

AFRL-IF-RS-TR-2004-321

Final Technical Report
November 2004

CONTAINMENT AND INTEGRITY FOR MOBILE
CODE

Cornell University

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. J363

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2004-321 has been reviewed and is approved for publication.

APPROVED: /s/

PATRICK M. HURLEY
Project Engineer

 FOR THE DIRECTOR: /s/

WARREN H. DEBANY, JR., Technical Advisor
Information Grid Division
Information Directorate

 Form Approved
REPORT DOCUMENTATION PAGE OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
NOVEMBER 2004

3. REPORT TYPE AND DATES COVERED
Final Jun 99 – Mar 04

4. TITLE AND SUBTITLE
CONTAINMENT AND INTEGRITY FOR MOBILE CODE

6. AUTHOR(S)
Fred B. Schneider and
Andrew C. Myers

5. FUNDING NUMBERS
C - F30602-99-1-0533
PE - 63760E
PR - H541
TA - 10
WU - 01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Cornell University
120 Day Hall
Ithaca New York 14853

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFGA
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2004-321

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Patrick M. Hurley/IFGA/(315) 330-3624/ Patrick.Hurley@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
Significant progress was made on general approaches for security policy enforcement and for building systems that are
both fault-tolerant and secure.
The work on policy enforcement is based on program analysis and program rewriting, the foundations of language-
based security. Authorization, confidentiality, and integrity policies were addressed in a rich model that even admits
mutual distrust among principals. Also, a formal characterization was developed for what policies can be enforced by
various mechanisms.
With regard to composing security and fault-tolerance, proactive threshold cryptographic protocols were developed and
studied. Various prototype systems were built to evaluate the practicality of these protocols and the approach. The
protocols make extremely weak assumptions about the system in which they are deployed.

15. NUMBER OF PAGES
18

14. SUBJECT TERMS
Security Policy Enforcement, Language Based Security, Trustworthy Systems, Distributed
Trust, Proactive Secret Sharing, Threshold Cryptography 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Contents

1 Summary of Accomplishments 1

2 Detailed Description of Technical Progress 3
2.1 Inlined Reference Monitoring 3
2.2 Composing Security and Fault-tolerance 5
2.3 Information Flow Security . 6
2.4 Stateless, Reliable Communication 9

3 Publications Produced 10

i

1 Summary of Accomplishments

Under the auspices of this DARPA funding, we were successful in developing
language-based techniques for enforcing security policies and in developing
protocols to support the construction of systems that are both fault-tolerant
and secure. Specific accomplishments include the following.

Inlined Reference Monitoring

• Prototype program rewriters to support the In-lined Reference Mon-
itor (IRM) approach for security policy enforcement on Java Virtual
Machine (JVM) language programs, Microsoft Intermediate Langauge
(MSIL) programs, and Microsoft Baby-IL (BIL) programs [1, 2, 3].

• An improved implementation of the Java stack-inspection security model
[3].

• A formal characterization of security policies that can be enforced by
program rewriting [5].

Composing Security and Fault-tolerance

• Deployment of the Cornell On-line Certification Authority (COCA),
a fault-tolerant and secure certification authority, as a proof of con-
cept for a new approach to employing replication without sacrificing
confidentiality [35].

• Development of a prototype publish/subscribe service to better under-
stand the generality of the COCA architecture.

• Design, implementation, and analysis of (i) APSS (asynchronous proac-
tive secret sharing) [36], the first proactive secret sharing protocol that
does not require assumptions about execution timings or message de-
livery delays and (ii) a distributed blinding protocol [34] for that same
asynchronous setting.

Information Flow Security

• A publicly available implementation of the Jif (Java information flow)
compiler that controls flow of sensitive information in Java programs
[12, 14].

1

• Polyglot, an extensible compiler framework for building Java language
extensions [8, 13].

• The development of a new approach to building secure distributed sys-
tems, secure program partitioning, along with an implementation of
this approach [11, 30, 31].

• Protocols for automatically replicating code and data in a distributed
system in order to satisfy both confidentiality and integrity properties
[32].

• The first program analysis that provably enforces strong information
security properties (noninterference) for an expressive language with
first-class functions and complex control flow [26, 28].

• A new language-based characterization of security for concurrent sys-
tem with type systems for security policy enforcement [29].

• Identification of a new end-to-end security property, robustness, that
characterizes systems that release sensitive information without per-
mitting information laundering [27]. An extension to this property,
qualified robustness, gives untrusted code limited control over infor-
mation release. A simple program analysis was also developed that
provably enforces robustness and qualified robustness.

Stateless, Reliable Communication

• Design and implementation of a stateless, efficient, reliable network
communications protocol that is TCP-compatible and TCP-friendly,
yet supports instant failover, per-packet service replication, and intrin-
sic resistance to denial of service.

The list of 36 publications supported by this funding appears as the final
section of this report. No patents were filed.

2

2 Detailed Description of Technical Progress

2.1 Inlined Reference Monitoring

An alternative to placing the reference monitor and the target system to be
monitored in separate address spaces is to modify the target system code,
effectively merging the reference monitor in-line. But a reference monitor can
only be merged into a target application provided the target can be prevented
from circumventing the merged code.

Specifying such an in-lined reference monitor (IRM) involves defining

• security events, the policy-relevant operations that must be mediated
by the reference monitor;

• security state, information stored about earlier security events that is
used to determine which security events can be allowed to proceed; and

• security updates, program fragments that are executed in response to
security events and that update the security state, signal security vio-
lations, and/or take other remedial action (e.g., block execution).

A load-time, trusted IRM rewriter merges checking code into the application
itself, using program analysis and program rewriting to protect the integrity
of those checks. The IRM rewriter thus produces a secured application, which
is guaranteed not to take steps violating the security policy being enforced.

Over the past several years, we have developed a series of IRM rewriters.
The ultimate goal is to enable a full-scale commercial deployment of the
technology. And while we have not yet seen that deployment, our work
funded under this grant has attracted interest from SUN Microsystems (for
Java) and Microsoft Corporation (for .NET).

SUN Microsystem’s interest stems from our success with the PSLang/PoET
second-generation IRM rewriter [3] for JVML in reproducing prior implemen-
tations of the Java stack inspection policy (with comparable performance)
and then in supporting a new implementation of the policy (with superior
performance). Our new implementation of stack-inspection works by care-
fully allocating work, so that frequently executed JVM instructions bear
relatively less of the burden associated with enforcement. The implementa-
tion exhibits performance that is competitive with the JVM-resident stack
inspection implementation included in the commercial Java distribution.

3

We then started to investigate issues associated with integrating an IRM
rewriter into an operating system. We chose Microsoft Windows as our host
and commenced building an IRM rewriter for Microsoft’s .NET architecture.
That prototype implemented an aspect-oriented programming metaphor for
Microsoft’s CLR assembly language. An aspect-oriented program comprises
aspects, each of which consists of a point-cut and some advice. The point-
cut is a predicate that specifies where to do rewriting in target code, and the
advice specifies how to do the rewriting. Designing a point-cut language that
provides complete visibility at a high-level into an assembly language is an
interesting challenge, and we have not arrived at a satisfactory solution—the
essence of working at a high-level is to obscure implementation details, yet
knowledge of those details is frequently important in defining the enforcement
mechanism.

Finally, we started development of a type system to specify security poli-
cies for BIL (Baby Intermediate Language), a realistic subset of Microsoft’s
MSIL (Microsoft Intermediate Language). A rich class of security policies
could now be specified as types; the type checker ensures that a program sat-
isfies the policy, augmenting a non-compliant program with corrective actions
if necessary. When this work is completed, the result will be a compile-time
way to enforce what an in-lined reference monitor can handle plus some
additional policies (that are in the class of policies that require program
rewriting).

On the theoretical side, we developed a characterization of how powerful
various language-based security mechanisms are for enforcing security poli-
cies [5]. Our work on security automata [15] offered a formal characterization
for what policies can be enforced by monitoring and halting a target system’s
execution that is about to violate security requirements. We have now ex-
tended that work to give in [5] formal characterizations for three other classes
of enforcement mechanisms:

• mechanisms that analyze the target system before it is executed,

• edit-automata enforcement mechanisms, and

• mechanisms that modify a target system before execution.

The last class corresponds to IRMs in their most general form and includes
our prototype .NET in-lined reference monitor realization.

We can show that the class of policies precisely supported by static anal-
ysis is supported by both reference monitors and program rewriting; we also

4

found that introducing a computability requirement on reference monitors
was necessary but not sufficient for precise characterization of the class of
policies actually realizable by reference monitors. And we identified a new
condition, which we called punctuality, that seems essential for defining more
accurate upper bounds on the power of reference monitors.

2.2 Composing Security and Fault-tolerance

Fault-tolerance and attack-tolerance are crucial for implementing trustworthy
services, yet composing fault-tolerance and attack-tolerance can be a real
challenge. For one thing, separation of concerns does not apply, because
approaches to implementing fault-tolerance can reduce a system’s attack-
tolerance. An example is n-fold replication of a secret s, which adds fault-
tolerance and improves the availability of s but does so by increasing from 1 to
n the number of sites that must resist attacks to preserve the confidentiality
of s.

To investigate these issues, we embarked on a project to build a fault-
tolerant and attack-tolerant on-line certification authority. The result, COCA
(Cornell On-line Certification Authority) [35], was successfully deployed both
in a local area network and in the Internet.

A few basic elements were combined in novel ways to realize COCA:

• Replication based on a Byzantine quorum system was employed to
achieve availability.

• Proactive recovery with threshold cryptography was used for digitally
signing certificates in a way that defends against mobile adversaries
that attack, compromise, and control one replica for a limited period
of time before moving on to another.

• No assumptions were made about execution speed and message delivery
delays; channels are expected to exhibit only intermittent reliability;
and with 3t + 1 COCA servers up to t may be faulty or compromised.

The result was a system with inherent defenses to certain denial of service
attacks because, by their very nature, weak assumptions are difficult for
attackers to invalidate.

Prior to our work on COCA, few protocols had been developed for the
asynchronous model of computation that characterized the set of weak as-
sumptions we were willing to make. So considerable effort during this DARPA

5

project was expended in developing a suitable family of protocols. Two no-
table successes were APSS (an asynchronous proactive secret sharing proto-
col) [36] and a new distributed blinding protocol [34]. Both protocols em-
ployed similar techniques for coping with the hostile environment that weak
assumptions bring:

(i) Solving agreement problems by computing multiple results—one for
each outcome of the agreement—and labeling each computed result
according to agreement outcomes on which it is contingent.

(ii) Tolerating intermittent channel outages by using repeated sends that
are terminated by receiving a message signifying successful receipt of
the original message.

(iii) Tolerating malevolent servers by including in messages information that
allows a receiver to test whether a message it receives is consistent with
the execution of a correct sender.

We have no illusions that the methodology employed to build COCA
is universal. Some services must support operations that cannot be imple-
mented in terms of COCA’s quorum systems. The key question then is:
What class of services can be supported using COCA’s methods for com-
bining Byzantine quorums and threshold cryptography. As a step towards
answering this question, we prototyped two other services:

(1) a publish/subscribe channel for which availability, integrity, and confi-
dentiality of published data must be preserved, and

(2) the CODEX (COrnell Data EXchange) distributed service for storage
and dissemination of secrets [9].

2.3 Information Flow Security

The grant funding also resulted in several innovations for enforcing strong
information security properties such as confidentiality and integrity, along
with software that has been useful to researchers elsewhere.

Jif: Java information flow Under the auspices of this project, we imple-
mented a compiler for the Jif programming language and made it publicly

6

available for download [12]. Jif extends Java with protection of confidential-
ity via static information flow control. Advanced language features such as
label polymorphism and run-time security labels are also supported by the
Jif language; these features are important for implementing complex systems
that interact with the outside world. Other researchers have used the Jif lan-
guage to explore a variety of security topics, ranging from secure smartcards
to privacy in web services.

Polyglot: an extensible compiler framework Polyglot is a Java class
library that is easily extended through inheritance to create a compiler for
a language that is a modification to Java [13]. Language extensions can
be implemented without duplicating code from the framework itself [8, 30].
Polyglot is useful for implementing domain-specific languages, for exploring
language design ideas, and for simplifying Java for pedagogical purposes.
The framework has been used to implement both major and minor modifica-
tions to Java. Experience implementing several languages in this framework
suggests that the cost of implementing language extensions scales well with
the degree to which the language extends Java. Polyglot has been used not
only to implement the Jif compiler but also has been used by several other
research projects to build their own domain-specific language extensions.

Secure program partitioning One major research thrust was to build
on the Jif compiler to explore secure program partitioning, an innovative way
of building distributed systems that are secure by construction [11, 30, 31].
We call this approach secure program partitioning. It is a way to ensure data
confidentiality and integrity in a distributed system that contains untrusted
hosts and mutually distrusting principals. In fact, systems are typically
distributed precisely because the participants do not fully trust one another
or their hosts. This problem is particularly relevant to information systems
comprising mutually distrusting organizations, such as the dynamic coalitions
that arise in military settings.

In this new approach, secure programs are automatically partitioned by
the Jif/split compiler back end into communicating subprograms that run on
the various available hosts. Partitioning thus automatically extracts a secure
communications protocol. The program is partitioned so that if any host is
subverted, only a principal that has explicitly stated trust in the host needs
to fear a violation of confidentiality. For a given principal p, the partitioned

7

program is robust [27] against attacks on hosts not trusted by p.
The Jif/split compiler was implemented as an extension to the Jif com-

piler. This implementation includes not only the compiler that checks and
partitions programs, but also a distributed run-time system that securely ex-
ecutes the resulting programs while guarding against subverted or malicious
hosts. Performance of the system is quite reasonable, despite fine-grained
program partitioning.

We also extended this work to automatically employ replication (in addi-
tion to partitioning) in order to satisfy confidentiality and integrity properties
[32]. A key problem that arises in many distributed systems is how to obtain
sufficient assurance of integrity. Replication is a useful technique because it
adds additional integrity assurance when multiple hosts compute the same
result and agree with each other. The current Jif/split compiler now repli-
cates information and computation as necessary to achieve this assurance.
New protocols have been developed to permit the secure transfer of control
between one group of replicas and another. The fundamental security guar-
antee is unchanged, however: a principal’s security is threatened only if a
host that principal trusts is compromised. The technique was been shown
effective for developing various secure auction protocols and a distributed
game.

Information Flow Properties We made three advances in developing
the theory of secure systems with respect to confidentiality and integrity
security properties. First, we developed a security type system for provable
enforcement of noninterference in low-level languages [26]. Our type system
is an important step towards enabling security verification that low-level
(machine) code satisfies strong confidentiality and integrity properties. Ours
is the first work to show that any similarly expressive programming language
can enforce these properties. This was, in addition, the first demonstration
that noninterference could be enforced automatically for language with both
first-class functions and a writable memory.

Another area of progress has been information flow security for concur-
rent systems. Concurrency makes both the theory and practice of security
difficult. First, it introduces covert information channels that commonly used
“possibilistic” theories of information flow simply ignore; these channels can
be exploited by a malicious attacker. Second, existing static analyses for
checking the security of concurrent systems are too restrictive; important

8

secure concurrent programming idioms are rejected by these analyses. We
have developed a new language-based model of information security for con-
current systems and shown that a statically typed programming language
can be used to enforce this security model [29]. Encouragingly, static secu-
rity checking for this language avoids some of the restrictiveness of previous
techniques.

A third advance was on the security that can be provided in the presence
of declassification and other downgrading mechanisms. In earlier work we
identified a theoretical property called robustness that such a system could
be expected to provide. The insight behind robustness is that an attacker
or user of the system should not be able to exploit downgrading mechanisms
to extract more information from the system than was intended by the pro-
grammer. We discovered how to compactly express this robustness condition
in a language-based setting [27]. We earlier conjectured that the robust de-
classification rule used by the Jif/split compiler would enforce some kind of
robustness property; we validated this conjecture by proving that the type
system does enforce our language-based formalization of robustness. This
proof increases the assurance provided by our secure program partitioning
technique.

Certain systems that are not robust would still be considered secure,
because untrusted code needs to be granted strictly delimited ability to cause
the release of secret information. For example, in a distributed game in
which no player trusts the other players, other players can make moves in
the game that should cause information release. To capture the security of
such systems, we introduced a generalization of robustness called qualified
robustness. We also proved (in a core language setting) that the typing rules
that we introduced in the Jif/split compiler do soundly enforce this new
security property.

2.4 Stateless, Reliable Communication

Denial of service (DOS) attacks often rely on exhausting some server resource,
which may be server bandwidth but also might be some other resource (such
as memory or network sockets). SYN packet flooding is an example of the
latter—TCP requires servers to expend kernel and application resources for
maintaining per-connection state. We investigated a general solution to this
problem: a TCP-like network protocol that imposes no per-connection state
on the server side kernel and, therefore, exhibits an inherent resistance to

9

DOS attacks [25]. In our architecture, many server applications (such as web
servers) can also avoid storing per-connection state. The key idea is that the
kernel can piggyback connection state onto the packets that it sends to the
client. Thus the client becomes responsible for maintaining connection (and
server application) state, reducing the load on the server. The connection
state is protected by a message authentication code (MAC) to prevent clients
from tampering with it. We have implemented this protocol and shown
that performance is close to that of standard TCP and that the protocol is
TCP-friendly. We have also implemented instant failover and load balancing
among servers, with no client-detectable disruption even on open connections.
This is possible because servers store no connection state.

3 Publications Produced

(1) U. Erlingsson and F. B. Schneider. SASI enforcement of security poli-
cies: A retrospective. Proceedings New Security Paradigms Workshop
(Ontario, Canada, Sept. 1999).

(2) Ulfar Erlingsson and Fred B. Schneider. SASI enforcement of security
polices: A retrospective. DARPA Information and Survivability Con-
ference and Exposition (DISCEX’00) (Hilton Head, South Carolina,
January 2000), IEEE Computer Society, Los Alamitos, California, 287–
295.

(3) Ulfar Erlingsson and Fred B. Schneider. IRM enforcement of Java
stack inspection. Proceedings 2000 IEEE Symposium on Security and
Privacy (Oakland, California, May 2000), IEEE Computer Society, Los
Alamitos, California, 246–255.

(4) David Gries and Fred B. Schneider. Formalizations of substitutions of
equals for equals. Millennial Perspectives in Computer Science, Pro-
ceedings of the 1999 Oxford-Microsoft Symposium in honour of Profes-
sor Sir Antony Hoare, (Davies, Roscoe, and Woodcock eds.) Palgrave
Publishers, Hampshire, England. November 2000, 119–132

(5) Kevin W. Hamlen, Fred B. Schneider, and Greg Morrisett. Com-
putability classes for enforcement mechanisms. To appear, ACM Trans-
actions on Programming Languages and Systems.

10

(6) D. Johansen, K. Marzullo, F. B. Schneider, K. Jacobsen, and D. Zagorod-
nov. NAP: Practical fault-tolerance for itinerant computations. Proc.
19th IEEE International Conference on Distributed Computing Systems
(June 1999, Austin, Texas), IEEE, 180–189.

(7) Dag Johansen, Robbert van Renesse, and Fred B. Schneider. WAIF:
Web of asynchronous information filters. Future Directions in Dis-
tributed Computing, Lecture Notes in Computer Science, Volume 2585
(Schiper, Shvartsman, Weatherspoon, and Zhao, eds.) Springer-Verlag,
2003, 81–86.

(8) Jed Liu and Andrew C. Myers. JMatch: Iterable abstract pattern
matching for Java. Proceedings of the 5th International Symposium on
Practical Aspects of Declarative Languages (New Orleans, LA, January
2003), 110–127.

(9) Michael A. Marsh and Fred B. Schneider. CODEX: A robust and
secure secret distribution system. IEEE Transactions on Dependable
and Secure Computing 1, No. 1 (January-March 2003), 34–47.

(10) Yaron Minsky and Fred B. Schneider. Tolerating malicious gossip.
Distributed Computing 16, 1 (Feb 2003), 49–68.

(11) Andrew C. Myers. Security-typed languages and distributed compu-
tation. Static Analysis, Proceedings 8th International Symposium SAS
2001 (Paris, France, July 2001), Lecture Notes in Computer Science
Volume 2126, Springer-Verlag, Heidelberg, 2001, 437.

(12) Andrew C. Myers and Barbara Liskov. Protecting privacy using the
decentralized label model. ACM Transactions on Software Engineering
and Methodology, 9(4), October 2000, 410–442.

(13) Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Poly-
glot: An extensible compiler framework for Java compiler construction.
Proceedings of the 12th International Conference on Compiler Con-
struction (Warsaw, Poland, April 2003), 138–152.

(14) Andrei Sabelfeld and Andrew C. Myers. Language-based information-
flow security. IEEE Journal on Selected Areas in Communications Spe-
cial issue on Design and Analysis Techniques for Security Assurance,
21(1) (January 2003), 5–19.

11

(15) Fred B. Schneider. Enforceable security policies. ACM Transactions
on Information and System Security 3, 1 (February 2000), 30–50.

(16) Fred B. Schneider. Open source in security: Visiting the bizarre. Pro-
ceedings 2000 IEEE Symposium on Security and Privacy (Oakland,
California, May 2000), IEEE Computer Society, Los Alamitos, Califor-
nia, 126–127.

(17) Interview with Fred B. Schneider. Distributed Systems Online.
http://www.computer.org/channels/ds.

(18) Fred B. Schneider. Editorial: Time for change. Distributed Computing
Vol. 13, No. 4 (November 2000), 187.

(19) Fred B. Schneider. Language-based security: What’s needed and why.
Static Analysis, Proceedings 8th International Symposium SAS 2001
(Paris, France, July 2001), Lecture Notes in Computer Science Volume
2126, Springer-Verlag, Heidelberg, 2001, 374.

(20) Fred B. Schneider. Least privilege and more. Computer Systems: Pa-
pers for Roger Needham, Andrew Herbert and Karen Sparck Jones, eds.
Microsoft Research, 2003, 209–213.

(21) Fred B. Schneider. Least Privilege and more. IEEE Security and Pri-
vacy, Volume 1, Number 3 (September/October 2003), 55–59.

(22) Fred B. Schneider and Mike Rodd, eds. International review of UK re-
search in Computer Science. EPSRC, BCS, and IEE Technical Report.
October, 2001.

(23) F.B. Schneider, S. Bellovin, and A. Inouye. Building trustworthy sys-
tems: Lessons from the PTN and Internet. IEEE Internet Computing,
3, 5 (November-December 1999), 64–72.

(24) Fred B. Schneider, Greg Morrisett, and Robert Harper. A language-
based approach to security. Informatics: 10 Years Back, 10 Years
Ahead. Lecture Notes in Computer Science, Vol. 2000 (Reinhard Wil-
helm, editor), Springer Verlag, Heidelberg, 2000, 86–101.

(25) Alan Shieh, E. Gn Sirer, Andrew C. Myers. Trickles: A stateless net-
work stack for scalability, resilience, and flexibility. Submitted for pub-
lication.

12

(26) Steve Zdancewic and Andrew C. Myers. Secure information flow and
CPS. Proceedings of the 10th European Symposium on Programming
(Genova, Italy, April 2001), 46–61.

(27) Steve Zdancewic and Andrew C. Myers. Robust declassification. Pro-
ceedings of the 14th IEEE Computer Security Foundations Workshop
(Cape Breton, Nova Scotia, Canada), June 2001.

(28) Steve Zdancewic and Andrew C. Myers. Secure information flow and
linear continuations. Higher-Order and Symbolic Computation 15, No. 2–
3 (Sept. 2002), 209–235.

(29) Steve Zdancewic and Andrew C. Myers. Observational determinism
for concurrent program security. Proc. 16th IEEE Computer Security
Foundations Workshop, (Pacific Grove, California, June 2003), 29–43.

(30) Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C.
Myers. Untrusted hosts and confidentiality: Secure program partition-
ing. Proceedings of the 18th ACM Symposium on Operating Systems
Principles (Banff, Canada, October 2001), 1–14. Award paper.

(31) Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C.
Myers. Secure program partitioning. ACM Transactions on Computing
Systems 20, No. 3 (August 2002), 283–328.

(32) Lantian Zheng, Stephen Chong, Andrew C. Myers, Steve Zdancewic.
Using replication and partitioning to build secure distributed systems.
Proceedings of the 2003 IEEE Symposium on Security and Privacy,
(Oakland, California, May 2003), 236–250.

(33) L. Zhou, and Z. Haas. Securing ad hoc networks. IEEE Networks 13,
6 (November-December 1999), 24–30.

(34) L. Zhou, Michael A. Marsh, Fred B. Schneider, and Anna Redz. Dis-
tributed blinding for distributed Elgamel re-encryption. Submitted for
publication.

(35) L. Zhou, Fred B. Schneider, and Robbert van Renesse. COCA: A
secure distributed online certification authority. ACM Transactions on
Computer Systems 20, No. 4 (November 2002), 329–368.

13

(36) L. Zhou, Fred B. Schneider, and Robbert van Renesse. APSS: Proactive
secret sharing in asynchronous systems. Submitted for publication.

14

