

n-l eikd(n-j)     / 

+ ^ b-'jkd(n-j) \1 + kd(n j=—oo 

kd\j - n\ y ' kd\j - n\     (kd)2\j 

i \ _   ^ eifcd^-")   / i       \ ■ 

i-3))    Ä    Jkd(j-n) \L+kd(j-n))\ 
(39) 
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> z 

Figure 6: Schematic diagram of an infinite linear periodic array of lossless, penetrable spheres 
of radius a with relative permittivity er, relative permeability pr, and separation distance d. 
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5    DIPOLAR TRAVELING WAVES ON AN INFINITE 
LINEAR PERIODIC ARRAY OF LOSSLESS PEN- 
ETRABLE SPHERES 

We now come to the central objective of this report — the derivation of an expression for 
the propagation constant of a dipolar traveling wave supported by an infinite linear periodic 
array of lossless penetrable spheres. If the array supports a dipolar traveling wave with a 
real propagation constant ß to be determined, then the b-tj in (37) and (39) are identical 
except for a phase shift given by 

b-j = 6-,0eWd,   0 < ßd < 7T 

and similarly 
b+ij = b+,Qelßjd,   0<ßd<ir. 

This allows (37) and (39) to be written as 

(40a) 

(40b) 

&0H r "-1 

and 

! - s l T c'^ eifcd'i"W'   (l + —i - 1 l Ä kd\j -n\\i + kd\j - n|     {kdf\j - n\*J 

n-l fjkd(n-j)    f \ \ 
T e

ißdV-n)- 11 +  I ■iho kd(n-j){  +kd(n-j)) 
oo p,ikd(j-n)    / ; \ -i ^ 

!-s(T ej«-n)_!^!L d + _J I ) 
~ +1Ä Mi - «I V    M\i ~ "I    (fcrf)2IJ" n\2J 

(41) 

- E 

&0,H 

-i/M(j-n). 

0i/?d(j-n) 
eifcd(n-j) 

-j){
1+kd(n-j)J 

l(j-n)     ( i Nil 

j=—OO 

eifed(j'-n) 
(42) 

i=„+i Mi 
Since the values of the summations are independent of the value of n, we can set n = 0. 
Multiplying by (fcd)3 we then obtain the equations 

(kdf = S- 

bo+/, n^ /e
i(fc+/J)*' - e~i(/J_fe)c&' 

and 

(fcd)J 

)H)1 
[E(- Li=l \ 

, WE (43) 
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3 

Now let 

^Mgp f )(«+J)] <«> 
6°-+ (45) 

(Recall — see (23a, 23b), (15a, 15b), and (40a, 40b) — that the electromagnetic field scat- 
tered from each of the spheres in the array is, apart from the phase factor of the traveling 
wave, a linear combination of an electromagnetic field proportional to the field of an infini- 
tesimal x directed electric dipole with a normalized coefficient b_,0, and an electromagnetic 
field proportional to the field of an infinitesimal y directed magnetic dipole with normalized 
coefficient 6+i0, so that p is the ratio of these two normalized scattered field coefficients.) 

*» * Ei _ g p(WW+,-"*-"*) ((h0, + W _ JL) {46a) 

E,=Mgpw>Y"HH)-        (46b) 

Using the summation formulas [13, sec. 1.441, eqs. 1 and 2; sec. 1.443, eqs. 3 and 5] 

~cosia = lln_l   =_!n [2 8^(0/2)],    0 < a < 2TT (47a) 
fe    j 2     2(1-cos a) 

fsmja^v-a     0< a < 2TT (47b) 

gc^ = £_™ + £    0<fl<27r (47c) 
i=i   ? 

■1~        ~„2        „3 fsmja = fa_7^_     a_ (4W) 

^     Ö3 R 4 19' ~    ?° 6 4       12 

and the approximations (see Appendix B) 

g !E|^ = 2?^)^-0.1381 sin o + 0.03212 sin2a - 0.9653a ln(a/7r),    0 < a < TT     (48a) 

F(a) = -F(2TT - a),    TT < a < 2TT (48b) 

and 

£ cos-?'a = G(a) « 1.3328-0.1424 cos a+0.01094 cos 2o+0.4902a2 ln(a/7r)-0.2417a2,   0 < a < TT 

i=1   '3 (48c) 
G(a) = G(2TT - a),   TT < a < 2TT (48d) 
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the summations Ex and E2 can be expressed in closed form as 

Ex = -(kd)2 In [2 (cos kd - cosßd)} - (kd) [F(kd + ßd) - F(ßd - kd)] 

- [G(kd + ßd) + G{ßd - kd)} - i-(kdf (49) 

and 

S2 = -(kd)2 lnsin(^-i^) -lnsinf^-^)   - (kd) [F(kd + ßd) + F(ßd - kd)] 
2      / V      2 

The on-axis scattering equations (43) and (44) can then be written as 

(kdf^S-fa+pXi) 

and 
(kd)3 = S+ (E1 + V) 

(50) 

(51a) 

(51b) 

Equations (51a, 51b) are a pair of simultaneous equations determining the two unknowns 
p and ßd. We can solve for p in each of these two equations and equate the resulting 
expressions, thus obtaining 

(kd)3 - g-Sx 5+S2 

S_E2 (kd)3-S+Zi 
(52) 

It is important to note that the quantity p given by either side of (52) is real. For, using the 

expression for p given by the LHS of (52), the fact that the imaginary part of Ex is --(kd)3 

[see (49)] and that E2 is real [see (50)], the definition of S- in (30a), and the property (13d) 
of the Mie coefficient 6fc it follows that 

E2 Im[p] = (kd)3 Im - Imp!] = (kd)3 (im  J-   + fj = (53) 

The same conclusion can be obtained similarly from considering the RHS of (52). Equation 
(52) can then be easily solved numerically for ßd given kd. 

It is worth noting as a check on the consistency of what we have done that if we divide 
(51a) by SL and then let SL = |5_|exp(i^_) and equate real and imaginary parts with p 
real, we obtain 

{kd)3sm^ = ~(kd)3 (54) 
\S- 

or 
|5_| = -sin^- , (55) 

a result that is consistent with (30a) and (13d). A similar check can be performed with (51b) 
to produce \S+\ = (3/2) sinip+. We note that (55) is identical with the equation obtained 
for the magnitude of the effective scattering coefficient of a small, reciprocal, lossless electric 
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dipole in [2]. As a further check on the validity of (52), we note that when S+, the normalized 
magnetic dipole scattering coefficient, is equal to zero, then (52) reduces to 

(kdf - S_£i = 0. (56) 

This equation is identical to equation (72) of [2] that determines the k - ß diagram for the 
traveling waves on a linear array of electric dipoles perpendicular to the array axis. 

It is easy to show that if ßd is a solution of (52) then so is 2TT - ßd (Ei is unchanged 
and E2 is reversed in sign if 2?r - ßd is substituted for ßd) . The significance of this is that 
if one had a fast wave, for example, TT < ßd < 2TT then, as shown in general by Yaghjian 
[1], ß' with 0 < ß'd = 27T - ßd < ir is the propagation constant of a slow traveling wave in 
the negative z direction, exp{-\ß'z) . Therefore, it is unnecessary to consider values of ßd 
greater than n in the kd - ßd diagrams of traveling waves. 

6    COATED SPHERES 
The analysis that has been performed in the previous three sections has assumed that the rel- 
ative permittivity and permeability of the spheres is constant throughout the entire sphere. 
The analysis, however, carries over almost identically if the relative permittivity and perme- 
ability of the spheres is allowed to vary from one spherical shell to another. As one of the 
simplest examples, assume that the relative permittivity and permeability of each sphere is 
equal to eri and p,rl, respectively, for 0 < p < a, and is equal to er2 and p,r2, respectively, 
for a < p < b where b is the radius of the sphere. Let mi and m2 be the relative refractive 
indices mi = y/e^bi and m2 = -^2/£i> respectively, for the two regions of the sphere. 
Then [14, sect. 8.1] the scattering coefficients of the coated sphere, afc and b{% analogous to 
the Mie coefficients of and 6f for the homogeneous sphere given by (11a) and (lib) are as 
follows: 

h(P2) {[nfr/oajifr^pa)]' + A [m2p2yi(m2p2)]'} - »ir [frjijfr)]' L?i(m2p2) + Ayn(m2p2)] 

°1C ~ "~hP(j>2) {[maPaiiCmapa)]' + A [m^y^m^)]'} - /z2r [MI^A)]' [M^A») + AUnfaf»)] 
(57) 

/Wi(/>2) {[m2p2ji(m2/32)]
/ + B [mapayi(m2p2)]'} - mj fojM]' [?i(mapa) + Byn(m2p2)} 

1C ~ ~ Iir2h{i\p2) {[mjftj'iW + B [mapaViKAi)]'} - ml [MPCAO]' b'i(m2A») + Byn(m2p2)] 
(58) 

where p\ = ka, fo = kb, and 

_ /irljl(mi/3i)[(m2/9i)ji(m2pi]/ - pr2Jl(^2Pl)[^lPl3l(^lPl)]' /59) 
HriJi(miPi)[{m2Pi)yi(m2pi)Y ~ P-r2yi(ra2pi)[{m1pi)j1(m1pi)]' 

/xrimlj1(m2/3i)[(mi/91)ji(mipi)]/-/fr2mfji(mipi)[(m2p1)ji(m2pi)]/ ^ 

The equations corresponding to (12a-12e) and (13a-13e) are as follows: 

< = -^(l-e-2iaic) (61a) 
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and 

where 

|afc|
2 = sin2alc (61b) 

fi2r-Aa' - aA' 
tanaic = 

H2rAd - cA' 
(61c) 

an(aig[a£]-!)=KI (61d) 

r sei     *    -l r  sin2e*lc axgK] = tan    [_2sin2aic (61e) 

^c = -^(l-e-2i/3lc) (62a) 

|6-|2 = sin2Ac (62b) 

(62c) 

sin(arg[brc]-|)=|&fc| (62d) 

ruci      x    -l [   sin2Äc arg[6rc]=tan    [^^J (62e) 

A = Ji(m2/92) + Ay1(m2p2) (63a) 

A' = [(m2p2)ji(m2p2)}' + A[(m2p2)yi(rü2P2)]'                            (63b) 

a = 3i(p2) (63c) 

a' = \p2Ji(p2]' (63d) 

c = yi(p2) (63e) 

C' - \P2V\(P2) (63f) 

B = ji(m2/9a) + By1(m2p2) (63g) 

and 
B' = [(m2/92)ji(ni2P2)]' + B[(m2p2)yi(m2P2)]' • (63h) 

The central result of Section 5, equation (52) that implicitly gives the propagation con- 
stant of a dipolar traveling wave on an array of homogeneous spheres in terms of the free-space 
wave number and the normalized scattering coefficients of the spheres, then holds for coated 
spheres as well if b\c and ar

lc are substituted for bf and o*c, respectively, in (30a) and (30b). 
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7    NUMERICAL RESULTS 
Computer calculations have been performed to illustrate the theory of dipolar traveling waves 
on linear periodic arrays of lossless spheres that we have presented. The computations fall 
into two main categories. In the first set of calculations the electrical radius of the spheres, ka, 
is held constant and the electrical inter-sphere separation distance, kd, is varied to obtain ßd 
where ß is the propagation constant of the traveling wave. In the second set of computations 
the ratio of the sphere radius to the inter-sphere separation distance, a/d, is held constant, 
and kd is varied to obtain ßd. In both sets of calculations we present the kd - ßd diagram 
showing a plot of kd versus ßd. The second set of calculations corresponds to a laboratory 
measurement procedure in which frequency is varied and so is much more practicable than 
the first set which corresponds to a fixed frequency in a laboratory measurement procedure. 

To begin with we show some kd-ßd diagrams for a linear periodic array of spheres with 
e = \xr = 10 for ka equal to several different resonances of the Mie scattering coefficients. 
Figure 7 shows the kd - ßd diagrams for ka = 0.405,0.693, and 0.998. The smallest value of 
kd in these diagrams must, of course, be greater than 2ka, otherwise the spheres will overlap. 
We observe that the curves end when ßd = kd, that is, when the traveling wave propagation 
constant ß equals the free-space wavenumber k. The importance of having ka equal to, or 
close to, a resonance of the Mie coefficients of and 6f (of = 6f when er = /xr) is intuitively 
clear since a traveling wave with ß significantly greater than A; cannot be excited without a 
high degree of scattering coupling between the spheres composing the array. For small values 
of the scattering coefficients such coupling cannot exist. Traveling waves with ß » k on a 
linear periodic array of lossless spheres thus exist only within a fairly narrow ka "window". 

Next in Figure 8 we show the kd - ßd diagram for a linear periodic array of spheres 
with er = 40, fir = 1 and ka = 0.480, very close to the resonance of the of Mie coefficient 
at ka = 0 487. The shape of the kd - ßd diagram is somewhat the reverse of the kd - ßd 
diagram of Figure 7 for er = 10, ^r = 10, and ka = 0.405. In Figure 9 we show a detail of 
Figure 8 for the region of 1.060 < kd < 1.100. What is particularly interesting here is the 
region for 1.060 < kd < 1.082 where there are two values of the traveling wave propagation 
constant for each inter-sphere separation distance. 

Figure 10 demonstrates the remarkable sensitivity of the kd - ßd diagram of Figure 8 
to the size of the spheres. As ka increases only the small amount from 0.480 to 0.4844 
the kd - ßd diagram shrinks to a small curve in the vicinity of ßd = 3.0, kd = 1.8. For 
ka = 0.4845 no traveling wave can be supported by the linear array of spheres. 

Another example of the possibility of there being two different traveling waves that can 
be supported by the same linear array of lossless spheres is shown in the kd - ßd diagram of 
Figure 11 for er = 10, fir = 1, and ka = 1.1. (The value of ka = 1.1 is approximately halfway 
between the resonance of the Mie scattering coefficient of at 0.951 and the resonance of b\c 

at 1.251 .) For 2.337 < kd < 2.346 there are two values of ßd corresponding to each value of 
the electrical inter-sphere separation distance kd. 

We now turn to the second group of calculations, those for which the ratio of the sphere 
radius to the inter-sphere separation distance, a/d, is held constant, and kd is varied to obtain 
ßd. As noted above, these calculations correspond to the practical laboratory measurement 
procedure of setting up an array of spheres and then investigating the behavior of traveling 
waves on the array as the frequency is varied. Figure 12 shows the kd-ßd diagram obtained 
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Figure 7: Jbd — /?d diagrams for traveling waves on an infinite linear periodic array of lossless, 
penetrable spheres, er = 10, //r = 10. 
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Figure 8: kd — ßd diagram for a traveling wave on an infinite linear periodic array of spheres 
with er = 40, fir = 1, and ka = 0.480. 
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Figure 9: kd — ßd diagram for a traveling wave on an infinite linear periodic array of spheres 
with er = 40,/zr = 1, and ka = 0.480; detail of Figure 8. 

25 



3.0 

2.5 

■ö 
*2.0 

1.5 

1.0 

T 1 r T 1 1 T 1 1       r i 1—- 

■ •ka = 

1.5 

Figure 10: Sensitivity of kd — ßd diagrams for traveling waves on an infinite linear periodic 
array of spheres with er = 40, /xr = 1, and ka varying from 0.4800 to 0.4844. 
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Figure 11:  kd — ßd diagram for a traveling wave on an infinite linear periodic array of 
spheres with er = 10, /xr = 1, and ka = 1.1. 
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Figure 12:  kd — ßd diagram for a traveling wave on an infinite linear periodic array of 
spheres with er = 10, fr = 10, and a/d = 0.45. 
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for a linear array of lossless homogeneous spheres with er = 10, \iT = 10, and a/d = 0.45. 
(The dotted line shows ßd = kd.) We note that there are four sections of the kd - ßd 
diagram, each section corresponding to a narrow window of ka in the vicinity of one of the 
resonances of the Mie scattering coefficients of of and 6f at ka = 0.405,0.693,0.988, and 
1.299; see Figure 3. Each section begins and ends when ßd f« kd. It is of considerable 
interest that each of the four sections consists of two branches, the lower branch with ßd 
increasing from kd to 7r as kd increases, and the upper branch with ßd decreasing from 7r 
to kd as kd continues to increase. The phase velocity of the traveling wave is positive on 
both branches while the group velocity (dk/dß) of the traveling wave is positive on the lower 
branch and negative on the upper branch. Hence the traveling waves corresponding to the 
upper branches of the four sections of kd - ßd diagram are "backward" traveling waves. 

Our understanding of the kd - ßd diagram of Figure 12 can be increased by extending 
the diagram to include values of ßd between 7r and 2%. In Figure 13 we show the lowest 
of the four sections of the kd - ßd of Figure 12 extended to ßd > n. (The dotted line is, 
as in Figure 12, the plot of ßd = kd.) As we have commented at the end of Section 5, if 
7T < ßd < 2TT then ß is the propagation constant of a fast traveling wave in the positive 
z direction, exp(i/?2), and ß' with 0 < ß'd - 2TT - ßd < ir is the propagation constant of 
the corresponding slow traveling wave in the negative z direction, exp(—iß'z) . The dashed 
portions of the plots corresponding to ßd > IT are thus simply mirror images in the line 
ßd = 7T of the solid portions of the plots for 0 < ßd < n. In general there is thus no 
need to show the kd - ßd diagram for values of ßd > IT Here, however, what we can see 
from Figure 13 is that by extending the kd — ßd diagram to include values of ßd > ir we 
obtain two curves, one consisting of the lower solid segment and the upper dashed segment, 
and the other consisting of the upper solid segment and the lower dashed segment. Either 
curve can be used to obtain the other by making use of the mirror symmetry. The slopes 
of these two curves are continuous at ßd = -K. The upper solid segment corresponds to a 
backward traveling wave since the group velocity, proportional to the slope of the curve, has 
the opposite sign of the direction of propagation of the slow wave. The group velocity of 
the slow traveling wave in the positive z direction whose kd — ßd diagram is the lower solid 
segment is very small in the interval between ka = 0.3925 and 0.3928. 

As another example of the kd — ßd diagram obtained when the ratio of the sphere radius 
to the inter-sphere separation distance is held constant and the frequency varied, Figure 14 
shows the kd — ßd diagram corresponding to Figure 12 when er = 20 = \ir = 20 instead of 
10; a/d = 0.45 as before. There are now nine sections of the kd - ßd diagram instead of four, 
corresponding to the more densely spaced resonances of the Mie scattering coefficients of 
of and 6f at ka = 0.214,0.366,0.516,0.665,0.816,0.968,1.122,1.279, and 1.437. Although 
otherwise the kd — ßd diagrams appear to be similar, there is an interesting new feature of 
the two lower branches of the kd-ßd diagram of Figure 14 not present in any of the branches 
of the kd - ßd diagram of Figure 12 or the higher branches of Figure 14. This feature can be 
seen clearly in Figure 15 which shows in detail the behavior of the lowest branch of Figure 14. 
We note that as the branch is traced out from its beginning at ka = 0.2098 and kd = 0.4662 
to its end at ka = 0.2166 and kd = 0.4813 that ka and kd are not monotonic increasing as 
they are for all the branches of the kd - ßd diagram of Figure 12 and all but the two lowest 
branches of Figure 14. Instead, ka first increases from 0.2098 to 0.2140, then decreases to 
0.2107, and then increases monotonically to 0.2166. As a consequence of this behavior, in 
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Figure 13:  kd — ßd diagram for a traveling wave on an infinite linear periodic array of 
spheres with er = 10, ßr = 10, and a/d = 0.45. 
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Figure 14:  kd — ßd diagram for a traveling wave on an infinite linear periodic array of 
spheres with er = 20, //r = 20, and a/d = 0.45. 

31 



0.480 

0.475 

0.470 

0.465 

0.460 

-ka = .2098 

0.5 1.0 

ka = .2107 

1.5 2.0 
ßd 

2.5 3.0 

Figure 15: Lowest branch of the kd — ßd diagram for a traveling wave on an infinite linear 
periodic array of spheres with er = 20, ßr = 20, and a/d = 0.45. 
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the interval of the electric spacing of the spheres, kd, from 0.4682 to 0.4756, there is not just 
one corresponding value of the traveling wave propagation constant ßd but three. In other 
words, the array can support three distinct traveling waves for kd in this interval. Also, note 
that this branch of the kd-ßd diagram displays negative group velocity for ka between 0.2140 
and 0.2107, and for ka between 0.2110 and 0.2166, and positive group velocity elsewhere. 
Similar behavior, though less pronounced, is exhibited by the next-to-lowest branch of the 
kd - ßd diagram of Figure 14, as shown in Figure 16. 

The kd - ßd curves shown in Figures 12-16 have been for arrays of lossless magnetodi- 
electric spheres. It is also of interest to show some examples of kd — ßd curves for linear 
arrays of lossless dielectric spheres (fir = 1). In Figure 17 we show the kd - ßd curve for an 
array of dielectric spheres with er = 10 and a/d = 0.4. For small kd and ka there is very 
little scattering between the spheres and the kd - ßd curve very closely follows the kd = ßd 
line, meaning that the traveling wave is very loosely bound to the array. When fco starts to 
approach the first resonance of the first magnetic Mie coefficient at ka = 0.951 (see Figure 
5), scattering between the spheres increases and a slow traveling wave can be supported by 
the array. The upper branch of the kd - ßd curve corresponds to values of ka for which 
both the first magnetic and first electric Mie coefficients are about 4 dB below their first 
resonance peaks. In Figure 18 the kd - ßd curve is shown for a linear array of the same 
dielectric spheres, er = 10, but with a/d = 0.3. The lower branch of the kd - ßd curve is 
similar in shape to that of the lower branch of the kd - ßd curve in Figure 17. The very 
small upper branch has a negative slope and corresponds to a backward traveling wave. 

8    CONCLUDING REMARKS 
In this report we have used the source scattering-matrix framework to investigate dipolar 
traveling waves that can be supported on infinite linear periodic arrays of lossless penetrable 
(magnetodielectric) spheres. The report focuses on obtaining the kd — ßd diagrams for these 
traveling waves. 

In future work we will attempt to extend the analysis of linear periodic arrays of pene- 
trable spheres given in this report to two- and three-dimensional periodic arrays of lossless 
penetrable spheres. Such an extention is highly worthwhile in view of the facts that a doubly 
negative (DNG) medium can be formed by embedding a 3D array of spherical particles in 
a background medium and that backward waves have been shown in this report to be sup- 
ported by linear arrays of spheres with appropriately chosen permittivity and permeability. 
The starting point for this extension is equations (32a, 32b), and equations (33a, 33b) which 
give the scattered electric and magnetic dipole fields resulting from an x directed electric 
field and a y magnetic field incident on a penetrable sphere. These equations then lead to 
equations analogous to (37) and (39). Instead of the linear sums in (37) and (39), how- 
ever, the analogous 2D and 3D array equations will contain double and triple summations 
representing the contributions of the scattered electric and magnetic fields of the spheres 
in the 2D and 3D arrays to the electric and magnetic fields incident on a given sphere in 
the array. It remains to be seen whether the complications resulting from these double and 
triple summations can be successfully treated. 
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Figure 16: Next-to-lowest branch of the kd — ßd diagram for a traveling wave on an infinite 
linear periodic array of spheres with er = 20, ßr = 20, and a/d = 0.45. 
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Figure 17:  kd — ßd diagram for a traveling wave on an infinite linear periodic array of 
spheres with er = 10, ßr = 1, and a/d = 0.4. 
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Figure 18:  kd — ßd diagram for a traveling wave on an infinite linear periodic array of 
spheres with er = 10, /xr = 1, and a/d = 0.3. 
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A    VECTOR SPHERICAL WAVE FUNCTIONS 
In this Appendix we give the definitions of the vector spherical wave functions M and N used 
in this report. The definitions are those used by Billy Brock [7] adapted for the exp(—vjjt) 
time dependence used here: 

im 

M£(r) = i 
N 

(2/ + l)(f - ro)l 
47r/(Z + l)(/ + m)! 

4O(Jfcr)P,m(cosÖ)e10Ö 
sinö 

+ smezM(kr)-Pr(x) 
x=cos9 

3im^0 

(64) 

N£(r) = i, 
(21 + l)(f - m)\ 

\\4Trl(l + l)(l + m)\ 

.W 
^-ß^-l(l + ^/"(cos^e^f 

kr 

"*0 
X=COS0 

4s K'H £^<^>eim** 

(65) 

krdr L J sin0 
In (64) and (65) z}1* and Zj    are the spherical Bessel and Hankel functions ji and /ij  , 
respectively, and Ffl(x) is the associated Legendre function given by 

PT(x) = (-I)«»(1 - ^^flW, ro > 0, 

JTW(*) = (-i)m&T^rW*)."» > o. 

where P/(x) is the Legendre function 
(n + m)\ 

1   d1 

«(*) = *nin& ~ i)1- 

(66a) 

(66b) 

(67) 
2'Z!dx* 

The vector spherical wave functions M and N given by (64) and (65) can be defined in terms 
of the normalized radially-independent vector spherical harmonic function Xjm of Jackson 
[6] by 

Mj»(r) s zf\kr)Xlm{e,<t>) (68) 

and 
N£(r) = ±V x z^(kr)Xlm(e, 4>), (69) 

and are related to the Fym and F^m vector spherical wave functions of Hansen [15] by 

M£(r) = iP{i(p) (70) 

and 
Nffi(r) = iF&(r) (71) 

where the superscript i = 1 when c = 1 and the superscript i = 2 when c = 3.2 

2These relations between the vector spherical harmonics of Brock and those of Hansen are given incorrectly 
in the original form of [7] but have been corrected by Brock in an errata. 
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B    SUMMATIONS OF TRIGONOMETRIC SERIES 
In this Appendix we discuss the approximations used for the sums of the trigonometric series 

and 

F(a)s£E5^|0<a<,r (72a) 
i=i   J 

G{a)^^,0<a<n. (72b) 

Closed form expressions are not available for these sums. The IMSL least-squares approxi- 
mation program FNLSQ was used to compute the approximations 

F(a) « -0.1381 sino + 0.03212sin2a - 0.9653aln(a/*r),   0 < a < TT (73a) 

and 

G(a) « 1.3328 - 0.1424 cos a + 0.01094 cos la + 0.4902a2 ln(o/7r) - 0.2417a2,    0 < a < TT. 
v ' (73b) 

Figures 19 and 20 show F(a) and G(a), respectively, calculated with 1000 terms, along with 
their least squares approximations. The agreement of the approximate with the exact curves 
is excellent.   It will be noted that although G'(a) = -F(a), when the approximation for 
G{a) is differentiated the result differs slightly from the negative of the derivative of the 
approximation for F(a). While it is possible to obtain an approximation for F(a) by taking 
the negative of the derivative of the approximation for G(a), the direct least-squares fit 
approximation for F(a) that we have used distributes the errors in the approximation more 
uniformly over the interval from 0 to it. 

38 



-1—I—I—I- -i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—I—i—i—i—i—I—r 

co 

sin na 
Figure 19: F(a) = ^ —^— ,  0 < a < ir, exact and approximate. 
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