
  

AFRL-IF-RS-TR-2004-331 
Final Technical Report 
December 2004 
 
 
 
 
 
 
SLIIC:  SYSTEM-LEVEL INTELLIGENT 
INTENSIVE COMPUTING 
  
USC Information Sciences Institute 
 
  
Sponsored by 
Defense Advanced Research Projects Agency 
DARPA Order No. J200 
  
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 
 
 
 
The views and conclusions contained in this document are those of the authors and should not be 
interpreted as necessarily representing the official policies, either expressed or implied, of the 
Defense Advanced Research Projects Agency or the U.S. Government. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AIR FORCE RESEARCH LABORATORY 
INFORMATION DIRECTORATE 

ROME RESEARCH SITE 
ROME, NEW YORK 

 



  

 
 STINFO FINAL REPORT 

 
 
 This report has been reviewed by the Air Force Research Laboratory, Information 
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical 
Information Service (NTIS).  At NTIS it will be releasable to the general public, 
including foreign nations. 
 
 
 AFRL-IF-RS-TR-2004-331 has been reviewed and is approved for publication 
 
 
 
 
 
 
 
APPROVED:   /s/ 
   CHRISTOPHER J. FLYNN 
   Project Engineer 
 
 
 
 
 
 
 
 FOR THE DIRECTOR:   /s/ 
     JAMES A. COLLINS, Acting Chief 
     Information Technology Division 
     Information Directorate 
 
 
 
 
 
 
 
 
 



  

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 074-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302, 
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE
December 2004

3. REPORT TYPE AND DATES COVERED 
FINAL             Mar 99 – Sep 03 

4. TITLE AND SUBTITLE 
 
SLIIC:  SYSTEM-LEVEL INTELLIGENT INTENSIVE COMPUTING 

6. AUTHOR(S) 
 
Stephen Crago 
Jinwoo Suh 

5.  FUNDING NUMBERS 
G     - F30602-99-1-0521 
PE   -  62301E 
PR   -  H306 
TA   -  SL 
WU  -  IC 
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
 
USC Information Sciences Institute 
4676 Admiralty Way 
Marina Del Rey CA 90292-6695 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
N/A 
 

9.  SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 
Defense Advanced Research Projects Agency          AFRL/IFTC 
3701 North Fairfax Drive                                             525 Brooks Road 
Arlington VA 22203-1714                                            Rome NY 13441-4505 

10. SPONSORING / MONITORING 
      AGENCY REPORT NUMBER 
 
AFRL-IF-RS-TR-2004-331 
 

11. SUPPLEMENTARY NOTES 
 
AFRL Project Engineer:  Christopher J. Flynn/IFTC/(315) 330-3249 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

12b. DISTRIBUTION CODE 
 
 

13. ABSTRACT (Maximum 200 Words) 
Recently, several architectural approaches have been explored that promise to hide memory latency for applications 
that include data-intensive applications while improving scalability  The SLIIC project demonstrated and compared some 
of the advantages and disadvantages of the PIM (processor-in-memory) and stream processing approaches to hiding 
memory latency.  The SLIIC project built board prototypes for PIM and stream processing architectures and 
implemented data-intensive applications in simulation and in hardware to measure the performance.  Speedups of up to 
54 measured in cycles and 16 measured in execution time were obtained over commercial microprocessors. 
 

15. NUMBER OF PAGES14. SUBJECT TERMS  
Data-intensive computing architectures, processor-in-memory, stream processing 

16. PRICE CODE

17. SECURITY CLASSIFICATION 
     OF REPORT 
 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
     OF THIS PAGE 
 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
     OF ABSTRACT 
 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 
 

UL 

NSN 7540-01-280-5500   Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. Z39-18 
298-102 

115



 i

                                                        Table of Contents 

I. Introduction.................................................................................................................................. 1 
II. Data-Intensive Prototype Architectures ..................................................................................... 2 

II.A. The Mitsubishi M32R/D PIM ............................................................................................ 2 
II.B. The V-IRAM Processor ...................................................................................................... 5 
II.C. The Imagine Stream Processor ........................................................................................... 7 
II.D. The Raw Tiled Architecture ............................................................................................. 12 
II.E. Programming Methodologies ........................................................................................... 14 
II.F. The PowerPC Architecture ............................................................................................... 15 
II.G. Performance Models......................................................................................................... 15 

III. Kernel Implementations .......................................................................................................... 16 
III.A. Corner Turn..................................................................................................................... 16 
III.B. Coherent Side-Lobe Canceller (CSLC)........................................................................... 18 
III.C. Beam Steering ................................................................................................................. 20 
III.D. Digital Target Generator (DTG) ..................................................................................... 21 

IV. Experimental Results and Analysis ........................................................................................ 24 
IV.A. Overview......................................................................................................................... 24 
IV.B. Corner Turn Performance ............................................................................................... 26 
IV.C. CSLC Performance ......................................................................................................... 27 
IV.D. Beam Steering Performance ........................................................................................... 29 
IV.E. DTG Performance ........................................................................................................... 29 
IV.F. Architecture Comparison................................................................................................. 31 

V. Conclusion................................................................................................................................ 32 
VI. Acknowledgements................................................................................................................. 33 
VII. References ............................................................................................................................. 34 
Appendices.................................................................................................................................... 36 

Appendix A. Sin Computation Algorithm Used in the DTG Implementation......................... 36 
Appendix B. Acronyms ............................................................................................................ 37 
Appendix C. Publications ......................................................................................................... 38 



 ii 

                                                               Figures 

Figure 1. Block diagram of M32R/D.............................................................................................. 2 
Figure 2. Block diagram of SLIIC-QL board ................................................................................. 3 
Figure 3. SLIIC-QL board .............................................................................................................. 4 
Figure 4. Interconnection network in FPGAs on SLIIC-QL board ................................................ 4 
Figure 5. Block diagram of V-IRAM ............................................................................................. 6 
Figure 6. Block diagram of V-IRAM board ................................................................................... 7 
Figure 7. Photos of V-IRAM daughter card ................................................................................... 8 
Figure 8. Block diagram of Imagine ............................................................................................... 9 
Figure 9. Block diagram of Imagine board ................................................................................... 10 
Figure 10. Photograph of the Dual-Imagine Board ...................................................................... 11 
Figure 11. Block diagram of Dual Imagine system...................................................................... 11 
Figure 12. Block diagram of Dual Imagine Board FPGAs........................................................... 12 
Figure 13. Photograph of second generation Dual Imagine Board............................................... 13 
Figure 14. Block diagram of a Raw tile ........................................................................................ 13 
Figure 15. Corner turn on Imagine ............................................................................................... 17 
Figure 16. Coherent sidelobe canceller (CSLC) ........................................................................... 19 
Figure 17. New CSLC implementation ........................................................................................ 20 
Figure 18. Phase array for beam steering...................................................................................... 21 
Figure 19. One dimensional view of beam steering operation ..................................................... 21 
Figure 20. Simplified original DTG algorithm............................................................................. 22 
Figure 21. Simplified improved DTG algorithm .......................................................................... 22 
Figure 22. Speedup compared with PowerPC with AltiVec (cycles)........................................... 25 
Figure 23. Speedup compared with PowerPC with AltiVec (execution times when PowerPC=1 

GHz, M32R/D=80MHz, V-IRAM=200 MHz, and Raw=300 MHz) ................................... 25 
Figure 24. DTG speedup on Imagine compared with PowerPC with AltiVec (cycles) ............... 26 
Figure 25. DTG speedup compared with PowerPC with AltiVec (execution times when 

PowerPC=1 GHz and Imagine=300 MHz)).......................................................................... 26 

  

 

                                                                        Tables 

Table 1. Architecture peak throughputs (32-bit words per cycle) ................................................ 15 
Table 2. Processor parameters ...................................................................................................... 24 
Table 3. Experimental results (cycles in 103) ............................................................................... 24 



 1 

I. INTRODUCTION 
Microprocessor performance has been doubling every 18-24 months for many years [5]. 

This performance increase has been possible because die size has increased and feature size has 
decreased. Unfortunately, main memory latency has not been improving at the same rate, 
resulting in a growing gap between microprocessor speed and memory speed.  Latency of 
DRAM (dynamic random access memory), the technology used fo r main memory, has only 
improved by 7% per year [5], and memory bandwidth, limited by pin bandwidth has also failed 
to keep pace.  These growing gaps have created a problem for data- intensive applications. 

Increasing die size combined with fast clock speeds has made the maximum distance as 
measured in clock cycles between two points on a processor longer. Pipelining has been widely 
used to address this problem. However, increasing pipeline depth increases various latencies, 
including cache access and branch prediction penalties, and increases the complexity of 
processor design.  Other techniques for exploiting ILP (instruction level parallelism) without 
exposing parallelism to the instruction set, such as superscalar out-of-order processing, have also 
reached a point of diminishing returns. 

To bridge these growing gaps, many methods have been proposed such as caching, 
prefetching, and multithreading.  These methods, however, provide limited performance 
improvement and can even hinder performance for data- intensive applications.  Caching has 
been the most popular technique [13][15].  It increases performance by utilizing temporal and 
spatial locality, but it is not useful for many data- intensive applications since many of them do 
not show such locality [14]. 

Recently, several architectural approaches have been explored that promise to hide 
memory latency for applications that include data- intensive applications while improving 
scalability.  The SLIIC project demonstrated and compared some of the advantages and 
disadvantages of the PIM (processor- in-memory) and stream processing approaches to the 
problems described above. The SLIIC project built board prototypes for PIM and stream 
processing architectures and implemented data- intensive applications in simulation and in 
hardware to measure the performance. 

The rest of this report is organized as follows.  Chapter II describes two PIMs, a stream 
processor, and a tile-based processor that were used in the SLIIC project.  Chapter III describes 
the four kernels we implemented: the corner turn, coherent side- lobe canceller, beam steering, 
and digital target generator.  Also, the techniques used to exploit each architecture are described.  
In Chapter IV, the implementation results and analysis are shown.  Chapter V concludes the 
report. 



 2 

II. DATA-INTENSIVE PROTOTYPE ARCHITECTURES 
In this section, the M32R/D, V-IRAM (Vector Intelligent Random Access Memory), 

Imagine, and Raw chips and their boards are described.  Note that even though Raw was not 
developed under SLIIC or DARPA’s Data Intensive Systems program, it is included here for 
comparison.  We also describe the performance models that will be used to understand 
performance of the kernels. 

II.A. The Mitsubishi M32R/D PIM 

In conventional systems, the CPU (Central Processing Unit) and memory are 
implemented on different chips.  Thus, the bandwidth between CPU and memory is limited since 
the data must be transferred through chip I/O pins and copper wires on a printed circuit board.  
Furthermore, much of the internal structure of DRAM, which could be exploited if exposed, is 
hidden because of the bandwidth limitation imposed by the pins. 

Processor-In-Memory (PIM) technology is a method for closing the gap between memory 
speed and processor speed for data intensive applications.  PIM technology integrates a processor 
and DRAM on the same chip.  The integration of memory and processor on the same chip has 
the potential to decrease memory latency and increase the bandwidth between the processor and 
memory. PIM technology also has the potential to decrease other important system parameters 
such as power consumption, cost, and area.  

The SLIIC project chose to use the Mitsubishi M32R/D chip [9] to determine baseline 
performance for a PIM that could be compared to a traditional microprocessor.  At the time, the  
M32R/D was the only commercial general-purpose PIM chip that had more than 1 MB of 
DRAM.  The M32R/D processor was chosen because it provides a relatively large memory size 
(2 MB) and high data path width between memory and cache (128 bits).  It also has a small 
footprint that enables many processors to fit on a board.  A block diagram of the M32R/D is 
shown in Figure 1. It contains a 32-bit RISC (Reduced Instruction Set Computer) CPU and 2-
megabytes of internal DRAM.  Between the CPU and DRAM, there is a 4-kilobyte cache.  The 
bus width between the cache and DRAM is 128 bits. 128 bits of data can be transferred between 
cache and memory in a single clock cycle; however, since the CPU is 32 bit s wide, only 32 bits 

M32R/D
CPU

Bus
Controller

Cache
Tag

MemoryDRAM
(512
KB)

DRAM
(512
KB)

DRAM
(512
KB)

Buffer

Cache
(1 KB)

Buffer

Cache
(1 KB)

Buffer

Cache
(1 KB)

Buffer

Cache
(1 KB)

DRAM
Controller

ClockBus
Interface

Unit

DRAM
(512
KB)

Controller

 
Figure 1. Block diagram of M32R/D 



 3 

of data can be transferred between the CPU and cache in a clock cycle.  The clock speed of the 
external bus interface is 20 MHz, and the internal clock speed is 80 MHz.  The processor does 
not support floating-point operations directly in hardware, so floating point operations are 
performed in software.  We used integer versions of benchmark kernels so that we could measure 
performance characteristics of the PIM interface, rather than the performance limitations of the 
software- implemented floating-point operations. The SLIIC project built a board called the 
SLIIC Quick Look (QL) board to demonstrate the density that could be achieved with PIM 
components and to measure the performance of our benchmarking kernels. A block diagram of 
the SLIIC Quick Look (QL) board is shown in Figure 2 and a photograph of the board is shown 
in Figure 3.  The board fits in a standard PCI (Peripheral Computer Interface) form factor, 
allowing it to be plugged into a host PC (Personal Computer) platform.  It contains eight 
Mitsubishi M32R/Ds, providing 640 MIPS (Million Instructions Per Second) of peak processing 
power and 16 MB of memory. 

The XA and XB components shown in Figure 2 are FPGAs (field programmable gate 
arrays) that serve several purposes. First, the FPGAs provide a multiprocessor interconnect for 
the M32R/Ds.  Second, XA and XB provide programmable logic that can be used for processor 
synchronization and performance measurement.  Each FPGA has an attached SRAM 
(Synchronous Random Access Memory) memory that can be used to store tables of performance 
counters and data.  Third, the FPGAs provide logic that facilitates communication with the host 
PC. 

There are two advantages to implement ing these functions in FPGAs. First, modification 
of the functions and circuits can be done without changing the hardware.  The FPGA 

 
Figure 2. Block diagram of SLIIC-QL board 

Expansion Slul 

32-bh.33\nizPCI 



 4 

configurations are specified using the VHDL hardware description language.  This is critical for 
research and initial prototypes, where many changes are inevitable.  Second, the flexibility 
allows the board to be used for other applications.  When the board is used for another 
application, the logic in the FPGAs is changed to accommodate new needs. 

The two interconnection FPGAs implement logic as shown in Figure 4, where P0 through 
P7 represent the M32R/D chips.  In each FPGA, there is a 7x7 pipelined crossbar switch.  Four 
crossbar inputs and outputs are connected to the four processors in the cluster (where a cluster 
means four processors connected to an FPGA).  When communication is performed among 
processors in a cluster, the 4x4 sub-crossbar is used.  To communicate with a processor in a 
different cluster, one of the two paths between the two clusters must be used.  To use a path, the 
processors use one of the two ports connected to the two paths in the 7x7 crossbar.  The 
remaining port (omitted from Figure 4) connects to the interface FPGA (IF), through which 
PIMs communicate to host PC.  The crossbar configuration does not allow a processor to receive 
data from more than one processor simultaneously.  The application programmer is responsible 
for avoiding communication conflicts since no hardware or firmware prevention of conflicts has 
been provided.  This enables a simpler design, and, as a result, the network is faster. 

 

Figure 3. SLIIC-QL board 

 

P0 
P1 
P2 
P3 Crossbar 

Switch 

XA 
P4 
P5 
P6 
P7 Crossbar 

Switch 

XB 

Path 0 

Path 1 
Mux 
Mux 

Mux 

Mux 
P0 
P1 
P2 
P3 Crossbar 

Switch 

XA 
P4 
P5 
P6 
P7 Crossbar 

Switch 

XB 

Path 0 

Path 1 
Mux 
Mux 

Mux 

Mux 

 

Figure 4. Interconnection network in FPGAs on SLIIC-QL board 



 5 

Communication between PIM chips is performed through a hybrid message-
passing/shared-memory scheme. Each processor has access to internal memory (addresses 0 to 
0x1F FFFF) and to the memory of remote PIMS (addresses 0x20 0000 to 0x3F FFFF).  All 
remote memory (memory on other PIM chips) is mapped to the same address space.  A 
destination identification number sent before a message determines the actual PIM that is 
mapped to the external memory address range at any given time.  For intra-cluster 
communication, the crossbar pipeline has three stages. 

The two clusters communicate through two half-duplex bi-directional paths.  The 
application programmer or system software needs to set the path number to use in addition to the 
destination processor ID before sending a message to prevent resource conflicts.  Inter-cluster 
communication has five pipeline stages.  For processor synchronization, barrier synchronization 
is supported using FPGA logic.  Barrier synchronization can be performed with overhead of just 
a few system clock cycles. 

The SLIIC QL board communicates with the host PC using the SLIIC debugger.  The 
SLIIC debugger, which runs on Windows NT, allows a user to start execution, read data from 
PIMs, write data to PIMs, and read counter data (there is a counter associated with each 
processor that is used for measurement of execution time).  On start-up, the debugger initializes 
itself and automatically sets the SLIIC QL board clock speed to 20 MHz. For application 
programmers, an API (Application Programming Interface) is provided that includes a 
communication interface, barrier synchronization, and timer control. 

II.B. The V-IRAM Processor 
The V-IRAM chip is a PIM research prototype developed at the University of California 

at Berkeley [7].  The architecture of the chip is shown in Figure 5. The V-IRAM contains two 
vector-processing units (ALU0 and ALU1) in addition to a scalar-processing unit. These units 
are pipelined.  The vector functional units can be partitioned into several smaller units, 
depending on the arithmetic precision required.  For example, a vector functional unit can be 
partitioned into 4 units for 64-bit operations or 8 units for 32-bit operations.  Some operations are 
allowed to execute on ALU0 only. It has an 8K vector register file with 32 addressable registers. 



 6 

The V-IRAM has 13 MB of DRAM.  There is a 256-bit data path between the processing 
units and DRAM. The DRAM is partitioned into two wings, each of which has four banks.  It 
can access eight sequential 32-bit data elements per clock cycle; however, since there are four 
address generators, it can access only four strided 32-bit or 64-bit data elements per cycle. 

There is a crossbar switch between the DRAM and the vector processor.  The target 
processor speed is 200 MHz, which would provide a peak performance of 3.2 GOPS (200 MHz x 
2 functional units x 8 data elements per clock) for 32-bit data.  If 16-bit data is processed, the 
performance is 6.4 GOPS. Its peak floating point performance is 1.6 GFLOPS for 32-bit 
floating-point operations. The power consumption is expected to be about 2 W.  The EEMBC 
(Embedded Microprocessor Benchmark Consortium) benchmarks have been implemented on V-
IRAM.  V-IRAM’s performance is 10 to 100 times better (as normalized by clock frequency) 
than the MPC 7455 processor depending on memory access pattern and how vectorizable the 
code is [9]. 

Flag units

Vector
ALU0

Vector registers

Memory crossbar

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 7

Vector
ALU1

Vector
Load/Store Unit

Lane 0 Lane 1 Lane 2 Lane 3

MIPS
Core

Vector
Control

I/O

I D

64 bits

256 bits

 

Figure 5. Block diagram of V-IRAM 



 7 

A block diagram of the V-IRAM prototype that was developed as part of the SLIIC 
project is shown in Figure 6.  The prototype was implemented as two boards: one board with the 
interface logic and one board with the V-IRAM chip that mates to the glue logic board. This 

implementation allows individual non-functional V-IRAM chips to be discarded while re-using 
the glue logic. The assembly described here plugs into a commercial MIPS testing board that 
provides peripherals and software infrastructure that can be re-used for V-IRAM. Photos of the 
boards are shown in Figure 7.  The board has been fabricated and was delivered for testing by the 
V-IRAM group at Berkeley. Testing has not been completed at this time because a re-spin of the 
V-IRAM chip is being done to correct a design error in the V-IRAM chip. 

II.C. The Imagine Stream Processor 
Another approach for handling the growing processor-memory gap is stream processing.  

In this approach, the data is routed through stream registers to hide memory latency, allow the re-
ordering of DRAM accesses, and minimize the number of accesses to external memory 
components.  The Imagine chip is a research prototype stream processor developed at Stanford 
University [6][8][12][14].  It contains eight clusters of arithmetic units that process data from a 
stream register file.  The processor speed is currently 300 MHz, which provides a peak 
performance of over 14 GOPS (32-bit integer or floating-point operations).  Performance results 
for Imagine have been presented for application kernels such as MPEG and QRD [12].  
Arithmetic logic unit (ALU) utilization between 84% and 95% is reported for streaming media 
applications. 

GGTT664411220
VV--IIRRAAMM

11 66 88 -- pp ii nn
SS DD

RR
AA

MM
DD

II MM
MM

SSoocckkeett

MMootthheerrbbooaarrdd CCoonnnneeccttoorrss

XXiilliinnxx
VViirrtteexx--IIII

XXCC22VV11000000

SSyyssAADD
110000 MMHHzz

7766 ppiinnss

110000 MMHHzz
116688 ppiinnssSSDDRRAAMM

PPCCII
6666 MMHHzz
3322 bbiittss

EEEEPPRROOMM

 
 

Figure 6. Block diagram of V-IRAM board 



 8 

Figure 8 shows a block diagram of Imagine.  The stream processing is implemented with 
eight ALU clusters (with 6 ALUs each), a large stream register file (SRF), and a high-bandwidth 
interconnect between them.  The eight ALU clusters operate on data from the SRF.  The size of 
the SRF is 128 kilobytes.  Up to eight input or output streams can be processed simultaneously.  
The data is sent to clusters in round-robin fashion, i.e., the i-th data is sent to cluster (i mod 8).  
All clusters perform the same operations on their data in SIMD (Single Instruction, Multiple 
Data) style. Each cluster has 6 arithmetic units (three adders, two multipliers, and one divider) 
and one communication interface that is used to send data between ALU clusters. A stream can 

 

 
Figure 7. Photos of V-IRAM daughter card 



 9 

start at the start of any SRF 128-byte block.  Data is transferred to and from the SRF from off-
chip memory or the network interface. The Imagine chip prototype implementation has two 
memory controllers, each of which can process a memory access stream.  The memory controller 
reorders accesses to reduce bank conflicts and to increase data access locality. 

The first generation Imagine multiprocessor board, called the Dual Imagine Board, was 
developed at USC/ISI in collaboration with Stanford.  The block diagram is shown in Figure 9 

and photo of the board is shown in Figure 10. The board contains two Imagine chips, each of 
which is connected to local SDRAM (Synchronous DRAM).  Both Imagines are connected to a 

ALU cluster 0

M em
system

SDRAM

SDRAM

SDRAM

SDRAM

128 
KB
SRF

ALU cluster 1

ALU cluster 2

ALU cluster 3

ALU cluster 4

ALU cluster 5

ALU cluster 6

ALU cluster 7

M icro-
controller

Stream
controller

Network
interface

Host
interface

Host
processor

I/O
Imagine chip

X /+ X

Scratch
pad

memory

Inter-
cluster
comm.

Host procssor 
SDRAM

+ +

 
 

Figure 8. Block diagram of Imagine  



 10 

PowerPC host processor through an FPGA chip.  The FPGA provides a means of connection 
between the PowerPC and Imagine by emulating an SDRAM interface on the PowerPC side and 
an SRAM interface on the Imagine side.  It also provides a connection to the DSP (digital signal 
processor) chip. The PowerPC has its own local SDRAM memory.  The PowerPC processor 
communicates with a host PC through a PCI bus.  Applications are compiled on the host PC and 
sent to the PowerPC through the PCI bus.  The PowerPC performs address translation for the 
PCI memory space, so data written on the PCI memory space by the host PC is actually written 
to the local memory of the PowerPC.  During execution of an application, when the PowerPC 
encounters kernel code that needs to be executed by an Imagine chip, the PowerPC sends 
instructions to the Imagine.  The Imagine performs the computation and returns the data back to 
the PowerPC.  The board also supports digital video, Firewire, and expansion ports, which are 
connected to the Imagine chips through another FPGA. The Imagine chips are mounted to the 
board on a socket to allow the identification of functional Imagine chips. 

The overall Imagine system is shown in Figure 11.  The debugger on the host PC accepts 
user commands and interprets them.  Data and PowerPC instructions are sent to the PowerPC 
through the PCI bus. The PowerPC executes control code and sends kernels and their data to the 
Imagine chip.  The code for the Imagine chip is generated by the Imagine compiler and the 
Imagine kernel scheduler, which compile code written in StreamC and KernelC. 

Communication
FPGA
Xilinx Virtex-II

HSTL
Connector

HSTL
Connector

Interconnection network PCB: Long wires to test long-haul HSTL

HSTL
Connector

HSTL
Connector

Imagine A

Host Interface

N    W   S  E

M
em

or
y

S
D

R
A

M
:2

56
M

B 
to

t

Imagine B

Host Interface

N    W   S  E

M
em

or
y

S
D

R
A

M
:2

56
M

B 
to

t

Firewire B

Connector

Firewire A

Connector

DVI In

Connector

DVI Out

ConnectorHSTL
Connector

HSTL
Connector

D
eb

ug
 In

te
rfa

ce

DSP Coprocessor
TI 6201

32 bit data, 8 bit addr, control 32 bit data, 8 bit addr, control

32
dataHost Processor

PPC 8240

Memory Bus

PCI

Processor
FPGA

Xilinx Virtex-II

8240 Memory bus: up to 100 MHz

SDRAM Interface

64
data

PCI
Connector

IDE
Connector

PCI

S
D

R
A

M
:6

4 
M

B
 to

t

SD
R

AM
:6

4 
M

B
 to

t

 
Figure 9. Block diagram of Imagine board 



 11 

 

 
Figure 10. Photograph of the Dual-Imagine Board 

Processor
 FPGA

PPC

StreamC

Stream
scheduler

Host PC

KernelC

Device driver
Debugger

(Console for user)

Firmware

Communication
 FPGA

Firmware

Imagine

 
Figure 11. Block diagram of Dual Imagine system 

iieon 



 12 

A second generation Imagine board is being developed at ISI in conjunction with 
Stanford.  The new board has a similar architecture, but has a PowerPC core integrated into the 
interface FPGA associated with each Imagine chip. The second key change is that the Imagine  
chips will be directly soldered to the board, which will allow more reliable and faster 
connections.  The sockets on the original Dual Imagine board have been used for tests designed 
to identify good Imagine chips that will populate the revised boards.  A picture of an 
unpopulated board is shown in Figure 13. 

II.D. The Raw Tiled Architecture  
Although any efforts related to Raw have not been performed under SLIIC, some results 

are included here for comparison.  An approach for a scalable microprocessor that addresses 

issues of continued technology scaling is tile processing.  Instead of building one processor on a 
chip, several processors (tiles) are implemented and connected in a mesh topology.  The tiles 
enable faster clock frequencies since the signals need to travel only a short distance and allows 
performance to scale for applications that can use multiple tiles effectively.  An example of a 
tiled architecture is the Raw chip implemented at MIT [19] and shown in Figure 14.  The current 
Raw implementation contains 16 tiles on a chip connected by a very low latency 2-D mesh scalar 
operand network [20].  The Raw chip prototype has been tested at up to 400MHz; however, 
interface logic on the Raw board limits the clock frequency to 300 MHz.  Peak performance is 
4.8 GOPS and 6.4 GOPS at 300 MHz and 400 MHz, respectively. 

PPC
SdramFlash

PPC Memory Bus

Decode

Local Memory Bus

Host Interface

Block
Rams

SM

Register Bus

Link

Jtag
Imagine

Clock

Imagine

Register Bus

Link

Pipeline

PPC-
access

Register Bus

Link

DVI
Control

DVO
Control

Firewire
Control

ADV
Control

Sdram
Controller

Communication
FPGA

Processor
FPGA

 
Figure 12. Block diagram of Dual Imagine Board FPGAs 



 13 

Each tile has a MIPS-based RISC processor with floating-point units and a total of 128 
kilobytes of SRAM, which includes switch instruction memory, tile (processor) instruction 
memory, and data memory.  Raw can exploit streaming, instruction- level, MIMD (Multiple 
Instruction, Multiple Data), and data parallelism. 

The Raw processor 
has four networks, two static 
and two dynamic.  
Communication on the static 
networks is routed by a 
switch processor in each tile 
[19].  The switch processor is 
located between the 
computation processor and 
the network and provides 
throughput to the tile 
processor of one word per 
cycle with a latency of three 
cycles between nearest 
neighbor tiles.  One 
additional cycle of latency is 
added for each hop in the 
mesh through the static 
networks.  The dynamic 

networks are packet-based, and have longer latencies since routing must be determined 
dynamically in hardware.  The memory ports are located at the 16 peripheral ports of the chip.  
All tiles can access memory either through the dynamic network or through the static network. 

Several kernels, including matrix multiplication, are implemented on Raw and the results 
are reported in [20].  The results show that Raw obtains speedup of up to 12 relative to single-tile 
performance on ILP benchmarks.  Speedups greater than 16 can be achieved on streaming 
benchmarks when compared to a single- issue load/store RISC architecture because of a tile’s 
ability to operate on data directly from the networks. 

 
Figure 13. Photograph of second generation Dual Imagine Board 

Computing 
processor

(8 stage 32 bit, 
single issue, 
in order)

Switch 
processor

64 KB 
I-Cache

32 KB 
D-Cache

8 32-bit 
channels

4-stage
pipelined
FPU

32 KB 
I-Cache

Crossbar
switch

 
Figure 14. Block diagram of a Raw tile 



 14 

II.E. Programming Methodologies 
The programming methodologies and tools for each of these architectures are evolving.  

However, each architecture has inherent properties that affect the programming model and 
programmability of the architecture. 

The M32R/D’s programming model is similar to that of a conventional processor fo r one 
processor.  The internal DRAM is treated as a conventional DRAM.  The M32R/D does not 
explicitly support multiprocessor communication. We used a custom message-based 
communication API programmed on the M32R/D shared memory hardware to implement 
multiprocessor communication. 

The V-IRAM’s programming model is that of a traditional vector architecture.  An 
application is described as single instruction stream that contains scalar and vector instructions.  
There are two primary difficulties to programming the V-IRAM architecture.  First, the C 
programming language makes automatic parallelization of many loops difficult or impossible 
without making assumptions about the independence of pointer and array accesses.  Simple loops 
or computations marked by user hints can be vectorized, but kernels with complex access 
patterns like the Fast Fourier Transform (FFT) are still difficult to automatically vectorize.  
Languages that are more restricted will facilitate automatic vectorization.  The second factor that 
complicates the programmability of V-IRAM is the impact of the DRAM organization on 
performance.  Much of the performance of V-IRAM is achieved by exploiting properties of 
DRAM organization (e.g. banks, rows, columns, and wings).  Currently, the user must 
understand the DRAM organization to optimize performance.  However, it is feasible that a 
compiler could organize memory references based on memory organization while it is 
vectorizing, especially given a language that makes this analysis feasible.  For this study, a C 
compiler was used to compile the kernels, and then inner loops were hand-vectorized using 
assembly code. 

The programming model of Imagine has two significant characteristics.  First, the 
programming model is based on streams.  Streams are similar to vectors, but streams can be 
explicitly routed between the stream register files and the ALU clusters without going through 
the memory system.  This property is important for reducing the impact of the bandwidth 
bottleneck between DRAM and the processor chip.  The second significant characteristic of the 
current Imagine programming model is that a program is described in two languages, one for the 
host (or control) thread written in C and one for the stream processing unit written in kernel-C.  
Again, new programming languages may allow this distinction to be hidden from the 
programmer. However, the programming model used in this project forces the programmer to 
think explicitly about streams and their control.  This explicit streaming model has the 
disadvantage that a programmer must think about the application in a new way, but has the 
advantage that the programmer is forced to think about issues that are important to performance 
anyway.  Applications must contain SIMD parallelism to see significant performance 
improvements on the Imagine architecture. For this study, inner loops were carefully scheduled 
to maximize performance. 

The Raw architecture is the most flexible of the architectures addressed in this report.  
The tile-based organization with the low-latency, high-bandwidth network, and memory 
interface supports a variety of programming models.  The primary programming models used in 
the kernels described in this report are the MIMD and stream models.  We report results on two 
modes of using Raw: an easy-to-program, but less efficient MIMD mode, in which data is routed 
to local memories through cache misses and a stream mode, in which data is routed directly 



 15 

between processors without going through local memories.  The low-latency, high-bandwidth 
networks of Raw also allow ILP to be mapped efficiently to Raw.  Raw’s peak performance can 
be achieved when data can be operated on without going through local memories in the tiles.  For 
this study, we used standard C to program the kernels.  Assembly code was inserted only where 
necessary to access streaming data through the network.  Other programming models, such as 
decoupled processing, are being developed for Raw and have the potential to improve 
performance of applications such as those described in this report. 

II.F. The PowerPC Architecture  
The PowerPC used in this study is the MPC7455 (G4 architecture) operating at 1GHz in 

an Apple PowerMac system [1][11].  It has four integer units (3 simple + 1 complex), a double-
precision floating-point unit, four AltiVec units (simple, complex, floating-point, and permute), a 
load/store unit, and a branch-processing unit.  The MPC7455 processor's 32-bit superscalar core 
contains a three-issue (plus branch) capability, a 128-bit wide AltiVec unit, a 256-kilobyte on-
chip L2 cache, and a 64-bit MPX Bus/60x Bus. The PowerPC G4 provides a vector instruction 
set extension (AltiVec), which was used manually to achieve the G4 results shown in Section 0.  
The AltiVec instruction set allows four 32-bit floating-point operations to be specified and 
executed in a single instruction. 

II.G. Performance Models 

In this section, simple performance models used to estimate the upper bound of the 
performance of the architectures are described.  We model computation and memory bandwidth.  
Memory latency is not modeled since these architectures can generally hide memory latency on 
the kernels used in this study. 

Table 1 shows the DRAM memory and ALU throughput for 32-bit data elements that 
each architecture can support.  It should be noted that both memory and ALU throughput are 
functions of these particular implementations and are not functions of the architectures 
themselves.  However, the architectures provide the means to exploit the throughput supported 
by the implementation.  It should also be noted that memory bandwidth reported is for the 
nearest DRAM. For V-IRAM, DRAM is on-chip, while the nearest DRAM is off-chip for 
Imagine and Raw. 

Table 1. Architecture peak throughputs (32-bit words per cycle) 
 PowerPC M32R/D VIRAM Imagine Raw 

On-chip 
Memory 

Read/Write 

8 
(Cache) 

1 
(DRAM) 

8 
(DRAM) 

16 
(SRF) 

16 
(Cache) 

Off-chip 
DRAM 

Read/Write 

0.53 0.125 2 
(Using 
DMA) 

2 28 

Computation 
per cycle 

9 1 8 48 16 

  



 16 

III. KERNEL IMPLEMENTATIONS 
In this section, the data- intensive kernels used to evaluate the architectures are described.  

The techniques used to maximize the performance of the kernels on V-IRAM, Imagine, and Raw 
are presented. The kernels chosen were all identified as representative of processing bottlenecks 
in Lockheed Martin’s Aegis radar system. Lockheed Martin’s Maritime Surveillance Systems 
group in Moorestown, New Jersey, selected the kernels and provided baseline implementations 
as part of the SLIIC project. 

III.A. Corner Turn 
The corner turn is a matrix transpose operation that tests memory bandwidth.  The data in 

the source matrix is transposed and stored in the destination matrix.  The matrix size used for this 
report, which was chosen to be larger than Imagine’s SRF (128 KB) and Raw’s internal 
memories (2 MB), but smaller than V-IRAM’s on-chip memory (13 MB), is 1024 x 1024 with 4-
byte elements. 

Naive implementations of the corner turn can have poor performance because cache 
performance can be bad and strided data accesses degrade DRAM bandwidth.  In conventional 
cache-based processor systems, tiling is used to reduce cache misses. 

Our VRAM corner turn uses a tiling algorithm with a 16 x 16 element matrix.  Tiling 
allows the vector registers to be used for temporary storage between the loads and stores.  We 
used strided load operations with padding added to the matrix rows to avoid DRAM bank 
conflicts.  Initial load latencies are not hidden.  Stores are done sequentially from the vector 
registers to the memory. 

Since the term “column (row)” is used for both matrices and memories, we will 
distinguish them by denoting them as “matrix column (row)” and “memory column (row).” 



 17 

The tile size we chose for our corner turn implementation on V-IRAM is a 16 x 16 
element matrix.  The selection of tile size depends on the number of vector registers and the 
memory configuration.  In the load operations of our implementation, each column in the tile is 
loaded into each register in strided mode.  Then, the data in the registers are stored as a row in 
sequential mode.  Even though we use the strided loads, the effective performance is as good as 
when sequential accesses are used because of the method described below. 

0

N

1

N+1

2

N+ 2

3

N+3

4

N+ 4

5

N+ 5

…

…

N-1

2N- 1

2N

3N

2N+1

3N+1

2N+2

3N+2

2N+3

3N+3

2N+4

3N+4

2N+5

3N+5

…

…

3N- 1

4N- 1

2N N+ 22N 2N+23N 3N+21 N+1 2N+1 3N+1

4N

5N

4N+1

5N+1

4N+2

5N+2

4N+3

5N+3

4N+4

5N+4

4N+5

5N+5

…

…

6N

7N

6N+1

7N+1

6N+2

7N+2

6N+3

7N+3

6N+4

7N+4

6N+5

7N+5

…

… 8N- 1

4N 5N 6N 7N0 N 2N 3N 1 N+1 2N+ 1 3N+1

(b) Upper strip

(c) Output stream from upper strip

(d) Lower strip

(e) Output stream from lower strip

(f) Combined strip

5 N+5 2N+5 3N+54 6N+ 4 N+62N+4 2N+63N+4 3N+6 … 4N-1

4N 4N+25N 5N+26N 6N+27N 7N+24N+1 5N+1 6N+1 7N+1

4N+5 5N+5 6N+5 7N+54N+4 4N+65N+4 5N+66N+4 6N+67N+4 7N+6 … 8N-1

2 N+2 2N+2 3N+2 … 8N-14N+1 5N+1 6N+1 7N+1

(a) Strips and half -strips

4 rows

4 rows

Upper half -strip

Lower half -strip

A strip

0

7N- 1

6N- 1

5N- 1

 
Figure 15. Corner turn on Imagine  



 18 

When the first column in the tile is loaded, the load operation for each data stalls a few 
cycles while the memory column is accessed.  However, when the second column in the tile is 
accessed, if the memory columns accessed previously are not pre-charged, then, the second 
matrix column can be accessed in one cycle.  This is true for the third and all of the remaining 
matrix columns in the tile.  The V-IRAM provides up to eight open columns.  Thus, it is possible 
to keep the columns open when all of the memory columns accessed are in different memory 
row/wing combinations. 

To limit the number of open columns to eight, we first partition the tile into two half-
tiles: upper and lower.  All data in the upper half-tile is read into the registers before the data in 
the lower half- tile.  Since the size of the upper half-tile is 8 x 16, it is possible to keep all the 
columns open.  Also, we need to ensure that the wing-matrix combination does not appear more 
than once for the half-tile; otherwise, the previously opened column must be pre-charged and 
performance is degraded significantly.  We used matrix padding to place data in different 
memory rows and wings.  By using this algorithm, the performance of the stride access can be as 
fast as sequential access. 

On the Imagine processor, we use the following technique to leverage the streaming 
capabilities.  We partition the matrix into strips of data.  Each strip consists of eight rows of data. 
For each strip, we read the data in the strip and do a transpose.  Since the data in the source 
matrix is 8 x N elements, where N is the number of columns in the matrix, the transposed data is 
N x 8.  The transposed data is stored in the destination matrix.  This is explained in more detail in 
the following paragraphs. 

The strip is conceptually partitioned into two half-strips: an upper half and a lower half 
(see Figure 15).  We first perform the corner turn for the upper half-strip ((b) and (c)). We read 
the four matrix rows and do the transpose using communication units in the clusters.  For this 
operation, four input streams and one output stream are used.  Since the rows are read 
sequentially, there is no performance degradation.  The same operation is performed for the 
lower half-strip ((d) and (e)).  Then, the two output streams are read and permuted using the 
communication unit in the clusters (f).  The strip is written into the destination matrix.  During 
the write operation, the unit of data is eight elements and the stride of data accesses is N.  When 
each row in the strip is written, the data is sequentially stored, thus, we can obtain the maximum 
possible bandwidth.  The cycles lost due to the stride mode for the write operation is inevitable 
since it is a characteristic of DRAM that the pre-charge time is required whenever memory rows 
are accessed.  

Our corner turn on Raw uses one load and one store operation for each DRAM-to-DRAM 
transfer.  The algorithm, designed at MIT and implemented at USC/ISI, was developed to ensure 
that all 16 Raw tiles are doing a load or store during as many cycles as possible and to avoid 
bottlenecks in the static networks and data ports.  The algorithm operates on 64x64 word blocks 
that fit in a single local tile memory. Main memory operations are all done sequentially to 
maximize memory bandwidth since the transpose can be done in local memories, where all 
accesses are done in a single cycle. 

III.B. Coherent Side -Lobe Canceller (CSLC) 
CSLC is a radar signal processing kernel used to cancel jammer signals caused by one or 

more jammers.  Our CSLC implementation consists of FFTs, a weight application 
(multiplication) stage, and IFFTs (inverse FFTs).  Most of the computation time is spent on the 
FFT and IFFT operations.  



 19 

The block diagram of the signal processing is shown in Figure 16.  The operations in the 
upper half of the figure are known as weight calculations and the operations in the lower half are 
weight applications.  To cancel the side- lobe, the weight factor is calculated using the signal 
from the auxiliary channel.  Then, the main signal is partitioned into several sub-bands in the 
time domain.  Each sub-band is then converted to the frequency domain using the FFT (sub-
banding).  Weight factors are multiplied with the output of the FFT operation to cancel the side-
lobe.  An inverse FFT is later performed on the output data.  Most of the computation time is 
spent on the FFT and IFFT operations. In our implementation, only the weight application is 
implemented.  

There are four input channels: two main channels and two auxiliary channels.  Each 
channel has 8K samples per processing interval.  All computations are done using single-
precision floating-point operations.  The data is partitioned into 73 overlapping sub-bands, each 
of which contains 128 samples, so 128-sample FFTs are used.  

To improve CSLC performance, we used several techniques: a combination of radix-4 
and radix-2 FFT, hand optimization of assembly code for the FFT operation, reducing the 
number of bit-reverse operations, and eliminating load-store operations between computational 
stages.  Since the majority of computation time on the CSLC is spent on the FFT operation, we 
improved the performance of the FFT by using the appropriate FFT algorithms for each 
architecture.  

On V-IRAM, a radix-4 FFT is used. Note that since the size of the FFT for the CSLC is 
128, which is not power of 4, we used three stages of radix-4 FFT and one stage of radix-2 FFT.  
Since the current version of the V-IRAM compiler does not vectorize the FFT code written in C 
optimally, we manually wrote assembly code for the FFT to obtain the maximum performance 
using vector instructions.  For example, there are instructions that are suitable for the FFT 
butterfly that the current compiler does not use for the FFT compilation, such as vhalfup, which 
shuffles data between two vector registers. 

Sum
Az
EL
Aux1

AuxN

Different set of
weights per

output channel

Weight Generation

FFT w/o
overlap

Sample
Selection

Weight
Calculation

Interpret

Sum
AZ

EL
SLBs

Weight Application

FFT w
overlap

AZ
EL
SLBs

Multiply&
Accumulate

IFFT w
discard

Decimate

Sum

Sum
Az
EL
Aux1

AuxN

Different set of
weights per

output channel

Weight Generation

FFT w/o
overlap

Sample
Selection

Weight
Calculation

Interpret

Sum
AZ

EL
SLBs

Weight Application

FFT w
overlap

AZ
EL
SLBs

Multiply&
Accumulate

IFFT w
discard

Decimate

Sum

Different set of
weights per

output channel

Weight Generation

FFT w/o
overlap

Sample
Selection

Weight
Calculation Interpret

Sum
AZ

EL
SLBs

Weight Application

FFT w
overlap

AZ
EL
SLBs

Multiply&
Accumulate

IFFT w
discard

Decimate

Sum

 
Figure 16. Coherent sidelobe canceller (CSLC) 



 20 

On the Imagine processor, the radix-2 FFT is used.  After each butterfly operation, the 
data is exchanged among clusters using a cluster communicator to arrange data appropriately.  In 
addition to the optimization of the FFT itself, we also removed the bit-reverse operations.  
Instead of bit-reversing the result of the FFT, the weight factors are bit-reversed in the weight 
application processing.  This is shown in Figure 17. 

On the Raw processor,  we did not hand-optimize our Raw FFT implementation.  A C 
implementation of the radix-2 FFT is used for Raw because it provided better performance than 
the radix-4 FFT because of register spilling in the radix-4 FFT.  The Raw implementation of 
CSLC exploits data parallelism by doing independent FFTs on different tiles in parallel. 

III.C. Beam Steering 
Beam steering is a radar processing application that directs a phased-array radar in an 

arbitrary direction without rotating the antenna physically.  In a conventional radar system, to 
send and receive signal from a specific direction, the antenna must be rotated in that direction.  
This operation needs electrical power to drive a motor and the steering speed is limited by the 
inertia of the antenna. 

Beam steering is used for agile steering of phased array antennas. Figure 18 shows two-
dimensional antenna arrays and Figure 19 shows a one-dimensional beam steering operation.  In 
the system, many small antenna elements transmit the signal with different phases.  In the figure, 
each of the three antenna elements transmits a signal with phase shift of d * sin ? between 
adjacent elements.  By choosing phases, the antenna direction can be controlled.  The 
computation of the phase for each antenna element involves many load, store and arithmetic 
operations.  

Butterflies - FFT

Bit-Reverse

Weight-Application

Butterflies - IFFT

Bit-Reverse

Weight
Factors

Butterflies - FFT

Weight-Application

Butterflies - IFFT

Bit-Reverse

Weight
Factors

(a) Conventional (b) Bit-reversed weight factors
 

Figure 17. New CSLC implementation 



 21 

In our implementation, the 
following parameters are used. The 
number of antenna elements is 1608.  
Each element can direct the signal up 
to 4 directions per dwell where a 
dwell is a period.  The phase needs 
to be calculated for each direction.  
Depending on the signal frequency 
and temperature, calibration data 
needs to be incorporated in the 
calculation of the phases.  In our 
implementation, four calibration 
bands are processed. 

We did hand-vectorization of 
the main portion of the beam 
steering on V-IRAM.  Note that the 
current compiler is still a prototype 
and it may be able to vectorize these 
in the future. Since the same 
processing is performed for each 
data, the data is fed to the vector 
unit, which computes output data. 

For the Imagine processor, a 
manually optimized kernel was 
written to maximize cluster ALU 
utilization.  The input data streams 
are loaded into the stream register 
file and supplied to the clusters.  The 
results are written back to memory 
through the register file.  

The beam steering processing 
on each data is independent.  Thus, 
on Raw, we partition the data among 
16 tiles and each tile processes its 
own data.  Input data is streamed 
through the static network and is 
operated on directly from the 
network.  

III.D. Digital Target Generator (DTG) 
The DTG application generates artificial radar targets used for testing actual radar 

systems in the field.  The original algorithm is shown in Figure 20, where num_channels 
represents the number of radar channels and num_rows represents the number of rows of 
transmit/receive modules processed by a single processing element.  In this implementation, 
number_of_rows is set to eight,  num_channels is set to five, and num_samples_per_channel is 
set to 1,024. 

+     +     +     +     +     +

+     +     +     +     +     +     +

+     +     +     +     +     +     +

+     +     +     +     +     +     +

+     +     +     +     +     +

+     +     +     +     +     +

dy

dx

+

-

+-

 

Figure 18. Phase array for beam steering 

d

2d sin ?

?

 
Figure 19. One dimensional view of beam steering 

operation 



 22 

Input: wfm // num_channels by num_samples_per_channel array; each element of the 
array is a complex number 
          Noise // num_channels by num_samples_per_channel by number_of_rows array; 
each element of the array is a complex number 
Output: out, // three dimensional array; each element of the array is a complex number 
1 Initialize phase, phase_inc 
2 For c=1 to num_channels  
3      for j = 1 to number_of_rows  
4           For i=1 to num_samples_per_channel 
5                 Read wfm(c,i); 
6                 phase = phase + phase_inc; 
7                 output(c,i,j).real = sin(phase+wfm(c.i).imaginary) * wfm(c,i).real; // sin() 
implementation is shown in Appendix A 
8                 output(c,i,j).imaginary = cos(phase+wfm(c.i).imaginary) * wfm(c,i).real; 
 

Figure 20. Simplified original DTG algorithm 

The original, naïve algorithm for DTG performed more memory transfers and 
trigonometric functions than necessary. To ensure that we performed performance analysis on a 
well-optimized algorithm, we transformed the original algorithm to that shown in Figure 21.  The 
improved algorithm produces the same results. 
Input: wfm // num_channels by num_samples_per_channel array; each element of the 
array is a complex number 
          Noise / /num_channels by num_samples_per_channel by number_of_rows array; 
each element of the array is a complex number 
 
Output: out // three-dimensional array; each element of the array is a complex number 
1 Initialize phase, phase_inc 
2 For c=1 to num_channels 
3      for i=2 to number_of_rows 
4           initialize ccc(i) and sss(i); 
5      for i=1 to num_samples_per_channel 
6           Read wfm(c,i); Read noise(c,i,1); 
7           phase = phase + phase_inc; 
8           ss = sin(phase+wfm(c.i).imaginary) * wfm(c,i).real; // sin() implementation is 
shown in Appendix A 
9           cc = cos(phase+wfm(c.i).imaginary) * wfm(c,i).real; 
10         output(c,i,1).real = cc + noise(c,i, 1).real;  
11         output(c,i,1).imaginary = ss + noise(c,i, 1).imaginary; 
12              for j = 2 to number_of_rows 
13                   Read noise(c,i,j); 
14                   output(c,i,j).real = ccc(j)*cc – sss(j)*ss + noise(c,i,j).real;  
15                   output(c,i,j).imaginary = ccc(j)*ss + sss(j)*cc + noise(c,i,j).imaginary; 

Figure 21. Simplified improved DTG algorithm 



 23 

We implemented the sine and cosine functions using simplified Taylor series with fewer 
condition checks than general math libraries because of the limited domain of the input 
arguments.  The implemented sine and cosine functions used are shown in Appendix A. 



 24 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 
IV.A. Overview 

In this section, the implementation results are presented.  Performance of these kernels is 
obtained by using SLIIC-QL board and cycle-accurate simulators provided by the V-IRAM, 
Imagine, and Raw teams.  For comparison purposes, actual measurements of baseline 
performance were taken using a single node of a 1 GHz PowerPC G4-based system (Apple 
PowerMac G4) [1].  AltiVec technology was used for the baseline performance.  The Apple cc 
compiler was used with timing done using the MacOS X system call mach_absolute_time(). We 
manually inserted AltiVec vector instructions. 

Table 2 summarizes key parameters of each processor.  Note that the PowerPC and 
M32R/D are a highly optimized chips implemented with custom logic while the other processors 
are research chips implemented using standard cells and very small design teams.  Thus, if the 
same level of design effort were applied to these research architectures, we would expect much 
higher clock rates and density to be achieved.  

In Table 3, a summary of the implementation results is shown.  The corner turn result for 
the M32R/D is extrapolated from a 512x512 element matrix, which is the largest corner turn 
result that can be run on the M32R/D.  Figure 22 shows the speedup in terms of cycles for corner 
turn, CSLC, and beam steering and Figure 24 shows the speedup for DTG.  Figure 23 shows the 
speedup in terms of execution time for corner turn, CSLC, and beam steering and Figure 25 
shows the speedup for DTG in terms of execution time.  Note that Figure 22 and Figure 23 both 
use a log scale on the vertical axis. 

 

Table 2. Processor parameters  
 PPC G4 M32R/D VIRAM Imagine  Raw 

Clock (MHz) 1000 80 200 300 300 
# of ALUs 8 1 16 48 16 
Peak GFLOPS 9 - 3.2 14.4 4.64 

 

Table 3. Experimental results (cycles in 103) 
 Corner 

Turn 
CSLC Beam 

Steering 
DTG 

PowerPC - AltiVec 30,117 3,204 870 764 

M32R/D 5,712 18,735 1,944 - 

VIRAM 554 424 35 - 

Imagine – slow memory - - - 199 

Imagine – Fast memory 1,207 145 87 92 

Raw  145 357 19 - 

 



 25 

5.3

0.4

54.3

7.6

25.122.1

207.2

9.0

43.6

0.1

1.0

10.0

100.0

1000.0

Corner turn CSLC Beam steering

25.0

M32R/D
VIRAM
Imagine
Raw

10.0

 
Figure 22. Speedup compared with PowerPC with AltiVec (cycles) 

0.4218

0.0358

16.3

2.3

7.57.5 6.6

3.0

62.2

2.7

13.1

0.0

0.1

1.0

10.0

100.0

Corner turn CSLC Beam steering

M32R/D
VIRAM
Imagine
Raw

 
Figure 23. Speedup compared with PowerPC with AltiVec (execution times 

when PowerPC=1 GHz, M32R/D=80MHz, V-IRAM=200 MHz, and Raw=300 
MHz) 



 26 

 

IV.B. Corner Turn Performance 
All three architectures except the M32R/D provided speedups of more than 20 compared 

with a PowerPC system in terms of number of cycles.  Corner turn performance is mostly a 
measure of memory bandwidth, which is not a direct property of an architecture, but rather a 

8.3

3.8

0
1
2
3
4
5
6
7
8
9

Case 1 Case 2

 
Figure 24. DTG speedup on Imagine compared with PowerPC with AltiVec 

(cycles) 

2.5

1.2

0

0.5

1

1.5

2

2.5

3

Case 1 Case 2

 
Figure 25. DTG speedup compared with PowerPC with AltiVec (execution times 

when PowerPC=1 GHz and Imagine=300 MHz)) 

Fast Memory Slow Memory 

Fast Memory Slow Memory 



 27 

function of the number of pins in the package.  However, the corner turn does demonstrate an 
architecture’s ability to leverage memory bandwidth that does exist.  Since V-IRAM has on-chip 
DRAM, the kernel measures on-chip bandwidth.  On the Imagine and Raw architectures, w off-
chip memory is stressed. 

The performance of the corner turn on the M32R/D is about 37% of what would have 
been expected from peak cache bandwidth.  Since the peak memory-cache bandwidth is higher 
than cache-CPU bandwidth, the memory-cache bandwidth is not a bottleneck.  Instead, the 
cache-CPU bandwidth is bottleneck for M32R/D.  We believe one of the main reasons for the 
difference between the peak performance and obtained result is the added cycles for memory 
access latency. 

The performance of the corner turn on V-IRAM is about half of what would have been 
expected from peak memory bandwidth.  About 21% of the total cycles are overhead due to 
DRAM pre-charge cycles (which would be mostly hidden with sequential accesses) and TLB 
(Translation Look-aside Buffer) misses, and 24% are due to a limitation in strided load 
performance imposed by the number of address generators. 

On Imagine, we assume the memory clock is the same frequency as the processor clock.  
Imagine has two address generators that provide two words per clock cycle.  Note that the 
number of address generators is a processor implementation choice and is not a limitation of a 
stream architecture.  Since the goal of the Imagine project was to demonstrate how memory 
traffic could be reduced, the Imagine team chose not to implement a high-bandwidth memory 
interface. 

If the network ports were used to transfer data between SRF and an external memory for 
the corner turn, the performance would be the same since the network port has a peak 
performance of two words per cycle. 

87% of the cycles in the Imagine corner turn are due to memory transfers that are close to 
the maximum theoretical performance.  The remaining 13% of the execution cycles are due to 
non-overlapped cluster instructions.  Conceptually, the kernel instructions should be fully 
overlapped with memory accesses, but a limitation induced by the stream descriptor registers 
prevented full software pipelining in our implementation. 

The Raw chip implementation actually provides enough main memory bandwidth that it 
is not the performance limiter for our corner turn implementation.  Load/store issue rates and 
local memory bandwidth limit performance. 16 instructions per cycle are executed on the Raw 
tiles, and the static network and DRAM ports are not a bottleneck.  The performance we 
achieved is nearly identical to the maximum performance predicted by the instruction issue rate.  
Memory latency is fully hidden (except for negligible start-up costs). 

IV.C. CSLC Performance 
CSLC mainly consists of FFTs and matrix-vector multiplication. Since the FFT length is 

128, the working set fits into local memory, and the performance of the CSLC depends primarily 
on ALU performance for Imagine and Raw. 

Since the M32R/D does not support hardware floating-point operations, the CSLC on the 
M32R/D is an integer version of the CSLC. Therefore, the performance on M32R/D is not 
compared with other implementations directly.  The obtained performance is about 13% of the 
peak performance of the M32R/D.  We believe one of the reasons for this low utilization is that 
many overhead instructions are needed in addition to the computation instructions such as 
maintaining loop variables, address calculations, and temporary variables. 



 28 

Our V-IRAM CSLC implementation result shows that it takes about 3.6 times longer than 
what is predicted by peak performance.  The first factor reducing performance is overhead 
instructions. Instructions are needed to perform the FFT shuffles and increase the number of 
cycles by a factor of 1.67.  The second factor that reduces FFT performance is ALU utilization. 
Since the second vector arithmetic unit in V-IRAM cannot execute vector floating point 
instructions, performance on the FFT is reduced by a factor of 1.52.  Finally, memory latency 
and vector startup costs increase performance by a factor of 1.41.  

The CSLC on Imagine and Raw uses radix-2 FFTs.  On Raw, radix-2 was used to avoid 
register spilling encountered in the radix-4 FFT.  On Imagine, the radix-4 FFT provides better 
performance (about 34%), but a complete CSLC was not implemented within the scope of 
SLIIC.  The number of operations (including loads and stores) in the radix-2 FFT is about 1.5 
times of the number in the radix-4 FFT.  So care should be given when the performances of the 
CSLC on Raw and Imagine are compared with CSLC performance on other architectures. 

Imagine has the best performance of the three architectures on CSLC.  This is because it 
is a computation- intensive kernel for which the working sets fit in the stream register files.  
Although the data access patterns for FFT are challenging for any architecture, the streaming 
execution model of Imagine is able to reduce memory operations and Imagine functions as 
intended on this kernel.  Overall, performance achieved on CSLC on Imagine is about 39% of 
what is predicted by peak performance.  While this is much lower than those achieved for many 
media benchmark kernels, it still allows Imagine to perform about 16 useful operations per cycle; 
much better than can be achieved on today’s superscalar architectures. Performance is reduced 
by 35% because inter-cluster communication is used to perform parallel FFTs. An alternative 
implementation, which was not completed under SLIIC, would execute independent FFTs in 
parallel to eliminate inter-cluster communication overhead.  

For the FFT kernel, ALU utilization (as measured by minimum FFT computations / total 
ALU cycles available) is 34.0%. If we exclude the divider, which is not useful for the FFT, then 
the utilization is 40.8%.  Note that the utilization is on the lower side of the more than 40% 
obtained in other processing intensive applications [8].  The reason for the relatively low 
utilization is that the small size of the FFT reduces the amount of software pipelining and start-
up overheads are not as well amortized with a small kernel. 

On Raw, we implemented a data parallel version of CSLC. The local memory on Raw 
successfully caches the working sets, and less than 10% of the execution time is spent on 
memory stalls.  Note that most of this stalling could have been eliminated by implementing a 
streaming direct memory access transfer to the local memory that is overlapped with the 
computation. 

One problem with our data parallel implementation of CSLC on Raw was load balancing.  
The CSLC is easily parallelized for 16 tiles, however, since the number of data sets is 73, which 
is not a multiple of the number of tiles, some tiles processed five sets while others processed four 
sets.  About 8% of CPU cycles are idle due to load balancing.  The number of sets in a real 
environment is not fixed at 73.  In a real implementation, the input data sets would arrive 
continuously.  Therefore, it is reasonable to assume that Raw could have perfect load balancing 
in a real implementation.  Thus, we report the performance numbers for CSLC on Raw based on 
an extrapolation that assumes perfect load balancing. 

Raw achieves about 31.4% of the peak performance on CSLC.  About 26% of the cycles 
on Raw are consumed by load and store overhead instructions. Cache stalls take 7.4% of the total 



 29 

cycles.  The remaining cycles are consumed by address and index calculations and loop overhead 
instructions. 

If the FFT were implemented using the stream interface that uses static network, cache 
miss stalls would be hidden, and load and store operations would not be needed.  A primitive 
implementation result suggests an improvement of about 70%. 

IV.D. Beam Steering Performance 
Beam steering has a small number of computations (5 additions and 1 shift) per output 

data and a relatively high number of memory accesses (2 loads and one store).  On the M32R/D, 
the lower bound of the computation time is 16% of the total execution time.  Note that the only 
optimization done for the implementation on M32R/D is using optimization flag for the compiler.  
On other architectures, in addition to the use of the optimization flag, intensive optimization 
efforts have been performed.  We did not invest the same effort in optimizing for the M32R/D 
after it became clear that it does not provide performance competitive with the other chips for 
computation- intensive applications.  We believe the primary reason for the difference between 
the lower bound and total execution cycles is overhead instructions used for maintaining loop 
variables, address calculations, and temporary variables, which could be reduced if more human 
optimization effort was performed. 

On V-IRAM, the lower bound of the computation time is 56% of the simulation time.  
The difference between the expected and simulation results comes from waiting for the results 
from previous vector operations and the cycles needed to initialize the vector operations. 

On Imagine, the computations and memory accesses for beam steering are overlapped.  
Performance is limited by memory bandwidth due to the relatively low number of computations 
per memory access.  The load and store operations take 89% of the simulation time. The 
remaining 11% of execution time is due to the software pipeline prologue. 

In an actual signal processing pipeline the beam steering kernel would stream its inputs 
from the proceeding kernel in the application (e.g., a poly-phase filter bank) and stream its 
outputs to the following kernel (e.g., per-beam equalization).  In such a pipeline the performance 
of beam steering will not be limited by memory bandwidth, as in the case of this isolated kernel, 
but rather will be limited by arithmetic performance.  On such a streaming application Imagine is 
expected to achieve a high fraction of its peak performance.  If table values were read from the 
stream register file rather than memory on our kernel, performance would be increased by a 
factor of about two.  The performance of a beam steering algorithm with more computation per 
data (which is a realistic assumption) could be much higher. 

On Raw, we used the static network to stream data from memory while hiding memory 
latency. In this implementation, loads and stores are not necessary and ALU utilization is very 
high.  It attains 96.6% of the peak performance.  The Raw beam steering implementation has the 
best performance of the three architectures because of the combination of memory bandwidth 
and high ALU utilization. 

IV.E. DTG Performance 
We implemented DTG on Imagine and the PowerPC. Table 3 shows the number of 

cycles and execution time in microseconds.  Imagine was simulated with two assumptions : i) the 
slow-memory case, where the memory bus frequency is one fourth the frequency of the Imagine 
processor,  and ii) the fast-memory case, where the memory bus frequency is the same as the 
Imagine processor frequency. 



 30 

In the slow-memory case, DTG takes 198,734 cycles.  The lower bound for this case is 
174,080 cycles, which is 87.6% of the execution time.  In the fast-memory case, where the 
memory clock speed is the same as the Imagine clock, it takes 92,392 cycles.  The lower bound 
of the DTG on Imagine is 87,040, which is 94% of the simulation time.  The rest of the time is 
due to the gap between memory accesses.  Thus, the memory system utilization is 87.6% and 
94% for the slow-memory case and the fast-memory case, respectively.  The ALU utilization is 
4.6% and 9.8% for the slow-memory and fast-memory cases, respectively, which is very low 
compared with other computation- intensive applications.  The reason is that DTG is more 
memory intensive, and the data supply to the ALU units is far lower than the ALU computation 
capability. 

The PowerPC takes 763,930 cycles. The lower bound of DTG on the PowerPC is 
327,218 cycles, which is 42.8% of the measured execution time.  The total execution time 
consists of the following blocks: i) initialization, ii) computation of the first data of eight data 
elements (Line 6–11), and iii) computation of the remaining seven data element s (Line 14–16).  

Let us first analyze the case when the data is in cache.  For the initialization, the number 
of cycles was 5.6% of the total execution cycles.  The second part takes 46.6% of the total 
execution time.  The third block (Line 14–16) repeats 1,280 times. This block cannot fit in the 
first- level cache since the noise is large (81,920 words), so the noise data is in the second- level 
cache.  The number of cycles to bring a cache line (2 words) to the ALU is 9 cycles [11].  The 
number of load/store instructions needed in each iteration is 28.  Each load/store instruction 
handles four words simultaneously.  Since the cache line size is eight words, a cache miss occurs 
every two instructions.  Therefore, there are 14 cache misses in each iteration. Thus, the number 
of cycles needed for this block is 161,280 cycles.  The total number of cycles measured for this 
part is 165,594 cycles (21.7% of total execution cycles).  In addition to this, transfers between 
memory and cache are needed.  This accounts for 26.0% of the total execution time. To find the 
optimal parameters for prefetching, many combinations of the parameter values were tried and 
the best setting was chosen.  

The speedup of Imagine compared with the PowerPC is 3.8 for the slow-memory case 
and 8.3 for the fast-memory case in terms of number of cycles.  One of the differences comes 
from the different memory clock speeds and difference data bus widths.  The memory clock 
speed of PowerPC is 266 MHz and the data bus wid th is two words. Since the bus bandwidth of 
the Imagine is four words, when the memory clock speed of the Imagine is 250 MHz, the 
performance ratio is 1.88 (250 MHz * 4 words/(266 MHz * 2 words)).  However, when the 
Imagine memory clock speed is the same as Imagine chip, then, the number of address 
generators becomes the bottleneck, and only two words per cycle can be transferred.  So the 
performance difference is 3.76 (=1000 MHz * 2 words/(266 MHz *2 words)). This contributes 
3.76 (=times of the difference for the fast-memory case. 

The other latency is between cache and memory. On Imagine, the memory latency is 
hidden because memory accesses run ahead of computations and streaming reduces the number 
of off-ship memory accesses. On the PowerPC, some of the memory access latency is hidden by 
prefetching, but prefetching cannot hide latency completely for data intensive applications that 
consume all available memory bandwidth.  Main memory latency leads to a performance 
difference of 1.36. 



 31 

IV.F. Architecture Comparison 
V-IRAM’s primary advantage comes from the high bandwidth between the vector units 

and DRAM without paying the cost (in terms of pins and power) that are required to achieve 
high bandwidth between chips. V-IRAM is especially suitable for vectorizable applications that 
can utilize the high bandwidth interface and that are small enough to fit in the on-chip memory. 
V-IRAM outperformed the G4 AltiVec by more than a factor of 7 on all four of our kernels and 
showed especially good performance on the kernels that emphasize memory bandwidth.  For 
embedded applications with reasonably sized data sets, the V-IRAM can be used as a one-chip 
system. If the application size is larger than the on-chip DRAM, the data needs to come from off-
chip memory and V-IRAM would lose much of its advantage. 

Imagine’s high peak performance can be utilized in streaming applications where main 
memory accesses can be avoided or minimized.  The CSLC kernel demonstrates that even when 
the Imagine ALUs are not fully utilized, performance can be quite high, especially when 
compared to a commercial microprocessor like the G4 AltiVec. Imagine’s stream-based 
architecture is designed for scalability and power efficiency, and the Imagine architecture has the 
highest peak performance of the architectures in this study. 

Raw also performs best on streaming applications since load and store operations can be 
eliminated and the static networks provide tremendous on-chip bandwidth.  The kernels used in 
this study do not fully exploit this mode of execution.  But we have shown that the tile structure 
of Raw can be used to utilize the memory bandwidth available from the external ports of Raw. 
The tile structure also provides flexible support for MIMD and ILP applications. 



 32 

V. CONCLUSION 
In this report, the implementation results of four signal processing kernels (the corner 

turn, CSLC, beam steering, and digital taget generator) on systems based on one commercial off-
the-shelf processor (M32R/D) and two recent research processors (V-IRAM and Imagine ) are 
presented and compared to a commercial PowerPC.  The results show that these data- intensive-
system architectures have strengths and provide significant performance potential compared to 
the current generation of superscalar processors with vector extensions. 

The performance of some of the kernels on these architectures is limited by DRAM 
interface bandwidth.  In these cases, the computational potential of the processors is not fully 
exploited.  Instead, these data- intensive kernels stress-test the DRAM interface of the processors. 
This DRAM interface is a design choice influenced by cost rather than a function of 
these innovative architectures. 

The stream programming model, as expressed by StreamC and KernelC, used for Imagine
fits some, but not all, of our data- intensive kernels well.  The applications best suited for the 
stream programming model have long sequences of data and data that goes through many 
stages of processing before the data is stored back to memory.  An example of this kind of 
application is the CSLC.  Since the tools for the stream programming are in a research stage, 
significant human optimization was required. 

These emerging architectures did demonstrate that they can be programmed reasonably 
using high- level languages and existing compilers to obtain adequate performance, while with 
hand optimization or future compilers, they can achieve performance that far outstrips existing 
architectures.  Furthermore, all of these architectures will scale as technology shrinks far better 
than today’s superscalar processors. 



 33 

VI. ACKNOWLEDGEMENTS 
The authors gratefully acknowledge the extraordinary support of the UC Berkeley IRAM 

team, the Stanford Imagine team, and the MIT Raw team for the use of their compilers, 
simulators, and computational kernels and the ir generous help.  This study obviously would not 
have been possible without their generous support. 



 34 

VII. REFERENCES 
[1] Apple, http://www.apple.com/powermac/, 2002. 
[2] S. Chatterjee and S. Sen, “Cache-efficient matrix transposition,” Sixth International 

Symposium on High-Performance Computer Architecture, Touluse, France, 2000. 
[3] Gordon, M., Thies,W, Karczmarek, M., Lin, J., Meli, A. S., Lamb, A. Leger, A. C., Wong, J., 

Hoffmann, H., Maze, D., Amarasinghe, S. “A Stream Compiler for Communication-Exposed 
Architectures,” MIT Tech. Memo TM-627, Cambridge, MA, March 2002. 

[4] Gupta, A., Hennessy, J. L., Gharachorloo, K. T., Mowry, Weber, W. D. “Computative 
Evaluation of Latency Reducing and Tolerating Techniques,” Proc. 18th Annual 
International Symposium on Computer Architecture, Toronto, May 1991. 

[5] Hennessy J., Patterson, D. A., Computer Architecture: A Quantitative Approach, 2nd 
Edition, Morgan Kaufmann Publishers, Inc., 1996. 

[6] Khailany, B., Dally, W. J., Rixner, S., Kapasi, U. J., Mattson, P., Namkoong, J., Owens, J. 
D., Towles, B., Chang A. “Imagine: Media Processing with Streams,” IEEE Micro, 
March/April, pp 35-46, 2001. 

[7] Kozyrakis, C. “Scalable Vector Media-processors for Embedded Systems,” Ph. D. 
dissertation, UC Berkeley, May 2002. 

[8] Kapasi, U., Dally, W. J., Rixner, S.,. Owens, J. D., Khailany, B. “The Imagine Stream 
Processor,” International Conference on Computer Design, Freiburg, Germany, September 
2002. 

[9] Kozyrakis, C., Patterson, D., “Vector Vs. Superscalar and VLIW Architectures for 
Embedded Multimedia Benchmarks,” 35th International Symposium on Microarchitecture, 
Istanbul, Turkey, November 2002.  

[10] Mitsubishi Microcomputers, M32000D4BFP-80 Data Book, 
http://www.mitsubishichips.com/data/datasheets /mcus/ mcupdf/ds/e32r80.pdf. 

[11] Motorola, MPC7450 RISC Microprocessor Family User’s Manual, February 2003. 
[12] Owens, J. D., Rixner, S., Kapasi, U. J., Mattson, P., Towles, B., Serebrin, B., Dally, W. J., 

“Media Processing Applications on the Imagine,” Stream Processor Proceedings of 
International Conference on Computer Design, Freiburg, Germany, September 2002. 

[13] S. A. Przybylski, Cache and Memory Hierarchy Design: A Performance-Directed Approach, 
Morgan Kaufmann Publishers, San Mateo, CA, 1990. 

[14] Rixner, S., Dally, W. J., Kapasi, U. J., Khailany, B., Lopez-Lagunas, A., Mattson, P. R., 
Owens, J. D. “A Bandwidth-Efficient Architecture for Media Processing,” 31st Annual 
International Symposium on Microarchitecture, Dallas, Texas, November 1998. 

[15] Smith, A. J. “Cache Memories,” Computing Surveys, Vol. 14, No. 3, pp 473-530, 1982. 
[16] Suh, J., Crago, S.P. “PIM-based and Stream Processor-based Processing for Radar Signal 

Applications,” MSP 02, Austin, TX, 2002. 
[17] Suh, J., Crago, S. P., Li, C., Parker, R. “A PIM-based Multiprocessor System,” International 

Parallel and Distributed Processing Symposium, San Francisco, CA, 2000. 



 35 

[18] Suh, J., Kim, E.-G., Crago, S. P. “A Performance Comparison of PIM, Stream Processing, 
and Tiled Processing on Signal Processing Applications,” ISCA03, San Diego, CA, June 
2003. 

[19] Taylor, M. B., Kim, J., Miller, J., Wentzlaff, D., Ghodrat, F., Greenwald, B., Hoffmann, H., 
Johnson, P., Lee, W., Saraf, A., Shnidman, N., Strumpen, V., Amarasinghe, S., Agarwal, A. 
“A 16- issue multiple-program-counter microprocessor with point-to-point scalar operand 
network,” Proceedings of the IEEE International Solid-State Circuits Conference, February 
2003. 

[20] Taylor, M. B., Lee, W., Amarasinghe, S., Agarwal, A. “Scalar Operand Networks: On-chip 
Interconnect for ILP in Partitioned Architectures,” International Symposium on High 
Performance Computer Architecture, February 2003. 



 36 

APPENDICES 
Appendix A. Sin Computation Algorithm Used in the DTG Implementation 
 
#define C1 0.0083333337680 
#define C2 -0.00019841270114 
#define C3 0.0000027557314297 
#define C4 -0.000000025050759689 
#define C5 0.00000000015896910177 
#define C6 -0.16666667163 
 
#define S1 0x7fffffff 
#define S2 0x32000000 
 
sin(sin, x)  
// Input: x     
// Output: sin 
        ix = asint(x); 
        ix = ix & S1;  
        z0 = (ix<S2);  
        z1 = (ftoi(x)==0);  
        z1 = (z0 & z1 & 0x1);  
        z0 = 1 - z1;  
        z =  x*x; 
        v =  z*x; 
        r = C1 +z*(C2+ z*(C3+z*(C4+z*C5)));  
        sin = x + v*(C6+z*r) * itof(z0);  



 37 

Appendix B. Acronyms 
ALU  Arithmetic Logic Unit 
API  Application Programming Interface 
CPU  Central Processing Unit 
CSLC  Coherent Side-Lobe Canceller 
DARPA Defense Advanced Research Projects Agency 
DRAM Dynamic Random Access Memory 
DSP  Digital Signal Processor 
DTG  Digital Target Generator 
EMBC  Embedded Microprocessor Benchmark Consortium 
EEPROM Electronically Erasable Programmable Read Only Memory 
FFT  Fast Fourier Transform 
FPGA  Field Programmable Gate Array 
GFLOPS Giga-FLoating Operations Per Second 
GOPS  Giga-Operations Per Second 
IFFT  Inverse Fast Fourier Transform 
ILP  Instruction Level Parallelism 
MB  Megabytes 
MIMD  Multiple Instruction, Multiple Data 
MIPS  Million Instructions Per Second 
PC  Personal Computer 
PCI  Peripheral Component Interface 
PIM  Processor In Memory 
PPC  PowerPC 
RISC  Reduced Instruction Set Computer 
QL  Quick Look 
SDRAM Synchronous Dynamic Random Access Memory 
SIMD  Single Instruction, Multiple Data 
SLIIC  System-Level Intelligent Intensive Computing 
SRAM  Synchronous Random Access Memory 
SRF  Stream Register File 
TLB  Translation Look-aside Buffer 
V-IRAM Vector Intelligent Random Access Memory 
 



 38 

Appendix C. Publications  
The following publications were supported or partially supported by the SLIIC project. 
 
J. Suh, D. Kang, and S. P. Crago, “A Communication Scheduling Algorithm for Multiple-FPGA 
Systems,” IEEE Symposium on Field Programmable Custom Computing Machines (FCCM) 
2000, Napa, CA, April 2000. 
 
J. Suh and V. K. Prasanna, “An Efficient Algorithm for Large-Scale Matrix Transposition,” 
International Conference on Parallel Processing (ICPP), Toronto, Canada, August 2000.  
 
J. Suh, S. P. Crago, C. Li, and R. Parker, “Distributed Corner Turn on a PIM-Based 
Multiprocessor,” Fourth Annual Workshop on High Performance Embedded Computing (HPEC), 
Cambridge, MA, September 2000.  
 
J. Suh, M. Zhu, C. Li, S. P. Crago, S. F. Shank, R. H. Chau, W. J. Mazur, and R. Pancoast, 
“Implementations of Real-time Data Intensive Applications on PIM-based Multiprocessor 
Systems,” Joint Workshop on Parallel and Distributed Real-Time Systems and Embedded High 
Performance Computing, San Francisco, CA, April 2001.  
 
J. Suh, C. Li, S. P. Crago, and R. Parker, “A PIM-Based Multiprocessor System,” International 
Parallel and Distributed Processing Symposium, San Francisco, CA, April 2001.  
 
J Suh, D. Kang, and S. P. Crago, “Efficient Algorithms for Fixed-Point Arithmetic Operations In 
An Embedded PIM,” World Multi-Conference on Systematics, Cybernetics, and Informatics, 
Orlando, FL, July 2001.  
 
J. Suh, S. P. Crago, C. Li, and R. Parker, “PIM- and Stream Processor-Based Systems,” Fifth 
Annual High Performance Embedded Computing Workshop, Cambridge, MA, November 2001.  
 
J. Suh and S. P. Crago, “PIM- and Stream Processor-based Processing for Radar Signal 
Applications,” The Third Workshop on Media and Streaming Processors in conjunction with The 
34th International Symposium on Microarchitecture, Austin, TX, December 2001.  
 
J. Suh and V. K. Prasanna, “An Efficient Algorithm for Out-of-Core Matrix Transposition,” 
IEEE Transactions on Computer, April 2002. 
 
J. Suh, E.-G. Kim, S. P. Crago, L. Srinivasan, and M. C. French, “A Performance Analysis of 
PIM, Stream Processing, and Tiled Processing on Memory-Intensive Signal Processing Kernels,” 
International Symposium on Computer Architecture, San Diego, CA, June 2003.  
 



 
 

A Communication Scheduling Algorithm 
For Multi-FPGA Systems∗ 

 
Jinwoo Suh, Dong-In Kang, and Stephen P. Crago 

University of Southern California Information Sciences Institute 
4350 N. Fairfax Drive, Suite 770, Arlington, VA 22203 

{jsuh, dkang, crago}@isi.edu 
 
 

                                                 
∗ Effort sponsored by Defense Advanced Research Projects Agency (DARPA) through the Air Force Research Laboratory, USAF, 
under agreement numbers F30602-99-1-0521, F30602-97-1-0222, and F33615-98-C-1320. The U.S. Government is authorized to 
reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation thereon. The views and 
conclusions contained herein are those of the authors and should not interpreted as necessarily representing the official policies or 
endorsement, either expressed or implied, of the Defense Advanced Research Projects Agency (DARPA), Air Force Research 
Laboratory, or the U.S. Government. 

Abstract 
 

For multiple FPGA systems, the limited number of I/O 
pins causes many problems. To solve these problems, 
efficient communication scheduling among FPGAs is 
crucial for obtaining high CLB utilization. In this paper, 
we provide a heuristic for the NP-complete scheduling 
algorithm. The experimental results show that our 
algorithm generates excellent communication schedules: 
more than 90% of the randomly generated problem 
instances were scheduled with less than 20% overhead 
compared with an optimal algorithm. The execution time 
of the scheduling algorithm is two orders of magnitude 
less than the optimal scheduling algorithm. 
 

1. Introduction 
 

In this paper, we discuss communication scheduling on 
multiple FPGA systems. Since the number of CLBs is 
proportional to the chip area (O(l2)) while the number of 
I/O pads is proportional to the chip perimeter (O(l)), 
where l is the length of a chip, the relative I/O bandwidth 
is getting smaller as the number of CLBs has been 
increasing continuously. Underutilization of I/O 
bandwidth exasperates the problem. To support a given 
I/O rate, pin bandwidth underutilization increases the 
number of FPGAs needed. This increase in the number of 
FPGAs causes the parts cost to increase and longer 
development time[1]. To address these problems, we 
propose an efficient communication algorithm that uses 
the available I/O pins efficiently to increase CLB 
utilization. 
 

2. Problem Definition 
 

An application is partitioned into N tasks. Each task, τv, 
has a computation time, T(τv), 0 ≤ v ≤ N -1. Each task is 
mapped to an FPGA, Fi, 0 ≤ i ≤ F-1, where F is the 

number of FGPAs.  If a task, τv, on  Fj needs data from a 
task, τu, 0 ≤ u ≤  N-1, on Fi  (i ≠ j), then communication 
must be performed between Fi and Fj before τv can be 
performed. The communication takes T(eu,v), where eu,v is 
the required communication between τu and τv. The 
communication is performed through the I/O pins of the 
FPGAs. Let us denote a set of I/O pins that is used for the 
communication as a channel, Cx, 0 ≤ x ≤ C-1, where C is 
the number of channels. A channel cannot be used by two 
communications simultaneously and is non-preemptive. 
For simplicity, we assume that the channels are 
unidirectional. The object is to find a communication 
schedule that has minimum latency for given tasks and 
channels.  

 
Theorem 2-1: The scheduling of communication for a 
multiple FPGA system is NP-complete. 
 

The theorem can be proved by reducing it to flowshop 
scheduling[2]. The proof is omitted due to space 
limitations. 

 

3. Our Algorithm 
 

In this algorithm, a heuristic weight value w(τi),  w(ei,j) 
of a task τi, and an edge ei,j are used to determine the 
priority of the communication edge in scheduling. When 
multiple communication tasks compete for a 
communication channel at a given time, the one having 
the largest weight value is chosen for scheduling. The 
algorithm is shown in Figure 1. The algorithm consists of 
two steps: (i) evaluation of weights of tasks in breadth-
first search fashion (Calculate_Weight) and (ii) 
scheduling of communication edges in each channel in 
bottom-up fashion (Largest_Weight_First).  
 
Algorithm Calculate_Weight(τi) 
(1)  If visited(τi) = True  
(2) Return; 

39



(3)  w(τi) = 0; 
(4) For each outgoing edge of τi, ei,j   
(5)  if visited(τj) = False  
(6)   Calculate_Weight(τj); 
(7)  w(ei,j) = w(τj) + T (ei.j); 
(8)  w(τi) = w(τi) + T (ei.j); 
(9) w(τi) = w(τi) + T(τi);  
(10) visited(τi) = True; 
(11) For each incoming edge of τi, ek,i 
(12)  Calculate_Weight(τj); 
 
Algorithm Largest_Weight_First(DAG) 
(1) For all edge e in the DAG 
(2)  r(e) = -1; 
(3)   For each channel Cx in the system  
(4)  Schedule_Channel(Cx); 
 
Algorithm Schedule_Channel(Cx) 
(1) If scheduled(Cx) = Yes  
(2)  Return; 
(3) For each edge ekl in Cx 
(4)  Get_Ready_Time(ekl); 
(5) S = set of edges in Cx; 
(6) t = smallest ready time of edges in S; 
(7) While (S is not empty) 
(8)  S’ = set of schedulable edges at t in S; 
(9)  If (S’ is not empty) 
(10)   Schedule an edge e in S’ with largest weight; 
(11)   S = S – {e};  S’ = S’ - {e};   
(12)   t = t + T(e); 
(13)  else 
(14)   t = smallest ready time of edges in S; 
(15) scheduled(Cxy) = Yes; 
 
Algorithm Get_Ready_Time(ekl) 
(1) If r(ekl) ≥  0  
(2)  Return; 
(3) If all incoming edges to τk   are not scheduled  
(4)  For each channel  containing an incoming edge to τk         
(5)   Schedule_Channel(Cxy); 
(6) r(ekl) = T(τk ) + largest finish time of incoming edges toτk;  
  
Figure 1. Communication schedule generation algorithm 

 
The total complexity of our heuristic algorithm is O(M 

+ N log N), where M is the number of tasks in the graph, 
and N is the number of edges. 

 

4. Experimental Results and Conclusions 
 

As a validation of our heuristic approach, we generated 
100 random trees for each of 4 different tree sizes and ran 
experiments and compared it with optimal solutions on a 
SUN workstation ULTRA 30. Also, the execution times 
of the two algorithms were measured. These are shown in 
Figure 2 and 3. The experimental results show that our 
algorithm provides near optimal results. More than 90% 
of the randomly generated problem instances were 
scheduled with less than 20% overhead compared with the 
optimal algorithm. The execution time of the scheduling 
algorithm is two orders of magnitude less than the optimal 
scheduling algorithm. 
 

5. References 
1. J. Babb, R. Tessier, and A. Agarwal, "Virtual Wires: 
Overcoming Pin Limitations in FPGA-based Logic Emulations," 
FCCM '93, April 1993. 
2. M. R. Garey, D. S. Johnson, and R. Sethi, "The Complexity 
of Flowshop and Jobshop Scheduling," Mathematics of 
Operations Research, Vol. 1, No. 2, May 1976.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
 
 
 
 
 
 
 
 
 
 

Figure 2. Ratio of the latency produced by our heuristic to 
optimal latency. 

 
 
 
 
 
 
 

 
 
 
Figure 3. Speedup of the heuristic algorithm over optimal 

algorithm. 

1E+00 

1E+01 

1E+02 

1E+03 

1E+04 

1E+05 

1E+06 

level = 3,  
leaf = 4 

level = 3,  
leaf = 5 

level = 4,  
leaf = 4 

level = 4,  
leaf = 5 

level = 3, leaf = 5 

0 
5 

10 
15 
20 
25 

1.00 1.06 1.13 1.19 1.26 More 

level = 4, leaf = 4 

0 
10 
20 
30 
40 

1.00 1.05 1.10 1.15 1.20 More 

c 
o
u
n
t 

level = 3, leaf = 4 

0 
10 
20 
30 
40 

1 1.08 1.16 1.24 1.32 

level = 4, leaf = 5 

0 
5 

10 
15 
20 

1.00 1.06 1.12 1.19 1.25 More 
ratio

c 
o
u
n
t 

c 
o
u
n
t 

c 
o
u
n
t 

40



An EÆcient Algorithm for

Large-Scale Matrix Transposition�

Jinwoo Suhy and Viktor K. Prasannaz

yUSC Information Sciences Institute
4350 N. Fairfax Dr., Suite 770

Arlington, VA 22203
jsuh@isi.edu

http://www.east.isi.edu/~jsuh

zDepartment of EE-Systems, EEB-200C
University of Southern California
Los Angeles, CA 90089-2562

prasanna@usc.edu

http://ceng.usc.edu/~prasanna

Abstract

EÆcient transposition of large-scale matrices has been
widely studied. These e�orts have focused on reducing the
number of I/O operations. However, in the state-of-the-
art architectures, data transfer time and index computation
time are also signi�cant components of the overall time. In
this paper, we propose an algorithm that considers all these
costs and reduces the overall execution time.

The reduction of the overall execution time is achieved
by using two techniques: (1) writing the data onto disk in
prede�ned patterns and (2) balancing the numbers of disk
read and write operations. Even though our approach may
increase the number of I/O operations for some cases it
results in an overall reduction in the execution time. The
index computation time, which is an expensive operation in-
volving two divisions and a multiplication, is eliminated by
partitioning the memory into two bu�ers. The expensive
in-processor permutation is replaced by data collection op-
erations. Our algorithm is analyzed using the well-known
Linear Model and the Parallel Disk Model.

The experimental results on a Sun Enterprise and a DEC

Alpha show that our algorithm reduces the execution time

by about 50%, compared with the best known algorithms in

the literature.

�This work was funded by the DoD High Performance
Modernization Program ERDC Major Shared Resource Center
through Programming Environment and Training (PET) sup-
ported by Contract Number DAHC 94-96-C0002, and Subcon-
tract Number NRC-CR-98-0002.
yMost of this work was performed when the �rst author was
a doctoral student at USC. The current work of the au-
thor is funded by Defense Advanced Research Projects Agency
(DARPA) through the Air Force Research Laboratory, USAF,
under agreement number F30602-99-1-0521. Disclaimer: Views,
opinions, and/or �ndings contained in this report are those of the
authors and should not be construed as an oÆcial Department
of Defense, DARPA, or Air Force Research Laboratory position,
policy, or decision unless so designated by other oÆcial documen-
tation. The U.S. Government is authorized to reproduce and dis-
tribute reprints for governmental purposes notwithstanding any
copyright annotation thereon.

1 Introduction
Matrix transpose is a key primitive in a wide variety
of scienti�c computations. In such applications, the
typical data size that is stored on the disk is of the order
of TeraBytes. To store such data, high-performance
computing platforms employ RAID [4] disk systems.
Two models have been widely used in the literature

to abstract the behavior of disk systems: the Parallel
Disk Model (PDM)[21] and the Linear Model (LM)[14].
The PDM is well suited to model I/O systems such as
the RAID [4]. In PDM, the data access cost is repre-
sented as dm=(DB)e�Tb, wherem is the data size, D is
the number of disks, and Tb is time to transfer a block
of data (B) between memory and disk. In the Linear
Model, the cost is represented as Ts+m� , where the Ts
is startup time, m is data size, and � is data transfer
time per unit data.
In this paper, we propose an eÆcient algorithm

for transposing large-scale matrices (out-of-core matrix
transpose). A matrix of size N �N initially resides on

the disk, N =
Qt�1

s=0 rs, where rs and t are positive in-
tegers. The matrix is to be transposed and stored in
another array. The size of the available main memory,
M , is smaller than the matrix size. Without loss of
generality, we assume that the matrices are stored in
row-major order.
Several researchers have studied the out-of-core ma-

trix transpose problem. A straightforward algorithm
performs matrix transpose using O(N3=2) I/O opera-
tions when M = O(N). Eklundh [12] proposed an al-
gorithm that has O(N logN) I/O complexity assuming
B = N . Ari et al. [2] modi�ed the algorithm in [12]
to reduce the number of I/O operations at the expense
of increased number of stages (passes). Floyd [13] de-
rived the upper and lower bounds on the number of
I/O operations when M = 2B. Aggarwal et al. [1] de-
rived a lower bound on the number of I/O operations

41



for the general case using PDM. Kaushik et al. [14]
reduced the number of I/O operations by a factor of
25% by combining two read operations compared with
the algorithm in [12].

All these e�orts focus on reducing the number of I/O
operations only. However, the main costs in the state-
of-the-art architectures consist of not only the time for
I/O but also the in-processor data transfer time and in-
dex computation time. Figure 1 depicts the breakdown
of the various costs in a typical transpose operation.

Our out-of-core matrix transpose algorithm reduces
the total execution time by reducing both the number
of I/O operations and the index computation time. The
reduction in the number of I/O operations is achieved
by using eÆcient data layout on disk and balancing the
number of read and write operations. We analyze the
complexity of our algorithm using the well-known Par-
allel Disk Model (PDM) and the Linear Model (LM).
A comparison of the algorithms with respect to the
number of I/O operations is shown in Table 1.

Disk I/O
(40%)

Index

(37%)
Computation

Memory-

(23%)

Memory
Transfer

Disk I/O
(18%)

Index

(46%)
Computation

Memory-

(36%)

Memory
Transfer

(a) (b)

Figure 1: Breakdown of the total execution time for
matrix transpose (a) On SGI/Cray T3E (DEC Alpha),
M = 16 MBytes, data size = 128 MBytes (b) On Sun
Enterprise, M = 64 MBytes, data size = 2 Gbytes.

To eliminate the index computation cost, our algo-
rithm partitions the available memory into two bu�ers
(read and write bu�ers). The expensive in-processor
permutation is replaced by data collect operations. The
write operations and collect operations are scheduled
eÆciently to reduce the overall time. The size of each
bu�er is determined by the available memory size and
the factorization of N . By using these techniques, the
index computation is replaced by inexpensive do-loops
(see Section 4.2.2).

We implemented the algorithm on a single node of an
SGI/Cray T3E based on DEC Alpha 21164 at the San
Diego Supercomputing Center (NPACI/SDSC) and a
Sun Enterprise 4000 based on UltraSPARC at the Uni-
versity of Southern California. The experiments were
carried out for available main memory sizes ranging
from 16 MB to 64 MB and data sizes ranging from

128 MB to 2 GB. The results show that our algorithm
reduces the execution time by up to 50%.

The organization of the remainder of this paper is
as follows. In Section 2, two well-known disk models
are brie
y described. In Section 3, previous algorithms
for large scale matrix transposition are discussed. Our
algorithm is described in detail in Section 4. Exper-
imental results as well as comparisons with previous
algorithms are presented in Section 5. Section 6 dis-
cusses a further extension of our algorithm to perform
Bit-Matrix-Multiply/Complement (BMMC) set of per-
mutations and Section 7 concludes the paper.

2 Disk Models

State-of-the-art disk systems employ sophisticated
hardware and perform several optimizations to reduce
the I/O time. For example, many of these systems em-
ploy a disk bu�er, a library bu�er, and a controller,
and perform access reordering. Each of the above sys-
tem features needs several parameters to describe its
behavior and such a model will be too complex to be
useful.

Two models of disk systems that capture the key
characteristics of such systems have been widely used
in the literature. One of them is the Parallel Disk
Model (PDM) [21]. It models the low level behavior
of disk systems using several parameters: block size
(B) which is the size of data that is transferred be-
tween disk and memory in one I/O operation, number
of disks (D), memory size (M), number of processors
(P ), and amount of data transferred (m). The total
time for data transfer between disk and memory can
be represented as dm=(DB)e�Tb, where Tb is the time
to transfer a block of data between memory and disk.

In another model [14], two costs are considered:
startup time and data transfer time. The startup time
is a �xed time for setting up the data transfer between
memory and disk. The rest of the cost is proportional
to the amount of data transferred. Thus, it can be
represented as Ts +m� , where Ts is the startup time,
m is the data size, and � is the time to transfer unit
data. Typically, Ts is in msec range, and � is in tens
of nsec/byte range.

3 Previous Algorithms

In this section, for the sake of completeness, two well-
known algorithms are brie
y described. These two al-
gorithms provide the best performance over many other
algorithms. The algorithm in [1] has been designed us-
ing the PDM and the algorithm in [14] has been de-
signed using the LM. In Section 4, our algorithm is
compared with these algorithms.

42



Table 1: Comparison of the number of I/O operations for D=1(s, 0 � s < t, refers to the stage. See Section 4.2
for details.)

Parallel Disk Model (PDM)

Algorithm Linear Model (LM)
B � M

rs
B > M

rs

Aggarwal et al. [1] - 2N2

B lgM=B min(N
2

B ; B) -

Kaushik et al. [14] N2

M

t�1P
s=0

(1 + rs)
2N2t
B

N2

B

t�1P
s=0

(Brs
M + 1)

This Paper N2

M

t�1P
s=0

min(rs; 2(
p
2rs + 1)) 2N2

B lgM=B min(N
2

B ; B) 2N2

B

t�1P
s=0

(
q

Brs
M + B

M )

3.1 Matrix Transpose
In the matrix transpose problem, an input matrix of
size N � N initially resides on the disk, where N =Qt�1

s=0 rs, for some t > 0, where rs is a positive integer.
If N is a prime number, we can add dummy rows to
make N to be nonprime. The input matrix is to be
transposed and stored in another array. M , the size
of the available memory is smaller than the input ma-
trix size. Throughout this paper, to illustrate the key
ideas, we use square matrices. However, the algorithms
can be easily extended to rectangular matrices as well,
using the technique in [14]. Also, for the sake of sim-
plicity, throughout the paper, we assume that all the
ratios are integers.

3.2 Aggarwal's Algorithm
Aggarwal et al. [1] showed a lower bound on the num-
ber of I/O operations to perform matrix transpose. In
this algorithm, as many blocks as the size of the avail-
able memory are read into memory. Then, the data is
permuted and written onto the disk. The number of
I/O operations for this approach is shown in Table 1.
In this algorithm, rs is restricted to be �M=B; 0 �

s < t. This is because if rs > M=B, a block must
be stored d rs

M=B e times per iteration instead of storing

it once. This results in a considerable increase in the
number of I/O operations. In our algorithm, we re-
lax this restriction by developing a technique to use a
larger block size. Also, this algorithm does not consider
index computation time. Index computation is needed
to perform permutation of the data in memory.

3.3 Kaushik's Algorithm

In this algorithm [14], there are t stages, where N =Qt�1
s=0 rs. Each stage consists of N2=M steps. In each

step, M=N rows are read into memory and a permuta-
tion of the data is performed in the memory. Then, the
data is written back to the disk in rs; 0 � s < t, write

operations. Thus, the number of read (write) opera-
tions in each step is 1 (rs). The total number of I/O
operations using the LM and the PDM are shown in
Table 1.
Although the number of I/O operations and the time

to transfer data between memory and disk are consid-
ered, the total number of read and write operations are
not optimized. Also, the index computation time is not
considered.

4 An EÆcient Algorithm
We present an overview of our approach in Section 4.1.
Section 4.2 provides the details of our approach and
analysis using PDM and LM.

4.1 Overview
One of the key features of our algorithm is the reduc-
tion in the total number of I/O operations, which is
achieved by means of an eÆcient data layout scheme
on the disk. For example, in [14], there are three I/O
operations (one read operation and two write opera-
tions) in each step when M = 2N and B = N . Our
algorithm requires only a single write operation in each
step as against two write operations in the case of the
previous algorithms in [1, 14]. The concept of a step is
explained in detail in Section 4.2. Since our algorithm
consists of the same number of steps as in the previ-
ous algorithms, there is a considerable reduction in the
total number of write operations.

This reduction in the number of write operations
is a consequence of the eÆcient data layout scheme
Ls; 0 � s < t, employed by our approach. Note that
the initial and �nal data layouts are the same as in
other algorithms. The proposed layout scheme pro-
vides a means for reducing the number of write op-
erations while maintaining the same number of read
operations. Thus, the number of I/O operations is re-
duced from three to two in each step which leads to a

43



33% reduction in the total number of I/O operations.

Another technique used in our algorithm is the bal-
ancing the numbers of read and write operations. In
balancing the numbers of read and write operations,
the key idea is that the total number of I/O operations
can be reduced by reducing the number of write oper-
ations at the expense of an increased number of read
operations. For example, when rs = 32, in each step,
the number of read (write) operations in [14] is 1 (32).
In our algorithm, we increase the number of read op-
erations to 9 in order to reduce the number of write
operations to 9. This results in a 45% reduction in the
total number of I/O operations.

As shown in Figure 1 (see page 2 of this paper),
the index computation takes up a signi�cant portion
of the total execution time. In the previous algorithms
[1, 14], the entire available memory is used for read-
ing data from disk. Even though this approach max-
imizes the memory utilization, it results in excessive
index computation cost. (Index computation refers to
computing the source or destination addresses of each
data.) To eliminate the index computation cost, the
available memory is partitioned into two di�erent-sized
bu�ers (read and write bu�ers). Instead of performing
a permutation before every write operation, only the
data needed for each write operation is moved into the
write bu�er. This is denoted as a collect operation.
The stride of the data access for the collect operation
is constant. Thus, it can be performed using inexpen-
sive do-loops.

If the same schedule as in the previous algorithms is
used (collect operations followed by write operations),
then the size of the write bu�er must beM=2. However,
in our algorithm, the utilization of the write bu�er is
increased using our schedule which results in a smaller
write bu�er. In our schedule, a write operation follows
each collect operation. Since the read bu�er size is
less than the available memory size, the number of I/O
operations is increased slightly. However, as shown in
Section 5, the total execution time is reduced signi�-
cantly due to reduction in the index computation time.

4.2 Details of the Algorithm
Additional details of our algorithm as well as the anal-
ysis are presented in this section. However, due to
space limitation, proofs of the theorems are not in-
cluded. Section 4.2.1 describes our method to reduce
the number of I/O operations. It �rst describes the
overall algorithm using the \layout" concept. Then,
the layout is explained for four di�erent cases. In sec-
tion 4.2.2, our method to reduce index computation
time is explained.

1 for s = 0 to t-1 // for each stage
2 for step = 0 to N2=M -1 // for each step
3 Read M units of data from disk using

layout Ls�1;
4 Permute the data on memory;
5 Write M units of data to disk using

layout Ls;

Figure 2: Overview of the Algorithm

4.2.1 Reducing Number of I/O Operations

Our algorithm to reduce the number of I/O operations
is elaborated here (see Figure 2). Note that the matrix

size is N �N and N =
Qt�1

s=0 rs.
The algorithm consists of t stages. In the sth stage,

0 � s < t, a submatrix is de�ned as follows. Let
di;j denote the data in the row i and column j of the
original input matrix. A submatrix Sk;l, 0 � k; l < Rs,
consists of di;j ; kN=Rs � i < (k + 1)N=Rs; lN=Rs �
j < (l + 1)N=Rs, where Rs =

Qs
i=0 ri.

In each stage, there are N2=M steps (Line 2). In
each step, the data is �rst read into memory (Line 3).
The data in the memory that is in the same submatrix
is moved to a contiguous region of the memory (Line
4). A superblock denotes such a contiguous region of
memory. There are rs superblocks of size M=rs. The
superblocks are written onto the disk (Line 5). The
layout, Ls; 0 � s < t, speci�es where each data is lo-
cated.
The layout, the schedule for reading data from the

disk, and the schedule for writing data onto the disk
are explained with the following four cases. Case 1 and
Case 2 pertain to the scenarios where as much data as
the memory size can be read from the disk or written
onto the disk in one I/O operation (i.e., B =M). Our
analysis shows that eÆcient data arrangement reduces
the number of I/O operations by a factor of (rs+1)=rs
(Case 1). In addition to this, if rs � 8 (Case 2), bal-
ancing the number of I/O operations further reduces
the total number of I/O operations.

If M=rs < B < M (Case 3), our algorithm provides
the best performance compared with the previous algo-
rithms. Finally, if B � M=rs (Case 4), our algorithm
has the same performance as the previous algorithm in
[1] with respect to the number of I/O operations.

Note that reducing the index computation time (dis-
cussed in Section 4.2.2) further improves the perfor-
mance in all the cases. In the following, s, 0 � s < t,
refers to the stage.

Case 1: (B = M and 1 < rs < 8) The key idea
here is data arrangement on the disk, Ls. The matrix
is �rst partitioned into Rs�1 areas. Each area includes

44

D 



N=Rs�1 rows.
The layout, Ls, for rs = 2, is explained with an ex-

ample (See Figure 3). The number in each small square
denotes a data element. The arrows indicate read and
write operations. If two superblocks are adjacent, the
data is read or written in one I/O operation. This en-
ables us to write two superblocks in one write operation
(for example, see row 0 and row 1 in Figure 3(a)). This
also enables us to read two superblocks in one read op-
eration in the next stage (for example, row 1 and row
2 in Figure 3(b)). Similar read and write patterns are
repeated for the other superblocks. If two superblocks
are adjacent, they can be read or written in one I/O
operation (except the �rst and the last row in each lay-
out). For example, in Figure 3(b), the superblocks in
the �rst and last rows are not adjacent.

0 1 2 3 4
8 9 10 11 12
16 17 18 19 20

5 6 7
13 14 15
21 22 23

24 25 26 27 28
32 33 34 35 36
40 41 42 43 44

29 30 31
37 38 39
45 46 47

48 49 50 51 52
56 57 58 59 60

53 54 55
61 62 63

0 1 2 3
4

8 9 10 11
12

16 17 18 19
20

5 6 7 13 14 15
21 22 23

24 25 26 27
28

32 33 34 35
36

40 41 42 43
44

29 30 31

37 38 39 45 46 47

48 49 50 51
52

56 57 58 59
6053 54 55 61 62 63

0 1
2 3

4

8 9
10 11

12
16 17
18 19

205
6 7

13
14 15

21
22 23

24 25
26 27

28
32 33
34 35

36

40 41
42 43

44

29
30 31

37
38 39

45
46 47

48 49
50 51

52

56 57
58 59

6053
54 55

61
62 63

(a) Stage 0

0 1 2 3
4

8 9 10 11
12

16 17 18 19
20

5 6 7 13 14 15
21 22 23

24 25 26 27
28

32 33 34 35
36

40 41 42 43
44

29 30 31

37 38 39 45 46 47

48 49 50 51
52

56 57 58 59
6053 54 55 61 62 63

0 1
2 3

4

8 9
10 11

12
16 17
18 19

205
6 7

13
14 15

21
22 23

24 25
26 27

28
32 33
34 35

36

40 41
42 43

44

29
30 31

37
38 39

45
46 47

48 49
50 51

52

56 57
58 59

6053
54 55

61
62 63

0 8

2 10

4

16 24

18 26

20

1 9

3 11
3612

5 13
28

21 29
44

37 45

17 25

19 27
52

33 41

35 43

7

49 57

51 59

23

60
53 61

15
6 14

31
22 30

32 40

34 42

39

48 56

50 58

5547
38 46

63
54 62

(b) Stage 1

(c) Stage 2

Disk Disk

Step 0

Step 1

Step 2

Step 3

Figure 3: An illustrative example(N = 8 =
2Q

s=0
2, and

M = 16)

If rs > 2, in the stth step, two superblocks, (st +
1) mod rs and (st+ 2) mod rs, are stored in one write

operation and the rest of the data is written in (rs�2)
write operations which results in rs�1 write operations.
Case 2: (B =M and rs � 8) In this case, the total
number of I/O operations can be further reduced by
balancing the numbers of read and write operations in
addition to the data layout and the schedule explained
in Case 1. In Kaushik et al.'s algorithm, the di�erence
between the numbers of read and write operations is
large. That is, in each step, the number of read oper-
ations is 1 and the number of write operations is rs.
In our algorithm, we develop a technique that reduces
the number of write operations at the expense of an
increased number of read operations.
Note that a straightforward method reduces the

number of write operations to rs � z, where z is the
number of the new read operations. Then, the total
number of I/O operations is (rs � z) + z = rs. The to-
tal number of I/O operations is reduced by only one. In
our algorithm, we decrease the number of write opera-
tions to approximately rs=z. Then, the total number of
I/O operations can be reduced by choosing an optimal
value of z. In the previous algorithms, each superblock
is stored in one disk write operation. In our algorithm,
z blocks are stored on the disk in one write operation.
Thus, the number of write operations is reduced by a
factor of z. In each read operation, to read data that
is \scattered" in noncontiguous locations, we need to
perform z read operations. It can be shown that, in
the sth stage, the optimal value of z is

p
2rs, 0 � s < t.

Theorem 1 applies to Case 1 and Case 2.

Theorem 1 In the Linear Model, the total number of
I/O operations in our algorithm is

N2

M

Pt�1
s=0min(rs;

p
2rs + 1).

Case 3: (M=rs � B < M) This is similar to Case 2;
the ony di�erence is the size of the block. It relaxes the
restriction (rs �M=B) that was imposed in [1]. In our
algorithm, we can increase the value of rs to be larger
than M=B so that the number of stages is decreased.
The optimal value of z is Brs=M .

Theorem 2 In the Parallel Disk Model, the total num-
ber of I/O operations in our algorithm is

2N2

M

Pt�1
s=0(
q

rsM
B + 1),

where M
rs

< B < M , 0 � s < t.

Case 4: (B � M=rs) In this case, our algorithm is
the same as the algorithm in [1].

4.2.2 Reducing Index Computation Time

In the previous algorithms, the available memory is
fully utilized to reduce the number of I/O operations.

45



In other words, in a read operation, as much data as
the size of the memory is read from disk. However, this
results in a large index computation time. Permuting
the data within the memory requires destination loca-
tion of each data element to be computed.
To reduce the total execution time, we eliminate the

expensive index computation by using the algorithm
shown in Figure 4. In our algorithm, we partition the
memory into two di�erent-sized bu�ers: one of size
Mr, which is used as a Read bu�er and the other of
size Mw, which is used as a Write bu�er. The read
bu�er is used for reading data from disk. After read-
ing the data, there are rs=z sets of collect and write
operations, where z is a positive integer (See Section
4.2.2). In each collect operation, data in z submatrices
is collected into the write bu�er and this operation is
repeated rs=z times (Line 5). The sizes of the write
and read bu�ers are determined as Mz=(rs + z) and
MRs=(rs + z), respectively.
In a collect operation, the data in z superblocks is

located in MrRs�1=N chunks of data. The amount of
data in each chunk is N=Rs�1, where Rs =

Qs
i=0 ri.

Thus, to collect the data into z superblocks, multiple-
level do-loops are necessary. In each do-loop, the
required computations are simple additions to com-
pute the loop-variables. Note that, in the previous
algorithms [1, 14], the computations to permute the
data consists of both index computations and loop-
variable computations. In our algorithm, since the
loop-variables are used to collect data to the write
bu�er, the index computation is eliminated.
The collected data in the write bu�er is written onto

the disk in a write operation (Line 6). Even though
the number of I/O operations increases by a factor of
M=Mr, the total execution time is reduced signi�cantly
due to the elimination of index computation time.

5 Experimental Results
We implemented the algorithms on a DEC Alpha sys-
tem (SGI/Cray T3E, DEC Alpha, 300 MHz) at the
San Diego Supercomputing Center (SDSC) and a Sun

1 for s = 0 to t - 1 // for each stage
2 for step = 0 to N2=Mr - 1 // for each step
3 Read data from disk;
4 for i = 0 to rs=z - 1
5 Move ith submatrix to

write bu�er;
6 Write data in write bu�er

to disk;

Figure 4: Pseudo-code for our algorithm

Enterprise 4000 system (UltraSparc, 336 MHz) at the
University of Southern California. For comparison pur-
poses, Kaushik et al.'s algorithm described in Section
3.3 was also implemented.

In our experiments, we observed that Aggarwal et
al.'s algorithm, described in Section 3.2, has the same
total execution time as the Kaushik et al.'s algorithm.
Even though the two algorithms perform the needed
permutation using di�erent methods and the permuted
data are di�erent, the permutation times are the same.
If the block size is smaller than M=rs in the sth stage,
0 � s < t, then both the algorithms require the same
I/O time, where t is the number of stages. I/O time
is di�erent for the two algorithms when the amount of
data transferred in one I/O operation is smaller than
B. The amount of the data transferred in one I/O op-
eration in our experiments ranges from 128 KBytes to
2 MBytes and the typical size of B in state-of-the-art
platforms is 4 KBytes. Thus, the performance of the
two algorithms is the same in our experiments. There-
fore, in Table 2 and Table 3, the execution time re-
ported under the heading \previous" refers to both the
algorithms.

The amount of main memory allocated to the data
was varied from 16 MBytes to 64 MBytes and the data
size was varied from 128 MBytes to 2 GBytes. For
each parameter value (memory and data sizes), the al-
gorithms were executed 5 times and the maximum, av-
erage, and minimum values were calculated. The re-
ported times are in seconds. The speedup of our algo-
rithm over the previous algorithms was calculated for
each parameter setting. The results of our experiments
are shown in the Table 2 and Table 3. The results show
that our algorithm reduces the execution time by about
50%.

The execution times correlate well with our analy-
sis (as explained in Section 4.2). For example, through
our experiments in implementing the algorithms on the
Sun Enterprise, we estimated the various parameters
that contribute to the overall execution time. Based
on this, we arrive at the following empirical equations:
1) Time for reading data from and writing data onto
disk = (size of data (in bytes) x number of stages x
2(one for each read and write operation) x data transfer
time/byte. 2) Index computation time = size of data
x number of stages x index computation time/byte. 3)
Data movement time = size of data x number of stages
x data movement time/byte. Using these equations we
can approximate the overall execution time as the sum
of all these contributing factors. Based on our exper-
iments we estimated the following: the time for data
transfer = 10 nsec/byte, the time for index computa-
tion = 50 nsec/byte and the time for data movement

46

D 



= 40 nsec/byte. For data size of 2 GBytes and using
a 3 stage algorithm, the time for reading data from
and writing data onto disk = 2G x 3 stages x 2 x 10
nsec/byte= 128.85 secs, index computation time = 2G
x 3 stages x 50 nsec/byte = 322.12 secs and data move-
ment time = 2G x 3 stages x 40 nsec/byte = 257.70
secs. The total execution time = 128.85 + 322.12 +
257.70 = 708.67 secs which is close to the actual values
shown in Table 3.

As seen from the tables, the execution time increases
by a factor of four when the data size is increased four-
fold. This is reasonable since the three major costs (I/O
time, index computation time, and memory-memory
transfer time) are proportional to the data size. Thus,
we can expect similar speedups for data sizes larger
than 2 GBytes.

6 Further Extensions

Our matrix transpose algorithm can be extended to the
more general problem of performing Bit Matrix Multi-
ply Complement (BMMC) [7] set of permutations.

Performing BMMC consists of several steps. In each
step, there are three basic operations as in the case of
matrix transpose: read data from disk, permutation
of the data in memory, and write data onto disk. We
expect our algorithm to improve the overall time to
perform BMMC, since in our approach, reducing the
number of I/O operations and reducing the index com-
putation time are independent of the permutation of
the data in memory.

To reduce the number of I/O operations, the algo-
rithm in Figure 2 is used to employ the two techniques
proposed in this paper: eÆcient data layout and bal-
ancing the number of I/O operations.

To reduce the index computation time, the algorithm
in Figure 4 is used: the available memory is partitioned
into two bu�ers, the permutation is replaced by collect
operations, and the collect operations and write oper-
ations are scheduled to maximize the utilization of the
available memory.

7 Conclusion

In this paper, we presented an eÆcient algorithm for
large-scale matrix transposition. Contrary to the previ-
ous works that have focused only on reducing the num-
ber of I/O operations, we identi�ed the major costs in
the state-of-the-art computing platforms in performing
transpose and the overall cost was reduced. The gener-
ality of the main ideas make them applicable to other
algorithms having recursive structures that operate on
large data sets.

8 Acknowledgements
We would like to thank ERDC and MSRC sta� for
their support in conducting this work. We would
also like to thank Bharani Thiruvengadam and San-
tosh Narayanan for their assistance in preparing this
manuscript.

References
[1] A. Aggarwal and J. S. Vitter, \The Input/Output com-

plexity of sorting and related problems," Communica-
tions of the ACM, Vol. 31, No. 9, pp. 1116-1127, 1988.

[2] M. B. Ari, \On transposing large 2n � 2n matrices,"
IEEE Trans. Computers, Vol. C-27, No. 1, pp. 72-75,
1979.

[3] L. Carter, J. Ferrante and S. F. Hummel, \Hierarchical
Tiling for Improved Superscalar Performance," Pro-
ceedings of IPPS '95, 1995.

[4] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and
D. A. Patterson, \RAID: high performance, reliable
secondary storage," ACM Computing Surveys, Vol. 26,
No. 2, pp. 145-185, June 1994.

[5] A. Choudhary, W. K. Liao, P. Varshney, D. Weiner,
R. Linderman and M. Linderman \Design, Implemen-
tation and Evaluation of Parallel Pipelined STAP on
Parallel Computers," 12th International Parallel Pro-
cessing Symposium, Orlando, Florida, 1998.

[6] A. Choudhary, M. Kandemir, H. Nagesh, J. No, X.
Shen, V. Taylor, S. More, and R. Thakur, \Data Man-
agement for Large-Scale Scienti�c Computations in
High Performance Distributed Systems," in High Per-
formance Distributed Computing Conference '99, San
Diego, CA, August 1999.

[7] T. H. Cormen, T. Sundquist, and L. F. Wisniewski,
\Asymptotically Tight Bounds for Performing BMMC
Permutations on Parallel Disk Systems," Technical Re-
port PCS-TR94-223, Dartmouth College, Department
of Computer Science, 1994.

[8] L. G. Delcaro and G. L. Sicuranza, \A method on
transposing externally stored matrices," IEEE Trans.
on Computers, Vol. C-23, No. 9, pp. 801-803, 1974.

[9] M. Kallahalla and P. Varman, \Optimal Read-Once
Parallel Disk Scheduling," Proc. ACM Workshop on
I/O in Parallel and Distributed Systems, April 1999.

[10] M. Kallahalla and P. Varman, \An Improved Parallel
Prefetching Algorithm," Proc. of Intl. Conference on
High Performance Computing, Dec. 1998.

[11] D. E. Dudgen and R. M. Mersereau, Multidimensional
Signal Processing, Prentice-Hall, 1984.

[12] J. O. Eklundh, \A fast computer method for matrix
transposing," IEEE Transactions on Computers, Vol.
20, Number 7, pp. 801-803, 1972.

[13] R. W. Floyd, \Permuting information in idealized two-
level storage, " Complexity of Computer Computa-
tions, pp. 105-109, Plenum, 1972.

47



Table 2: Experimental results on DEC Alpha
Data Size Memory Size = 16 MBytes Memory Size = 32 MBytes Memory Size = 64 MBytes
(MBytes) Previous Our Speedup Previous Our Speedup Previous Our Speedup

Min 45 24 1.88 58 33 1.76 48 32 1.50
128 Avg 50 24 2.08 60 36 1.67 48 32 1.50

Max 53 24 2.21 65 41 1.59 49 33 1.48
Min 202 97 2.08 211 126 1.67 197 132 1.49

512 Avg 248 125 1.98 235 133 1.77 199 133 1.50
Max 311 163 1.91 248 141 1.76 201 133 1.51
Min 834 547 1.52 889 452 1.97 841 576 1.46

2048 Avg 1031 596 1.73 895 479 1.87 849 583 1.46
Max 1165 667 1.75 906 519 1.75 860 605 1.42

Table 3: Experimental results on SUN Enterprise 4000
Data Size Memory Size = 16 MBytes Memory Size = 32 MBytes Memory Size = 64 MBytes
(MBytes) Previous Our Speedup Previous Our Speedup Previous Our Speedup

Min 36 18 2.00 37 18 2.06 37 18 2.06
128 Avg 37 18 2.00 38 19 2.00 38 19 2.00

Max 37 18 2.06 38 20 1.90 38 20 1.90
Min 145 79 1.84 149 82 1.82 147 78 1.88

512 Avg 145 80 1.81 150 84 1.79 148 81 1.83
Max 145 81 1.79 152 86 1.77 149 82 1.82
Min 609 343 1.78 610 335 1.82 630 336 1.88

2048 Avg 613 353 1.74 613 346 1.77 642 346 1.86
Max 617 357 1.73 614 355 1.73 653 351 1.86

[14] S. D. Kaushik, C.-H. Huang, J. R. Johnson, R. W.
Johnson, and P. Sadayappan, \EÆcient Transposi-
tion Algorithms for Large Matrices", Supercomputing,
1993.

[15] V. Kumar, A. Grama, A. Gupta, and G. Karypis,
Introduction to Parallel Computing, The Ben-
jamin/Cummings Publishing Company, Inc., 1994.

[16] Y. W. Lim, P. B. Bhat, and V. K. Prasanna, \EÆcient
Algorithms for Block-Cyclic Redistribution of Arrays,"
24:298-330, Algorithmica, 1999.

[17] http://www.darpa.mil/ito/research/dis/ index.html,
1999.

[18] H. Park, J. Suh, V. K. Prasanna, and M. Ung, "Par-
allel Implementation of 2D FFT on High Performance
Computing Platforms," DoD HPC User's Conference
'98, Houston, Texas, June 1998.

[19] H. K. Ramapriyan, \A generalization of Eklundh's al-
gorithm for transposing large matrices," IEEE Trans.
on Computers, Vol. C-24, No. 12, pp. 1221-1226, 1975.

[20] J. Suh and V. K. Prasanna, \Portable Implementation
of Real Time Signal Processing Benchmarks on HPC
Platforms," International Workshop on Applied Paral-
lel Computing in Large Scale Scienti�c and Industrial
Problems '98, Umea, Sweden, June 1998.

[21] J. S. Vitter and E. A. M. Shriver, \Algorithms for par-
allel memory I: Two-level memories," Algorithmica,
Vo. 12 No. 2-3, pp. 110-147, 1994.

48



 
 

Implementations of Real-time Data Intensive Applications on PIM-based 

Multiprocessor Systems∗∗∗∗ 
 

Jinwoo Suh, Ming Zhu¹, Changping Li, Stephen P. Crago, Stephen F. Shank², Richard H. Chau²†, 

Walter J. Mazur², and Rick Pancoast² 

 
University of Southern California/Information Sciences Institute 

4350 N. Fairfax Drive, Suite 770, Arlington, VA 22203 
{jsuh, cli, scrago}@isi.edu 

 
¹George Mason University 

4400 University Drive, Fairfax, VA 22030 
mzhu1@gmu.edu 

 
²Lockheed Martin Naval Electronics & Surveillance Systems - Moorestown 

199 Borton Landing Road   M/S 108-210   Moorestown, NJ  08057 
{stephen.f.shank, richard.h.chau , walter.j.mazur, rick.pancoast}@lmco.com 

 
 

                                                 
∗ Effort sponsored by Defense Advanced Research Projects Agency (DARPA) through the Air Force Research Laboratory, USAF, under 

agreement number F30602-99-1-0521. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes 
notwithstanding any copyright annotation thereon. The views and conclusions contained herein are those of the authors and should not interpreted as 
necessarily representing the official policies or endorsement, either expressed or implied, of the Defense Advanced Research Projects Agency 
(DARPA), Air Force Research Laboratory, or the U.S. Government. 

† Richard Chau was working for Lockheed martin when this work was conducted. 

Abstract 
 

The growing gap in performance between processor and 
memory speeds has created a problem for data-intensive 
applications. A recent approach for solving this problem is to 
use processor-in-memory (PIM) technology. PIM technology 
integrates a processor on a DRAM memory chip, which 
increases bandwidth between the processor and memory. In 
this paper, we discuss two PIM-based multiprocessor 
systems, the System Level Intelligent Intensive Computing 
(SLIIC) Quick Look (QL) board and a hypothetical V-IRAM 
multiprocessor board. The former system includes eight 
COTS PIM chips that are connected by a flexible FPGA-
based interconnect network. The V-IRAM board modeled 
contains four Berkeley V-IRAM PIM processors (currently 
under development) that are connected using FPGAs. The 
performance of several data intensive applications on the 
SLIIC QL board is measured. The performance of the 
applications on the V-IRAM board is modeled at the clock 

cycle level. The performances of these boards are compared 
with a PowerPC-based multicomputer and a Pentium system. 
 
 

1. Introduction 
 
Microprocessor performance has been doubling every 18-
24 months, as predicted by Moore’s Law, for many 
years[6]. This performance improvement has not been 
matched by DRAM (main memory) latencies, which have 
only improved by 7% per year [6]. This growing gap in 
performance between processor and memory speeds has 
created a problem for data-intensive applications.   

To solve this problem, many methods have been 
proposed such as caching and prefetching. However, these 
methods provide limited performance improvement and 
can even hinder performance for data-intensive 
applications. Caching has been the most popular memory 
latency tolerating technique [12][14]. Caching increases 

49



performance by utilizing temporal and spatial locality, but 
it is not useful for many data-intensive applications such 
as signal processing applications since they do not show 
such locality [13]. 

PIM technology is a promising method for closing the 
gap between memory speed and processor speed for data 
intensive applications. PIM technology integrates a 
processor on a DRAM memory chip. The integration of 
memory and processor on the same chip has the potential 
to decrease memory latency and increase the bandwidth 
between the processor and memory. PIM technology also 
has the potential to decrease other important system 
parameters such as power consumption, cost, and area. 

To assess existing COTS PIM technology, a System 
Level Intelligent Intensive Computing (SLIIC) Quick 
Look (QL) board was implemented and a corner turn 
(matrix transpose) performance was reported [16]. In this 
paper, we discuss the implementation of additional data-
intensive radar processing applications on the SLIIC QL 
board: the coherent side-lobe canceller (CSLC) and beam 
steering. Since the COTS PIM chips were not developed 
to achieve high performance, we also evaluate the 
performance of a V-IRAM-based board. The architecture 
of this board and simulation results are presented in this 
paper.  

The measured and simulated performance is compared 
with a COTS PowerPC-based multiprocessor and a 
Pentium III system. It is shown that the performance of 
the SLIIC QL board is better than a PowerPC-based 
multiprocessor that consumes more power and occupies 
more area in data intensive applications. However, it is 

not known yet weather or not such an improvement can be 
obtained for general non-data-intensive applications. 
Simulation results of a V-IRAM multiprocessor board 
show that the performance will be increased by about 50 
times compared with the current SLIIC QL board. 

The rest of the paper is organized as follows. In 
Section 2, PIM technology and PIM chips that are used in 
the boards evaluated in this paper are briefly discussed. 
Section 3 describes the architecture of the SLIIC QL 
board and V-IRAM multiprocessor board. In Section 4, 
the implementation results of data intensive applications 
are shown. Section 5 concludes the paper 
 

2. Processor-In-Memory (PIM)  
 
2.1.  PIM Technology 

Processor-In-Memory (PIM) technology is a promising 
method for closing the gap between memory speed and 
processor speed. PIM technology integrates a processor 
on a DRAM memory chip, which uses DRAM 
technology. Figure 1 shows a comparison of a PIM and a 
conventional processor-based system. In the conventional 
system, the CPU and memory are implemented in 
different chips. Thus, the bandwidth between CPU and 
memory is limited since the data must be transferred 
through chip I/O pins and copper wires on a PCB. In a 
PIM-based system, the integration of memory and 
processor on the same chip has the potential to decrease 
memory latency and increases the bandwidth between the 
processor and memory. The power usage is smaller than 

ALU Memory 

 Memory 

Cache 

CPU 

ALU 

PIM 

Cache

Figure 1. Comparison of PIM and a conventional system 

50



traditional processor-memory chip pair since it takes less 
power to drive signals within a chip than between chips. 

 
2.2.  M32R/D 
The only commercial general-purpose PIM chip that has 
more than 1 MB of DRAM is Mitsubishi M32R/D. The 
block diagram is shown in Figure 2 [9]. It contains a 32-
bit RISC CPU and 2-MByte internal DRAM. Between the 

CPU and DRAM, there is a 4-KB cache. The bus width 
between the cache and DRAM is 128 bits. 128 bits of data 
can be transferred between cache and memory in a clock 
cycle; however, since the CPU is 32 bits wide, only 32-bit 
data can be transferred between CPU and cache in a clock 
cycle. The external clock speed is 20 MHz, and the 
internal clock speed is 80 MHz. More detail description 
can be found in [16]. 

M32R/D 
CPU 

Bus 
Controller 

Cache 
Tag 

MMC DRAM 
(512 KB) 

DRAM 
(512 KB) 

DRAM 
(512 KB) 

DRAM 
(512 KB) 

Buffer 

Cache 
(1 KB) 

Buffer 

Cache 
(1 KB) 

Buffer 

Cache 
(1 KB) 

Buffer 

Cache 
(1 KB) 

DRAM 
Controller

ClockBus 
Interface

Unit 

Figure 2. Block diagram of M32R/D 

Figure 3. Simplified Block diagram of V-IRAM 

Vector Register File 

ALUs 

Memory Unit 

Memory Crossbar 

DRAM 

MIPS 
Scalar processor 

Flag units 

51



 
2.3.  V-IRAM 
The V-IRAM chip [7] is a research prototype being 
developed at the University of California at Berkeley. The 
simplified architecture of the chip is shown in Figure 3. 
The V-IRAM contains one vector-processing unit and 8 
Mbytes of DRAM in addition to a scalar-processing unit. 
The vector-processing unit contains two arithmetic units, 
two flag processing units, and two load/store units. These 
units are pipelined. Different kinds of operations have 
different number of stages. The units can be partitioned 
into several smaller units. For example, it can be 
partitioned into 4 units each of which performs 64-bit 
operations. There is a 512-bit data path between the 

processing units and DRAM. The DRAM is partitioned 
into two wings, each of which has four banks. There is a 
crossbar switch between the DRAM and vector processor. 
The vector processor supports 91 instructions including 
arithmetic and vector processing. It also supports special 
vector instructions that help to obtain high performance on 
dot-product and FFT operations. The target processor 
speed is 200 MHz, which would provide a peak 
performance of 3.2 GOPS. The power consumption is 
expected to be about 2 W. 

 
 

3. SLIIC QL Architecture 
 

Figure 4. Block diagram of SLIIC QL 

Figure 5. SLIIC QL board photograph 

52

Expansion Slot 

+ 

I   32-bit, 33 MHz PCI 



In this section, two PIM architectures are 
descrbed: SLIIC QL and V-IRAM boards. 
3.1.  SLIIC QL Board 
In this section, a brief description of the SLIIC QL is 
presented. More detail description of the SLIIC QL board 
is found in [16] and [17].  

A block diagram of the SLIIC Quick Look (QL) board 
is shown in Figure 4 and a photograph of an unpopulated 
board is shown in Figure 5.  The board fits in a standard 
PCI form factor, allowing it to be attached to a PC 
platform.  It contains eight Mitsubishi M32R/Ds, 
providing 640 MIPS of peak processing power and 16 
MB of memory. 

XA and XB are FPGAs that serve several purposes.  
First, they provide an interconnection network for the 
M32R/Ds.  Second, XA and XB provide programmable 
logic that can be used for processor synchronization and 
performance measurement. Third, the FPGAs provide 
logic that facilitates communication with the host PC.  

The IF FPGA provides the interface to the PCI bus and 
control for the rest of the board.  The user of the SLIIC 
QL board controls it through a Windows NT-based 
command line debugger that runs on a PC. 

 
3.2.  V-IRAM Multiprocessor Board 

The block diagram of the V-IRAM multiprocessor 
board is similar to SLIIC QL board except that the V-
IRAM replaces the M32R/D and one interconnect FPGA 
is used instead of two. The board contains four V-IRAM 
PIM processors, one interconnect FPGA for the 
interconnection network, and one IF FPGA for the 
interface with a host computer.  

The IF FPGA is the same as the IF FPGA on the SLIIC 
QL board as described in Section 3.1. The internal 
architecture of the interconnect network logic implements 
a crossbar switch that connects four PIMs that are 
connected to the FPGA. Since the number of processors is 
four, a 5x5 crossbar is implemented. The fifth port 
connects to IF, through which the PIMs communicate to 
the host PC. 

Communication between two processors is performed 

through the crossbar. The MIPS scalar processor in the V-
IRAM PIM performs communication. Two 
communication events can be performed simultaneously. 
A processor cannot receive data from more than one 
processor simultaneously. The application programmer is 
responsible for avoiding communication conflicts. There 
is no hardware or firmware prevention of conflicts. This 
enables a simpler design, and, as a result, the network is 
faster.  

 

4. Applications 
 
In this section, the two data-intensive applications for 
which results are presented in this paper are briefly 
described. 
 
4.1.  Beam Steering 

Beam steering is a radar processing application that 
directs a phased-array radar in an arbitrary direction 
without rotating antenna physically. In a conventional 
radar system, to send and receive signal from a specific 

d 

2d sin θ 

θ 

Figure 6. Beam steering 

FFT Sample 
Selection 

Weight 
Calculation 

Interpret 

FFT 
(subbanding)

Multiply IFFT Decimate 

Input 
Signal 

Figure7. Coherent sidelobe canceller (CSLC) 

53



direction, the antenna must be rotated in that direction. 
This operation needs electrical power to drive a motor and 
the movement speed is physically limited.  

To solve the problem, beam steering is used. Figure 6 
shows a one- dimensional beam steering operation. A real 
system consists of two dimensional antenna elements 
populated on a plane. In the system, many small antenna 
elements transmit the signal with different phases. In the 
figure, each of the three antenna elements transmits a 
signal with phase shift of d sin θ between adjacent 
elements. By choosing phases, the antenna direction can 
be controlled. The computation of the phase for each 
antenna element involves many load, store and arithmetic 
operations.  

In our implementation, the following parameters are 
used. The number of antenna elements is 12864 (=17 
rows * 17 columns). Each element can direct signal to up 
to 4 directions per dwell where a dwell is a period. For 
each direction, the phase needs to be calculated: 
Depending on the signal frequency and temperature, 
calibration data needs to be incorporated in the calculation 
of the phases. In the implementation, four calibration 
bands are processed. 
 
4.2.  Coherent Side-Lobe Canceller (CSLC) 
CSLC is a radar signal processing application used to 
cancel jammer signal caused by one or more jammers. To 
cancel jammer signals that appear as side-lobes in the 
frequency domain, one auxiliary channel per jammer 
signal is needed. The block diagram of the signal 
processing is shown in Figure 7.  

The operations in the upper half of the figure are 

known as weight calculation and the operations in the 
lower half are weight application. To cancel the side-lobe, 
the weight factor is calculated using the signal from the 
auxiliary channel. Then, the main signal is partitioned into 
several sub-bands in the time domain. Then, each sub-
band is converted to the frequency domain using the FFT 
(sub-banding). Weight factors are multiplied with the 
output of the FFT operation to cancel the side-lobe. Then, 
an inverse FFT is performed on the output data. Most of 
the computation time is spent on the FFT and IFFT 
operations. In our implementation, only the weight 
application is implemented.  

The following parameters are used for the 
implementation. Four input channels, two main channels, 
and two auxiliary channels are used. Each channel has 8 K 
data samples. All computations are done using floating-
point precision. The data is partitioned into 73 overlapped 
sub-bands, each of which contains 128 samples. For sub-
banding, a 128-sample FFT is used. 
 
5. Experimental Results and Analysis 
 

In this section, the implementation results of the CSLC 
and beam steering applications are presented. These are 
implemented or simulated on a SLIIC QL board, V-IRAM 
multiprocessor board, a PowerPC-based multiprocessor 
system, and a Pentium III system.  

The PowerPC system used for the implementation is a 
COTS PowerPC-based multiprocessor [1]. The 
applications are implemented on a CSPI 2741 board, 
which contains four PowerPC (MPC750, 400 MHz) 
processors and four Myrinet LaNAI network interfaces. 

Figure 8. Beam steering implementation results 

24.3

2.24

8.86

0.31
2.85

0.0850.330.72
0

5

10

15

20

25

30

QL (80MHz
M32R/D)

CSPI
(PowerPC
400MHz)

Pentium III
(733MHz)

VIRAM
(VIRAM-1
200MHz)

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

1 Processor
4 Processors

54



Each node has a 64 Kbyte Level 1 cache and a 1 Mbyte 
Level 2 cache. The processors are interconnected through 
a Myrinet network that has eight ports per board of which 
four ports are connected to the four processors, one is 
connected to a host system, and the rest are unconnected. 
The Gcc compiler was used to compile all applications.  

 For performance measurement on the Pentium III 
system, a 733 MHz Pentium III-based system was used. 
We measured only single-processor execution time. The 
applications were compiled using gcc and the operating 
system was Linux. 

In Figure 8, the implementation results of beam 
steering are shown.  For the PowerPC, Pentium, V-IRAM 
systems, data sizes are reduced by a factor of four to 
obtain four-processor system performance. This approach 
is reasonable since the beam steering (and CSLC) 

applications can be parallelized in the data domain and the 
parallelized code does not contain communication among 
processors.  

Note that Pentium III system shows superlinear 
speedup. We believe this is due to the effect of caching. 
The graph shows that the V-IRAM multiprocessor 
provides high speedup compared with other systems even 
though its clock frequency is not particularly fast. In the 
other three systems, the performance is roughly 
proportional to the clock frequency. However, the V-
IRAM performance is up to nine times faster than the 
Pentium III system even though the V-IRAM clock 
frequency is less than a third of the Pentium III. 

In Figure 9, CSLC implementation results are shown. 
Since the major computation in this application is floating 
point operations, it was not implemented on SLIIC QL 

91 171

596
354

778

2282

0

500

1000

1500

2000

2500

CSPI (PowerPC
400MHz)

Pentium III (733MHz) VIRAM (VIRAM-1
200MHz)

M
FL

O
PS

1 Proces s or
4 Proces s ors

Figure 9. CSLC implementation results 

0.1
1.0 0.8

7.3

1.0
1.9

12.9

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

QL (80MHz
M32R/D)

CSPI (PowerPC
400MHz)

Pentium III
(733MHz)

VIRAM (VIRAM-
1 200MHz)

BS
CSLC

Figure 10. V-IRAM speedup 

55



board as the M32R/D does not support floating-point 
operations by hardware. In the implantation of the 
application on the V-IRAM board, the current compiler 
that is still under development did not optimize the FFT 
code using the instructions that are suitable for the 
operations: permutations of data in registers. Thus, we had 
to extract the FFT core and program in assembly language 
for that portion. The graph shows that the V-IRAM 
obtains superior performance on the CSLC application. 

A summary speedup graph is shown in Figure 10. The 
performance on the PowerPC system is shown as a 
baseline with a speedup of 1. The performance 
improvement using the V-IRAM board is high due to the 
wide data path, vector processing unit, and the memory 
interface unit employed by V-IRAM compared with 
PowerPC and Pentium. Compared with current SLIIC QL, 
faster clock speed and latest chip manufacturing 
technology contributed to the speedup. 

 

6. Conclusions and Future Works 
 

We have presented the implementation results of the 
real-time data intensive applications, coherent side-lobe 
canceller and beam steering, on PIM systems and 
conventional systems. The PIM systems include the SLIIC 
QL architecture and a hypothetical multiprocessor V-
IRAM system.  The performance on the V-IRAM system 
is measured using the V-IRAM performance simulator. 
The conventional systems evaluated were a PowerPC-
based system and a Pentium III-based system. The 
implementation results show the potential advantages of 
PIM technology on data intensive applications. 

In the future, we are planning to implement a multi-
PIM architecture using latest PIM chips. The latest chips 
will provide higher clock speed, wider data path width, 
and more parallelism. 

 

7. Acknowledgments 
 

The authors would like to acknowledge Dave Judd, 
Christoforos Kozyrakis, Kathy Yelick, and the rest of the 
IRAM team for the use of the V-IRAM compiler and 
simulator and their generous help. 

 

8. References 
 
[1] CSP Inc., “2000 Series Hardware Manual S2000-HARD-
001-01,” CSP Inc., 1999. 
[2] S. R. Dartt, “Exephere: A Prototype for a Parallel 
‘Processor-In-Memory’ Architecture,” Master Thesis, 
University of Notre Dame, 1988. 
[3] DARPA, Data Intensive Systems, http://www.darpa.mil/ 
ito/ research/dis/index.html, 2000. 

[4] R. Games, “Benchmarking,” http://www.mitre.org/ 
technology/hpc/Data/ct-table.html, 2000. 
[5] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper, 
J. LaCoss, J. Granacki, J. Brockman, A. Srivastava, W. Athas, V. 
Freeh, J. Shin, and J. Park, “Mapping Irregular Applications to 
DIVA, a PIM-based Data-Intensive Architecture,” 
Supercomputing '99, Portland, OR, November 1999. 
[6] J. Hennessy and D. A. Patterson, Computer Architecture: A 
Quantitative Approach, 2nd Edition, Morgan Kaufmann 
Publishers, Inc., 1996. 
[7] C. Kozyrakis, “A Media-Enhanced Vector Architecture for 
Embedded Memory Systems,” Technical Report # UCB/CSD-
99-1059, UC Berkeley, July 1999. 
[8] K. Mai, et al, “Smart Memories: A Modular 
Reconfigurable Architecuture,” ISCA 2000, Vancouver, BC, 
Canada, June, 2000. 
[9] Mitsubishi Microcomputers, M32000D4BFP-80 Data 
Book, http://www.mitsubishichips.com/data/datasheets/mcus/ 
mcupdf/ds/e32r80.pdf. 
[10] Motorola, EC603e Embedded RISC Microprocessor 
Hardware Specifications, http://ebus.mot-sps.com/brdata/ 
PDFDB/MICROPROCESSORS/32_BIT/POWERPC/M951447
978093collateral. pdf. 
[11] V. K. Prasanna, “Algorithms for Data IntensiVe 
Applications on Intelligent and Smart MemORies (ADVISOR),” 
DARPA/ITO Data Intensive Systems Principle Investigator 
Meeting, May 2000. 
[12] S. A. Przybylski, Cache and Memory Hierarchy Design: A 
Performance-Directed Approach, Morgan Kaufmann Publishers, 
San Mateo, CA, 1990. 
[13] S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany, A. 
Lopez-Lagunas, P. R. Mattson, and J. D. Owens, A Bandwidth-
Efficient Architecture for Media Processing,” 31st Annual 
International Symposium on Microarchitecture, Dallas, Texas, 
November 1998. 
[14] A. J. Smith, “Cache Memories,” Computing Surveys, Vol. 
14, No. 3, pp. 473-530, 1982. 
[15] M. Snir, “Blue Gene System Overview,” Fourth Annual 
High Performance Embedded Computing Workshop,” Boston, 
MA, September 2000. 
[16] J. Suh, S. P. Crago, C. Li, and R. Parker, “A PIM-based 
Multiprocessor System,” International Parallel and Distributed 
Processing Symposium, San Francisco, CA, 2000. 
[17] J. Suh, S. P. Crago, C. Li, S. Shank, R. Chau, W. Mazur, 
and R. Pancoast, “SLIIC QL Technical Report,” USC/ISI 
Technical Report, In preparation. 
[18] Xilinx, http://www.xilinx.com/company/press/kits/pld/ 
fctsheet.htm, 2000. 
 

56



PIM- and Stream Processor-based Systems∗ 
Jinwoo Suh, Changping Li1, Stephen P. Crago, and Robert Parker 

University of Southern California/Information Sciences Institute 
4350 N. Fairfax Drive, Suite 770, Arlington, VA 22203 

{jsuh, crago, rparker}@isi.edu 

 

                                                 
∗ Effort sponsored by Defense Advanced Research Projects Agency (DARPA) through the Air Force Research Laboratory, USAF, under 

agreement number F30602-99-1-0521. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes 
notwithstanding any copyright annotation thereon. The views and conclusions contained herein are those of the authors and should not interpreted as 
necessarily representing the official policies or endorsement, either expressed or implied, of the Defense Advanced Research Projects Agency 
(DARPA), Air Force Research Laboratory, or the U.S. Government. 

1 Changping Li was an employee of USC/ISI when this work was performed. 

Abstract 
 

The growing gap in performance between processor and 
memory speeds has created a problem for data-intensive 
applications. Recent approaches for solving this problem 
are processor-in-memory (PIM) technology and streaming 
processor technology.  

In this paper, we assess the performance of systems based 
on PIM and stream processors. The performance of several 
data-intensive applications are simulated and results are 
compared with measured performance of conventional systems 
of systems based on the PowerPC and Pentium processors. 
 

1. Introduction 
The growing gap in performance between processor and 
memory speeds has created a problem for data-intensive 
applications. PIM technology is a promising method that 
integrates a processor on a DRAM memory chip. It has the 
potential to decrease memory latency and to increase the 
bandwidth between the processor and memory.  

The V-IRAM chip [2] is a PIM research prototype being 
developed at the University of California at Berkeley.  The 
V-IRAM contains one vector-processing unit and 8 Mbytes 
of DRAM in addition to a scalar-processing unit. There is a 
512-bit data path between the processing units and DRAM. 
The target processor speed is 200 MHz, which would 
provide a peak performance of 3.2 GOPS.  

Another approach for tolerating the performance gap 
between processor and memory is the stream processor. In 
this approach, the data is routed through a stream registers 
to hide memory latency, allow the re-ordering of DRAM 
accesses, and to minimize the number of accesses. 

The Imagine chip [1] is a research prototype streaming 
processor being developed at Stanford University. It 
contains eight clusters of arithmetic units that process data 
from a stream register file. The target processor speed is 
500 MHz, which would provide a peak performance of 40 
GOPS.  

In this paper, we assess the performance of data-

intensive radar processing applications on the V-IRAM and 
Imagine processors. We implemented the beam steering 
and coherent side-lobe canceller (CSLC) applications and 
measured performance using cycle-level accurate 
simulators. We show that the performance of systems based 
on these processors is better than PowerPC and Pentium-
based systems for these applications.  
 

2. Applications 
2.1.  Corner Turn 
The out-of-place corner turn is a matrix transpose in which 
two matrices are used: source and destination matrices. The 
matrix size used for this paper, which was chosen to be 
larger than most caches, is 1024 x 1024 with 4-byte 
elements. 
 
2.2. Beam Steering 
Beam steering is a radar processing application that directs 
a phase-array radar in an arbitrary direction without 
physically rotating the antenna. The antenna consists of a 
two-dimensional array of antenna elements populated on a 
plane. In the system, each antenna elements can transmit its 
signal with a different phase. The computation of the phase 
for each antenna element involves many load, store and 
arithmetic operations.  

In the implementation used for this paper, the following 
parameters are used. The number of antenna elements is 
12,864 (17 rows and 17 columns). The array of antenna 
elements can direct signal to up to 4 directions per dwell 
(period). For each direction, the phase needs to be 
calculated. Depending on the signal frequency and 
temperature, calibration data needs to be incorporated in 
the calculation of the phases. In this implementation, four 
calibration bands that are used to adjust parameters based 
on ambient environment such as temperature are processed. 

 
2.3.  Coherent Side-Lobe Canceller (CSLC) 
CSLC is a radar signal processing application used to 

57



cancel jammer signals caused by one or more jammers that 
appear as side-lobes in the frequency domain.  To cancel 
the side-lobe, weight factors are generated using the signal 
from the auxiliary channel. Then, the main signal is 
partitioned into several sub-bands in the time domain, and 
each sub-band is converted to the frequency domain using 
an FFT (sub-banding). Weight factors are multiplied with 
the output of the FFT operation to cancel the side-lobe. 
Finally, an inverse FFT is performed to convert the output 
data back to the time domain. In our implementation, the 
weight generation is not implemented.  

The following parameters are used for the 
implementation used in this paper. Four input channels, 
two main channels, and two auxiliary channels are 
assumed. Each channel has 8,192 data samples. All 
computations are done using floating-point precision. The 
data is partitioned into 73 overlapped sub-bands, each of 
which contains 128 samples. For sub-banding, a 128-
sample FFT is used. 
 
3. Experimental Results and Analysis 
In this section, the implementation results of the corner turn, 
CSLC, and beam steering applications are presented. 
Performance of these applications is estimated using cycle-
accurate simulators provided by the V-IRAM and Imagine 
teams. For comparison purposes, actual measurements of 
application performance were taken using a single node of 
a PowerPC-based multiprocessor system and a Pentium III 
system.  

 
Table 1. Implementation results 

 Corner 
Turn 

(MB/sec) 

CSLC 
(msec) 

Beam 
Steering 
(msec) 

PPC G3 
(400 MHz) 21.0 16.6 3.76 

Pentium III 
(733 MHz) 83.9 32.2 4.74 

 
V-IRAM 

(200 MHz) 1441.8 2.57 0.31 

Imagine 
(500 MHz) 1199.1 0.77 0.30 

 
In Table 1, the implementation results of corner turn, 

beam steering, and CSLC are shown. The graph of Figure 1 
shows that V-IRAM and Imagine provide speedups upto 70 
compared with a PowerPC system even though their clock 
frequencies are not particularly fast.  

The results show that the V-IRAM performs better than 
Imagine on a corner turn, which fits in its main memory. 
This is due to the fact that V-IRAM has higher bandwidth 
between memory (which is on-chip on V-IRAM and off-
chip on Imagine) and the processing unit. However, 
Imagine has higher computational performance, which is 
reflected in the performance of the CSLC, which is more 
computation-intensive. V-IRAM and Imagine have similar 
performance on the beam-steering application because of 
the balance between memory lookups and computation of 

that application.  
In a real system, the current implementation of the V-

IRAM may take less space than the current implementation 
of the Imagine since it has a scalar processor and internal 
DRAM on-chip and does not need external memory if the 
application fits in the memory. The Imagine chip includes a 
network interface and router, which reduces chip count in 
multiprocessor systems. 

 

0

10

20

30

40

50

60

70

Corner Turn CSLC Beam Steering

Sp
ee

du
p

PPC G3

Pentium

VIRAM

IMAGINE

Figure 1. Speedup

4. Conclusions 
We have presented simulated performance results for data-
intensive radar processing applications on systems based on 
the V-IRAM PIM and the Imagine streaming processor and 
compared them to conventional systems. The results show 
the potential advantages of the new technologies on data 
intensive applications. 

 

5. Acknowledgement 
The authors gratefully acknowledge the UC Berkeley 
IRAM team and the Stanford Imagine team for the use of 
their compilers and simulators and their generous help. The 
authors also acknowledge Rick Pancoast, Steve Shank, 
Walt Mazur, and Joe Racosky of Lockheed Martin NE & 
SS for providing the applications. 
 

6. References 
[1] B. Khailany, et. al., "Imagine: Signal and Image Processing 
Using Streams". HOT Chips 12, Stanford, CA, August 2000. 
[2] C. Kozyrakis, “A Media-Enhanced Vector Architecture for 
Embedded Memory Systems,” Technical Report # UCB/CSD-99-
1059, UC Berkeley, July 1999. 

58



 

 
A PIM-based Multiprocessor System∗ 

 

Jinwoo Suh, Changping Li, Stephen P. Crago, and Robert Parker 

 

University of Southern California/Information Sciences Institute 
4350 N. Fairfax Drive, Suite 770, Arlington, VA 22203 

{jsuh, cli, crago, rparker}@isi.edu 
 

                                                 
∗ Effort sponsored by Defense Advanced Research Projects Agency (DARPA) through the Air Force Research Laboratory, USAF, under 

agreement number F30602-99-1-0521. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes 
notwithstanding any copyright annotation thereon. The views and conclusions contained herein are those of the authors and should not interpreted as 
necessarily representing the official policies or endorsement, either expressed or implied, of the Defense Advanced Research Projects Agency 
(DARPA), Air Force Research Laboratory, or the U.S. Government. 

 
Abstract 

The growing gap in performance between processor and 
memory speeds has created a problem for data-intensive 
applications. A recent approach for solving this problem is 
to use processor-in-memory (PIM) technology. PIM 
technology integrates a processor on a DRAM memory 
chip, which increases bandwidth between the processor 
and memory. In this paper, we discuss a PIM-based 
multiprocessor system, the System Level Intelligent 
Intensive Computing (SLIIC) Quick Look (QL) board. 
This system includes eight COTS PIM chips and two 
FPGA chips that implement a flexible interconnect 
network. The performance of the SLIIC QL board is 
measured and analyzed for the distributed corner-turn 
application. We show that the performance of the current 
SLIIC Ql on the distributed corner turn application is 
better than a PowerPC-based multicomputer that 
consumes more power and occupies more area. This 
advantage, which can be achieved in a limited context, 
demonstrates that even limited COTS PIMs have some 
advantages for data-intensive computations.  
 
 

1. Introduction 
Microprocessor performance has been doubling every 

18-24 months, as predicted by Moore’s Law, for many 
years [9]. This performance improvement has not been 
matched by DRAM (main memory) latencies, which have 
only improved by 7% per year [9]. This growing gap in 
performance between processor and memory speeds has 
created a problem for data-intensive applications.   

To solve this problem, many methods have been 
proposed. However, these methods provide limited 
performance improvement or even lower performance for 
data intensive applications. Among them, the cache has 

been the most popular method[1][16][18]. Since caches 
increase performance by utilizing temporal and spatial 
localities, they are not useful for data intensive 
applications such as signal processing applications since 
they do not show such localities[17]. 

Another method used to tolerate memory latency is 
data prefetching[6][8]. By reading data before it is 
necessary, prefetching can hide the memory-cache 
latency. However, the method can only be applied to 
programs with certain access patterns. Also, it is limited 
by the size of cache and the size of working set. 

Processor-In-Memory (PIM) technology is a promising 
method for closing the gap between memory speed and 
processor speed for data intensive applications. PIM 
technology integrates a processor on a chip that uses 
DRAM technology. The integration of memory and 
processor on the same chip has the potential to decrease 
memory latency and increase the bandwidth between the 
processor and memory. PIM technology also has the 
potential to decrease other important system parameters 
such as power consumption, cost, and area. 

In this paper, we discuss the implementation of a 
multiprocessor board that uses PIMs and a reconfigurable 
interconnect that uses FPGAs. The SLIIC Quick Look 
board was designed to facilitate the investigation of the 
possible benefits of PIMs by using current COTS PIM 
technology.  

The SLIIC QL board is implemented as an attached 
compute accelerator and is implemented on a PCI board, 
allowing it to be hosted by a PC and other common 
desktop computers. The main components of the SLIIC 
QL board are eight PIM chips connected by FPGAs. The 
programmable logic of the FPGAs allows for a flexible 
interconnection between the processors, host control 
interface, and performance measurement. 

The performance of the SLIIC QL board is measured 
and analyzed using a distributed corner turn (matrix 

59



transpose) application. The performance is compared with 
a COTS PowerPC-based multiprocessor. It is shown that 
the performance of the SLIIC QL board is better than a 
PowerPC-based multiprocessor that consumes more 
power and occupies more area in data intensive 
applications. However, it is not expected to have such an 
improvement for general computation-intensive 
applications.  

The rest of the paper is organized as follows. In 
Section 2, PIM technology and the related work are 
briefly discussed. Section 3 describes the architecture of 
the SLIIC QL board. In Section 4, the corner turn 
implementation results are shown. Section 5 presents an 
analysis of the corner turn performance. Section 5 
concludes the paper. 
 

2. Processor-In-Memory (PIM) Technology 
and Related Work 

PIM technology allows a wide bus between processor 
and memory that allows fast data transfer between the two 
components. The power usage is smaller than traditional 
processor-memory chip pair since it takes less power to 
drive signals within a chip than between chips. 

The only commercial PIM chip that has more than 1 
MB of DRAM is Mitsubishi M32R/D [12]. It contains a 
32-bit CPU and 2-MByte internal DRAM. The CPU is a 
five stage RISC and has 83 instructions. Most instructions 
are executed in one clock. No floating-point operation is 
supported.  

The DRAM is partitioned into four blocks. For fast 
data access, there is a 4-KB cache. If data is available on 
cache, the data is accessed from cache; otherwise the data 
is transferred from memory to cache first, and then 
transferred to CPU. The cache line size is 128 bits. The 
cache can be disabled by the user. The bus width between 
the cache and DRAM is 128 bits.  

I/O is performed through the Bus Interface Unit, which 
transfers 16 bits using an external clock. The external 
clock speed is 20 MHz, and the internal clock speed is 80 
MHz.   

The PIM is operated in one of the three modes: active, 
sleep, and stand-by modes. In active mode, all 
components are active. In sleep mode, only memory is 
active and external device can write to or read from the 
memory. In stand-by mode, all components are disabled; 
however, the contents of the memory are preserved.  

There are several PIM research prototypes being 
developed. One of them is the V-IRAM chip [10]. The V-
IRAM contains two 256-bit vector-processing units and 8 
Mbytes of DRAM in addition to a scalar-processing unit. 
Another PIM chip under development is the DIVA chip 
[7], which has 8 MB of DRAM and 1024 bits of total data 
path width. 

The Exesphere project implemented a multi-PIM 
architecture [3]. Each Exesphere board contains nine 
M32R/D processors. There is a bus that supports only one 

communication access at a time between the processors 
through which processors communicate. The Exesphere 
board is dependent on a separate board for the PCI 
interface. Even though simulation results are reported, no 
actual application execution results have been reported. 
Our work provides real execution results on PIM chips. 

The IBM Blue Gene project is also investigating the 
use of PIMs in a high-performance parallel architecture 
[19]. The Blue Gene architecture is being developed for 
modeling the folding of human proteins. The Blue Gene 
project is developing multithreaded PIM processors. 

The ADVISOR project has begun to investigate the 
algorithmic framework on the design of applications for 
PIM architectures[15]. The ADVISOR framework models 
the main characteristics of PIM chips and then, algorithms 
are designed based on the model. Example algorithms are 
reported for various applications. 

 

3. SLIIC QL Architecture 
3.1.  Hardware 

The SLIIC QL board uses eight Mitsubishi M32R/D 
processors. The M32R/D processor was chosen because it 
provides a relatively large memory size (2 MB) and high 
data path width between memory and cache (128 bits). It 
also has a small footprint that enables many processors to 
fit on a board.  

A block diagram of the SLIIC Quick Look (QL) board 
is shown in Figure 1.  The board fits on a standard PCI 
form factor and contains eight Mitsubishi M32R/Ds, 
providing 640 MIPS of peak processing power and 16 
MB of memory.   

XA and XB are FPGAs that serve several purposes.  
First, they provide an interconnection network for the 
M32R/Ds.  Second, XA and XB provide programmable 
logic that can be used for processor synchronization and 
performance measurement.  Each FPGA has an attached 
SRAM memory that can be used to store tables of 
performance counters and data.  Third, the FPGAs 
provide logic that facilitates communication with the host 
PC.  

There are two advantages to implement these functions 
in FPGAs. First, modification of the functions and circuits 
can be done without changing the hardware. The FPGA 
configurations are specified using the VHDL hardware 
description language. This is very important for research 
work where many changes are inevitable. Second, the 
flexibility allows the board to be used for other 
applications. When the board is used for another 
application, the logic in the FPGAs is changed to 
accommodate new needs.  

3.2.  Firmware 
The internal architecture of the interconnect network 

logic implemented with the interconnect FPGAs is 
described in this section.  

The two interconnection FPGAs, XA and XB, 
implement the same logic. Each FPGA implements a 

60



crossbar switch that connects four PIMs that are 
connected to the FPGA. The crossbar is pipelined to 
increase throughput. Figure 2 shows the interconnection 
architecture.  

In each FPGA, there is a 7x7 crossbar switch. Four 
crossbar inputs and outputs are connected to the four 
processors in the cluster (where a cluster means four 
processors connected to an FPGA). When communication 
is performed among processors in a cluster, the 4x4 sub-
crossbar is used. To communicate with a processor in a 
different cluster, one of the two paths between the two 
clusters must be used. To use a path, the processors use 
one of the two ports connected to the two paths in the 7x7 
crossbar. The remaining port (omitted from Figure 2) 
connects to IF through which PIMs communicate to host 
PC.  

Communication between two processors is 
implemented as follows. To communicate another 
processor, a processor initiates the communication by 
setting a path between the two processors. Then, the 
source processor sends data to the destination processor. 
After communication, the source processor resets the path. 
A processor cannot receive data from more than one 
processor simultaneously.  The application programmer is 
responsible for avoiding communication conflicts. There 
is no hardware or firmware prevention of conflicts. This 
enables a simpler design, and, as a result, the network is 
faster. 

Each processor has its internal memory (address 0 to 

0x1F FFFF) and remote memory mapped to its address 
0x20 0000 to 0x3F FFFF. All remote memory (memory 
on other PIM chips) is mapped to the same address space. 
A destination ID number sent before a message 
determines the actual PIM that is mapped to the external 
memory address range at any given time. For intra-cluster 
communication, the crossbar pipeline has three stages. 

The two FPGAs clusters communicate through two bi-
directional paths (unidirectional at a given time).  The 
application programmer or system software needs to set 
the path number to use in addition to the destination 
processor ID before sending a message. Inter-cluster 
communication has five pipeline stages. 

For processor synchronization, barrier synchronization 
is supported. Barrier synchronization is implemented 
using FPGA logic. Barrier synchronization can be 

performed with very little 
overhead (a few system 
clock cycles). 

3.3.  Software 
The SLIIC QL board 

communicates with the host 
PC using the SLIIC 
debugger. The SLIIC 
debugger, which runs on 
Windows NT, allows a user 
to start execution, read data 
from PIMs, write data to 
PIMs, read counter data 
(there is a counter associated 
with each processor that is 
used for measurement of 
execution time), etc. On 
start-up, the debugger 
initializes itself and 
automatically sets the SLIIC 
QL board clock speed to 20 
MHz. More detailed 
information, such as 
supported commands and 
memory address mapping 
can be found in [20]. 

For application 
programmers, an application 
programming interface (API) 

XA 
4085 

M32R/D 

M32R/D 

M32R/D 

M32R/D 

59 

XA 
4085 

M32R/D 

M32R/D 

M32R/D 

M32R/D 

60 

IF 
4062 

32-bit 33 MHz PCI 

100-pin I/O 
Connector 

100-pin I/O 
Connector 

64 

78 

41 

SRAM SRAM 

Clock 

Expansion Slot 

EEPROM 

64 

78 

Figure 1. SLIIC architecture 

Figure 2. Interconnect network architecture 

P0 
P1 
P2 
P3 Crossbar 

Switch 

XA 
P4 
P5 
P6 
P7 Crossbar 

Switch 

XB 
Path 0 
Path 1 Mux 

Mux 
Mux 
Mux P0 

P1 
P2 
P3 Crossbar 

Switch 

XA 
P4 
P5 
P6 
P7 Crossbar 

Switch 

XB 
Path 0 
Path 1 Mux 

Mux 
Mux 
Mux 

61

•••♦♦*••••••♦♦♦••« 

:: 



is provided that includes a communication interface, 
barrier synchronization, and timer control. More detailed 
information, such as supported commands and memory 
address mapping can be found in [20]. 

 

4. Experimental Results and Analysis 
In this section, the performance of the SLIIC QL board 

is reported using the corner turn (matrix transpose) 
application. Then, these experimental results are analyzed.  

Corner turn is a matrix transpose operation. Initially, a 
matrix is stored in memory. Then, the matrix is transposed 
and stored in the same matrix or another matrix. If more 
than one processor are involves, then, communication cost 
can be a major cost. Also involved is local transpose cost 
based on the communication paradigm. 

In this paper, various kinds of corner turn performance 
were measured: local in-place, local out-of-place, intra-
cluster in-place, intra-cluster out-of-place, and inter-
cluster out-of-place corner turns. In a local corner turn, 
only one processor was used to perform the corner turn, 
and in an intra-cluster corner turn, the four processors 
connected to a single FPGA were used. In an inter-cluster 
corner turn, all eight processors on the board were used. 
Local corner turns were executed on a single processor to 
measure the on-chip bandwidth. Distributed corner turns 
were executed to measure the memory to I/O bandwidth.  

In the in-place corner turn, the source and destination 
matrices were the same, and in out-of-place corner turn, 
they were distinct. For all multiprocessor corner turns, all 
processors served as both source and destination. Figure 3 
shows the measured corner turn performance on the QL 
board. All corner turn code was written in C and compiled 
with gcc using optimization level –O2. 

For local corner turns, in-place performs better than 
out-of-place. This is because fewer address calculations 
are necessary for the in-place corner turn. Address 
calculations are re-used for the source and destination 
data. For the distributed corner turns (intra-cluster), out-
of-place performs better because an extra data transfer to 
a temporary buffer is required for the in-place case. In the 
local case, this temporary buffering is done in the 
processor registers, but the larger message sizes of the 
distributed corner turn require an extra memory transfer. 

The performance of the intra-cluster out-of-place 
corner turn is almost double that of the one-processor 
performance. A doubling of performance is the maximum 
that can be expected because two pairs of processors are 
exchanging data at any given time. The level of 
performance achieved indicates that the I/O capability of 
the M32R/D does not limit performance severely.  

The performance drops significantly when the data size 
in a processor is equal to or greater than 4 KB, which is 
the size of the cache on the M32R/D. This phenomenon 
was not observed in local out-of-place corner turns, 
indicating that the performance of the local out-of-place 
corner turn is not limited by the cache. Possible 
bottlenecks are the address computation and bandwidth of 

the system bus, which connects the processor, cache, and 
DRAM. The system bus also is used for I/O, but I/O is not 
used in the local corner turns. The low performance at the 
small matrix sizes is due to loop overhead. 
 

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

0.2
5 1 4 16 64 25

6
10

24
40

96

Matrix Size (KBytes)
C

T 
Pe

rf
or

m
an

ce
 (M

B
/s

ec
)

SLIIC Local Out-of-place
SLIIC Intra-cluster Out-of-place
SLIIC Local In-place
SLIIC Intra-cluster In-place
SLIIC Inter-cluster In-place

Figure 3. QL Corner Turn Performance 
 

The performance of the out-of-place corner turn with 
eight processors when the data size is 4 MB is 77.2 
MB/sec, which is approximately 40% more than the 
performance of four-processors. It is not twice the 
performance of four processors because of the inter-
cluster paths limit performance. To fully utilize the eight 
processors during a corner turn, there must be four paths 
for inter-cluster communication. Only two paths are 
available in the current network configuration. Thus, some 
of the processors idle during the corner turn, which 
degrades the performance. 

For comparison purpose, corner turn operations were 
also implemented on a COTS PowerPC-based 
multiprocessor, the CSPI 2641 [1]. Each CSPI 2641 
consists of two boards. Each board contains two PowerPC 
(200 MHz) processors and a LaNAI network interface. 
The processors are interconnected through a Myrinet 
network. In our system, since only one board in each CSPI 
2641 was available, two CSPI 2641s were used to use four 
processors. The gcc compiler using –O2 and MPI library 
were used. Note that the corner turn on CSPI needs local 
data movement before and after the communication due to 
the use of MPI library that does not provide stride access. 

 Figure 4 shows the performance of the QL board 
compared to the CSPI 2641. The graph shows the 
performance of a distributed corner turn running on four 
processors and local corner turn performance. The 
performance here is defined as the matrix size per 
execution time. 

62



Similar results of out-of-place corner turn on Mercury 
multicomputer system using PowerPC were reported [5]. 
The graph shows that the performance of the QL board is 
better than the PowerPC-based platform.  

200 MHz PPC is a little outdated since the latest PPC 
is 733 MHz now (MPC7450). However, for comparison 
purpose, since the M32R/D is 80 MHz, 200 MHz is a 
reasonable comparison when we employ a rule of thumb 
that the processor speed is two to three times faster than 
DRAM technology. 

The area and power consumed are much different as 
shown in Figure 5. The four-processor implementation of 
the corner turn on the QL board runs on five chips (four 
M32R/Ds and one FPGA for interconnect). The chip 
count for the COTS platform is at least triple, with each of 
the four nodes containing a processor, DRAM, and 
network interface. The power advantage for the M32R/D 
processors is even more pronounced. Each M32R/D 

typically consumes 0.54 W [12], while each PowerPC 
consumes 4.2 W [10]. While the PowerPC-based platform 
does have advantages, such as higher computational 
throughput and a more robust message-passing 
implementation, this comparison shows the potential 
advantages that PIM processors have for applications that 
require high bandwidth memory accesses in a small 
footprint and with low power consumption. The power 
and cost comparison is shown in Figure 5. 

To understand the effect of the cache on the corner turn 
using PIM, the performance of out-of-place local corner 
turn using tiling is measured. The tiling is used to 
maximize the cache utilization. The matrix size was 128 x 
128. Tile size is varied from 4 x 4 to 128 x 128.  

Using this method, there was no performance 
improvement compared with non-tiling corner turn. This 
indicates that the cache is not bottleneck on the M32R/D 
when data size is large. If the block size is small, the 
overhead incurred by more address computation reduces 
the overall performance significantly (up to 30%). When 
the block size is large, that effectively reduce overhead 
and it improves the performance compared with small 
block size.  

 

5. Analysis 
In this section, the analysis of the corner turn 

performance is presented. The analysis is for the data size 
of 16 bytes since it is the cache line size.  

To read 16 bytes of data (a cache line size on an 
M32R/D), the number of required cycles are [12]: 

- 5 cycles to move the first word from DRAM to cache 
(This also brings three additional word together), 

- 3 cycles (one per word for the three extra words), 
- 0.25 cycles for page miss (a page miss every 512 

Bytes, penalty = 8 cycles), 
- 0.13 cycles for refresh ( a refresh takes 8 cycles is 

performed every 512 cycles), and 
- 0.0625 cycles for branch (assuming 16 

instructions per loop and a loop causes 2 stalls). 

0.00
10.00

20.00
30.00

40.00
50.00

60.00

64 256 1024

Matrix Size (KBytes)

C
T 

Pe
rf

or
m

an
ce

 (M
B

/s
ec

) QL Intra-
cluster Out-of-
place
PPC Out-of-
place

QL Local In-
place

PPC Local In-
place

Figure 4. Distributed Corner Turn 
Performance Comparison with PowerPC 

Throughput (MB/sec) 

20.00 
22.00 
24.00 
26.00 
28.00 
30.00 
32.00 

4 x 4 8 x 8 16 x 
16 

32 x 
32 

64 x 
64 

128 x 
128 

Tile size 

Figure 6. Performance versus tile size 

0 

Figure 5. Comparison with PowerPC 

 1
 

4

2

 

 

 

 
 

Power 
(watts) 

Cost (x10 $) 

 PPC (+ Memory)   

M32R/D  

Space (x10 cm2) 

3

5

63



-  
Thus, reading 16 bytes takes 8.4425 clock cycles, and 

the maximum performance is 151.6 MB/sec. Our best 
experimental result was 129.7 MB/sec (85.5% of 
theoretical maximum).  

 
To write 16 bytes of data, the required cycles are: 
- 8 cycles to move data from DRAM to cache (previous 

data must be sent to DRAM first), 
- 8 cycles (two per one word), 
- 0.25 cycles for page miss (a page miss every 512 

Bytes, penalty = 8 cycles), 
- 0.13 cycles for refresh ( a fresh takes 8 cycles, and a 

refresh every 512 cycles), and 
- 0.0625 cycles for branch (assuming 16 instructions 

per loop and a loop causes 2 stalls). 
 

Thus, writing 16 bytes takes 16.4425 and the maximum 
performance is 77.85 MB/sec. Our best experimental 
result was 72.7 MB/sec (93% of theoretical maximum). 

Corner turn performance can be analyzed using the 
results of the read and write performance.  

For 16 bytes of data, the required cycles are: 
- 8.4425 (for load) and 16.4425 (for store) cycles are 

needed as described before, 
- 2 cycles for address calculations,  
- 1 cycles for loop variable,  
- 1 cycle for compare, and  
- 3 cycles for branch.  
The total is 31.885 cycles which provides 38.28 

MB/sec for a local out-of-place corner turn. The 
experimental result is 31.88 MB/sec (83.3 % of 
theoretical maximum). 

 

6. Conclusions and Future Works 
We have described the SLIIC QL architecture, a 

single-board PIM-based multiprocessor with a 
programmable interconnect. We have shown that the 
board performs a distributed corner turn with performance 
better than a COTS PowerPC-based multicomputer using 
less area and power in data intensive applications.  

In the future, we are planning to implement a multi-
PIM architecture using the latest PIM chips, which will 
provide higher clock speed, wider data path width, and 
more parallelism. 

 

7. References 
[1] C. Conti, D. H. Gibson, and S. H. Pitowsky, “Structural 
aspects of the System/360 Model 85, Part I: General 
Organization,” IBM Systems Journal, Vol. 7, No. 1, pp. 2-14, 
1968. 
[2] CSP Inc., “2000 Series Hardware Manual S2000-HARD-
001-01,” CSP Inc., 1999. 
[3] S. R. Dartt, “Exephere: A Prototype for a Parallel 
‘Processor-In-Memory’ Architecture,” Master Thesis, 
University of Notre Dame, 1988. 

[4] DARPA, Data Intensive Systems, http://www.darpa.mil/ito 
/research/dis/index.html, 2000. 
[5] R. Games, “Benchmarking,” http://www.mitre.org/ 
technology/hpc/Data/ct-table.html, 2000. 
[6] A. Gupta, J. L. Hennessy, K. Gharachorloo, T. Mowry, and 
W. D. Weber, “Computative Evaluation of Latency Reducing 
and Tolerating Techniques,” Proc. 18th Annual International 
Symposium on Computer Architecture, Toronto, May 1991. 
[7] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper, 
J. LaCoss, J. Granacki, J. Brockman, A. Srivastava, W. Athas, V. 
Freeh, J. Shin, and J. Park, “Mapping Irregular Applications to 
DIVA, a PIM-based Data-Intensive Architecture,” 
Supercomputing '99, Portland, OR, November, 1999. 
[8] K. Hwang, Advanced Computer Architecture Parallelism 
Scalability Programmability, McGraw-Hill, 1993. 
[9] J. Hennessy and D. A. Patterson, Computer Architecture: A 
Quantitative Approach, 2nd Edition, Morgan Kaufmann 
Publishers, Inc., 1996. 
[10] C. Kozyrakis, “A Media-Enhanced Vector Architecture for 
Embedded Memory Systems,” Technical Report # UCB/CSD-
99-1059, UC Berkeley, July 1999. 
[11] K. Mai, et al, “Smart Memories: A Modular 
Reconfigurable Architecuture,” ISCA 2000, Vancouver, BC, 
Canada, June,June 2000. 
[12] Mitsubishi Microcomputers, M32000D4BFP-80 Data 
Book, http://www.mitsubishichips.com/data/datasheets/mcus/ 
mcupdf/ds/e32r80.pdf. 
[13] Motorola, EC603e Embedded RISC Microprocessor 
Hardware Specifications, http://ebus.mot-sps. 
com/brdata/PDFDB/MICROPROCESSORS/32_BIT/POWERP
C/M951447978093collateral. pdf. 
[14] D. A. Patterson, J. L. Hennessy, Computer organization 
and design: the hardware/software interface, Morgan Kaufmann, 
1994. 
[15] V. K. Prasanna, “Algorithms for Data IntensiVe 
Applications on Intelligent and Smart MemORies (ADVISOR),” 
DARPA/ITO Data Intensive Systems Principle Investigator 
Meeting, May 2000. 
[16] S. A. Przybylski, Cache and Memory Hierarchy Design: A 
Performance-Directed Approach, Morgan Kaufmann Publishers, 
San Mateo, CA, 1990. 
[17] S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany, A. 
Lopez-Lagunas, P. R. Mattson, and J. D. Owens, “A Bandwidth-
Efficient Architecture for Media Processing,” 31st Annual 
International Symposium on Microarchitecture, Dallas, Texas, 
November 1998. 
[18] A. J. Smith, “Cache Memories,” Computing Surveys, Vol. 
14, No. 3, pp. 473-530, 1982. 
[19] M. Snir, “Blue Gene System Overview,” Fourth Annual 
High Performance Embedded Computing Workshop,” Boston, 
MA, September 2000. 
[20] J. Suh, S. P. Crago, C. Li, S. Shank, R. Chau, W. Mazur, 
and R. Pancoast, “SLIIC QL Technical Report,” USC/ISI 
Technical Report, In preparation. 
[21] Xilinx, http://www.xilinx.com/company/press/kits/pld/ 
fctsheet.htm, 2000. 

64



PIM- and Stream Processor-based Systems∗ 
Jinwoo Suh, Changping Li1, Stephen P. Crago, and Robert Parker 

University of Southern California/Information Sciences Institute 
4350 N. Fairfax Drive, Suite 770, Arlington, VA 22203 

{jsuh, crago, rparker}@isi.edu 

 

                                                 
∗ Effort sponsored by Defense Advanced Research Projects Agency (DARPA) through the Air Force Research Laboratory, USAF, under 

agreement number F30602-99-1-0521. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes 
notwithstanding any copyright annotation thereon. The views and conclusions contained herein are those of the authors and should not interpreted as 
necessarily representing the official policies or endorsement, either expressed or implied, of the Defense Advanced Research Projects Agency 
(DARPA), Air Force Research Laboratory, or the U.S. Government. 

1 Changping Li was an employee of USC/ISI when this work was performed. 

Abstract 
 

The growing gap in performance between processor and 
memory speeds has created a problem for data-intensive 
applications. Recent approaches for solving this problem 
are processor-in-memory (PIM) technology and streaming 
processor technology.  

In this paper, we assess the performance of systems based 
on PIM and stream processors. The performance of several 
data-intensive applications are simulated and results are 
compared with measured performance of conventional systems 
of systems based on the PowerPC and Pentium processors. 
 

1. Introduction 
The growing gap in performance between processor and 
memory speeds has created a problem for data-intensive 
applications. PIM technology is a promising method that 
integrates a processor on a DRAM memory chip. It has the 
potential to decrease memory latency and to increase the 
bandwidth between the processor and memory.  

The V-IRAM chip [2] is a PIM research prototype being 
developed at the University of California at Berkeley.  The 
V-IRAM contains one vector-processing unit and 8 Mbytes 
of DRAM in addition to a scalar-processing unit. There is a 
512-bit data path between the processing units and DRAM. 
The target processor speed is 200 MHz, which would 
provide a peak performance of 3.2 GOPS.  

Another approach for tolerating the performance gap 
between processor and memory is the stream processor. In 
this approach, the data is routed through a stream registers 
to hide memory latency, allow the re-ordering of DRAM 
accesses, and to minimize the number of accesses. 

The Imagine chip [1] is a research prototype streaming 
processor being developed at Stanford University. It 
contains eight clusters of arithmetic units that process data 
from a stream register file. The target processor speed is 
500 MHz, which would provide a peak performance of 40 
GOPS.  

In this paper, we assess the performance of data-

intensive radar processing applications on the V-IRAM and 
Imagine processors. We implemented the beam steering 
and coherent side-lobe canceller (CSLC) applications and 
measured performance using cycle-level accurate 
simulators. We show that the performance of systems based 
on these processors is better than PowerPC and Pentium-
based systems for these applications.  
 

2. Applications 
2.1.  Corner Turn 
The out-of-place corner turn is a matrix transpose in which 
two matrices are used: source and destination matrices. The 
matrix size used for this paper, which was chosen to be 
larger than most caches, is 1024 x 1024 with 4-byte 
elements. 
 
2.2. Beam Steering 
Beam steering is a radar processing application that directs 
a phase-array radar in an arbitrary direction without 
physically rotating the antenna. The antenna consists of a 
two-dimensional array of antenna elements populated on a 
plane. In the system, each antenna elements can transmit its 
signal with a different phase. The computation of the phase 
for each antenna element involves many load, store and 
arithmetic operations.  

In the implementation used for this paper, the following 
parameters are used. The number of antenna elements is 
12,864 (17 rows and 17 columns). The array of antenna 
elements can direct signal to up to 4 directions per dwell 
(period). For each direction, the phase needs to be 
calculated. Depending on the signal frequency and 
temperature, calibration data needs to be incorporated in 
the calculation of the phases. In this implementation, four 
calibration bands that are used to adjust parameters based 
on ambient environment such as temperature are processed. 

 
2.3.  Coherent Side-Lobe Canceller (CSLC) 
CSLC is a radar signal processing application used to 

65



cancel jammer signals caused by one or more jammers that 
appear as side-lobes in the frequency domain.  To cancel 
the side-lobe, weight factors are generated using the signal 
from the auxiliary channel. Then, the main signal is 
partitioned into several sub-bands in the time domain, and 
each sub-band is converted to the frequency domain using 
an FFT (sub-banding). Weight factors are multiplied with 
the output of the FFT operation to cancel the side-lobe. 
Finally, an inverse FFT is performed to convert the output 
data back to the time domain. In our implementation, the 
weight generation is not implemented.  

The following parameters are used for the 
implementation used in this paper. Four input channels, 
two main channels, and two auxiliary channels are 
assumed. Each channel has 8,192 data samples. All 
computations are done using floating-point precision. The 
data is partitioned into 73 overlapped sub-bands, each of 
which contains 128 samples. For sub-banding, a 128-
sample FFT is used. 
 
3. Experimental Results and Analysis 
In this section, the implementation results of the corner turn, 
CSLC, and beam steering applications are presented. 
Performance of these applications is estimated using cycle-
accurate simulators provided by the V-IRAM and Imagine 
teams. For comparison purposes, actual measurements of 
application performance were taken using a single node of 
a PowerPC-based multiprocessor system and a Pentium III 
system.  

 
Table 1. Implementation results 

 Corner 
Turn 

(MB/sec) 

CSLC 
(msec) 

Beam 
Steering 
(msec) 

PPC G3 
(400 MHz) 21.0 16.6 3.76 

Pentium III 
(733 MHz) 83.9 32.2 4.74 

 
V-IRAM 

(200 MHz) 1441.8 2.57 0.31 

Imagine 
(500 MHz) 1199.1 0.77 0.30 

 
In Table 1, the implementation results of corner turn, 

beam steering, and CSLC are shown. The graph of Figure 1 
shows that V-IRAM and Imagine provide speedups upto 70 
compared with a PowerPC system even though their clock 
frequencies are not particularly fast.  

The results show that the V-IRAM performs better than 
Imagine on a corner turn, which fits in its main memory. 
This is due to the fact that V-IRAM has higher bandwidth 
between memory (which is on-chip on V-IRAM and off-
chip on Imagine) and the processing unit. However, 
Imagine has higher computational performance, which is 
reflected in the performance of the CSLC, which is more 
computation-intensive. V-IRAM and Imagine have similar 
performance on the beam-steering application because of 
the balance between memory lookups and computation of 

that application.  
In a real system, the current implementation of the V-

IRAM may take less space than the current implementation 
of the Imagine since it has a scalar processor and internal 
DRAM on-chip and does not need external memory if the 
application fits in the memory. The Imagine chip includes a 
network interface and router, which reduces chip count in 
multiprocessor systems. 

 

0

10

20

30

40

50

60

70

Corner Turn CSLC Beam Steering

Sp
ee

du
p

PPC G3

Pentium

VIRAM

IMAGINE

Figure 1. Speedup

4. Conclusions 
We have presented simulated performance results for data-
intensive radar processing applications on systems based on 
the V-IRAM PIM and the Imagine streaming processor and 
compared them to conventional systems. The results show 
the potential advantages of the new technologies on data 
intensive applications. 

 

5. Acknowledgement 
The authors gratefully acknowledge the UC Berkeley 
IRAM team and the Stanford Imagine team for the use of 
their compilers and simulators and their generous help. The 
authors also acknowledge Rick Pancoast, Steve Shank, 
Walt Mazur, and Joe Racosky of Lockheed Martin NE & 
SS for providing the applications. 
 

6. References 
[1] B. Khailany, et. al., "Imagine: Signal and Image Processing 
Using Streams". HOT Chips 12, Stanford, CA, August 2000. 
[2] C. Kozyrakis, “A Media-Enhanced Vector Architecture for 
Embedded Memory Systems,” Technical Report # UCB/CSD-99-
1059, UC Berkeley, July 1999. 

66



Efficient Algorithms for Fixed-Point Arithmetic Operations  

In An Embedded PIM∗∗∗∗ 
 

Jinwoo Suh, Dong-In Kang, and Stephen P. Crago 
 

University of Southern California/Information Sciences Institute 
4350 N. Fairfax Drive, Suite 770, Arlington, VA 22203 

{jsuh, dkang, crago}@isi.edu 
 

                                                 
∗ Effort sponsored by Defense Advanced Research Projects Agency (DARPA) through the Air Force Research 

Laboratory, USAF, under agreement number F30602-99-1-0521. The U.S. Government is authorized to reproduce and 
distribute reprints for governmental purposes notwithstanding any copyright annotation thereon. The views and 
conclusions contained herein are those of the authors and should not interpreted as necessarily representing the official 
policies or endorsement, either expressed or implied, of the Defense Advanced Research Projects Agency (DARPA), Air 
Force Research Laboratory, or the U.S. Government. 

 
Abstract 

The growing gap in performance between processor 
and memory speeds has created a problem for data-
intensive applications. A recent approach for solving 
this problem is to use processor-in-memory (PIM) 
technology. PIM technology integrates a processor 
on a DRAM memory chip, which increases 
bandwidth between the processor and memory.  

An example of a PIM is the Mitsubishi M32R/D, 
which has a processor and 2 MB of DRAM on a 
chip. Even though the chip has many advantages, it 
has limited support for arbitrary fixed-point 
multiplication and division, which are necessary for 
some embedded computing applications. A software 
implementation of arbitrary fixed-point arithmetic 
operation is required for these applications. 
Straightforward implementations lose either 
precision or performance. Thus, algorithms that are 
fast and accurate are needed. 

In this paper, we design efficient algorithms for 
fixed-point arithmetic that use integer arithmetic. 
The algorithms are analyzed and implementation 
results on a PIM-based multiprocessor system, the 
System Level Intelligent Intensive Computing 
(SLIIC) Quick Look (QL) board, are presented. 

 
Keywords: fixed-point arithmetic, algorithm, PIM, 

multiplication, division 
 

1. Introduction 
Microprocessor performance has been doubling 

every 18-24 months, as predicted by Moore’s Law, 
for many years [5]. This performance improvement 
has not been matched by DRAM (main memory) 
latencies, which have only improved by 7% per year 
[5]. This growing gap in performance between 
processor and memory speeds has created a problem 
for data-intensive applications.   

To solve this problem, many methods have been 
proposed, including caching [5][10][12] and data 
prefetching [3]. However, these methods provide 
limited performance improvement or even lower 
performance for data-intensive applications since 
these applications do not show the localities 
required by these techniques [11]. 

Processor-In-Memory (PIM) technology is a 
promising method for closing the gap between 
memory speed and processor speed for data 
intensive applications. PIM technology integrates a 
processor on a chip that uses DRAM technology. 
The integration of memory and processor on the 
same chip has the potential to decrease memory 
latency and increase the bandwidth between the 
processor and memory. PIM technology also has the 
potential to decrease other important system 
parameters such as power consumption, cost, and 
area. 

67



Several research PIM chips are being developed 
[2][4][6]. These provide very high performance 
compared with general-purpose processors [14][15]. 

An example of a commercial PIM is the 
Mitsubishi M32R/D, which operates at 80 MHz and 
contains 2 MB of internal DRAM [8]. Even though 
the M32R/D has many advantages, its processing 
capability is somewhat limited since it was 
originally targeted to low-power applications that 
do not require high performance, such as digital 
cameras and personal digital assistant (PDA) 
devices. One limitation of the M32R/D is that non-
integer fixed-point multiplication and division are 
not supported. In embedded computing, however, it 
is sometimes necessary to calculate data in an 
arbitrary fixed-point format.  

For example, the coherent side-lobe canceller  
(CSLC) implemented at USC/ISI requires fixed-
point operations since the input and output data are 
in fixed-point formats [15]. CSLC is a radar signal 
processing application that cancels jammer signals. 
In this implementation, all data is in a fixed-point 
format with a 21-bit integer and an 11-bit fraction. 

Thus, a software implementation of fixed-point 
arithmetic is required for the CSLC application. 
Since the M32R/D does not support floating-point 
processing either, the fixed-point operations must 
be implemented using integer operations.  

For fixed-point addition and subtraction, 
straightforward implementations exist and can be 
used. However, for multiplication and division, 
precision is lost if a straightforward implementation 
(e.g. [1]) is used. When this method is used on the 
M32R/D and other processors without special 
support, precision is lost in the shift operation used 
during the computation.  

To preserve precision, another straightforward 
method converts data to a double-precision format. 
Since the double-precision format preserves all data 
bits, precision is not lost. However, this approach 
involves many additional fixed-point operations and 
additional register space. 

In this paper, we discuss efficient algorithms for 
fixed-point arithmetic operations for the M32R/D 
and other general-purpose processors that have 
limited or no support for arbitrary fixed-point 
arithmetic operations. Compared with a 
straightforward algorithm, our algorithm reduces 
the number of arithmetic operations significantly. 
The algorithm is analyzed and implementation 
results on a System Level Intelligent Intensive 
Computing (SLIIC) Quick Look (QL) board [13], 

which is a multiprocessor board that uses eight 
M32R/D chips, are presented.  

The rest of the paper is organized as follows. In 
Section 2, the problem and previous approaches are 
briefly discussed. Section 3 describes our 
algorithms, and Section 4 describes the architecture 
of the SLIIC QL board on which the experiments 
were performed. Section 4 also contains the 
algorithm implementation results. Section 5 
concludes the paper. 
 

2. Problem and Previous Approaches 
The M32R/D supports only integer format 

arithmetic operations. To represent arbitrary fixed-
point data, we conceptually put a decimal point at 
position p, 0 ≤ p ≤32.  For example, if p = 0, then 
the data is integer and if p = 32, then all data is less 
than 1. Throughout this paper, p indicates the 
position of the decimal point.  

For addition and subtraction, it is straightforward 
to implement fixed-point arithmetic operations with 
integer arithmetic. Integer operations are performed 
and the results are valid because the decimal point 
does not shift in these operations. 

However, for multiplication, the position of the 
decimal point is shifted. Consider two numbers, a 
and b. The product of a and b is a * b with the 
decimal point at 2p. Thus, when the arithmetic 
operations are performed using integer hardware, it 
is necessary to adjust the position of the decimal 
point, and the result must be shifted to the right by p 
positions.  

Figure 1 shows the correct multiplication of the 
fixed-point numbers 1.0 and 1.0. In the figure, p is 
assumed to be 11. The left block indicates the 
integer portion of a number and the right block 
indicates the fraction. Thus, 1.0 is indicated by a 
one followed by 11 zeros, and the multiplication 
result should be 1 followed by 11 zeros. However, if 
the operands are multiplied as integers, the 
hardware multiplies 4096 by 4096 and the result is 
16777216, which is a one followed by 22 zeros in 
binary representation (see Figure 2).  

Therefore, to get a result with the correct decimal 
point position, the data must be right shifted. A 
straightforward method of the multiplication [1] is 
shown in Figure 3. Let us denote sr(a, b) and sl(a, 
b) as a b-position shift-right and shift-left of number 
a, respectively. The shift right operation causes the 
p leftmost bits of data to be zero when and the result 
to lose precision when special hardware support is 
not provided.  

68



1 0 

1 0 

1 0  
  

Figure 1. Fixed-point multiplication of 1 by 1 
 

 
100000000000 0  

Figure 2. Multiplication results using integer 
multiplication 
 

Input: a, b 
Output: c 
 
c = a * b; 
sr(c, p); 
Return (c); 

    Figure 3. Algorithm I 
 

Input: a, b 
Output: c 
 
long long c; 
c = a * b; 
sr (c, p); 
Return ((long) c); 

    Figure 4. Algorithm II 
 
Therefore, to maintain full precision, another 
approach must be used.  

Algorithm II, shown in Figure 4, appears to be 
another straightforward solution. However, 
implementing the 2n-bit (64-bit) multiplication 
operation on hardware that only supports 32-bit 
operations requires many assembly instructions. 
Table 1 in Section 4 shows that the instructions 
needed to perform the 64-bit multiplication include 
many integer multiplication instructions.  

There is a similar problem for the division 
operation. Instead of the shift right operation, the 
shift left operation is needed for division after 
computation. An algorithm analogous to Figure 4 
can be used for division. The assembly code 
generated shows that the straightforward algorithm 
consists of many integer multiplication and 
divisions. 

Thus, for efficient computation, it is necessary to 
design efficient algorithms for the fixed-point 
arithmetic operations. 

3. Our Algorithms 
In this section, our algorithms for multiplication 

and division are presented. Let us denote 
bit_wise_or(a, b) as the bit-wise or operation of a 
and b. Our multiplication algorithm is shown in 
Figures 5 and 6. We consider two cases: (i) p ≤ n/2 
and (ii) p > n/2.  

 
Multiplication Algorithm (p ≤ n/2) 
Input: a, b 
Output: c 
 
long ai, af, bi, bf; 
 
ai = sr(a, p); 
af = right p bits of a; 
bi = sr(b, p); 
bf = right p bits of b; 
 
Return (sr(af * bf, p) + ai * b  
             + af * bi); 

Figure 5. Multiplication algorithm (p ≤ n/2) 

 
Multiplication Algorithm (p > n/2) 
Input: a, b 
Output: c 
 
long au, al, bu, bl; 
au = sr(a, n/2); 
al = right n/2 bits of a; 
bu = sr(b, n/2); 
bl = right n/2 bits of b; 
 
Return (sr(al * bl, p)  
  + sr(au * bl, p - n/2)  
  + sr(al * bu, p - n/2)  
  + sl(au * bu, n - p)); 

Figure 6. Multiplication algorithm (p>n/2) 

 
At first glance, the proposed algorithm looks 

more complex than Algorithm II. However, even 
though Algorithm II contains only one 
multiplication and one shift operation in the C code, 
the computation must be implemented using many 
integer instructions because more precision than the 
processor directly supports must be handled. Thus, 
two registers are allocated for each data and many 
instructions are needed to perform the necessary 
operations. The code in our algorithm can be more 

69



directly translated to assembly code, and, in Section 
4, comparisons are shown. 

Our algorithm for division is shown in Figure 7. 
 

Division Algorithm 
Input: a, b 
Output: c 
 
long ai, s, bu, bl; 
 
ai = a/b; 
s = a – ai * b; 
bu = sr(a, 1); 
bl = a bit_wise_and 1; 
 
for i = 1 to  p 
 t = sl(t, 1); 
 a = a - bu; 
 a = sl (a, 1); 
 a = a - bl; 
   
 if  (a < 0) 
  a = a + b; 
 else 
  t = t bit_wise_or 1; 
Return (bit_wise_or (s, t); 

Figure 7. Division algorithm 

 
In this algorithm, ai is the integer part and s is the 
fraction part of the result. The bit-wise or operation 
is performed to combine these two results. The 
algorithm requires one division, one multiplication, 
p additions, p subtractions, and p bit-wise logical 
operations. Thus, performance is better when p is 
small. 

 
4. Implementation 

In this section, the SLIIC Quick Look (QL) board, 
on which the experiments were performed, is briefly 
described. Then, implementation results of the 
algorithms are presented. 
 
4.1.  SLIIC QL Architecture 

A block diagram of the SLIIC Quick Look (QL) 
board is shown in Figure 8.  The board is 
implemented on a standard PCI form factor and 
contains eight Mitsubishi M32R/Ds, providing 640 

MIPS of peak processing power and 16 MB of 
memory.   

XA and XB are FPGAs that serve several 
purposes.  First, they provide an interconnection 
network for the M32R/Ds.  Second, XA and XB 
provide programmable logic that can be used for 
processor synchronization and performance 
measurement.  Third, the FPGAs provide logic that 
facilitates communication with the host PC.  

The SLIIC QL board communicates with the host 
PC using the SLIIC debugger. The SLIIC debugger, 
which runs on Windows NT, allows a user to start 
execution, read and write data to and from the 
PIMs, write data to the PIMs, and read counter data 
(there is a counter associated with each processor 
that is used for measurement of execution time), etc. 
More detailed information, such as supported 
commands and memory address mapping can be 
found in [13]. For application programmers, an 
application programming interface (API) is 
provided that includes a communication interface, 
barrier synchronization, and timer control.  

  
4.2.  Implementation Results 

We implemented our fixed-point arithmetic 
algorithms on the SLIIC QL board, and the results 
are shown in this section. The gcc cross compiler 
was used with optimization level 2. For comparison 
purposes, Algorithm II (Figure 4) was also 
implemented. Table 1 shows the number of 
multiplication, division, and total instructions for 
each fixed-point operation. Note that most 
instructions except multiplication and division are 
executed in one cycle. Multiplication takes three 
cycles and division takes 36 cycles [9]. 

The results show that our algorithm takes 
significantly fewer instructions than Algorithm II. 
For the multiplication operation, the number of 
multiply instructions is reduced 33% and 50% and 
the number of total instructions is reduced 64% and 
75% for p <= n/2 and p > n/2 respectively. The 
reduction is larger for the division operation where 
the number of divisions is reduced by 83% and the 
number of multiplications is reduced by 75%. The 
number of total instructions is reduced by 95%.   
 

70



Table 1. Comparison of algorithms 
Multiplication Division 

Our 
Operation 

 
# of  
Instructions 

Alg. 
II P≤ 

n/2 
P> 
n/2 

Alg. 
II 

Our 

Total  44 11 16 173 4p+5  
Multiply 6 3 4 4 1
Division 0 0 0 6 1

 
The execution time for each operation is shown 

in Figure 9 and Figure 10. The result was obtained 
by averaging the execution times over 10 trials. The 
measurement was performed using hardware 
counters implemented in FPGAs. For division, the 
value of p was varied to measure the execution time 
for different data formats. The results show that our 
algorithms reduce execution times significantly. For 
multiplication, our algorithm takes only 18% to 
30% of the execution time of the Algorithm II. For 
division, as expected from the analysis, the 
execution time for our algorithm is proportional to 
the value of p. However, in every case, our 
algorithm takes less time than the straightforward 
algorithm (only 15% to 76% of depending on p). 

 
 

5. Conclusions  
We have described efficient algorithms for 

arithmetic operations on a processor that does not 
support arbitrary fixed-point operations. The 
algorithms were analyzed and implemented on the 
SLIIC QL architecture, a single-board PIM-based 
multiprocessor with a programmable interconnect. 
The results show that the algorithms are much more 
efficient than straightforward approaches.  
 

6. Acknowledgements 
The authors gratefully acknowledge Steven 

Shank, Richard Chau, Walt Mazur, and Rick 
Pancoast of Lockheed Martin for providing the 
original CSLC code and fixed-point precision 
analysis. 

 
 
 

XA 
4085 

M32R/D 

M32R/D 

M32R/D 

M32R/D 

59 

XA 
4085 

M32R/D 

M32R/D 

M32R/D 

M32R/D 

60

IF 
4062 

32-bit 33 MHz PCI

100-pin I/O 
Connector

100-pin I/O 
Connector

64

78

41 

SRAM SRAM 

Clock 

Expansion Slot

EEPROM

64 

78 

Figure 8. SLIIC architecture 

71

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦« 

8 



0

0.2

0.4

0.6

0.8

1

1.2

1.4

Alg. II Ours (p<=n/2) Ours (p>n/2)

Ex
ec

ut
io

n 
Ti

m
e 

(m
ic

ro
se

co
nd

s)

Figure 9. Multiplication 

0
0.5

1
1.5

2
2.5

3
3.5

4

Stra
igh

tfo
rw

ard p =
 1

p =
 7

p =
 13

p =
 19

p =
 25

p =
 31

Ex
ec

ut
io

n 
Ti

m
e 

(m
ic

ro
se

co
nd

s)

Our Approach

 
Figure 10. Division 

 
 

7. References 
[1] Advanced RISC Machines, “Fixed Point 
Arithmetic on the ARM,” Application note 33, 
Document number: ARM DAI 0033A, September 
1996. 
[2] DARPA, Data Intensive Systems, 
http://www.darpa.mil/ito/research/dis/index.html, 
2000. 
[3] A. Gupta, J. L. Hennessy, K. Gharachorloo, T. 
Mowry, and W. D. Weber, “Computative 
Evaluation of Latency Reducing and Tolerating 
Techniques,” Proc. 18th Annual International 
Symposium on Computer Architecture, Toronto, 
May 1991. 
[4] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, 
J. Draper, J. LaCoss, J. Granacki, J. Brockman, A. 
Srivastava, W. Athas, V. Freeh, J. Shin, and J. Park, 
“Mapping Irregular Applications to DIVA, a PIM-
based Data-Intensive Architecture,” 
Supercomputing '99, Portland, OR, November, 
1999. 

[5] J. Hennessy and D. A. Patterson, Computer 
Architecture: A Quantitative Approach, 2nd Edition, 
Morgan Kaufmann Publishers, Inc., 1996. 
[6] C. Kozyrakis, “A Media-Enhanced Vector 
Architecture for Embedded Memory Systems,” 
Technical Report #UCB/CSD-99-1059, UC 
Berkeley, July 1999. 
[7] K. Mai, et al, “Smart Memories: A Modular 
Reconfigurable Architecture,” ISCA 2000, 
Vancouver, BC, Canada, June 2000. 
[8] Mitsubishi, M32000D4BFP-80 Data Book, 
http://www.mitsubishichips.com/data/datasheets/mc
us/ mcupdf/ds/e32r80.pdf. 
[9] Mitsubishi, Mitsubishi 32-Bit Single-Chip 
Microcomputer M32R Family Software Manual, 
July 1998. 
[10] S. A. Przybylski, Cache and Memory 
Hierarchy Design: A Performance-Directed 
Approach, Morgan Kaufmann Publishers, San 
Mateo, CA, 1990. 
[11] S. Rixner, W. J. Dally, U. J. Kapasi, B. 
Khailany, A. Lopez-Lagunas, P. R. Mattson, and J. 
D. Owens, “A Bandwidth-Efficient Architecture for 
Media Processing,” 31st Annual International 
Symposium on Microarchitecture, Dallas, Texas, 
November 1998. 
[12] A. J. Smith, “Cache Memories,” Computing 
Surveys, Vol. 14, No. 3, pp. 473-530, 1982. 
[13] J. Suh, S. P. Crago, C. Li, S. Shank, R. 
Chau, W. Mazur, and R. Pancoast, “SLIIC QL 
Technical Report,” USC/ISI Technical Report, in 
preparation. 
[14] J. Suh, C. Li, S. P. Crago, and R. Parker, “A 
PIM-Based Multiprocessor,” IPDPS 2001, San 
Francisco, CA, 2001. 
[15] J. Suh, M. Zhu, C. Li, S. P. Crago, S. F. 
Shank, R. H. Chau, W. J. Mazur, and R. Pancoast, 
“Implementations of Real-Time Data Intensive 
Applications on PIM-Based Multiprocessor 
Systems,” Joint Workshop of EHPC and WPDRS, 
San Francisco, CA, 2001. 
[16] Xilinx, http://www.xilinx.com/company/ 
press/kits/pld/factsheet.htm, 2000. 
                                                 
 

72



PIM- and Stream Processor-based Processing for Radar 
Signal Applications 

Jinwoo Suh and Stephen P. Crago 
University of Southern California/Information Sciences Institute 

3811 N. Fairfax Drive, Suite 200, Arlington, VA 22203 
1-703-248-6160 

{jsuh, crago}@isi.edu
  

ABSTRACT 
The growing gap in performance between processor and memory 
speeds has created a problem for data-intensive applications. 
Recent approaches for solving this problem are processor-in-
memory (PIM) technology and stream processor technology.  

In this paper, we assess the performance of systems based on PIM 
and stream processors by implementing data-intensive 
applications. The implementation results are compared with the 
measured performance of conventional systems based on the 
PowerPC and Pentium processors. The results show that the 
performance of systems based on these processors is improved up 
to 70 compared with conventional systems for these data-intensive 
applications. 

Categories and Subject Descriptors 
C.4 [PERFORMANCE OF SYSTEMS]: Design studies, 
Performance attributes. 

General Terms 
Algorithms, Measurement, Performance, and Experimentation. 

Keywords 
Vector, Stream, corner turn, coherent side-lobe canceller, beam 
steering, radar signal processing, V-IRAM, and Imagine. 

1. INTRODUCTION 
Microprocessor performance has been doubling every 18-24 
months, as predicted by Moore’s Law, for many years [6]. This 
performance improvement has not been matched by DRAM (main 
memory) latencies, which have only improved by 7% per year [6]. 
This growing gap in performance between processor and memory 
speeds has created a problem for data-intensive applications.   

To solve this problem, many methods have been 
proposed[1][3][9][10][11]. However, these methods provide 
limited performance improvement or even lower performance for 

some applications.  

Processor-In-Memory (PIM) technology is a promising method 
for closing the gap between memory speed and processor speed 
for data intensive applications. PIM technology integrates a 
processor on a chip that uses DRAM technology. The integration 
of memory and processor on the same chip has the potential to 
decrease memory latency and increase the bandwidth between the 
processor and memory. PIM technology also has the potential to 
decrease other important system parameters such as power 
consumption, cost, and area. The V-IRAM chip [5] is a PIM 
research prototype being developed at the University of California 
at Berkeley.  The V-IRAM contains one vector-processing unit 
and 8 Mbytes of DRAM in addition to a scalar-processing unit. 
There is a 512-bit data path between the processing units and 
DRAM. The target processor speed is 200 MHz, which will 
provide a peak performance of 3.2 GOPS (Giga Operations Per 
Second).  

Another approach for handling the growing processor-memory 
gap is stream processing. In this approach, the data is routed 
through stream registers to hide memory latency, allow the re-
ordering of DRAM accesses, and minimize the number of 
memory accesses. The Imagine chip [4] is a research prototype 
stream processor being developed at Stanford University. It 
contains eight clusters of arithmetic units that process data from a 
stream register file. The target processor speed is 500 MHz, which 
will provide a peak performance of 40 GOPS.  

The V-IRAM and Imagine PCB boards are under development at 
ISI. The V-IRAM board contains one V-IRAM, and Imagine 
board contains two Imagine chips.  

In this paper, we assess the performance of data-intensive radar 
processing applications on the V-IRAM and Imagine processors. 
We implemented the corner turn, beam steering, and coherent 
side-lobe canceller (CSLC) applications and measured the 
performance using cycle accurate simulators. We show that the 
speedup of the systems based on these processors is up to 70 
compared with PowerPC and Pentium-based systems for these 
applications. 

The rest of the paper is organized as follows. In Chapter 2, a PIM 
and a stream processor are briefly described. Also, the systems 
under development using these chips are presented. Chapter 3 
describes three applications we implemented: the corner turn, 
coherent side-lobe canceller, and beam steerer. Also, the 
techniques that we used to improve the performance on these 
platforms are described. In Chapter 4, the implementation results 
are shown, and Chapter 5 concludes the paper. 

 

 
 

73



2. V-IRAM AND IMAGINE 
2.1 V-IRAM 
Processor-In-Memory (PIM) technology is a promising method 
for closing the gap between memory speed and processor speed. 
PIM technology integrates a processor on a DRAM memory chip, 
which uses DRAM technology. In conventional systems, the CPU 
and memory are implemented on different chips. Thus, the 
bandwidth between CPU and memory is limited since the data 

must be transferred through chip I/O pins and copper wires on a 
PCB. In a PIM-based system, the integration of memory and 
processor on the same chip has the potential to decrease memory 
latency and increases the bandwidth between the processor and 
memory. The power usage is smaller than traditional processor-
memory chip pair since it takes less power to drive signals within 
a chip than between chips. 
There are several PIM research prototypes being developed. One 
of them is the DIVA chip[4], which has 8 MB of DRAM and 

Figure 1. Simplified block diagram of V-IRAM 

Vector Register File 

Vector ALUs 

Memory Unit 

Memory Crossbar 

DRAM 

MIPS 
Scalar processor 

Flag units 

GGTT6644112200  
VV--IIRRAAMM  

11 66 88 -- pp ii nn   SS DD
RR

AA
MM

  DD
II MM

MM
  SS oo cc kk ee tt   

MMootthheerrbbooaarrdd  CCoonnnneeccttoorrss  

XXiilliinnxx  
VViirrtteexx--IIII  

XXCC22VV11000000  

SSyyssAADD  
110000  MMHHzz  
7766  ppiinnss  

110000  MMHHzz  
116688  ppiinnss  SSDDRRAAMM  

PPCCII  
6666  MMHHzz  
3322  bbiittss  

EEEEPPRROOMM  

Figure 2. Block diagram of V-IRAM board 

74



1024 bits of total data path width. 
A COTS PIM that is currently available is M32R/D [8]. A system 
using the M32R/D has been implemented at USC/ISI and the 
results have been reported [16]. In this system, eight M32R/D 
processors are interconnected using two FPGAs. 
The IBM Blue Gene project is also investigating the use of PIMs 
in a high-performance parallel architecture[15]. The Blue Gene 
architecture is being developed for modeling the folding of human 
proteins. The Blue Gene project is developing multithreaded PIM 
processors. 
The ADVISOR project investigated an algorithmic framework for 
the design of applications for PIM architectures [11]. The 
ADVISOR framework models the main characteristics of PIM 
chips and then, algorithms are designed based on the model. 
Example algorithms are reported for various applications. 
The V-IRAM chip [6] is a research prototype PIM being 
developed at the University of California at Berkeley. The 
simplified architecture of the chip is shown in Figure 1. The V-
IRAM contains one vector-processing unit and 8 Mbytes of 
DRAM in addition to a scalar-processing unit. The vector-
processing unit contains two arithmetic units, two flag processing 
units, and two load/store units. These units are pipelined. 
Different kinds of operations have different number of stages. The 
functional units can be partitioned into several smaller units, 
depending on the arithmetic precision required. For example, a 
functional unit can be partitioned into 4 units for 64-bit operations 
or 8 units for 32-bit operations. There is a 512-bit data path 

between the processing units and DRAM. The DRAM is 
partitioned into two wings, each of which has four banks.  
There is a crossbar switch between the DRAM and vector 
processor. The vector processor supports 91 instructions including 
arithmetic and vector processing. It also supports special vector 
instructions that help to obtain high performance on dot-product 
and FFT operations. The target processor speed is 200 MHz, 
which would provide a peak performance of 3.2 GOPS. The 
power consumption is expected to be about 2 W. 
The block diagram of the V-IRAM board that is being developed 
at USC/ISI is shown in Figure 2. The board contains a V-IRAM 
PIM processor, one FPGA for glue logic, and one IF FPGA for 
the interface with a host computer.  

2.2 Imagine 
Imagine is a stream processing coprocessor that is being 
developed by Stanford University. The data is read in to the 
stream registers and sent to the cluster of arithmetic units where 
the data is processed. The processed data is stored back in the 
stream registers. The final data is stored in the memory. Figure 3 
shows the block diagram of the Imagine. 
The Imagine multiprocessor board is under development at ISI in 
collaboration with Stanford. The block diagram is shown in 
Figure 4. The board contains two Imagine chips, each of which is 
connected to local SDRAM. Each Imagine is connected to a 
PowerPC host processor through an FPGA chip. The Imagine 
chips are connected to a PowerPC host processor through an 
FPGA chip. The FPGA provides a means of connection between 
the PowerPC and Imagine by emulating an SDRAM interface on 

SDRAM 

SDRAM 

SDRAM 

SDRAM 

Strea
m  

Regist
er File 

ALU Cluster

ALU Cluster

ALU Cluster

ALU Cluster

ALU Cluster

ALU Cluster

ALU Cluster

SIMD/VLIW  
Control 

Figure 3. Block diagram of Imagine 

75



the PowerPC side and an SRAM interface on the Imagine side. It 
also provides a connection to the DSP chip. The PowerPC also 
has local SDRAM memory. The PowerPC processor 
communicates with a host PC through a PCI bus. Applications are 
compiled on the host PC and sent to the PowerPC through the 
PCI bus. The PowerPC performs address translation for the PCI 
memory space, so data written on the PCI memory space by the 
host PC is actually written on the local memory of the PowerPC. 
During execution of an application, when the PowerPC 
encounters kernel code that needs to be executed by an Imagine 
chip, the PowerPC sends instructions to the Imagine. The Imagine 
performs the computation and returns the data back to the 
PowerPC. The board also supports many I/O ports such as DVI, 
and those are connected to the Imagine chips through another 
FPGA.  
 

3. APPLICATIONS AND IMPROVEMENT 
TECHNIQUES 
In this section, three benchmark applications are described. Also, 
the techniques used to improve the performance on V-IRAM and 

Imagine are presented. For comparison purposes, the C-version 
CSLC and beam steering codes that are being used for radar 
systems by Lockheed Martin are used as baselines. 

3.1 Corner Turn 
The corner turn is a matrix transpose operation. The data in the 
source matrix is transposed and stored in the destination matrix. 
The matrix size used for this paper, which was chosen to be larger 
than most caches, is 1024 x 1024 with 4-byte elements. 

A straightforward implementation of the corner turn using two-
level do-loops is simple, but the performance is degraded 
significantly due to the strided data accesses. In conventional 
processor systems, tiling is used to reduce the cost of load-store 
operations by re-ordering accesses to reduce working set size to 
better utilize a cache.  

Since the term “column (row)” is used for both matrices and 
memories, we will distinguish them by denoting them as “matrix 
column (row)” and “memory column (row).” 

Communication
FPGA

Xilinx Virtex-II

HSTL
Connector

HSTL
Connector

Interconnection network PCB: Long wires to test long-haul HSTL

HSTL
Connector

HSTL
Connector

Imagine A

Host Interface

N    W   S  E

M
em

or
y

S
D

R
A

M
: 2

56
M

B 
to

t

Imagine B

Host Interface

N    W   S  E

M
em

or
y

S
D

R
A

M
: 2

56
M

B 
to

t

Firewire B

Connector

Firewire A

Connector

DVI In

Connector

DVI Out

ConnectorHSTL
Connector

HSTL
Connector

D
eb

ug
 In

te
rfa

ce

DSP Coprocessor
TI 6201

32 bit data, 8 bit addr, control 32 bit data, 8 bit addr, control

32
dataHost Processor

PPC 8240

Memory Bus

PCI

Processor
FPGA

Xilinx Virtex-II

8240 Memory bus: up to 100 MHz

SDRAM Interface

64
data

PCI
Connector

IDE
Connector

PCI

Figure 4. Imagine board

SD
R

AM
: 6

4 
M

B 
to

t

S
D

R
A

M
: 6

4 
M

B 
to

t

76



 Figure 5. Corner turn on Imagine 

0 

N 

1 

N+1 

2 

N+2 

3

N+3 

4

N+4 

5

N+5 

…

… 

N-1 

2N-1 

2N 

3N 

2N+1 

3N+1 

2N+2

3N+2

2N+3

3N+3

2N+4

3N+4

2N+5

3N+5

… 

… 

3N-1 

4N-1 

0 2N N+22N 2N+2 3N 3N+2 1 N+1 2N+1 3N+1

4N 

5N 

4N+1 

5N+1 

4N+2

5N+2

4N+3

5N+3

4N+4

5N+4

4N+5

5N+5

… 

… 

5N-1 

6N-1 

6N 

7N 

6N+1 

7N+1 

6N+2

7N+2

6N+3

7N+3

6N+4

7N+4

6N+5

7N+5

… 

… 

7N-1 

8N-1 

4N 5N 6N 7N0 N 2N 3N 1 N+1 2N+1 3N+1 

(b) Upper strip 

(c) Output stream from upper strip 

(d) Lower strip 

(e) Output stream from lower strip 

(f) Combined strip 

5 N+5 2N+ 3N+4 6 N+4 N+62N+ 2N+3N+ 3N+ … 4N-1

4N 4N+25N 5N+26N 6N+2 7N 7N+2 4N+1 5N+1 6N+1 7N+1

4N+ 5N+ 6N+ 7N+4N+ 4N+5N+ 5N+6N+ 6N+7N+ 7N+ … 8N-1

2 N+2 2N+2 3N+2 … 8N-1 4N+1 5N+1 6N+1 7N+1

(a) Strips and half-strips 

4 rows 

4 rows 

Upper half-strip 

Lower half-strip 
A strip 

77



The tile size we chose for our corner turn implementation on V-
IRAM is 16 x 16 element matrix. The selection of tile size 
depends on the number of vector registers and the memory 
configuration. In the load operations of our implementation, each 
column in the tile is loaded into each register in strided mode. 
Then, the data in the registers are stored as a row in sequential 
mode. Even though we use the strided loads, the effective 
performance is as good as the sequential access because of the 
method described below. 

When the first column in the tile is loaded, the load operation for 
each data stalls a few cycles while the memory column is 
accessed. However, when the second column in the tile is 
accessed, if the memory columns accessed previously are not pre-
charged, then, the second matrix column can be accessed in one 
cycle. This is true for the third and all of the remaining matrix 
columns in the tile. The V-IRAM provides up to eight open 
columns. Thus, it is possible to keep the columns open when all of 
the memory columns accessed are in different memory row/wing 
combinations.  
Thus, to limit the number of open columns to eight, we first 
partition the tile into two half-tiles: upper and lower.  All data in 
the upper half-tile is read into the registers before the data in the 
lower half-tile. Since the size of the upper half-tile is 8 x 16, it is 
possible to keep all columns open.  Also, we need  to  ensure  that 
the wing-matrix combination does not appear more than once for 
the half-tile; otherwise, the previously opened column must be 
pre-charged and performance is degraded significantly.  Thus, we 
used matrix padding to place data in different memory rows and 
wings. By using this algorithm, the performance of the stride 
access can be as fast as sequential access. 
On the Imagine processor, we use the following technique to 
leverage the streaming capabilities. We partition the matrix into 
strips of data. Each strip consists of eight rows of data. For each 
strip, we read the data in the strip and do a transpose. Since the 
data in the source matrix is 8 x N elements, where N is the 
number of columns in the matrix, the transposed data is N x 8. 
The transposed data is stored in the destination matrix. This is 
explained in more detail in the following paragraphs. 
  

The strip is conceptually partitioned into two half-strips: an upper 
half and a lower half (see Figure 5). We first perform the corner 
turn for the upper half-strip ((b) and (c)). We read the four matrix 
rows and do the transpose using communication units in the 
clusters. For this operation, four input streams and one output 
stream are used. Since the rows are read sequentially, there is no 
performance degradation. The same operation is performed for the 
lower half-strip ((d) and (e)). Then, the two output streams are 
read and permuted using the communication unit in the clusters 
(f). The strip is written into the destination matrix. During the 
write operation, the unit of data is eight elements and the stride of 
data accesses is N. When each row in the strip is written, the data 
is sequentially stored, thus, we can obtain the maximum possible 
bandwidth. The cycles lost due to the stride mode for the write 
operation is inevitable since it is a characteristic of DRAM that 
the pre-charge time is required whenever memory rows are 
accessed.  

On Imagine, it is not possible to perform a corner turn by reading 
eight input streams simultaneously since the current Imagine 
implementation limits the total number of streams to eight; if eight 
rows are read, no streams are left for an output stream. 

3.2 Coherent Side-Lobe Canceller (CSLC) 
CSLC is a radar signal processing application used to cancel 
jammer signals caused by one or more jammers. To cancel jammer 
signals that appear as side-lobes in the frequency domain, one 
auxiliary channel is needed per jammer signal.  

The block diagram of the signal processing is shown in Figure 6. 
The operations in the upper half of the figure are known as weight 
calculations and the operations in the lower half are weight 
applications. To cancel the side-lobe, the weight factor is 
calculated using the signal from the auxiliary channel. Then, the 
main signal is partitioned into several sub-bands in the time 
domain. Each sub-band is then converted to the frequency domain 
using the FFT (sub-banding). Weight factors are multiplied with 
the output of the FFT operation to cancel the side-lobe. An 
inverse FFT is later performed on the output data. Most of the 
computation time is spent on the FFT and IFFT operations. In our 
implementation, only the weight application is implemented.  

FFT Sample 
Selection

Weight 
Calculation

Interpret 

FFT 
(subbanding) 

Multiply IFFT Decimate 

Input 
Signal 

Figure 6. Coherent side-lobe canceller 

78



The following parameters are used for the implementation: four 
input channels, two main channels, and two auxiliary channels. 
Each channel has 8 K data samples. All computations are done 
using floating-point precision. The data is partitioned into 73 
overlapped sub-bands, each of which contains 128 samples. For 
sub-banding, a 128-sample FFT is used.  

To improve CSLC performance, we used several techniques: a 
combination of radix-4 and radix-2 FFT, hand optimization of 
assembly code for the FFT operation, reducing the number of bit-
reverse operations, and eliminating load-store operations between 
computational stages.  

Since the majority of computation time on the CSLC is spent on 
the FFT operation, we improved the performance of the FFT by 
using the appropriate FFT algorithms for each architecture.  

 On V-IRAM, a radix-4 FFT is used. Note that since the size of 
the FFT for the CSLC is 128, which is not power of 4, we used 
three stages of radix-4 FFT and one stage of radix-2 FFT. Since 
the current version of the V-IRAM compiler does not vectorize 
the FFT code written in C optimally, we hand-assembled the FFT 
to obtain the maximum performance using vector instructions. For 
example, there are instructions that are suitable for the FFT 
butterfly that the current compiler does not use for the FFT 
compilation, such as vhalfup, which shuffles data between two 
vector registers. 

On the Imagine, as for the V-IRAM, a combination of the radix-4 
FFT and the radix-2 FFT is used. We wrote two kernels for radix-
4 and radix-2 FFT. We used the FFT algorithm that has the input 
and output pattern that is most suitable for stream processors. 
After each butterfly operation, the data is exchanged among 
clusters using a cluster communicator to arrange data 
appropriately. In addition to the optimization of the FFT itself, we 
also removed the bit-reverse operations. Instead of bit-reversing 
the result of the FFT, the weight factors are bit-reversed in the 
weight application processing. This is shown in Figure 7.  

The number of bit-operations for the straightforward method is 
2N, where N is the number of data sets on which the FFT, weight 

application, and IFFT are performed (N=73 in our 
implementation). However, in the new algorithm, the number of 
bit-reverse operations is only one. Therefore, the bit-reverse 
operation cost is reduced by a factor of 146. This also enables us 
to eliminate the load-store operations between the FFT, weight 
application, and IFFT. 

3.3 Beam Steering 
Beam steering is a radar processing application that directs a 
phased-array radar in an arbitrary direction without physically 
rotating the antenna. Figure 8 shows a one-dimensional beam 
steering operation. A real system consists of a two dimensional 
array of antenna elements populated on a plane. In the system, 
many small antenna elements transmit the signal with different 
phases. In the figure, each of the three antenna elements transmits 
a signal with phase shift of d * sin θ between adjacent elements. 
By choosing phases, the antenna direction can be controlled. The 

Butterflies - FFT 

Bit-Reverse 

Weight-Application

Butterflies - IFFT 

Bit-Reverse 

Weight Factors 

Butterflies - FFT 

Weight-Application

Butterflies - IFFT 

Bit-Reverse 

Weight Factors 

(a) Conventional  (b) Bit-reversed weight factors  

Figure 7. New CSLC implementation 

d

2d sin θ 

θ 

Figure 8. Beam steering 

79



computation of the phase for each antenna element involves many 
load, store and arithmetic operations.  

In our implementation, the following parameters are used. The 
number of antenna elements is 1608. Each element can direct the 
signal up to 4 directions per dwell where a dwell is a period. The 
phase needs to be calculated for each direction. Depending on the 
signal frequency and temperature, calibration data needs to be 
incorporated in the calculation of the phases. In our 
implementation, four calibration bands are processed. 

As for other applications, we used hand-vectorization of the main 
portion of the beamsteering on V-IRAM. Note that the current 
compiler is still a prototype and it may be able to vectorize these 
in the future. For the Imagine, a kernel is written that utilize the 
clusters 

4. EXPERIMENTAL RESULTS AND 
ANALYSIS 
In this section, the implementation results of the corner turn, 
CSLC, and beam steering applications are presented. Performance 
of these applications is estimated using cycle-accurate simulators 
provided by the V-IRAM and Imagine teams. For comparison 
purposes, actual measurements of the application performance 
were taken using a single node of a PowerPC-based 
multiprocessor system and a Pentium III system. Applicable 
performance improvement techniques were also applied to these 
platforms. 
The PowerPC results are obtained using a PowerPC-based 
multiprocessor, the CSPI 2741 [2]. Each CSPI 2741 consists of 
two boards. Each board contains two PowerPC 750 (400 MHz) 
processors and a LaNAI network interface. The processors are 
interconnected through a Myrinet network. The gcc compiler is 
used for compilatopm. 
The Pentium results are obtained using a PC running the Linux 
operating system. The CPU in the system is Pentium III running at 
733 MHz. The gcc compiler is used for compilation.  
 
Table 1. Experimental results 

 Corner Turn 
(MB/sec) 

CSLC 
(msec) 

Beam Steering 
(msec) 

PPC G3 
(400 MHz) 

21.0 16.6 3.76 

Pentium III 
(733 MHz) 

83.9 32.2 
4.74 

 

V-IRAM 
(200 MHz) 

1441.8 2.57 0.31 

Imagine 
(500 MHz) 

1199.1 0.77 0.30 

 
In Table 1, the implementation results of corner turn, beam 
steering, and CSLC are shown. The speedup is shown in Figure 9. 
Figure 9 shows that V-IRAM and Imagine provide speedups up to 
70 compared with a PowerPC system even though their clock 
frequencies are not particularly fast. The results show that the V-

IRAM performs better than the Imagine on a corner turn. This is 
because the V-IRAM has higher bandwidth between memory 
(which is on-chip on the V-IRAM and off-chip on the Imagine) 
and the processing unit. However, the Imagine has higher 
computational performance, which is reflected in the performance 
of the CSLC, which is more computation-intensive. The V-IRAM 
and Imagine have similar performance on the beam-steering 
application because of the balance between memory lookups and 
computation of that application.  
In a real system, the current implementation of the V-IRAM may 
take less space than the current implementation of the Imagine 
since it has a scalar processor and internal DRAM on-chip and 
does not need external memory if the application fits in the 
memory. 

5. CONCLUSION 
We have presented simulated performance results for data-
intensive radar processing applications on systems based on the 
V-IRAM PIM and the Imagine stream processor and compared 
them to conventional systems. The results show the potential 
advantages of the new technologies on data intensive applications. 

We have presented the implementation results of the real-time 
data intensive applications, coherent side-lobe canceller and beam 
steering, on both innovative data-intensive systems (V-IRAM and 
Imagine) and conventional systems (PowerPC and Pentium III). 
The implementation results show the speedup using these chips 
provide up to almost 70 compared with the PPC-based system.   

6. ACKNOWLEDGMENTS 
The authors gratefully acknowledge the UC Berkeley IRAM team and the 
Stanford Imagine team for the use of their compilers and simulators and 
their generous help. The authors specifically acknowledge Brian Patrick 
Towles for providing initial idea of the corner turn on Imagine. The 
authors also acknowledge Rick Pancoast, Steve Shank, Walt Mazur, and 
Joe Racosky of Lockheed Martin NE & SS for providing the applications. 

Effort sponsored by Defense Advanced Research Projects Agency 
(DARPA) through the Air Force Research Laboratory, USAF, under 
agreement number F30602-99-1-0521. The U.S. Government is 
authorized to reproduce and distribute reprints for governmental purposes 
notwithstanding any copyright annotation thereon. The views and 
conclusions contained herein are those of the authors and should not 
interpreted as necessarily representing the official policies or 
endorsement, either expressed or implied, of the Defense Advanced 
Research Projects Agency (DARPA), Air Force Research Laboratory, or 
the U.S. Government. 

Figure 9. Speedup 

0

10

20

30

40

50

60

70

Corner Turn CSLC Beam Steering

Sp
ee

du
p

PPC G3

Pentium

VIRAM

IMAGINE

80



7. REFERENCES 
[1] C. Conti, D. H. Gibson, and S. H. Pitowsky, “Structural 

aspects of the System/360 Model 85, Part I: General 
Organization,” IBM Systems Journal, Vol. 7, No. 1, pp. 2-
14, 1968.  

[2] CSP Inc., “2000 Series Hardware Manual S2000-HARD-
001-01,” CSP Inc., 1999.  

[3] A. Gupta, J. L. Hennessy, K. Gharachorloo, T. Mowry, and 
W. D. Weber, “Computative Evaluation of Latency Reducing 
and Tolerating Techniques,” Proc. 18th Annual International 
Symposium on Computer Architecture, Toronto, May 1991. 

[4] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper, J. 
LaCoss, J. Granacki, J. Brockman, A. Srivastava, W. Athas, 
V. Freeh, J. Shin, and J. Park, “Mapping Irregular 
Applications to DIVA, a PIM-based Data-Intensive 
Architecture,” Supercomputing '99, Portland, OR, November 
1999. 

[5] B. Khailany, et. al., “Imagine: Signal and Image Processing 
Using Streams,” HOT Chips 12, Stanford, CA, August 2000. 

[6] C. Kozyrakis, “A Media-Enhanced Vector Architecture for 
Embedded Memory Systems,” Technical Report # 
UCB/CSD-99-1059, UC Berkeley, July 1999. 

[7] J. Hennessy and D. A. Patterson, Computer Architecture: A 
Quantitative Approach, 2nd Edition, Morgan Kaufmann 
Publishers, Inc., 1996.  

[8] Mitsubishi Microcomputers, M32000D4BFP-80 Data Book, 
http://www.mitsubishichips.com/data/datasheets /mcus/ 
mcupdf/ds/e32r80.pdf. 

[9] Motorola, EC603e Embedded RISC Microprocessor 
Hardware Specifications, http://ebus.mot-sps.com/brdata/  

[10] D. A. Patterson, J. L. Hennessy, Computer organization and 
design: the hardware/software interface, Morgan Kaufmann, 
1994. 

[11] M. Penner and Viktor K. Prasanna, “Cache Friendly 
Implementations of Transitive Closure”, In Proc. of 
International Conference on Parallel Architectures and 
Compilation Techniques, September 2001. 

[12] S. A. Przybylski, Cache and Memory Hierarchy Design: A 
Performance-Directed Approach, Morgan Kaufmann 
Publishers, San Mateo, CA, 1990. 

[13] S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany, A. Lopez-
Lagunas, P. R. Mattson, and J. D. Owens, “A Bandwidth-
Efficient Architecture for Media Processing,” 31st Annual 
International Symposium on Microarchitecture, Dallas, 
Texas, November 1998. 

[14] A. J. Smith, “Cache Memories,” Computing Surveys, Vol. 
14, No. 3, pp. 473-530, 1982. 

[15] M. Snir, “Blue Gene System Overview,” Fourth Annual High 
Performance Embedded Computing Workshop,” Boston, 
MA, September 2000. 

[16] J. Suh, S. P. Crago, C. Li, and R. Parker, “A PIM-based 
Multiprocessor System,” International Parallel and 
Distributed Processing Symposium, San Francisco, CA, 
2000. 

[17] Xilinx, http://www.xilinx.com/company/press/kits/pld/ 
factsheet.htm, 2001. 

 

81



�� ��������� �	
����
� ���
����������� ������ �������������
������ ��
� ������� ����� ��� ������  ! "�������� ��		
�� ����

��������#��������� ������������� �� ����������� �������� 
�� $��� ����	% �������! �
��� ������� 
�&� ������� �� �������
 �
� ���$��

�� '(� ����������! )���&��� �� ����������
����� ���
���������� �����%������% ���� �������� ���� ��� ����� ����������� ���� ��� �	��

��
�������� ���������� �� �
� �&���		 ����! '� �
�� ������ �� ������� �� �	
����
� �
�� ��������� �
� ����� ����������� ���� ��� �
�

'(� ���� ��� ������� �
� �&���		 ��������� ����! ��� �	
����
� ������� �
� ����	 ��������� ���� $% �������
 �
� ���$�� �� '(�

���������� ��� �	��������
 �
� ����� �����������! '� ����
 ��� ��� ���
��*��� ��� ���	�%��+ ������
 �
� ���� ���� ���� �� ����������

�������� ��� $�	�����
 �
� ���$�� �� ���� ���� ��� ����� ����������! �
� ����� ����������� ����� �
��
 �� �� �������&� ���������

��&�	&��
 ��� ��&������ ��� � ��	���	�������� �� �	�������� $% �����������
 �
� �����% ���� ���� ��� ����� $������! �
� �������&� ���

��������� ����������� �� ���	���� $% ���� ��		������ ���� �
� ���� $����� �� �
� ����� $�����! �&�� �
��

 �
�� �����������
 ��% ��������

�
� ���$�� �� '(� ���������� ��� ���� ������ �� ����	�� �� �� �&���		 ��������� �� �
� ��������� ���� ��� �� �
� �	��������� �� �
�

�������&� ����� �����������! ��� �	
����
� �� ���	%,�� ����
 �
� ��		������ -����� ����	 ��� �
� "���		�	 .��� ����	! �
�

�����������	 ����	�� �� ��� ����������� �/' 012333� ��� "������ ''' �
�� �
�� ��� �	
����
� ������� �
� �&���		 ��������� ���� $% ��

�� 43 ������� �������� ���
 �
� $��� ����� �	
����
�� �� �
� 	���������!

�	
�� 
����#������ ���������� ���� �������� ����� ����� ����������� ����� '(� ����� ������������ ��������� ����!

�

� ��
�����
���

�������� 	
� �
���	��
 ���
�� �� 
����	��
 �
��
� ��
	����� 	�� ��� �������� �� 	 ������ �� 	 �	�
��� 	

��
	� ����
�	
� 	��
�	�� ���� 	����� ��� ���! � ������
���
�� �� ��� ���"�
 �� 
��� �� ��� �	�
��� #�� 	��
�	��
�� 	$��� ���� �� �� �
	������ ��� �	�
�� 	�� ���
� ���
�
	������� �	�
�� �� ��� ���!� ��� �
�"��� �� �� �����
����
�� 	 �������� ��
���	���� �� 	  �$�� ��%����� ���� ���
 	
�	
� �� ��� ��%����� �	� "� !��� �� ��� �	�� ���
	 � 	��
���
	��� �� 	� ��� �	�� ����� ����� ������&�� ��� ���"�

�� �'# ���
	����� ()*+� ,����� �	�
�� �
	������ �� 	 !�

�
�����$� �� 	 ���� $	
���
 �� ���������� ������	������
�	�
�� �
	������ �� 	��� 	 ����	����	� ���
	���� ��
	�	���$� �� �	� �
������� (*+� (-+� ().+� (/)+� (//+� �� ����
	�����	������ ��� �
���	� �	�	 ��&� ��	� �� ���
�� �� ��� ���!
�� �� ��� �
��
 �� ��
	0
���� �� ���
� ���� �	�	� �� ��
��
��
�	��� �������� ��	���
�� �����
 ���1 (2+ ���!
�
������

��� ������ �	$� "��� �����
 ���� �� ��� ����
	��
� ��

	"��
	�� ��� "��	$��
 �� ���! �
�����3 ��� 4	
	���� 1��!

����� 541�6 (/7+ 	�� ��� 8���	
 ����� 58�6 ()-+� ���

41� �� ����������� �� ����� �'# �
����� ���� 	� ��� ���1

(2+� �� 41�� ��� �	�	 	����� ���� �� 
��
������� 	�

�������� � ��� ���
� � �� ��� �	�	 ��&�� � �� ��� ���"�


�� ���!�� 	�� �� �� ���� �� �
	����
 	 "���! �� �	�	 5�6

"������ ����

 	�� ���!� �� ��� 8���	
 ������ ��� ���� ��


��
������� 	� �� ��	 � ���
� �� �� ��� ��	
��� ����� � ��
��� �	�	 ��&�� 	�� 	 �� ��� �	�	 �
	����
 ���� ��
 ���� �	�	�

�� ���� �	��
� �� �
����� 	� ��������� 	� �
���� ��

�
	������� �	
 ����	�� �	�
���� 5���������
� �	�
�� �
	���
����6� � �	�
�� �� ��&� 
 �
 �����	��
 
������ �� ��� ���!�
��� �	�
�� �� �� "� �
	������� 	�� ���
�� �� 	�����
 	

	
�
��� ��&� �� ��� 	$	��	"�� �	�� ����

� �� �� ��	���
 ��	�
��� �	�
�� ��&�� 9������ ���� ��  ���
	���
� �� 	����� ��	�
��� �	�
���� 	
� ���
�� �� 
����	��
 �
��
� ��$�
	�

���	
���
� �	$� ������� ��� ���������
� �	�
�� �
	������
�
�"���� � ��
	� ����
�	
� 	� �
���� ��
��
�� �	�
��
�
	������ ���� ��
���� �'# ���
	����� ���� � � ��
��
�!����� ()*+ �
������ 	� 	� �
���� ��	� �	� ��
 ���
�
�'# ���������
 	������ � � 
 � �
� (/+ �������� ���
	� �
���� �� ():+ �� 
����� ��� ���"�
 �� �'# ���
	����� 	�
��� ������� �� ���
�	��� ���"�
 �� ��	 �� 5�	����6� ;��
�
():+ �	� ��
�$�� ����
 	�� ����
 "����� �� ��� ���"�
 ��
�'# ���
	����� ���� � � ��� �  	
�	� 	�� <����
 ()+
�	$� ����� 	 ����
 "���� �� ��� ���"�
 �� �'#
���
	����� ��
 ���  ���
	� �	�� ���� 41�� <����
 	��
��
�$�
 (/7+ �
������ 41� 	�� 	��� �
�$���� 	� 	�
�����
��� ����
 "���� ��
 ��$�
	� 	� �
����� �������� ��
���	�
����� �� ����� �	�
�� �
	������ �� 	 �����	� �	��� ��
���
�� 	�� (7+ ������ 	�
�������	��
 �%�	� ����
 	�� ����

"����� ��
 ��� ���"�
 �� �'# ���
	���� ��
 "����	�
���
�������
'���������� 50���6 ��
���	������ =	����! �� 	��
()-+ 
������ ��� ���"�
 �� �'# ���
	����� "
 /2 ��
����
����	
�� ���� ��� 	� �
���� �� ():+ "
 ���"���� ��� 
�	�
���
	������

��� ����� ����
�� ����� �� 
������ ��� ���"�
 ��
�'# ���
	����� ���
� ,���$�
� ��� �	�� ����� �� ��	������
����	
� 	
��������
�� ������� �� ��� ���
 ��� ���� ��
 �'#� "��
	��� ��� ����

�����

 �	�	 �
	����
 ���� 	�� ��� �����
������	���� �����

'��� �0�5����'�5� �5 ���"6��0�� ��-! 41� 5�! 7� �"0'- 2332 1

� �� ��� �� ��	� 	�
 ��� 
������	��� ���
��
� 
��	�	�	
� ���� �� ������� ����
���	
 ���� �� ��!	��� "� ###��� $%��� & '���(����
)��

� "�*� +������� �� ��	� 	�
 �
,��	�
�	 �� $ 
�	���� $�!��

���!%�-�	
���
$$.%#���� ���/
���	- �� ���	�
�� �� �������� 0�� ��!
 
�� �� 1���1%
#23#� $%��� & ,�������(����
)��

4�������,	 �
�
�/
) �� �
�� #���5 �
/��
) 1 �� - #���5 ���
,	
) #1 ��!�
#����
��� �������	��� �� �6	�����! �
,���	� �� 	��� ��	�� 
� , 
��
 �
�) 
%��� 	�&
	�(���,�	
����!� ��) �
�
�
��
 
$$$�� 0�! ���6
� ���#���

3318�9:73(32(;1<!33 � 2332 '���
82



#�
 ���������
� �	�
�� �
	������ 	� �
���� 
������
��� ���	� ��������� ���� "
 
������ "��� ��� ���"�

�� �'# ���
	����� 	�� ��� ����� ������	���� ����� ���

�������� �� ��� ���"�
 �� �'# ���
	����� �� 	����$��
"
 ���� ��������� �	�	 
�	� 	�� �
��� ��������� 	�� "

"	�	���� ��� ���"�
 �� 
�	� 	�� �
��� ���
	������ 9�
	�	�
&� ��� ���������
 �� ��
 	� �
���� ���� ��� �����
!���� 4	
	���� 1��! ����� 541�6 	�� ��� 8���	

����� 58�6�

�� ������	�� ��� ����� ������	���� ����� ��
 	� �
����
�	
������� ��� 	$	��	"�� ����

 ���� ��� "����
� 5
�	� 	��
�
��� "����
�6� ��� �������$� ����
������
 ��
���	���� ��

���	��� "
 �	�	 ������� ���
	������ ��� �
��� ���
	�����
	�� ������� ���
	����� 	
� ��������� ����������
 �� 
�����
��� �$�
	�� ����� ��� ��&� �� �	�� "����
 �� ����
����� "

��� 	$	��	"�� ����

 ��&� 	�� ��� �	���
�&	���� �� 
 � 0

���� ����� ������%���� ��� ����� ������	���� �� 
���	���
"
 ���������$� �������� 5��� ������� 2�/6�

9� ����������� ��� 	� �
���� �� 	� �>� �)/???� 	 ���
����
�
��� "	��� �� @��
	�4�������� 	�� 	 4������ ����
"	��� ��	���
� 	� ��� @��$�
���
 �� ������
� �	����
��	� ���
����
������ ��
� �	

��� ��� ��
 	$	��	"�� �	�� ����


��&�� 
	� �� �
�� ). �0 �� .: �0 	�� �	�	 ��&�� 
	� �� 
�
�� )/7 �0 �� 7 >0� ��� 
������ ���� ��	� ��
 	� �
����

������ ��� �$�
	�� ��������� ���� "
 �� �� 2? ��
�����

��� �
 	��&	���� �� ��� 
��	����
 �� ���� �	��
 �� 	�
�������3 �� ������� /� ��� �����!���� ���! ������ 	
�
"
����
 ����
�"��� �� ������� *� �
�$���� 	� �
����� ��
 �	
 �
��	�� �	�
�� �
	���������� 	
� ���������� #$�
$��� �� ��

	� �
���� �� �
������� �� ������� :� #�
 	� �
���� ��
����
�"�� �� ���	�� �� ������� 2� ����
�����	� 
������� 	�
���� 	� ����	
����� ���� �
�$���� 	� �
������ 	
� �
��
������ �� ������� .� ������� A ��������� 	 ��
���
 ���������
�� ��
 	� �
���� 	�� ������� 7 ��������� ��� �	��
�

� ���� ������

��	����������	
� ���! �
����� �����
 ���������	��� �	
��
�	
� 	�� ��
��
� ��$�
	� ������&	����� �� 
����� ���
�'# ����� ;�
 ��	����� �	�
 �� ����� �
����� �����
 	
���! "����
� 	 ��"
	

 "����
� 	�� 	 ����
����
 	�� ��
��
�
	����� 
��
��
�� � �	�� �� ��� 	"�$� �
���� ��	��
�� �����
��$�
	� �	
	����
� �� ����
�"� ��� "��	$��
 	�� ���� 	
����� ���� "� ��� ������� �� "� �������

��� ������ �� ���! �
����� ��	� �	���
� ��� !�

��	
	���
������ �� ���� �
����� �	$� "��� �����
 ���� ��
��� ����
	��
�� #�� �� ���� �� ��� 4	
	���� 1��! ����� 541�6
(/7+� �� ������ ��� ������$�� "��	$��
 �� ���! �
����� ���� 
��� �	
	����
�3 "���! ��&� 5�6� ����� �� ��� ��&� �� �	�	
�
	����

�� "������ ���! 	�� ����

 �� ��� �'# ���
	�
����� ���"�
 �� ���!� 5�6� ��� ���"�
 �� �
������
� 5� 6� ���
��&� �� ����

 5�6� 	�� ��� 	����� �� �	�	 �
	����

��
5�6� �� ���� �	��
� � �� 	������ �� "� ���� ��� ���	� ���� ��

�	�	 �
	����
 "������ ���! 	�� ����

 �	� "� 
��
�������
	� �������� � ��� ���
� �� �� ��� ���� �� �
	����
 	 "���! ��
�	�	 "������ ����

 	�� ���!�

�� 	�����
 ����� ()-+� ��� ����� 	
� �������
��3 ��	
���
���� 	�� �	�	 �
	����
 ����� ��� ��	
��� ���� �� 	 ����� ����
��
 ������ �� ��� �	�	 �
	����
 "������ ����

 	�� ���!�
��� 
��� �� ��� ���� �� �
���
����	� �� ��� 	����� �� �	�	
�
	����

��� ����� ��� 	����� ���� �	� "� 
��
������� 	�

�� ��	 � ���
� �� �� ��� ��	
��� ����� � �� ��� �	�	 ��&�� 	��
	 �� ��� ���� �� �
	����
 ���� �	�	� �
���	��
� �� �� �� ���
�
��
 �� ���� 	�� 	 �� ���� �� ����'"
���

� �������� ������
 ��

�� ���� �������� ��
 ��� �	!� �� ������������� ��� �����
!���� 	� �
����� 	
� "
����
 ����
�"��� ����� ��� 	� ��

����� �
�$��� ��� "��� ��
��
�	��� �$�
 �	�
 ����

	� �
������ ��� 	� �
���� �� ()+ �	� "��� ���� ��� ���� 
��� 41� 	�� ��� 	� �
���� �� ()-+ �	� "��� ���� ��� ���� 
��� 8�� �� ������� :� ��
 	� �
���� �� ����	
�� ���� �����
	� �
������

�!� ����"� 
��	�#$��

�� ��� �	�
�� �
	������ �
�"���� 	� ����� �	�
�� �� ��&�

 �
 �����	��
 
������ �� ��� ���!� ���
� 
 � �
��

��� ��� ��

���� 
 � �� ���
� �� �� 	 ������$� ���� �
� �� 
 �� 	 �
���
���"�
� �� �	� 	�� ����
 
��� �� �	!� 
 �� "�
����
���� ��� ����� �	�
�� �� �� "� �
	������� 	�� ���
��
�� 	�����
 	

	
� �� ��� ��&� �� ��� 	$	��	"�� ����

� ��
��	���
 ��	� ��� ����� �	�
�� ��&�� ��
�� ���� ���� �	��
�
�� ������
	�� ��� !�
 ���	�� �� ��� �%�	
� �	�
�����
,���$�
� ��� 	� �
����� �	� "� �	���
 �������� ��

���	� ��	
 �	�
���� 	� ����� ���� ��� ������%�� �� (.+�
()-+� ����� ��
 ��� �	!� �� ���������
� ��
�� ���� ��� �	��
�
�� 	����� ��	� ��� 
����� �� 	�� 	
�������� ���
	����� 	
�
���� �
��

�!� �%%��&�' �	
 �"����(� �'%$�"�)�

�  	
�	� 	�� <����
 ()+ ������ 	 ����
 "���� �� ���

���"�
 �� �'# ���
	����� �� ��
��
� �	�
�� �
	������� ��

���� 	� �
����� 	� �	�
 "���!� 	� �	� ��� �� ��� 	$	��	"��

����

 	
� 
�	� ���� ����

� ����� ��� �	�	 	
� ��
�����

	�� �
����� ���� ��� ���!� ��� ���"�
 �� �'# ���
	����� ��


���� 	��
�	�� �� ����� �� �	"�� *� ��� ���"�
 �� �'#

���
	����� �� �
�

� ���
�


�

� � ��� 	�
������� ���������
 �� ���

	� �
���� �� 
� ���
��� ���� � 	�� � 	
� �����	���� B���

��	� ��� 	�
������� ���������
 �� ��� 	� �
���� �� 	�	�� �

���� �� 
 ��
 "���� ��
 ��
��� �� ��� ��� ����� (A+�

(/.+� ���
� 
 �� ��� ���"�
 �� �	�	 ���������
�� ���� 	� �
����� �� �� 
���
����� �� "� 	 ���� � 	 � � 
�

���� �� "��	���� �� �� � ���� 	 "���! ���� "� ���
�� � ��
����

����� ��
 ���
	���� �����	� �� ���
�� �� ����� ���� 
������ ��
	 �������
	"�� ���
�	�� �� ��� ���"�
 �� �'# ���
	������ ��
��
 	� �
����� �� 
��	� ���� 
���
������ "
 ��$������ 	
������%�� �� ��� 	 �	
 �
 "���! ��&�� ����� �  	
�	�C�
	� �
���� ���� ��� ������&� ��� ����� ������	���� �����
����� ������	���� �� ������ �� ��
��
� ��
���	���� �� ���
�	�	 �� ����

� ��� ���������� ��
 �  	
�	� 	�� <����
C�
	� �
���� ��  �$�� �� ;� � )�

�!� ��*�)"+ �� �'!(� �'%$�"�)�

�� ���� 	� �
���� ()-+� ���
� 	
� 
 ��	 ��� ���
� 
 � �
��
��� ���

�� ��	���� �� ����� �� ;� � *� ��� ���"�
 �� �	�� ��	��
�%�	
� ������� 	 �	�	 �������� ��� 	

�� �����	��� 
�	�
	�� �
��� ���
	������

�	�� ��	 � �������� �� 
��� ������ �� �	�� �����
��
 
��� 	
� 
�	� ���� ����

 	�� ��
���	���� �� ���
�	�	 �� ��
��
��� �� ��� ����

� �� ��	 � �� � 	 � � 
� ���

2 '��� �0�5����'�5� �5 ���"6��0�� ��-! 41� 5�! 7� �"0'- 2332

83



�	�	 	
� �
����� "	�! ���� ��� ���! �� �� �
��� ���
	������

����� ��� ���"�
 �� 
�	� 5�
���6 ���
	����� �� �	�� ���� �� )

5��6� ��� ���	� ���"�
 �� �'# ���
	����� ���� ��� 8� 	��

��� 41� 	
� ����� �� �	"�� *�
������ � ��� ���"�
 �� �'# ���
	����� 	�� ��� ���� ��

�
	����
 �	�	 "������ ����

 	�� ���! 	
� �������
��� ���

���	� ���"�
 �� 
�	� 	�� �
��� ���
	����� 	
� ���

������&��� ����� ��� ����� ������	���� ���� �� ���

������&��� ��� ���������� ��
 =	����! �� 	��C� 	� �
����

��  �$�� �� ;� � /�

�6) �5. "0���55�+ �5 �=='�'�5� �-/�0'�)� =�0 �6���=���0� ���0'> �0�5�"��'�'�5 :

=�
! 1! "��������� ��� �

����	 ��� ������?� �	
����
�

=�
! 2! "��������� ���  ���
�� �� �	!?� �	
����
� @-�A!

=�
! :! �� �		�������&� �����	� @
 � 	 � ��
��� � ��� � � �
A# ���
�� �� �	!?� �	
����
�!

84

1 for s = 0 to lgM/B min(B, N2/B) - 1 

2 for j = 0 to N2/M- 1 

3 Read M/B blocks; 

4 Permute data in memory; 

5 Write M/B blocks; 

for s = 0 to t-1 

for j = 0 to N2/M -1 

Read M amount of data; 

Permute data in memory; 

for k = 0 to r3 — 1 

Write M/r s amount of data; 

Disk 
0 1 2 3 4 5 6 7 

6 9 10 11 12 13 14 15 

76 17 18 19 20 21 22 23 

24 25 26 27 28 29 30 31 

32 33 34 35 36 37 38 39 

40 41 42 43 44 45 46 47 

48 49 50 51 52 53 54 55 

56 57 58 59 60 61 62 63 

Memory 
(After load) 

0 1 2 3 4 5 6 7 

8 9 10 11 12 13 14 75 

Memory 
(After permutation) 

0 2 4 6 8 10 12 14 
16 18 20 22 24 26 28 30 

32 34 36 38 40 42 44 46 

48 50 52 54 56 58 60 62 

1 3 5 7 9 11 13 15 

17 19 21 23 25 27 29 31 

33 35 37 39 41 43 45 47 

49 57 53 55 57 59 61 63 

Load 
from 
Disk 

Permutation 
in Memory 

(a) 

Disk 

0 2 4 6 1 8 ' 10 12 14 

16 18 20 22 24 26 28 30 

32 34 36 38 40 42 44 46 

48 50 52 54 56 58 60 62 

1 3 5 7 9 11 13 15 

17 19 21 23 25 27 29 31 

33 35 37 39 41 43 45 47 

49 57 53 55 57 59 61 63 

0 2 4 6 8 10 12\U 
16 18 20 22 24 26 28 30 
32 34 36 38 40 42 44 46 

48 50 52 54 56 58 60 62 

1 3 5 7 9 11 13 15 

77 19 21 23 25 27 29 31 

33 35 37 39 41 43 45 47 

49 51 53 55 57 59 61 63 

0 4 8 12 16 20 24 28 

32 36 40 44 48 52 56 60 

7 5 9 13 17 21 25 29 

33 37 41 45 49 53 57 61 

2 6 10 14 18 22 26 30 

34 38 42 46 50 54 58 62 

3 7 77 15 19 23 27 31 

35 39 43 45 49 53 57 61 

(b) 

0 4 8 12 16 20 24 28 

32 36 40 44 48 52 56 60 

1 5 9 13 17 21 25 29 

33 37 41 45 49 53 57 61 

2 6 10 14 18 22 26 30 

34 38 42 46 50 54 58 62 

3 7 11 15 19 23 27 31 

35 39 43 45 49 53 57 61 

0 8 16 24 32 40 48 56 

1 9 17 25 33 41 49 57 

2 10 18 26 34 42 50 58 

3 77 19 27 35 43 57 59 

4 72 20 28 36 44 52 60 

5 13 21 29 37 45 53 61 

6 14 22 30 38 46 54 62 

7 75 23 31 39 47 55 63 

(c) 



, �������- �. ��� ������
 �

9� �
����� 	� �$�
$��� �� ��
 	��
�	�� �� ���� ��������
������� 2 �
�$���� ��� ���	��� �� ��
 	��
�	�� 	�� 	�	�
���
���� 41� 	�� 8��

#�� �� ��� !�
 ��	��
�� �� ��
 	� �
���� �� ��� 
��������
�� ��� ���	� ���"�
 �� �'# ���
	������ ����� �� 	����$�� "

��	�� �� ��������� 
�	� 	�� �
��� ��������� 	�� ��

��
������� �	�	 ��
���	���� �� ��� ����

� ;�
 ��	����� ��
()-+� ���
� 	
� ��
�� �'# ���
	����� 5��� 
�	� ���
	���� 	��
��� �
��� ���
	�����6 �� �	�� ���� ���� � � �
 	��
� � 
 � #�
 	� �
���� 
�%��
�� ���
 	 ��� �� �
��� ���
	����
�� �	�� ���� ����	
�� ���� ��� �
��� ���
	����� 	� �� ���
�	�� �� ��� 	� �
����� �� ()+� ()-+� ��� ������� �� 	 ���� ��
����	���� �� ���	�� �� ������� 2� ����� ��
 	� �
���� ��������
�� ��� �	�� ���"�
 �� ����� 	� �� ��� �
�$���� 	� �
������
���
� �� 	 �������
	"�� 
�������� �� ��� ���	� ���"�
 ��
�
��� ���
	������

������
 ������%�� ���� �� ��
 	� �
���� �� ��� "	�	���� 
�� ��� ���"�
� �� 
�	� 	�� �
��� ���
	������ �� "	�	���� 
��� ���"�
� �� 
�	� 	�� �
��� ���
	������ ��� !�
 ���	 ��
��	� ��� ���	� ���"�
 �� �'# ���
	����� �	� "� 
������ "


������ ��� ���"�
 �� �
��� ���
	����� 	� ��� ������� ��
	� ���
�	��� ���"�
 �� 
�	� ���
	������ ;�
 ��	����� ����
�� � ��� �� �	�� ����� ��� ���"�
 �� 
�	� 5�
���6 ���
	�����
�� ()-+ �� ) 5*/6� �� ��
 	� �
����� �� ���
�	�� ��� ���"�
 ��

�	� ���
	����� �� ���� �� �
��
 �� 
����� ��� ���"�
 ��
�
��� ���
	����� �� ����� ���� 
������ �� 	 :2 ��
����

�������� �� ��� ���	� ���"�
 �� �'# ���
	������ B��� ��	� 	
��
	� ����
�	
� ������ �� "	�	��� ��� ���"�
� �� 
�	� 	��
�
��� ���
	����� 
������ ��� ���	� ���"�
 �� �'# ���
	�����
"
 ���
 ��� 5��� ������� 26� ��� �	�	 ��	� 	
� �
����� ����
��� ���! �� �� �
��� ���
	����� �� ��� �
�$���� 	� �
���� ��
�
����� �� ��� �
��� ���
	���� �� ��
 	� �
����� ����� ���
�
�� 	 
�������� �� ��� ���"�
 �� �
��� ���
	����� "
 	 �	���

�� ��� ���
� �� �� 	� ���� �
 
 �� �� 	 ��"��%���� 
�	�
���
	���� 5��	� ��� �� ��� ���� ��	 �6� ��� �	�	 �� 
�	� �� ��

�	� ���
	������ 0
 ������� 	� �����	� $	��� �� ��� ���
���	� ���"�
 �� �'# ���
	����� �� 
�������

�� ��� �
�$���� 	� �
����� ()+� ()-+� ��� ����
� 	$	��	"��
����

 �� ���� ��
 
�	��� �	�	 �
�� ���!� �$�� ���� �
���� 	��
�	�� �	����&�� ��� ����

 �����&	����� �� 
������
�� �������$� ����� ������	���� ���� 5����� ������	����

���
� �� �������� ��� ���
�� �
 ������	���� 	��
����� ��
�	�� �	��� ��
�� �	�	 ��
���	���� �� ��� ����

6� ��
������	�� ��� ����� ������	���� ����� ��� 	$	��	"�� ����


�� �	
�������� ���� ��� �����
������&�� "����
� 5
�	� 	��
�
��� "����
�6� �����	� �� ��
��
��� 	 ��
���	���� "���
�
�$�

 �
��� ���
	����� ���
 ��� �	�	 ������ ��
 �	�� �
���

���
	���� �� ��$�� ���� ��� �
��� "����
� ���� �� ������� 	�
	 ������
 ���
	����� ��� ��
��� �� ��� �	�	 	����� �� ��� �������
���
	���� �� �����	��� ����� �� �	� "� ��
��
��� ���� 
���������$� ���������

�� ��� �	�� �������� 	� �� ��� �
�$���� 	� �
����� ��
���� 5������� ���
	����� �������� "
 �
��� ���
	�����6� ����
��� ��&� �� ��� �
��� "����
 ���� "� ���� ,���$�
� �� ��

	� �
����� ��� �����&	���� �� ��� �
��� "����
 �� ���
�	���
���� ��
 �������� ����� 
������ �� 	 ��	���
 �
��� "����
�
�� ��
 ��������� 	 �
��� ���
	���� ������� �	�� �������
���
	����� ����� ��� 
�	� "����
 ��&� �� ���� ��	� ���
	$	��	"�� ����

 ��&�� ��� ���"�
 �� �'# ���
	����� ��
���
�	��� ��� ���
� ,���$�
� 	� ����� �� ������� .� ��� ���	�
��������� ���� �� 
������ ��� �� 
�������� �� ��� �����
������	���� �����

/ ��
���� �. 
 � ������
 �

��������	� ���	��� �� ��
 	� �
����� 	� ���� 	� ��� 	�	�
����
	
� �
������� �� ���� �������� ������� 2�) ����
�"�� ��

������%�� �� 
����� ��� ���"�
 �� �'# ���
	������ ���
�$�
	�� 	� �
���� ���� ��� 
�	� 	�� �
��� ��������� ��
����
�"�� ��
��� 8	��
� ��� 
�	� 	�� �
��� ��������� 	
�
����	���� ��
 ��� ���
 �����
��� �	���� �� ������� 2�/� ��

������ �� 
����� ��� ����� ������	���� ���� �� ����	�����

/!� ��
*�"	% �*���� $0 �1� �#����"$	�

9� ��	"�
	�� �� ��
 	� �
���� �� 
����� ��� ���"�
 ��
�'# ���
	����� ��
� 5��� ;� � :6� ���	�� ��	� ��� �	�
�� ��&� ��

 �
 	�� 
 � �
��

��� ��� ���
� �� � �� B��� ��	� ��� �
��

�� ����� ��� �
����� ��
�� 	
� �������� �� ��� ����
�	���
��� ������������� �� 
 ���� �� �� ����
����� "
 ���
��	���
� 	
��������
� �	
	����
� ���� 	� ��� �'# �����
������� ��� $	���� �� �� �� ��� �� ��� ����� �� ���� �	��
�
�������$��
� ��� �	
 �
 ��� $	��� �� ��� ��� ���
��
 ���
��������� ���� ��� ���� �� "��	��� ��� �	
 �
 $	��� �� ��
����� 
����� ��� ���"�
 �� ��	 �� �� ��� 	� �
����� ���

�������� �� ��� ���"�
 �� ��	 �� ����� 
����� ���
����

�����

 �	�	 �
	����
 ���� 	�� ��� ����� ������
�	���� ����� ���� � ��� ���"�
 �� �'# ���
	����� ��
 ��	 �
�� ���
�	���� ��� ���	� ���"�
 �� �'# ���
	����� �� 
������
"��	��� �� ��� 
������ ���"�
 �� ��	 ���

��� 	� �
���� �������� �� 
 ��	 ��� �� �	�� ����� ��� �	�	
	
� ��
�� 
�	� ���� ����

 ���� 
�	� �������� ����� ��
58��� *6� ��� 
�	� �������� 5	�� ��� �
��� �������� �	��
6
��������� �	�	 �� "� 
�	� 5�
�����6 �� �	�� ���� ��
�� 	
��	 �� ��� �	�	 ��	� 	
� 
�	� ���� ����

 	
� ��
�����
"	��� �� ��� ������ ���"�
 �� ��� ����� �	�
�� 58��� :6�

7 '��� �0�5����'�5� �5 ���"6��0�� ��-! 41� 5�! 7� �"0'- 2332

=�
! 7! �&��&��� �� �
� �	
����
�!

85

1 for s = 0 to t-1 step = 1// for each stage 

2 for u = 0 to N2/M-l step = 1// for each step 

3 Read M units of data from disk using read schedule RS(s, u); 

4 Permute the data in memory; 

5 Write M units of data to disk using write schedule WS(s, u); 



��� �	�	 �� ���� �
����� ���� ��� ���! ���� ��� �
���
�������� ����� �� 58��� 26�

��� ��� ��� 	�� ��� ��
���	���� �� �	�	 �� ����

 	
�
����	���� �� ���	�� ��
 �	�� �� ��� �������� ���
 �	����
�	�� ) 	�� �	�� / ��
�	�� �� ��� ����	
��� ���
� 	� ����
�	�	 	� ��� ����

 ��&� �	� "� 
�	� �
�� ��� ���! �

�
����� ���� ��� ���! �� ��� �'# ���
	���� 5����� � 
 �6� ��
��������� �� �	�� )� ��
 	�	�
��� ����� ��	� ��������� �	�	
	

	� ����� 
������ ��� ���"�
 �� �'# ���
	����� "

	��
����	���
 	 �	���
 �� ��� � ����� ����	
�� ���� ���
�
�$���� 	� �
������ �� �� 
 	 5�	�� /6� "	�	���� ���
���"�
 �� �'# ���
	����� 
������ ��� ���	� ���"�
 ��
�'# ���
	����� "
 	 �	���
 �� 	��
����	���


����
��

�
���

�� ���� � � � � 5�	�� *6� ��
 	� �
���� �
�$���� ���
"��� ��
��
�	��� ����	
�� ���� ��� �
�$���� 	� �
�����
���� 
������ �� ��� ���"�
 �� �'# ���
	������ ;��	��
� ��
� 	 ���� 5�	�� :6� ��� 	� �
���� �� ()+ �� ����� ���
	� �
���� �	� ��� ������� ���"�
 �� �'# ���
	������

B��� ��	� 
������ ��� ����� ������	���� ���� 5����
������ �� ������� 2�/6 ��
���
 ���
�$�� ��� ��
��
�	��� ��
	�� ��� �	���� �� ��� �������� � �� � 	 � � 
� 
���
� �� 	 ��	 �
	�� �� � 	 � � 
���� 
���
� �� 	 �����

1����� ��� � 	 � � 
� 	� �������3

�� � � � � � ���
��� �� � � 	 � � 
�

�
���

����� ������ �� � �� �� � � ��
���� � 5� 
 � 	�� �� � 	63 ��� !�
 ���	 �� 	�� ��� �	���

�� �� 	

	� � ��� �	�	 �� ��� ���! ���� �� 	��
�� ���������� ��� ����� �� �� 	 ��� ����	���� ��� 
��
������� �� ��� �	�	 �� "� 
�	� �
�� ��� ���! 	������� �� �� 	
��� ����	���� ��� 
�� ������� �� ��� �	�	 �� "� �
����� ����
��� ���! ��
�� ���� � �� ��	 � ��

�� 	�� �� ��
 �	�� ) 	
� ��������� "
 ��� 	� �
����� ��
;� � 2 	�� ;� � A� 
�������$��
� ��	����� �� �� 	�� �� 	
�
����� �� ;� � . 	�� ;� � 7� 
�������$��
�

�� ����� ���� 
��� 	
� 
�	� �
 �
����� �� 	 ����� �� �	� "�
���� �� ��� �'# ���
	���� ���� 8� �� ���� ������ �� 8��
	�
 	����� �� ����� ���� �	�	 	
� 
�	� �
 �
����� �� ���
�'# ���
	����� ���� �� �
�� �� �	�� ) 	�� �	�� /� ;�

��	����� �� ;� � .� �� ���� ? �� ��	 � ?� 
�� ? 	�� 
�� )�
����� 	
� ����� ����� 	
� 
�	� �� ��� 
�	� ���
	����� 0���
�� ���� / �� ��	 � /� 
�� ? 	�� 
�� * 	
� ��� ����� �����
����� ���
 	
� 
�	� ���	
	���
� ����� ���� ��� 
�	�
���
	������

��� �	�	 �� ��� ����

 	
� ��
����� 	� �� ;� � -� ����
������� ��� �	�	 	� ��� 	��
��� �� � 	 � � �� �� ��� ����

�
B��� ��	�� �� ;� � -� ���� ���	��� 	
� ������� ��
 ���������
�
;�
 ��	����� ��� ��
���	����� ��
�� ���� ? �� ��	 � )
���� 	�������	� ������	����� �� �������
 ��� ������	����
	��
������ ,���$�
� ���� 	�������	� ������	����� 	
�

�%��
�� ��
 ���
 	 ��	�� ���"�
 �� ��
���	������ �����
��� ���	��� 	
� ��� �
����	� ��
 ����
��	���� ��� �	�� ���	
�� ��� 	� �
���� 	�� �	� "� �	���
 ��
�$��� ���
 	
� �������
��
 ���������
�

��� 	� �
���� �� ������
	��� �� ;� � )?� ��� ���"�
 ��
�	�� ��	�� �%�	
� ������� 	 �	�	 �������� B����� ��	� ���
�	�	 	
� �� 
����	��
 �
��
 �� ��� �����	� �	�
�� �� ��	 � ?
	�� �� ��������	��
 �
��
 �� ��� 
� ���	������� �	�
�� ��
��	 � /� ��� 	

��� �����	�� 
�	� 	�� �
��� ���
	������ ��

��������� 	"�$�� �� ��� 
��� 	
� 	��	����� ��� �	�	 	
� 
�	�

�
 �
����� �� ��� �'# ���
	�����
��� ���"�
 �� �'# ���
	����� �� 	��
����	���



�

�

�
��
��� �� 5��� ����
�� )6�

� ����	
���� �� ��� ���"�
� �� �'# ���
	����� ��
 ����

�� ��� 	� �
���� �� ()-+ 	�� ��
 	� �
���� �� ����� ��

�	"�� )� �� �	�� )� 8���	
 ����� �� ���� "��	��� � 	�����

�� �	�	 �� ��� ���! �� ��	��� ���� ����

 �� ���

�'# ���
	����� �����%�����
� �  	
�	� 	�� <����
C� 	� ��


���� �	���� "� ���� 	� ��� "	��� ���� �� �	�	 �
	����
 ��

�%�	� �� �
 �	
 �
 ��	� ��� ��&� �� ����

 �� ���� �	
�����	


�	��� ,���$�
� 8���	
 ����� ����� ��
!� ���� �� ���� �	���
��$�
	� 	� �
����� �	$� "��� 	�	�
&�� �
�$�����
 ��


��� �	�� ���
� � � �
 � 9��� � � �
 � ��� 	� �
���� ��

()-+ 
������ ��� ���"�
 �� �'# ���
	����� �
�� �
 ��
 ��

()*+ �� ���
 ��
 "
 ���"���� ��� 
�	� ���
	����� ���� ���


�	� ���
	����� #�
 	� �
���� ��
���
 
������ ��� ���"�


�� �'# ���
	����� �� 	��
����	���
 
 ��
 "
 ���"���� 

��� �
��� ���
	����� ���� ��� �
��� ���
	�����
1����� ���� 	� �������3 8�� ���� ������ ��� ���"�
 ��

	�������	� �'# ���
	����� �� 	 ��	 � ���
� �� � � �$�
 ���

��	 � ���
� �� �� �� �����

���� � � � �� � �
� � �� �� ��

�
���

����	�
 �� 
� 	�
 0��
�� 4�)
 � 	�
 	�	� ���6
� �� 
78

�,
��	���� �� ��� � !���	�� ��� ���
 � �� 
�

�

�
��
��� �� � ��

��
�
 � � �
��
��� ���������

�	��
� �������
 ��� ���"�
 �� �'# ���
	����� �� 	 ����� ��

��	 � �� � 	 � 	 
 � �� �� ���� �� �� ���� ��� 
�	� ���
	����

	�� �� � � �
��� ���
	����� 	
� ��
��
���� ����� ���

���	� ���"�
 �� �'# ���
	����� �� 	 ���� �$�
 	�� ��	 �� ��

��� �� � �� � ��� �� � �� � 
 
 
� ��� �
�� � �� �
�
��

���

���

,���$�
� �� ���� � �� ���� ��� ��� ����
"���!� � �
 
����� 	�� � � ��
����� � ��  � �� �� 
 
 
 � ���� � �� ��

�	� �� ��� 
�	� ���
	����� � ����
"���! �� ������� 	� 	
����! �� ����

 �� ��&� ���� �� ��	 � �� � 	 � � 
�
����� �	� "� 
�	� �� ����� 
�	� ���
	������ ��� 
��� ��
��� �	�	 �� 
�	� �� 
��� ����� 
�	� ���
	����� �����
��� 
��� 	
� 
�	� �� ��� 
�	� ���
	����� ����� ���
���"�
 �� �
��� ���
	����� �� 
���� ��� ���	� ���"�
 ��
�'# ���
	����� �� ��	 � � ��

����� �
��� ����� �
��� � �
��� �����

� ��

��� ������

���� ���
�	��� ��� ���"�
 �� �'# ���
	����� "
 ����

����	
�� ���� 	 ��	 � ����� �� �� ��
8�� � ������ ��� ���"�
 �� 	�������	� �'# ���
	�����

�� 	 ��	 � ����	
�� ���� ��� ���"�
 �� ���
	����� �� 	
��	 � ����� �� �� ��� /� ����� � ��  �$�� "

���


��� ����� � ���

��� � ����� �����

� �
�
��

���

���������

�6) �5. "0���55�+ �5 �=='�'�5� �-/�0'�)� =�0 �6���=���0� ���0'> �0�5�"��'�'�5 4

86



���
���
�� ��� ���	� ���"�
 �� �'# ���
	����� �� �	�� ) ��

�

�

�
��
��� �� � �� 
�

���� � 5� 
 � 	�� �� 
 	63 �� ���� �	��� ��� ���	� ���"�


�� �'# ���
	����� �	� "� 
������ "
 "	�	���� ��� ���"�
�

�� 
�	� 	�� �
��� ���
	������ �� =	����! �� 	��C� 	� �
�����

��� �����
���� "������ ��� ���"�
� �� 
�	� 	�� �
���

���
	����� �� �	
 �� �� �	�� ���� �� ��	 � �� ��� ���"�
 ��


�	� ���
	����� �� ) 	�� ��� ���"�
 �� �
��� ���
	����� ��

��� �� ��
 	� �
����� �� ��$���� 	 ������%�� ��	� 
������

B '��� �0�5����'�5� �5 ���"6��0�� ��-! 41� 5�! 7� �"0'- 2332

=�
! 4! 0��� ��
���	� ��� ���� 1!

87

Read .schedule () 

Input: N, M, t, r0,....,rt-i, Rs(0 < s < t) 

Output: RS(s, u) 

1      for s = 0 to t — 1 step = 1 

2              for « = 0 to N2/M - 1 step = 1 

3                      RS(s, u) <- {}; 

4     for « = 0 to 7V2/M - 1 step = 1 

5              for j = 0 to M/N-l step = 1 

6                     fiS(0, u) <- ä5(0,K)U{(« xM/N)+j}; 

7      for s = 1 to t — 1 step = 1 

8              « <-0; 

9               counter <— 0; 

10            for 2 = 0 to fls-2-1 step = 1 

11                     for j = rs_i — 1 to 1 step = —1 

12                              for k = 0 to N/Rs-2 - 1 step = 1 

13                                            if (|>rs_iiV/MJ - [kN/M\] mod rs_i = j 

14                                                           Add_row(iV, M, s, «, counter, i, k); 

15                   for k = 0 to (rs_i)M/iV - M/(iVrs_i) - 1 step = 1 

16                                if ([krs-lNIM\ - [kN/M\) mod rs_i = 0 

17                                              Add_row(iV, M, s, u, counter, i, k); 

18                  for k = N/Rs-2 - [M/(NRs-i)\ - 1 to N/Rs-2 - 1 step = 1 

19                              if {[krs-iN/M\ - [kN/M\) mod rs_i = 0 

20                                              Add_row(A^, M, s, u, counter, i, k); 

21                  for k = rs-iM/N - M/(Nrs-i) to N/Rs-2 - M/(NRa-2) — 1 step = 1 

22                                if ([krs-lNIM\ - [kN/M\) mod rs = 0 

23                                              Add_row(A^, M, s, u, counter, i, k); 

Add_row(W, M, s, u, counter, i, k) 

1      RS(s, u) <r- RS(s, u) U {k + Ni/Rs-2}; 

2      counter <r- counter + 1; 

3      if counter = M/N 

4               u i— u + 1; 

5               counter <— 0; 



��� ���"�
 �� �
��� ���
	����� 	� ��� ������� �� 	�

���
�	��� ���"�
 �� 
�	� ���
	������ ����� ��� 	"������

����
������� 	
� �����	
 �� ����� �� �	�� )� �� ����� �� ���

!�
 ���	� ��
�� 1��	��� 	
�  �$�� �� ��� ���������
B��� ��	� 	 ��
	� ����
�	
� ������ 
������ ��� ���"�


�� �
��� ���
	����� �� �� � !�� � 	 � 	 
� �� ���
� !� �� ���

���"�
 �� ��� ��� 
�	� ���
	������ ����� ��� ���	� ���"�


�� �'# ���
	����� �� ��� � !�� � !� � ��� ��� ���	� ���"�
 ��

�'# ���
	����� �� 
������ "
 ���� �� ��
 	� �
����� ��

���
�	�� ��� ���"�
 �� �
��� ���
	����� �� 	��
����	���

������ ���
� �� � � �� 	� ���� �
� ��� �����	� $	��� �� �� ��
������ �	��
�

1����� ��� � �
�� � �� ��� 	� �
���� ��
 ���� �	�� ��
����� �� ;� � ): 5��� ��� ��������6�

� ����
"���! �� ������� 	� 	 ����! �� ����

 �� ��&�
���� �� ��	 � �� � 	 � � 
� �� ��� �
�$���� 	� �
������ �	��
����
"���! �� �
����� �� ��� ���! �
��� ���
	����� �� ��

	� �
����� �� ����
"���!� 	
� �
����� �� ��� ���! �� ���
�
��� ���
	����� ��� �
���� ��������� ��� �� ����� ��
;� � )A 5��� ��� ��������6� ����� ��� ���"�
 �� �
���
���
	����� �� 
������ "
 	 �	���
 �� ��� 9
���� �� ����
"�
���!� �� ��� �'# ���
	���� �	���� ��� �	�	 �� "� ��	���
�� 	�
����
�"�� "�����

B��� ��	�� ��
�� ��� ���� ��	 � 5��	 � ��� ��6� ��
����
"���!� 	
� 
�	� �� 	 ����� ���� ��� �� ����
"���!�
��	� 	
� �
����� �� 	 ���� ��
�� ��	 � �� ���
 ��� �� ���� ��

�	� �� 	 ���� ��
�� ��	 � ��� ��� ����� �� ����
"���!�

�	� �� 	 ���� ��
�� ��	 � ��� �� ������� �� ����
"���!��
�	�� �� ����� �� ��� �� ��� ����
"���!� �
����� �� �����
���
����� ��
�� ��	 � ��

�� ��� ����
"���! �� �
����� ���� ��� ���! �� 	 �
���
���
	����� 	� �� ��� �
�$���� 	� �
������ ���� 	 ����
"���!
�	� "� �
����� �� 	�
 ���	���� �� ��� ���!� ���� ��	"��� ���
����
"���!� ��	� 	
� 
�	� �� 	 ���� ��
�� ��� ���� ��	 � ��

�6) �5. "0���55�+ �5 �=='�'�5� �-/�0'�)� =�0 �6���=���0� ���0'> �0�5�"��'�'�5 <

=�
! B! 0��� ��
���	� ��� 
 � 	 � ��
��� �� � � �
 � �
!

=�
! <! C���� ��
���	� ��� ���� 1! 88

s=0 s=\ s=2 

u = 0 0,1 1,2 1,2 

u= 1 2,3 5,6 0,3 

u = 2 4,5 0,7 5,6 

M = 3 6,7 3,4 4,7 

Write_scliedule() 

Input: TV, M, t, r0,....,rt-i, -Rs(° < s < 0 

Output: W5(s, u) 

1      for s = 0 to t — 1 step = 1 

2              for u = 0 to 7V2/M - 1 step = 1 

3                      WS{s, u) <- {}; 

4      for u = 0 to 7V2/M - 1 step = 1 

5              for j' = 0 to M/N-l step = 1 

6                     WS(0, u) <r- WS(0, o) U {(« x M/N) + j}; 

7     for s = 1 to t — 1 step = 1 

8               « <- 0; 

9               counter T— 0; 

10            for t = 0 to Rs-2-l step = 1 

11                     for j = rs-i — 1 to 0 step = -1 

12                                  for k = 0 to N/Rs-i - 1 step = 1; 

13                                          WS(s, «) <- M/5(s, u) U {fc + 7V(ir3. -i+j)/Ä.-i}; 

14                                              counter <— counter + 1; 

15                                               if counter = M/N 

16                                                            « <— u + 1; 

17                                                            counter <— 0: 



"� 
�	� �� ��� �'# ���
	����� ,���$�
� ����� �� ����
"�

���!� 	
� �
����� �� ��� �
��� ���
	����� �� �� �������"�� ��

�
��� ��� �� ����
"���!� �� 	 �	
 �� 	���� 
�	��� �� �����

����
"���!� �� ��� 
�	� ���
	���� ��
�� ��� ���� ��	 �� �����

��� ����
"���!� 	
� D��	���
���E
��� ��	���
�� �
���� �	���� ��� "���!� ��	� 	
� 
�	� �� 	

���� ��
�� ��� ���� ��	 � �� "� ���	
	��� "
 	� ��	�� �� � �

"���!�� �� �	�� 
�	� ���
	���� ��
�� ��� ���� ��	 �� ��

�
��
 �� 
�	� ��� ����
"���!� ��	� 	
� ���	
	��� "
 	� ��	��

�� � � ����
"���!�� �� ���� �� ��
��
� �� 
�	� ���
	������

��� 
�	� ��������� ��� �� ����� �� ;� � )2 5��� ���

��������6� �� 	������� �� ������ �� �� �� �� ��� 
�	� 	��

��� �
��� ���
	����� 	
� ��
��
��� 58��� )) 	�� 8��� )26�

8 '��� �0�5����'�5� �5 ���"6��0�� ��-! 41� 5�! 7� �"0'- 2332

=�
! 9! "���������� �� ���� �� �����% ��� ���� 1!

=�
! 8! C���� ��
���	� ��� 
 � 	 � ��
��� �� � � �
 � �
!

89

s=0 s=l s=2 

u = 0 0,1 4,5 2,3 

u= 1 2,3 6,7 0,1 

u = 2 4,5 0,1 6,7 

M = 3 6,7 2,3 4,5 

PermuteQ 

Inp »ut: N,M,s u,rs,X,Rs(0 <s <t) 

Ou tpu t: X 

1 for j = 0 t( ) rs-l step = 1 

2 for k - = 0 to Rs - 1 step = 1 

3 if (j,/c) = ([(krs + j - uRs)/Rs\,(krs+j - uRs) mod Rs)) 

4 done(j,k) <— true; 

5 else 

6 done(j,k) <r- false; 

7 for j = 0 t( ) rs-l step = 1 

8 for k - = 0 to Rs - 1 step = 1 

9 if done(j,k) = false 

10 Move data X(jM/rs + kN/Rs +IN + TO) to tr?jp(/, TO), 

0 < / < M/(Nrs),0 < TO < AT/ßs; 

11 (p, q) «- U,k); 

12 done(j,k) <— true; 

13 start <r- (j, k); 

14 (j,k) <- (L(A;rs+j-«Hs)/ßsJ,(Jfcrs+j-«ßs) mod fis); 

15 while start =£ (j,k) 

16 Move data X(jM/rs + kN/Rs +IN +m) to 

X(pM/rs + qN/Rs +IN + TO), 

0 < / < M/(Nrs),0 < TO < N/Rs; 

17 done(j,k) <— true; 

18 (p,q)«- (i,&); 

19 (j, jfc) <- (L(A;rs + j - KäS)/äSJ, (fcrs + j - ufis) mod Rs); 

20 Move data £TOP(7, TO) to X(pM/rs + qN/Rs +IN + TO), 

0 < / < M/(Nrs),0 < TO < N/Rs; 



���� ��	����� �� �� 	�� �� 	
� ����� �� ;� � ). 	��

;� � )7� 
�������$��
 5�� ��� ��������6� ��� ���"�
 �� 
���

�� �� ��  
�	��
 ��	� ��
 ����� ���
� 	
� �� 
�	�

���
	����� �� 	 ����� B��� ��	�� �� ���� ��	����� ��� ���"�


�� �'# ���
	����� �� ��� 
������ ����� �� � �� � � � 	� ���

���"�
 �� �'# ���
	����� �� 
������ ���� �� 
 	� 	� �����

�� �	"�� /�

��� �����	� $	��� �� �� �� �"�	���� 	� �������3 1����� "���
	� �������3

"��� � � � ���� � �
� � ���� � ��

�
���

��� ���"�
 �� �
��� ���
	����� �� ��	 � � �� ����� �
"����� 	�� ��� ���"�
 �� 
�	� ���
	����� �� ������� ��� �	�	
�� ��	 � ��� �� �� �� � "������ ��� ���	� ���"�
 �� �'#
���
	����� �� ����� � �� � "���� ��� �����	� $	��� ��
�� � ����

��
�

� ����� ��� ���	� ���"�
 �� �'# ���
	����� ��
���

����
��

� � ����
��

� � "��� � �
����
��

� � "��� ��
 �����
��� ���	� ���"�
 �� �'# ���
	����� ��
��
��� "
 ���

	� �
���� �� ()-+ 	�� "
 ��
 	� �
���� �� ����	
�� ��
�	"�� /� ��� 	� �
���� �� ()+ �� ��� ����	
�� ��
� ����� �� ��
��� 	�����	"�� �� ���� �	���

��� �	�	 �� ��� ����

 	
� ��
����� 	� ����� ��
;� � )-� ��� ���	� ���"�
 �� �'# ���
	����� ��
 �	�� /
5� 
 � 	�� �� 
 	6 ��  �$�� �� ��� �������� ����
���

����	�
 �� 
� 	�
 0��
�� 4�)
 � 	�
 	�	� ���6
� �� 
78
�,
��	���� �� ��� � !���	�� ��


�

�
�
�
��

���

�� ����
��

� � "���� � ���

9
��  	��	 "��� � � �� ���� 
 � ��) "��� � � �� ���� � ��
��
�
 �� �

���
�

�
��

�	��
� �������
 ��� ���"�
 �� �'# ���
	����� �� 	 ���� ��
�	�� ��	 �� �� ��	 � �� ���
� �� ��� 
�	� ���
	���� 	�������

��
�

�
��� ���
	������ �� ��	 � �� � 	 � 	 
� �� ���
� 	
����������
����

� � "����� 
�	� ���
	����� 	��
����
��

� � "����� �
���
���
	������ �� ��	 � �
� ��� ���
� 	
�

��������
�
��

� � "�
 � ����

�	� ���
	����� 	�� ��� �
��� ���
	����� ����� ��� ���	�
���"�
 �� �'# ���
	����� ��
 ���� �$�
 	�� ��	 �� ��

�� �����
��

� � � �����
��

� � "������ � � �����
��

� � "������ � � �����
��

� � "������
� 
 
 
� � ��������

�
��
� � "�
� ����� � �

�
�
��

���

�� ����
��

� � "���� � ��

����� ��� ���"�
 �� ����� �� 
���� ��� ���	� ���"�

�� �'# ���
	����� �� 
�

� ��
��
�����

����
��

� � "���� � ��� 
�

�6) �5. "0���55�+ �5 �=='�'�5� �-/�0'�)� =�0 �6���=���0� ���0'> �0�5�"��'�'�5 9

=�
! 13! �� �		�������&� �����	� @
 � 	 � ��
���

� ��� � � �
A!

��D-� 1
5��$�� �� '(� ���������� �� � ����

90

Disk 
0 1 2 3 4 5 6 7 

8 9 10 u 12 13 14 15 

16 17 18 19 20 21 22 23 

24 25 26 27 28 29 30 31 

32 33 34 35 36 37 38 39 

40 41 42 43 44 45 46 47 

48 49 50 5/ 52 53 54 55 

56 57 58 59 60 61 62 63 

Step 0 

■Step 1 

■Step 7 

Step 3 

Disk 
0 1 2 3 8 9 10 1/ 

4 5 6 7 12 13 14 15 

20 21 22 23 28 29 30 31 

16 17 18 19 24 25 26 27 

32 33 34 35 40 41 42 43 

36 37 38 39 44 45 46 47 

52 53 54 55 60 61 62 63 

48 49 50 51 56 57 58 59 

(a) 

0 1 2 3 8 9 10 u 
4 5 6 7 12 13 14 /5 

20 21 22 23 28 29 30 31 

16 17 18 19 24 25 26 27 

32 33 34 35 40 41 42 43 

36 37 38 39 44 45 46 47 

52 53 54 55 60 61 62 63 

48 49 50 5/ 56 57 58 59 

0 1 8 9 48 49 56 57 

2 3 10 U 50 5/ 58 59 

18 19 26 27 34 35 42 43 

16 17 24 25 32 33 40 41 

4 5 12 13 20 21 28 29 

6 7 14 15 22 23 30 31 

38 39 46 47 54 55 62 63 

36 37 44 45 52 53 60 61 

(b) 

0 1 8 9 48 49 56 57 

2 3 10 u 50 51 58 59 

18 19 26 27 34 35 42 43 

16 17 24 25 32 33 40 41 

4 5 12 13 20 21 28 29 

6 7 14 15 22 23 30 31 

38 39 46 47 54 55 62 63 

36 37 44 45 52 53 60 61 

r 0 8 16 24 32 40 48 56 

I / 9 17 25 33 41 49 57 

r 2 10 18 26 34 42 50 58 

V 3 11 19 27 35 43 51 59 

r 4 12 20 28 36 44 52 60 

V. 5 13 21 29 37 45 53 61 

r 6 14 22 30 38 46 54 62 

I 7 15 23 31 39 47 55 63 

(c) 

rs rs <8 rs >8 

2 3 4 6 8 16 64 

Kaushik's Algorithm [19] 3 4 5 7 9 17 65 

This Paper 2 3 4 6 8 10 18 

Reduction 33% 25% 20% 17% 11% 41% 72% 



B��� ��	� ��� ���"�
 �� �'# ���
	����� �	� "� ��
���



������ "
 ���� ��� ����

 ��
� ����������
 ��	� ��	� ��

����� �� ����
�� /� ,���$�
� ��� ������%�� ��
 ��
�

��������� ����

 �����&	���� �	!�� ��� 	� �
���� ����
���

���� 	�� 	�	�
��� �������� ����� ���
 ��� "	��� ���	 ��

"
����
 ����
�"�� ��
�� �� ��� 	� �
���� �� ()-+� �� ���� �� ���

)� ��� 	����� �� �	�	 
�	� �� �	�� 
�	� ���
	���� �� ����

0��� ��� 	����� �� �	�	 ��	� �	� "� 
�	� �� ��� ��
�� 
�	�

���
	���� �� �� �� ��� ���� 
�	� ���
	����� ��� 	����� ��

�	�	 
�	� �� � ������� 	�� �� ��� ����� ��� �	�	 
�	� ��

��� 
�	� ���
	���� �� 	��	
� �	
 �
 ��	� �
 �%�	� �� ����

���� ������ ���
�	��� ��� ���"�
 �� 
�	� ���
	�����

����	
�� ���� ��� 
����� ��	��� �� ����
�� /�

���� � 5���� � � � �63 ���� �	�� �� �����	
 �� �	�� /�

��� ���
 �����
���� �� �� ��� ��&� �� ��� ����
"���!� #�


	� �
���� 
��	��� ��� 
���
������ 5�� 	 ���6 ��	� �	�

������� �� ()+� �� ��� 
���
������ ���� ��� ����� �����

�� � ���� ���� ��� ���"�
 �� �'# ���
	����� ���
�	���

"
 	 �	���
 �� �������� �� ��
 	� �
����� �� �	� ���
�	��

��� $	��� �� �� �� "� �	
 �
 ��	� ��� ������� ���
�	��� ���

���"�
 �� �'# ���
	����� �� ��	� ��� ���"�
 �� ��	 �� ��

���
�	����
��� 	� �
���� �� ��� �	�� 	� �� �	�� / 5;� � ):6�

�� �
����� ��
 �������� �� 	�� �� 	
� ����� ��

;� � /? 	�� ;� � /)� 
�������$��
� ��� ���
��� �� �� 	��

�� 	
� ����
"���! ������� 5�� �	�� /� ��� ���
��� �� �� 	��

�� ����	�� 
�� �������6� � ����
"���! �� ������� 	� 	

����! �� ����

 �� ��&� ���� �� ��	 � �� � 	 � � 
�

��� ���	� ���"�
 �� �'# ���
	����� �� �	�� ���� �$�
 	��

��	 �� ��

13 '��� �0�5����'�5� �5 ���"6��0�� ��-! 41� 5�! 7� �"0'- 2332

��D-� 2
5��$�� �� '(� ���������� �� � ����

��D-� :
���������� �� �
� 5��$�� �� '(� ���������� ��� � � �

�� � 	 � � 
� ��
��� �
 ��� ������ �
� �	������ ���		�� ����� ��� �
� ���	���� �� ��� ��������
�� ��� �����
� ��� 

� �����	��

91

rs 

rs =32 rs = 128 

Kaushik's Algorithm Our Algorithm Kaushik's Algorithm Our Algorithm 

# of Read operations 1 9 1 16 

# of Write operations 32 9 128 16 

Total 33 18 129 32 

Linear Model (LM) Parallel Disk Model (PDM) 

Algorithm 
rs <8 rs >8 B<  M 5>^ 

7*s 

Aggarwal[l] - - Milgfmin(f,5) - 

Kaushik[19] 
s = 0 s=0 

Milgfmin(f,5) 
s = 0 

This Paper N2 V-*-1 r 2£lgfmin(£,fl) 2N'H    ,   TV2 v-t-2,     .    ,M      yjrn 



�������������������� ������������� �����
��

�
���� ����

� "��� ��������������� ������������� �����
��

�
���� ����

� "��� ��������������� � 
 
 


������������� ��������
�
��

�
���� �
���� � "�
� ��

������
����
������� ������������� ��������
�
��

�
���� �
����

� "�
� ����

� �����
�
��

���

������������� ����
��

�
���� ����

� "��� �� �����������������

��� �����	� $	��� �� ��� �� �	� "� �	����	��� 	� �� �	�� /

5��� � � � �� � 	 � 	 
� �6� ��� �����	� $	��� �� ��� �� ��

���� ����
��

�
� �������

����	�
 �� 
� 	�
 +���  
 ���: 4�)
 � 	�
 	�	� ���6
� �� 
78

�,
��	���� �� ��� � !���	�� ��

�
�


�
�
�

�

�
��

���

���
�

�
�

����
��

�� �
� ����

��
� � "��� ��

� �
�

�	��
� ��� ���	� ���"�
 �� �'# ���
	����� �� �	�� ���� �$�


	�� ��	 �� ��  �$�� "
3

�6) �5. "0���55�+ �5 �=='�'�5� �-/�0'�)� =�0 �6���=���0� ���0'> �0�5�"��'�'�5 11

=�
! 11! "��������� ��� ��� �	
����
� �� ������ ����� ����������� ����!

=�
! 12! �� �		��������� �� �
� ��		��� ���������! @�A ���� 3! @$A ���� 1!

92

1 for s = 0 to t - 1 

2 for step = 0 to N2/Mr - 1 

3 Read data from disk; 

4 for i = 0 to rs/zs - 1 

5 for j = 0 to zs - 1 

6 Move (izs + j)th superblock to write buffer; 

7 Write data in write buffer to disk; 

Disk 
0 1 2 3 4 5 6 7 

8 9 10 M 12 13 14 75 

16 77 18 19 20 21 22 23 

24 25 26 27 28 29 30 31 

32 33 34 35 36 37 38 39 

40 41 42 43 44 45 46 47 

48 49 50 51 52 53 54 55 

56 57 58 59 60 61 62 63 

Memory 

Load 
from 
Disk 

Write 
to 

Disk 

0 1 2 3 4 5 6 7 

8 9 10 u 12 13 14 15 

First 
Collect 

Operation 

1 3 5 7 9 11 13 75 Second 
Collect 

Operation 

1 3 5 7 

9 n 13 15 

0 2 4 6 8 10 12 14 

Write 
to 

Disk 

/ 3 5 7 

9 ;; 13 15 

(a) 

Disk 

16 17 18 19 20 21 22 23 

24 25 26 27 28 29 30 31 

32 33 34 35 36 37 38 39 

40 41 42 43 44 45 46 47 

48 49 50 51 52 53 54 55 

56 57 58 59 60 61 62 63 

Memoi y 
16 n 18 19 20 21 22 23 

24 25 26 27 28 29 30 31 

Load 
from 
Disk 

Write 
to 

Disk 

77 19 21 23 25 27 29 31 

First 
Collect 

Operation 

Second 
Collect 

Operation 

77 19 21 23 

25 27 29 31 

16 18 20 22 24 26 28 30 

Write 
to 

|    Disk 

77 19 21 23 

25 27 29 31 

(b) 



�����
�
��

���

������������� ����
��

�
���� ����

� "��� �� �����������������
��� �����	� $	��� �� �� �� ���� ����

��
�

� ����� ����� ������
��

�
� ���� ���� ��� ���	� ���"�
 �� ��� �'# ���
	�����

�� �
�

� � 
�

�

�
��
�����

����
��

� � "��� ����
��

����
��

� 	 ���� ���� ��� ���	� ���"�
 �� ��� �'#
���
	����� �� �
�


� � 
�

�

�
��
������ � ����

��
� � "��� ����

����� ��� ���	� ���"�
 �� �'# ���
	����� ��
�
�

� � 
�

�

�
��
���������� �

����
��

� � � ����
��

� � "��� ���� 
�

���� � 5� 	 ����63 �� ���� �	��� ��� 	� �
���� �� ()+ ��

����� ��� 	� �
���� �	� ��� ������� ���"�
 ��

�'# ���
	������

� ����	
���� �� ��� 	� �
����� ���� 
������ �� ���

���"�
 �� �'# ���
	����� �� ����� �� �	"�� *�

/!� ��
*�"	% �	
�� �$�#*���"$	 
"��

�� ��� �
�$���� 	� �
������ ��� 	$	��	"�� ����

 �� ����


�����&�� �� 
����� ��� ���"�
 �� �'# ���
	������ �� ����


��
��� �� 	 
�	� ���
	����� 	� ���� �	�	 	� ��� ��&� �� ���

	$	��	"�� ����

 	
� 
�	� �
�� ��� ���!� ����
 
�	��� ���

�	�	� ��
����� ��� �	�	 ������ ��� ����

 
�%��
�� ���

������	���� ���	���� �� �	�� �	�	 ������� �� "� ���������

���� 
������ �� 	 �	
 � ����� ������	���� �����
�� 
����� ��� ���	� ��������� ����� �� ������	�� ���

�������$� ����� ������	���� ���� "
 ���� ��� 	� �
����

����� �� ;� � ))� �� ��
 	� �
����� �� �	
������ ��� ����



���� ��� �����
������&�� "����
�3 ��� �� ��&� ��� ����� ��

���� 	� 	 
�	� "����
� 	�� ��� ����
 �� ��&� �#� ����� ��

���� 	� 	 �
��� "����
� ���� ��	� � � �� ��#� ��� 
�	�

12 '��� �0�5����'�5� �5 ���"6��0�� ��-! 41� 5�! 7� �"0'- 2332

=�
! 1:! �����������	 ����	�� @�&���
� ��������� ����E ��� ���+ "� "������� ������ ���+ ��� ����������� $����� ���+ �/' 012333E 	��� ��	���+

� � �
 �D%���� ��

� ��	���+ � � 
� �D%���!

93

2000.0 I . 1  
19000 '- 0 iZ 

'ftOOO '           .        . 
1700 0 '            J Previous Algorithm 

;~»     B».^. 
14000 , 
13000  : 

1200.0 
11000 
1000 0 ■ 

000 0 f 
eooo | 
700.0 r                                                             660 
600.0  = 
600 0 
400.0 -                                                                     |H ■ 

300 0                                                                          ■ 
200.0 1                         "--'■■,                   HI 
"JSlr^JL               ■                ■ 

20000 
19000 090 

1800.0 
1700.0 I Previous Alfjoffthm 
16000 
1600 0 

IBI 0uf Algorithm 

14000 
1300.0 1276 
12000 ■ 
1100.0 ■ 
1000.0 1 
9000 1 
eooo 1 
700.0 636 1 
6000 1 
5000 ■ 
400.0 ■ 
300.0 ■ 
2000 '» no                 ■ 
100.0 

00 
_                B 

2048 
Daia Size ,MByies I 

512 2048 
Data S-ze (MBytes) 

20000 
19000 
18000 
1700 0 
16000 
15000 
1400 0 
1300 0 
1200 0 
11000 
1000.0 
900.0 
8000 
700 0 
6000 
5000 
400.0 
300.0 
2000 
100.0 

0.0    ' 

| Previous Algorithm 

^B Oi* Aigcrnrvn 

■M 

■ 
512 2048 

Data SIM (MBytes) 

| Previous A igorilhm 

^| Oi* Akjontfun 

Bia 
ü 

2048 
Daia SIM (MBytes) 

50000 

4500.0 

4000.0 

] Previous Algorithm 

^B Our Algorithm 

363 

~     35000 

|   30000 

•"     25000 

S     2000.0 

Ü3      15000 

1000.0 

5CO0 

00 

1006 

50000 

4500.0 

40000 

MBL 
] Previous Algorithm 

^| Our Aigcnrrm 

I"" 
—    30000 

•-     25000 

§     20000 1 
«2      1500 0 I 

1000.0 HL I 
5000 

00 .«* j38Ä   ■ I 
612 2048 

Daia Sue (MBytes) 
612 2048 

Data SIM (MBytes) 

34000  ■ 
3200 0  : 

30000 : ] Previous AlgoMhm 

irea 

28000  : 
26000  '. 

^B Oi# Aloorshrri 

24000  T ■ 

22000 
2000.0  : 
1800.0  r „,. 
16000  r 
1400 0  - 1    ■ 
12000 
1000.0 - 1 
6000 zap. ■ 
6000   : 
4000 
200 o : 

OQ ' 
5, _M            ,K"jj£                    II 1 

I Previous Algorithm 

^^ Our Algor-'lhm 

.»A Ä 

34000 
32000 
30000 j Previous Algorithm 

EH 

28000 
26000 

^B Our Atgonthm 

24000 
22000 
20000 
1800.0 «00 
16000 ■ 
14000 1 
1200.0 
1000.0 875 1 
8000 n ■ 
600.0 1 
4000 
2000 «»   Mä     1 1 

512 2048 
Ostt SIM (MBytes) 



"����
 �� �	
�������� ���� �� ����
"���!�� ��� 
�	� "����
 ��

���� ��
 
�	��� �	�	 �
�� ���!� ����
 
�	��� ��� �	�	�

���
� 	
� ����� ���� �� ������� 	�� �
��� ���
	����� 5���

������� :�/�/6� �� �	�� ������� ���
	����� �	�	 �� ��
����
"���!� 	
� ��������� ���� ��� �
��� "����
 	�� ����

���
	���� �� 
���	��� ����� ����� 58��� 26� ��� ��&�� �� ���

�
��� 	�� 
�	� "����
� 	
� ����
����� �� "� ������� � ���
	�� ������� � ���� 
�������$��
�

;� � )/ ����� 	� ��	���� �� ��� ������� ���
	����� �� ����

��	����� 
 � 	� � � ��� �� � �� �� � �� ����� �� �
�� � ��� � �
 	�� �# � ���� � 	� �� ��� �� �
�� ��� ��
��

��� ����� ��
�� 	 ��	 � 	
� ����� �� ������
	�� ��� �������

���
	����� �����	��
� ��� 
��� �� �	�	 	
� ��	��� ���� ���

����

 �
�� ��� ���!� B��� ��	�� �$�� ���� � ��� ����



�	� ���� ��
�� 
���� ���
 ��� 
��� 	
� ��	��� ������� � �
�

��� 
��	���� ��	�� 5�# � 	6 �� �����&�� "
 ��� �
��� "����
�

����
 ��	��� �	�	 ���� �������

� ����	�	 ��
 ��� ��
���
���

���
	���� 5?� /� :� ���� ):6 	
� ��������� �� ����
��� "����
� �����

��� �	�	 �� ��� �
��� "����
 �� �
����� ���� ��� ���!� ����� ���

�
��� "����
 �� ����
 ���� ��� �	�	 ��
 ��� ������ �
���

���
	���� 5)� *� 2� ���� )26 	
� ��������� ���� ��� �
��� "����
�

����� ���
����� ���� ������! 	���
 ����������� ���� �� 
���	���

����� 	�� ��� �	�	 �� ��� ����

 	
� �
����� ���� ��� ���!� ��

�6) �5. "0���55�+ �5 �=='�'�5� �-/�0'�)� =�0 �6���=���0� ���0'> �0�5�"��'�'�5 1:

��D-� 4
�����������	 0���	�� �� ��� 6	����"�0��'''

��D-� B
�����������	 0���	�� �� "� @"������ '''� <::�),A

94

Data Size Memory Size = 16 MBytes Memory Size = 32 MBytes Memory Size = 64 MBytes 

(MBytes) Previous Our Speedup Previous Our Speedup Previous Our Speedup 

128 

Min 64 51 1.25 62 38 1.63 56 31 1.81 

Avg 67 53 1.26 63 39 1.62 61 33 1.85 

Max 68 54 1.26 64 40 1.60 63 35 1.80 

512 

Min 257 202 1.27 228 174 1.31 235 136 1.73 

Avg 259 208 1.25 210 182 1.32 238 142 1.68 

Max •2(50 21:; 1.22 246 184 1.34 244 150 1.63 

2048 

Min 991 684 1.45 998 597 1.67 1050 600 1.75 

Avg 995 697 1.43 1006 601 1.67 1063 606 1.75 

Max 999 708 1.41 1015 606 1.67 1067 608 1.75 

8192 

Min 4039 2581 1.80 4285 2613 1.64 4394 2417 1.82 

Avg 4644 2627 1.77 4363 2620 1.67 4501 2424 1.86 

Max 4653 2654 1.75 4432 2629 1.69 1591 2433 1.89 

Data Size Memory Size = 16 MBytes Memory Size = 32 MBytes Memory Size = 64 MBytes 

(MBytes) Previous Our Speedup Previous Our Speedup Previous Our Speedup 

128 

Min 40 30 1.33 39 27 1.44 38 27 1.41 

Avg 40 30 1.33 40 27 1,18 38 28 1.36 

Max 41 31 1.32 40 28 1.43 40 29 1.38 

512 

Min 183 134 1.37 168 116 1.45 162 106 1.53 

Avg 185 136 1.36 169 119 1,12 163 107 1.52 

Max 186 111 1.32 169 121 1.40 164 109 1.50 

2048 

Min 651 502 1.30 632 453 1.40 631 446 1.41 

Avg 660 504 1.31 636 460 1.38 634 449 1.41 

Max 667 507 1.32 647 476 1.36 640 458 1.40 

8192 

Min 1868 1259 1.48 1890 1274 1,18 1877 1259 1.49 

Avg 1872 1260 1.49 1890 1276 1,18 1879 1261 1.49 

Max 1882 1261 1.49 1891 1279 1,18 1880 1264 1.49 



����)� ����	�	 5).� )A� )7� ���� *)6 	
� ��	��� ���� ��� ����



	�� ��� 	"�$� ���
	����� 	
� 
���	����
�� 	 ������� ���
	����� ��� �	�	 �� �� ����
"���!� 	
�

��������� ���� �������� ����� ��� �	�	 	����� ��
��� ��

�����	��� �� �	�� �������� ��� 
�%��
�� ������	����� 	
�

������ 	��������� B��� ��	�� �� ��� �
�$���� 	� �
����� ()+�

()-+� ��� ������	����� �� ��
���� ��� �	�	 ������� �� "���

����� ������	���� 	�� 	�������� �� ��
 	� �
����� �����

���
 	������� ���
	����� 	
� ���� �� ������� �	�	 �� ��� �
���

"����
� ��� ����� ������	���� �� ������	����
��� ��������� �	�	 �� ��� �
��� "����
 �� �
����� ���� ���

���! �� 	 �
��� ���
	���� 58��� .6� �$�� ���� � ��� ���"�


�� �'# ���
	����� ���
�	��� "
 	 �	���
 �� ����� ��� ���	�

17 '��� �0�5����'�5� �5 ���"6��0�� ��-! 41� 5�! 7� �"0'- 2332

��D-� <
�����������	 0���	�� �� �/' 012333

=�
! 17! ������ ������������� ��� ���� 2 ��� ���� :!

95

Data Size Memory Size = 16 MBytes Memory Size = 32 MBytes Memory Size = 64 MBytes 

(MBytes) Previous Our Speedup Previous Our Speedup Previous Our Speedup 

128 

Min 50 31 1.61 54 35 1.54 52 34 1.53 

Avg 51 35 1.46 56 38 1.47 54 37 1.45 

Max 53 37 1.43 60 40 1.50 55 40 1.38 

512 

Min 183 118 1.55 204 124 1.65 208 115 1.81 

Avg 185 120 1.54 206 125 1.65 208 115 1.81 

Max 185 121 1.53 206 126 1.63 209 115 1.82 

2048 

Min 729 405 1.80 824 464 1.78 867 455 1.91 

Avg 730 407 1.79 828 467 1.77 875 459 1.91 

Max 730 409 1.78 834 469 1.78 889 461 1.93 

8192 

Min 3228 1655 1.95 3257 1659 1.96 3286 1697 1.94 

Avg 3223 1675 1.92 3259 1667 1.96 3288 1699 1.94 

Max 3265 1697 1.92 3260 1684 1.94 3293 1713 1.92 

1      for s = 0 to t-1 step = 1 

10 

11 

12 

13 

11 

15 

16 

17 

for u = 0 to N2/M-l step = 1 

if ZS-! = 1 

Read M units of data from disk using read schedule RS(s,u); 

Permute the data in memory; 

Write M units of data onto disk using write schedule WS(s, u); 

else 

for i' = 0 to zs-\ — 1 step = 1 

Read M/2 units of data from disk using read schedule RS(s, «); 

Permute the data in memory; 

Write M/2 units of data to a buffer on disk; 

for i = 0 to zs-i — 1 step = 1 

Read M/2 units of data from disk using read schedule RS(s, «); 

Permute the data in memory; 

Read M/2 units of data from disk in the buffer on disk; 

Permute data in memory; 

Write M units of data to disk using write schedule WS(s, u); 



��������� ���� 
������ �� �����	���
� 	� ����� "
 ��

����
�������

2 �3�������
�� �����
�

9� ����������� ��� 	� �
����� �� 	� �>� 5�)/???�
*?? �,&6� 	 ��� ����
�
��� �
���� 5@��
	�4��������
A2? �,&6� 	�� 	 4� ��	���
� 54������ ���� A** �,&6 	�
��� @��$�
���
 �� ������
� �	����
��	� ;�
 ��� �	!� ��

����	
����� =	����! �� 	��C� 	� �
���� ����
�"�� ��
������� *�* �	� 	��� ������������ ��� 
������ 	
� �����
�� ;� � )* 	�� �	"�� 2� �	"�� .� 	�� �	"�� A�

�� ��
 ����
������� �� �"��
$�� ��	� �  	
�	� 	��
<����
C� 	� �
����� ����
�"�� �� ������� *�/� �	� ��� �	��
���	� ��������� ���� 	� =	����! �� 	��C� 	� �
����� �$��
���� � ��� ��� 	� �
����� ��
��
� ��� ������ ��
���	����

���� �����
��� ������� 	�� ��� ��
����� �	�	 	
�
�����
���� ��� ��
���	���� ����� 	
� ��� �	��� ��� ��
��	 � �� � 	 � � 
� ��� "���! ��&� �� ��	���
 ��	� ����� ����

"��� 	� �
����� 
�%��
� ��� �	�� ���	� ��������� �����
���
� 
 �� ��� ���"�
 �� ��	 ��� ��� ���	� ��������� ���� ��
�����
��� ��
 ��� ��� 	� �
����� ���� ��� 	����� �� �	�	
�
	����

�� �� ��� �'# ���
	���� �� ��	���
 ��	� �� ���
	����� �� ��� �	�	 �
	����

�� �� ��� �'# ���
	���� �� ��

����
������ 
	� �� �
�� )/7 =0
��� �� 7 �0
��� 	�� ���
�
���	� ��&� �� � �� ��	����������	
� ��	���
�� �� : =0
����
����� ��� ��
��
�	��� �� ��� ��� 	� �
����� �� ��� �	�� ��
��
 ����
������� ���
���
�� �� ;� � )* 	�� �	"�� 2� �	"�� .�
	�� �	"�� A� ��� ��������� ���� 
���
��� ����
 ��� ��	��� 
D4
�$����E 
���
� �� "��� ����� 	� �
������

��� 	����� �� �	�� ����

 	����	��� �� ��� �	�	 �	�
$	
��� �
�� ). �0
��� �� .: �0
��� 	�� ��� �	�	 ��&� �	�
$	
��� �
�� )/7 �0
��� �� 7 >0
���� ;�
 �	�� �	
	����

5����

 	�� �	�	 ��&�6 ������ � ��� 	� �
����� ��
�
�������� ��$� ����� 	�� ��� �	������ 	$�
	 �� 	��
������� $	���� ��
� �	����	���� ��� 
���
��� ����� 	
�
�	�������! ����� 	�� ��� ���� �� ������� ��� ������� �� ��

	� �
���� �$�
 ��� �
�$���� 	� �
����� �	� �	����	��� ��

�	�� �	
	����
 ������ � ��� 
������ �� ��
 ����
������ 	
�
����� �� ;� � )*� ��������	� 
������ 	
� ����� �� �	"�� 2�
�	"�� .� 	�� �	"�� A� ��� 
������ ���� ��	� ��
 	� �
����

������ ��� ��������� ���� "
 �� �� 2? ��
�����

�� ����
��	�� ��� ������ �� ��� �
���� �	
	����
� �� ���
�������� �� ������ ��� �������� ��
��3 8�� �$ ������ ���!
�'# ���� � �� ������ ��� ����

�����

 �	�	 �
	����

����� �� ������ ��� ����� ������	���� ����� 	�� �% ������
��� 	�������	� ���! �'# ���� 
�%��
�� "
 ��
 	� �
����
����	
�� ���� ��� �
�$���� 	� �
������ ����� �� ������ ��

	�� �% 
	���� 	� �� � �����$ � ��� 	�� �% � �%���$ � ����

�6) �5. "0���55�+ �5 �=='�'�5� �-/�0'�)� =�0 �6���=���0� ���0'> �0�5�"��'�'�5 14

=�
! 14! 0��� ��
���	� ��� ���� 2!

=�
! 1B! 0��� ��
���	� ��� 
 � �
 � ��
��� �� � � ��� �� � �!

96

Read_schedule() 

Input: N, M, t, r0,...,rt-i, z„ Rs(0 < s < t) 

Output: RS(s, u) 

1      for .5 = 0 to t-1 step = 1 

2              for u = 0 to N2/M-l step = 1 

3                       ÄS(s, «)<-{}; 

4     for s = 0 to t — 1 step = 1 

5               u <r- 0; 

6               counter <— 0: 

7              for i = 0 to fls_i/zs_i-l step = 1 

8                      for j = 0 to zs_i — 1 step = 1 

9                                  for k=0 to Nzs-i/Rs-i - 1 step = 1 

10                                          flS(s, «) <- i?S(s, «) U {%Nz, -l/fis- -i + fc}; 

11                                               counter <— counter + 1; 

12                                               if counter = Mz.-i/N 

13                                                            counter <— 0; 

14                                                            u <- u + 1; 

6 = 0 .s=l 

u = 0 0,1,2,3 0,1,2,3,4,5,6,7 

u= 1 4,5,6,7 0,1,2,3,4,5,6,7 

u = 2 8,9,10,11 8,9,10,11,12,13,14,15 

u = 3 12,13,14,15 8,9,10,11,12,13,14,15 



B��� ��	� �% �� ���	��
 ���� ��	���
 ��	� ��� 	� ��� ��� ��
��� ���! �'# 	�� ����

�����

 �	�	 �
	����
 ����� ��
�	
 �
 ��	� ��� 	�������	� ���! �'# ���� ����

�� ��� �� ���
�	
�������� �� ����

 ���� ��� "����
�� ����� ��� �������
�� ��� ��� 	� �
���� ����	
�� ���� ��� �
�$���� 	� ��

���� ��

������� � �$ � �� � ��

�$ � �� � �%
� ����

���%
� �����

��� �%�	���� ����� ��	� ��� ������� �� 	 �������� �� ���
��� 
	����� �% 	�� ��� B��� ��	� ��� �	
	����
� �� ��� ���!
�
���������

� 	�� ����4@	
� 	�� 	������	��� �� ��� ���
������ 
	����� ���� 	���� 	���
	�� ��	��
����� �� �����
�	
	����
� �� ��������� �� ��
��
�� ;�
 ��	����� �� ��� ���!
	����� ���� 
������� ���� �� ���
�	��� 	��� �� ��� �
������

����� ���
�	���� ���� �� ���
�	���� ��� $	���� �� ��� �� ��

��� �
����������������
��������
���
��
����	$�"���
��	��
�� �� "� )�.: 5�>�6� )�/- 5���6� 	�� ?�.. 54������6�

��� ������� �� ��� �>� �� ��� �� ���� 	�� ��	� �� ���
4������ �� ��� ������ 	��� ��� ��
�� �	������ 	� ��� �� ��
��� �>� �� ��� �	
 ��� 	�� ��	� �� ��� 4������ �� ��� ��	������

��

��� ���
	��� �
����� �� ��� �����
� ���� ��&��
�	
 �
 ��	� / >0� �� ��
��
� ����
������ ��
 ��� ���� ��&��
	� �	
 � 	� 7 >0� �� �	
�������� ��� ���� ���� ���
 / >0 ������
����� "	��� �� ��� 	��
���� 	��
��
�	�� ����� 	
� 	�������

��
�� ��� ��������� �� ��� 	� �
����� 0
 ���� ����
������%��� �� ��
� 	"�� �� ��
��
� ����
������ �� �	�	
��&�� �	
 �
 ��	� / >0 ��
 ��� �	������ �������
�� �� ����
�	��
� ,���$�
� ���
� ����� ��� �� $	
�	����� �� ��� �"�	����

������� ;�
 ��	����� ��� ��������� ���� �"�	���� ��
 7 >0
���� ��&�� �� ���� ��	���
 ��	� ���
 ����� ��� ��������� ����
�"�	���� ��
 / >0 ���� ��&�� ��
 ���� ���
	��� �
������ 9�
"����$� ��� �����
���� �� ��� �� ��� ������&	���� �� ��� ���!
�
���� "
 ��� ���
	��� �
����� ��
 �������� ���� 	��������

4 .��
 �� �3
�������

#�
 �	�
�� �
	������ 	� �
���� �	� "� �	���
 �������� �� 	
�	
	���� ���! $�
���� "
 ���� ��� �	�� ������ 	� �� ()+�
��� 	� �
���� �� ()+ ���� 	 ���1��
�� ���! �
���� ��	� �	�
� ���!�� ��� ���!� �
�$���� �	
	���� 	�������� 0
 	����	��� 

�� ������� �� �	�� ���! 	�� 	������� � ���!�
������	������
� ��� ���! �	�	 �
	����
 ���� �� 
������ "

	 �	���
 �� ��

�� 
����� ��� ���"�
 �� �'# ���
	������ ��� 	� �
����
�� ;� � : �	� "� ���� �� �����
 ��� ��� ������%���
�
������ �� ���� �	��
3 ��������� 
�	� 	�� �
��� ���������
	�� "	�	���� ��� ���"�
 �� �'# ���
	������

�� 
����� ��� ����� ������	���� ����� ��� 	� �
���� ��
;� � )) �� ����3 ��� 	$	��	"�� ����

 �� �	
�������� ����
��� "����
�� ��� ��
���	���� �� 
���	��� "
 ������� ���
	�
������ 	�� ��� ������� ���
	����� 	�� �
��� ���
	����� 	
�
��������� �� �	����&� ��� �����&	���� �� ��� 	$	��	"��
����

�

5 ����������

�� ���� �	��
� �� �
������� 	� ��������� 	� �
���� ��

�	
 ����	�� �	�
�� �
	����������� ����
	

 �� �
�$����
��
!� ��	� �	$� ������� ���
 �� 
������ ��� ���"�

�� �'# ���
	������ �� ���������� ��� �	��
 ����� �� ��� ��	���

1B '��� �0�5����'�5� �5 ���"6��0�� ��-! 41� 5�! 7� �"0'- 2332

=�
 1<! C���� ��
���	� ��� ���� 2!

=�
! 18! C���� ��
���	� ��� 
 � �
 � ��
��� �� � � ��� �� � �!

97

Write_schedule() 

Input: N,M,t,ro,...,rt-uz„Ra(0 < s < t) 

Output: RS(s, u) 

1      for s = 0 to t-1 step = 1 

2              for u = 0 to N2/M-l step = 1 

3                     WS(s, u) <- {}; 

4      for s = 0 to t - 1 step = 1 

5              for j = 0 to Rs-i-l step = 1 

6                      for j = 0 to iV2/(X«-iAf) - 1 step = 1 

7                                  for A; = 0 to rs/z3 — 1 step = 1 

8                                               for 1= 0 to Mzs/(Nrs) - 1 step = 1 

9                                                        WS(s,iN2/(Re-1M) + j) 

<- M/,S'(s, iN2l(Rs-iM) + j) U {iN/Rs. _i + jMzs/(Nrs) + kNzs/Rs + I}; 

s=0 s=l 

u = 0 0,1,8,9 0,1,2,3 

«= 1 2,3,10,11 4,5,6,7 

w = 2 4,5,12,13 8,9,10,11 

M = 3 6,7,14,15 12,13,14,15 



�������	
� �������� ��	���
�� �� ��
��
��� �
	������

	�� ��� �$�
	�� ���� �	� 
�������
���  ���
	���
 �� ��� �	�� ���	� ����� ������ �� 	������

	"����
 �� ����
 	� �
����� �	$�� 
���
��$� ��
����
�� ��	�

���
	�� �� �	
 � �	�	 �����

�������3

���� ������� ����	��� ���������� ��
 ��� �	�
�� �
	�������

���� 	�� 
�	� 	�� �
��� ��������� ��
 �	��� / 	�� * �� ��


	� �
����� ����� �� ;� �� ):� )2� ).� )A� )7� )-� /?� 	�� /)�

�����-�������
�

��� 	����
� ����� ��!� �� ��	�! ��� @� �
�
 �� ����
�� 

����	
�� 	�� 1�$�������� �����
 	�� �	��
 ��	
��

�����
�� �����
 ��	�� ��
 ����
 �����
� �� ��������� ���

����
������� ���
 ����� 	��� ��!� �� ��	�! 0�	
	��

���
�$�� 	�	� ��
 ��� 	�����	��� �� �
��	
�� ���� �	���

��
���� ���� ��
! �	� ������ "
 ��� @� 1��	
����� ��

1������ 51�16 ,� � 4�
��
�	��� ����
��&	���� 4
� 
	�

��1� �	��
 ��	
�� �����
�� �����
 ��
�� � 4
� 
	��

��� ��$�
������ 	�� �
	���� 54��6 �����
��� "


����
	�� B��"�
 1�,� -:�-.��???/ 	�� ��"����
	��

�6) �5. "0���55�+ �5 �=='�'�5� �-/�0'�)� =�0 �6���=���0� ���0'> �0�5�"��'�'�5 1<

=�
! 19! "���������� �� ���� �� �����% ��� ���� 2!

98

PermuteQ 

Input: N, M, s rs,X,Rs(0 <s<t) 

Ou tpu t: X 

1 for j = 0U 5 rs — 1 step = 1 

2 for k = = 0 to Rs - 1 step = 1 

3 if {j, k) = (l(krs + j)lR.\, (krs + j) mod R.)) 

4 done(j,k) <— true; 

5 else 

6 done(j,k) <r- false; 

7 for 3 = 0 t« ) rs — 1 step = 1 

8 for k = = 0 to Rs - 1 step = 1 

9 if done(j,k) = false 

10 Move data X(jM/rs + kN/Rs +IN + TO) to tmp(7, m), 

where 0 < I < M/(Nrs), 0 < TO < N/Rs; 

11 (p,q) <- (j':fc); 

12 done(j,k) <r- done; 

13 start <r- (j, k); 

14 {j,k) <- l((kr.+j)/R.\,k <- (kr.+j) mod R.); 

15 while start / (j, k) 

16 Move data X(jM/rs + kN/Rs +IN + TO) to 

X(pM/rs + qN/Rs +IN + TO), 

where 0 < I < M/(Nrs),0 < TO < N/Rs; 

17 done(j,k) <— true; 

18 (p,q) <- (i,fe); 

19 (j.fc) <- (L(fcr. +j)/R.\,k <- (fcr. + j) mod Ä,); 

20 Move data tmp(/, TO) to X(pM/rs + qN/Rs + ZJV + TO), 

where 0 < I < M/(Nrs),0 < TO < iV/ßs; 



B��"�
 B������-7�???/� ���� �� ���� ��
! �	� ��
�

��
��� ����� F����� ��� �	� 	 �����
	� ������� 	� ���

@��$�
���
 �� ������
� �	����
��	� ��� ��

��� ��
! �� ���

1
� ��� �� ������ "
 ��� @� 1������ ��$	���� ����	
��

4
������ � ���
 51��4�6 ��
�� � ��� ��
 ;�
�� ����	
��

8	"�
	��

� @��;� ����
 	 
������ ���"�
 ;*?.?/�--�)�

?2/)� <����� ��������� 	��'�
 ������ � ����	���� �� ����


���
� 	
� ����� �� ��� 	����
� 	�� ������ ��� "� �����
���

	� 	� ������	� 1�1� 1��4�� �
 ��
 ;�
�� ����	
��

8	"�
	��

 ��������� �����
� �
 �������� ������ �� ���� �

�	��� "
 ����
 ������	� ��������	�����

18 '��� �0�5����'�5� �5 ���"6��0�� ��-! 41� 5�! 7� �"0'- 2332

=�
! 23! 0��� ��
���	� ��� ���� :!

=�
! 21! C���� ��
���	� ��� ���� :!

99

Read_schedule() 

Input: N,M,t,r0,...,rt-i,zs,Rs(0 < s < t) 

Output: RS(s, u) 

1      for 5 = 0 to t-1 step = 1 

2             for u = 0 to N2/M-l step = 1 

3                       RS(s, u) <- {}; 

4     for s = 0 to t — 1 step = 1 

5              u <- 0; 

6               counter <— 0; 

7              for 8 = 0 to Rs-i/zs-i-l step = 1 

8                       for j' = 0 to zs-i — 1 step = 1 

9                                           for k=0 to N2zs-i/(BRs-! - - 1) step = = 19 

10                                            counter <— counter + 1; 

11                                            if counter = Mzs-\jB 

12                                                             counter <— 0; 

13                                                         u <- « + 1; 

Write_schedule() 

Input: AT, M, t,ro,...,rt-i,«a,i?s(0 < a < t) 

Output: RS(s,u) 

1      for s = 0 to t-1 step = 1 

2              for u = 0 to N2/M-l step = 1 

3                      WS(s, u) <- {}; 

4      for s = 0 to t — 1 step = 1 

5              for i = 0 to i?s_i-l step = 1 

6                    for j' = 0 to N2l(Rs-iM) -1 step = 1 

7                                  for A; = 0 to rs/zs — 1 step = 1 

8                                           for 1 = 0 to Mzs/(Brs) - 1 step = 1 

9                                                    WS{s,iN/{R3-iM)+j) 

<- FFS(s, iNI(Rs-iM) U {J7V2/(ößs_ i) + fcAf*,/(BA.) + 0; 



��.�������
()+ �� �  	
�	� 	�� F��� <����
� D��� �����'#����� ���������
 ��

��
��� 	�� ���	��� 4
�"�����E ����� ��4� $��� *)� ��� -�
��� ))).�))/A� )-77�

��� ��0� �
�� D#� �
	������� 8	
 � �& � �& �	�
�����E 
$$$ ;�����
���,�	
��� $��� /7� ��� )� ��� A/�A2� F	�� )-A-�

��� �� 0�
���!
� D���	
 0�	���
��� ��	���� � 4
�"�����E �
��
������ 	� 1��4�'��# ��"���	"�� �
����� 4� ������ � F���
)--.�

��� 8� �	
��
� F� ;�

	���� 	�� ��;� ,������ D,��
	
����	� ����� ��

���
�$�� ����
��	�	
 4�
��
�	����E +���� 
�	< +���  
 +���
����!
�-�,� =
++� <12>� )--2�

��� 4��� ����� ��=� 8��� >��� >�"���� ��,� =	�&� 	�� 1��� 4	���
����
D���13 ,� � 4�
��
�	���� ����	"�� ������	

 ���
	 ��E ��4
���,�	��! ���/
-�� $��� /.� ��� /� ��� ):2�)72� F��� )--:�

��� ��,� ��
���� D<�
��	� ����

 ��
 1	�	�4	
	���� �������� �E
4�1 ������� �	��	��������� ����� �� �������� 
� ���'8��'���
22-� )--/�

��� ��,� ��
��� 	�� �� ,�
����� D�	
�
 ����
������ �� �$	��	��� ���
4	
	���� 1��! ����� ���� ��� <��G ���������	�����E +���  
 
���,�	��!� $��� /*� ���� :�2� ��� 2A)�.??� F��� )--A�

�	� ��,� ��
���� �� ����%����� 	�� 8�;� 9�������!�� D��
�������	��

�� �� 0����� ��
 4�
��
��� 0��� 4�
���	����� �� 4	
	����
1��! �
������E �
�4 �� ���,�	��!� $��� /7� ��� )� ��� )?2�)*.� )--:�

�
� 1��4�� D��"���	"�� �
����� ,��� �	 ��E����3''�����	
�	�
���'���'����	
���
�	������� /???�

���� 1��4�� ����3''�����	
�	����'���'
���	
��'���'�����������
/???�

���� 8�>� 1���	
� 	�� >�8� ����
	�&	� D� ������ �� �
	������� 
����
�	��
 ���
�� �	�
�����E 
$$$ ;����� ���,�	
��� $��� /*� ��� -�
��� -.A�-A?� )-A:�

���� 1��� 1�� �� 	�� ���� ��
��
�	�� 4� 	�)��
������ ��!�� +���
�%
���!� 4
������ ,	��� )-7:�

���� F�#� �!������ D� ;	�� �������
 ������ ��
 �	�
�� �
	������� �E

$$$ ;����� ���,�	
��� $��� /?� ��� A� ��� 7?)�7?*� )-A/�

���� ��9� ;��
�� D4�
����� ����
�	���� �� ���	��&�� ����8�$��
���
	 ��E ���, 
��	- �� ���,�	
� ���,�	�	����� ��� )?2�)?-�
4������ )-A/�

���� ���� >	���� D0�����	
!�� ��������� 
 ��
 ��	������ ���
"����� ��	�	"�� ,� � 4�
��
�	��� �������� �E ����� �������
�	� ����
� ��� -.0?????)?� �	
� )--.�

���� =� ,�	� 	�� H� I�� D��	�	"�� 4	
	���� �������
� ��
 ��	������
�� �	� 4
������� �E 
$$$ ��!�� +���
����! 4�!�?��
� $��� )*� ��� :�
��� 2?�..� F��
 )-A-�

���� �� =	��	�	��	 	�� 4� <	
�	�� D#����	� ��	��#��� 4	
	���� 1��!
��������� �E +���� ��4 @��:���, 
78 �� +���  
 ��) ���	��6�	
)
�-�	
��� ��
� )---�

��	� �� =	��	�	��	 	�� 4� <	
�	�� D�� ���
�$�� 4	
	���� 4
�������� 
�� �
�����E +���� 
�	< ����� A�!� +
��������
 ���,�	��!� 1���
)--7�

��
� ��1� =	����!� ���,� ,�	� � F��� F������� ��9� F������� 	�� 4�
�	�	
	��	�� D��������� �
	���������� �� �
����� ��
 8	
 �
�	�
�����E +���� ��,
����,�	��!� )--*�

���� <� =��	
� �� >
	�	� �� >���	� 	�� >� =	

���� 
�	��)��	��� 	�
+���  
 ���,�	��!� 0���	���'������ �� )--:�

���� �� 8��� 9� 8��� 	�� <�=� 4
	�	��	� D� �	���� ��������� 
 ��

1��� ��� �����	
� �	�! 4�������� ��
 ��"����� �� �	� 4
�����
��� �E +���� ;���) 
�	< @��:���, $�6
))
) A+� �-�	
�� ��)
�,, ���	���� =$A+� <1�>� �	 	�
 �#	� 
�	< +���  
 +���
����! �-�,�
=
++� <1�>� ��) 	�
 ���	� �-�,� +���  
 ��) ���	��6�	
) +���
����!
=�+�+ <1�>� ��
� )-A-�

���� J�9� 8�� 	�� <�=� 4
	�	��	� D��	�	"�� 4�
�	"�� ���������	�����
�� ��	������� ��	���$� 4
������� �E +���� ��	� 
�	< ����� A�!�
+
��������
 ���,�	
��� F��� )--.�

���� J�9� 8��� 4�0� 0�	�� 	�� <�=� 4
	�	��	� D��������� �� �
����� ��

0���!��
���� ������
�"����� �� �

	
��E � !���	������ $��� /:�
��� /-7�**?� )---�

���� ,� 4	
!� F� ���� <�=� 4
	�	��	� 	�� �� @� � D4	
	���� ���������
�	���� �� /1 ;;� �� ,� � 4�
��
�	��� �������� 4�	���
���E
+���� ��� A+� ��
�<� ����� <1�� F��� )--7�

���� ,�=� �	�	�
�
	�� D� >���
	��&	���� �� �!�����C� �� �
���� ��

�
	������� 8	
 � �	�
�����E 
$$$ ;����� ���,�	
��� $��� /:�
��� )/� ��� )//)�)//.� 1��� )-A2�

���� F��� �����
���� 	�� ,��� ���
 ��� D������	"����
 �� ����
��$�
;���������E �� ��4� $��� )?� ��� /)A�/22� )-.*�

���� F� ��� 	�� <�=� 4
	�	��	� D4�
�	"�� ���������	���� �� ��	� ����
�� �	� 4
������� 0�����	
!� �� ,4� 4�	���
���E +���� 
�	< 
@��:���, �,, �
) +���  
 ���,�	��! �� 0��!
 ��� 
 ���
�	���� ��)

�)��	��� +��6 
�� <1�� F��� )--7�

��	� F��� <����
 	�� ������ ��
�$�
� D�� �
����� ��
 4	
	���� ����

 �3
����8�$�� ����
����E � !���	������ $��� )/� ���� /�*� ��� ))?�):A�
)--:�

6"	&$$ �*) �����&�� �
� "
. ��
��� ��
�	�������	 ��
�������
 ���� �
� 6��&�����% ��
����
��� ��	������� �� 1999� �
� �� ��
��� ��
�	�������	 ��
�������
 ���� �
�  ���� ��&�����
'�������� �� ������� ��� ���
��	�
% @ �'��A�
����	�  ����� �� 1993� ��� �
� D� ��
��� ��
�	�������� ��
�������
 ���� .��

�� 6��&�����%�
����	�  ����� �� 1988! )� �� � �������� ���������
�� �
� .%����� �%����� .�&����� �� �
� 6���
&�����% �� ����
��� ��	�������('����������

�������� '�������� @6��('�'A �� ��	��
���� ���
����! C
�	� 
� ��� ��
��
����� �� �
� �������
 ������ �� �
� .��C�� �	��������� ��!� -���
����	�  ����� ���� 1993 �� 1997� 
� ��&�	���� ��&���	 �������

������%��� ��� )�

 .��������� �� @).��A ��� ��
�� ���������	
��������! )�� �������
 ��������� ���	��� ����		�	 ���������
� �	
����
�
����
�� ���	����� ���������
� ��� �������� ���
��������! )� �� �
���$�� �� �
� '��� ��� '��� �������� ������%!

�"+�$� �! �����		� �����&�� �
� D� ��
��� ��
�	��������� ��
�������
 ���� �
� D��
�	���
6��&�����%� �
� �� ��
��� ���� �
� ��
��	 ��
����������� '����� '�������� �� �������� ��� �
�
"
. ��
��� �� �������� ������� ���� "����%	�
&���� ����� 6��&�����%! )� �� � ��������� ��
�	�������	 ��
�������
 ��� �������� ������� ��
�
� 6��&�����% �� ����
��� ��	������� @6��A! )��
�������
 ��������� ���	��� ����		�	 ������������
�������� ���
��������� �-�' ������������� 
�



����������� ��������
 ��� ��
��	 ���������
� ���
� ���������
� ���
&�����! )� �� �	�� � ���$�� �� �
� 6� 5������	 ������� =���������
@5�=A���������� '���
����� ����� �%����� ������ @'���A ��� ��
��������� ���$�� �� �
� ������ ��� ���	��� ���
�������	 ��������
@����A �� 6��! )� 
�� ��$	��
�� �������&�	% ��� �����	��� ���
���������� �� �
� �$�&� �����! )� �� �
� �������
 ��������� ���
��� ��
�
� '�����������	 "���		�	 F .�����$���� "��������
 �%������� @'"."�A
@���
�� '��� '�����������	 "���		�	 "��������
 �%������� @'""�A ���
�%������� �� "���		�	 ��� .�����$���� "��������
 @�"."AA! )� �� �
�
�������
 ��������� �
��� �� �
� '�����������	 ���������� �� )�


"���������� ��������
 @)�"�A! )� ���&�� �� �
� ��������	 $����� �� �
�
�
����	 

  ���		�	 ��� !���������� "
�������� ���� #��������
�� 
�
$%�� �������� ��� ���� #��������
�� 
� "
�������! )� ��� �
�
�������
 �
��� �� �
� '��� �������� ������%?� ���
����	 ��������� ��
"���		�	 "��������
! )� �� � ��		�� �� �
� '���!

' .$� �$�� "	0$����"$	 $	 �)"� $� �	7 �$�#*�"	% �$#"�8 #'���� 9"�"�
$*� �"%"��' �"����7 �� 
���+((��������!��
(��$	��������(�	�$!

�6) �5. "0���55�+ �5 �=='�'�5� �-/�0'�)� =�0 �6���=���0� ���0'> �0�5�"��'�'�5 19

100



 
A Performance Analysis of PIM, Stream Processing, and Tiled Processing on 

Memory-Intensive Signal Processing Kernels
 
 

Jinwoo Suh, Eun-Gyu Kim, Stephen P. Crago, Lakshmi Srinivasan, and Matthew C. French 
University of Southern California/Information Sciences Institute 

3811 N. Fairfax Drive, Suite 200, Arlington, VA 22203 

{jsuh, eungyu, crago, lakshmi, mfrench}@isi.edu 
 
 

Abstract 

 
Trends in microprocessors of increasing die 

size and clock speed and decreasing feature sizes have 
fueled rapidly increasing performance. However, the 
limited improvements in DRAM latency and bandwidth 
and diminishing returns of increasing superscalar ILP 
and cache sizes have led to the proposal of new 
microprocessor architectures that implement processor-
in-memory, stream processing, and tiled processing.  
Each architecture is typically evaluated separately and 
compared to a baseline architecture. In this paper, we 
evaluate the performance of processors that implement 
these architectures on a common set of signal processing 
kernels. 

The implementation results are compared with 
the measured performance of a conventional system 
based on the PowerPC with Altivec. The results show 
that these new processors show significant improvements 
over conventional systems and that each architecture 
has its own strengths and weaknesses. 

1. Introduction 

Microprocessor performance has been doubling 
every 18-24 months for many years [7]. This increase 
has been possible because die size has increased and 
feature size has decreased. However, the increasing die 
size combined with fast clock speeds have made the 
maximum distance as measured in clock cycles between 
two points on a processor longer. 

To solve this problem, pipelining has been used 
widely. However, increasing pipeline depth increases 
various latencies, including cache access and branch 
prediction penalties, and increases the complexity of 
processor design. Techniques for exploiting ILP without 
exposing parallelism to the instruction set have also 
reached a point of diminishing returns. 

Another problem in the recent processors is the 
growing gap between the processor speed and memory 
speed. The performance improvement of 
microprocessors has not been matched by DRAM (main 
memory) latencies, which have only improved by 7% 
per year [7], or pin bandwidths. These growing gaps 
have created a problem for data-intensive applications. 

To bridge these growing gaps, many methods have 
been proposed such as caching, prefetching, and 
multithreading. However, these methods provide limited 
performance improvement and can even hinder 
performance for data-intensive applications. Caching has 
been the most popular memory latency tolerating 
technique [10][12]. Caching increases performance by 
utilizing temporal and spatial locality, but it is not useful 
for many data-intensive applications since many of them 
do not show such locality [11]. 

Recently, several architectural approaches have 
been explored that promise to hide memory latency for 
applications that include data-intensive applications 
while improving scalability.  This study is an attempt to 
demonstrate and compare some of the advantages and 
disadvantages of processor-in-memory (PIM), streaming, 
and tiled architectures approaches by implementing a 
common set of memory-intensive signal processing 
kernels. 

We implemented the corner turn, beam steering, and 
coherent side-lobe canceller (CSLC) kernels and 
measured the performance using cycle accurate 
simulators developed by each architecture group.  

The rest of the paper is organized as follows. In 
Chapter 2, a PIM, a stream processor, and a tile-based 
processor are briefly described. Chapter 3 describes the 
three kernels we implemented: the corner turn, coherent 
side-lobe canceller, and beam steering. Also, the 
techniques that we used to exploit each platform are 
described. In Chapter 4, the implementation results and 
analysis are shown. Chapter 5 concludes the paper. 

101



2. VIRAM, IMAGINE, and RAW 

In this section, the VIRAM, Imagine, and Raw chips 
are briefly described. We also describe the performance 
models that will be used to understand performance of 
the application kernels. 

2.1 VIRAM 

In conventional systems, the CPU and memory are 
implemented on different chips. Thus, the bandwidth 
between CPU and memory is limited since the data must 
be transferred through chip I/O pins and copper wires on 
a PCB. Furthermore, much of the internal structure of 
DRAM, which could be exploited if exposed, is hidden 
because of the bandwidth limitation imposed by the pins. 

Processor-In-Memory (PIM) technology is a method 
for closing the gap between memory speed and processor 
speed for data intensive applications. PIM technology 
integrates a processor and DRAM on the same chip. The 
integration of memory and processor on the same chip 
has the potential to decrease memory latency and 
increase the bandwidth between the processor and 
memory. PIM technology also has the potential to 
decrease other important system parameters such as 
power consumption, cost, and area.  

The VIRAM chip [5] is a PIM research prototype 
being developed at the University of California at 
Berkeley. A simplified architecture of the chip is shown 
in Figure 1. The VIRAM contains two vector-processing 
units in addition to a scalar-processing unit. These units 
are pipelined. The vector functional units can be 
partitioned into several smaller units, depending on the 
arithmetic precision required. For example, a vector 
functional unit can be partitioned into 4 units for 64-bit 
operations or 8 units for 32-bit operations. Some 
operations are allowed to execute on ALU0 only. It has 
8K vector register file (32 registers). 

It has 13 Mbytes of DRAM.  There is a 256-bit data 
path between the processing units and DRAM. The 
DRAM is partitioned into two wings, each of which has 
four banks. It can access eight sequential 32-bit data 
elements per clock cycle. However, since there are four 
address generators, it can access only four strided 32-bit 
or 64-bit data elements per cycle.  

Flag units

Vector
ALU0

Vector registers

Memory crossbar

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 7

Vector
ALU1

Vector
Load/Store Unit

Lane 0 Lane 1 Lane 2 Lane 3

MIPS
Core

Vector
Control

I/O

I D

64 bits

256 bits

 
Figure 1. Block diagram of VIRAM  
There is a crossbar switch between the DRAM and 

the vector processor. The target processor speed is 200 
MHz, which would provide a peak performance of 3.2 
GOPS (= 200 MHz x 2 ALUs x 8 data per clock) for 32-
bit data. If 16-bit data is processed, the performance is 
6.4 GOPS. Its peak floating point performance is 1.6 
GFLOPS for 32-bit data. The power consumption is 
expected to be about 2 W. The EEMBC (Embedded 
Microprocessor Benchmark Consortium) benchmarks 
have been implemented on VIRAM [17]. VIRAM’s 
performance is 20 times better (as measured by 
geometric mean normalized by clock frequency) than the 
K6-III+ x86 processor. 

2.2 Imagine 

Another approach for handling the growing 
processor-memory gap is stream processing. In this 
approach, the data is routed through stream registers to 
hide memory latency, allow the re-ordering of DRAM 
accesses, and minimize the number of memory accesses. 
The Imagine chip [4][11] is a research prototype stream 
processor developed at Stanford University. It contains 
eight clusters of arithmetic units that process data from a 
stream register file. The processor speed is currently 300 
MHz, which provides a peak performance of over 14 
GOPS (32-bit integer or floating-point operations). 
Performance results for Imagine have been presented for 
application kernels such as MPEG, and QRD [9].  ALU 
utilization between 84% and 95% is reported for 
streaming media applications. 

Figure 2 shows the block diagram of Imagine. The 
stream processing is implemented with eight ALU 
clusters (with 6 ALUs each) with a large stream register 
file (SRF), and a high-bandwidth interconnect between 
them. The size of SRF is 128 Kbytes. A stream can start 
at the start of any SRF 128-byte blocks. Data is 
transferred to and from the SRF from off-chip memory 

102



or the network interface. The eight ALU clusters operate 
on data from the SRF. Up to eight input or output 
streams can be processed simultaneously. The data is 
sent to clusters in round-robin fashion, i.e., the i-th data 
is sent to cluster (i mod 8).  All clusters perform the 
same operations on their data in SIMD style. Each 
cluster has 6 arithmetic units (three adders, two 
multipliers, and one divider) and one communication 
interface that is used to send data between ALU clusters.  

The Imagine prototype implementation has two 
memory controllers, each of which can process a 
memory access stream. The memory controller reorders 
accesses to reduce bank conflicts and to increase data 
access locality. The processor speed in the lab is 
currently near 300 MHz, which would provide a peak 
performance of 14.4 GFLOPS (= 300 MHz x 8 ALU 
clusters x 6 arithmetic units per cluster) for 32-bit data. 

ALU cluster 0

Mem
system

SDRAM

SDRAM

SDRAM

SDRAM

128
KB

SRF

ALU cluster 1

ALU cluster 2

ALU cluster 3

ALU cluster 4

ALU cluster 5

ALU cluster 6

ALU cluster 7

Micro-
controller

Stream
controller

Network
interface

Host
interface

Host
processor

I/O
Imagine chip

+ X /+ + X

Scratch
pad

memory

Inter-
cluster
comm.

Host procssor
SDRAM

 
Figure 2. Block diagram of Imagine 

2.3 Raw 

Another approach for a scalable microprocessor that 
addresses issues of continued technology scaling is tile 
processing. Instead of building one processor on a chip, 
several processors (tiles) are implemented and connected 
in a mesh topology using a scalar operand network [16]. 
Then, each tile occupies a fraction of the chip space, so it 
is easier to make a faster processor since the signals need 
to travel only a short distance. One example is the Raw 
chip implemented at MIT [15] and shown in Figure 3. 
The current Raw implementation contains 16 tiles on a 
chip connected by a very low latency 2-D mesh network. 

The Raw prototype has been tested up to 199MHz and is 
expected to operate at 300MHz. Peak performance is 4.8 
GOPS. 

Each tile has a MIPS-based RISC processor with 
floating-point units and a total of 128 KB of SRAM, 
which includes switch instruction memory, tile 
(processor) instruction memory, and data memory. Raw 
uses general parallelism, which includes streaming, ILP, 
and data parallelism. 

The Raw has four networks: two static networks and 
two dynamic networks. Communication on the static 
networks is performed by a switch processor in each tile 
[15]. The switch processor is located between the 
computation processor and the network and provides 
throughput to the tile processor of one word per cycle 
with a latency of three cycles between nearest neighbor 
tiles. One additional cycle of latency is added for each 
hop in the mesh through the static networks. When the 
dynamic network is used, data is sent to another tile in a 
packet. A packet contains header and data. If the data is 
smaller than a packet, dummy data is added to make a 
packet. If the data is larger than the packet, multiple 
packets are sent. The memory ports are located at the 16 
peripheral ports of the chip. All tiles can access memory 
either through the dynamic network or through the static 
network. 

Several kernels including matrix multiplication are 
implemented on Raw and the results are reported in [16]. 
The results show that Raw obtains speedup of up to 12 
relative to single-tile performance on ILP benchmarks. 
Speedups greater than 16 can be achieved on streaming 
benchmarks when compared to a single-issue load/store 
RISC architecture because of a tile’s ability to operate on 
data directly from the networks. 

Computing
processor

(8 stage 32 bit,
single issue,

in order)

Com-
muication
processor

96 KB
I-Cache
32 KB

D-Cache

4-stage
pipelined

FPU

8 32-bit
channels

 
Figure 3. Block diagram of Raw 

 

103



2.4 Programming methodologies 

The programming methodologies and tools for each 
of these architectures are evolving. However, each 
architecture has inherent properties that affect the 
programming model and programmability of the 
architecture. 

The VIRAM’s programming model is that of a 
traditional vector architecture. An application is 
described as single instruction stream that contains scalar 
and vector instructions. There are two primary 
difficulties to programming the VIRAM architecture. 
First, the C programming language makes automatic 
parallelization of many loops difficult or impossible 
without making assumptions about the independence of 
pointer and array accesses. Simple loops or computations 
marked by user hints can be vectorized, but kernels with 
complex access patterns (e.g. FFT) are still difficult to 
automatically vectorize. Languages that are more 
restricted will facilitate automatic vectorization. The 
second factor that complicates the programmability of 
VIRAM is the impact of the DRAM organization on 
performance. Much of the performance of VIRAM is 
achieved by exploiting properties of DRAM organization 
(e.g. banks, rows, columns, and wings). Currently, the 
user must understand the DRAM organization to 
optimize performance. However, it is feasible that a 
compiler could organize memory references based on 
memory organization while it is vectorizing, especially 
given a language that makes this analysis feasible.  For 
this study, a C compiler was used to compile the kernels, 
and then inner loops were hand-vectorized using 
assembly code. 

The programming model of Imagine has two 
significant characteristics. First, the programming model 
is based on streams. Streams are similar to vectors, but 
streams can be explicitly routed between the stream 
register files and the ALU clusters without going through 
the memory system. This property is important for 
reducing the impact of the bandwidth bottleneck 
between DRAM and the processor chip. The second 
significant characteristic of the Imagine programming 
model is that a program is described in two languages, 
one for the host (or control) thread written in C and one 
for the stream processing unit written in kernel-C. Again, 
new programming languages may allow this distinction 
to be hidden from the programmer. However, the 
programming model used in this paper forces the 
programmer to think explicitly about streams and their 
control. This explicit streaming model has the 
disadvantage that a programmer must think about the 
application in a new way, but has the advantage that the 
programmer is forced to think about issues that are 
important to performance anyway. Applications must 

contain SIMD parallelism to see significant performance 
improvements on the Imagine architecture. For this study, 
inner loops were carefully scheduled to maximize 
performance. 

The Raw architecture is the most flexible of the 
three architectures addressed in this paper. The tile-based 
organization with the low-latency, high-bandwidth 
network and memory interface supports a variety of 
programming models. The primary programming models 
used in the kernels described in this paper are the MIMD 
and stream models. The CSLC and beam steering 
kernels have plenty of independent parallelism to allow 
each tile to execute independently. We report results on 
two modes of using Raw: an easy-to-program but less 
efficient MIMD mode, in which data is routed to local 
memories through cache misses (CSLC), and a stream 
mode, in which data is routed in a stream mode without 
going through local memories by thinking explicitly 
about data placement and streams (beam steering).  

However, the low-latency, high-bandwidth networks 
of Raw also allow ILP to be mapped efficiently to Raw. 
Raw’s peak performance can be achieved when data can 
be operated on without going through local memories in 
the tiles. For this study, we used standard C to program 
the kernels. Assembly code was inserted only where 
necessary to access streaming data through the network. 
In beam steering, the codes between two instructions 
accessing streaming data through network are also 
written in assembly language. Other programming 
models, such as decoupled processing, are being 
developed for Raw and have the potential to improve 
performance of applications such as those described in 
this paper. 

2.5 Performance models 

In this section, simple performance models used to 
estimate the upper bound of the performance of the 
kernels on each architecture are described. We model 
computation and memory bandwidth.  Memory latency 
is not modeled since these architectures can generally 
hide memory latency on the kernels used in this study. 

Table 1 shows the DRAM memory and ALU 
throughput for 32-bit data elements that each 
architecture can support. It should be noted that both 
memory and ALU throughput are functions of these 
particular implementations and are not functions of the 
architectures themselves. However, the architectures 
provide the means to exploit the throughput supported by 
the implementation. It should also be noted that memory 
bandwidth reported is for the nearest DRAM. For 
VIRAM, DRAM is on-chip, while the nearest DRAM is 
off-chip for Imagine and Raw. 

104



Table 1. Peak throughput (32-bit words per 
cycle) 

 VIRAM Imagine Raw 
On-chip DRAM 

Read/Write 
8 16 

(SRF) 
16 

(Cache) 
Off-chip 
DRAM 

Read/Write 

2 
(Using 
DMA) 

2 28 

Computation 8 48 16 
 

3. Kernel Implementations 

In this section, three data-intensive kernels are 
described. Also, the techniques used to improve the 
performance on VIRAM, Imagine, and Raw are 
presented. The descriptions of the techniques are brief 
due to the space limitation. 

3.1 Corner turn 

The corner turn is a matrix transpose operation that 
tests memory bandwidth. The data in the source matrix is 
transposed and stored in the destination matrix. The 
matrix size used for this paper, which was chosen to be 
larger than Imagine’s SRF (128 KB) and Raw’s internal 
memories (2 MB), but smaller than VIRAM’s on-chip 
memory (13 MB), is 1024 x 1024 with 4-byte elements. 

Naive implementations of the corner turn can have 
poor performance because cache performance can be bad 
and strided data accesses degrade DRAM bandwidth. In 
conventional cache-based processor systems, tiling is 
used to reduce cache misses.  

Our VRAM corner turn uses a blocking algorithm 
with a 16 x 16 element matrix. Blocking allows the 
vector registers to be used for temporary storage between 
the loads and stores. We used strided load operations 
with padding added to the matrix rows to avoid DRAM 
bank conflicts. Initial load latencies are not hidden. 
Stores are done sequentially from the vector registers to 
the memory. 

On the Imagine processor, we divide the matrix into 
multi-row strips that allows us to use the stream register 
files. We use four input streams and one output stream 
simultaneously. Since the rows within a stream are read 
sequentially, we maximize memory bandwidth during 
the reading. The Imagine clusters are used to route data 
in the correct output order. The output data is transferred 
to memory in one stream. The output data is partitioned 
into 128 eight-word blocks. The eight words in a block 

are written sequentially, but the blocks are written with a 
non-unit stride.  

Our corner turn on Raw uses one load and one store 
operation for each DRAM-to-DRAM transfer. The 
algorithm, designed at MIT and implemented at 
USC/ISI, was developed to ensure that all 16 Raw tiles 
are doing a load or store during as many cycles as 
possible and to avoid bottlenecks in the static networks 
and data ports. The algorithm operates on 64x64 word 
blocks that fit in a single local tile memory. Main 
memory operations are all done sequentially to 
maximize memory bandwidth since the transpose can be 
done in local memories, where all accesses are done in a 
single cycle. 

3.2 Coherent side-lobe canceller (CSLC) 

CSLC is a radar signal processing kernel used to 
cancel jammer signals caused by one or more jammers. 
Our CSLC implementation consists of FFTs, a weight 
application (multiplication) stage, and IFFTs. Most of 
the computation time is spent on the FFT and IFFT 
operations.  

There are four input channels: two main channels 
and two auxiliary channels. Each channel has 8K 
samples per processing interval. All computations are 
done using single-precision floating-point operations. 
The data is partitioned into 73 overlapping sub-bands, 
each of which contains 128 samples, so 128-sample 
FFTs are used.  

Since the majority of computation time on the 
CSLC is spent on the FFT operation, we improved the 
performance of the FFT by using the appropriate FFT 
algorithms for each architecture. In this study, a 
parallelized hand-optimized radix-4 FFT is used for 
VIRAM and Imagine. Note that since the size of the FFT 
for the CSLC is 128, which is not power of four, we used 
three radix-4 stages and one radix-2 stage. We did not 
hand-optimize our Raw FFT implementation. Rather, a 
C implementation of the radix-2 FFT is used for Raw 
because it provided better performance than the radix-4 
FFT because of register spilling in the radix-4 FFT. The 
Raw implementation does independent data-parallel 
FFTs. 

3.3 Beam steering 

Beam steering is a radar-processing kernel that 
directs a phased-array radar without physically rotating 
the antenna. The computation of the phase for each 
antenna element stresses memory bandwidth and latency 
because large tables are used for calibration tables. 
Arithmetic operations are additions and shift operations. 

105



In our implementation, the following parameters are 
used. The number of antenna elements is 1608. Each 
element can direct the signal up to 4 directions per dwell 
where a dwell is a period. The phase needs to be 
calculated for each direction using calibration data. 

As for other kernels, we used hand-vectorization of 
the main portion of the beam steering on VIRAM. Since 
the same processing is performed for each data, the data 
is fed to the vector unit, which computes output data. 

For the Imagine, a manually optimized kernel was 
written to maximize cluster ALU utilization. The input 
data streams are loaded into the stream register file and 
supplied to the clusters. The results are written back to 
memory through the register file.  

The beam steering processing on each data is 
independent. Thus, on Raw, we partition the data among 
16 tiles and each tile processes its own data. Input data is 
streamed through the static network and is operated on 
directly from the network.  

4. Experimental results and analysis 

4.1 Overview 

In this section, the implementation results are 
presented. Performance of these kernels is obtained by 
using cycle-accurate simulators provided by the 
VIRAM, Imagine, and Raw teams.  

For comparison purposes, actual measurements of 
performance were taken using a single node of a 1 GHz 
PowerPC G4-based system (Apple PowerMac G4) [1]. 
An implementation using AltiVec technology was used 
for speedup comparison. The Apple cc compiler was 
used with timing done using the MacOS X system call 
mach_absolute_time(). We manually inserted Altivec 
vector instructions. 

Table 2 summarizes key parameters of each 
processor. Note that the PowerPC is a highly optimized 
chip in performance implemented with custom logic. 
However, other processors are research chips 
implemented using standard cells and very small design 
teams. Thus, if the same level of design effort were 
applied to these research architectures, we would expect 
much higher clock rates and density to be achieved.  

In Table 3, a summary of the implementation results 
is shown. Figure 8 shows the speedup in terms of cycles 
and Figure 9 shows the speedup in terms of execution 
time. Note that Figure 8 and Figure 9 are both using a 
log scale on the vertical axis. 

Table 2. Processor Parameters  
 PPC G4 VIRAM Imagine Raw 

Clock (MHz) 1000 200 300 300 

# of ALUs 4 16 48 16 

Peak GFLOPS 5 3.2 14.4 4.64 

 
Table 3. Experimental results (cycles in 103 ) 

 Corner Turn CSLC Beam Steering

PPC 34,250  29,013 730 

Altivec 29,288 4,931 364 

VIRAM 554 424 35 

Imagine 1,439 196 87 

Raw 146 357 19 

 

Figure 8. Speedup compared with PPC with 
AltiVec (Cycles) 

Figure 9. Speedup compared with PPC with 
AltiVec (execution times when PPC=1 GHz, 

VIRAM=200 MHz, Imagine=300 MHz, and 
Raw=300 MHz) 

 

1

10

100

Corner Turn CSLC Beam Steering

VIRAM

Imagine

Raw

1

10

100

1000

Corner Turn CSLC Beam Steering

VIRAM

Imagine

Raw

106



4.2 Corner turn 

Table 4 summarizes the expected execution time 
using the performance model shown in Section 3. All 
three architectures provided speedups of more than 20 
compared with a PowerPC system in terms of number of 
cycles. Corner turn performance is mostly a measure of 
memory bandwidth, which is not a direct property of an 
architecture, but rather a function of the number of pins 
in the package. However, the corner turn does 
demonstrate an architecture’s ability to leverage memory 
bandwidth that does exist. Since VIRAM has on-chip 
DRAM, the kernel measures on-chip bandwidth. On the 
Imagine and Raw architectures, we’re stressing off-chip 
memory. 

The performance of corner turn on VIRAM is about 
half of what would have been expected from peak 
memory bandwidth. About 21% of the total cycles are 
overhead due to DRAM pre-charge cycles (which would 
be mostly hidden with sequential accesses) and TLB 
misses, and 24% are due to a limitation in strided load 
performance imposed by the number of address 
generators. 

On Imagine, we assume the memory clock is the 
same frequency as the processor clock. Imagine has two 
address generators that provide two words per clock 
cycle. Note that the number of address generators is a 
processor implementation choice and is not a limitation 
of the stream architecture. Since the goal of the Imagine 
project was to demonstrate how memory traffic could be 
reduced, the Imagine team chose not to implement a 
high-bandwidth memory interface. 

If network port were used to transfer data between 
SRF and an external memory connected to network port 
for corner turn, the performance would be the same since 
the network port has peak performance of two words per 
cycle. 

87% of the cycles in the Imagine corner turn are due 
to memory transfers. The remaining 13% of the 
execution cycles are due to unoverlapped cluster 
instructions. Conceptually, the kernel instructions should 
be fully overlapped with memory accesses, but a 
limitation induced by the stream descriptor registers 
prevented full software pipelining in our 
implementation. 

The Raw chip implementation actually provides 
enough main memory bandwidth that it is not the 
performance limiter for our corner turn implementation. 
Load/store issue rates and local memory bandwidth limit 
performance. 16 instructions per cycle are executed on 
the Raw tiles, and the static network and DRAM ports 
are not a bottleneck. The performance we achieved is 
nearly identical to the maximum performance predicted 

by the instruction issue rate. Memory latency is fully 
hidden (except for negligible start-up costs). 

4.3 CSLC 

CSLC mainly consists of FFTs and matrix-vector 
multiplication. Since the FFT length is 128, the working 
set fits into local memory, the performance of the CSLC 
depends primarily on ALU performance for Imagine and 
Raw. 

Our IRAM CLSC analysis takes about 3.6 times 
longer than what is predicted by peak performance. The 
first factor reducing performance is overhead 
instructions. Instructions are needed to perform the FFT 
shuffles and increase the number of cycles by a factor of 
1.67. The second factor that reduces FFT performance is 
ALU utilization. Since the second vector arithmetic unit 
in VIRAM cannot execute vector floating point 
instructions, performance on the FFT is reduced by a 
factor of 1.52. Finally, memory latency and vector 
startup costs increase performance by a factor of 1.41. 

Imagine has the best performance of the three 
architectures on CSLC. This is because it is a 
computation-intensive kernel for which the working sets 
fit in the stream register files. Although the data access 
patterns for FFT are challenging for any architecture, the 
streaming execution model of Imagine is able to reduce 
memory operations and Imagine functions as intended 
on this kernel. Overall, performance achieved on CSLC 
on Imagine is about 20% of what is predicted by peak 
performance. While this is much lower than has been 
achieved for many media benchmark kernels, it still 
allows Imagine to perform about 10 useful operations 
per cycle; much better than can be achieved on today’s 
superscalar architectures. Performance is reduced by 
30% because inter-cluster communication is used to 
perform parallel FFTs. An alternative implementation, 
which was not completed for this study, would execute 
independent FFTs in parallel to eliminate inter-cluster 
communication overhead.  

For the FFT kernel, ALU utilization (as measured 
by minimum FFT computations / total ALU cycles 
available) is 25.5%. If we exclude the divider, which is 
not useful for the FFT, then the utilization is 30.6%. 
Note that the utilization for the 128-point FFT is a little 
lower than the more than 40% obtained in other 
processing intensive applications [6]. The reason for the 
relatively low utilization is that the small size of the FFT 
reduces the amount of software pipelining and increases 
start-up overheads. 

On Raw, we implemented a data parallel version of 
CSLC. The local memory on Raw successfully caches 
the working sets, and less than 10% of the execution 
time is spent on memory stalls. Note that most of this 

107



stalling could have been eliminated by implementing a 
streaming DMA transfer to the local memory that is 
overlapped with the computation. 

The CSLC on Raw uses radix-2 FFT to avoid 
register spilling encountered in the radix-4 FFT. The 
number of operations (including loads and stores) in the 
radix-2 FFT is about 1.5 the number in the radix-4 FFT. 
So care should be given when the performance of the 
Raw on CSLC is compared with CSLC performance on 
other architectures. 

One problem with our data parallel implementation 
of CSLC on Raw was load balancing. The CSLC is 
easily parallelized for 16 tiles. However, since the 
number of data sets is 73, which is not a multiple of the 
number of tiles, some tiles processed five sets while 
others processed four sets. About 8% of CPU cycles are 
idle due to load balancing. However, the number of sets 
in a real environment is not fixed at 73. In a real 
implementation, the input data sets would arrive 
continuously. Therefore, it is reasonable to assume that 
Raw could have perfect load balancing in a real 
implementation. Thus, we report the performance 
numbers for CSLC on Raw based on an extrapolation 
that assumes perfect load balancing. 

Raw achieves about 31.4% of the peak performance 
on CSLC. In addition to the cache stall time previously 
discussed, about 26% of the cycles on Raw are 
consumed by load and store instructions. The remaining 
cycles are consumed by address and index calculations 
and loop overhead instructions. 

If FFT is implemented using the stream interface 
that uses static network, it hides the cache miss stalls, 
and load and store operations are not needed. A primitive 
implementation result suggests about 70% of FFT 
performance improvement. 

4.4 Beam steering 

Beam steering has small numbers of memory 
accesses (2 reads and 1 write) and computations (5 
additions and 1 shift) per output data.  

On VIRAM, the lower bound of the computation 
time is 56% of the simulation time. The difference 
between the expected time and simulation cycles 
(15,412) comes from waiting for the results from 
previous vector operations and the cycles needed to 
initialize the vector operations.  

On Imagine, the computations and memory accesses 
for beam steering are overlapped. The performance is 
limited by memory bandwidth due to the relatively low 
number of computation per memory access. The load 
and store operations take 89% of the simulation time. 

The remaining 11% of execution time is due to the 
software pipeline prologue. 

In an actual signal processing pipeline the beam 
steering kernel would stream its inputs from the 
proceeding kernel in the application (e.g., a poly-phase 
filter bank) and stream its outputs to the following kernel 
(e.g., per-beam equalization).  In such a pipeline the 
performance of beam steering will not be limited by 
memory bandwidth, as in the case of this isolated kernel, 
but rather will be limited by arithmetic performance. On 
such a streaming application Imagine is expected to 
achieve a high fraction of its peak performance. If table 
values were read from the stream register file rather than 
memory on our kernel, performance would be increased 
by a factor of about two. The performance of a beam 
steering algorithm with more computation per data 
(which is a realistic assumption) could be much higher. 

On Raw, we used the static network to stream data 
from memory while hiding memory latency. In this 
implementation, loads and stores are not necessary and 
ALU utilization is very high. The Raw beam steering 
implementation has the best performance of the three 
architectures because of the combination of memory 
bandwidth and high ALU utilization. 

4.5 Altivec mapping 

The PowerPC G4 provides a vector instruction set 
extension, which was used manually to achieve the G4 
results shown in Section 4.1. The Altivec instruction set 
allows four 32-bit floating-point operations to be 
specified and executed in a single instruction. Using the 
AltiVec architecture gains a performance factor of about 
six for the CSLC and about two for beam steering and 
does not significantly improve performance for the 
corner turn, which is limited by main memory bandwidth. 

4.6 Architecture comparison 

VIRAM’s primary advantage comes from the high 
bandwidth between the vector units and DRAM without 
paying the cost (in terms of pins and power) that are 
required to achieve high bandwidth between chips. 
VIRAM is especially suitable for vectorizable 
applications that can utilize the high bandwidth interface 
and that are small enough to fit in the on-chip memory. 
VIRAM outperformed the G4 Altivec by more than a 
factor of 10 on all three of our kernels and showed 
especially good performance on the kernels that 
emphasize memory bandwidth. For embedded 
applications with reasonably sized data sets, the VIRAM 
can be used as a one-chip system. If the application size 
is larger than the on-chip DRAM, the data needs to come 

108



from off-chip memory and VIRAM would lose much of 
its advantage. 

Imagine’s high peak performance can be utilized in 
streaming applications where main memory accesses can 
be avoided or minimized. The CSLC kernel 
demonstrates that even when the Imagine ALUs are not 
fully utilized, performance can be quite high, especially 
when compared to a commercial microprocessor like the 
G4 Altivec. Imagine’s stream-based architecture is 
designed for scalability and power efficiency and the 
Imagine architecture has the highest peak performance 
of the architectures in this study. 

Raw also performs best on streaming applications 
since load and store operations can be eliminated and the 
static networks provide tremendous on-chip bandwidth. 
The kernels used in this study do not fully exploit this 
mode of execution. But we have shown that the tile 
structure of Raw can be used to utilize the memory 
bandwidth available from the external ports of Raw. The 
tile structure also provides flexible support for MIMD 
and ILP applications. 

5. CONCLUSION 

The authors have presented simulated performance 
results for three data-intensive radar processing kernels: 
the corner turn, coherent side-lobe canceller, and beam 
steering on systems based on three recent research 
processors (VIRAM, Imagine, and Raw). The results 
show that all three of these architectures have strengths 
and provide significant performance potential compared 
to the current generation of superscalar processors with 
vector extensions. 

These emerging architectures demonstrate that they 
can be programmed quickly in high level languages and 
existing compilers to obtain adequate performance, 
while with hand optimization or future compilers, they 
can achieve performance that far outstrips existing 
architectures. Furthermore, all three of these 
architectures will scale as technology shrinks far better 
than today’s superscalar processors. 

6. ACKNOWLEDGMENTS 

The authors gratefully acknowledge the 
extraordinary support of the UC Berkeley IRAM team, 
the Stanford Imagine team, and the MIT Raw team for 
the use of their compilers, simulators, and computational 
kernels and their generous help. This study obviously 
would not have been possible without their generous 
support. 

The authors also appreciate comments, suggestions, 
and help from Krste Asanovic, Christos Kozyrakis, Bill 
Dally, Anant Agarwal, Brian Patrick Towles, Jung Ho 

Ahn, Abhishek Das, Brucek Khailany, Ujval J. Kapasi, 
John Owens, Michael.B.Taylor, Hank Hoffmann, Dong-
In Kang, and Lavanya Swethranyan. 

 Effort sponsored by Defense Advanced Research 
Projects Agency (DARPA) through the Air Force 
Research Laboratory, USAF, under agreement number 
F30602-99-1-0521 and F30602-01-C-0171. The U.S. 
Government is authorized to reproduce and distribute 
reprints for governmental purposes notwithstanding any 
copyright annotation thereon. The views and conclusions 
contained herein are those of the authors and should not 
interpreted as necessarily representing the official 
policies or endorsement, either expressed or implied, of 
the Defense Advanced Research Projects Agency 
(DARPA), Air Force Research Laboratory, or the U.S. 
Government. 

7. References 

[1] Apple, http://www.apple.com/powermac/, 2002. 

[2] M. Gordon, W Thies, M. Karczmarek, J. Lin, A. S. Meli, 
A. A. Lamb, C. Leger, J. Wong, H. Hoffmann, D. Maze, 
and S. Amarasinghe, “A Stream Compiler for 
Communication-Exposed Architectures, MIT Tech. 
Memo TM-627, Cambridge, MA, March, 2002. 

[3] A. Gupta, J. L. Hennessy, K. Gharachorloo, T. Mowry, 
and W. D. Weber, “Computative Evaluation of Latency 
Reducing and Tolerating Techniques,” Proc. 18th Annual 
International Symposium on Computer Architecture, 
Toronto, May 1991. 

[4] B. Khailany, W. J. Dally, S. Rixner, U. J. Kapasi, P. 
Mattson, J. Namkoong, J. D. Owens, B. Towles, and A. 
Chang., “Imagine: Media Processing with Streams,” IEEE 
Micro, March/April 2001, pp. 35-46. 

[5] C. Kozyrakis, “Scalable Vector Media-processors for 
Embedded Systems,” Ph. D. dissertation, UC Berkeley, 
May 2002. 

[6] U. Kapasi, W. J. Dally, S. Rixner, J. D. Owens, and B. 
Khailany, “The Imagine Stream Processor,” International 
Conference on Computer Design, Freiburg, Germany, 
September 2002. 

[7] J. Hennessy and D. A. Patterson, Computer Architecture: 
A Quantitative Approach, 2nd Edition, Morgan Kaufmann 
Publishers, Inc., 1996.  

[8] Mitsubishi Microcomputers, M32000D4BFP-80 Data 
Book, http://www.mitsubishichips.com/data/datasheets 
/mcus/ mcupdf/ds/e32r80.pdf. 

[9] J. D. Owens, S. Rixner, U. J. Kapasi, P. Mattson, B. 
Towles, B. Serebrin, and W. J. Dally, “Media Processing 
Applications on the Imagine,” Stream Processor 
Proceedings of International Conference on Computer 
Design, Freiburg, Germany, September 2002. 

109



[10] S. A. Przybylski, Cache and Memory Hierarchy Design: 
A Performance-Directed Approach, Morgan Kaufmann 
Publishers, San Mateo, CA, 1990. 

[11] S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany, A. 
Lopez-Lagunas, P. R. Mattson, and J. D. Owens, “A 
Bandwidth-Efficient Architecture for Media Processing,” 
31st Annual International Symposium on 
Microarchitecture, Dallas, Texas, November 1998. 

[12] A. J. Smith, “Cache Memories,” Computing Surveys, Vol. 
14, No. 3, pp. 473-530, 1982. 

[13] J. Suh and S.P. Crago, “PIM- and Stream Processor-based 
Processing for Radar Signal Applications,” MSP 02, 
Austine, TX, 2002. 

[14] J. Suh, S. P. Crago, C. Li, and R. Parker, “A PIM-based 
Multiprocessor System,” International Parallel and 
Distributed Processing Symposium, San Francisco, CA, 
2000. 

[15] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, 
B. Greenwald, H. Hoffmann, P. Johnson, W. Lee, A. 
Saraf, N. Shnidman, V. Strumpen, S. Amarasinghe, and 
A. Agarwal, “A 16-issue multiple-program-counter 
microprocessor with point-to-point scalar operand 
network,” Proceedings of the IEEE International Solid-
State Circuits Conference, February 2003. 

[16] M. B. Taylor, W. Lee, S. Amarasinghe, and A. Agarwal, 
“Scalar Operand Networks: On-chip Interconnect for ILP 
in Partitioned Architectures,” International Symposium on 
High Performance Computer Architecture, February 2003. 

[17] C. Kozyrakis, D. Patterson, “Vector Vs. Superscalar and 
VLIW Architectures for Embedded Multimedia 
Benchmarks,” 35th International Symposium on 
Microarchitecture, Instabul, Turkey, November 2002.  

 

110




