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ABSTRACT

The ensemble transform Kalman filter (ETKF) initial ensemble perturbation

generation scheme is introduced and compared with the simple and masked breeding

schemes. Instead of directly multiplying each forecast perturbation with a rescaling

factor to generate the initial perturbations as in the breeding schemes, the ETKF

generates initial perturbations by postmultiplying the forecast perturbations by a

transformation matrix. This matrix is chosen to ensure that the ensemble-based analysis

error covariance matrix would be equal to the true analysis error covariance if the

covariance matrix of the raw forecast perturbations were equal to the true forecast error

covariance matrix and the data assimilation scheme were optimal. For small ensembles

(~100), the computational expense of the ETKF ensemble generation is only slightly

greater than that of the masked breeding scheme.

Version 3 of the community climate model (CCM3) developed at National

Center for Atmospheric Research (NCAR) is used to test and compare the ETKF and

breeding schemes. The NCEP/NCAR reanalysis data for the boreal summer in 2000 are

used for the initial analysis and the verifications. The ETKF ensemble variances at initial

time can reflect the geographical variations of the initial condition uncertainty better than

the breeding scheme. The ETKF maintains comparable amounts of variance in all

orthogonal and uncorrelated directions spanning its ensemble perturbation subspace at

12-h forecast lead time, whereas both breeding techniques maintain variance in few

directions. The maximal energy-norm perturbation growth within the ETKF ensemble

perturbation subspace calculated with linear dynamics assumption significantly exceeds
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that within the breeding perturbation subspace at short forecast lead times. The ETKF

ensemble mean has lower root mean square errors than that of the breeding ensemble.

The ETKF estimates of forecast error variance are considerably more accurate than those

of the breeding schemes.

A new method to center the initial ensemble perturbations on the initial analysis is

introduced and compared with the commonly used centering method of positive/negative

paired perturbations. In the new centering method, called spherical simplex centering,

one linearly dependent perturbation is added to a set of linearly independent initial

perturbations to ensure that the sum of the new initial perturbations equals zero; the

covariance calculated from the new initial perturbations is equal to the analysis error

covariance estimated by the independent initial perturbations; and all the new initial

perturbations are equally likely. When the number of uncertain directions is larger than

the ensemble size, which is the case for numerical weather prediction, the spherical

simplex centering has the advantage of allowing almost twice as many uncertain

directions to be spanned as the symmetric positive/negative paired centering. Both

centering schemes are applied to the CCM3 ETKF ensemble. Tests are performed on the

accuracy of the ensemble means, the accuracy of predictions of forecast error variance

and the ability of the initial ensemble variance to resolve inhomogeneities in the

observational network. In all of these test categories, the spherical simplex ETKF

ensemble is found to be superior to the symmetric positive/negative paired ETKF

ensemble. The computational expense for generating spherical simplex ETKF initial

perturbations is about as small as that for the symmetric positive/negative paired ETKF.
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Because all current ensemble techniques partially misrepresent the effects of

initial condition error and model error on forecast accuracy, it is inevitable that members

of dynamic ensembles are not drawn from the same distribution as the distribution of

truth given an ensemble forecast. To address this deficiency, a new ensemble

postprocessing method that reduces seasonally averaged second moment errors of the

ensemble forecasts is introduced. The method involves adding independent sets of N

random 4-dimensional "dressing" perturbations to each of the K members of a dynamical

ensemble forecast to obtain an N x K dressed ensemble. The new method

mathematically constrains the stochastic process used to generate the statistical

"dressing" perturbations so that it entirely removes seasonally averaged errors in the

second moment measures. ETKF ensembles that were dressed with perturbations

satisfying this constraint were found to give more accurate probabilistic forecasts than

corresponding undressed ETKF ensembles. A random number generator experiment and

an experiment with the CCM3 ETKF ensemble show that the previously proposed "best

member" dressing method fails to reliably predict the second moment of the distribution

of forecast errors whereas the new dressing method reliably predicts this second moment.

The CCM3 ETKF ensemble postprocessed with the new dressing method is

applied for probabilistic forecasts of cooling degree days (CDD) for Boston. It is shown

that the new kernel accounting for temporally correlated forecast errors results in

ensemble forecasts of CDDs with reliable spread whereas the best member method leads

to an underdispersive ensemble of CDD forecasts.



wA

vi

TABLE OF CONTENTS

LIST O F FIG U R E S ................................................................................................. vii

ACKNOWLEDGEMENTS ...................................................................................... viii

Chapter 1 Introduction ......................... ; ........................................................... .. 1

Chapter 2 A Comparison of Breeding and Ensemble Transform Kalman Filter
Ensemble Forecast Schemes ........................................................................ 7

Chapter 3 Which Is Better, an Ensemble of Positive-Negative Pairs or a Centered
Spherical Simplex Ensemble? .................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 4 Improvement of Ensemble Reliability with a New Dressing Kernel ......... 9

4.1 Introduction ............................................................................................ 9
4.2 Limitations of the best member dressing: the random number generator

experim ent ............................................................................................. 13
4.3 Dressing with second moment constraint ................................................ 18
4.4 Further test with nonlinear CCM3 ETKF ensemble ................................. 25

4.4.1 Numerical experiment design ....................................................... 26
4.4.1.1 Dynamic ensemble, verification data, and variables of

interest ...................................................................................... 26
4.4.1.2 Identification of the best member ......................................... 27
4.4.1.3 Training and forecasting processes ...................................... 28

4.4.2 Experiment results ................................................ 30
4.5 Application on Cooling degree days forecasts at Boston .......................... 42

4.5.1 CD D definition ............................................................................ 43
4.5.2 Application of dressing ................................................................. 43
4.5.3 Results on the reliability of the dressed CDD ensemble spread ..... 45

4.6 Conclusion .............................................................................................. 48

Chapter 5 Concluding remarks and remaining challenges .................................. 52

B ibliography ..................................................................................................... 56

Appendix A Derivation on the new dressing kernel ........................................... 64

Al Derivation on equation (4.6) ................................................................. 64
A2 Derivation on equation (4.9 a) .................................................................. 65

Appendix B A list of basic concepts in data assimilation and ensemble
forecasting ..................................................................................................... 67



vii

LIST OF FIGURES

Figure 4.1: Random number generator experiment results in testing the reliability
of the spread of the ensemble dressed by (a) the best member method and (b)
the new dressing kernel. Thin solid contours indicate over-dispersive
ensemble. Dashed contours indicate under-dispersive ensemble. Thick solid
contours mean the spread is reliable. Contour interval is 4 ............................ 17

Figure 4.2: Illustration for the idea of the new dressing kernel in 2-dimensional
space. Please refer section 4.3 for detailed explanation ................................ 21

Figure 4.3: 14 verification sites over eastern USA for the experiment in section
4 .4 ..................................................................................................................... 2 7

Figure 4.4: Rank histograms for (a) undressed, (b) new kernel dressed, (c) RS-
10d-globe dressed, (d) RS-1-id-east dressed and (e) RS-id-east dressed
CCM3 ETKF 500hPa U ensembles over the 14 sites from 1-day to 10-day
lead tim es ............................................... ....................................................... . 34

Figure 4.5: Brier scores for the undressed, new kernel dressed, RS- 1Od-globe
dressed, RS-1-id-east dressed and RS-id-east dressed CCM3 ETKF 500hPa U
ensembles from 1-day to 10-day lead times. Brier score from the sample
climatology is also shown. The vertical solid and dashed lines are the
standard errors of Brier score calculation with given samples for the new
kernel dressed and undressed ensembles respectively .................................... 36

Figure 4.6: seasonal mean 500hPa U ensemble covariance averaged over 91 pairs
of sites among the 14 verification sites (dashed) and seasonal mean 500nPa U
ensemble mean error covariance averaged over 91 pairs of sites among the 14
verification sites (solid) as a function of forecast lead times for undressed
ensemble, new kernel dressed ensemble, RS-10d-globe best member dressed
ensemble, RS-1-id-east best member dressed ensemble and RS-id-east best
m ember dressed ensemble ............................................................................ 41

Figure 4.7: Rank histograms for undressed, new kernel dressed, and the best
member dressed 3-day accumulated CDD ensembles over Boston during
2001 sum m er ................................................................................................ 47

Figure 4.8: Ignorance scores for the undressed (UNDR), the best member dressed
(BEST) and the new kernel (NEW) dressed CDD ensembles ........................ 48

Figure B. 1: Cartoon for a typical operational data assimilation cycle ................... 71

Figure B.2: Cartoon for a typical operational ensemble forecast cycle ................. 73



viii

ACKNOWLEDGEMENTS

The completion of this thesis would never have been possible without the patient

guidance and continuous encouragement from my research advisor, Dr. Craig H. Bishop.

He not only was instrumental in my thesis research but also provided me opportunities to

get exposed to and communicate with scientists in the related field. His foresights and

constant enthusiasm would affect me for a lifetime.

I would also like to thank my academic advisor, Dr. George. S. Young for his

caring and generous guidance on pursing an academic career. I also owe my deep

gratitude for Dr. Michael J. Fritsch, Dr. Sukyoung Lee and Dr. David Pollard for their

helpful suggestions on this study and enlightenment in other fields of atmospheric

sciences.

Finally, I thank my family, especially my husband, Xinyu Dai, for his love, his

comfort and his support.



Chapter 1

Introduction

It is widely recognized that numerical weather forecasts have limited skill. Errors

in numerical forecasts are attributed to the inevitably existing inaccuracies in initial

conditions and deficiencies in numerical models. Due to the chaotic nature of the

numerical model; a small error in the initial condition can grow exponentially and

eventually make the forecast useless (Lorenz 1963; 1969). Incomplete knowledge of the

dynamical and physical equations of the atmosphere, and further approximations in

numerics make the model trajectory diverge from the true state even if the initial

condition is perfect. Since numerical forecasts are inherently uncertain, a forecast is

incomplete unless it is accompanied with a prediction about its uncertainty and forecasts

are more appropriately expressed in a probabilistic framework. Such additional

information significantly expands the usage of the forecast.

Probabilistic forecasts could be ideally generated by propagating the probability

density function (pdf) of the state through model dynamics such as the Liouville and

Fokker-Planck equations (e.g. Epstein 1969; Ehrendorfer 1994a, b). However, it is too

computationally expensive for numerical weather prediction (NWP) models. A

computationally feasible approach to estimate the evolution of the pdf is through

ensemble forecasting, where an ensemble of forecasts can be generated by integrating a

numerical forecast model from distinct initial conditions that are consistent with the

uncertainties in the initial condition and/or by using multiple models or model
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configurations to represent the uncertainties in the computational representation of the

equations that govern atmosphere motion. The uncertainty of the forecast is represented

either by the dispersion of the ensemble forecasts or the forecast probabilities generated

by using the relative frequencies of events of interest in the resulting collection of

forecasts. Since ensemble forecasting is recognized as a practical way to provide

probabilistic forecasts (Leith 1974), ensemble forecasting has undergone dramatic

development. It has been operationally implemented for medium-range numerical

weather prediction (e.g., Toth and Kalnay 1993,1997; Molteni et al. 1996; Houtekamer et

al. 1996) and is also being used for short-range weather prediction (e.g., Hamill and

Colucci 1997, 1998; Du et al. 1997; Stensrud et al. 1999; Hou et al. 2001;Grimit and

Mass 2002; Stensrud and Yussouf 2003). It is found in these studies that compared to a

single deterministic forecast with relatively high resolution, ensemble mean forecast by

averaging ensemble members with relatively low resolution can have smaller root mean

square errors and the ensemble forecast can provide flow-dependent forecast uncertainty

information in advance. Recent studies (e.g., Richardson 2000; Zhu et al. 2001; Palmer

2002, Roulston et al. 2003) have demonstrated that the economic value of ensemble

forecasts is greater than a single deterministic forecast for a wide range of weather

forecast users.

One active research topic in ensemble forecasting is, for given computing

resources, how to initialize ensembles with limited samples to effectively represent the

initial condition uncertainty. So far three strategies have been adopted in major

operational meteorological centers. The European Centre for Medium-Range Weather

Forecast (ECMWF) uses a singular vector method (Molteni et al. 1996) to generate initial
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perturbations that will grow rapidly during the first few days of the forecast. The

National Centers for Environmental Prediction (NCEP) uses a breeding method (Toth

and Kalnay 1993,1997) where initial perturbations are generated in directions where

forecast errors have grown rapidly over previous data assimilation cycles. Initial

perturbations generated by the singular vector method and the breeding method are then

added to the initial analysis to generated perturbed initial conditions. The Canadian

Meteorological Centre (CDC) uses a perturbed observation approach (Houtekamer et al.

1996) where an ensemble of analyses is generated by updating sets of first-guess

forecasts with distinct sets of observations. The first goal of this thesis is to introduce

and test a new initial perturbation generation scheme, called the ensemble transform

Kalman filter (ETKF). This scheme solves the error covariance update equation for a

Kalman filter data assimilation scheme (e.g., Kalman 1960; 1961) within the subspace of

ensemble perturbations. The ETKF was first introduced by Bishop et al. (2001) as an

adaptive sampling technique. As an ensemble generation scheme it is similar to the

breeding scheme in that it creates analysis perturbations from forecast perturbations and

is inexpensive to run for small ensemble sizes (<100). Unlike the breeding scheme, it

explicitly accounts for the effect of observations on analysis error variance and, in the

limit of very large ensemble size, converges to the theoretically optimal error covariance

update procedure.

In operational singular vector and breeding ensembles, initial perturbations are

constructed to let half of the perturbations to be the negative of the other half, so that the

sum of the perturbed initial conditions is equal to the analysis. This procedure of

centering the initial perturbations about the analysis is desirable as one wants the
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ensemble mean to always be equal to the minimum error variance estimate of the true

state, which at initial time is the analysis. The second goal of this thesis is to introduce a

new centering scheme, called spherical simplex centering, and compare it with the

traditional positive-negative pair centering by applying both to the ETKF initial

perturbation generation framework.

As the purpose of ensemble forecasting is to access the uncertainty associated

with numerical weather prediction, ensemble forecast members should be realistically

diverse so that the true atmospheric state acts just like one of the ensemble members.

However, it is often observed that observations fall outside the range of the ensemble

members with a margin and frequency that cannot be explained by the estimates of

observation errors. Presumably, this is because all current ensemble techniques partially

misrepresent the effects of initial condition error and model error (e.g., Orrell et al. 2001;

Smith 2001, Buizza et al. 1999; Palmer 2001) on forecast accuracy. Thus it is inevitable

that members of dynamic ensembles are not drawn from the same distribution as the

distribution of truth given an ensemble forecast.

To improve the reliability of the ensemble, one can try to further develop the

initial perturbation generation scheme, improve the model, incorporate stochastic effects

(e.g., Buizza et al 1999), adopt the multi-model/parameterization/configuration method

(e.g., Evans et al. 2000; Fritsch et al 2000; Krishnamuri et al. 2000; Mylne et al. 2002;

Richardson 2001; Wandishin et al. 2001; Houtekamer et al 1996; Stensrud et al. 2000;

Grimit and Mass 2002), and statistically adjust the output of ensemble forecasts (Du et al.

2000; Hamill and Colucci 1997, 1998; Eckel and Walters 1998; Atger 1999, 2003;

Krzysztofowicz and Sigrest 1999; Wilks 2002; Hamill et al 2004; Raftery et al. 2003;
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Roulston and Smith 2003). Of all these options, statistically postprocessing ensemble

forecasts is of particular interest of this thesis. Motivated by the previously proposed best

member dressing method by Roulston and Smith (2003), the third goal of this thesis is to

introduce and test a new ensemble augmentation method to improve the reliability of the

spread of the ensemble in the postprocessing.

Given the large amount of information from statistically calibrated ensemble

forecasts, how should customers use them? For weather-related commercial users,

probabilistic forecasts of meteorological weather elements are not directly useful. The

weather-related quantities that the end-users are interested in may not depend linearly on

just one meteorological variable, but nonlinearly on a number of meteorological variables

in general. Therefore, ensemble forecasts should be fed in a quantitative user application

model and the resulting output can be used to form probabilistic forecasts of the user

relevant economic variable (Palmer 2002). Associated with testing the new dressing

kernel, the ETKF ensemble augmented by the new dressing kernel is applied for

probabilistic forecasts of cooling-degree-days (CDD), a frequently used quantity for

weather derivative and insurance users.

In chapter 2, the ETKF initial perturbation method is introduced and compared

with the breeding method. This work is published in the Journal of Atmospheric

Sciences, Vol. 60, Issue 9, May 2003. In chapter 3, the spherical simplex initial

perturbation centering method is introduced and compared with the positive-negative

paired centering by using the ETKF framework. This work is published in the Monthly

Weather Review, Vol. 132, Issue 7, July 2004. In chapter 4, a problem with the best

member method (Roulston and Smith 2003) is revealed and a new dressing method to
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statistically augment ensemble forecasts is introduced and tested with the ETKF

ensemble. The new dressing method is further tested by applying it to probabilistic

forecasts of CDD for Boston. Concluding remarks and future work are discussed in

chapter 5. Basic concepts for data assimilation and ensemble forecasting are listed in

appendix B.



Chapter 2

A Comparison of Breeding and Ensemble Transform Kalman Filter
Ensemble Forecast Schemes

Reprint found in pocket.

Wang, X. and C. H. Bishop, 2003: A comparison of breeding and ensemble

transform Kalman filter ensemble forecast schemes. J. Atmos. Sci., 60, 1140-1158.



Chapter 3

Which Is Better, an Ensemble of Positive-Negative Pairs or a Centered
Spherical Simplex Ensemble?

Reprint found in pocket.

Wang, X., C.H. Bishop and S. J. Julier, 2004: Which is better, an ensemble of

positive-negative pairs or a centered spherical simplex ensemble. Mon. Wea. Rev., 132.

1590-1605.



Chapter 4

Improvement of Ensemble Reliability with a New Dressing Kernel

4.1 Introduction

During the last decade, ensemble forecasting has become an important part of

numerical weather prediction (NWP). It has been operationally implemented for medium-

range NWP (e.g., Molteni et al. 1996; Toth and Kalnay 1993,1997; Houtekamer et al.

1996) and is being incorporated to short-range NWP (e.g., Hamill and Colucci 1997,

1998; Du et al. 1997; Stensrud et al. 1999; Hou et al. 2001;Grimit and Mass 2002;

Stensrud and Yussouf 2003). Compared to a single deterministic forecast with high

resolution, ensemble mean forecasts with relatively low resolution for each ensemble

member can produce smaller root mean square errors. Moreover, ensemble forecasts can

provide flow-dependent estimates of forecast errors depicted by ensemble spread or

expressed in forecast probabilities (e.g., Toth et al. 2001; Whitaker and Loughe 1998).

Studies by Richardson (2000); Zhu et al. (2001); Palmer (2002) and Roulston et al.

(2003), amongst others, have demonstrated that the economic value of ensemble forecasts

is greater than a single deterministic forecast for a wide range of weather forecast users.

Managers of weather sensitive activities can benefit from probabilistic forecasts

that accurately represent the probability distribution of the verifications given the

ensemble forecast (e.g., Palmer 2002). However, because of the sub-optimal initial

perturbation generation techniques and the lack of consideration of model errors, it is
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typically shown by rank histogram (e.g., Hamill and Colucci 1997; 1998) that outputs

from raw ensembles may be biased and under-dispersive, which limits the predictive

power of the ensemble. Hence, developing postprocessing methods to calibrate the

outputs of ensemble forecasting systems has also been of interest. Some postprocessing

studies involve directly calibrating the forecast probabilities. Methods include reliability

diagram statistics (e.g., Zhu et al. 1996; Toth et al. 2001; Krzysztofowicz and Sigrest

1999; Atger 2003), verification rank histogram statistics (Hamill and Colucci 1997, 1998;

Eckel and Walters 1998), Bayesian averaging (Kass and Raftery 1995; Raftery et al.

2003), and the logistic regression technique with an ensemble mean as predictor (Hamill

et al. 2004). There are also studies to directly postprocess the spread of the ensemble

(e.g., Atger 1999; Roulston and Smith 2003).

Of all these postprocessing techniques, the dressing method (Roulston and Smith

2003) is of particular interest in this paper. In the dressing method, statistical

perturbations are added to each member of the dynamic ensemble in the postprocessing

for the purpose of augmenting the spread of the ensemble. The dressing method provides

an alternative to Wilks' (2002) approach to smooth the raw ensemble as one can easily

add many dressing perturbations to each member of the dynamic ensemble to produce

ensembles with as many members as 105. It also tends to reflect all sources of residual

errors that the dynamic ensemble has not yet accounted for. Another advantage of the

dressing method relative to other methods that postprocess the spread of the ensemble

directly (e.g., Atger 1999) is that the dressing procedure maintains all information of the

flow-dependent forecast uncertainty information in the dynamic ensemble. Compared to

the calibrated forecast probabilities, the dressed ensemble members can be more
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conveniently applied to different types of user application functions, such as the

accumulated cooling degree days for weather derivative users show in section 4.5.

In the "best member" dressing method proposed by Roulston and Smith (2003),

the best member out of each historical ensemble forecast is first identified and the

difference between the best member and the verification, i.e., the best member error, is

stored. The archive of the best member errors is built from all historical ensemble

forecasts available. When dressing, the statistical perturbations are drawn from the

archived historical best member errors. The best member dressing perturbations are

straightforward to construct and easy to apply to one- or multi-dimensional variables of

interest. Roulston and Smith (2003) demonstrated the superiority of best-member

dressed ensembles relative to ensembles constructed by dressing the control forecast with

the archived control forecast errors.

To yield reliable probabilistic forecasts of verifying observations, a dressed

ensemble should be drawn from the same distribution as the verifying observations given

an ensemble forecast (Hereafter "reliable" means when an event is forecast to occur with

40% probability, this event is verified 40% of the time. See also Wilks 1995 p2 3 6 for the

general definition of reliability.). While Roulston and Smith (2003) demonstrated that

best member dressing had some useful properties, this type of dressing approach does not

appear to mathematically constrain the distribution of dressed ensemble members to be

indistinguishable from the distribution of verifying observations under any measure.

Notably, if the spread of a dynamic ensemble of finite size were correct, the best member

dressing would still dress them thus rendering the dressed ensemble overdispersive.
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In sections 4.2 and 4.4 of this paper, we explicitly demonstrate how best member

dressing results in distributions that are different from the distribution of verifying

observations under second moment measures. In particular, we show that the best-

member dressed ensemble may be over-dispersive or under-dispersive depending on, for

example, the size of the undressed ensemble, how under-dispersive the undressed

ensemble is (section 4.2) and the subspace from which the best member is identified

(section 4.4). The prototype test in section 4.2 is based around ensembles generated with

a random number generator in which the difference between the distribution of undressed

ensemble members and the distribution of verifying observations can be controlled. The

test in section 4.4 is based around an ensemble generated using the ensemble transform

Kalman filter (ETKF; Bishop et al. 2001; Wang and Bishop 2003; Wang et al. 2004).

In section 4.3, we give the theoretical basis of a new dressing technique that

overcomes the limitations of the best member dressing technique and illustrate it using

the ensemble generated with a random number generator. In section 4.4, the performance

of the new dressing technique is compared against the best member dressing technique

for improving the reliability of the 500mb U wind ensemble forecasts from the ETKF

ensemble made with the Community Climate Model Version 3 (CCM3; Jeffery et al.

1996). In section 4.5, both dressing techniques are further tested by applying them for

the forecasts of a user-specific weather index, the cooling degree days at Boston.

Concluding remarks follow in section 4.6.
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4.2 Limitations of the best member dressing: the random number generator
experiment

In this section we use a simple random number generator experiment to identify

the limitations of the best member dressing technique. Let us assume that for each case, a

verifying observation y is drawn from a normal distribution with zero mean and standard

deviation q,; in other words, assume that y - N(0, r,). As a proxy for an undressed K

member ensemble, let us draw K random numbers xk, k = 1,2,..,K where each xk

represents a random draw from a normal distribution with a correct mean but an incorrect

standard deviation ae, in other. words we assume that xk - N (0, o e). For under-

2 2 2 2
dispersive ensembles, a, < at. For this experiment, we let ae = 20 and let a 2 be

greater than a,2 by d, that is, ot2 = ae2 +d.

Training statistics for the best member dressing perturbations are built in the

following manner for a given K and d. Step 1: Draw a verification from N(0, a,) and a

K-member undressed ensemble from N(O,ae). Step 2: Find the ensemble member that

is closest to the verification and find its distance from the verification. Step 3: Store this

"best member error" in an archive. Step 4: Repeat steps 1-3 M times to obtain an archive

of the M best member errors for M cases. Step 5: Compute the sample variance a2 of

the archive of the best member errors. Note that since we required that the undressed

ensemble be drawn from a distribution with the same mean as the verifying observations,

in this simplified case, the mean of the M archived best member errors is zero when M

approaches infinity.
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Having obtained this archive of errors, we then generate K independent N-

member statistical ensembles of best member errors by either randomly sampling from

the archive or by drawing K independent sets of N random numbers

e,n = 1,2,..,N;k = 1,2,..,K where e. - N(O, 0b). The statistical ensembles are then

combined with the dynamical ensemble to create a Nx K member dressed ensemble

y/m,, k = 1, 2,.., K; n = 1, 2,..N using

V. f = Xk + ek ,k =1,2,..K;n =1,2,..,N, (4.1)

for each case.

Now note that if the verification were drawn from the same probability

distribution as the ensemble then the average square distance between any two randomly

selected dressed ensemble members ought to be the same as the average square distance

between randomly selected ensemble members and the verification. Consequently, we

can test whether the best member dressing results in an ensemble that appears to be

drawn from the distribution of the verification for a particular K and d using the

following steps. Step 6: Draw a verification from N (0, a,) and a K -member undressed

ensemble from N(O,a.). Step 7: Using data from the archived best member errors create

a dressed NxK member ensemble as Eq. (4.1). Step 8: repeat steps 6-7 M times to

collect M cases. Step 9: Compute the averaged square distance between each distinct pair

of dressed ensemble members. Note that since the total number of dressing perturbations

is different from the number of undressed ensemble members, from Eq. (4.1) this

quantity is calculated by (((Xmk - Xmi )2) ) + - 6 mil )2 )m where subscript
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m denotes the mth case of the M cases, ( )Xk is the average over all combinations of

distinct undressed ensemble members for the mth case, ( )I,,,,t is the average over all

combinations of distinct dressing perturbations for the mth case, and ( )m is the average

over all M cases. Step 10: Compute the mean square distance between the verifying

observations and each ensemble member by y2is the

average over all dressed ensemble members for the mth case. Step 11: Compare the

difference (denoted as DIFF) of the quantities in steps 9 and 10, i.e., calculate

DIFF = - Xi)) )n +(((--n -mil2 )knil )m - ((( mkn - ym )2 )kn )m. Then

repeat the previous steps for different choices of K and d.

Figure 4.1 (a) shows DIFF as a function of K and a, 2 / a, 2 for M = 10000, and

N = 100. Negative (positive) DIFF indicates that the dressed ensemble is under-

dispersive (over-dispersive). The figure shows that for K = 1, DIFF is equal to zero for

2 2 2 2all r, / or, . When K is larger than 1, for any given a, 1 /a , there is only one value of K

that renders the best member dressing method reliable. The best member dressed

ensemble is either over-dispersive or under-dispersive beyond that regime depending on

the undressed ensemble size K and how under-dispersive (measured in a, 2 / a,2 ) the

undressed ensemble is. We also observe that when u.e2 is equal to a, 2 (ae O 2=100%),

ie., the undressed ensemble has the correct spread, the best-member dressed ensemble is
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over-dispersive for any finite K. In the next section we introduce a new dressing kernel

that does not suffer from these limitations.
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Figure 4.1: Random number generator experiment results in testing the reliability of the
spread of the ensemble dressed by (a) the best member method and (b) the new dressing
kernel. Thin solid contours indicate over-dispersive ensemble. Dashed contours indicate
under-dispersive ensemble. Thick solid contours mean the spread is reliable. Contour
interval is 4.
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4.3 Dressing with second moment constraint

We seek a mathematical constraint on a dressing kernel that will render the

distribution of dressed ensemble members indistinguishable from the distribution of

verifying observations given an ensemble forecast on seasonally averaged basis. To

measure the differences between the two distributions we will focus on the second

moment measure. The new dressing kernel is first built from historical ensemble

forecasts and verifications and then applied for the current ensemble forecasts. For each

case of forecasts over a season, let y contain a list of verifications that we wish to predict

and let x contain the corresponding list of forecast variables from one member of the

dynamic ensemble. Assume the dynamic ensemble, after removing the seasonally

averaged bias, is drawn from an infinite number of realizations of a stochastic process,

x=+x, (4.2)

where (x) = i and (x') =0. The covariance of Eq. (4.2) is denoted as

y2 = (x -T). (4.3)

When dressing, statistical perturbations c are added to each dynamic ensemble member.

Let y list the corresponding dressed forecasts. Written in the similar format of Eq. (4.2),

the dressed ensemble members are drawn from an infinite number of realizations of a

stochastic process

Y=X+E=X+x +E, (4.4)

where (,) =0, (x') =0. Note that the mean of the dressed ensemble is still Y. Also

note that we have assumed the seasonally averaged bias of Y has been removed. The
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basic idea of the new dressing kernel is to chose e to make ip indistinguishable from the

verification, y, under second moment measurement on a seasonally averaged basis.

Mathematically, we require

((gui- itj) )(W u- W )T >iy> (((Wli-y,)(W u-y, )riT, (4.5)

where subscript 1 denotes the Ith case over a season and subscripts i and j denote any

two different dressed ensemble members from Eq. (4.4), (*)' is the averaging over all

cases over a season, (').~. denotes averaging over all combinations of any two different

dressed ensemble members for the lth case, and (*)' is the averaging over all choices of i

for a particular case. Substituting Eq. (4.3) and Eq. (4.4) into Eq. (4.5), one can show

(see appendix A) that Eq. (4.5) is satisfied provided that

<T) = ( 1 Xj t tTtT , (4.6)

where i1 and 121 are the mean and covariance of the underlying distribution from which

the undressed ensemble is drawn for the lth case. Note that the covariance of the dressing

perturbations (EET) is the same for all ensemble members for all cases. So, we put no

subscript on this term.

To understand the new dressing kernel (ET) given by Eq. (4.6), we use a two-

dimensional figure (Figure 4.2) to illustrate the idea. Assume the number of variables

that we are interested in forecasting is two, that is, x, y and qi contain two elements

each. Each black dot in Figure 4.2 (a) represents the difference between one of the
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members of one ensemble forecast made during a season and the corresponding

underlying ensemble mean. Thus, since there are L K-member forecasts made each

season, the number of dots present in Figure 4.2 (a) is equal to KxL and the covariance

of these points corresponds to the ( "2) term in Eq. (4.6). The 1-sigma ellipse associated

with this covariance is shown by the black line in Figure 4.2 (a). Each of the L grey dots

in Figure 4.2 (b) gives the difference between a verification and a corresponding

underlying ensemble mean. The covariance of these dots gives the first term in Eq. (4.6).

Since the seasonally averaged bias of undressed ensembles has been removed, the grey

dots in Figure 4.2 (b) as well as the black dots in Figure 4.2 (a) center at (0,0). Note that

the 1-sigma ellipse for the grey dots is larger than the ellipse for the black dots indicating

that the undressed ensemble is under-dispersive. In Figure 4.2 (c) we show how a black

dot from Figure 4.2 (a) can be dressed with perturbations drawn from a distribution with

a covariance matrix given by the difference between the covariance matrices associated

with Figure 4.2 (b) and Figure 4.2 (a). After we dress each black dot of Figure 4.2 (a), in

Figure 4.2 (d) we get the scattered stars that are the differences of the dressed ensemble

members from the corresponding underlying ensemble mean. The corresponding 1-

sigma ellipse associated with the stars is also shown in Figure 4.2 (d). The idea of Eq.

(4.6) is to constrain the second moment of the dressing perturbations, the first term on the

left side of Eq. (4.6) (i.e., the 1-sigma ellipse in Figure 4.2 (c)), so that the 1-sigma ellipse

associated with the covariance of the dressed ensemble perturbations (stars) in Figure 4.2

(d) is identical to the 1-sigma ellipse corresponding to the distribution of the verifications

(grey dots) about the underlying ensemble mean in Figure 4.2 (b). Note in Figure 4.2 (d)
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that ((ED )I )I denotes the seasonally averaged covariance of the dressed ensemble

perturbations. In this way, the dressed ensemble members are indistinguishable from the

verification under the second moment over a season.
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1 m=K"2t= - m: XI. , (4.7)
K M=1

and E'2'= (K--1) E(XIm .i(XIm 1 )T (4.8)

Seasonally averaged bias of the sample ensemble means are assumed to be removed from

(4.7) and (4.8). As shown in the appendix A, Eq. (4.6) becomes

(ETC =((isl -Yi'x -Y)T).-l+llE'2t) for K>2, (4.9a)

in order to satisfy Eq. (4.5). Please see the appendix A for the derivation. In the situation

wherein there is only one control forecast x'i for the Ith case, that is, K = 1, the new

dressing kernel is

( T)-"((Xcl- Yxc--yt )T) for K=1. (4.9b)

Note for K = 1, the new dressing kernel and the best member dressing kernel are the

same. To test the new dressing kernel, we also adopt the random number generator

experiment with the same procedures and the same measure as in section 4.2 except the

1-dimensional new dressing kernel is given by Eq. (4.9a) and Eq. (4.9b). The result is

shown in Figure 4.1 (b). Figure 4.1 (b) demonstrates that the new dressing kernel Eq.

(4.9a) and Eq. (4.9b) can provide a reliable ensemble spread for all K and o,2 or,2 under

the second moment measure given in step (11) of the random number generator

experiment in section 4.2.

Also note that when K is greater than one but rather limited, the new kernel

defined by Eq. (4.9a) only makes the dressed ensemble satisfy the second moment

property that the seasonally averaged covariance of the differences between ensemble
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members and the verifications is equal to seasonally averaged covariance of the

differences between ensemble members. It does not make the dressed ensemble satisfy

the second moment property that the seasonally averaged covariance of the differences of

the ensemble from the sample ensemble mean is equal to the seasonally averaged error

covariance of the sample ensemble mean. The latter property can be obtained by

replacing Eq. (4.9b) with

(EET) =(('Xs/-y 1  l--y)T)t-(1-- -J(v" t)K, for K >2. (4.9c)

In other words, these two second-moment properties can not be satisfied simultaneously

for smallish K. However, as K tends to infinity, both properties are simultaneously

satisfied. When one's forecast application relies solely on the ensemble mean, using Eq.

(4.9c) to define the new kernel is probably the best option. In contrast, when one's

forecast application relies on a forecast probabilistic distribution, using Eq. (4.9a) to

define the new kernel would be the best option. The random number generator

experiment (not shown) demonstrates that when K > 10, one of the two properties can be

satisfied precisely and the other can be satisfied approximately by the new dressing

kernel either defined by Eq. (4.9a) or Eq. (4.9c). The best member dressing kernel,

however, does not satisfy either second moment property. Note in Figure 4.1 the new

dressing kernel is given by Eq. (4.9ab) and the measure is based on the first second-

moment property. Since in the ETKF ensemble experiments to be described in Section

4.4, K = 16, the results obtained with Eq. (4.9a) are very similar to those obtained with

Eq. (4.9c).
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After the new dressing kernel is defied, we use a multi-dimensional random

number generator to generate the dressing perturbations. First, note that the covariance

matrix given by Eq. (4.9), denoted as Q hereafter, is real and symmetric but not positive

definite. We first perform an eigenvalue decomposition on 0,

a = (ECT) = EDET (4.10)

where the columns of E contain the eigenvectors and the diagonal matrix fl contains the

corresponding eigenvalues. Positive eigenvalues indicate that on the directions of the

corresponding eigenvectors the ensemble is underdispersive and thus dressing is

necessary. In contrast, negative -eigenvalues indicate that the undressed ensemble is

overdispersive in the directions of the corresponding eigenvectors. Since dressing the

ensemble in the overdispersive directions would make it even more overdispersive in this

direction, we only dress in the directions corresponding to positive eigenvalues. Based on

this argument, we define the new dressing perturbation generator as

;e = xle " + x2 e 2 +...+"' +Xe (4.11)

where e+, i = ... k, are all eigenvectors corresponding to the positive eigenvalues. The

coefficients x,, i = 1... k, are univariate random variables which are parameterized as

normal distributions with mean equal to zero and variance equal to the ith positive

eigenvalue of Q, denoted as (o. Mathematically,

xi- N (0,1r -). (4.12)

Note that (4.11) and (4.12) enable the new kernel to generate multi-dimensional

dressing perturbations for the multi-dimensional variables of interest at small cost. Also
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note that the new dressing kernel is designed not only to provide reliable spread for each

individual variable but also to produce a reliable estimate of the error covariance between;

the variables of interest, which will be shown in sections 4.4 and 4.5. Depending on the

variables of interest, the new dressing kernel can be constructed to consider both

temporal and spatial correlations of the forecast errors. Thus, the method allows 4-

dimensional dressing. The new dressing perturbations can also be drawn from an archive

instead of a prescribed distribution. The method by which this can be done is discussed in

section 4.6.

4.4 Further test with nonlinear CCM3 ETKF ensemble

The best member dressing method was first designed and tested by Roulston and

Smith (2003) with the nonlinear ensemble prediction system of the European Centre for

Medium Range Weather Forecasts (ECMWF). The error statistics of nonlinear systems

on a given day are usually non-Gaussian. In the random number generator experiment of

section 4.2 and 4.3 we assume a Gaussian error system. To check the performance of the

best member dressing and the new dressing methods in the nonlinear system with non-

Gaussian error statistics, we apply both dressing methods to the 1-10 day CCM3 ETKF

nonlinear atmospheric ensemble forecasts (Bishop et al. 2001; Wang and Bishop 2003;

Wang et al. 2004). We also use this section to illustrate the sensitivity of best member

dressing to the manner in which one defines the "best ensemble member".
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4.4.1 Numerical experiment design

4.4.1.1 Dynamic ensemble, verification data, and variables of interest

The ensemble to be dressed is a 16-member spherical simplex ETKF ensemble of

10-day forecasts. The ensemble is run on the NCAR CCM3 (Jeffery et al. 1996) and the

initial conditions for each control forecast are obtained from the NCEPINCAR reanalysis

(Kalnay et al. 1996). The observational network in the current experiment simulates both

rawinsonde and satellite observations. For details on the construction of the spherical

simplex ETKF ensemble, please refer to previous experiments in Wang and Bishop

(2003) and Wang et al. (2004).

The verifications are NCEP/NCAR reanalysis data located on the reanalysis grids

that are nearest to known rawinsonde sites. The variables that we are interested in

dressing are 500-hPa U over 14 reanalysis grids over the eastern USA (Figure 4.3) at

individual forecast lead times. The CCM3 ensemble outputs are interpolated to these

grids during the training and validating phases of the experiment.
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Figure 4.3: 14 verification sites over eastern USA for the experiment in section 4.4.

4.4.1.2 Identification of the best member

In Roulston and Smith (2003), the best member is defined as the closest to the

verification in the full space including all spatial locations, all quantities and all forecast

lead times. However, using the full space to make the identification is time consuming.

Roulston and Smith (2003) tried to empirically determine the minimum number of

variables that are unlikely to lead to misidentification. They suggested that if practically
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feasible, high dimensional space should be used even if the variables that we are

interested in dressing are only in a small subspace. To test whether the best-member error

statistics with the best member identified in a high dimensional space can provide reliable

spread, we use a quite high dimensional space, 500-hPa U over global verification sites

throughout 1 to 10 day forecast lead times, to identify the best member, although we are

only interested in 500-hPa U wind over the 14 sites for each individual lead time. This

subspace for identifying the best member is denoted as RS-10d-globe.

To reveal that the spread of the best-member dressed ensemble may not be

reliable due to the uncertainty in selecting the subspace to identify the best member, we

also try the experiments where the best member is defined in two relatively low

dimensional spaces. One is 500-hPa U over the 14 eastern USA sites for each individual

verification lead time, denoted as RS-id-east. The other is 500-hPa U over the 14 sites

from day-1 till the verification lead time, denoted as RS-1-id-east. Note the norm of the

distance of an ensemble member and the verification used to identify the best member is

defined the same way as in equation (1) of Roulston and Smith (2003).

4.4.1.3 Training and forecasting processes

The training statistics for bias and dressing perturbations are obtained from

forecasts during the sumner (June, July and August) of 1999. The 500-hPa U bias is

obtained for each verification site for each forecast lead time by averaging the

corresponding ensemble mean errors collected from 16-member ETKF runs during the

1999 summer. Before generating training statistics for the dressing perturbations for both
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the new kernel and the best member method, the bias is first removed from each member

of the 16-member ETKF ensemble for each verification site and at the 1,2, ..., etc.,10 day

lead times.

Since we are interested in 500hPa U forecasts over the 14 verification sites at

individual lead times, the new dressing kernel is constructed for each forecast lead time

independently. In Eq. (4.9), vector 'I' contains 14 elements corresponding to the 500-

hPa ensemble mean U forecasts at the 14 sites of the /th case during 1999 summer for

each particular lead time. Vector y, contains the corresponding verifications and E'SI is

the 14 x 14 ensemble covariance matrix. The resultant 0 matrix is 14 x 14.

For the best-member method, the best member out of each 16-member ETKF run

during 1999 summer is selected first for the three subspaces. For the subspaces RS-id-

east and RS-1-id-east, the best member errors corresponding to 500hPa U over the 14

verification sites are stored in a vector of 14 elements for each lead time. The archive of

the best member errors is built by archiving these vectors for each lead time over all runs

of 1999 summer. For the subspace RS-10d-globe, the index of the ensemble member that

is the best member identified in the subspace of RS-10d-globe is the same for all lead

times. In this case, the best member errors are stored in a vector of 140 elements for each

1 to 10-day run. The first 14 elements store the errors of the best member over the 14

sites for 1-day lead time and the second 14 elements store the errors of the same member

for 2-day lead time, so on and so forth. The archive of the best member errors for RS-

10d-globe is then built by collecting such vectors from all 10-day forecasts over the 1999

summer.
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To perform an out-of-sample test of the dressing techniques, forecasts were made

for the 2001 Northern Hemisphere summer. For each 16-member ETKF run during 2001

summer, the training bias is first removed from each ensemble member. Independently

sampled dressing perturbations are then added to each of the 16 members. For the new

dressing kernel, 14-dimensional vectors are randomly generated using Eq. (4.10)-(4.12)

for each forecast lead time and added to each member of the 16-member 500hPa U

forecasts over the 14 sites. For RS-id-east and RS-1-id-east methods, random 14-

dimensional vectors are randomly drawn from the corresponding archives for each

forecast lead time. For RS-10d-globe method, random vectors of length 140 are randomly

drawn from the corresponding best-member error archive. As mentioned above, the 140

elements contain 10 sets of 14 dimensional vectors corresponding to 1-10 day lead times.

The first set of 14 elements is added to the ensemble forecast over the 14 verification

sites for 1-day lead time and the second set is added to the same ensemble forecast for the

2-day lead time, so on and so forth

4.4.2 Experiment results

The performances of the dressed ensembles are measured by the rank histogram

and probability scores. For each forecast lead time, samples are collected from all

ensemble forecasts during the 2001 summer over the 14 verification sites. For the best-

member method, if the dressing perturbations are drawn from the best-member error

archive, the number of dressing perturbations to be added to each ETKF ensemble

member is limited by the length of the time period during which the best-member error is



31

collected. As we built the archive from one season's forecasts, the number of best-

member dressing perturbations is limited by o(10) in order to make the dressing

perturbations for each of the 16 ETKF ensemble members diverse enough. On the other

hand, we want the number of dressing perturbations to be large enough so that the

probability distribution derived from the dressed ensemble will be smooth and also the

ensemble mean whose seasonal average bias is removed will not be shifted due to the

sampling error of the dressing perturbations. In our experiment we tried to dress each

member of the 16-member ETKF ensemble with 2, 8, 16, and 32 perturbations. We found

that the results start to converge when the number of dressing perturbations approaches

16 and 32. The latter renders the sampling error of the dressing perturbation mean to be

less than 5%. In the results shown in this section, each member of the 16-member ETKF

ensemble has been dressed with 32 perturbations thus yielding 512-member dressed

ensembles. For the best member method, the 32 perturbations are drawn from the best

member error archive. For the new dressing kernel, the 32 perturbations are drawn from

multi-dimensional Gaussian distribution following Eq.(4.10)-(4.12).

The first measurement of the reliability of the ensembles is applicable to scalar

verifications and is called the rank histogram (Anderson 1996; Hamill 2001). The rank

histogram is constructed by first sorting the K ensemble members for one forecast from

the smallest to highest value in the scalar forecast variable of interest - in this case

500hPa U. The values of the sorted ensemble members then define K + 1 bins or

categories for each case ranked from the lowest to highest. Then record the bin number of

the bin that the verification falls in. Repeat the above procedures, for example, for a

season's forecasts. The rank histogram gives the frequency with which the verifications
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fall into each of the ranked bins. If the dressed ensemble members are being drawn from

the same distribution as the verifications, then the verification and the ensemble value

defining an edge of a bin would be statistically interchangeable. Therefore in this case the

verifications should fall in each bin with equal frequency and the rank histogram is flat.

Recall that the sizes of the undressed ensemble and the dressed ensemble are 16 and 512

respectively. Because the number of verifications to construct the rank histogram is

limited relative to the rank of 512, and also because we want the y axis of the histogram

to have the same scale for the dressed and undressed ensembles, instead of constructing

the histogram for the dressed ensemble by using all 512 dressed members we randomly

choose 16 members out of 512 members for each sample. Figure 4.4 (a) is the result for

the undressed 16-member ensemble for the 2001 summer after removing the bias from

the 1999 summer. The undressed ensemble is under-dispersive especially for longer

forecast lead times. The x2 test for the uniformity of the rank histogram (Anderson

1996; Wilks 1995; Hamill 2001) rejects the null hypothesis that the rank histogram is flat

with confidence level much higher than 99% (the P value is equal to 7.1x10 - 4 for day 1

and much smaller than 10-10 for 2 to 10 day lead times). After dressing with the new

kernel shown in Figure 4.4 (b), the rank histogram becomes much flatter throughout 1 to

10 forecast lead times, which indicates a more reliable ensemble spread. The X2 test can

not reject the null hypothesis that the rank histogram is flat even with confidence as low

as 88% (the P values greater than 0.12). For the RS-10d-globe dressed ensemble in

Figure 4.4 (c), the rank histogram is over-dispersive through the 1 to 10 day forecast lead

times. The X2 test confirms this impression of non-uniformity. The P value is nearly zero
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(much smaller than 10-10) for all lead times, indicating the null hypothesis of uniform

rank histogram can be rejected with high confidence level (much higher than 99%). For

the RS method, where the best member is identified by RS-1-id-east shown in Figure 4.4

(d), the histogram is over-dispersive for 1 to 7 lead times and the X2 test rejects the null

hypothesis that the rank histogram is flat with confidence level much higher than 99%

(the P value is much smaller than 0.0001). Figure 4.4 (e) is the result corresponding to

RS-id-east. The rank histogram is over-dispersive for 1 to 2 day lead times and under-

dispersive for 8 to 10 day lead times. The X2 test confirms the non-uniformity for these 5

lead times by rejecting the hypothesis of uniformity of rank with confidence level much

higher than 99% (the P value is much smaller than 0.01).
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Figure 4.4: Rank histograms for (a) undressed, (b) new kernel dressed, (c) RS-1Od-globe
dressed, (d) RS-1-id-east dressed and (e) RS-id-east dressed CCM3 ETKF 500hPa U
ensembles over the 14 sites from 1-day to 10-day lead times.
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In Figure 4.5 we show the Brier score (BS; Brier 1950; Murphy 1973; Wilks

1995) measurement results. Four climatologically equally likely bins are defined by

using 1999 summer 500hPa U verifications over the 14 verification sites. For each lead

time, the BS is first calculated for each of the 14 sites for each of 92 forecasts of the 2001

summer and then averaged over all 14 sites throughout all of the season's forecasts. The

number of samples of BS for each lead time is thusl4x92=1288. The BS

corresponding to using the sample climatology, i.e., the uncertainty term when

decomposing the BS, is also shown in Figure 4.5. To estimate the significance of the

differences between curves, a bootstrap resampling technique (Efron and Tibshirani

1986; Wilks 1995; Hamill 1999; Mullen and Buizza 2001; Roulston and Smith 2003) is

used to estimate the ± a bounds (i.e., standard error) for each curve.
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Figure 4.5: Brier scores for the undressed, new kernel dressed, RS-10d-globe dressed,
RS-1-id-east dressed and RS-id-east dressed CCM3 ETKF 500hPa U ensembles from 1-
day to 10-day lead times. Brier score from the sample climatology is also shown. The
vertical solid and dashed lines are the standard errors of Brier score calculation with
given samples for the new kernel dressed and undressed ensembles respectively.
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Bootstrap is a computer-based method to assess the accuracy of the estimation of

an unknown parameter 0 by n actual samples. A bootstrap sample is a random sample of

size n drawn with replacement from the actual n samples. A random number generator is

first used to draw a large number (m) of bootstrap samples. For each of the m bootstrap

samples, the unknown parameter 0 is estimated and the estimated value is denoted as 0.

The sample standard deviation of the m 0 then gives the standard error of the parameter

estimated by the actual n samples. In our experiment, the parameter of interest is the

mean and we are interested in assessing the accuracy of the sample mean from 1288 BS

samples. Note that in bootstrap. resampling the n actual samples are required to be

independent. Since the 1288 BS samples could be spatially and temporally correlated,

before resampling we first estimate the number of independent samples within the 1288

BS samples. Following Roulston and Smith (2003), we divide the total 1288 samples into

independent blocks and take the BS's averaged over each block as n actual independent

samples. We first divide the 14 sites into groups to ensure that the BS time series

averaged over each group are uncorrelated among different groups. We end up having 3

independent groups. Then for each group, we work out the length of the temporal block

in a way to ensure that the autocorrelation of the BS time series given by averaging the

BS's over each temporal block is nearly zero. After we get the independent samples, 100

bootstrap samples were generated by resampling the independent samples with

replacement as recommended by Efron and Tibshirani (1986). These 100 bootstrap

samples were used to estimate the ± abounds, i.e., the standard error of each curve in

Figure 4.5.
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In Figure 4.5, ± a bounds for the curves of the undressed ensemble and the new

dressing kernel are shown. From Figure 4.5, the dressed ensemble with new kernel

performs better than the undressed ensemble for 1-10 day forecast lead times but only the

improvements for 4-10 day forecasts are statistically significant. It is also better than the

best member dressed ensemble RS-10d-globe for 1-10 day lead times with significance

for 1-2 day lead times. The RS-10d-globe ensemble is worse than the undressed ensemble

for 1-2 day lead times. The RS-10d-globe ensemble is significantly better than the

undressed ensemble for 5-10day lead times. The scores for the best member dressed

ensembles, RS-id-east and RS-1-id-east, are statistically indistinguishable from the new

kernel dressed ensemble. Note that RS- lOd-globe has worse BS than both RS-id-east and

RS-l-id-east, which is inconsistent with the argument from Roulston and Smith (2003)

that full space or high dimensional space should be used to identify the best member. To

explain why the RS-10d-globe ensemble is worse than the RS-id-east and RS-l-id-east

ensembles, we first notice that the error variance of the best member defined in RS-l0d-

globe is only 10% smaller than the worst member. In other words, all members can be

regarded as "the worst" or "the best" if identified in such high dimensional space.

We also tried (not shown) the continuous ranked probability score (CRPS;

Hersbach 2000) and the ignorance score (IGN; Roulston and Smith 2002). The

comparison results from CRPS and IGN are qualitatively the same as that from BS. Note

that in computing these probability scores, the ensemble size for the dressed ensemble is

512, which is much larger than the undressed ensemble size 16. The improvement of the

dressed ensemble scores relative to the undressed ensemble scores thus may partly come

from the increase of the ensemble size (Richardson 2001; Roulston and Smith 2003).
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This is confirmed when we randomly select 16 out of 512 members to calculate the BS

for the dressed ensemble. The result (not shown) is qualitatively the same as Figure 4.5,

but the improvement of the dressed ensemble relative to the undressed ensemble is

smaller than the improvement shown in Figure 4.5.

The rank histogram and Brier score tests only measure the skill of forecasts of

individual variables. As discussed in section 4.3, the new dressing kernel is not only able

to produce reliable spread for an individual variable but also able to generate a reliable

estimate of the error covariance among variables of interest. As discussed in section 4.5,

distributions of weather indices that depend on more than one variable are not only

sensitive to the forecast error for an individual variable but also sensitive to the

covariance of the forecast errors among these variables. As the new kernel is designed to

consider the error covariance of variables of interest, it is expected to provide reliable

ensemble forecasts for such weather indices. In this section, we first use a simple

measure to show that the new kernel can provide a reliable estimate of forecast error

covariance. Then in section 4.5, we further demonstrate this property of the new dressing

kernel by applying it to the accumulative cooling degree days forecasts, a weather index

useful for weather derivative users.

To check the reliability of the dressed covariance estimates, for each forecast at a

particular lead time, we first calculate the 500hPa U ensemble covariance between any

two of the 14 verification sites. There are 91 pairs among the 14 verification sites. We

then average the ensemble covariances collected from the 91 pairs and from all forecasts

of the 2001 summer. Then we calculate the product of the ensemble mean errors of any

two of the 14 sites and average these products collected from the 91 pairs and from all
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forecasts of the 2001 summer. For ensembles that provide a reliable estimate of the

forecast error covariance, the averaged ensemble covariance and the averaged ensemble

mean error covariance calculated above are equal to each other. In Figure 4.6, we plot the

averaged ensemble covariance and the averaged ensemble mean error covariance for 1-10

day lead times. The undressed ensemble covariance underpredicts the ensemble mean

error covariance from 4 to 10 day lead times. After dressing with the new kernel, the

ensemble covariance matches with the ensemble mean error covariance for 1 to 10 day

lead times except that it may overpredict the ensemble mean error covariance at the 6-day

lead time. The exception at the 6-day lead time may be due to the limited training data

sample size. For example, it might be that there was an extreme event in the training data

set that made our kernel too wide. We expect this problem would go away if we had a

longer training data set. The RS-10d-globe dressed ensemble covariance overpredicts the

ensemble mean error covariance for all lead times. The RS-1-id-east dressed ensemble

appears to overpredict the ensemble mean error covariance before 6 day lead time and

underpredict the ensemble mean error covariance at 8-9 day lead times. The RS-id-east

dressed ensemble covariance underpredicts the ensemble mean error covariance at 7-10

day lead times. The new kernel dressed ensemble covariance is the most reliable among

these dressed ensembles.
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In summary, our tests with the CCM3 ETKF ensembles show that the

performance of the best member dressed ensemble is highly dependent on the choice of

subspace used to define the best member and that the new dressing kernel can provide a

more reliable estimate of the second moment of the forecast errors than the best member

dressed ensembles.

4.5 Application on Cooling degree days forecasts at Boston

In this section we apply and further test the new dressing kernel for forecasting

the probability distribution of the accumulated cooling degree days (CDD), a frequently

used weather index for weather derivatives. Weather indices such as CDD, depend on

nonlinearly on multiple meteorological variables, in which case the distribution of CDD

is sensitive to both the error variance of individual variables and the error covariance

among these variables. Therefore, CDD provides an appropriate test bed to test the new

dressing kernel that is designed to provide reliable estimates of both error variance and

error covariance among variables of interest. Another purpose of this section is to show

how ensemble forecasts can be fed in a quantitative user application model and how the

resulting output can be used to form probabilistic forecasts of the user relevant economic

variable (Palmer 2001).



43

4.5.1 CDD definition

To manage the risks associated with abnormally warm or cool summers, a

frequently used weather index is "accumulated cooling degree days" or CDDs for short.

(See the web site http://www.cme.com/prd/wec/abtwthder2766.html of the Chicago

Mercantile Exchange for more information). The accumulated CDD is defined as

CDD = Ymax(O,T - 65° F), (4.13)
i=1

where Nd is the number of days over which the CDD is accumulated (i.e., the contract

period) and T is the arithmetic average of the daily maximum and minimum 2m

temperatures in Fahrenheit on the ith day of the period. Denotations follow Zeng (2000).

Note that knowing the distribution of temperature forecast errors on each of the Nd days

defining the CDD is not sufficient to determine the pdf of CDDs. One must also know

how the temperature errors are correlated through time because if a temperature error in

the day 2 forecast is positively correlated to temperature errors in the day 1 and day 3

forecasts then the distribution of CDDs will be broader than it would be if there were no

such correlation.

4.5.2 Application of dressing

In the following experiment, we only consider samples over one single site,

Boston, for one season. In order to increase the number of independent samples, we

consider CDD accumulated over only 3 days. (The Chicago Mercantile Exchange's CDD

contracts pertain to CDDs accumulated over a month or a season.). There are two ways
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to augment the CDD ensemble derived from the 16-member CCM3 ETKF ensemble

forecasts for daily 2m temperature. One is to dress CDD ensemble forecasts directly and

the other is to dress T and substitute the dressed T in (4.13). However, if we were to

dress CDDs directly we would have to modify our dressing algorithm to account for the

fact that CDDs are positive definite. Because of this and because we want to demonstrate

how the new dressing technique can account for correlations of temperature errors

through time, we choose to dress Ti . Specifically, to obtain a dressed ensemble forecast

of the 3-day CDDs, we first dress 1-3 day T output from the CCM3 ETKF ensemble and

then substitute each of the dressed 1-3 day T forecasts for Boston into (4.13). This also

demonstrates how to feed ensemble forecasts to user application functions (Palmer2002).

The CCM3 ETKF T outputs are interpolated to the single verification site at

Boston. The verifications for CDD and T for summer 1999 and 2001 are obtained from

the Chicago Mercantile Exchange at http://www.cme.com/dta/hist The training and

dressing procedures are similar as described in section 4.4.1 except (a) the bias for T is

computed from the previous 2 weeks' forecasts; (b) to account for the correlation of

errors, the second moment constraint dressing kernel is built by simply placing 1-3 day

T forecasts for Boston and the corresponding verifications in sample vectors with size of

3 elements when constructing the terms in Eq. (4.9); (c) the subspace to identify the best

member is over Boston from 1 to 3 day lead times and thus the best member error

samples for Ti, i = 1,2,3 is stored in 3-element vectors for archiving the best member

errors; and (d) to overcome the limitation that the number of best-member dressing
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perturbations drawn is limited by the length of time period during which the best member

error archive is built, the best member dressing perturbations are drawn from a zero-mean

multi-dimensional (3-dimensional in this case) normal distribution whose covariance is

consistent with the covariance of the archived best member errors.

4.5.3 Results on the reliability of the dressed CDD ensemble spread

Figure 4.7 shows the reliability of the spread of the accumulated CDD ensembles

measured by the rank histograms. The figure shows that the undressed CDD ensemble

underpredicts the CDD forecast uncertainty. After dressing with the best member

method, it is still underdispersive. In comparison, the new dressing kernel can provide

reliable spread for the 3-day accumulated CDD forecasts. Note that the number of

realizations of verifications for one season's forecasts over a single site is limited for

constructing the rank histogram if using all ensemble members as ranks. To overcome

this problem, as in section 4.4.2 we randomly choose a relatively small number of

ensemble members out of all ensemble members to define the ranks for the rank

histogram. The result shown in Figure 4.7 corresponds to the case where we randomly

choose 3 members out of 4096 dressed ensemble members to build 4 ranks for each

ensemble forecast. Also note for situations where the verification exactly equals some of

the ensemble members, such as CDD forecasts of zero and a verification of zero, the

number of members (m) equal to the verification was first counted. Then we assigned

uniform random numbers between 0 and 1 to the m members and the verification. The m

members are ordered according to the assigned random numbers. The rank of the
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verification is then determined by the rank of the random number assigned to the

verification among the m random numbers assigned to the m tied ensemble members.

This is similar to the method for constructing rank histogram for precipitation discussed

in Hamill and Colucci (1997). The X2 test for the uniformity of the rank histogram

confirms the flatness of rank histogram of the new kernel dressed CDD ensembles (P

value as large as 0.74) and the unflatness of those of the undressed (P value as small as

0.0001) and the best member dressed CDD ensembles (P value as small as 0.02). The

underdispersion of the best member dressed ensemble indicates that the best member

dressing kernel is either failing to provide reliable error variance estimates for individual

T and/or it cannot reliably represent the temporal correlation of forecast errors. We also

measure the skills of the CDD ensembles with the ignorance score. Four climatologically

equally likely categories are built from 2001 summer CDD verifications on Boston. The

results of the ignorance scores for the CDD ensembles are shown in Figure 4.8. The

smaller the score, the less ignorant of the CDD probabilistic forecast. Statistical t test (Ott

1993) shows that the ignorance score for the new kernel CDD ensemble is significantly

better than those of the best member CDD ensemble and the undressed CDD ensemble.

So the probabilistic CDD forecast generated from the CDD ensemble augmented by the

new dressing kernel is more skillful than the undressed CDD ensemble and the best

member dressed CDD ensemble. The Brier score measurement (not shown) provides

qualitatively the same result.
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(BEST) and the new kernel (NEW) dressed CDD ensembles.

4.6 Conclusion

A new multi-variate dressing method is designed to make the distributions from

which dressed ensemble members are drawn indistinguishable from the distribution from

which verifying observations are drawn under a seasonally averaged second moment

measure. Ensemble bias is removed first before building training statistics for the
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dressing kernel and before dressing the current ensembles. The CCM3 ETKF ensemble

dressed with the second moment constraint method is more skillful than the

corresponding undressed ETKF ensemble. With both a random number generator

experiment and the CCM3 ETKF ensemble framework, Roulston and Smith's (2003)

original best member dressing method was compared with the second moment constraint

dressing method. It was found that the spread of the best member dressed ensemble can

be over-dispersive or under-dispersive depending on such factors as the undressed

ensemble size, how under-dispersive the undressed ensemble is and the subspace from

which the best member is identified. In contrast, the ensembles dressed with the second

moment constraint dressing kernel always gave about the right amount of dispersion.

The utility of the second moment constraint dressing relative to the best member

dressing and the importance of accurately accounting for the temporal correlation of

forecast errors was demonstrated by comparing predictions of accumulative cooling

degree days from undressed, second moment dressed and best member dressed

ensembles. It was found that the new second moment constraint dressing kernel provided

a 3-day accumulated CDD ensemble with more reliable spread and better skill than the

CDD ensemble augmented with the best member dressing kernel.

In sections 4.3 and 4.4 of this paper, the dressing perturbations for the new kernel

were drawn from a multi-variate normal distribution. As in the best member method, the

dressing perturbations for the new kernel can also be based on an archive of past errors

rather than a prescribed distribution. This is achieved by first grouping the historical

errors of all ensemble members and then transforming these errors by premultiplying a

matrix so as to make the covariance of the transformed errors to be equal to the Q matrix
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in Eq. (4.10)-(4.12). In our experiment, dressing with the archive and the prescribed

distribution produce similar results for 500hPa U and 2m T. So we only show the results

corresponding to the prescribed distribution. Also note that the assumption of a Gaussian

dressing kernel is likely poor for positive-definite quantities such as precipitation and 10

m wind speed. To extend the usage of the new dressing kernel for such quantities, a

possible option is to transform such quantities to make the transformed quantities have

more Gaussian type of distributions (Wilks 2002).

In the new dressing method, no dressing is performed for directions where the

undressed ensemble is already overdispersive (Eq. (4.10)-(4.12)). For future work, to

correct the directions where the undressed ensemble is overdispersive, we can try to dress

each ensemble member differently. A possible solution would be to dress the central

members with more dressing perturbations than the outside members so that the pdf of

the dressed ensemble is narrower than the undressed ensemble.

Given large enough data sets, it would be of interest to condition the dressing

kernel on flow regimes known to have profound impacts on model error. For example,

different dressing kernels might be used on convectively stable and unstable days and

they may also be constructed to be regionally dependent. The dressing technique and the

model output statistics (MOS) technique can also be integrated. For example, we can first

apply MOS for each member of the dynamic ensemble and then perform dressing on the

ensemble processed by MOS.
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Chapter 5

Concluding remarks and remaining challenges

In the thesis, a new initial perturbation generation method, the ensemble

transform Kalman filter (ETKF), has been developed and compared with the breeding

method. With a little more computational expense, the ETKF provides a significantly

more skillful ensemble generation scheme to sample initial condition uncertainty than the

breeding method. A new initial perturbation centering scheme called spherical simplex

centering was also introduced and found to provide a more useful ensemble than that

obtained from the traditional positive/negative paired centering. A second moment

constraint "dressing" method to postprocess ensemble output is explored and found to

improve the reliability of ensemble spread better than the previously proposed best

member dressing method. The statistically augmented spherical simplex ETKF ensemble

was then applied for the probabilistic forecasts of a user specific quantity, the cooling

degree days (CDD). It was found that the ETKF ensemble dressed with the second

moment constraint method provides reliable spread for CDD forecasts and has better skill

than the CDD ensemble augmented by the best member method.

The low-rank estimates of the error covariance by ETKF because of the limited

ensemble members may cause the magnitude of the ETKF initial perturbations to be too

small. Besides ameliorating such deficiency by using an inflation factor as in chapter 2, a

bias ameliorated form of ETKF formulation is being developed and tested.
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Future research will address the question of how to optimally combine

statistically postprocessed ensemble forecast systems from different operational centers

to provide probabilistic forecasts. Bayesian averaging may provide a theoretical

foundation for such problems. Furthermore, as the ensemble output is often at a grid

resolution incapable of resolving some key aspects of severe weather, there is also a need

to develop postprocessing, methods to downscale ensemble output from the grid

resolution to the weather impacted sites of interest. A feasible option would be to apply

the Model Output Statistics (MOS) technique to each ensemble member. Another option

would be to use an analog downscaling technique on each ensemble member to find the

possible subgrid scale states associated with the grid-scale state given by the ensemble

member.

Developing methods to effectively evaluate the ensemble is also important.

Besides the standard skill scores, evaluating the economic value of the ensemble

.generated probabilistic forecasts for weather-sensitive users has become a standard way

to access the quality of the ensemble forecasts. We are currently exploring and testing a

new economic evaluation method relevant to weather derivative users.

Research on methods to generate initial conditions continues to be important. To

improve sampling of the probability density function (pdf) of initial conditions, ensemble

forecasts and data assimilation may need to be coupled. Ensemble based data

assimilation provides a natural framework for integrating the two. Although early studies

with simulated observations and perfect models (see Hamill 2004 and references therein)

have shown promising results of ensemble-based data assimilation, it has not been
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demonstrated that these methods can produce superior forecasts to those generated by

current operational methods in an operational setting.

Various approaches to account for model errors have been tried such as

constructing the ensembles with multi-models and single model with perturbed physics

parameters or with different parameterization schemes. However, these methods are

more empirical than theoretically justified. Developing stochastic-dynamic ensembles

based on stochastic parameterizations of sub-grid scale processes may provide a first

principle basis for accounting for model error. Such effort is just beginning (e.g., Buizza

et al. 1999; Palmer 2001).

How many forecasts should be in the ensemble? Given the constraints on time

and computing resources, how should ensemble size and model resolution be balanced?

Besides assessing the performances of different configurations of ensemble size and

model resolution with the standard forecast skill measures, such question may be

answered more appropriately with considerations of customers' needs. Challenges also

remain for human forecasters who will need to interpret a larger amount of information

from ensemble forecasts than the conventional single deterministic forecasts and who

may also need to help customers to analyze the risks associated with different weather

conditions rather than just to report what the weather is going to be like.

Although this thesis focused on ensemble weather forecasting, ensemble forecast

also provides tools in other areas such as targeted observations, data assimilation, climate

forecasting and it also has applications in oceanography and other geosciences. As such,

ensemble forecasting is likely to remain an active area of research and development for

the next few years.
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Appendix A

Derivation on the new dressing kernel

Al Derivation on equation (4.6)

To derive Eq. (4.6) first note that using Eq. (4.4)

(WliWj)= (X +Xi + li XI xi -Eli(A. 1)

Using (A.t1) on the left side of Eq. (4.5) gives

'j)(W )T)),

=((((X',i -x )'+ (El - E )) ((X' -X', + -El .~ TA2
I(A.2)

=2(E 21 + 2 (ET)

Note that the covariance of the dressing perturbations (ET) is the same for all ensemble

members for all cases. So we put no subscript on this term. Also note that from Eq. (4.4)

(W, - y,) =I (+ x;, + Eli -yI). (A.3)

Hence the right side of Eq. (4.5) is
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(Qvu ) )T))

1 ++81 i ))

= (( XO i + Ei)_(yI __X)) ((Xi + li),(yI -x ))T)i) .(A 4

(y-2) + (8j)+ ((yl -)(YI _)T)

Substituting Eq. (A. 1)-(A.4) into Eq. (4.5) gives Eq. (4.6).

A2 Derivation on equation (4.9a)

To derive equation (4.9a), first we start with the first term on the right side of Eq.

(4.6). First note that

(A.5)

Note in deriving the last step in Eq. (A.5), we use the assumption

- I )(y , - X )T) =0, which means the difference between the sample ensemble

mean and the underlying ensemble mean does not co-vary with the difference between

the verifications (e.g., observations) and the underlying ensemble mean over seasons'

forecasts. Also recall that ((Y I -i l)(I -1 ) = / K. Then. from Eq. (A.5), the

first term on the right side of Eq. (4.6) can be approximated as
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Approximate E2I in the last term of Eq. (A.6) and the second term on the right side of

Eq. (4.6) with E',. Then we get Eq. (4.9a).



Appendix B

A list of basic concepts in data assimilation and ensemble forecasting

1. Atmospheric data assimilation

Atmospheric data assimilation is an objective analysis process that involves a

linear combination of observations with a background (or "first guess") forecast, which is

usually a short-term forecast. The purpose of atmospheric data assimilation is to produce

a regular, physically consistent four-dimensional representation of the state of the

atmosphere from a heterogeneous array of in-situ and remote instruments that sample

imperfectly and irregularly in space and time (Daley 1997). Mathematically, the data

assimilation process is expressed as

Xa xf +W(Y-H(xf)), (BX)

where xf and xa are column vectors containing n elements of forecast and analyzed

values on regular model grids, y is a column vector containing p elements of observed

values on observation sites and H is an operator mapping the forecast/analyzed variables

on the analysis grids to the observed variables at the observation locations. The vector

y - H (xf ) is called the innovation vector or observation increment. Matrix W contains

the weights for linearly combining xf and y. In (B1) and the discussion below for

simplicity we assume the observations in y are collected at the validation time of the
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short-term forecast xf . In operations, observations collected in a certain time window

are assimilated. The vector xa in (B 1) is called the analysis.

'2. Optimal data assimilation

In (B1), W is a nxp weight matrix for applying the observation increment (i.e.,

the innovation vector) to correct the background forecast in order to obtain an analysis.

For the ith element of xa, the ith row of W contains p weights for linearly combining

the ith element of xf and the p elements in the innovation vector. The goal in data

assimilation research is to find weight W so that the error variance for each element of

x' is minimized. These weights are called optimal weights and the corresponding data

assimilation is called optimal data assimilation.

In optimal data assimilation, the optimal weight matrix W is derived as

W =PfHT(HPfHT +R), (B2)

and the corresponding error covariance of xa, denoted as Pa, is

pa =P PfHT (HPfH T+ R) HP (B3)

For detailed derivations on (B2) and (B3) please refer to (Daley 1991). Here the author

gives explanations on terms in (B2) and (B3). First, H is the tangent linear of H, i.e.,

H = aH/ax. We call H the linear observation operator. To further understand the terms

on the right sides of (B2) and (B3), we first define forecast error vector, ef = xf -x m

observation error vector e'= Y - x and observation mapping operator error vector
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(= H xm -x o . In these error vector definitions, x, is the true atmospheric state

expressed with forecast variables on the regular model grids and xo is the true

atmospheric state expressed with observed variables on the observation sites. These

errors e t , e0 and eh are all multi-dimensional random variables. We assume that these

errors are unbiased, that is, (e-f) = 0, (eh)= 0, (eo) =0. Hereafter ( ) is a symbol

(commonly used in statistics) which means expectation or average over an infinite

sample. The elements in ef are errors for different variables at the same model grid or

same variable on different grids. Correlations among the elements over the same grid and

over adjacent grids are not zero. Similarly, correlations among the elements of eo and

among the elements of eh over the same site and over adjacent sites are not zero. The

covariance of eI , denoted by matrix pf , is called the forecast error covariance.

Mathematically Pf=(ef (ef )T). The'matrix R is called observation error covariance,

which is defined as R = (eo (eo ))+ (eh(eh) ). Note in data assimilation the matrix

R not only includes the part associated with the measurement error e' but also includes

the part associated with the errors in the forward interpolation of the mapping operator

eh. In data assimilation, it is often assumed that there is no correlation among the three

types of errors, that is, (e (e ))=0,(eh (ef))=0and (e- (eh)=0. On the right

side of (B3) is the analysis error covariance, defined as pa= (ea (ea)) where
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ea=Xa Xt . The diagonal element of pa in (B3) gives the minimum error variance of

the corresponding analyzed variable associated with the optimal weights (B2). The

diagonal elements of the second part on the right side of (B3) are the reduction (or

"shrinking") of forecast error variance due to the optimal assimilation of observations. If

we precisely know Pf and R (called true forecast error covariance and true observation

error covariance), then we can find the optimal weights by (B2) and know exactly what

the analysis error covariance associated with the optimal data assimilation by (B3) (called

true analysis error covariance associated with the optimal data assimilation scheme) is.

We do not, however, know what the true atmospheric state x is and thus we do not

know Pf and R. A major theme of data assimilation research is to find ways to estimate

and approximate Pf and R. Data assimilation schemes associated with approximated

Pf and R are called sub-optimal schemes. This thesis focuses on ensemble forecasting

not data assimilation. For readers who are interested in the details of different types of

data assimilation schemes please start with Daley (1991, 1997), Evensen (1992,1994),

Courtier et al. (1994) and Parrish and Derber (1992).

3. Data assimilation cycle

Figure B. 1 illustrates a typical 6-hour data assimilation cycle, that is, the analysis

is generated four times a day at synoptic data collection time. At OOZ, a model starts from

initial conditions given by a previously completed atmospheric analysis and is integrated

for a short (6 hour) forecast. The 6-hour forecast and the observations collected at 06Z

are linearly combined by a data assimilation scheme to generate the analysis at 06Z.
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Then the model is integrated from the analysis at 06Z. The same procedures are followed

at 12Z and so on. At ECMWF and NCEP, one analysis is generated each time and the

forecast started with the analysis is called the control forecast. The control forecast

initialized at OOZ, 06Z, 12Z and 18Z can be run up to 10-day or longer for the purpose of

medium range forecast.

.Data aassimi i4ation cycle

S .S~.S m ........ m ............. .... m .. gt .S.. ..... ... S... m

ime:
O0Z '06Z: 12Z 1.8Z.

-e analysis 6h control forecast .... am shere

Figure B. 1: Cartoon for a typical operational data assimilation cycle.

4. Ensemble forecast cycle

Figure B.2 shows a typical operational ensemble forecast cycle. Given an

analysis generated from a data assimilation scheme, there are errors associated with the
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analysis. See definitions of "error" in section 2 of this appendix. In ensemble forecasting,

an ensemble of initial conditions is generated to sample the possible true atmospheric

states around the analysis. The ensemble of initial conditions is called perturbed initial

conditions. The difference of a perturbed initial condition and the analysis is called an

initial perturbation. One active research topic in ensemble forecasting is how to generate

initial perturbations to realistically and effectively sample the possible true atmospheric

state around the analysis. Please refer to the introduction for details. The forecast starting

from the perturbed initial condition is called the perturbed forecast. The control forecast

and the perturbed forecasts together are called the ensemble forecast. For simplicity,

Figure B.2 only shows one perturbed forecast. In operations, more than one perturbed

initial conditions and thus more than one perturbed forecasts are generated. At

operational centers, ensemble forecasts can be generated four times a day with the

forecasts initialized at OOZ, 06Z, 12Z and 18Z. The ensemble forecast are then run up to

the forecast lead time depending on the purpose of the forecast.

The perturbed forecasts cycle may or may not interact with the data assimilation

cycle, depending on the types of data assimilation scheme and initial perturbation

generation scheme. Currently at NCEP and ECMWF, the process of generating initial

perturbations does not interact with the process of data assimilation. For the ETKF initial

perturbation generation method described in chapter 2 and 3, these two processes do not

interact either. At the Canadian Meteorological Center, these two processes do interact.

Please see discussions in the introduction and references therein for details.
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Ensemble lforecasttcycle

.. .... Y . .

*X

•A.M.ss. . ... * . .............. M. 0. .........Os.a.. s. ......... .. '.. .
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DOZ 06Z 12Z 1Z;
x analysis coMntrol forecast perturbed forecast

atmoSphere initial perturbation

Figure B.2: Cartoon for a typical operational ensemble forecast cycle.

4. Eigenvector of a covariance matrix

A covariance matrix of a K-dimensional variable x is written as (xxT). This

covariance matrix can be decomposed into the following format,

(XxT) ErET, (B4)

where columns of E contain orthonormal vectors, called eigenvectors of (Xx T). The

matrix r is a diagonal matrix whose ith diagonal element is the eigenvalue for the ith

eigenvector (i.e., the ith column of E). The diagonal elements of r are in general
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ordered in decreasing value. The leading eigenvector, i.e., the eigenvector corresponding

to the largest eigenvalue, explains the most variance of x (Peixoto and Oort 1992). The

eigenvectors in E form an orthonormal basis of vectors for any K-dimensional vector. In

other words, The K-dimensional variable x can be expressed in the form of linear

combination of the eigenvectors.
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