
REPORT DOCUMENTATION PAGE
Form Approved

                           OMB NO. 0704-0188

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing
and reviewing the collection of information.  Send comment regarding this burden estimates or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services,
Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188,) Washington, DC 20503.

1. AGENCY USE ONLY ( Leave Blank) 2.  REPORT DATE

July 8, 2002
3.  REPORT TYPE AND DATES COVERED
Final Progress Report:
May 1, 1999 –April 30,2002

4.  TITLE AND SUBTITLE

Nonlinear Solvers for Subsurface Flow Problems
5.  FUNDING NUMBERS

DAAD19-99-1-0186

6.  AUTHOR(S)

7.  PERFORMING ORGANIZATION NAME(S) AND  ADDRESS(ES)

North Carolina State University
Office of Sponsored Programs, Box 7514

8.  PERFORMING ORGANIZATION
     REPORT NUMBER

9.  SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

    U. S. Army Research Office
    P.O. Box 12211
    Research Triangle Park, NC 27709-2211

10.  SPONSORING / MONITORING
       AGENCY REPORT NUMBER

   39199.11-MA

11.  SUPPLEMENTARY NOTES

      The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army
position, policy or decision, unless so designated by other documentation.

12 a.  DISTRIBUTION / AVAILABILITY STATEMENT

          Approved for public release;  distribution unlimited.

12 b.  DISTRIBUTION CODE

   
13.  ABSTRACT (Maximum 200 words)

 The aims of this project are development of linear and nonlinear solvers and temporal integration methods in the context of three-dimensional simulations of
subsurface flow and transport. In the period covered by this report the PI and his students completed the initial phase of development of a two-level
preconditioner, applied those results to unsaturated and multiphase flow problems, and derived condition number estimates. We have also applied our work
on simulation to prolems in optimal design.

14.  SUBJECT TERMS

   
15.  NUMBER OF PAGES

16.  PRICE CODE

   
17.  SECURITY CLASSIFICATION
       OR REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
       ON THIS PAGE

UNCLASSIFIED

19.  SECURITY  CLASSIFICATION
       OF ABSTRACT

UNCLASSIFIED

20.  LIMITATION OF  ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev.2-89)

Prescribed by ANSI Std. 239-18



Final Progress Report
Nonlinear Solvers for Subsurface Flow Problems

ARO Grant # DAAD19-99-1-0186
May 1, 1999 – April 30, 2002

1. Problem Studied. This project was for basic research in numerical methods for solving
linear and nonlinear equations and related problems in time-dependent simulations. The motivating
application was simulation of flow through porous media, in particular the unsaturated zone in the
subsurface. The nature of the nonlinearities and the physical properties of the equations make
standard methods for solution of equations perform in ways not predicted by current theory [17].
Our objective was to understand these effects and design and analyze new solvers. By doing this
the new solvers can be incorporated in production codes and adapt to changes in the solution as the
simulation progresses. This ability to adapt is crucial to an efficient simulation.

The basic research issues in nonlinear equation solvers arise from the nature of the nonlineari-
ties. These do not have the smoothness properties that a traditional Newton’s method code requires
to converge in the usual way. Our group performed research directed toward understanding of how
the nonlinearity can be approximated in a way that improves the performance of the solver and,
at the same time, does not affect the accuracy of the simulation. The nonlinearities also affect
the way in which the nonlinear solver and the time-dependent part of the simulator communicate.
This communication is important for temporal adaption. This part of the project is the central
component in Kathleen Kavanagh’s Ph. D. work.

The research questions for linear solvers arise from the size of the problem. In general terms,
the linear solver is used to compute an approximation to the Newton step for the nonlinear solver.
This part of the overall simulation takes most of the computational time. Only a large distributed-
memory parallel computer can store the data for large-scale ground and surface- water simulations
in three space dimensions. Linear solvers that are efficient in this environment and can effectively
use the complex data structures needed for an adaptive spatial discretization must be designed.
In collaboration with the group at WES we have designed and implemented in ADH an efficient
iterative method for large linear systems [4, 6–8]. This method has given good parallel scalability
and is now [8] supported by theoretical analysis.

This research was done in collaboration with a group (Charlie Berger, Stacy Howington,
and Jackie Hallberg) at the US Army Engineer Research and Development Center (ERDC). The
AdaptiveHydrology model (ADH), a production groundwater modeling code, was used as both a
testbed for the algorithmic work in the project and as a source for new research topics. The PI and
his students have an very productive collaboration A DH team.

In addition to the group at ERDC, the PI collaborates a group led by Professor C. T. Miller at
the University of North Carolina on work related to this project.

2. Most Important Results. The most significant results from the project are connected with
the development, implementation, analysis, and tech transfer of a two-level Schwarz precondi-
tioner for Richards’ equation (RE) and related problems. Richards’ equation is a simple model of
flow in the unsaturated zone. In three space dimensions, lettingz be the vertical direction andr
the spatial gradient operator, the pressure head form of RE is

[c( ) + SsSa( )]
@ 

@t
= r � (K( )r ) +

@K( )

@z
(2.1)
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In (2.1), is pressure head,c( ) = @�=@ is the specific moisture capacity,�( ) is the volumetric
fraction of water,Ss is the specific storage,Sa( ) = �( )=n is the aqueous-phase saturation,n is
the porosity, andK( ) is the hydraulic conductivity. We will assume that appropriate initial and
boundary conditions have been imposed.

he equation must be closed with constitutive equations for�( ) andK( ). One common way
to do this is to define the effective saturationSe with the van Geneuchten formula [19],

Se( ) =
� � �r
�s � �r

=

(
(1 + j�� jn�)

�m� ;  < 0
1;  � 0

:(2.2)

In (2.2),�r is the residual volumetric water content,�s is the saturated volumetric water content,
n� is an experimentally determined measure of pore size uniformity,m� = 1 � 1=n�, and�� is
an experimentally-determined coefficient that is related to the mean pore size. Note that (2.2) also
defines� as a function of . If the van Geneuchten formula is used for the saturation, it is standard
to define the conductivity with the Mualem model, [15],

K( ) = KsS
1=2
e

h
1�

�
1� S1=m�

e

�m�

i2
(2.3)

whereKs is the water-saturated hydraulic conductivity. One can see from (2.2) and (2.3) that the
nonlinearity is not differentiable if1 < n� < 2. Values ofn� in this range are physically realistic
and solvers must be prepared to deal with nonsmooth nonlinearities.

Discretization in time and space of RE leads to a sequence of nonlinear equations that must
be solved at each time step. To see this in a simple way we define the accumulation term

A( ) = c( ) + SsSa( );

and suppress the spatial variables to obtain

A( )
@ 

@t
= N ( )

where the nonlinear termN contains all spatial derivatives. The semi-discretized problem (i. e.
discrete in space only) has the same form,

A(u)ut = N (u);(2.4)

whereN is the discrete form ofN andu the approximation to . Our work on this project seeks
efficient solvers for (2.4).

One must integrate (2.4) implicitly in time. If, for example one uses the backward Euler
method one obtains

A(un+1)(un+1 � un) = hnN(un+1)(2.5)

which leads to a nonlinear equation that must be solved to advance in time

F (u) = A(u)(u� un)� hnN(u) = 0:(2.6)

We solved (2.6) with a Newton-iterative method. This means that we approximate the Newton
step

s = �F 0(uc)
�1F (uc)
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by solving the linear equation,
F 0(uc)s = �F (uc);(2.7)

with an iterative method.
The problems of interest here are too large for a Jacobian factorization to be computed and

stored. Hence (2.7) must be solved by an linear (inner) iterative method. The termination criteria
for the iterative method is typically coupled to the state of the nonlinear (outer) iteration by the
inexact Newton condition[1,13],

kF 0(uc)s+ F (uc)k � �ckF (uc)k:(2.8)

This is simply the standard relative linear residual termination criterion for iterative methods.
In our computational work on RE [4, 6, 7] and two-phase flow [12] we use a preconditioned

Krylov method for the linear equation and terminate that inner iteration when (2.8) holds. The
problems are large enough that distributed memory computers are needed both to store the data and
to do the computations rapidly. The Jacobian matrix is nonsymmetric for most of the problems we
consider and we solve the nonsymmetric linear equation for the Newton step with a preconditioned
Bi-CGSTAB [18] linear iteration.

LetAx = b be the linear system to be solved. We seek a (left) preconditionerM such that the
condition number

�(MA) = kMAkk(MA)�1k

is significantly smaller than that ofA. Krylov methods usually perform better if the condition
of the linear system can be improved. The preconditioner is used by applying the method to the
preconditioned systemMAx = Mb. Krylov methods take one or two matrix-vector products per
iteration. The matrix-vector product is usually the most significant cost in cpu time. Hence a
good preconditioner, by reducing the number of linear iterations, will reduce the cost of the solve.
However, one must keep in mind that theMA-vector product could be much more expensive
than theA-vector product. Hence, the preconditioner is useful if the reduction in the number of
iterations offsets the increased cost from the application of the preconditioner with each matrix-
vector product.

The combination of a Newton-Krylov method with a Schwarz domain decomposition pre-
conditioner is called a Newton-Krylov-Schwarz (NKS) method [14]. We have implemented both
one and two level Schwarz preconditioners in ADH. Both of these preconditioners are domain de-
composition preconditioners, which means that the original physical domain is split into several
subdomains, and the solutions of the original problem restricted to the subdomains are combined
to form the preconditioner for the original system.

We now describe additive the kind of Schwarz preconditioners we use in ADH. If we define
a matrixRi to be the restriction matrix for subdomaini so thatRi = [0 I 0], whereI is an
ni � ni identity matrix andni is the size of subdomaini, then the one-level additive Schwarz
preconditioner can be written as

M =
pX

i=1

RT
i

�
RiAR

T
i

�
�1

Ri

wherep is the number of subdomains.
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The coarse mesh component of the preconditioner is formed by defining one aggregate ele-
ment per subdomain. The resulting coarse mesh basis function is constant except in the elements
shared between subdomains. The contribution of the subdomain to the coarse matrix is computed
locally and then communicated to all of the processors. Thus every processor solves the coarse
mesh problem. The subdomain solves are performed using a profile solver [2] and the coarse grid
problem is solved using a dense LU factorization. The two-level additive Schwarz preconditioner
is formed by adding the coarse mesh problem to the one-level preconditioner, so that

M = RT
0

�
R0AR

T
0

�
�1

R0 +
pX
i

RT
i

�
RiAR

T
i

�
�1

Ri

whereR0 andRT
0 are the restriction and interpolation operators from the fine to coarse meshes,

respectively.
If h is the scale of the fine mesh andH the scale of the subdomains, we have shown, at least

for model elliptic problems [5,8], that the two-level preconditioner satisfies,

�(MA) � C!(1 + (H=h)2):(2.9)

In practical terms, (2.9) means that if the number of subdomains grows as the mesh is refined,
then the condition number ofMA will be independent ofh, hence the number of iterations needed
to satisfy (2.8) should also be independent ofh and the scalability of the solver should be good.
While the link between condition number and iteration count is only a heuristic for nonsymmetric
systems [3, 13, 16], the computational results in [4, 6–8, 12] show good-to-excellent scalability in
terms of iteration counts and nonlinear function evaluations.

To illustrate this scalability, we present a table of iteration statistics from [8]. The findings
in [6, 12] are similar, with the one-level method performing less well in the three dimensional
simulations from [6]. The data are from a temporal integration of RE in two space dimensions,
using a regular spatial mesh. In the table we report on the average number of linear iterations per
Newton step over a complete simulation. The linear solver was BiCGSTAB [18] and the temporal
integration was done with the BDF code from [10]. Table 2.1 shows how the performance of
the preconditioned linear solver depends onH andh. The constant numbers along the diagonals
indicate almost perfect scalability.

TABLE 2.1
RE Iteration Statistics, 2-level Schwarz Preconditioner

Hnh 1/16 1/32 1/64 1/128 1/256
1/8 7 8 9 12 15
1/16 7 9 11 14
1/32 7 9 11
1/64 7 9
1/128 7

In [12] we apply the solver technology developed for RE in [5, 6, 8] to a model [9, 11] for
two phase flow. The model is a coupled system of equations of the same form as (2.1). The
preconditioning and temporal integration methods that have been designed for Richards’ equation
also performed will in this context.
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In [4, 7] the group at ERDC and the PI’s group applied the multilevel preconditioner to prob-
lems in surface water and in ground-surface water interaction. The long-term goal is that the
preconditioner be applicable to the entire range of problems that ADH is intended to solve.

3. Publications.

3.1. Refereed Journal Publications.
1. E. W. JENKINS, C. T. KELLEY, C. T. MILLER, AND C. E. KEES, An aggregation-based

domain decomposition preconditioner for groundwater flow, SIAM J. Sci. Comp., 23
(2001), pp. 430–441.

2. C. T. MILLER, C. E. KEES, E. W. JENKINS, AND C. T. KELLEY. Versatile two-
level Schwarz preconditioners for multiphase flow. Technical Report CRSC-TR01-32,
NCSU, CRSC, December 2001. Finished in late Dec., Submitted to Computational Geo-
sciences.

3. J. F. KANNEY, C. T. MILLER, AND C. T. KELLEY. Convergence of iterative split oper-
ator approaches for approximating nonlinear reactive transport problems. Technical
Report CRSC-TR02-06, NCSU, CRSC, March 2002. Submitted to Advances in Water
Resources.

4. A. S. MAYER, C. T. KELLEY, AND C. T. MILLER. Optimal design for problems in-
volving flow and transport phenomena in saturated subsurface systems. Technical
Report CRSC-TR01-33, North Carolina State University, Center for Research in Scientific
Computation, December 2001. To appear in Advances in Water Resources.

5. A. BATTERMANN, J. M. GABLONSKY, A. PATRICK, C. T. KELLEY, T. COFFEY, K. KA-
VANAGH , AND C. T. MILLER. Solution of a groundwater control problem with implicit
filtering . Technical Report CRSC-TR00-30, North Carolina State University, Center for
Research in Scientific Computation, December 2000. To appear in Optimization and Engi-
neering.

6. E. W. JENKINS, R. C. BERGER, J. P. HALLBERG, S. E. HOWINGTON, C. T. KELLEY,
J. H. SCHMIDT, A. STAGG, AND M. D. TOCCI. Newton-Krylov-Schwarz methods for
Richards’ equation. Technical Report CRSC-TR99-32, NCSU, CRSC, October 1999.
submitted for publication.

3.2. Proceedings Publications.
1. C. T. MILLER, M. W. FARTHING, C. E. KEES, AND C. T. KELLEY, Higher order, locally

conservative, temporal integration methods for multiphase flow in porous media, in Com-
putational Methods in Water Resources XIV, Vol. 1, S. M. Hassanizadeh, R. J. Schotting,
W. G. Gray, and G. F. Pinder, eds., Amsterdam, 2002, Elsevier, pp. 249–256.

2. K. R. KAVANAGH , C. T. KELLEY, R. C. BERGER, J. P. HALLBERG, AND S. E. HOW-
INGTON, Nonsmooth nonlinearities and temporal integration of Richards’ equation, in
Computational Methods in Water Resources XIV, Vol. 2, S. M. Hassanizadeh, R. J. Schot-
ting, W. G. Gray, and G. F. Pinder, eds., Amsterdam, 2002, Elsevier, pp. 947–954.

3. E. W. JENKINS, R. C. BERGER, J. P. HALLBERG, S. E. HOWINGTON, C. T. KELLEY,
J. H. SCHMIDT, A. STAGG, AND M. D. TOCCI, A two-level aggregation-based Newton-
Krylov-Schwarz method for hydrology, in Parallel Computational Fluid Dynamics 1999,
D. E. Keyes, A. Ecer, J. Periaux, and N. Satofuka, eds., North Holland, 2000, pp. 257–264.
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4. S. E. HOWINGTON, R. C. BERGER, J. P. HALLBERG, J. F. PETERS, A. K. STAGG, E. W.
JENKINS, AND C. T. KELLEY. A model to simulate the interaction between groundwater
and surface water, 1999. Proceedings of the High Performance Computing Users’ Group
Meeting, Monterrey, CA, June 7–10.

3.3. Unpublished Presentations at Meetings.
1. K. R. Kavanagh,Solving Groundwater Remediation Problems With Implicit Filtering .

SIAM 7th Conference on Optimization, Toronto, Canada, May 20-23, 2002.
2. K. R. Kavanagh,Implicit Temporal Integration for Richards’ Equation , 7th Copper

Mountain Iterative Methods Conference, Copper Mountain, Colorado, March 24–29, 2002.
3. K. R. Kavanagh,Subsurface Control With Implicit Filtering , Sixth SIAM Conference

on Mathematical and Computational Issues in the Geosciences, Boulder, C0, June 11–14,
2001.

4. C. T. Kelley,Nonlinear solvers and preconditioners in groundwater flow simulations,
September 28 1999. Workshop on Parallel Algorithms, U.S. Army Engineer Research and
Development Center, Vicksburg MS.

3.4. Technical Reports.
� E. W. JENKINS, The Application of Two-Level Domain Decomposition Preconditioners

to Problems in Hydrology, PhD thesis, North Carolina State University, Raleigh, North
Carolina, 2000.

4. Scientific Personnel.
1. C. T. Kelley: Principal Investigator
2. E. W. Jenkins: Graduate Student

Ph. D. in Mathematics, August, 2000
3. K. R. Kavanagh: Graduate Student

MS in Mathematics, December, 2000; Ph. D. expected, 2003
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