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Statement of Problem Studied 
Today's industrial and DoD motion systems are increasingly complex and yet have tighter 
performance specifications.  Tanks must point their gun barrels quickly with no residual 
vibration, off-road vehicles must travel over rugged terrain at speeds of 60 mph with low rms 
vibration and power transferred to the load, precision positioning tables for VLSI manufacturing 
must move quickly to precise locations.  Limitations to all these objectives are set by vibratory 
modes, system delays, and actuator deadzones, backlash, friction, and saturation. 

Such systems are characterized by complex nonlinear dynamics and actuators with 
deadzones, backlash, and saturation.  The control problems associated with such systems are not 
easy, as they do not satisfy most of the assumptions made in the controls literature.  Therefore, 
most existing control algorithms do not work well.  New classes of nonlinear feedback control 
systems are needed. 

Modern battlespace systems require increased speed and dynamical responsiveness, novel 
deployable sensor systems, greater information for Military Leaders and JFACC, and faster 
information assimilation connections for warfighters and weapons platforms.  This requires 
intelligent, dynamically reconfigurable high-level control systems for decision-making and 
supervision.  New information protocols and control architectures are needed for decision-
making control systems. 

The goals of this grant are to: 

�� develop neural network (NN) compensators for industrial actuator nonlinearities 

�� develop high-level NN architectures for control 

�� implement NN controllers on actual devices 

�� develop and implement rule-based discrete event (DE) supervisory controllers. 

Summary of Results 
Intelligent Control of DoD and Industrial Motion Systems 
 Under this ARO funding, a new family of neural net (NN) controllers was designed for 
compensation of nonlinearities in industrial and DoD system actuators.  The key feature of these 
controllers is that the NN appears in the feedforward loop, whereas other NN controllers whose 
stability has been guaranteed have generally used NN in the feedback loop.  This presents a 
problem for application of rigorous stability proof techniques. 

Deadzone Control.  The key to overcoming the difficulty for the case of deadzone was found to 
be using two NN, one of which acts as a sort of observer that evaluates the performance of the 
action generating NN. The topology of this controller is shown in the figure. 
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Backlash Control.  In the case of backlash, we developed a NN controller based on dynamic 
inversion, which has popularly been used for aircraft control. Rigorous proofs of stability were 
used to derive tuning laws and a topology that guarantees closed-loop system performance. The 
controller is shown in the figure. A patent was applied for this work. 

Nonlinear
SystemKv

[������

v1

rexd

Estimate
of Nonlinear
Function

--

x

�( )f x

des�

[0 ���

--

yd
(n)

-

Backlash

-

1/s

Filter v2

Backstepping loop

�

des��

NN Compensator

-

dx r

Kb
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Discrete-Time Backlash Control.  Since actual controllers are implemented on digital 
computers, discrete-time algorithms for deadzone and backlash NN control were also developed. 
Providing rigorous stability proofs for discrete-time systems is very difficult, since the Lyapunov 
function derivative is quadratic in the first difference. We base our proofs on a single Lyapunov 
function that weights the estimation error, the tracking error, and the NN weight estimation error. 
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These proofs are extremely complex and may require completion of the squares on three or more 
separate occasions.  A patent was filed on this discrete-time approach for backlash control.  The 
discrete-time backlash controller is shown in the figure.  The NN controller significantly 
improves the motion speed and precision, effectively compensating for the backlash.  It is based 
on a discrete-time version of dynamic inversion. 
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Discrete-time neural network backlash controller 

Adaptive Critic Controller Using Fuzzy Supervision of Neural Network.  Most 
neurocontroller designs have relied on the function approximation property of NN.  It would be 
desirable to use more advanced learning and intelligent features of NN in controls design.  A 
particularly intriguing higher-level topology is the adaptive critic, which emulates some 
decision-making and evaluation abilities of the human.  Adaptive Critics hold promise of 
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applications in high-level decision systems such as battlefield management.  In the usual 
adaptive critic architecture there are two neural networks (NN), one of which (the critic) 
evaluates system performance and tunes the other (the action generating network), which in turn 
provides the control input signal for the system being controlled. 

The effectiveness of fuzzy logic (FL) systems in classification, discrimination, and 
decision-making is well documented. This makes fuzzy logic systems a natural candidate for 
higher-level control components such as the adaptive critic evaluator. Therefore, we designed an 
adaptive critic controller with a FL critic and a NN action generating network. 

It was shown that a large class of nonlinear systems can be supervised by the adaptive 
critic control system shown in the figure.  This system does not require knowledge of the system 
dynamics or disturbances.  Both the fuzzy critic and the NN controller are tuned in such a way 
that the system has guaranteed stability and guaranteed robust tracking of user-input command 
trajectories.  The fuzzy logic critic signal is of the form 

  ,)ˆ(ˆ
11 �� ��� rVWR TT

where  are the membership functions, and the MF offsets and spreads V  as well as the 
control representative values W  are tuned on-line using modified backpropagation tuning with 
an e-mod term.  It is shown that � is a dynamic term, that is, the critic requires a memory as 
shown in the figure by the integrator. 

(.)� 1̂

1
ˆ

 In this hierarchical controller design, the FL critic plays the role of a long term memory 
and the NN action generator plays the role of a short term memory.  This is clearly seen in the 
proof where it comes out that the FL system must be tuned more slowly than the NN. 

Control of Teleoperated Systems with Time Delay.  A NN controller was developed for a 
class of telerobotic systems with constant time delays caused by a communications channel. The 
control structure is essentially a Smith predictor extended to the nonlinear case by using a NN 
control inner loop at the slave station. Stability is guaranteed for any value of system delay. See 
the figure. 
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Implementation of Intelligent Controllers 
We implemented a backstepping NN controller on the coupled motor drive system shown in the 
figure.  This flexible joint system appears in DoD motion and vehicle drive train systems and in 
industrial motors and machine tools.  It has dual dynamics to the tank gun barrel studied in an 
SBIR contract, and similar techniques can be used to design an intelligent controller. 

 In the coupled motor drives system, neither the 
motor dynamics nor the flexible belt coupling 
characteristics are known.  An intelligent controller is 
needed to learn the unknown dynamics, system 
parameters, and disturbances and to adapt as these 
change.  Using a specialized energy function, we used 
modified Lyapunov techniques to derive the intelligent 
controller shown in the figure.  There are three NN 
used in this backstepping controller, one to learn the 
load dynamics, one to learn the coupling dynamics, 
and one to learn the drive dynamics.  The NN are 
indicated as the ‘fictitious controllers’ and the 
‘controller’.  Each NN has the form 

Coupled Motor Drives System 

111
ˆˆ ��

TWF  

with W  the NN weights and  the activation functions.  The weights are tuned according to  1
ˆ

1�

 11
ˆˆ WmW T �� �����

�  

with parameters defined in the papers.  This is an adaptive law for nonlinearly parametrized 
systems using a form of �-modification.  Our approach shows in a rigorous mathematical fashion 
that these tuning laws provide both stability and guaranteed robust performance. 
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Internet-Based Control.  Under SBIR and ARO 
funding, we have built a remote site monitoring and 
control system that uses the internet.  We have 
controlled our lab equipment at UTA remotely from 
Europe and elsewhere.  We are not talking about the 
usual java-based systems that allow the user to adjust a 
few control parameters.  Using our system one can 
fully configure and even rewrite the controller from a 
remote location.  The NN and FL controllers designed 
under this ARO sponsorship can be fully implemented 
over the internet.  The GUI shown allows the user to 
change the controller and view the remote system on a 
camera.  It displays any selected signals from the controlle

Discrete Event (DE) Supervisory Controllers 
The receipt of an ARO DURIP grant: 

U.S. Army Research Office Grant DAAD19-00-1-
for DoD and Industrial Dynamical Systems," PI, equ

allowed us to add a new thrust to this ARO work in Discre

DE systems are decision-making systems that 
numerous battle platforms, fighters, sensors, and deci
workcells with several machines, robot manipulators
Complex DE systems can be difficult to schedule.  Improp
radars, gun platforms, machines, or robots) can result in
known as deadlock, where further activity is stopped unti
the impasse. 

In DE systems, there may be problems of comple
are known to be NP-hard.  We have shown (journal
communications protocols and information flow structure
allowing for improved computing speed with the appropri

 We developed a new formulation of DE superviso
was received for this new design.  The matrix formulatio
based on computer science planning techniques.  It is also
of Materials (BOM) or assembly trees to generate the DE 
 The DE supervisory control structure is shown 
equations.  These equations are performed over a nons
multiplies signify logical ‘and’ operations, and matrix ad
In the figure we have depicted a multi-resource manuf
structure holds for a multi-agent battlefield situation. 

Note that the DE controller functions exactly as 
over a nonstandard algebra.  It senses the status of the w
resources idle.  It performs computations to determine 
resources are next to be set idle. 
 A key feature of our approach is the specific pr
which is computed on a higher level.  This CR input 
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include DoD battlefield systems with 
sion-making levels; or manufacturing 
, conveyors, and numerous sensors.  
er assignment of shared resources (e.g. 
 blocking phenomena or in a situation 
l human invasive intervention sorts out 

xity, since certain types of DE systems 
 paper [11]) that proper selection of 
s yields a structure that is polynomial, 
ate assignment of computing resources. 

rs that is based on matrices.  A patent 
n allows fast design of DE supervisors 
 possible to use the manufacturing Bill 
supervisory control matrices.  
in the figure, which also contains the 
tandard logical algebra where matrix 
ditions signify logical ‘or’ operations.  

acturing workcell, though an identical 

a standard feedback controller, though 
orkcell in terms of jobs complete and 

which jobs to initiate next, and which 

esence of a Conflict Resolution Input 
is selected according to performance 
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Discrete Event Supervisory Controller based on matrices 

objectives assigned by 
management, including target 
priority, maximum job 
throughput, maximum 
resource utilization, 
fulfillment of due dates, etc.  
It must also be selected to 
avoid deadlock and blocking.  
This CR input effectively 
allows for on-line real-time 
optimization of logical 
decision-making systems. 

We are going to 
examine the ramifications of 
this for generating battlefield 
information flow controllers. 

Implementation of DE 
Controller on Actual 
Workcell.  We implemented 
the DE controller on an actual 
manufacturing workcell 
consisting of three robots, 
three conveyors, and several 
simulated machines).  We 
have programmed the robots 
via RS 232 ports to allow 
simultaneous coordination 
and control of all three from 
one computer using 
LabVIEW.  We are currently 
implementing our matrix-based DE supervisory controller to allow fast programming of the 
workcell by setting up the requisite matrices in LabVIEW.   

 A major challenge lies in determining the appropriate selection of sensors to provide the 
correct information to the DE supervisor.  We are discussing now the notion of a virtual sensor 
that is composed of a group of individual sensors.  Techniques of sensor fusion may be 
necessary. 

Technology Transfer 
 Three patents have been received for this ARO work, and two more patents were applied 
for on ARO work on backlash compensation.  Two books were published based on the ARO 
work. One text is is based on the PhD thesis research of R. Selmic and J. Campos.  The second 
book is an edited volume on intelligent control of industrial systems.   

 Several SBIR contracts were active during the period of this grant 
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1. U.S. Army ARO Small Business Innovation Research (SBIR) Contract, Phase 11: 
"Nonlinear/Fuzzy Logic Control for Scout Active Suspension and Steering," with 
Davis Technologies Int., 12 mo. subcontract for $34,000.  

2. U.S. Navy ONR Small Business Innovation Research (SBIR) Contract, Phase 1: 
"Neural Network Control of Nonlinear Systems Using Multiple Models," with 
Intelligent Automation, Inc., 6 mo. contract for $22,998. 

3. NASA Small Business Innovation Research (SBIR) Contract, Phase I:  "MEMS Wire 
Testing for Aging Aircraft," Williams Pyro, Inc., 6 mo. contract for $14,500, Jan. 
2002. 

This matching money allowed the ARO technology to be transferred to these small companies. 
The fuzzy logic controller shown in the figure was designed for force control of a vehicle active 
suspension system. 
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Also active were two industry contracts: 

1. Bell Helicopter, “Laser-Assisted Automated Machine Tool Verification System,” contract 
for $128,000, 1999-2000. 

2. Andrew Corp, " Satellite Tracking Antenna Controller Design," contract for $65,700, Apr. 
2000. 

These allowed our intelligent control technology to be transferred to major local companies. 

List of Publications 
Copies of publications are forwarded under separate cover through standard channels. 
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