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1. Foreword

During the period of this grant, we made significant progress in several important areas.
First we constructed a statistical theory for the clogging time of a filter that is based on
a simplified model for the motion of contaminant particles through the medium, together
with basic facts from extreme value statistics. This theory accounts for numerical simu-
lations of filtration in porous networks. Various features of filtration that are related to
this theoretical research have been under experimental investigation by Army Research
personnel at the Natick ERDC.

In a related research topic, we developed a comprehensive theory for the infiltration
and breakthrough of a contaminant that is passing through a porous medium in which
the walls of the pore space are coated with a neutralizing material. We also constructed a
detailed theory for the dissolution kinetics of a solid medium under the action of a reactive
acidic fluid where the motion of the dissolving molecules is anisotropic.

In a very different area, we made fundamental theoretical advances about the struc-
ture of growing networks. By applying the rate equations approach for determining the
underlying distributions of non-equilibrium systems, we are able to quantify the degree
distributions of growing networks, as well as a host of basic geometrical properties. Some
of these predictions help to provide a quantitative description of the world-wide web.

Finally, we have continued research on the applications of statistical mechanics to a
variety of fundamental non-equilibrium processes, such as the kinetics of traffic clustering,
aggregation, annihilation, and fragmentation. Details on these projects are provided below.

2. Filtration: Clogging Time and its Distribution

We developed an extremal theory for the mean clogging time of a filter, as well as the
distribution of clogging times. In our theory, we describe the exact particle trajectories
by a simplified picture in which each particle attempts to block the largest available pore
along its trajectory. Our predictions were tested by numerical simulations that relied on
a simple but powerful computational method to simulate the simultaneous motion and
trapping of many particles.

Our theory applies to the situation where typical pore sizes are of the order of particle
sizes or smaller. A basic element of our theory is that pores tend to get blocked in size order.
This arises because particles are more likely to enter larger pores, since the entrance rate
into a pore is proportional to the local flux entering that pore. Based on this observation,
we considered the extreme limit where each particle always enters the largest available
pore at each junction. This theoretical construction drastically simplifies the description
to the point that we are able to compute the mean clogging time and its distribution.

Another simplifying feature is based on the fact that clogging preferentially occurs
upstream in the network. Thus it is sufficient to consider short systems, the most extreme
of which is a single parallel array of tubes. Since tubes are blocked in size order according
to our modelling, we can determine the permeability of the array when kth smallest tube
is blocked from basic statistical ideas. The ratio of this partial permeability to the initial
permeability determines a corresponding scale for the time until this event occurs. Finally,
given the pore-size distribution, we use extreme value statistics to obtain the size distribu-
tion of the smallest pore in the sample. Due to the one-to-one connection between the size
of the pore and the time scale at which it is blocked, we can recast the size distribution of
the smallest pore into the distribution of times at which this smallest pore is blocked.
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By this approach we found that the distribution of clogging times P (t) has a simple
functional form with a power-law long-time tail,

P (t) ∼
τν−1

tν
e−(τ/t)ν−1

.

Here τ is the most probable value of the clogging time, and the exponent ν depends on
details of the particle size distribution, but for physical situations is typically between 5/4
and 3/2. This theoretical description is in excellent agreement with our simulations of
filtration on large square lattice tube networks.

3. Infiltration Kinetics

We studied the kinetics of infiltration processes in which dynamically-neutral contaminant
particles (“invader”), which are suspended in a flowing carrier fluid, penetrate a porous
medium. The progress of the invader particles is impeded by their trapping on active
“defender” sites on the surfaces of the medium. As defenders are used up, the invader
penetrates further and ultimately breaks through the system. We studied this process in
the regime where the particles are much smaller than the pores, so that the permeability
change due to trapping is negligible. We developed a series of discrete network models
of increasing realism to describe the basic characteristics of infiltration. We showed that
a simple quasi-one-dimensional model appears to capture many of the quantitative fea-
tures that we observed in numerical simulations of infiltration on lattice models of porous
networks.

With this approach, we determined basic dynamical properties of infiltration, includ-
ing the propagation velocity of the invasion front, as well as the shapes of the density
profiles of the invader and defender particles. The predictions of our model agree qualita-
tively with a variety of experimental results on the breakthrough times during infiltration,
as well as the time dependence of the invader concentration at the output. Our results also
provide practical guidelines for improving the design of deep bed filters in which infiltration
is the primary separation mechanism.

4. Dissolution Kinetics

We investigated the kinetics of solid dissolution due to the injection of a steady stream of
reactive particles at a single point. The new feature of our work is that we considered the
situation in which a global bias exists, in addition to the diffusive motion of the reactive
particles. The bias may be provided by an electric field acting on reactive ions or a
gravitational field acting on a flowing fluid. We find that the bias is a relevant perturbation
with respect to diffusion and leads to a different dissolution process from that caused by
isotropic diffusion. As a function of time, the dissolved region is strongly anisotropic,
with its length growing in time as ξ‖ ∼ t2/(d+1), while the transverse width grows as

ξ⊥ ∼ t1/(d+1), where d is the spatial dimension of the system. Within the dissolved cavity,
the concentration of reactive particles follows the steady state profile of biased diffusion.
This corresponds to the solution of the anisotropic Laplace equation. From this solution,
we found that the total number of reactive particles within the cavity grows as t2/(d+1).
We also found intriguing dimension-dependent behavior for the spatial distribution of the
reactive particles.
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We also extended our investigation to the case of variable reaction rate (equivalently,
weak acid strength). In the limit of weak acid, the dissolution boundary becomes smoother
and grows more slowly, since many more reactive particles particles must impinge on the
surface to dissolve a unit volume of the substrate material. We found that the effect of
varying acid strength is equivalent, in a scaling sense, to a time rescaling. behavior.

5. Structure of Growing Networks

The structure of growing random networks was investigated by a simple rate equation
approach. These networks are built by adding nodes successively and linking each to an
earlier node of degree k with an attachment probability Ak. Such growth processes mimic
what occurs in building the hyper-link graph that underlies the world-wide web.

When Ak grows slower than linearly with k, the number of nodes with k links, Nk(t),
decays faster than a power law in k, while for Ak growing faster than linearly in k, a
single node emerges which connects to nearly all other nodes. When Ak is asymptotically
linear, Nk(t) ∼ tk−ν , with ν dependent on details of the attachment probability, but in
the range 2 < ν <∞. We also determined the size distributions of the in-components and
out-components of the network with respect to a given node – namely, its “descendants”
and “ancestors”.

We extended the model to account for the common situation where there are different
in-degrees and out-degrees at each node. The in-degree is the number of incoming links
to a given node (and vice versa for out-degree). To construct networks with this property,
the network is built by (i) creation of new nodes which each immediately attach to a
pre-existing node, and (ii) creation of new links between pre-existing nodes. This process
naturally generates correlated in- and out-degree distributions. When the node and link
creation rates are linear functions of node degree, these distributions exhibit distinct power-
law forms. By tuning the parameters in these rates to reasonable values, exponents which
agree with those of the world-wide web were obtained.

Finally, we adapted the rate equation approach more detailed structural information
about growing networks. This includes the joint order-degree distribution, the degree
correlations of neighboring nodes, as well as simple global properties. Our theory provides
the most comprehensive description of the geometric features of growing networks that is
currently available.

6. Cooling of Inelastic Gases

We investigated the cooling of inelastic gases. The governing Boltzmann equation with
uniform collision rates was solved analytically for the cases of spatially homogeneous gases,
for gases with a dilute concentration of impurities, and for mixtures. Generally, the en-
ergy dissipation leads to velocity distributions with a relatively high population in the
high-energy tails, and also the correlation of different velocity components. In the freely
cooling case, the departure from the elastic behavior is especially profound – rather than
being Gaussian, the velocity distribution develops an algebraic high-velocity tail, with an
exponent that depends sensitively on the dimension and on the degree of dissipation.

Other characteristics also demonstrate unusual behaviors. For example, moments of
the velocity distribution exhibit multiscaling, and the velocity autocorrelation function
decays algebraically with time. In the forced case, where energy is injected into the system
at a constant rate, the steady state velocity distribution decays exponentially at large
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velocities. An impurity immersed in a uniform inelastic gas may or may not mimic the
behavior of the background gas, and the departure of properties of the impurity from that
of the background is characterized by a series of phase transitions.

7. Phase Transitions in Traffic Flows with Passing

We investigated the traffic dynamics of a one-dimensional system of particles (cars) moving
on a line. Cars either move freely with quenched intrinsic velocities, or belong to clusters
that form behind slower cars. In each cluster, the next-to-leading car is allowed to pass
and resume its free motion. Remarkably, the system undergoes a phase transition from
a disordered phase for high passing rate, that is characterized by many passing events,
to a jammed phase for low passing rate. In the disordered phase, the cluster size distri-
bution decays exponentially in the large-size limit. In the jammed phase, the cluster-size
distribution has a power-law tail and there is also an infinite-size cluster (that is, a cluster
that contains a finite fraction of all the cars in the system). We solved the mean-field
kinetic equations that account for the dynamics within the framework of the Maxwell ap-
proximation. These solutions correctly predict the existence of the phase transition and
also account for the basic properties of the disordered phase. For the jammed phase, the
Maxwell approximation also describes the formation of an infinite cluster and the power
law tail of the size distribution of finite clusters.

8. Ballistic Annihilation Kinetics

By analytical solutions of the Boltzmann equation in conjunction with a scaling approach,
we determined the kinetics of ballistic annihilation, namely the reactionA+A→ 0, in which
each particle moves at a constant, but distinct velocity until a collision occurs. For the
particular case of continuous initial particle velocity distributions, the particle density and
the rms velocity decay with time as c ∼ t−α and v̄ ∼ t−β , respectively, with the exponents
dependent on the initial velocity distribution and on the spatial dimension d. For example,
in one dimension and for a uniform initial velocity distribution, β = 0.23047 . . .. In the
opposite extreme of d→∞, the dynamics is universal and β →

(

1− 2−1/2
)

d−1. Although
the Boltzmann equation framework is not exact, we believe that the exponent predictions
are exact. Further, in the limit d → ∞, the Boltzmann framework becomes exact and
therefore the latter prediction is certainly correct.

9. Stochastic Aggregation

We investigated a class of stochastic aggregation processes that involve two types of clus-
ters: active and passive. The character of a cluster is altered every time it undergoes
aggregation, so that the coalescence of two active clusters may result in a passive cluster
that does not participate in further aggregation. A concrete example is polymerization of
linear polymers with end monomers being chemically active or inert.

The mass distribution for this system was obtained by analytical solution of the un-
derlying rate equations for basic classes of aggregation rates. When the aggregation rate is
constant, we found that the mass distribution of the passive clusters decays algebraically
with mass in the large-mass limit. For aggregation rates that are proportional to the clus-
ter masses, we found that the classical gelation phenomenon is suppressed when clusters
can become inert. In this case, the tail of the mass distribution decays exponentially for
large masses, and as a power law over an intermediate size range.
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10. Travelling Wave Formulation of Fragmentation

We investigated a random bisection problem in which an initial interval of length x is
cut into two random fragments at the first stage, then each of these two fragments is cut
further, etc. We compute the probability Pn(x) that at the n-th stage, each of the 2n

fragments is shorter than 1. Intriguingly, this fragmentation problem is a reformulation of
the celebrated random binary search tree algorithm – the above number n can be identified
with the height of the binary search tree. The fragmentation problem also corresponds to
a directed polymer problem on a Cayley tree in which the cutting of an interval into two
parts of relative lengths r and r′ is represented by two bonds with “energies” E = − ln r
and E′ = − ln r′ connecting a node (initial interval) with two daughter nodes. Then the
statistics of the height can be re-expressed in terms of the statistics of the minimal energy
of the directed polymer

We employed the techniques of travelling wave fronts to solve the polymer problem
and then translate back these results to derive the exact asymptotic properties in the
original search tree problem. Our method reproduces already known results for random
binary trees, but the derivation is much simpler than in earlier work. More importantly,
we obtained several new exact results. For example, we found a first leading correction to
the average height, and we showed that the width of the height distribution is finite.

11. Recursive Fragmentation Processes

We investigated the evolution of the fragment size distribution in a class of recursive
fragmentation processes. In the simplest such process, a newly formed fragment continues
to participate in fragmentation with a fixed probability p, while with probability 1 − p it
becomes stable and never fragments again. Such recursive fragmentation processes occur,
for example, in DNA segmentation algorithms. Another example, is the fragmentation of a
composite material, where small fragments of hard material may stop fragmenting because
they are stronger than the composite itself.

We found that the size distribution approaches a stationary form that exhibits a power
law divergence in the small-size limit. Furthermore, the entire range of acceptable values
of decay exponent, consistent with mass conservation, can be realized in a specific process.
We also showed that the recursive fragmentation process is non-self-averaging. This means
that there are significant sample-to-sample fluctuations in the moments of the fragment
size distribution. As a consequence, the fragment distribution in individual realizations of
the fragmentation process can be quite different. We also determined basic characteristics
of the extremes of the fragment size distribution.

Technology Transfer
I had substantive scientific interactions with Drs. Don Rivin, Heidi Schreuder-Gibson,
and Phil Gibson of the Natick Army Research Laboratories. An experimental study of the
kinetics of filtration, which was motivated in part by my theoretical research, is continuing.
I provided theoretical support for this effort.
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