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         Semiconductor-Atomic Superlattice (SAS) 
 
 Conventional superlattices are formed with repeating a basic period consisting of a heterojunction 
between two materials [1,2]. A new type of superlattice is formed by  replacing the heterojunction 
between adjacent semiconductor layers by a monolayer of adsorbed species such as oxygen atoms; and 
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CO, molecules, etc.[3,4,5]. This new type of superla ttice, SAS, semiconductor-atomic-superlattice, 
fabricated epitaxially, enriches the present class of heterojunction superlattices and quantum wells for 
quantum devices. The Si growth beyond the adsorbed monolayer  of oxygen is epitaxial  with fairly low 
defect density. At present, such a structure shows stable electroluminescence and insulating behavior, 
useful for optoelectronic and SOI (silicon-on-insulator) applications. In the case of polycrystalline silicon 
[6] and even amorphous silicon [7], sandwiched between a monolayer of oxygen forming superlattices, 
photoluminescence, (PL),  in the visible has been reported. However stable electroluminescence is only 
observed with epitaxially grown Si/O superlattice.  

 
 Growth of Epitaxial Si-O Superlattice 
 

 After several failed attempts to realize the SLB (Superlattice Barrier) with thin silicon layers 
separated by thin oxides [3], a new method involving the exposure of oxygen followed by epitaxial 
growth of silicon using the in-situ RHEED (reflection high energy electron diffraction) for monitoring 
epitaxy, was introduced [4]. Figure 1 shows: (a) Si (100) with 1x1 and 1x2 RHEED diffraction. After 
oxygen exposure 20-50 Langmuir (1L is defined as an exposure of 100 seconds in 10 –8 Torr), the 1X2 
reconstruction is weaker but basically no change. This fact indicates that oxygen is physisorbed as O 2. 
After several atomic layers of Si deposition, the 1x2 reconstruction disappears, and 2D diffraction pattern 
becomes more as 3D as shown in (b). However, as shown in (c), the 1x2 diffraction pattern is fully 
restored after few more nm’s of Si deposition. All oxygen exposure is at or under 100oC and Si MBE is at 
575oC. Relatively low temperature is used for Si deposition to avoid possible oxygen diffusion. Recently 
we have obtained similar results at 650oC. 

 
Fig. 1.  RHEED of Si (100): (a) Buffer showing 1x1 and 1x2, (b) after oxygen exposure followed by Si 
deposition, and (c) restoration of reconstruction pattern of Si (100) after 3nm of Si growth 

 
     The high resolution cross-section TEM of a sample with Si (buffer) / (O-Si (1.1nm)-O-Si 
(1.1nm)-O ) / Si on Si(100) is shown in Fig.2-left.  The “whitish” part of the figure may indicate where 
the oxygen cluster is located. Epitaxy is continued beyond this “whitish” region. We have also succeeded 
the SAS with Si (111). The structure is slightly more defective than Si (100). Although we have relatively 
continuous layer of oxygen, as pointed out before [8], discontinued clusters can serve as a barrier because 
electrons, as de Broglie waves, cannot pass through region of space smaller than the wavelength. This is a 
good place to emphasize that there are two mechanisms − step in energy, and/or step in geometrical shape 
both give rise to an effective barrier for electrons. In Fig.2-right, plane view TEM shows rather low defect 
densities, below  109/cm2. 
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 We have lowered the defects by almost two orders of magnitude during the past couple of years. 
Thus we are optimistic that further reduction should be possible. Note that the defect density in Si-Si 
dioxide interface for most MOS gates is generally much higher. 

  
Fig.2. High resolution cross-section TEM on Si(100), left. From bottom of figure towards the top showing 
Si (buffer) / (O-Si (2.2nm)-O) / Si epitaxy. Plane-view TEM of the sample, right. The defect densities is 
below 109/cm2. 

As pointed out previously [9], if oxygen leak valve is left on during the silicon deposition, horrendous 
amount of defects are generated, although the 3-D diffraction pattern still persists. Therefore our results 
are similar to what is generally known that it is impossible to grow good Si epitaxially on an oxide layer.  

   

 Electroluminescence Diode (ELD) 

  
 Figure 3-left  shows a schematic of a 9-period EL device  with a Si/O superlattice as the active 
layer. EL from the top through a partially transparent Au electrode of dimension 0.5x1.2mm is shown on 
the right figure. EL covers the whole contact with bright EL around the edges. The dark spot is due to the 
wire contact The voltage applied across the Schottky diode is between –20V reverse-bias to as low as –
6.8V reverse-bias. This point will be discussed more fully when the life-test result is shown. Annealing  
in H2 + N2 (1:10) at 420°C for 10 min leads to higher EL intensity.  
                                                          

Sin < A trig Jti nil 

I- O HI iUiil lil 
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Fig.3. The left figure shows a schematic of the EL device with a 9-period Si/O superlattice as the active 
layer. EL from the top through a partially transparent Au electrode of dimension 0.5x1.2mm is shown on 
the right figure. The dark spot is due to the wire contact   
 
 Figure 4 shows a typical EL and PL. Although the main peak is located at 2eV, the emitted light 
appears greenish because the EL spectrum extends to photon energy beyond 3.5eV. The cutoff due to the 
laser line is evident in the PL spectrum. Of course it is also possible that the broad spectrum reflects the 
presence of Si – O complexes.  However the strong shoulder extending beyond 3.5eV is most likely due 
to the complex. Figure 5 shows one of our life-test the EL device is obvious. In fact, we have also 
performed under constant current after the first 30 days, the applied bias drops down to – 6.8V. The 
longest operating time is over 1 year.  The applied bias includes the voltage drop over the substrate. The 
drop from – 10.4V to – 6.8V is probably due to annealing effects. After the initial 30 days of operation, 
there is observed an increase of 50% in the light output [9]. 
 
 

Fig. 4. PL and EL of a typical Schottky diode with 9-period of Si-O superlattice. 
The 457.9 nm line of the argon laser was used for the PL spectra. 
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Fig. 5.   Current versus time under reverse bias, -10.4V to – 6.8V 
 
 
    The LUMO and HOMO, L and H, are obtained from the coupling of  3P2,1,0 of the atomic Si at  –
8eV ( 8eV below the vacuum), and the first excited state of the atomic oxygen, 5S0 at –4.3eV, using the 
coupling constant αo. Table I summarizes the calculated ∆Ec and ∆Ev versus α / αο using αο = 5.11eV 
giving ∆Ec = 3.2eV adjusted to fit the Si/SiO2 case. (a-SiO2 / Si has a barrier height of 3.2eV). Note that 
for our structure, our model consists of equal number of oxygen and silicon atoms, resulting in  
α / αο = 0.5, shown in bold. Therefore the sharp peak in Fig. 6 is very close to the Si-O complex 
represented by the position of the LUMO state. 
 

α / α ο  (eV) | 1.0  0.75  0.5  0.25 
 

LUMO (eV)  |          -0.7                 -1.58            -2.98            -3.9_ 
 

HOMO(eV)  |        -11.6          -10.37            -9.27  -8.35 
 

∆Ec  (eV) |            3.2  2.32  0.92   0__ 
 

 ∆Ev   (eV)  | 6.55  5.37   4.27  3.35_ 
 
 Table I   Calculated ∆Ec and ∆Ev vs α / αο using αο = 5.11eV, α / α ο = 0.5 applies to SiO. 
 
 
 Barrier Height of O-Si (1.1nm)-O on Silicon  
 
The barrier height of  several  two-period structures have been measured.[10,11]  Figure 6, from Ref. 11 
shows the measured barrier height of 0.5eV. The calculated value is 0.92 eV, which is  close.  However, in 
transport measurements, because of the involvement of both the barrier height and barrier width, usually the 
determined value using an activated process is lower.  

 
Fig. 6.  (a) Current vs. Voltage of a superlattice barrier with 6L oxygen exposure having a  Si 
(1.1nm) layer in between two adsorbed oxygen. (b) Temperature dependent I-V, and (c) Barrier 
height Eb vs oxygen exposure in L (Langmuir). 
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 Possible models of Si-O superlattice 
 

 

Fig. 7.  A hand-built model with a single layer of oxygen. The arrows point to the rows of 
oxygen atoms. 

 

A hand-built model  with a single layer of oxygen atoms is shown in Fig. 7 . This model is based on the 
following :  A Si atom at (000) is replaced by two oxygen atoms, one at -J and a second one at J, 
resulting in the two oxygen atoms at (-J00) and (J00). The oxygen at (-J00) is bonded to (-11δ) and (-1-1-
δ) silicon atoms. Similarly the oxygen at (J00) is bonded to (1-1δ) and (11-δ) silicon atoms. Preliminary 
calculation [12] using J = bond length of Si-O, the distance δ = a /8,  with  a being the lattice constant of 
Si. The maximum strain is 6.4% based on  ∆θ/θ from the hand-built model using δ = a /8. However, using 
Density Functional Calculation [13], δ is allowed to vary, the strain is lowered to 1%. There are at least 
two other possible models: (a) monolayers of oxygen separated by a monolayer of Si, and (b) monolayer 
of oxygen forming a reflection symmetry for the Si above the oxygen plane and Si below the plane. 
Presently, these two are being examined in detail. 

 

OBSERVATION OF STRAIN PATTERN IN Si/O Superlattice 
 

     Because strain penetrations [14] from the monolayer of oxygen atoms into adjacent silicon layers, 
whenever the superlattice period is such that the period exceeds the penetration depth, the strain pattern 
shows up in the TEM. [15] As shown in Fig.8, with NSi > 2δ, the number of silicon layers between two 
oxygen monolayers given by NSi ~ 32, and the number of penetration layers from the oxygen monolayer 
δ ~ 6, the strain pattern  shows up. While before, with NSi ~ 8 in the 9 period Si/O superlatices, no strain 
pattern was observed in TEM. An enlarged picture in Fig. 9 clearly shows the extent of the strain. 
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Fig.8  A Superlattice structure showing the period of the silicon and monolayer of oxygen. 
 
 

 
Strain ( shown in ||||||||||||| ) extends ± 6 atoms from the O monolayer 
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Fig. 9  Strain Pattern in Si/O Superlattice 

 Current – Voltage of a 9-period Si/O superlattice 
 
 I-V of a 9-period [16], is shown in Fig.10 taken from Ref.14, after annealing in H2 and O2 , where 
blocking is clearly shown. A sufficiently thick Si/O superlattice, for example, 20-30nm thick, should 
provide insulation to replace the usual SOI. Therefore, the biggest application of the Si/O superlattice 
may be a step toward the fabrication of 3D ICs.  
 
 

 
 

 
 

Fig. 10. Typical I-V of a nine period Si/O superlattice after  two annealing conditions. 
 

 
 

 Conclusion 
 

 In conclusion, Si/O superlattice is a reality. The structure is epitaxy with low defect density. 
The defects are mostly stacking faults and dislocations. Preliminary modeling indicates that there are 
at least three possible ways for the monolayer of oxygen in a crystalline silicon matrix. One of these 
is shown in more detail while the other two are just mentioned. The estimated strain is below 1%. 
Visible and near UV light are observed in PL and EL. They are believed to originate both from 
quantum confined silicon as well as from Si/O interfacial regions. Life-test of several ELD devices 
shows stable continuous operation for over one year. However, this work may form the basis of a 
silicon based optoelectronic chip, as well as possible 3DICs.[17] 
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