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ABSTRACT

The ensemble transform Kalman filter (ETKF) imitial eﬁsemble perturbation
generation scheme is introduced and compared with the simple and masked breeding
schemes. Instead of directly multiplying each forecast perturbation with a rescaling
factor to generate the initial perturbations as in the breeding schemes, the ETKF
generates initial perturbations by postmultiplying the foregast perturbations by a
transformation matrix. This matrix is chosen to ensure that the ensembie-based analysis
error covariance matrix would be equal to the true analysis error covariance if the
covariance matrix of the raw forecast perturbations were equal to the true forecast error
covariance matrix and the data assimilation scheme were optimal. For small ensembles
(~100), the computaﬁonal expense of the ETKF ensemble generation is only slightly
greater than that of the masked b;eeding scheme.

Version 3 of the community climate model (CCM3) developed at National
Center for Atmospheric Research (NCAR) is used to test and compare the ETKF and
breeding schemes. The NCEP/NCAR reanalysis data for the boreal summer in 2000 are
used for the initial analysis and the verifications. The ETKF ensemble variances at initial
time can reflect the geographical variations of the initial condition uncertainty better than
the bre.eding scheme. The ETKF maintéins comparable amounts of variance in all
orthogonal and uncorrelated directions spamﬁng its ensemble perturbation subspace at
12-h forecast lead time, whereés both breeding technicjueé maintain variance in few
directions. The maxirnal energy-norm perturbation growth within the ETKF ensemble

perturbation subspace calculated with linear dynamics assumption significantly exceeds
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that within the breediﬁg perturbation subspace at short forecast lead times. The ETKF
ensemble mean has lower root mean square errors than that of the breeding ensemble.
The ETKF estimates of forecast error variance are considerably more accurate than those
of the breeding schemes.

A new method to center the initial ensemble perturbations on the initial analysis is |
introduced and compared with the commonly used centering method of positive/negative
paired perturbations. In the new centering method, called spherical simplex centering,
one linearly dependent peﬁurbation is added to a set of linearly independent initial
perturbations to ensure that the ’sum of the new initial perturbations equals zero; the
covariance calculated from the new initial perturbations is equal to the analysis error
covariance estimated by the independent initial perturbations; and all the new initial
perturbations are equally likely. When the number of uncertain dﬁections ‘is larger than
the ensemble size, which is the case for numerical weather prediction, the spherical
simplex centering has the advantage of allowing almost twice as many uncertain
directions to be spanned as the symmetric positive/negative paired centering. Both.
centering schemes are applied to the CCM3 ETKF ensemble. Tests are performed on the |
accuracy of the ensemble means, the accuracy of predictions of forecast error variance
and the ability of the initial ensemble variance to resolve inhomogeneities in the
observational network. In all of these test categories, the spherical simplex ETKF
ensemble is found to be superior to the symmetric positive/negative paired ETKF
ensemble. The computational expense for generating spherical simplex ETKF initiai

perturbations is about as small as that for the symmetric positive/negative paired ETKF.
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Because all current ensemble techniques partially misrepresent the effects of
initial condition error and model error on forecast accuracy, it is inevitable that members
of dynamic ensembles are not drawn from the same distribution as th¢ distribution of
truth given an ensemble forecast. To address this deficiency, a néw ensemble
postprocessing method that reduces seasonally averaged second moment errors of the
ensemble forecasts is introduced. The method involves adding independent sets of N
random 4-dimensional “dressing” perturbations to each of the K members of a dynamical
ensemble forecast to obtain an NxK dressed ensemble. The new method
mathematically consffains the ‘stochastic process used to generate the statistical
“dressing” perturbations so that it entirely removes seasonally averaged errors in the
second moment measures. ETKF ensembles that were dressed with perturbations
satisfying this constraint were found to give more accurate probabilistic forecasts than
corresponding undressed ETKF ensembles. A random number generator experiment and
an experiment with the CCM3 ETKF ensemble show that the previously proposed “best
member” dressing method fails to reliably predict the second moment of the distribution
of forecast errors whereas the new dressing method reliably predicts this second moment.

The CCM3 ETKF ensemble postprocessed with the new dressing method is
applied for probabilistic forecasts of cooling degree days (CDD) for Boston. It is shown
that the new kernel accounting for temporally correlated forecast errors results in
ensemble forecasts of CDDs with reliable spread whereas the best member method leads

to an underdispersive ensemble of CDD forecasts.
(
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Chapter 1

Introduction

It is widely recognized that numerical weather forecasts have limited skill. Errors
in numerical forecasts are attributed to the inevitably existing inaccuracies in initial
conditions and deficiencies in numerical models. Due to the chaotic nature of the
numerical model, a small error in the ihitial condition can grow eXPOnentially and
eventually make the forecast useless (Lorenz 1963; 1969). Incoinplete knowledge of the
dynamical and physical equatiox‘ls of the atmosphere, and further approximations in
numerics make the model trajectory diverge from the true state even if the initial
condition is perfect. Since numerical forecasts are inherently uncertain, a forecast is
hconmlete unless it is accompanied with a prediction about its uncertainty and forecasts
are more appropriately expressed in a probabilistic framework. Such additional
information significantly expands the usage of the forecast. |

Probabilistic forecasts could be ideally generated by propagating the ptobability
density function (pdf) of the state through model dynamics such as the Liouville and
Fokker-Planck équations (e.g. Epstein 1969; Ehrendorfer 1994a, B). However, it ié fbo
computationally expensive for numerical weather prediction (NWP) models. A
computationally feasible épproach to estimate the evolution of the pdf is through
ensemble forecasting, where an ensemble of forecasts can be generated by integrating a
numerical forecast model from distinct initial conditions that are consistent with the

uncertainties in the initial condition and/or by using multiple models or model
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configurations to represent the uncertainties in the computationai representation of the
equations that govern atmosphere motion. The uncertainty of the forecast is represented
either by the dispersion of the ensemble forecasts or the forecast probabilities generated
by using the relative frequencies of events of interest in the resulting collection of
forecasts. Since ensémble forecasting is recognized ‘as a practical way to provide
probabilistic forecasts (Leith 1974), ensembie forecasting has undergone dramatic
development. It has been operationally implemented for medium-range numerical
weather prediction (e.g., Toth and Kalnay 1993,1997; Molteni et al. 1996; Houtekamer et
al. 1996) and is also being used for short-range weathef prediction (e.g., Hamill and
Colucci 1997, 1998; Du et al. 1997; Stensrud et al. 1999; Hou et al. 2001 ;Grimit and
Mass 2002; Stensrud and Yussouf 2003). It is found 111 these studies that compared to a
single deterministic forecast with relatively high resolution, ensemble mean forecast by
averéging ensemble members with relatively low resolution can have smaller root mean
square errors and the ensemble forecast can provide flow-dependent forecast uncertainty -
information in advance. Recent studies (e.g., Richardson 2000; Zhu et al. 2001; Palmer
2002, Roulston et al. 2003) ‘have demonstrated that the economic value of ensemble
forecasts is greater than a single deterministic forecast for a wide range of weather
forecast uéers.

One active research topic in ensemble forecasting is, for given computing
resources, how to initialize ensembles with liinited samples to effectively represent the
initial condition uncertainty. So far three strategies have been adopted in major
operational meteorological centers. The European Centre for Medium-Range Weather

Forecast (ECMWF) uses a singular vector method (Molteni et al. 1996) to generate initial
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perturbations that will grow rapidly during the first few days of the forecast. The
National Centers for Environmental Prediction (NCEP) uses a breeding method (Toth
and Kalnay 1993,1997) where initial perturbations are generated in directions where
forecast errors hgve grown rapidly over previous data éssimilation cycles. Initial
perturbations generated by the sihgular vector method and the breeding method are then
added to the initial analysis to generated perturbed initial conditions. The Canadian
Meteorological Centre (CDC) uses a perturbed observation approach (Houtekamer et al.
1996) where an ensemble of aﬁalyses is generated by updating sets of first-guess
forecasts with distinct sets of ob§ervations. The first goal of this thesis is to introduce
and test a new initial perturbation generation scheme, called the ensemble uansfdnn
Kalman filter (ETKF). This scheme solves the error covariance update equation for a
Kalman filter data assimilation scheme (e.g., Kalman 1960; 1961) within the subspace of
ensemble perturbations. The ETKF was first introduced by Bishop et al. (2001) as an
adaptive sampling technique. As an ensemble generation scheme it is similar to the
breeding scheme in that it creates analysis pefturbations from forecast perturbations and
is inexpensive to run for small ensemble sizes (<100). Unlike the breeding scheme, it
explicitly accounts for the effect of observations on analysis error variance and, in the
limit of very large ensemble size, converges to the theoretically optimal error covariance
update procedure.

In operétional singular vector and breeding ensembles, initial perturbations are
constructed to let half of the perturbations to be the negative of the other half, so that the
sum of the perturbed initial conditions is equal to the analysis. This procedure of

centering the initial perturbations about the analysis is desirable as one wants the
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ensemble mean to always be equal to the minimum error variance estimate of the true
state, which at initial time is the analysis. The second goal of this thesis is to introduce a
new centering scheme, called spherical simplex centering, and compare it with the
traditional positive-negative 'pair centering by applying both to the ETKF initial
perturbation genération framework.

As the purpose of ensemble forecasting is to access the uncertainty associated
with numerical weather prediction,,énsemble forecast members should be realistically
diverse so that the true atmospheric state acts just like one of the ensemble members.
Howéver, it is often observed that observations fall outside the range of the ensemble
members with a margin and frequency that cannot be explained by the estimates of .
observation errors. Presumably, this is because all current ensemble techniques partially
misrepresent the effects of initial condition error and mode] error (e.g., Orrell et al. 2001;
Smith 2001, Buizza et al. 1999; Palmer 2001) on forecast accuracy. Thus it is inevitable
that members of dynamic ensembles are not drawn from the same distribution as the
distribution of truth given an ensemble forecast.

To improve the reliability of the ensemble, one can try to further develop the
initial perturbation generation scheme, improve the model, incorporate stochastic effects
(e.g., Buizza et al 1999), adopt the multi-model/parameterization/configuration method
(e.g., Evans et al. 2000; Fritsch et al 2000; Krishnamuri et al. 2000; Mylné et al. 2002;
Richardson 2001; Wandishin et al. 2001; Houtekamer et al 1996; Stensrua et al. 2000;
Grimit and Mass 2002), and statistically adjust the oufput of ensemble forecasts (Du et al.
2000; Hamill and Colucci 1997, 1998; Eckel and Walters 1998; Atger 1999, 2003;

Krzysztofowicz and Sigrest 1999; Wilks 2002; Hamill et al 2004; Raftery et al. 2003;
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Roulston and Smith 2003). Of all these options, statistically postprocessing ensemble
forecasts is of pérticular interest of this thesis. Motivated by the previously proposed best
member dressing method by Roulston and Smith (2003), the third goal of this thesis is to
introduce and test a new ensemble augmentation method to improve the reliability of the
spread of the ensemble in the postprocessing.

Given the large amount of infox;mation‘ from statistically calibrated ensemble
forecasts, how should customers use them? For weather-related commercial users,
probabilistic forecasts of meteorological weather elements are not directly useful. The
weather-related éuantities that the end-users are interested in may not depend linearly on
just one meteorological variable, but nonlinearly on a number of meteorological variables
in general. Therefore, ensemble forecasts should be fed in é quantitative user application
model and the resulting output can be used to form probabilistic forecasts of the user
relevant economic variable (Palmer 20025. Associated with testing the new dressing
kemnel, the ETKF ensemble augmented by the new dressing kernel is applied for
probabilistic forecasts of cooling-degree-days (CDD), a frequently used quantity for
weather derivative and insurance users.

In chapter 2, the ETKF initial perturbation method is intrpduced and compared
with the breeding method. This work is published in the Journal of Atmospherié
Sciences, Vol. 60, Issue 9, May 2003. In chapter 3, the spherical simplex initial
perturbation ‘centering method is introduced and compared with the positive—negative
paired centering by using the ETKF framework. This work is published in the Monthly
Weather Review, Vol 132, Issue 7, July 2004. In chapter 4, a problem with the best

member method (Roulston and Smith 2003) is revealed and a new dressing method to

3
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statistically augment ensemble forecasts is introduced and tested with the ETKF
ensemble. The new dressing method is further tested by applying it to probabilistic
forecasts of CDD for Boston. Concluding remarks and future work are diséussed in
chapter 5. Basic concepts for data assimilation and ensemble forecasting ére listed in

appendix B.




Chapter 2

A Comparison of Bi'eeding and Ensemble Transform Kalman Filter
Ensemble Forecast Schemes
Reprint found in pocket.
Wang, X. and C. H. Bishop, 2003: A comparison of breeding and ensemble

transform Kalman filter ensemble forecast schemes. J. Atmos. Sci., 60, 1140-1158.
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Which Is Better, an Ensemble of Positive-Negative Pairs or a Centered
Spherical Simplex Ensemble?

Reprint found in pocket.
Wang, X., C.H. Bishop and S. J. Julier, 2004: Which is better, an ensemble of
positive-negative pairs or a centered spherical simplex ensemble. Mon. Wea. Rev., 132.

1590-1605.




Chapter 4

Improvement of Ensemble Reliability With a New Dressing Kernel

4.1 Introduction

During the last decade, ensemble forecasting has become an important part of
numerical weather prediction (NWP). It has been operationally implemented for medium-
range NWP (e.g., Molteni et al. 1996; Toth and Kalnay 1993,1997; Houtekamer et al.
1996) and is being incorporated' to short-range NWP (e.g., Hamill and Colucci 1997, |
1998; Du et al. 1997; Stensrud et al. 1999; Hou et al 2001;Gfimit and Mass 2002;
Stensrud and Yussouf 2003). Compared to a single deterministic forecast with high
resolution, ensemble mean forecasts §vith relatively low resolution for each ensemble
member can produce smaller root mean square errors. Moreover, ensemble forecasts can
provide flow-dependent estimates of forecast errors depicted by ensemble spread or
expressed in forecast probabilities (e.g., Toth et al. 2001; Whitaker and Loughe 1998).
Studies by Richardson (2000); Zhu et al. (2001); Palmer (2002) and Roulston et al
(2003), amongst others, have demonstrated that the economic value of ensemble forecasts
is greater than a single deterministic forecast for a wide range of weather forecast users.

Managers of weather\ sensitive activities can beneﬁt' from probabilistic forecasts
that accurately represent the probability distribution of the verifications given the
ensemble forecast (e.g., Palmer 2002). Howeirer, because of the sub-optimal initial

perturbation generation techniques and the lack of consideration of model errors, it is
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typically shown by rank histogram (e.g., Hamill and Colucci 1997; 1998) that outputs

from raw ensembles may be biased and under-dispersive, which limits the predictive
power of the ensemble. Hence,} developing postprocessing methods to calibrate the
outputs of ensemble forecasting .systems has also been of interest. Some postprocessing
studies involve directly calibrating the forecast probabilities. Methods include reliability
diagram statistics (e.g., Zhu et al. 1996; Toth et al. 2001; Krzysztofowicz and Sigrest
1999; Atger 2003), verification rank histogram statistics (Hamill and Colucci 1997, 1998;
~ Eckel and Walters 1998), Bayesian averaging (Kass and Raftery 1995; Raftery et al.
2003), and the logistic regression technique with an ensemble méan as predictor (Hamill
et al. 2004). There are ‘also studies to directly postprocess the spread of the ensemble
e.g., Atger 1999; Roulston and Smith 2003).

Of all these postprocessing' techniques, the dressing method (Roulston and Smith
2003) is of particular interest in this paper. In the dressing method, statistical
pérturbations are added to each member of the dynamic ensemble in the postprocessing
for the purpose of augmenting the spread of the ensemble. The dressing method provides
an alternative to Wilks’ (2002) approach to smooth .the raw ensemble as one can easily

add many dressing perturbations to each member of the .dynamic ensemble to produce

ensembles with as many members as 10°. It also tends to reflect all sources of residual
errors that the dynamic ensemble has not yet accounted for. Another advantage of the
dressing method relative to other methods that postprocess the spread of the ensemble
directly (e.g., Atger 1999) is that the dressing procedure maintains all information of the
flow-dependent forecast uncertainty information in the dynamic ensémble. Compared to

the calibrated forecast probabilities, the dressed ensemble members can be more
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conveniently applied to different types of user applicé.tion functions, such as the
accumulated cooling degree days for weather derivative users show in section 4.5.

In the “best member” dressing method proposed by Roulston and Smith (2003),
the best member out of each historical ensemble forecast is first identified and the
difference between the beét member and the vefiﬁcaﬁon, 1.e., the best member error, is
stored. The archive of the best member errors is built from all historical ensemble
forecasts available. When dressing, the statistical perturbations are drawn from the
archived historical best member errors. The best member dressing perturbations are
straightforward to construct and easy to apply to one- or multi-dimensional variables of
interest. Roulston and Smith (2003) demonstrated the superiority of best-member
dressed ensembles relative to ensembles constructed by dressing the control forecast with
the archived control forecast errors.

~ To yield reliable probabilistic forecasts of velfifying observations; a dressed
ensemble should be drawn from the same distribution as the verifying observations given
an ensemble forecast (Hereafter “reliable” means when an event is forecast to occur with
40% probability, this »event is verified 40% of the time. Sée’alsb Wi]ks 1995 p236 for the
general definition of reliability.). Whjlé Roulston and Smith (2003) demonstrated that
best member dressing had some useful properties, this type of dressing approach doe; ﬁot
appear to mathematically constrain the distribution of dressed ensemble members to be
indistinguishable from the distribution of verifying observations under any measure.
Notably, if the spread of a dynamic ensemble of finité size were correct, the best member

dressing would still dress them thus rendering the dressed ensemble overdispersive.
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In sections 4.2 and 4.4 of this paper, we explicitly demonstrate how best member
dressing results in distributions that are different from the distribution of verifying
observations under second moment measures. In particular, we show that the best-
member dressed ensemble may be over-dispersive or under-dispersive depending on, for
example, the size of the undressed ensemble, how under-dispersive the undressed
ensemble is (section 4.2) and the subspace from which the best member is identified
(section 4.4). The prototype test in section 4.2 is based around ensemblel@ generated with
a random number generator in which the difference between the distribution of undressed
ensémble members and the distribution of verifying observations can be controlled. The
test in section 4.4 is based around an ensemble generated using the ensemble transform
Kalman filter (ETKF; Bishop et al. 2001; Wang and Bishop 2003; Wang et al. 2004).

In section 4.3, we give the theoretical basis of a new dressing technique that
overcomes the limitations of the best member dressing technique and illustrate it using
the ensemble generated with a random number generator. In section 4.4, the performance
of the new dressing technique is compared against the best member dressing technique
for improving the reliability of the 500mb U Wi]:lld ensemble forecasts from the ETKF
ensemble made with the Community Climate Model Version 3 (CCM3; Jeffery et al.
1996). In section 4.5, both dressing techniques are further tested by applying them for
the forecasts of a user-specific weather index, the cooling degree days at Boston.

Concluding remarks follow in section 4.6.
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4.2 Limitations of the best member dressing: the random number generator
experiment

In this section we use a simple random number generator experiment to identify
the limitations of the best member dressing technique. Let us assume that for each case, a

verifying observation y is drawn from a normal distribution with zero mean and standard

deviation 0, ; in other words, assume that y ~ N(0,0,). As a proxy for an undressed K

member ensemble, let us draw K random numbers %.,k=12,.,K where each x,
represents a random draw from a normal distribution with a correct mean but an incorrect

standard deviation ©,, in other words we assume that x, ~ N(0,0,). For under-
dispersive ensembles, ae2 < 0,2. For this experiment, we let aez =20 and let 0,2 be

greater than 082 by d, that is; ar,.2 = ae2 +d.

Training statistics for the best member dressing perturbations are built in the
following manner for a given K -and d. Step 1: Draw a verification from N (O, a,) and a
K -member undressed ensemble from N(0,a, ) Step 2: Find the ensemble member that

is closest to the verification and find its distance from the verification. Step 3: Store this

“best member error” in an archive. Step 4: Repeat steps 1-3 M times to obtain an archive
of the M best member errors for M  cases. Step 5: Compute the sample variance o2 of

the archive of the best member errors. Note that since we required that the undressed -
ensemble be drawn from a distribution with the same mean as the vérifying observations,
in this simplified case, the mean of the M archived best member errors is zero when M

approaches infinity.
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Having obtained this archive of errors, we then generate K independent N-
member statistical ensembles of best member errors by either randomly sampling from
the archive or by drawing K independent sets of N random numbers
£,n=12,.,N;k=12,.,K where ¢ ~N(0,0,). The statistical ensembles are then
combined with the dynamical ensemble to create a NXK member dreésed ensemble
V.ok=12,.,K;n=12,.N using

Wkn=xk+8kn’k=1727"K;n=1)2a"’N, . (4.1)
for each case.

Now mnote that if the verification were drawn from the same probability
distribution as the ensemble then the average square distance between any two randomly’
selected dressed ensemble members ought to be the same as the average square distance
between randomly selected ensemble members and the verification. Consequéntly, we
can test whether the best member dressing results in an ensemble that appears to be

drawn from the distribution of the verification for a particular K and d using the

following steps. Step 6: Draw a verification from N (0,0,) and a K -member undressed

ensemble from N(0,0, ). Step 7: Using data from the archived best member errors create

a dressed NxK member ensemble as Eq. (4.1). Step 8: repeat steps 6-7 M times to
collect M cases. Step 9: Compute the averaged square distance between each distinct pair
of dressed ensemble members. Note that since the total number of dressing perturbations

is different from the number of undressed ensemble members, from Eq. (4.1) this

quantity is calculated by <<(xmk ~X,,; )2> > +<<(€m,m ~&,4 )2> > , where subscript
i#k [ il [
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m denotes the mth case of the M cases, ( )#k is the average over all combinations of

distinct undressed ensemble members for the mth case, ( ) is the average over all

kil
combinations of distinct dressing perturbations for the mth case, and ( )m is the average

over all M cases. Step 10: Compute the mean square distance between the verifying

observations and each ensemble member by <<(x//mk,, “Vm )2> > where ( )Im is the
kn m

‘average over all dressed ensemble members for the mth case. Step 11: Compare the

difference (denoted as DIFF) of the quantities in steps 9 and 10, ie., calculate

DIFF = <<(xmk -x,; )2>i*k>m + <<(em,m -8, )2>Wﬁ >m —<<(a//m,m -y, )2>’m >m. The;n

repeat the previous steps for different choices of K and 4.
Figure 4.1 (a) shows DIFF as a function of K and a,,zla,2 for M =10000, and

N =100. Negative (positive) DIFF indicates that the dressed ensemble is under-

dispersive (over-dispersive). The figure shows that for K =1, DIFF is equal to zero for
all aez / 0,2. When X is larger than 1, for any given 052 / 0,2 , there is only one value of K

that renders the best member dressing method reliable. The best member dressed

ensemble is either ovef-dispersive or under-dispersive beyond that regime depending on
the undressed ensemble size K and how under-dispersive (measured in 032/‘7:2) the

undressed ensemble is. We also observe that when aez is equal to 0,2 (a,,2 / 0,2 =100%),

i.e., the undressed ensemble has the correct spread, the best-member dressed ensemble is
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over-dispersive for any finite K. In the next section we introduce a new dressing kernel

that does not suffer from these limitations.




Figure 4.1: Random number generator experirnent results in testing the reliability of the

undressed ensemble size K

undressed ensemble size K
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spread of the ensemble dressed by (a) the best member method and (b) the new dressing
kernel. Thin solid contours indicate over-dispersive ensemble. Dashed contours indicate
under-dispersive ensemble. Thick solid contours mean the spread is reliable. Contour

interval is 4.
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4.3 Dressing with second moment constraint

We seek a mathematical constraint on a dressing kernel that will render the
distribution of dressed ensemble members indistinéuishablc from the distribution of
verifying observations given an ensemble forecast on seasonally averaged basis. To
measure the differences between the two distributions we will foéus on the second
- moment measure. The new dressing kernel is first built from historical ensemble
forecasts and verifications and then applied for the current ensemble forecasts. For each
case of forecasts over é season, let y contain a list of verifications that we wisﬁ to predict
and let x contain the corresponding list of forecast variables from one member of the
dynamic ensemble. Assume the dynamic ensemble, after removing the seasonally

averaged bias, is drawn from an infinite number of realizations of a stochastic process,
X=%+X, | (4.2)
where (x) =X and (x) = (. The covariance of Eq. (4.2) is denoted as

v T

¥’ =<xx_ > | 4.3)

When dressing, statistical perturbations ¢ are added to each dynamic ensemble member.
Let y list the corresponding dressed forecasts. Written in the similar format of Eq. (4.2),

the dressed ensemble members are drawn from an infinite number of realizations of a

- stochastic process

Y=X+e=X+X +e, | (4.4)
where (s) =0, (sx'> = (0. Note that the mean of the dressed ensemble is still X. Also

note that we have assumed the seasonally averaged bias of X has been removed. The
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basic idea of the new dressing kernel is to chose ¢ to make y indistinguishable from the

verification, y, under second moment measurement on a seasonally averaged basis.

Mathematically, we require

<<(‘|’li Wy )(‘l’zi VW )T >i¢j>1 = <<(‘|’h =¥ ) (v -y )T >i>1 ; | (4.5)

where subscript [ denotes the /th case over a season and subscripts i and j denote any

two different dressed ensemble members from Eq. (4.4), ()z is the avéraging over all
cases Over a season, (-)iﬁ denotes averaging over all combinations of any two different

dressed ensemble members for the Ith case, and (), is the averaging over all choices of i

for a particular case. Subsﬁtuting Eq. (4.3) and Eq. (4.4) into Eq. (4.5), one can show

(see appendix A) that Eq. (4.5) is satisfied provided that
<8£T>=<(i; -y, )&, —-y,)T>l —<221>l, (4.6)
where X, and £ are the mean and covariance of the underlying distribution from which
the undressed ensemble is drawn for the Ith case. Note that the covariance of the dressing
perturbations <ssT> is the same for all ensemble members for all cases. So, we put no
subscript on this term.
To understand the new dressing kernel <ssT> given by Eq. (4.6), we use a two-

dimensional figure (Figure 4.2) to illustrate the idea. Assume the number of variables
that we are interested in forecasting is two, that is, x, y and W contain two elements

each. Each black dot in Figure 4.2 (a) represents the difference between one of the
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members of one ensemble forecast made during a season and the corresponding
underlying ensemble mean. Thus, since there are L K-member forecasts made each

season, the number of dots present in Figure 4.2 (a) is equal to K X L and the covariance

of these points corresponds to the {(£%) term in Eq. (4.6). The 1-sigma ellipse associated
P : ; q g p

with this covariance is shown by the black line in Figure 4.2 (a). Each of the L grey dots
m Figure 4.2 (b) gives the difference between a verification and a cdrresponding
underlyi;lg ensemble mean. The covariance of thesé dots gives the first term in Eq. (4.6).
Since thé seasonally averaged bias of undressed ensembles has been removed, the grey
dots in Figure 4.2 (b) as well as the black dots in Figure 4.2 (a} cente; at (0,0). Note that
the 1-sigma ellipse for the grey dots is larger thén the ellipse for the black dots indicating
that the undressed ensemble is under-dispersive. In Figure 4.2 (c) we show how a black
dot from Figure 4.2 (a) can be dressed with perturbations drawn from a distribution with
a covariance matrix given by the differencé between the covariance matrices associated

with Figure 4.2 (b) and Figure 4.2 (a). After we dress each black dot of Figure 4.2 (a), in

Figure 4.2 (d) we get the scattered stars that are the differences of the dressed ensemble

members from the corresponding underlying ensemble mean. The corresponding 1-
sigma ellipse associated with the stars is also shown in Figure 4.2 (d). The idea of Eq.
(4.6) is to constrain the second moment of the .dressing perturbations, the first term on the |
left side of Eq. (4.6) (i.e., the 1-sigma ellipse in Figure 4.2 (c)), so that the 1-sigma éllipse
associated with the covariance of the dressed ensemble perturbations (stars) in Figure 4.2
(d) is identical to the 1-sigma ellipse corresﬁonding to the distribuﬁon of the verifications

(grey dots) about the underlying ensemble mean in Figure 4.2 (b). Note in Figure 4.2 (d)
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that <(£D )21> denotes the seasonally averaged covariance of the dressed ensemble
I

perturbations. In this way, the dressed ensemble members are indistinguishable from the

verification under the second moment over a season.

Figure 4.2: Illustration for the idea of the new dressing kernel in 2-dimensional space.
Please refer section 4.3 for detailed explanation.

For a finite undressed ensemble size, the underlying . ensemble mean and

covariance X, and 4 in Eq. (4.6) are estimated using a sample ensemble mean X*; and

v _ )
a sample ensemble covariance £° 7, namely,
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_, _ 1mx
x1=—I-<-mZ=)1 Xp s “.7
52 - 1 m=K = -t T
and z S ey nél(x,m—x1)(x,m-xl) . (4.8)

Seasonally averaged bias of the sample ensemble means are assumed to be removed from

(4.7) and (4.8). As shown in the appendix A, Eq. (4.6) becomes

(ssT> =<('ii’z —szi’l —y,)T>I -(1+-Il?)<2’21>1, for K22, (4.9a)

in order to satisfy Eq. (4.5). Please see the appendix A for the derivation. In the situation

wherein there is only one control forecast x°; for the lth case, that is, K =1, the new

dressing kemel is
(eT) = <(x°1 —y & -y, )T> ,for K =1,  (49b)
1

Note for K =1, the new dressing kernel and the best member dressing kernel are the
same. To test the new dressing kernel, we also ‘adopt the random number generator
experiment with the same procedures and the same measure as in section 4.2 except the
1-dimensional new dressing kernel is given by Eq. (4.92) and Eq. (4.9b). The result is

shown in Figure 4.1 (b). Figure 4.1 (b) demonstrates that the new dressing kernel Eq.
(4.92) and Eq. (4.9b) can provide a reliable ensemble spread for all K and aez / 0,2 under

the second moment measure given in step (kll) of the random. number generator
experiment in section 42.

Also note that when K is greater than one but rather limited, the new kernel
defined by Eq. (4.9a) only makes the dressed ensemble satisfy the second moment

property that the seasonally averaged covariance of the differences between ensemble
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members and the verifications is equal to seasonally averaged covariance of the
differences between ensemble members. It does not make the dressed ensemble satisfy
the second moment property that the seasonally averaged covariance of the differences of
the ensemble from the sample ensemble mean is equal to the seasbnally averaged error
covariance of the sample ensemble mean. The latter property can be obtained by

replacing Eq. (4.9b) with

(ssT> =<(Y’1 —YIXTI -"Y1)T>l -(1—72—)<Z’21>1_, for K 22. (4.9¢)
In other words, these two second-moment properties can not be satisfied simultaneously
for émallish K. However, as K ‘tends to infinity, both properties are simultaneously
satisfied. When one’s forecast application relies solely on the ensemble mean, using Eq.
(4.9¢) to define the new kernel is probably the best option. In contrast, when one’s
forecast application relies on a forecast probabilistic distribution, using Eq (4.93) to
define the new kernel would be the best option. The random number generator
~experiment (not shown) demonstrates that when K > 10, one of the two propeﬁies can be
satisfied precisely and the other can be satisﬁedv appfoximately by the new dressing
kernel either defined by éq. (4.9a) or Eq. (4.9¢c). The best member dressing kernel,
however, does not satisfy either second moment property. Note m Figure 4.1 the new
dressing kernel is givén by Eq. (4.9a,b) and the measure is based on the first second-
moment property. Since in the ETKF ensemble expefiments to be described in Section

4.4, K =16, the results obtained with Eq. (4.9a) are very similar to those obtained with

Eq. (4.9¢).
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After the new dressing kernel is defined, we use a multi-dimensional random
number generator to generate the dressing perturbations. First, note that the covariance
matrix given by Eq. (4.9), denoted as Q hereafter, is real and symmetric but not positive

definite. We first perform an eigenvalue decomposition on Q,
Q= (saT> =EQE’, (4.10)

where the columns of E contain the eigenvectors and the diagonal matrix Q contaﬁns the
corresponding eigenvalues. Positive eigenvalues indicate that on the directions of the
corresponding eigenvectors the “ensemble is underdispersive and thus dressing is
necessary. In contrast, negative -eigenvalues indicate that the undressed ensemble is
overdispersive in the directions of the éorresponding eigenvectors. Since dressing the
ensemble in the overdispersive directions would make it even more overdispersive in this
direction, we only dress in the directions corresponding to positive eigenvalues. Based on

this argument, we define the new dressing perturbation generator as

e=xe +x,e; +---+x.€), (4.11)
where €], i=1-.-k, are all eigenvectors corresponding to the positive eigenvalues. The
coefficients x;, i=1.--k, are univariate random variables which are parameterized as
normal distributions with mean equal to zero and variance equal to the ith positive

eigenvalue of Q, denoted as w; . Mathematically,

X ~ N(O, ! ) (4.12)

Note that (4.11) and (4.12) enable the new kernel to generate multi-dimensional

dressing perturbations for the multi-dimensional variables of interest at small cost. Also
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note that the new dressing kernel is designed not only to provide reliable spread for each
individual variable but also to produce a reliable estimate of the errof covariance between'’
the variables of interest, which will be shown in sections 4.4 and 4.5. Depending on the
variables of interest, the new dressing kernel can be constructed to consider both
temporal and spatial correlations of the forecast errors. Thus, the method allows 4-
dimensional dressing. The ﬁew dressing perturbations can also be drawn from an archive
instead of a prescribed distribution. The method by which this can be done is discussed in

_section 4.6.

4.4 Further test with nonlinear CCM3 ETKF ensemble

The best member dressing method was first designed and tested by Roulston and
Smith (2003) with the nonlinear ensemble prediction system of the Buropean Centre for
Medium Range Weather Forecasts (ECMWEF). The error statistics of nonlinear systems
ona giveﬁ day are usually non-Gaussian. In the random number generator experimeht of
section 4.2 and 4.3 we assume a Gaussian error system. To check the performance of the
best member dressing and the new dressing niethods in the nonlinear system with non-
Gaussian error statistics, we apply both dfessing methods to the 1-10 day CCM3 ETKF
nonlinear atmospheric ensemble forecasts (Bishop et al. 2001; Wang and Bishop 2003;
Wang et al. 2004). We also use this section to illustrate the sénsitivity of best member

dressing to the manner in which one defines the “best ensemble member”.




26

4.4.1 Numerical experiment design

4.4.1.1 Dynamic ensemble, verification data, and variables of interest

The ensemble to be dressed is a 16-member spherical éimplex ETKF ensemble éf |
10-day forecasts. The ensemble is run on the NCAR CCM3 (Jeffery et al. 1996)‘and the
initial conditions for each control forecast are obtained from the NCEP/NCAR reanalysis
(Kalnay et al. 1996). The observétional network in the current experiment simulates both
rawinsonde and satellite observations. For details on the construction of the spherical
simplex ETKF ensemble, please;refer to previous experiments in Wang and Bishop

'(2003) and Wang et al. (2004).

The verifications are NCEP/NCAR reanalysis data located on the reanalysis grids
that are nearest to known rawinsonde sites. The variables that we are interested in
* dressing 5re 500-hPa U over 14 reanalysis grids over the eastern USA (Figure 4.3) at

individual forecast lead times. The CCM3 ensemble outputs are interpolated to these

grids during the training and validating phases of the experiment.
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Figure 4.3: 14 verification sites over eastern USA for the experiment in section 4.4.

4.4.1.2 Identification of the best member

In Roulston and Smith (2003), the best member is defined as the closest to the
verification in the full space including all spatial locations, all quantities and all forecast
lead times. However, using the full space to make the identification is time consuming.
Roulston and Smith (2003) tried to. empirically determine the minimum number of

variables that are unlikely to lead to misidentification. They suggested that if practically
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feasible, high dimensional space should be used even if the variables that we are
interested in dressing arevonly in a‘small subspace. To test whethér the best-member error
statistics with the best member identified in a high dimensional space can provide reliable
spread, we use a quite high dimensional space, 500-hPa U over glébal verification sites
throughout 1 to 10 day forecast lead times, to identify the best rhémber, although we are
6n1y interested in 500-hPé U wind over the 14 sites for each individual lead time. This
subspace for identifying the best member is denoted as RS-10d-globe.

To reveal that the spreadv of the best-member dressed ensemble may not be
reliable due to the uncertainty in selecting the subspace to identify the best member, we
also try the experiments where the best member is defined in two relatively low
dimensional spaces. One is 500-hPa U over the 14 eastern USA sites for each individual
verification lead time, denoted as RS-id-east. The other is 500-hPa U over the 14 sites
from day-1 till the verification lead time, denoted as RS-1-id-east. Note the norm of the
distance of an ensemble member and the verification used to ide;ntify the best member is

defined the same way as in equation (1) of Roulston and Smith (2003).

4.4.1.3 Training and forecasting processes

The training statistics for bias and dressing perturbations are obtained from
forecasts during the summer (June, July and August) of 1999. The 500-hPa U bias is
obtained for each verification site for each forecast lead time by avéraging the
corresponding ensemble mean errors collected from 16-member ETKF runs during the

1999 summer. Before generating training statistics for the dressing perturbations for both
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the new kernel and the best member method, the bias is first removed from each member
of the 16-member ETKF ensemble for each verification site and at the 1,2, ..., etc.,10 dayA
lead times.:

Since we are interested in 500hPa U forecasts over the 14 verification sites at

individual lead times, the new dressing kernel is constructed for each forecast lead time

- independently. In Eq. (4.9), vector X°; contains 14 elements corresponding to the 500-

hPa ensemble mean U forecasts at the 14 sites of the Ith case during 1999 summer for

each particular lead time. Vector y, contains the corresponding verifications and Z°; is

the 14X 14 ensemble covariance matrix. The resultant Q matrix is 14$<14.
For the best-member method, the best member out of each 16-member ETKF run
during 1999 summer is selected first for the three subsi;aces. For the subspaces RS-id-
east and RS-1-id-east, the best member errors corresponding to 500hPa U over the.14
verification sites are stored in a vector of 14 elements for each lead time. The archive of
the best merhber errors is built by archiving these vecfors for each lead time over all runs
of 1999 summer. For the subspace RS-10d-globe, the index of the ensemble member that
is the best member identified in the subspace of RS-10d-globe is the same for all lead
times. In this case, the best member errors are stored in a vector of 140 elements for each
1 to 10-day run. The first 14 elements store the errors of the best member over the 14
sites for 1-day lead time and the second 14 elements store the errors of the same member
for 2-day lead time, SO oﬁ and so forth. The archive of the best member errors for RS-
10d-globe is then built by collecting such vectors from all 10-day forecasts over the 1999

SUITmer.
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To perform an out-of-sample test of the dressing techniques, forecasts were made
for the 2001 Northern Hemisphere summer. For each 16-member ETKF run during 2001
summer, the training bias is first removed from each ensemble member. Independently
sampled dressing perturbations are then added to each of the 16 members. For the new
dressing kernel, 14-dimensional vectors are randomly generated using qu. (4.10)-(4.12)
for each forecast lead time and added to each member of the 16-member 500hPa U
forecasts over the 14 sites. For RS-id-east and RS-1-id-east methods, random 14-
dimensional vectors are randomly drawn from the corresponding archives for each
forecast lead time. For RS-10d-globe method, random vectors of length 140 are randomly
drawn from the corresponding best-member error archive. As mentioned above, the 140
elements contain 10 sets of 14 dimensional vectors corresponding to 1-10 day lead times.
The first set of 14 elements is added to the ensemble forecast over thé 14 verification
sites for 1-day lead time and the second set is a@ded to the sarhe ensemble forecast for the

2-day lead time, so on and so forth.

4.4.2 Experiment results

The performances of the dressed enser‘nblesv are measured by the rank histogram
and probability scores. For each forecast lead time, samples are collected from all
ensemble forecasts during the 2001 summer over the 14 verification sites. For the best-
member method, if the dressing perturbations are drawn from the best-member error
archive, the number of dressing perturbations to be added to each ETKF ensemble

member is limited by the length of the time period during which the best-member error is
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collected. As we built the archive from one season’s forecasts, the number of best-
member dressing perturbations is limited by 0(10) in order to make the dressing
perturbations for each of the 16 ETKF ensemble members diverse enough. On the other
hand, we want the number of ’dressing perturbations to be large enough so that the
probability distribution derived from the dressed ensemble will be smooth and also the
ensemble mean whose seasonal average biaé is removed will not be shifted due to the
sampling error of the dressing perturbations. In our experiment we tried to dfess eéch
member of the 16-member ETKF ensemble with 2, 8, 16, and 32 perturbations. We found
that the results start to converge when the number of dressing perturbations approaches
16 and 32. The latter renders the sampling error of the dressing perturbation mean to be
less than 5%. In the results shown in this section, each member of the 16-member ETKF
ensemble has been dressed with 32 perturbations thus yielding 512-member dressed
ensembles. For the best member method, the 32 perturbations are drawn from the best
member error archive. For the new dressing kernel, the 32 perturbations are drawn from
multi-dimensional Gaussian distribution following Eq.(4.10)-(4.12).

The first measurement of the reliability of the ensembles is applicable to scalar
verifications and is called the rank histogram (Anderson 1996; Hamill 2001). The rank
histogram is constructed by first sorting the K ensemble members for one forecast from
the smallest to highest value in the scalar forecast variable of interest — in this case
500hPa U. The values of the sorted ensemble members then define K +1 bins or
categories for each case ranked from the lowest to highest. Then record the bin number of
the bin that the verification falls in. Repeat the above procedures, for example, for a

season’s forecasts. The rank histogram gives the frequency with which the verifications




32

fall into each of the ranked bins. If the dressed ensembie members are being drawn from
the same distribution as the verifications, then the verification and the ensemble value
defining an edge of a bin would be statistiéally interchangeablé. Therefore in this case the
verifications should fall in each bin with equal fréquency and the rank histogram is flat.
Recall that the sizes of the undressed ensemble and the dressed ensemble are 16 and 512
respectively. Because fhe number of verifications to construct the rank histogram is
limited relatjve to the rank of 512, and also because we want the yraxisl,r of the histogram
to have the same scale for the dressed and undressed ensembles,‘instead of constructing
~ the histogram for the dressed ens_emble by using all 512 dressed members we randomly
choose 16 members out of 512 members for each sample. Figure 4.4 (a) is the result for
the undressed 16-member ensembleb for the 2001 summer after removing the bias from

the 1999 summer. The undressed ensemble is under-dispersive especially for longer
forecast lead times. The x> test for the uniformity of the rank histogram .(Anderson
1996; Wilks 1995; Hamill 2001) rejects the null hypothesis that the rank histogram is flat

with confidence level much higher than 99% (the P value is equal to 7.1x10™* for day 1

and much smaller than 107" for 2 to 10 day lead times). After dressing with the new

kernel shown in Figure 4.4 (b), the rank histogram becomes much flatter throughout 1 to
10 forecast lead times, which indicates a more reliable ensemble spread. The y? test can

not reject the null hypothesis that the rank histogram is flat even with confidence as low
as 88% (the P values greater than 0.12). For the RS-10d-globe dressed ensemble in

Figure 4.4 (c), the rank histogram is over-dispersive through the 1 to 10 day forecast lead

times. The 2 test confirms this impression of non-uniformity. The P value is nearly zero
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(much smaller than 107°) for all lead times, indicating the null hypothesis of uniform
rank histogram can be rejected with high cbnﬂdence level (much higher than 99%). For
the RS method, where the best member is identified by RS-1-id-east éhown in Figure 4.4
(d), the histqgram is over-dispersive for 1 to 7 lead times and the x2 test rejects .the null
hypothesis that the rank histogram is flat with confidence level much higher than 99%
(the P value is much smaller than 0.0001). Figure 4.4‘ (e) is the result corresponding to
RS-id-east. The rank histogram is over-dispersive for 1 to 2 day lead times and under-
dispersive for 8 to 10 day lead times. The % test»cqnfinns the non-uniformity for these 5
lead times by rejecting the hypothesis bf uniformity of rank with confidence level much

higher than 99% (the P value is much smaller than 0.01).
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Figure 4.4: Rank histograms for (a) undressed, (b) new kernel dressed, (c) RS-10d-globe
dressed, (d) RS-1-id-east dressed and (e) RS-id-east dressed CCM3 ETKF 500hPa U
ensembles over the 14 sites from 1-day to 10-day lead times.
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In Figure 4.5 we show the Brier score (BS; Brier 1950; Murphy 1973; Wilkks

1995) measurement results. Four climatologically equally likely bins are defined by
using 1999 summer 500hPa U verifications over the 14 verification sites. For each lead
time, the BS is first calculated for each of the 14 sites for each of 92 forecasts of the 2001 -
summer and then averaged over all 14 sites throughout all of the season’s forecasts. The
number of samples of BS for each lead time is thus14x92=1288. The BS
corresponding to using the sainple climatology, ie., the uncertainty term when
decomposing the BS, is also shown in Figure 4.5. To estimate the significance of the
differences between curves, a bootstrap resampling technique (Efron and Tibshirani
1986; Wilks 1995; Hamill 1999; Mullen and Buizza 2001; Roulston and Smith 2003) is

used to estimate the + ¢ bounds (i.e., standard error) for each curve.
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Figure 4.5: Brier scores for the undressed, new kernel dressed, RS-10d-globe dressed,
RS-1-id-east dressed and RS-id-east dressed CCM3 ETKF 500hPa U ensembles from 1-
day to 10-day lead times. Brier score from the sample climatology is also shown. The
vertical solid and dashed lines are the standard errors of Brier score calculation with
given samples for the new kernel dressed and undressed ensembles respectively.
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Bootstrap is a computer-based method to assess the accuracy of the estimation of
an unknown parameter # by n actual samples. A bootstrap sample is a random sample of
size n drawn with replatement from the actual n samples. A random number generator is

first used to draw a large number (m) of bootstrap samples. For each of the m bootstrap
samples, the unknown parameterd is estimated and the estimated value is denoted as 6.

The sample standard deviation of the m 6 then gives thé standard error of the parameter
estimated by the actual n samples. In our experiment, the parameter of interest is the
mean and we are interested in assessing the accuracy of the sample mean from 1288 BS
samples. Note that in bootstrap. resampling the n actual samples are required to -be
independent. Since the 1288 BS samples could be spatially and temporally correlated,
before resampling we first estimate the number of independent samples within the 1288
BS samples. Following Roulston and Smith (2003), we divide the total 1288 samples into
independent blocks and take the BS’s averaged over each block as n actual independent
samples. We first divide the 14 sites into groups to ensure that the BS time series
averaged over each group are uncorrelated among different groups. We end up having 3
independent groups. Then for each groﬁp, we work out the length of the temporal block
in a way to ensure that the autocorrelation of the BS time serie;s given by averaging the
BS’s over each temporal block is nearly zero. After we get the independent samples, 100
bootstrap samples were generated by resampling the independent samples with
replacement as recommended by Efron and Tibshirani (1986). These 100 bootstrap
samples were used to estimate. the + o bounds, ie., the standard error of each curve in

Figure 4.5.
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In Figure 4.5, £ ¢ bounds for the curves of the undressed ensemble and the new
dressing kernel are shown. From Figure 4.5, the dressed ensemble with new kernel
performs better than the undressed ensemble for 1-10 day forecast lead times but only the
improvements for 4-10 day forecasts are statistically significant. It is also better than the
best member dressed ensemble RS-10d-globe for 1-10 day lead times with éigniﬁcance
for 1-2 day lead times. The RS-10d-globe ensemble is worse than the undréssed ensemble
for 1-2 day lead times. The RS-10d-globe ensemble is significantly better than the
undressed ensemble for 5-10day le;ald times. The scores for the best member dressed |
ensembles, RS-id-east and RS-1-id-east, are statistically indistinguishgble from the new
kernel dressed ensemble. Note that RS-10d-globe has worse BS than both RS-id-east and
RS-1-id-east, which is incoﬁsistent with the argument from Roulston and Smith (2003)_
that .fu]l space or high dimensional space should be used to identify the best member. To
| explain why the RS-10d-globe ensemble is worse than the RS-id-east and RS-1-id-east
ensembles, we first notice that the error variance of the best member defined in RS-10d-
globe is only 10% smaller than the worst member. In other words, all members can be
regarded as “the’worst” or “the best” if identified in such high dimensional space.

We also tried (npt sholwn) the continuous ranked probability score (CRPS;
Hersbach 2000) and the ignorance score (IGN; Roulston and Smith 2002). ’i;he
comparison results from CRPS and IGN are qualitatively the same as that from BS. Note
that in cbmputing these probability scores, the ensemble size for the dressed ensemble is
512, which is much larger than the undressed ensemble size 16. The improvement of the
dressed ensemble scores relative to the undreséed ensemble scores thus may partly come

from the increase of the ensemble size (Richardson 2001; Roulston and Smith 2003). .
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This is confirmed when we randomly select 16 out of 512 members to calculate the BS
for the dressed ensemble. The result (not shown) is qualitatively the same as Figure 4.5,
but the improvement of the dressed ensemble relative to the undressed ensemble is
smaller than the improvement shown in Figure 4.5.

The rank histogram and Brier score' tests only rheasure the skill of forecasts of
individual variables. As discussed in section 4.3, the new dressing kernel is not only able
to produce reliable spread for an individual variable but also able to generate a reliable
estimate of the error covariance among variables of interest. As discussed in section 4.5,
distributions of weather indiées fhat depend on more than one variablé are not only
sensitive to the forecast error for an individual variable but also sensitive to the
covariance of the forecast errors among these variables. As the new kernel is designed to
consider the error covariance of variables of interest, it is expected to provide reliable
ensemble forecasts for such weather indices. In this section, we first use a simple
measure to show that the new kernel can provide a reliable estimate of forecast error
covariance. Then in section 4.5, we ‘further demonstrate this property of the new dressing
kernel by applying it to the accumulative cooling degree days forecasts, a weather index ‘
useful for weather derivative users. |

To check the reliaBility of the dressed covariance estimates, for each forecast at a
particular lead time, we first calculate the 500hPa U ensemble covariance between any
two of the 14 verification sites. There are 91 pairs among the 14 verification sites. We
then average the ensemble covariances collected from the 91 pairs and from all forecasts
of the 2001 summer. Then we éalculate the product of the ensemble mean errors of any

two of the 14 sites and average these products collected from the 91 pairs and from all




40

forecasts of the 2001 summer. For ensembles that provide a reliable estimate of the
forecast error covariance, the averaged ensemble covariance and the averaged ensemble
mean error covariaﬁce calculated above are equal to each other. In Figure 4.6, we plot the
averaged ensemble covariance and the averaged ensemble mean error covariance for 1-10
day lead times. The undressed ensemble covariance underpredicts the ensemble mean
error covariance from 4 to 10 day lead times. After dressing with the new kernel, the
ensemble covariance matches with the ensemble mean error covariance for 1 to 10 day
lead times except thét it may overpredict the ensemble mean error covariance at the 6-day
lead time. The exception at the 6-day lead time may be due to the limited training data
sample size. For example, it might be that there was an extreme event in the training data
set that made our kernel too wide. We expect this problem would go away if we had a
longer training data set. The RS-10d-globe dressed ensemble covariance overpredicts the
ensemble mean error covariance for all lead times. The RS-1-id-east dressed ensemble
appears to overpredict the ensemble mean error covariance before 6 day lead time and
underpredict the ensemble mean error covariance at 8-9 day lead times. The RS-id-east
dressed ensemble covariance underpredicts the ensemble mean error covariance at 7-10
day lead times. The new kernel dressed ensemble- covariance is the most reliable among

these dressed ensembles.
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Figure 4.6: seasonal mean 500hPa U ensemble covariance averaged over 91 pairs of sites
among the 14 verification sites (dashed) and seasonal mean 500nPa U ensemble mean
error covariance averaged over 91 pairs of sites among the 14 verification sites (solid) as
a function of forecast lead times for undressed ensemble, new kernel dressed ensemble,
RS-10d-globe best member dressed ensemble, RS-1-id-east best member dressed
ensemble and RS-id-east best member dressed ensemble.
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In summary, our tests with the CCM3 ETKF ensembles show that the

performance of the best member dressed ensemble is highly dependent on the choice of
subspace used to define the best member and that the new dressing kernel can provide a
more reliable estimate of the second moment of the forecast errors than the best member

dressed ensembles.

4.5 Application on Cooling degree days forecasts at Boston

In this section we apply and further test the new dressing kernel for forecasting
the probability distribution of the acéumulated cooling degree days (CDD), a frequently
used weather index for weather derivatives. Weather indices such as CDD, depend on
nonlinearly on multiple meteorological variables, in which case the distribution of CDD
is sensitive to bofh the error variance of individual variables and the error covariance
among these variables. Therefore, CDD provides an appropriate test bed to test the new
dressing kernel that is designed to provide reliable estimates of both error variance and
error covariance among variables of interest. Another purpose of this section is to show
how ensemble forecasts can be fed in a quantitative user application model and how the
resﬂting output can be used to form probabilistic forecasts of the user relevant economic

variable (Palmer 2001).
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4.5.1 CDD definition

To manage the risks associated with abnormally warm or cool summers, a
frequently used weather index is "accumulated cooling degree days” or CDDs for short.
(See the web site http://www.cme.conVprd/wec/abtwthder2766.htm! of the Chicago

Mercantile Exchange for more information). The accumulated CDD is defined as

Ny
CDD = Ymax(0,T; ~ 65 F), (4.13)

=1

where N, is the number of days over which the CDD is accumulated (i.e., the contract

3

period) and 7, is the arithmetic average of the daily maximum and minimum 2m

temperatures in Fahrenheit on the ith day of the period. Denotations follow Zeng (2000).

Note that knowing the distribution of temperature forecast errors on each of the N, days

defining the CDD is not sufficient to determine the pdf of CDDs. One must also know
how the temperature errovrs are correlated through timé because if a temperature error in
the day 2 forecast is positively correlated to temperature errors in the day 1 and day 3
forecasts then the distribution of CDDs will be broader than it would .be if there were no

such correlation.

4.5.2 Application of dressing

In the following experiment, we only consider samples over one single site,
Boston, for one season. In order to increase the number of independent samples, we
consider CDD accumulated over only 3 days. (The Chicago Mercantile Exchange’s CDD

contracts pertain to CDDs accumulated over a month or a season.). There are two ways
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to augment the CDD ensemble derived from the 16-member CCM3 ETKF ensemble

forecasts for daily 2m temperature. One is to dress CDD ensemble forecasts directly and

the other is to dress T; and substitute the dressed T in (4.13). However, if we were to

dress CDDs directly we would have to modify our dressing algorithm to account for the
fact that CDDs are positive definite. Because of this and because we want to demonstrate

how the new dressing technique can account for correlations of temperature errors

through time, we choose to dress T;. Specifically, to obtain a dressed ensemble forecast
of the 3-day CDDs, we first dress 1-3 day T; output from the CCM3 ETKF ensemble and
then substitute each of the dressed 1-3 day T; forecasts for Boston into (4.13). This also

demonstrates how to feed ensemble forecasts to user application functions (Palmer 2002).

The CCM3 ETKF T, outputs are interpolated to the single verification site at

Boston. The verifications for CDD and 7; for summer 1999 and 2001 are obtained from

the Chicago Mercantile Exchange at http://www.cme.com/dta/hist The trainjﬁg and
dressing procedures are similar as described in section 4.4.1 except (a) the bias for 7; is
computed from the previous 2 weeks’ forecasts; (b) to account for the correlation of
errors, the second moment constraint dressing kernel is built by simply placing 1-3 day
T; forecasts for Boston and the édrresponding verifications in sample vectors with size of
3 elements when constructing the terms in Eq. (4.9); (c) the subspace to identify the best
member is over Boston from 1 to 3 day lead times and thus the best member error

samples for T;, i=1,2,3 is stored in 3-element vectors for archiving the best member

errors; and (d) to overcome the limitation that the number of best-member dressing
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perturbations drawn is limited by the length of time period during which the best member
error archive is built, the best member dressing perturbations are drawn from a zero-mean
multi-dimensional (3-dimensional in this case) normal distribution whose covariance is

consistent with the covariance of the archived best member errors.

4.5.3 Results on the reliability of the dressed CDD ensemble spread

Figure 4.7 shows the reliability of the épreéd of the accﬁrhulated CDD ensembles
measured by the rank histograms. The figure shows that the undressed CDD ensemble
“underpredicts the CDD fbrecasi uncertainty. After dressing with the best member
method, it is still underdispersive. In comparison, the new dressing kernel can provide
reliable‘ spread for the 3-day accumulated CDD forecasts. Note that the number of |
realizations of verifications for one season’s forecasts over a single site is limited for
constructing the rank histogram if using all ensemble members as ranks. To overcome
this problem, as in section 4.4.2 we randomly choose a relatively small —number of
ensemble members out of all ensemble members to define the ranks for the rank
histogram. The result shown in Figure 4.77corresponds to the case where we randomly
choose 3 members out of 4096 dressed ensemble members to build 4 ranks for each
ensemble forecast. Also note for situations where the verification exactly equals some of
the ensemble members, subh as CDD forecasts of zero and a verification of zero, the
number of members (m) equal to the verification was first counted. Then we assigned
uniform random numbers between 0 and ‘1 to the m members and the verification. The m

members are ordered according to the assigned random numbers. The rank of the
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verification is then determined by the rank of the random number assigned to the
verification among the m random numbers assigned to the m tied ensemble members.

This is similar to the method for constructing rank histogram for precipitation discussed
in Hamill and Colucci (1997). The y?* test for the uniformity of the rank histogram

confirms the ﬂatness of rank histogram of the new kernel dressed CDD ensembles (P
value as large as 0.74) and the unflatness of those of the undressed (P value as small as
0.0001) and the best member dressed CDD ensembles (P value as small as 0.02). The
underdispersion of the best member dressed ensemble indicates that the best member»
dressing kernel is either failing to providevreliable error variance estimates for individual

T; and/or it cannot reliably represent the temporal correlation of forecast errors. We also

measure the skills of the CDD ensembles with the ignorance score. Four climatologically
equally likely categories are built from 2001 summer CDD verifications on Boston. The
results of the ignorance scores for the CDD ensembles are shown in Figure 4.8. The
smaller the score, the less ignorant of the CDD probabilistic forecast. Statistical ¢ test (Ott
1993) shows that the ignorance score for the new kernel CDD ensemble is significantly
better than those éf the best member CDD ensemble and the undressed CDD ensemble.
So the probabilistic CDD forecast generated from the CDD ensemble éugmented by the
new dressing kernel is more skillful than the undressed CDD ensemble and the best
member dressed CDD ensemble. The Brier score measurement (not shown) provides |

qualitatively the same result.
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Figure 4.7: Rank histograms for undressed, new kernel dressed, and the best member
dressed 3-day accumulated CDD ensembles over Boston during 2001 summer.
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UNDR BEST NEW

Figure 4.8: Ignorance scores for the undressed (UNDR), the best member dressed
(BEST) and the new kernel (NEW) dressed CDD ensembles.

4.6 Conclusion

A new multi-variate dressing method is designed to make the distributions from
which dressed ensemble members are drawn indistinguishable from the distribution from
which verifying observations are drawn under a seasonally averaged second moment

measure. Ensemble bias is removed first before building training statistics for the
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dressing kernel and before dressing the current ensembles. The CCM3 ETKF ensemble

dressed with the second moment constraint method is more skillful than the
corresponding undressed ETKF ensemble. With both a random number generator

experiment and the CCM3 ETKF ensemble framework, Roulston and Smith’s (2003)

original best member dressing method was compared with the second moment constraint

dressing method. It was found that the spread of the best member dressed ensemble can’
be over-dispersive or uhder-dispersive depending on such factors as the undressed
ensemble size, how under-dispersive the undressed ensemble is and the subspace from
which the best member is identified. In contrast‘, the ensembles dressed with the second
moment constraint dressing kernel always gave abouit the right amount of dispersién.

The utility of the sec(:ond moment constraint dressing relative to the best member
dressing and the importance of accurately accounting for the temporal correlation of
forecast errors was demonstrated by comparing predictions of accumulative éoohng
degree days from undressed, second moment dressed and best member dressed
ensembles. It was found that the new second moment constraint dressing kernel proviaed
a 3-day accumulated CDD ensemble with more reliable spread and better skill than the
CDD ensemble augmented with the best member dressing kernel.

| In sections 4.3 and 4.4 of this paper, the dressing perturbations for the new kémel
were drawn from a multi-variate normal distribution. ’As in the best member method, the
dressing perturbations for the new kernel can also be based on an archive of past errors
rather than a prescribed distribution. This is achieved by first grouping the historicalr
errors of all ensemble members and then tralisforming these errors by premultiplying a

matrix so as to make the covariance of the transformed errors to be equal to the Q matrix
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in Eq. (4.10)~(4.12). In our experiment, dressing with the archive and the prescribed

distribution produce similar results for SOOhPa Uand 2mT. So we only show the results
corresponding to the prescribed distribution. Also note that the assumption of a Gaussian
dressing kernel is likely poor for positive-definite quantities such as precipitation and 10
m wind speed. To extend the usage of the new dressing kernel for such quantities, a
possible option is to transform such quantities to make the transformed quantities have
more Gaussian type of distributions (Wilks 2002).

In the new dressing method, no dressing is performed for directions where the
undréssed ensemble is already overd‘ispersive (Eq. (4.10)-(4.12)). For future work, to
correct the diré'ctions where the undressed eﬂseﬁble is overdispersive, we can try to dress
each ensemble member differently. A possible solution would be to dress the central
members with more dressing perturbations than the outside members so that the pdf of
the dressed ensemble is narrower than the undressed ensemble.

Given large enough data sets, it would be of interest to condition the dressing
kernel on flow regixnes known to have profound impacts on model error. For example,
different dressing kernels might be used on convectively stable and unstable days and
they may also be constructed to be regionally dependent. The dressiné technique and the
model output statistics (MOS) technique can also be iﬁfegrated. For example, we can ﬁrSt
apply MOS for each member of the dynamic ensemble and then perform dressing on the -

ensemble processed by MOS.
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Chapter 5

Concluding remarks and remaining challenges

In the thesis, | a pew initial perturbation generatfon method, the ensemble
transform Kalman filter (ETKF), has been developed and compared with the breeding
method. With a little more computational expense, the ETKF provides a significantly
more skillful ensemble generation scheme to sample initial condition uncertainty than the
breeding method. A new initial perturbation centering scheme called spherical simplex
centering was also introduced aﬁd found to provide a m‘ore'useful ensemble than that
obtained from the traditional positive/negative paired centering. A second moment
constréint “dressing” method to postprocess ensemble output is explored and found to
improve the reliability of ensemble spread better than the previously proposed best
member dressing mefhod. The statistically augmented spherical simplex ETKF ensemble
was then applied for the probabilistic forecasts of a user specific quantity, the cooling}
degree days (CDD). It was found that the ETKF ensemble dressed with'the sécond
moment constraint method proﬁdes reliable spread for CDD forecasts and has better skill
than the CDD ensemble augmented by the best member method.

The low-rank estimates of the error covariance by ETKF because of the limited
ensemble members may cause the magnitude of the ETKF initial pérturbations to be too
small. Besides ameliorating such deficiency by using an inflation factor as in chapter 2, a

bias ameliorated form of ETKF formulation is being developed and tested.
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Future research will address the question of how to optimally combine
statistically postprocessed ensemble forecast sysfems from different operational centers
to provide probabilistic forecasts. Bayesian averaging may provide a theoretical
foundat_ion for such problems. Furtherrﬁore, as the ensemble dutput is often at a grid
resolution incapable of resolving some key aspects of severe weather, there is also a need
to develop postprocessing, methods to downscale ensemble output from the grid
resolution to the weather impacted sites of interest. A feasible option would be to apply
the Model Output Statistics (MOS) technique to each ensemble member. Another option
would be to use an analog downscaling technique on each ensemble member to find the
possible subgrid scale states associated with the grid-scale state given by the eﬁsemble
member.

Developing methods to effectively evaluate the ensemble is also important.
Besides the standard skill scores, evaluating the economic value of the ensemble
.generated probabilistic forecasts fér weather-sensitive users has become a standard Way
to access the quality of the ensemble forecasts. 'We are currently exploring and testing a
new economic evaluation method relevant to weather derivative users.

Research on methods to generate initial conditions continues to be important. To
improve sampling of the probability density function (pdf) of initial conditions, ensemble
forecasts and data assimilation may néed to be coupled. [Ensemble based data
assimilation provides a natural framework for integrating the two. Although early studies
with simulated observatioﬁs and perfect models (see Hamill 2004 and references therein)

have shown promising results of ensemble-based data assimilation, it has not been
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demonstrated that these methods can produce superior forecasts to those generated by
current operational methods in an operational setting.

Various approaches to account for model errors have been tried such as
constructing tﬁe ensembles with multi-models and single model with perturbed physics
pﬁrameters or with different parameterization schemes. However, these methods are
more empirical than theoretically justified. Developing stochastic-dynamic ensembles
based on stochastic parameterizations of sub-grid scale processes may provide a first
principle basis for ’accou.nting for model error. Such effort is just beginning (e.g., Buizza
et al. 1999; Palmer 2001).

How many forecasts should be in the ensemble? Given the constraints on time
and computing resources, how should ensemble size and model resolution be balanced?
Besides assessing the performances of different conﬁgurations of ensemble size and
model resolution with the standard forecast skill measures, such question may be
answered more appropriately with considerations of customers’ needs. Challenges also
remain for human forecasters who will need to interpret a larger amount of information
from ensemble forecasts than the conventional single deterministic forecasts and who
may also need to help cﬁstomers to analyze the risks associated with different weather
conditions rather than just to report what the weather is going to be like. .

Although this thesis focused on ensemble weather forecasting, ensemble forecast
also provides tools in éther areas such as targeted observations, data assimilation, climate
fqrecasting and it also has applications in oceanography and other geosciences. As such,
ensemble forecasting is likely to remain an active area of research and development for

the next few years.
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Appendix A

Derivation on the new dressing kernel

Al Derivation on equation (4.6)

To derive Eq. (4.6) first note that using Eq. (4.4)

(\Vu —\y,j)=(X, +X,+g,—X, —X; "szj)

o (A
- (%) +(eums)
Using (A.1) on the left side of Eq. (4.5) gives
<<(‘|’1i —VYy )(\l’zi ~ Yy )T> >
, i/,
) < ((X.li — x.lj )+ (s“ B £lj ))((Xh —le ) ¥ (sli B £lj ))T>i*j >I (A2) =

(%, -, )(x -, )*)‘_#j > +<<(a,,:— )(e-w)), > |

Note that the covariance of the dressing perturbations (ssT> is the same for all ensemble
members for all cases. So we put no subscript on this term. Also note that from Eq. (4.4)
(WIi—YI)=(X—I+X;i+£Ii—yl)' (A.3)

Hence the right side of Eq. (4.5) is
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Substituting Eq. (A.1)-(A.4) into Eq. (4.5) gives Eq. (4.6).
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A2 Derivation on equation (4.9a)

To derive equation (4.9a), first we start with the first term on the right side of Eq.

(4.6). First note that
(COATE)
=<((i‘1 -%, )+(i, -~ y,))((i‘l —i,)+(i, —y,))T>’ , (AS)
()= ) (s v |

Note in deriving the last step in BEq. (A.5), we use the assumption

((i‘z -—Tx',)( »-% )T> =0, which means the difference between the sample ensemble
4

mean and the underlying ensemble mean does not co-vary with the difference between

the verifications (e.g., observations) and the underlying ensemble mean over seasons’
T : .
forecasts. Also recall that <(i’z -—'i,)('i"z —')'Z,) >=221/K . Then. from Eq. (A.5), the

first term on the right side of Eq. (4.6) can be approximated as
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l —71(-(221 )l . (A.6)

z 2 v\ - = o\
<(X1"YI)(X1"YI) >l—<(xl"YI)(X1 YI) >
Approximate £ in the last term of Eq. (A.6) and the second term on the right side of

Eq. (4.6) with £ Then we get Eq. (4.9a).




Appendix B

A list of basic concepts in data assimilation and ensemble forecasting

1. Atmospheric data assimilation

Atmospheric data assimilation is an objective analysis process that involves a
linear combination of observations with a background (or- “first guess”) forecast, which is
usually a short-term foreéast. The purpose of atmospheric data assimilation is to produce
a regula;, physica]ly consistent four-dimensional reprgsentétion of the state of the
atmosphere from a heterogeneou.s array of in-situ and remote instruments that sample
iminerfeétly and irregulaﬂy in space and time (Daley 1997). Mathematically, the data

assimilation process is expressed as
x‘{:xf+w(y—H(xf)), (B1)

where x/ and x” are column vectors containing n elements of forecast and analyzed

values on regular model grids,y is a column vector containing p elements of observed

values on observation sites and H is an operator mapping the forecast/analyzed variables

on the analysis grids to the observed variables at the observation locations. The vector

y-H (xf ) is called the innovation vector or observation increment. Matrix W contains

the weights for linearly combining x” and y. In (B1) and the discussion below for

simplicity we assume the observations in y are collected at the validation time of the
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short-term forecast x/. In operations, observations collected in a certain time window

are assimilated. The vector x* in (B1) is called the analysis..

‘2. Optimal data assimilation
In (B1), W isa nxp vs}eight matrix for applying the observation increment (i.e.,
the innovation vector) to correct the background forecast in order to obtain an analysis.

For the ith element of x*, the ith row of W contains p weights for linearly combining

the ith element of x/ and the p elements in the innovation vector. The goal in data
assimilation research is to find wéight W 5o that the error variance for each element of

x* is minimized. These weights are called optimal weights and the corresponding data
assimilation is called optimal data assimilation.
In optimal data assimilation, the optimal weight matrix W' is derived as
-1
W =P/H' (HP/H +R)", (B2)
and the corresponding error covariance of x, denoted as P“, is

P* =P/ —P/HT (HP/H’ +R)  HP/. (B3)

For detailed derivations on (B2) and (B3) please refer to (Daley 1991). Here the author
gives explanations on terms in (B2) and (B3). First, H is the tangent linear of H, ie.,

H=0H/0x. We call H the linear observation operator. To further understand the terms
on the right sides of (B2) and (B3), we first define forecast error vector, e/ =x/ -x

observation error vector e’ =y-x, and observation mapping operator error vector
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e"=H (x’ )—xz. In these error vector definitions, x, is the true atmospheric state

m
expressed with forecast variables on the regular model grids and x, is the true
atmospheric state expressed with obseryed variables on the observation sites. These
errors e/ ,< e’ and e” are all multi-dimensidnal random variables. We assume that these
errors are unbiased, that is, <ef >=0, .<eh>%0, (e">=0. Hereafter ( ) is a symbol
(commonly used in statistics) which means expectation or average over an infinite

sample. The elements in e/ are errors for different variables at the same model grid or

" same variable on different grids. Correlations among the elements over the same grid and
over adjacent grids are not zero. Similarly, correlations among the elements of e° and
among the elements of e" over the same site and over adjacent sites are not zero. The

covariance of e’, denoted by matrix P/ , is called the forecast error covariance.

T o '
Mathematically P/ =<ef (ef ) > The matrix R is called observation error covariance,

which is defined as R =<e° (e" )T>+<e",(eh )T> Note in data assimilation the matrix

R not only includes the part associated with the measurement error €’ but also includes

the part associated with the errors in the forward intérpolation of the mapping operator

e". In data assimilation, it is often assumed that there is no correlation among the three

types of errors, that s, <e" (ef )T> =0, <eh (ef )T> =0 and <e" (eh )T> =0. On the right |

: T
side of (B3) is the analysis error covariance, defined as P“ =_<e“ (e”) > where
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e’ =x-x' . The diagonal element of P® in (B3) gives the minimum error variance of

the corresponding analyzed variable associated with the optimal weights (B2). The
diagonal elements of the second part on the right side of (B3) are the reduction (or

“shrinking”) of forecast error variance due to the optimal assimilation of observations. If

we precisely know P/ and R (called true forecast error covariance and true observation
error covariance), then we can find the optimal weights by (B2) and know exactly what
the analysis error covariance associated with the optimal data assimilation by (B3) (called

true analysis error covariance associated with the optimal data assimilation scheme) is.

We do not, however, know what the true atmospheric state X' is and thus we do not

N

know P/ and R. A major theme of data assimilation research is to find ways to estimate
and approximate P/ and R. Data assimilation schemes associated with approximated

P/ and R are called sub-optimal schemes. This thesis focuses on ensemble forecasting
not data assimilation. For readers who are interested in the details of different types of
data assimilation schemes pleése start with Daley (1991, 1997), Evensen (1992,1994),

Courtier et al. (1994) and Parrish and Derber (1992).

3. Data assimilation cyclev

Figure B.1 illustrates a typical 6-hour data assimilation cycle, that is, the analysis'
is generated four times a day at synoptic data collection time. At 00Z, a model starts from
initial conditions given by a previously completed atmospheric analysis and is integrated
for a short (6 hour) forecast. The 6-hour fore;:ast and the observations collected at 06Z

are linearly combined by a data assimilation scheme to generate the analysis at 06Z.
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Then the model is integrated from the analysis at 06Z. The same procedures are followed
at 12Z and so on. At ECMWF and NCEP, one analysis is generated each time and the
. forecast started with the analysis is called the control forecast. The control forecast

initialized at 00Z, 06Z, 12Z and 18Z can be run up to 10-day or longer for the purpose of

medium range forecast.

- Data agsimilation cycle

_—mmmm — ———  Time:
00Z A 12Z 187

% analysis s 6h control forecast - atmosphere

Figure B.1: Cartoon for a typical operational data assimilation cycle.

4. Ensemble forecast cycle

Figure B.2 shows a typical operational ensemble forecast cycle. Given an

analysis generated from a data assimilation scheme, there are errors associated with the
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analysis. See definitions of “error” in section 2 of this appendix. In ensemble forecasting,
an ensemble of initial conditions is generated to sample the possible true atmospheric
states around the analysis. The ensemble of initial conditions is called perturbed initial
conditions. The difference of a perturbed initial condition and the analysis is called an
initial perturbation. One active research topic in ensemble forecasting is hovw to generate
initial perturbations to realistically and effectively sample the possible true atmospheric
state around the analysis. Please refer to the introduction for details. The forecast starting
from the perturbed initial condition is called the perturbed forecast. The controi forecast
and the perturbéd forecasts together are called the ensemble forecast. For simplicity,
Figure B.2 only shows one perturbed forecast. In operations, more than one perturbed
initial conditions and thus more than one pérturbed forecasts are generated. At
operational centers, ensemble forecasts can be generated 4fou1f times a day with the
forecasts initialized at 00Z, OGZ, 12Z and 18Z. The ensemble forecast are then run up to
the forecast lead time depending on the purpose of the forecast.

The perturbed forecasts cycle may or may not interact with the data assimilation
cycle, depending on the types of data assimilation scheme and initial perturbation
generation scheme. Currently at NCEP and ECMWEF, the process of generating initial
perturbations does not interact with the process of data assimilation. For \the ETKF initial
perturbation generation method described in chapter 2 and 3, these two processes do not
interact either. At the Canadian Meteorological Center, these fwo processes do interact.

Please see discussions in the introduction and references therein for details.
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Ensemble forecast cycle

e — ———————  Time
00Z 067 127 187

% analysis . control forecast ¢ perturbed forecast

A:-J"‘( .

wxse atmosphere | initial perturbation

Figure B.2: Cartoon for a typical operational ensemble forecast cycle.

. 4. Eigenvector of a covariance matrix

A covariance matrix of a K-dimensional variable x is written as <xxT>. This
coyariance matrix can be decomposed into the following format,

(o)=EFE", (B4)

where columns of E contain orthonormal vectors, called eigenvectors of <xxT> The

matrix I is a diagonal matrix whose ith diagonal element is the eigenvalue for the ith

eigenvector (ie., the ith column of E). The diagonal elements of I are in general
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ordered in decreasing value. The leading eigenvector, i.e., the eigénvector corresponding
to the largest eigenvalue, explains the most variance of x (Peixoto and Oort 1992). The
eigenvectors in E form an orthonormal basis of vectors for any K-dimensional vector. In
other words, The K-dimensional variable x can be expressed in the form of linear

combination of the eigenvectors.
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