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Title: Automated analysis and Display of Temporal Sequences of Mammograms
Walter F. Good, Ph.D.

Introduction

Considerable attention has been paid to methods for improving the diagnostic accuracy and
efficiency of mammographic screening procedures, including: Assessments of the importance of age of
patients to be screened [1]; Appropriate screening intervals [2]; Appropriate screening techniques [3,4];
Recommended number of views per examination [5]; Single vs. double reading [6]; and, Use of prior
examinations for comparison [7].

Customarily, in screening programs mammographers only compare the current exam to one
previous exam (e.g., one year prior or two years prior). This is partly for efficiency but also because there is
a lack of compelling evidence on how changing tissue patterns relate to the likelihood of developing a
malignancy. Retrospective inspection of exams taken in years prior to the detection of a malignancy often
indicates the presence of an abnormality. Such anecdotal evidence suggests that it is at least possible that
series of screening exams contain additional information that could improve the accuracy of the diagnostic
process.

There is also evidence that difference images in certain procedures can contain diagnostically useful
information, despite the presence of substantial subtraction artifact. In the diagnosis of chest radiography, it
has been demonstrated that adding temporally subtracted images to the diagnostic process can, in many
situations, significantly improve diagnostic accuracy and reduce mean interpretation time [8]. Difference
images obtained by temporal subtraction methods in mammography have properties somewhat similar to
images obtained with bilateral subtraction images used in CAD, where it can be shown that differences
contain diagnostic information [9-13]. However, like the subtraction of chest images, temporal image
subtraction of mammograms is a difficult task due to tissue changes over time, inconsistencies in breast
compression, skewing of the three-dimensional breast relative to the image projection during compression
and lack of easy landmarks on the breast that can be used to facilitate optimal image registration. Previous
attempts to develop acceptable subtraction methods for mammograms, including methods for both bilateral
subtraction [9-12] and temporal subtraction [14-16], have had only partial success. As a result, the temporal
subtraction of mammograms has not been employed clinically.

In an attempt to improve diagnostic accuracy of screening mammography, this project is adapting
and integrating several novel technologies, under development in our laboratory, into a system for
providing mammographers with information about changing tissue patterns, and the corresponding
likelihood of malignancy, derived from temporal sequences of images. Specifically, these technologies
include: 1) A method for locally deforming and registering mammograms [17,18]; 2) Multi-image CAD,
which we have previously used to identify corresponding features in ipsilateral views [19]; and, 3)
Adjustment of digitized mammograms to account nonuniform tissue thickness due to breast compression,
to enhance soft display of mammograms and to enable more accurate computerized estimation of tissue
composition [20]. Our hypotheses are: 1) Sequences of screening mammograms contain information about
tissue changes that is not otherwise being exploited in the diagnosis of breast cancer; 2) Changing tissue
patterns can automatically be identified, and correlated with diagnostic questions; and, 3) Such information
can be made available to mammographers, in an efficient manner, through displays specifically designed
for these image sequences.
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The main objectives of this project are to provide a system, which can be employed at the discretion
of mammographers, to: 1) Normalize images to facilitate comparisons; 2) Apply our previously developed
multi-image CAD methods to identify corresponding features between images, and evaluate possible trends
for any such features; 3) Detect and classify trends in temporal sequences (e.g., distinguish between normal
and abnonnal age-dependent changes, and identify those patterns of change that are associated with the
development of malignancies); 4) Calculate and present various kinds of parameter images; and, 5)
Develop a display system for efficiently presenting sequences of exams to mammographers, with the
optional ability to emphasize trends by correcting images for differences in exposure, compression, and
local misregistration. Our expectation is that this display will improve the diagnostic performance of
mamnmographers for these cases.

Body

Progress on this project has been closely following the schedule and methods outlined in the
original proposal. While many tasks have been undertaken and completed successfully, the nature of this
project makes it impossible to report actual performance results at this early stage of development. The
main tasks that have been completed to date are described below.

Task 1: Select, verify and digitize cases (Months 1 - 30)
a. A set of 240 sequences of screening mammograms will be selected and verified
b. All verified cases will be digitized

A total of 240 cases, have been collected since this project was funded. Some of these were
collected from other institutions. Of these, 125 are negative and 115 contain malignancies. All cases have
been verified, digitized, and assembled into a database. The database has been anonymized by use of an
honest broker system, to comply with the requirements of HIPPA. This completes the active acquisition
of cases within this project.

Case selection was based on a historical prospective approach, in which we examined cases that
had at least two prior screening examinations. We only considered cases for which, prior to the latest
examination in which a positive abnormality may have been detected, all the mammograms for these
patients had been interpreted as negative. Each case consists of two views of a single breast. Originally,
we had expected to select all cases from routine mamnmographic examinations performed at the UPMC
and Magee health care systems, but to find a sufficient quantity of positive cases having the appropriate
historical sequence, we have included images from other institutions. Positive cases were drawn from
cases that have undergone biopsy. Negative cases, for the most part, are cases that have not been
recommended for biopsy, but in some instances, subtle negative cases, which have had biopsies that were
negative for the presence of a mass or microcalcification cluster, have been selected.

Each selected film has been digitized with a 12 bit modified film digitizer (Lumisys) having an
MTF of 27 and 24% at the Nyquist frequency (10 lp/mm) in the X and Y directions, respectively. The
digitizer is routinely evaluated and adjusted to maintain spot size, linearity, geometric fidelity, stability
and acceptable spatial noise characteristics, and to maintain a linear relationship between pixel value and
optical density, as part of our quality assurance procedures.

Task 2: Modification of workstation for this project (Months 1 - 12)
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An existing 4-monitor display, which was developed in our laboratory, has been adapted
for this study. The individual monitors (Clinton Electronics, Model DS5000) are 21 inch portrait
monitors, having a resolution of 2048 x 2560 pixels, 150 ftL light output and P45 phosphor. The displays
are driven by a display controller (Dome Imaging Systems, Model Md5/PCX-2) specifically designed for
these monitors, and calibrated with a Barten lookup table to accommodate the contrast sensitivity of the
human eye. The system has been designed to display four images of a single exam at a time, or a single
image and its associated parameter images, or to display sequences of exams sequentially, at a rate
determined by viewers. This task was completed in year one.

Task 3: Develop display software (Months 3 - 15)
a. Display difference images
b. Display trends

The ability to deform sequentially acquired mammograms so that they can be placed in reasonable
registration is a central aspect of this project. While image subtraction was addressed somewhat in year
one, we continued the development of the image deformation and subtraction software in the second year.
In the originally proposed method, which is described in more detail under section g of Task 4 below, we
used intersections of nipple axis lines with chest walls as origins of polar coordinate systems for
performing mappings between mammograms. We have demonstrated that a modification of this approach
is preferable. Specifically, the origin is now defined as the midpoint of the chest wall. The line from this
point, passing through the nipple serves as the base for measuring angles. But because this line is not
generally perpendicular to the chest wall, a nonlinear monotonic function is used to find corresponding
angles between images. Viewers, at their discretion, have the option of either subtracting consecutive
images in sequence or subtracting each previous image from a specific (e.g., the most recent) image. Prior
to actually performing the subtraction, images are first normalized to correct for tissue thickness, and then
geometrically deformed to match a common template. The details of this procedure, and a comparison of
the various techniques, have been submitted for presentation at SPIE Medical Imaging 2005.

Because the parameter images are at a much lower effective resolution that the original
mamnmographic data, these can be displayed side-by-side. The display software has been appropriately
modified to allow for alternative display formats. A cine mode has also been implemented on the display
system as one means of displaying temporal sequences of image data. This can be used to display either
the original mammographic data or the parameter images being generated from each mammographic
image. The optimal arrangement of the displayed information will depend to a great extent on the
importance of the various kinds of parameter and trend summary images being generated, and this will be
determined toward the end of the project.

Task 4: Image analysis software development (Months 6 - 30)
a. Correct for characteristic curve
b. Correct for breast compression
c. Skin line detection
d. Breast compression adjustment
e. Local and global composition
f. Global composition from 2 views
g. Local geometric registration
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h. Histogram equalization between images
i. Modify Multi-View CAD for this project
j. Create parameter images
k. Detect and classify trends

Subtasks a-e and g were largely completed during year one.

a. Correct for characteristic curve - The characteristic curve for each particular film was obtained
from the manufacturer. Although these curves are generic, they are sufficiently accurate for this
application, given other imperfections in the overall imaging chain. Our routine quality assurance process
on the digitizer maintains a linear relationship between pixel value and optical density. The characteristic
curve correction algorithm is written to use the inverse of the digitizer characteristic curve to convert pixel
values to optical density values, and then us the inverse of the film's characteristic curve to convert optical
density to film exposure.

b.d. Correct for breast compression - The wide dynamic range of mammograms is caused in part
by the non-uniformity of breast thickness during breast compression. To correct for this, at each pixel in a
mammogram, we determine the relative thickness of the compressed breast as a function of the distance
of the pixel from the skin line. Although there are computationally more efficient methods, we measure
the distance of each pixel to the skin line with a simple exhaustive search. We divide the range of possible
distances into a small number of intervals (typically 32 to 64 depending on image size) and for each
interval, all of the tissue pixels whose distance falls within that interval are grouped. For each such group
the mean and standard deviation are calculated, and an appropriate function is fitted, with constraints, to
the means plus one standard deviation. This "correction" function represents the change in pixel value
with respect to distance from the skin line, and actually indicates tissue thickness relative to this distance.
For each pixel, the correction function is used to calculate a correction value from the pixel's distance
value, and this correction value is used to normalize the pixel value. In the central regions of the breast
area, the correction values are 1 and these pixels are left unchanged.

c. Skin line detection - In this project it is necessary to make geometric measurements that are
referenced to the skin line and nipple. We first produce a low-resolution version of the image by
averaging pixel values over a 16 16 block and then apply the Sobel gradient to the reduced-resolution
image. At each point in the image, the original pixel value, the magnitude of the gradient, the direction of
the gradient, the radial distance of the pixel from the center of the left edge of the film and a direction
value for the surrounding neighborhood are all combined to produce a value which is proportional to the
likelihood that the pixel falls on the skin line. These likelihood values are thresholded and then placed in
an image where they are processed with morphological operators to eliminate isolated points. The points
that remain, which are invariably on the skin line, are mapped back to the high-resolution image and used
to fit a Bezier Curve to define a smooth skin line. Although failure is rather uncommon, it can happen
when the tissue thickness adjustment process fails to correctly identify the skin line. This can occur for
images where the skin line on the film was so dense (i.e., over an optical density of about 4.2) that the
digitizer was unable to distinguish between the skin line and the image background. In this event, we do
not include the case in this study.

Detection of pectoral muscle - To detect the pectoral muscle, we employ a template matching
with the mammographic image, which is a standard approach, and effective in cases such as this where
structures are relatively well defined. The chest wall is not normally visible in the CC view so we
assume, in these cases, that it is parallel to, and 0.5 cm beyond the edge of the image.
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e. Local and alobal composition - After correcting images for characteristic curves of film and
then correcting them for nonuniformities due to breast compression, at each point in a view, we estimate
% fibroglandular tissue, by deriving certain features directly from a local histogram and using a neural
network, trained with values from breast MRI, to obtain a local estimate of composition. An initial global
value is determined for the image by integrating over the tissue area. Tissue composition is calculated
independently from CC and MLO views, and averaged to obtain the global value for the breast. The local
values in each of the two views are then scaled appropriately.

f. Global composition from two views - As implemented, calculating a global composition for a
breast from two views simply involves averaging the values from the CC and MLO views and then
adjusting the local values in each of the individual views so that they match the averaged value. Values
for individual views are found by the following procedure: 1) Correct images for characteristic curve of
film; 2) Detect skin line; 3) Detect pectoral muscle; 4) Correct for breast compression; 5) Calculate
fraction of fibroglandular tissue at each pixel; 6) Multiply this fraction by the breast thickness at the pixel
to obtain absolute amount of fibroglandular tissue at pixel; and, 7) Integrate this over the projected area of
the breast.

g. Local geometric registration - To make comparisons between sequentially acquired images
more feasible, we adjust the geometry of all images being compared, so that the images can be placed in
accurate registration, and we normalize grayscales so that they reflect equivalent exposure conditions. In
brief, the subtraction method uses a fully automatic nonlinear transformation that can map any
mammographic image onto a template or reference image while assuring concurrent and accurate
registration of skin lines, nipples, pectoral muscles and nipple axis lines.

The geometric transformation is diagramed in Figure 1. The technique begins by automatically
detecting pectoral muscles on MLO views (e.g., OL and 0'L' in Figure 1), skin lines and nipple locations,
N and N', in Figure 1. Polar coordinate systems are established with the origins, 0 and 0', at the
intersection of the nipple axes lines (NALs), ON and O'N', and lines indicating the pectoral muscles, on
MLO views or with lines parallel to, and 0.5 cm beyond, the edge of the film on CC views. Tissue pixels

within a mammogram are identified by a
L ;': relative polar coordinate, which we define to be

the angle, ,, of their position vector relative to
the NAL and their fractional distance between
the origin and the skin line. For each pixel P in

/ .•,S,'a reference template (e.g., left image in Figure
p S 1), a point P', having the same relative polar

,,...,- .. . . coordinate, is found in the image to be
a N' deformed. The pixel at location P in the

/ """ N template is then given the value of the point at
P', as determined by the nearest pixel or
through interpolation, after adjusting for the
local Jacobian of the transformation at the

Figure 1: Relative radius polar coordinate transformation. particular point. Clearly, this transformation
I maps nipples onto nipples, skin pixels onto skin

pixels and chest wall pixels onto chest wall pixels, while interior pixels are deformed correspondingly.

Grayscale adjustment - Once images have been deformed so that a reasonable correlation between
pixels can be assumed, grayscales are corrected by applying a standard linear or nonlinear regression
(e.g., using low degree polynomials) to pixel value pairs for the corresponding image points. Pixel values
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of the deformed image are then adjusted by the regression equation, to minimize the sum-of-squares
difference, with respect to admissible grayscale changes.

As stated above, the geometric registration method described above has been modified somewhat to
improve performance. In the originally proposed method, we used the intersection of the nipple axis line
with the chest wall as the origin of a polar coordinate system for performing a mapping between
mammograms. We now have demonstrated that a modification of this approach is preferable. Specifically,
the origin is now defined as the midpoint of the chest wall. The line from this point, passing through the
nipple now serves as the base for measuring angles. But because this line is not generally perpendicular to
the chest wall, a nonlinear monotonic function is used to find corresponding angles between images.

h. Histogram equalization between images - Once images have been deformed so that a reasonable
correlation between pixels can be assumed, grayscales are corrected by fitting all pixel value pairs for
corresponding image points with a 3-segment spline function consisting of two quadratic polynomials
smoothly joined by a linear segment. Pixel values of the deformed image are then adjusted by the
regression equation, to minimize the sum-of-squares difference, with respect to admissible grayscale
changes.

i. Modify multi-view CAD for this project - Our multi-view CAD program, much of which is being
adapted for use in this project, contains methods for comparing features taken at the same time from
multiple views. For this project, these methods have been modified to permit their use on images taken at
different times. Specifically, we included methods for applying linear regression to measure changes in
features with respect to time. The main difficulty we have encountered in doing this is that our ability to
find corresponding features in a sequence of images depends on our ability to deform the images so that
they can be put in geometric registration.

j. Create parameter images - A general method for creating parameter images has been implemented.
For temporal sequences of images, all images are deformed to the shape of the most recent image. A local
feature filter is applied to each image to produce a corresponding image in which pixel values reflect the
local magnitude of the particular feature in the original image. To create the trend summary image for this
feature, at each pixel we calculate a correlation coefficient and the slope of the best-fit line to the
sequence of parameter values. In summary images we are currently using hue to represent slope and
brightness to represent correlation (with black corresponding to r2 = 0).

Local features - We have defined a number of local features that could potentially be of value in
identifying changing patterns in temporal sequences of mammograms. These include: local breast density,
local variance, and, various measures of image texture.

As a prototype for developing these methods we used the local breast density filter that produces
images somewhat similar in appearance to the original mammograms, but at a lower resolution. In
summary images, locations are assigned values from a scale that ranges from cyan (falling density) to red
(increasing density), where brightness indicates the degree of correlation (uncorrelated sequences of pixel
values are shown in black). Other filters (e.g., local variance, local fractal dimension) have also been
implemented and behave in a similar manner. We expect to continue refining these filters throughout this
project.

Task 5: Initial training and testing of classifier (Months 16 - 18)
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In addition to creating parameter images corresponding to individual features, we proposed to train a
classifier to predict the likelihood of developing a malignancy based on actual features as well as on
changes in features. Effectively this has been accomplished by adding temporal chances in features,
averaged over images, to the feature vector already used in our CAD algorithms. This classification
mechanism has been implemented as a neural network, and trained using the training subset of our
dataset.

Because features are not independent, and the addition of temporal features has greatly increased the
number of features thatmust be considered for input to the classifier, we will eventually use a Genetic
Algorithm to define an optimal subset of features.

Task 6: Interim testing and analysis (Months 18 - 22)

We have developed methods and software to measure the contribution of each of the temporal features
to the overall performance of the classifier defined above. The neural network is trained and tested on the
training set of cases (half of the total dataset) using a jackknife procedure, both with and without the
feature of interest. The difference in performance, with or without the feature is taken as a measure of the
importance of the particular feature. Final measures of the importance of the individual temporal features
will be performed once an optimal feature subset has been defined using a genetic algorithm approach.

Key Research Accomplishments

"* Selected, verified and digitized 240 cases, and entered them into database

"* Modified workstation for this project

"* Developed display software

"• Developed an innovative registration method for mammograms

"* Developed Image analysis software including software to:

"o Correct for characteristic curve
"o Correct for breast compression
"o Detect Skin line
"o Adjust for breast compression
"o Calculate local and global composition
"o Global composition from two views
"o Perform local geometric registration
"o Perform histogram equalization between multiple images

"* Identified local and global temporal features

"* Used temporal features to create parameter images

"* Derived trend summary images from the sequences of parameter images

"* Developed a classification mechanism for predicting risk from temporal features
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Progress on this project has been closely following the schedule and methods outlined in the
original proposal. But, the nature of this project makes it impossible to report actual results at this early
stage of development.

Reportable Outcomes

Manuscripts

Chang YH, Good WF, Wang XH, Glenn S. Maitz GS, Zheng B, Hardesty LA, Hakim CM, Gur D.
Integrated Density of a Lesion: A Quantitative, Mammographically-derived, Invariable Measure. Med.
Phys. 2003; 30(7):1805-11.

Wang XH, Chapman BE, Good WF. Evaluation of quantitative measures of breast tissue density from
mammography with truth from MRI data. Proc SPIE 2003; 5032:82-89.

Good WF, Wang XH, Maitz G. Feature-based differences between mammograms. Proc SPIE 2003;
5032:919-29.

Zheng B, Leader JK, Abrams G, Shindel B, Catullo V, Good WF, Gur D. Computer-aided detection
schemes: the effect of limiting the number of cued regions in each case. AJR Am J Roentgenol.
2004 Mar;182(3):579-83.

Chang YH, Good WF, Leader JK, Wang XH, Zheng B, Hardesty LA, Hakim CM, Gur D.
Integrated density of a lesion: a quantitative, mammographically derived, invariable measure. Med
Phys. 2003 Jul;30(7):1805-1 1.

Wang XH, Good WF, Fuhrman CR, Sumkin JH, Britton CA, Warfel TE, Herbert D, Gur D. Stereo Display
for Chest CT. SPIE Electronic Imaging 2004; 5291: In Press

Wang XH, Good WF, Fuhnman CR, Sumnkin JH, Britton CA, Warfel TE, Gur D. Projection Models for
Stereo Display of Chest CT. SPIE Medical Imaging 2004; 5367: In Press

Wang XH, Good WF, Fuhrman CR, Sumkin JH, Britton CA, Warfel TE, Gur D. Stereo Display for Chest
CT. RSNA Dec 2003;

Databases

We have established a database of verified cases, where each case consists of a sequence of screening
mammography exams. While we will continue to accrue cases to this database, it is currently in a form
that can be used for analysis.

Proposals applied for
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US Army MRMC 2003 Assessing the Interdependence of Tumor Risk, Conspicuity and Breast

Tissue Characteristics Derived from Mammography

US Army MRMC 2003 Computerized Analysis and Display of Contralateral Breast Asymmetry

US Army MRMC 2003 Improving Breast Cancer Assessment Through More Accurate
Measurement of Mass Size and Growth Rate

Komen 2002 Integrated Density - A Quantitative Measure of Breast Lesion

NIH 2004 Improving Early Detection of Breast Cancer

Conclusions

Progress on this project has been closely following the schedule and methods outlined in the
original proposal. To this point, all of our effort has been aimed at assembling a database of images, to be
used in subsequent years for analysis, and in developing the display and software algorithms. While many
such tasks have been undertaken and completed successfully, the nature of this project makes it
impossible to report actual performance results until the final year of the project.

The workstation we have developed will make it possible for radiologists to efficiently view a
woman's entire mammographic history, as well as view summarized presentations of that history. We
expect that the viewing of this additional data will increase radiologists' understanding of the kinds of
changes that are occurring in breasts, and the rapidity with which these changes are occurring. Ultimate,
this will likely result in increased efficacy for screening mammography.

During the current year of the project, we will continue addressing the remaining tasks. These
include:

Task 4: Image analysis software development (Months 6 - 30)
k. Detect and classify trends

Task 7: Final training and testing of classifier (Months 24-30)
Task 8: Final processing of all cases (Months 30 - 34)
Task 9: Data analysis and final report (Months 30-36)
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Integrated density of a lesion: A quantitative, mammographically derived,
invariable measure
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A method for quantitatively estimating lesion "size" from mammographic images was developed
and evaluated. The main idea behind the measure, termed "integrated density" (ID), is that the total
x-ray attenuation attributable to an object is theoretically invariant with respect to the projected
view and object deformation. Because it is possible to estimate x-ray attenuation of a lesion from
relative film densities, after appropriate corrections for background, the invariant property of the
measure is expected to result in an objective method for evaluating the "sizes" of breast lesions. ID
was calculated as the integral of the estimated image density attributable to a lesion, relative to
surrounding background, over the area of the lesion and after corrections for the nonlinearity of the
film characteristic curve. This effectively provides a measure proportional to lesion volume. We
computed ID and more traditional measures of size (such as "mass diameter" and "effective size")
for 100 pairs of ipsilateral mammographic views, each containing a lesion that was relatively
visible in both views. The correlation between values calculated for each measure from correspond-
ing pairs of ipsilateral views were computed and compared. All three size-related measures (mass
diameter, effective size, and ID) exhibited reasonable linear relationship between paired views
(r 2>0.7,P<0.001). Specifically, the ID measures for the 100 masses were found to be highly
correlated (r 2 =0.9,P<0.001) between ipsilateral views of the same mass. The correlation in-
creased substantially (r 2 = 0.95), when a measure with linear dimensions of length was defined as
the cube root of ID. There is a high degree of correlation between ID-based measures obtained from
different views of the same mass. ID-based measures showed a higher degree of invariance than
mass diameter or effective size. © 2003 American Association of Physicists in Medicine.
[DOI: 10.1118/1.1582571]

Key words: breast, imaging, masses, mammography, quantitative analysis

I. INTRODUCTION ization (discrimination) schemes.15'16 A large number of fea-
tures (including morphologic, texture, and density based1 7' 18)

Mammography has been frequently recommended as a rou- have been investigated in an attempt to quantitatively and
tine screening tool to detect breast cancers at an earlier objectively represent masses. Currently, there is no standard
stage! While it has been shown that mammographic screen- that defines a mass and its surrounding background. Without
ing can substantially reduce cancer-related mortality and such a standard, studies have shown that measured contrast
morbidity,2' 3 identifying breast cancers in the screening en- values of a mass region could change substantially if the
vironment with high sensitivity and specificity is a difficult definition of the surrounding background of a mass was
task due to the low expected cancers detected in a large varied.19 Therefore, measurements of mass contrast and other
volume of cases and the complex patterns as depicted on
mammograms.4'5 Detection and diagnostic accuracy of breast related features are frequently scheme dependent. In addi-

cancers using mammograms can be improved using quanti- tion, due to the wide variation of tissue presentation resulting

tative analysis of masses.6- 9 Studies of cases with prior ex- from breast compression, image projection, and field nonuni-

aminations demonstrated that a change in the density or con- formity, a large number of computed image-based features of
tour of a mass over time can be. an indicative sign of a mass, as measured from different images, is not a
malignancy.' 0 Other studies showed that the change in mass constant.20 ' 21 Therefore, it would be desirable to define a
size was one of the dominant factors in determining breast measure of a mass that is invariant to tissue deformation and
cancer prognosis.'1' 12 However, inter- and intra-observer the projection view. It has been theoretically shown that un-
variability, when visually and subjectively describing a mass der a few conditions, the total attenuation (termed here inte-
or its change over time between consecutive examinations, grated density or ID) of an object is an invariant quantity
makes this assessment quite difficult and often with respect to geometrical deformation of an object in two-
unreliable.13,14  dimensional projected images (such as mammograms). 22

Quantitative measurements and analyses of masses have There is no experimental validation that in fact ID is an
been widely used in computer-aided detection and character- invariant measure. 22 In this study, we experimentally evalu-
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ate integrated density (ID) as an invariant measure represent- rounding tissues, DNORMAL, and the final term is the reduc-
ing masses depicted on mammograms. After correcting for tion in density attributed to the presence of the mass. This
film nonlinearity, and estimating the density of underlying pixel density can be rewritten as
tissue, we assess whether ID as computed for the same 100
masses depicted during the same examination on both CC D(uv) =DBKG-DNORMAL-• Y A /.t dx,
and MLO views is invariant. The purpose of this preliminary JLM

study is intended only to assess the degree of ID invariance
with respect to breast compression and projection views, and
not changes over time. y dx=DBKG-DNORMAL-D(uv).

LM

If we integrate this over the region, R, defined by the projec-

II. MATE=RIALS AND METHODS tion of the mass, we obtain

A. Defining integrated density ( ax
Assuming a monoenergetic x-ray source, for a mass f f ý IL A dx du dv

present in a breast, the quantity R

f ff JMdV, =f f (DBKG-DNOAL)dudv-f f D(u,v)du d
V R R

where V is the volume occupied by the mass and AM is its and simplifying the left-hand side,
local x-ray attenuation coefficient, is invariant, but it cannot
be measured directly from the image. However, if it is as- . f f Al..dV.f f (DB.GDNoRAL)dudv
sumed that the attenuation coefficient of the breast tissue
surrounding the mass (A•N) can be estimated with reasonable V R

accuracy, then the quantity -f fD(u,v)dudv.

fff (Am- AN)dV=f ff AAdV, R
V V The left-hand side of this expression is the film's y times a

remains essentially invariant and can be approximated from quantity that is expected to be essentially invariant; hence, it
an image. should be invariant for a particular type of film (in the "lin-
S To demonstrate this, consider the density of a single pixel ear" range). Thus, we define ID as

within the image projection of the mass. In the case of a
mammographic film image, for which the digitized density ID=y f j A/ dV,
values have been adjusted for the film's characteristic curve, V
the corrected density at an image pixel, D (u,v), can be
calculated as which can be approximated as

D(uv)=Const+ L ID (DBKG-DNORMAL-DMASS)AR= C-AR.

SD )l ETherefore, ID is represented by the area of the mass, AR,
multiplied by the average contrast difference between the

- (pAM-.LN)dxfl mass and the surrounding tissue, where the mass area is de-
"JLMIJ fined to be the projected area associated with the interior of

the mass and the average mass contrast, C, is defined as the
=Const+ y log E- vi A.N dx average difference in linearized densities between the under-

lying tissue background and the mass itself.19 It should be
emphasized that x-ray beam hardening is ignored in this sim-

-Y7 (p.M--NW)dx, . plification and scatter radiation is assumed to contribute a
LM relatively uniform distribution in both the mass and back-

where E is the overall exposure, y is the film's gamma, the ground areas. Hence, it can be represented as a constant in
first integral is taken over the whole breast tissue (L) as pro- the background term. Determining the relative change in log-
jected onto the image, and the second integral is taken over exposure, from film density in mammograms, involves ap-
the mass region (LM) as projected onto the image. The first proximating the density due to the combination of back-
two terms on the left of the expanded expression correspond ground (including scatter) and normal tissues (i.e., DBKG
to background density, DBKG, of the film (i.e., film base plus -DNORtAL), which would be present if the lesion did not
nonattenuated exposure including scatter contribution). The exist. This can be estimated as the mean pixel value of the
third term is the reduction in density resulting from sur- area outside the lesion. It should be noted that such estima-
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tion is based on the assumption that the "normal" tissue is
distributed "uniformly" over the area of a projected lesion
and the surrounding area. Therefore, measurement of the sur-
rounding area would closely resemble the measurement of
the underlying tissue if the lesion was absent. Because of the
assumptions mentioned above, it was the intent of this study
to assess the extent to which ID as simply computed from the
image remains invariant to deformation or projection view.

Film characteristic curve linearization: Digitized film
density values were corrected for the characteristic curve to
produce values that were linearly proportional to log-
exposure (in the linear range). First, the laser film digitizer
was routinely calibrated to assure that film optical density
(OD) was linearly translated into digitized pixel values in the
density range of interest. Second, film OD values were cor-
rected so that they were linearly proportional to log-exposure
units. A generic curve was used for this purpose using the
data for the specific mammography film used in our facility
(Eastman Kodak Min-R 2000 film). 2 3 For computational FIG. 1. An example of a pair of images depicting a mass in two views. The

ease, the generic 'curve was represented by 'a spline mass is relatively visible in both the CC (left) and MLO (right) views.

function. 23 To define ID in terms of more familiar "density" Superimposed on each view are the mass center ("+"), the computed mass
boundary, and the corresponding mass background (circular region exclud-

units, rather than log-exposure units, we converted back ex- ing the interior of the mass region).
posure values to linearized density values by fitting a straight
line to this curve. As a result, for each OD value, we com-
puted the corresponding log-exposure unit using the spline =1 cm for the background estimation. However, since the
function and then converted it to a "linearized" OD value definition of the background region can affect the computed
using the "fitted" line. ID, we investigated this issue in the following manner. Based

Delineating mass regions: For each mass, the correspond- on the distribution of mass diameters in our database, we
ing pair of mammographic views was reviewed by experi- selected four values for the radius differences (A radius
enced mammographers who initially identified a central =5 mm, 7.5 mm, 10 mm, or 12.5 mm) to be considered as
point in the projection of the mass as depicted in two projec- the background area. IDs were estimated from the CC and
tions. A semi-automatic delineation of mass boundaries was MLO views using the different background definitions, and
then performed using a region growing routine similar to the the correlations between computed ID values for the corre-
technique described by Matsumoto et al.24 For each projec- sponding views were computed.
tion, the location representing the central point (pixel) of the ID computation for each mass: The area of the mass, AR,
mass was first identified on digitized mammograms. Based was obtained by counting the number of pixels inside the
on the initial location, the algorithm automatically deter- region R and converting it to an area (one pixel represented
mined a "transition layer," where a substantial change in an area of 100X 100 gm2 or 0.01 'mm 2). Average mass con-
region growth and margin irregularity was observed. All pix- trast, C, was computed as the difference in average density
els within the identified region boundary were considered to values within the regions R and R'. Finally, ID is the product
be in the region (R) depicting the mass. Mass delineation of the mass area and the average mass contrast (i.e., ID- C
could affect the results since both the area of the mass (AR) .AR). This process was performed independently for each
and the average density within the mass (DMAsS) are used to mammographic view.
compute ID. Figure 1 demonstrates an example of the regions analyzed

Measuring mass background: Once a mass region (R) had in one case. The mass was clearly visible in both the CC
been delineated, the geometric center-of-mass of the lesion view and MLO views. In each view, an irregular boundary
was computed, and the maximum distance of this point to the marks the mass region as automatically determined by the
lesion boundary was determined. For background density es- software. The background region of surrounding tissue that
timation, a region was defined as all tissue regions outside was used in the analysis is also shown.
the lesion, within a circle centered at the center of mass
(R'), with a radius difference (A radius) longer than the
maximum distance to the lesion's boundary. Linearized den-
sity values within the background region (R') were aver- In addition to the computed ID, two mammographically
aged. based measures were derived for each projection of a mass,

To estimate the density of normal tissue in the areas as follows: (1) Mass diameter was defined as the maximum
where the mass overlaps in the projection image, we used the diameter (or longest axis) of the mass as depicted in the
average density value of the surrounding area outside the image (in mm); and (2) effective size was defined as the
mass. The radius difference was initially chosen as A radius squared root of the product of maximum and minimum di-
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"ameters (longest axis and shortest axis) and was also mea- 45 r
sured in mm.25 These measures were used for comparison
with ID, as these are frequently used in the clinical environ-

... .. .. ................... .ment and in CAD assessments. 3

C. Dataset . 25

A total of 100 verified cases were selected from our data- .' 20

base of patients who have undergone screening mammogra- 1

phy in one of our clinical facilities. Each case included an
ipsilateral pair of craniocaudal (CC) and mediolateral ob- -_

lique (MLO) mammographic images. CC and MLO views of
the same breast from the same examination were used. Cases
were selected only if a well-defined mass was depicted on 5 to 10 10 t 15 1 t to 2
both views. Of the 100 selected masses, 64 were malignant Mass irter (un)
and 36 benign. All films were digitized using a laser film
digitizer (Lumisys, Eastman Kodak Co., Rochester, NY) at FiG. 2. Distribution of the mass sizes for the 100 masses used in this study.
10OX 100 /m 2 pixel size and 12-bit contrast resolution. The Mass size was determined by averaging maximum diameters (mm) obtained

laser film digitizer was routinely calibrated to assure that film from the two ipsilateral views (CC and MLO).

optical density (OD) is linearly translated into digital pixel
values in the range of 0.2 to 3.8 OD (1 pixel value
= 0.001 OD). The three measures (ID, diameter, and effec- high eccentricity. Thus, a relatively low correlation for diam-
tive size) were estimated for both views of each of the 100 eter or effective size was expected in this group.
masses in the dataset.

Ill. RESULTS
D. Evaluation

Figure 2 shows the distribution of mass sizes. The size of
In this study we compared the results of the three mea- each mass was determined by averaging the two maximum

sures as computed independently for each of the two views, diameters obtained from the two views (CC and MLO). As
For each measure, we computed the correlation (Pearson's can be seen from the figure, the 100 selected masses ranged
r 2) between values computed from the CC views and those in sizes from relatively small (<10 mm) to quite large (>25
from the MLO views. The results for each measure were also mm).
plotted in corresponding scattergrams. Table I shows the linear correlation coefficients (Pearson's

Because of the units associated with these measures, it is r2) between matched pairs of measures (i.e., mass diameter,
suboptimal to compare directly the correlations for ID with effective size, mass area, mass contrast, and ID) from the
those computed for the other two measures. ID is propor- two views. Figure 3 shows the corresponding scattergrams
tional to volume, while the other two measures are defined in for (a) mass diameter, (b) effective size, (c) ID, and (d) cube
units of lengths. Therefore, we defined a cube root of ID as a root of ID. The size-related measures (mass diameter and
more appropriate measure for comparisons (which is given effective size) were found to follow a reasonable linear rela-
in unit of length) and report the results of this measure, as tionship (P<0.001). Despite the relatively weaker correla-
well. tion exhibited by the mass contrast (r2= 0.45), the ID mea-

To evaluate size-dependent differences between paired sure, which is the product of mass area and relative contrast,
measurements obtained from the two views for each of the highly correlated between paired measurements (r2 = 0.9,P
100 masses, we divided the database into three subsets (< 10 < 0.001). Figure 3 also demonstrates the scattergram of the
mrm, 10-20 trm, and >20 mm). The absolute values of the cube root of ID (V/mmz• AOD), which allows for a more
differences and the range were evaluated for each of the valid comparison with the mass diameter and effective size
subsets.

Geometric eccentricity of a mass is one factor that could
affect the results. Therefore, we categorized masses into two TABLE I. Linear correlation coefficients (Pearson's r

2
) of various mass size-

groups by their eccentricity, and repeated the analyses for related measures (mass diameter, effective size, mass area, mass contrast,
each of the subgroups. We classified cases into the subgroups and ID) as measured from the CC and MLO view using 100 masses for the

using the two diameters dcc and dMLo, obtained from the assessment.
two views, and computed a ratio 9 for each mass as: 9 Mass Mass
=max(dCC/dMLo,dMLo/dcc). All masses for which j diameter Effective size Mass area contrast ID

-- 1.1, were assigned to one group (more "spherical") and
the remaining masses (more "eccentric") were assigned to efficient
the other group. Masses with substantially different diam- "2r
eters as depicted on the CC and MLO views typically exhibit
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FiG. 3. Scattergrams of the quantitative measures (a) mass diameter, (b) effective size, (c) ID, and (d) cube root of ID, as computed from paired ipsilateral
views of 100 masses. The diagonal line represents identical measures.

since it is represented by a similar dimension. The correla- shown. Differences for all measures increase as the mass
tion coefficient for the data shown for this measure is sub- diameter increase. Measured eccentricity values were 1.14
stantially higher r 2 =0.95. t±0.12, 1.17+±0.16, and 1.19±0.15 for the three groups, re-

Table II shows the ranges of the absolute differences be- spectively.
tween paired measures obtained from the two views for the Table IIm shows the linear correlation coefficients of the
different subsets of mass sizes. Three subsets measures, for each of the subgroups of masses based on ec-
(mass diameter< 10 mm, 10-20 mm, and >20 mm) are centricity. As can be seen from this table, both ID and cube

root of ID correlated well for the different types of masses,
those with low or high eccentricity. The other two measures

TABLE II. Absolute values of differences between paired measures obtained

from two corresponding views for the three subsets of masses segmented by
mass size.

TABLE Im. Linear correlation coefficients (Pearson's r 2) between corre-
Mass diameter sponding paired views of the same masses for the two groups of cases

<10 mm 10-20 mnm >20 mm segmented by eccentricity.

Number of masses 23 64 13 Eccentricity (8)
Difference in 1.1±0.8 2.2±1.9 4.0±2.9

mass diameter <I.l >1.1
Amm Number of masses 44 56

Difference in 1.1± 0.7 1.6± 1.0 2.6± 1.8 Mass diameter 0.98 0.58
effective size (r

2
)

AmM Effective size 0.85 0.74
Difference in ID 2.2± 1.5 5.1± 5.7 20.2± 26.9 (r 2)
A(mm 2 . AOD) ID 0.92 0.90

Difference in 0.13±0.1 0.14±0.07 0.21±0.22 (r2)
cube root of ID Cube root of ID 0.95 0.95

A (Vmm. AOD) (r2)
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"TABLE IV. Linear correlation coefficients (Pearson's r 2) between corre- Because of the presence of the mass, one can only ap-
sponding paired views for the malignant and benign masses, proximate the measurement from the surrounding area using

Malignant masses Benign masses the assumption that the normal tissue in the area of the pro-
jected mass and surrounding area are the same. This assump-

Number of masses 64 36 tion is but one source of error in the computed ID value that
could affect its invariance properties. This preliminary study

was intended mainly to assess the performance of ID as an
invariant measure of mass size. Hence, we included only

exhibited lower correlations for the subset of masses with cases with relatively well-defined masses that were clearly
high eccentricity (9). visible on both views. As a result, the reported correlation

Table IV shows the correlation of ID values between CC coefficients for all measures applied to our dataset are likely
and MLO views for malignant (64) and benign (36) cases, to overstate the performance of such a measure in a dataset
respectively. While malignant masses generally exhibit more that includes more subtle or somewhat ill-defined cases.
irregular boundary, our experimental results showed in this The assumptions that the measure will not be significantly
group of well-defined masses that the ID correlations were affected by scatter, film gamma, and exposure factors (e.g.,
similar (0.90 and 0.92 for malignant and benign masses, re- geometry, kVp, filtration, and field uniformity2 1) seem to be
spectively). reasonable for this purpose, but the desired characteristic (in-

Table V shows the range of averaged ID values and cor- variance) will have to be experimentally confirmed for dif-
relation coefficients between paired CC and MLO views ferent experimental conditions.
when different areas were used for background definition Our findings suggest that it may be possible to achieve a
(i.e., A radius= 5 mm, 7.5 mm, 10 mm, or 12.5 mm, respec- relatively reproducible measure for a given mass over a
tively). Although the ranges of ID measurements varied with rather wide range of conditions and different mammographic
respect to background definitions, ID values were well cor- views. We appreciate the fact that the definition of some of
related between the paired views in all measurements. the measurements of interest in this work were simplified

and could be more accurately described. However, the intent
IV. DISCUSSION was to develop a relatively easy measure to compute, per-

We evaluated a quantitative measure for estimating the haps at the cost of being somewhat less rigorous and precise.
"sizes" of masses as depicted in mammograms. For 100

verified masses, ID was "estimated" as the product of its V. CONCLUSION
area and average linearized contrast. ID was found to be We have developed a method for deriving a quantitative
relatively "invariant" between the two views (CC andrelaivey "ivarant"beteenthe wo iews(CCand measure of lesion "size," termed integrated density or I1D,
MLO). It was shown to be a better measure than the others meas fon "size termed interatedwdens irId
tested in this study, and in particular it is better than the other that was ou to b mereasob ivr e tweentpaired
measures for the subset of masses that are more eccentric, projection views of the same breast. Our experimental resultsim a set of 100 well-defined masses demonstrated a high de-
When ID was transformed to a measure with a unit compa-

rable to length (by taking the cube root), its performance gree of correlation between ID-based measures obtained

increased substantially, resulting in a correlation coefficient from ipsilateral paired views of the same breast. ID-based

of r2=0.95. ' measures showed a higher degree of correlation when com-
Computed D) values are dependent on the segmentation pared with other traditional size-related measures, such asComputed II) alues areadeendentronfthcsegmentatio

method and the definition of the surrounding background mass diameter or effective size.

region used. Therefore, ID remains scheme dependent. How-
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Appendix 2

Evaluation of quantitative measures of breast tissue density from
mammography with truth from MRI data

Xiao Hui Wang, Brian E. Chapman, Cynthia A. Britton,'Saraswathi K. Golla, Louisa P. Wallace,
Walter F. Good.

Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15261

ABSTRACT

Breast tissue density is one of the most cited risk factors in breast cancer development. Nevertheless, estimates of the
magnitude of breast cancer risk associated with density vary substantially because of the inadequacy of methods used in
tissue density assessment (e.g., subjective and/or qualitative assessment) and lack of a reliable gold standard. We have
developed automated algorithms for quantitatively measuring breast composition from digitized mammograms. The
results were compared to objective truth as determined by quantitative measures from breast MR images, as well as to
subjective truth as determined by radiologists' readings from digitized mammograms using BI-RAD standards. Higher
linear correlation between estimates calculated from mammograms using the methods developed herein and estimates
derived from breast MR images demonstrates that the mammography-based methods will likely improve our ability to
accurately determine the breast cancer risk associated with breast density. By using volumetric measures from breast
MR images as a gold standard, we are able to estimate the adequacy and accuracy of our algorithms. The results can be
used for providing a calibrated method for estimating breast composition from mammograms.I Keywords: breast tissue composition, mammography, MRI breast imaging

1. INTRODUCTION

Assessing risk factors is one crucial step involved in breast cancer detection and early prevention. Because of its
apparent association with breast cancer development, and possible masking effects of early stage cancerous changes,
dense breast tissue is often cited as one breast cancer risk factor, although the magnitude of the risk is still debatable [1-
9].

Accurate estimation of tissue composition is important for risk assessment and for the selection of appropriate
diagnostic modalities for detection. It may also have potential for improving computer aided diagnosis (CAD)
performance by incorporating tissue composition information into CAD systems. Currently, while several computer
algorithms have been developed to calculate breast tissue composition, they are generally based on a variety of
subjective standards and do not necessarily provide quantitatively reliable results [5,10-141. If such results are used in
CAD system. their impact on CAD performance may be less than optimal.

A quantitative measure of breast tissue density, calibrated to some objective measure, would be of considerable value
for both the estimation of cancer risk and for the development of CAD. Such a quantitative measure should be derived
from more objective measures of 3D image data where tissue superposition does not obfuscate the correspondence
between pixel values and tissue composition. We have previously developed a method to measure tissue composition
from breast MR images. In this project we developed computer algorithms using physics based model to recover tissue
composition information from 2D mammograms with compressed tissue and compared the results to measures from this

MR data, as well as to radiologists' readings based on the BI-RAD standard [15]
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2. METHODOLOGY

2.1 Mammography-based quantification of breast tissue composition
Digitized mammograms were used for this study. Prior to computing the amount of glandular tissue represented in
these mammograms, the images were corrected for the non-linearity of radiographic density with respect to log energy
exposure and for inhomogeneities of film exposure resulting from the heel effect and scatter. The images were also
compensated for the non-uniformity of breast tissue thickness caused by breast compression. A physics based model
was developed for calculating the fraction of glandular tissue at each pixel, and then applied to the normalized images.
The total amount of glandular tissue was finally derived by integrating over all pixels within the breast area.

2.1.1 Correction for nonlinearity of film characteristic curve and digitizer
Radiographic density in mammograms has a non-linear relationship to log energy (X-ray) exposure, particularly at the
high and low density extremes, and this would affect the accuracy of any composition estimates based on pixel values.
To correct for this, it is necessary to linearize radiographic density in relation to log exposure. The mammograms used
in this study were recorded on Kodak Min R 100 film, and a generic characteristic curve for this film was obtained from
the manufacturer (Kodak, Indianapolis, IN). This characteristic curve was fitted with a polynomial spline function,
which we used to convert pixel density values to log exposure values. Linearized density values were then derived by
applying a linear mapping, designed to coincide with the central region of the film's characteristic curve, to convert log
exposure values back to density values.

To correct for any non-linear relationship between optical density, as measured by the film digitizer, and log exposure,
the digitizer was routinely calibrated to ensure linearity in the OD range of 0.1 - 3.8.

2.1.2 Correction for inhomogeneity of exposure intensity
Mammographic images are subject to exposure inhomogeneities resulting mainly from the heel effect and from
scattered radiation. This may also affect the accuracy of quantitative estimates of composition. Once pixel values have
been linearized as described above, we can partially correct for this inhomogeneity. The process begins by sampling
pixel values within the image background, by finding the brightest pixel value within a kernel of 9x9 pixels through
entire background area. These sampled points were then fitted by a second-order polynomial function

P(x, y) = a0 + alx + a 2Y + a 3x2 +a 4 Y2 + a5 xy

using least squares methods, where x, y are pixel coordinate, a, (i = 0 ... 5) are fitted coefficients, and P(x,y) is the pixel
value at coordinate of x, y. The distribution of background brightness was estimated using the fitted polynomial
function. Each inhomogeneity corrected image was obtained by subtracting its calculated background brightness from
the original image, pixel by pixel.

S _ 2.1.3 Correction for non-uniformity of breast tissue thickness
Besides non-linearity of pixel densitometry readings and inhomogeneity of exposure intensity, the non-uniformity of
tissue thickness during breast compression may have the greatest impact on the association of pixel values with tissuetypes. We modeled compressed tissue thickness. and normalized images based on this model so that tissue thickness
becomes uniform to eliminate thickness as a significant factor in estimating tissue composition from image density. A
brief description of the method is presented here, and additional details can be found in previous publications [16-17].

Breast tissue thickness modeling -- Because of the elasticity of breast tissue, its thickness becomes tapered toward the
skin line during compression. To model the thickness change, we first segmented the breast region from remainder of
the image by employing algorithms previously developed for automatically detecting skin lines and pectoral muscles"[18]. We then created a map of tissue thickness at each pixel as a function of the pixel's distance from the skin line. The
distance between a pixel and the skin line was determined by an exhaustive search of the pixel's distance to each point
on the skin line. Since the total X-ray attenuation depends on both the tissue attenuation coefficient and the tissue
thickness, a measure of thickness can be estimated from projections of essentially pure tissue at each distance. It is
difficult to directly measure X-ray attenuation. However, since pixel values had been linearized for log exposure, the
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pixel value corresponding to pure tissue, such as fat, can ideally represent thickness change relative to its distance from
the skin line. For each distance, the pixel value of pure fat tissue was approximated by taking the mean value plus one
standard deviation from all of the pixels at that distance. The profile of the thickness values at all distance was then
fitted to a curve function using exponential formula. This fitted thickness profile served as a tissue thickness model for
the breast and was used for adjusting for breast tissue thickness.

Since our breast thickness model was based on approximation of pure fat tissue at each distance, it is likely that
thickness was overestimated for extremely dense breasts where only few pixels corresponded to pure fat tissue. To
correct the erroneous estimation caused by dense tissue, we examined the histogram of density values in breast tissue
area prior to building thickness model. If the peak value was located within 20% of the dense end of the entire
distribution range, the image was classified as dense tissue and the thickness function was fitted on only the first one
third of the thickness profile, In particular, the center part of the tissue area on the image was not taken into account and
was assumed to have constant thickness.

Breast tissue thickness correction -- The thickness coefficient was defined as the proportion of the maximum thickness
and determined from the breast thickness model for each distance. The final step for correcting breast tissue thickness is
to normalize breast thickness at each pixel by dividing the pixel value by the thickness coefficient at the distance of that
pixel.

2.1.4 Quantitative measurement of Breast Tissue Composition
The method of quantitatively deriving tissue composition from adjusted density values was based on a model of the
physics of X-ray attenuation, as tailored to mammography, which enabled us to estimate the fraction of glandular tissue,
for each pixel, over the entire breast area.

After density values have been linearized as described above, the relationship between film density and exposure can be
approximated as

D = CO + kLog(E) (1)

where D is the pixel value at an arbitrary pixel, C, is the intercept of the pixel density-log exposure linear line, k is the
film's gamma, and E is the exposure energy. Equation (1) can be rewritten as the difference of the background density of
the film, and the total attenuation of the tissue projected onto a pixel:

D = Do - kYflixi (2)

where Do is density of film's background (i.e., non-attenuated exposure), A is the attenuation coefficient of one type of
tissue type, xi is the thickness of that tissue type, and I/i xi is the total attenuation of the tissue.

For this study, we assume a breast is basically composed of two types of tissue, fat and parenchyma, and most of the
parenchyma is composed of glandular tissue. At an arbitrary pixel, if we define xfat as the relative thickness of fat tissue
and (I -. ,ft) as the relative thickness of parenchymal tissue, then equation (2) can be expended to

D Do - k[xfat/i fat + (1 - Xfat )P/.parenchyma ] (3)

IfD (Jat is the pixel density corresponding to pure fat, then xj1 , becomes 1 and with equation (3) we have

D(Jit= Do - kpfft

or
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Do - DI(ft) = A

k

We also define R=p ..... hyma / Ufa,"

By rearrangement, equation (3) can be rewritten as

Xfat - +Do-DB

Xfat (lfat -- Uparenchyma) + Uparenchyma - k

To estimate relative thickness of fat tissue at an arbitrary pixel location, we derived a formula from the above equation

BR D-D -R (4)
B - Idparenchyma _B - RA _ A - D(fat)

fA fat - 1 parenchyma A-RA I-R 1-R

The relative thickness of parenchymal tissue at a pixel is expressed as 1 - xf.,. The background density was measured as
the mean pixel value in a 15 x 15 pixel area with no object present. Df,, was calculated as the mean value of the 15% of
pixels having the highest values within the breast area. The ratio of the breast parenchyma attenuation coefficient to the
fat attenuation coefficient, R, was obtained from published literatures [ 19-20]. The final tissue composition measure for
each image was the proportion of parenchymal tissue in the entire breast area, which was obtained by dividing the sum
of the relative thickness of all parenchymal tissue pixels by the total number of pixels.

2.2 Breast tissue composition measures from MRI data
In order to process a large number of MR images, we developed an automated method to estimate breast composition
from axial MR images. The images were TI weighted gradient echo acquisitions without fat suppression, acquired on a
0.5 T Aurora dedicated breast scanner. We first identified an artifact free ROI within the air region of the image. To
ensure exclusion of artifacts, the ratio of the mean (y) to the standard deviation (o) within the region was tested to
match the expected value of 1.91 following Henkeleman [21]. A binary mask was generated by setting a threshold of
#u+Noa. Holes in the mask were filled using a morphological closing operation. Intensity inhomogeneities were reduced
by applying homomorphic filtering. The image was blurred with a wide Gaussian filter. The original image was then
divided by this blurred image. The chest location was estimated by the first nonzero point at the midpoint between the
breasts. A straight cut in the image was made perpendicular to the breasts at this point to separate the breasts from the
chest- A crisp clustering algorithm was then used to segment the masked image into two compartments (parenchyma
and fat). The threshold level and structuring elements for the morphological closing were optimized based on 12,000randomly selected points taken from eight consecutive patients, which were classified by an observer. The optimalthreshold level was found to be Iu+27or. The morphological closing was achieved by three successive dilations with a
cross like structuring element (i.e., ones along the principle axis, zero elsewhere) of size 9x9x7 followed by threesuccessive erosions with the same structuring element. In selected review of cases the algorithm was seen to performquite well. Exceptions included very large, fatty breasts where the proximity of the breasts to the receive coils resultedin large inhomogeneities which were not adequately corrected. Also in some patients ghosting of the heart resulted ininclusion of relatively large air, regions between the breasts into the mask. Both of these errors resulted in an
overestimation of breast parenchyma.

2.3 Breast tissue composition assessment from radiologists
Subjective scores were determined by mammographers' readings from digitized mammograms using the BI-RADstandard. Digitized images, with resolutions of 50x50 gtm

2 and 12 bits, were read on a 1024x2048 CRT monitor. Three
experienced mammographers individually scored all of the cases in the study's database, and their scores were averaged
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to get the mean values reported as final scores. For each breast, there were separate scores for the cranial-caudal views
(CC view) and the medial-lateral-oblique view (MLO view), and a score for the breast obtained by viewing both the CC
and MLO views simultaneously. When individual views (including CC views and MLO views) were presented to
mammographers for scoring, images from the cases were randomly mixed so that they were not identifiable for pairing
of consecutive images. The order of image pairs (CC view and MLO view) of breasts for scoring was also randomized
so that consecutive pairs from the same patient were unlikely.

Mammographers' scores for composition were based on the BI-RAD standard, which coarsely classifies tissue
composition into four categories - category I indicates that the breast is almost entirely fat; category II indicates that
there are scattered fibroglandular densities; category III indicates that the breast is heterogeneously dense; and, category
IV indicates that the breast tissue is extremely dense. To accommodate patterns between categories, and variations
within a category, radiologists reported on a 40 unit scale, which had been defined such that units of 1-10 represents BI-
RAD category I, 11-20 represents BI-RAD category I1, 21-30 represents BI-RAD category III and 31-40 represents BI-
RAD category IV.

2.4 Correlation analysis
To compare the results from the computerized measurement of digitized mammograms with scores from MR images, or
with scores from mammographers' readings, least square distances were calculated to obtain correlation coefficient for
the two sets of data.

Each MRI score from one breast was paired respectively with mammography-based score from CC view, from MLO
view or from mean value of CC view and MLO view of corresponding mammogram. To compare scores from
mammographers' readings, the scores of CC view, MLO view, and CC view together with MLO view from
marnmographers' readings were paired with mammography-based scores of CC view, MLO view, and mean value of
CC view and MLO view, respectively.

2.5 Image database
We collected 145 cases for this study. Each case had two views (CC view and MLO view) of mammograms and a
corresponding MR exam. For each case, the time difference between the acquisitions of the two image sets was less
than six months.

Mammograms were digitized with a Lumisys digitizer (Sunnyvale, CA). Digitized mammograms had a spatial
resolution of 50x50 .tm 2 and 12-bit brightness resolution. For this particular study, which evaluated only global
characteristics of images, the initial spatial resolution was higher than what was required, and was reduced to 400x400

mgm2 by filtration. The digitizer was routinely calibrated to ensure linear translation from radiographic intensity of film
to optical density over the range of 0.1 to 3.8 optical density.

MR images were acquired on a 0.5T Aurora dedicated breast scanner (Aurora Imaging Technology, North Andover,-
MA). The Aurora breast coil was used. Images were acquired on axial plane using a 3D (2.5mm slices) gradient echo
sequence. To keep the processing simple. in particular to avoid registering breast images, we limited ourselves to a
single spectral band (TI without fat suppression).

3. RESULTS

Table I lists the linear correlation coefficients for view-based and breast-based comparisons between computer scores
derived from mammograms and the scores from MR images (A), and between computer scores from mammograms and
the scores from mammographers' readings (B). The results indicate that scores between MR images and

mammography-based computations have higher linear correlation than the scores between mammographers' readings
and mammography-based computations. Scores based on two-views generally gives better correlation than those based.

on only one view.
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When the correlation data is plotted graphically (Figure 1), it appears that the relationship between the scores from
mammographers' readings and scores from mammography-based computation was not linear, suggesting that qualitative
estimate and quantitative measures can not be directly mapped to each other.

Mammography-based Computer Scores

CC view MLO view Two views (CC view and MLO view)

MRI Scores 0.62 0.50 0.65

Radiologists' Scores 0.57 0.51 0.61

Table 1: Linear correlation coefficients of breast tissue composition measurements between mammography-based
computer scores and MRI scores, and between mammography-based scores and radiologists' scores.
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4. DISCUSSION

We have shown in this study that it is feasible to recover information of breast tissue composition from 2D
mammographic data, despite tissue compression, by using computerized algorithms developed in this project.
Furthermore, objective measures from 3D MRI data can be a viable standard for tissue composition estimates, as
suggested by the high linear correlation between MRI scores and mammography-based computer scores, shown in our
results. Although the results look promising, they are not highly optimal. I major limitation of this work is that the MR
image data used in this study was less than optimal, being acquired on a 0.5T system. This caused some difficulty in
removing artifact from the MR data and in adjusting parameters associated with segmentation and background
correction in the MR images. Two major problems with this set of MR image data, as mentioned in the methods section,
were inhomogeneity of image background and ghosting effect, which tend to overestimate amount of parenchymal
tissue in the breast region. By getting better data, we would expect more reliable scores from MR images.

Several steps were involved in mammography-based tissue composition computation. The crucial one among those
steps is thickness correction, which has limitations on its application to certain types of mammograms. When breast
tissue is very dense, the estimated thickness model can be incorrect because deriving a thickness profile from the image
data assumes that regions of pure fat tissue exist, and its attenuation can be approximated from statistical values of the
image data. Using a histogram of the distribution of pixel densities, to identify very dense tissue and adjust its thickness
profile accordingly, improved estimates for most of the dense breast images. Another factor that can cause incorrect
thickness estimation is the existence of a skin flap near the chest wall, or lumpy breast tissue caused by the reduction in
fat tissue with age. Images with these features cause locally irregular thickness changes, and the thickness model we
developed in this project does not provide an adequate mechanism to accommodate those images.

Quantitative measures of breast tissue composition become particularly desirable for incorporation into CAD systems.
Currently there is no accepted standard that can be adopted as a gold standard for composition, and subjective and
qualitative methods result in large variations, and possibly non-linear relationships to actual composition, as indicated in
our results. This study suggest that quantitative measures derived from 3D MR image data may provide a good standard
for quantitative computation of breast composition.

Even though many improvements are needed to our algorithms, and in the MR data we use for comparison, the
preliminary results presented in this study suggest that breast MR provides a promising standard for composition
estimation, and that the improvements in deriving composition from mammograms will likely enhance our ability to
accurately determine the breast cancer risk associated with breast density.
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Appendix 3

Feature-based differences between mammograms

Walter F. Good, Xiao Hui Wang, Glenn Maitz
Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15261

ABSTRACT

A novel technique for assessing local and global differences between mammographic images was developed. This
method uses correlations between abstract features extracted from corresponding views to compare image properties
without resorting to processes that depend on exact geometrical congruence, such as image subtraction, which have a
tendency to produce excessive artifact. The method begins by normalizing both digitized mammograms, after which a
series of global and local feature filters are applied to each image. Each filter calculates values characterizing a
particular property of the given image, and these values, for each property of interest are arranged in a feature vector.
Corresponding elements in the two feature vectors are combined to produce a difference vector that indicates the change
in the particular properties between images. Features are selected which are expected to be relatively invariant with
respect to breast compression.

Keywords: Mammography, Computer-aided detection, Breast symmetry

1. INTRODUCTION

In evaluating manmnographic studies, mammographers frequently need to compare images - either to determine the
degree of contralateral symmetry or to determine changes over time for a fixed view. Traditionally, mammographers
assess the degree of asymmetry between corresponding views of left and right breasts, or changes between a current
study and a prior study, as indicators of the likelihood of the presence of abnormalities. In an effort to mimic the
performance of mammographers, CAD algorithms sometimes attempt a rudimentary measure of differences between
mammograms by subtracting images after they have been placed in registration, to the extent possible, by rigid
translations and rotations1 . Because of compression induced geometric deformations, and ambiguities introduced by the
superposition of tissues, both of which are characteristic of projection mammography, the rigid registration and
subtraction process generates difference images which contain considerable artifact and are visually unappealing. Thus,
these methods are an inefficient mechanism for detecting the kinds of difference information of value to
mammographers. The real problem is that the similarities and differences of interest actually relate to features and
abstract objects and topological properties, rather than to geometric equivalence.

1.1 Information content of image differences
There is abundant evidence that difference images in certain procedures can contain diagnostically useful information,
despite the presence of substantial subtraction artifact. In the diagnosis of chest radiography, it has been demonstrated
that adding temporally subtracted images to the diagnostic process can, in many situations, significantly improve
diagnostic accuracy and reduce mean interpretation time2. Bilateral subtraction images, which are frequently used in
CAD algorithms, have been shown to contain diagnostic information1, 3

-
6. However, subtraction of mammograms is a

difficult task due to inconsistencies in breast compression, skewing of the three-dimensional breast relative to the image
projection during compression and lack of easy landmarks on the breast that can be used to facilitate optimal image
registration. Previous attempts to develop acceptable subtraction methods for mammograms, including methods for13-5 7-9
both bilateral subtraction" - and temporal subtraction ", have had only partial success. As a result, the subtraction of
mammograms has not been employed clinically. Furthermore, the inability of current methods to put mammographic
images in accurate registration for subtraction, or to use other methods to find differences, greatly impairs the ability of
CAD to exploit this kind of information.
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1.2 Overview of our approach
At present there are no algorithms that successfully capture the essence of image differences, as seen by
mammographers. In our first effort to find an alternative to image subtraction, we have developed a method which
attempts to perform a feature-based analysis of differences between images. This has involved the integration of several
technologies to provide an efficient mechanism for performing quantitative analysis of mammographic images. A few
of these methods are briefly described here, and elaborated on in the methods section below.

1.2.1 Adjustment for tissue thickness variations during breast compression
Techniques for automatically making the appropriate local image corrections, based on the variations in tissue thickness
during breast compression after correcting for the nonlinearities of the characteristic curves of film and digitizer, have
previously been developed by usl° and by others11-13. Application of these methods can improve the soft display of
mammograms as well increase the accuracy of quantitative estimates of tissue composition.

1.2.2 Measure of tissue composition
We have recently developed a computerized method for calculating tissue composition from digital mammographic
data, which has been calibrated against estimates derived from breast MRI'°. By first correcting for the nonlinearity of
the detectors' characteristic curve and for the thickness of the breast toward the skin line during compression, we have
been able to implement a classification mechanism that provides accurate estimates of composition.

1.2.3 Geometric deformation
A simple computerized method for deforming mammograms has been developed, which puts nipples, chest walls and
skin lines in registration, and which we believe is nearly optimal with respect to the tradeoff between registration
accuracy and loss of diagnostic information'4' 15. The transformation is plausible in the sense that it is invariant with
respect to translation, rotation, and degree of magnification or minification, and it behaves geometrically in a manner
that counteracts certain kinds of differences resulting from breast compression.

1.2.4 Multi-image CAD
Certain kinds of features related to focal densities (e.g., location, texture, degree of spiculation, and integrated density
difference) tend to be relatively invariant, or at least predictable, with respect to breast compression and projection
during mammography. These features show a strong correlation between views, for densities that are projections of a
compressed mass, but are independent for unrelated densities. Methods have been developed to extract considerable
information about focal densities from such correlations, or lack thereof16.

1.2.5 Walsh-Hadamard Transform adapted for mammographic images
Because breast tissue is projected onto only part of a mammographic film, when traditional two-dimensional transforms
are applied to mammographic images, the image background usually has a significant, and undesirable, impact on the
result. Furthermore, most of these transforms are effectively based on a rectangular decomposition of the image area,
and this has limited relevance to the tissue patterns as presented in projection mammography. In order to more
accurately characterize the tissue patterns in mammograms, and to attempt to retain some relevance to actual ..
fibroglandular tissue structure, we developed a transform mechanism specific to mammography. This method is
basically an adaptation of the Walsh-Hadamard transform' 7, incorporating a non-rectangular decomposition, which has
been constrained to the image area representing tissue.

1.3 Hypothesis and aims
The goal of this project was to develop an automated technique for assessing local and global differences between
images, without resorting to processes that depend on local geometrical registration. This was inspired by the hypothesis
that corresponding contralateral mammographic views, and temporal sequences of mammograms, contain useful
diagnostic information that is independent of the information that can be derived by analyzing the images separately,
and that the bulk of this cannot be extracted by algorithms based on image registration and subtraction. Furthermore, we
assume that, by employing a symbolic as opposed to a geometric methodology, correlations between abstract features
extracted from corresponding views can be used to match image components without relying on, or expecting, exact'
geometrical congruence.
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A question arises as to what kind of differences are actually of clinical significance. Differences reported by
mammographers usually relate to changes is some specific set of image properties, whereas differences in individual
pixel values, in isolation, are relatively meaningless. In this initial investigation we focused primarily on features related
to breast composition, distribution patterns of fibroglandular tissue, and on certain aspects of image texture.

2. METHODS

2.1 Overview of technique
This project was a preliminary attempt to integrate various techniques for computerized analysis of mammograms, for
the purpose of finding differences between similar images without resorting to processes that principally involve image
registration and subtraction. The specific process we are studying begins by correcting both mammograms for the
combined characteristic curve of film and digitizer (in the case of film images) to produce pixel values proportional to
exposure, and then locally adjusts for nonuniformities in the thickness of the breast during compression. We then
geometrically deform the images to match a semicircular template by using a nonlinear geometric transformation we
have previously published, which places nipples, chest walls and skin lines in accurate registration to the template.
Tissue densities are corrected locally by the Jacobian of this transformation and then globally so that pure fat voxels and
pure fibroglandular tissue vox6ls (if such voxels actually existed in the mammogram) are mapped onto standardized
values, by using methods we have developed for identifying tissue composition of specific voxels.

Figures 1A and ID show CC views of the left and right breasts of a woman having a malignancy in the left breast. The
thickness-corrected versions of these images are shown in Figures 1B and 1E. The images depicted in Figures 1C and
IF have been geometrically transformed to match a semicircular template. It is the images in Figures 1C and 1F to
which further analysis will be applied.

Once images are in registration with the template, and their gray scales have been adjusted, we apply a series of feature
filters to characterize the image properties of interest. A variety of global features, including measures of tissue
composition, slope of logarithm of power spectra and image texture, can be made largely invariant to breast
compression and imaging parameters and are useful for characterizing breast images. Additional features for
categorizing the pattern of fibroglandular tissue are derived by applying a modified version of the Walsh-Hadamard
transform that has been adapted specifically for evaluating tissue patterns in mammography. Features are placed in a
feature vector that represents the global properties of the image that are of interest in the particular context. Appropriate
comparison of feature vectors reveals differences between image properties. These methods represent a novel approachS to evaluating differences, and reflect more accurately the process performed by marnmographers in making such
judgments.

Our method also provides a mechanism for analyzing changes in focal densities by employing multi-view CAD
... algorithms, which we previously developed for analyzing ipsilateral pairs, to extract and coriipare features related to

focal densities from both images. This process identifies objects, and their features, in each view, and evaluates all
- possible pairs of objects (with one from each view) to construct the most likely mapping between objects within the two

images. Examples of the kind of spatial features we derive for focal densities, that are appropriate for multi-image CAD
are: radial distance from nipple; length projection of density onto the NAL; integrated contrast difference relative to
background; complexity of boundary around a density; local image texture; and, margin definition of a density. The
mechanism for comparing focal densities between ipsilateral image pairs has been previously published and is not
presented here16.

In this preliminary study, we limited our attention to detecting differences in the distribution of fibroglandular tissue.
Other kinds of global features could.be handled in a similar manner.

2.2 Individual image normalization
In order to facilitate the quantitative comparison of images, it is desirable to correct the grayscales of images for
nonlinearity of characteristic curves of detectors'°, to provide values linearly proportional to logarithm of exposure, and
then to correct image densities for non-uniformities in the thickness of breast tissue during breast compression.
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D E F

Figure 1 CC views of the left and tight breasts of a woman having a malignant
mass in the left breast. Original images are shown in A and D. Thickness-corrected and
geometrically transformed versions are shown in B and E and in C and F, respectively.
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2.2.1 Correction for characteristic curve of digitizer and film
The characteristic curve for each particular film is obtained from the manufacturer. Our routine quality assurance
process on the digitizer maintains a linear relationship between pixel value and optical density. The characteristic curve
correction algorithm is written to use the inverse of the digitizer characteristic curve to convert pixel values to optical
density values, and then us the inverse of the film's characteristic curve to convert optical density to film exposure.

2.2.2 Adjusting pixel values for tissue thickness
Although there are computationally more efficient methods, we measure the distance of each pixel to the skin line with
a simple exhaustive search. We divide the range of possible distances into a small number of intervals, and the mean
and standard deviation are calculated for pixels within each interval. An appropriate function is fitted, with constraints,
to the means plus one standard deviation. This "correction" function represents the change in pixel value with respect to
distance from the skin line, and actually indicates tissue thickness relative to this distance. Figure 2 shows the correction
function for the image in Figure IA. For each pixel, the correction function is used to calculate a correction value from
the pixel's distance value, and this correction value is used to adjust the pixel value. In the central regions of the breast
area, the correction values are 1 and these pixels are left unchanged10 .

6000

5000 - data

4000 - eNonent~1frfctt:n0

S3000
2000-

1000
0

1 21 41 61 81 101 121 141

Distance fromthe skin line

Figure 2 Thickness correction curve, and fitted curve, for image shown in Fig-
ure 1A. The curves are approximately inversely proportional to relative breast thick-

ness. Distance is measured in pixels.

2.2.3 Estimating tissue composition
After making the above adjustments to pixel values, at each point in a view we estimate % fibroglandular tissue, by
"deriving certain features directly from a local histogram and using a neural network, trained with values from breast
MRI, to obtain a local estimate of composition. A global composition value is determined for the image by integrating
over the tissue area'0 . This enables us to adjust grayscales to an absolute range - so that pixels corresponding to pure fat
and to pure fibroglandular tissue, if they existed, would always fall at fixed pixel values.

2.3 Geometric Transformation of images
To facilitate a comparison between mammograms, normalized images are deformed to match a template, which is
defined to be a semicircular region, with the nipple location specified as being the middle of the arc of the semicircle.
The transformation is designed to map the mammogram's nipple onto the nipple location on the template, and map the
skin line onto the semicircular boundary of the template. The total deformation of the transformation is measured by:
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Template Area

where, J (O (rc)) is the Jacobian of the transformation of the source image I, at coordinate (r,c),

and the resulting value is included in the global feature vector as an additional feature characterizing breast shape. A
fully automatic nonlinear geometric transformation capable of performing such a deformation has been previously
published14',5 , but was originally designed to deform one mammographic image to the shape of a second
mammographic image, putting their skin lines, chest walls, and nipples in exact registration for the purpose of image
subtraction. The adaptation of the transformation for this project is described here.

The transformation, which we refer to as the relative radius polar coordinate method, is diagramed in Figure 3. The
technique begins by automatically detecting, on the input image, the pectoral muscle if it is an MLO view (e.g., OL in
Figure 3), the skin line and nipple location, N in Figure 3. The skin line is described by a spline function, to facilitate
the processing described below. A polar coordinate system is established with the origin, 0, at the intersection of the
nipple axes line (NAL), ON, with the line indicating the pectoral muscle, on an MLO view or with a line parallel to, and
0.5 cm beyond, the edge of the film on a CC view. A corresponding polar coordinate system is established on the
template with its origin, 0', as indicated in Figure 3.

L I"

S aa

//Ps / N' OP = O'P---- -- --- --- -

--- Os as,

Figure 3 Schematic representation of geometric transformation.

. Tissue pixels within a mammogram are identified by a relative polar coordinate, which we define to be the angle, M, of
their position vector relative to the NAL and their fractional distance between the origin and the skin line. For each
pixel P' in the reference template (e.g., right image in Figure 3), a point, P, having the same relative polar coordinate, is
found in the image to be deformed. The pixel at location P' in the template is then given the value of the point at P, as
determined by the nearest pixel or through interpolation. In general, this mechanism allows two mammograms to be
deformed so that their pectoral lines, NALs and skin lines are all in complete registration. In this case, the source
mammogram is deformed such that its skin line, pectoral muscle and nipple are in registration with the corresponding
features on the template. As an image is transformed to the reference geometry, pixel values are adjusted for the local
expansion factor of the transformation by dividing each pixel value by the local Jacobian of the transformation at the
pixel's position.

2.4 Walsh-Hadamard transformation adapted for mammographic images
Tissue patterns in mammograms can be characterized by classifying combinations of coefficients from transformations
such as the Fourier transformation or the Walsh-Hadamard transformation. For this project we developed a version of
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the Walsh-Hadamard transformation that was constrained to operate on only the image area representing breast tissue.
The Walsh-Hadamard transform decomposes signals by applying an orthonormal set of rectangular waveforms (basis
vectors). The individual waveforms are not generally periodic, but they can be ordered by a property referred to as
sequency, which is the number of sign changes in a waveform18. The two dimensional version of the transform is
separable and there exist efficient algorithms for it computation. To constrain the transformation to tissue areas, we
employ the geometric transformation described above to deform the tissue area of a mammogram to coincide with the
semicircular template. The semicircular area is divided horizontally by chords that partition it into regions of equal area,
and divided vertically by lines originating at the nipple position and ending at the chest wall. side of the template as
depicted in Figures 4A and 4B respectively, for the 8 x 8 case. These two patterns are superimposed to form the basic
grid upon which the transform is calculated. The ordered form of the transform can be calculated as:

1 N-i N-1W rs= Y I(i, j)(-)'ij''
"N- j=

where,
N-1

p(i,j,r,s)= (hk (r)ik +hk (S) jk)
k--O

and

fork •o: k(r)=rk +rkl
h(r) = r_

Figure 5 depicts the set of basis functions for the 8 x 8 case.

While this method has demonstrated some clear advantages over traditional transform techniques, it has certain
significant limitations. For characterizing tissue patterns, at a scale that is appropriate for diagnostic purposes, an 8 x 8
or 16 x 16 transform may be adequate. However, due to the complexity of partitioning a discrete semicircle into ever-
finer regions of equal area, the transformation cannot be extended to resolutions on the order of the pixel size. While
this problem can be overcome by defining the template to be sufficiently large, or by adopting an elaborate interpolation
scheme, the impracticality of these processes limits its usefulness. Also, the use of a non-rectangular decomposition of
the image area greatly increases the difficulty in implementing fast algorithms for the calculation, and partially
neutralizes the computational efficiency of the Walsh-Hadamard transform.

2.5 Comparison of Feature Vectors
Changes in individual features between two images are determined by comparing the components or their respective
feature vectors. If a given property is similar between images, then the corresponding features in the feature vectors
should be nearly equal. In general, we define the difference between a feature in two feature vectors to be:

D(I,J)=[logF(i) log F (j)]2,

where, Fi is the filter that measures. feature i. Changes in image properties, that involve multiple features, are

calculated as a weighted sum of these differences over all features related to the property.

"Property. = wiD,.
ia Fry

The associations between properties and subsets of features will eventually be implemented as a set of neural networks
to allow for nonlinear summations of feature differences, but this will require training the neural networks on a large set
of training cases.
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Figure 4 Horizontal and vertical partitioning of semicircle template, for the
mammography-adapted Waish-Hadamard transform (N=8).
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2.6 Preliminary Evaluation
To evaluate the feasibility of the methods described herein, we calculated global feature vectors for a set of 100 images,
which included ipsilateral views, contralateral views, and current and prior studies. Cases were selected from a pool of
routine mammographic examinations performed at the University of Pittsburgh Medical Center, and were digitized
using a Lumisys-150 (Lumisys, Sunnyvale, CA) high-resolution, high-contrast sensitivity laser film digitizer that
produces a scan matrix of 4,096 x 5,120 pixels for an 8 x 10-inch film, by digitizing at a 50-pm sampling interval.
While this project focused on the use of digitized films, most of the effort will be applicable and/or adaptable to images
acquired using direct digital systems.

We have applied this method to measuring changes in a variety of image properties. Two representative studies are
described below and in the results section.

2.7 Measure of similarity in tissue pattern
A summary measure of similarity between two images, I and J, was defined to be:

P(I, J) = w! [log Pi (I) -lo I i (j)]2,

where Pi is pattern filter i, and wi is its weighting factor. Based on the various combinations of images contained in the

case set, we evaluated the above measure for corresponding left and right contralateral views and for ipsilateral pairs,
for all cases where the images were available. To determine the difference in this measure between image pairs acquired
from one woman or one breast, and pairs of images selected randomly from the pool of images, we performed the
measure on 50 pairs of CC views that were acquired on different women. We repeated the evaluation for each case
where we had a current image and a corresponding prior view from the same woman.

2.8 Change in tissue pattern between current and previous exam
From image symmetry filters, which were based on weighted coefficients of the adapted Walsh-Hadamard
transformation, we defined a summary measure for the symmetry of fibroglandular tissue for an individual image, I, as
follows:

S(l)= XWi [log Si(()]2,

where S are tissue symmetry filters. This measure was evaluated by comparing values from contralateral CC pairs

.... ifrom individual women to pairs of randomly selected CC views.

3. RESULTS AND DISCUSSION

A histogram of the three distributions of measure of similarity in tissue pattern, is shown in Figure 6. It appears that, by
our measure of similarity, contralateral views from individual women tend to be somewhat more similar than pairs
consisting of a current and a prior view, though the informal nature of the study does not allow one to draw conclusions
about the significance of this observation. The distribution of randomly selected pairs, which is shifted toward the
dissimilar end of the scale, can be clearly distinguished from both of the previous distributions, though occasionally
randomly selected images appear to be similar.

Figure 7 is a scatter plot with each point indicating the two symmetry values for a pair of images. The squares are for
left and right CC views from the same woman and the circles are for pairs of CC views from different women. The
contralateral pairs are clearly much more highly correlated than the randomly selected views, which appear to be
uncorrelated.
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These results are of a very preliminary nature and were obtained without the rigid controls that would be required for a
more definitive study. This seems to be appropriate in this case because the methods being investigated are still under
development. Nevertheless, these studies indicate that the approach we are taking has potential for detecting global
differences between images.

We realize that there are more specific ways to measure differences in the image properties considered in this paper.
However, measuring each property would require the application of specific techniques tailored to the property. The
method considered here makes it possible to measure a wide range of properties within a very general framework.
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Figure 6 Histogram of similarity measure for
three classes of image pairs Figure 7 Scatter plot showing symmetry

values for two classes of image pairs

4. CONCLUSION

This project proposes combining several techniques to produce an automated system for analyzing differences between
mammographic images, and as such, it should help clarify the question of how much information can be derived from a
comparison of contralateral images or a comparison of current and prior exams. The approach is unique in that it does ..
not rely on the subtraction of mammographic views, or on the local geometric congruence of images.
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