Workshop on Aerodynamic Issues of Unmanned Air Vehicles

Emerging Aerodynamic Technologies for High-Altitude Long-Endurance 'SensorCraft' UAVs

Dr. Carl P. Tilmann

Air Force Research Laboratory
Air Vehicles Directorate
Aeronautical Sciences Division
Aerodynamic Configuration Branch

4 November 2002

maintaining the data needed, and of including suggestions for reducing	election of information is estimated to completing and reviewing the collect this burden, to Washington Headquuld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate of mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis I	is collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE 26 JUL 2004		2. REPORT TYPE N/A		3. DATES COVERED			
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER			
Emerging Aerodynamic Technologies for High- Altitude				5b. GRANT NUMBER			
Long-Endurance SensorCraft UAVs				5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)		5d. PROJECT NUMBER					
					5e. TASK NUMBER		
				5f. WORK UNIT NUMBER			
Air Force Research	ZATION NAME(S) AND AD h Laboratory Air Vo Aerodynamic Config	ehicles Directorate A	Aeronautical	8. PERFORMING REPORT NUMBI	GORGANIZATION ER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)			
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
12. DISTRIBUTION/AVAIL	LABILITY STATEMENT ic release, distributi	on unlimited					
	otes 85, CSP 02-5078, Pr al document contain	•	lynamic Issues of	Unmanned A	Air Vehicles		
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF				
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT UU	OF PAGES 23	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Sensor Craft Initiative *Transforming Vision to Reality*

Detection, tracking, and targeting of concealed or hidden targets

Eyes and Ears of Warfighter Worldwide 24/7 Coverage

Enabling AFRL Technologies

Conformal Load Bearing Antenna

Aerodynamic Optimization

AFRL Technical Challenges

SensorCraft Technologies

Air Vehicle

Structurally integrated radar apertures
High efficiency aerodynamics
Lightweight aircraft structures

Sensors

Beam forming across complex surfaces
Affordability and advanced sensors
Fully flexible waveforms

Information

Off-Board BM/C2, TCPED, FUSION-ATR

Propulsion

Magnetic bearings / Integral Starter Generator
High altitude, long endurance fuel burn reduction.
Full life hot section and maintenance free engine core

Materials

Wide Bandgap RF Semiconductors and Polymers Higher Temperature Turbine Engine Materials Affordable, Lightweight Structural Materials

VA SensorCraft Tech Assessment Trade Space Analysis

Sized Geometry

Wing Area (Gross): 2300 Sq Ft

Span: 214 Ft Length: 118.6 Ft

Sweep: 35 Deg

Aspect Ratio (Gross): 17.4

Wetted AR: 5.5

Statistical Weights (Lbs)

Structure: 17500
Propulsion: 3700
Avionics: 1000
Subsystems: 3000

Other: 1400

Empty Weight: 26600 Payload Weight: 4000

Fuel Weight: 39400

Gross Weight: 70000

Engines (2)

14000 lb St Thrust (CF - 34B Class)

SFC: 0.38 Vehicle Characteristics

 W_{E}/W_{TO} : 0.38

L/D: 32

Multipoint Efficiency Challenge

Numbers Based On Notional SensorCraft Mission Profile; $S=2300 \text{ ft}^2$; $W/S|_{TO}=30 \text{ c}=6.5 \text{ft}$

 $C_L = \frac{L}{\frac{1}{2}\rho V^2 S} = \frac{L}{\frac{1}{2} \eta p M^2 S} = \frac{W/S}{q}$

Technology Applications for Sensorcraft

SensorCraft Concepts

Primary Aerodynamic Challenges

- Operates over a large range in C₁ & Re
- Limited coverage (side lobes)
- Low survivability (very detectable)
- Large aeroelastic deflections

- Operates over a large range in C_L & Re
- Crossflow instabilities destroy laminar boundary
- Joined-wing juncture flow
- Joined-wing structural modes not completely understoo
- Propulsion integration (?)

- Crossflow instabilities destroy laminar boundary
- Joined wing juncture flow
- Stability & control considerations
- Highly loaded airfoil at break
- Large aeroelastic deflections

Sensor / Aero Interactions

- Placing sensors & antennae on a flexible wing requires attention to:
 - deflections which may impact sensor performance
 - impact of sensor on wing performance
 - Aeroelastic
 - Aerodynamic
 - Control surface placement
- Recurring challenge: Allocating vehicle real estate between antennas and control surfaces
 - -Stem from the desire for the antennas to have 360degree views
 - -types of antennas can exacerbate problem

Wing Loading Distribution

Novel Active Flow Control Devices Advances Through Processes, Materials, MEMS

Displacement Amplification Compliant
Structure Producing Amplified
Motion of 5mm @240Hz

Micro-VG Deployed Pneumatically by Opening MEMS Air Valve

Objective

 Create vortex pulses for active separation control with very low energy requirements on the system

Approach

- Dynamic micro-VGs to convert the freestream energy into BL
- -Test in Wind Tunnel

Examples

- Compliant structure with 20:1 displacement amplification
- Arrays Co-Located Actuator and Sensor pairs enabled by MEMS technology

Benefits of HiLDA Active Wing Tech

Active Wing Technologies	C _{do} ↓	C _{di}	C _{Lop}	C _{Lmax}	Wt
AFC – Laminar Flow Control Using DRE (Static)	✓				
AFC – Pulsed Vortex Generator Jets (Dynamic)		✓	✓	✓	
AAW		✓			✓
AS – Hingeless, Spanwise Variable LE and TE CS		✓	✓	✓	
AFC + AAW + AS	✓	✓	✓	✓	✓

1h0021-014

 Individual and Synergistic Benefits of Active Wing Technologies are Being Evaluated

Technology Cross Influences

	AFC-DRE	AFC-PVGJ	AAW	AS	AS-C _{Di min}		
AFC-DRE		\otimes	\otimes	\otimes	\otimes		
AFC-PVGJ				•	•		
AAW					\otimes		
AS							
AS-C _{Di min}							
Legend: Approaction Needs to Bo Studied 1H0021-02							

Legend:

- No Interaction Foreseen
- Cumulative Effectiveness Reinforce Each Other

Integrated Systems

- AS Control Surfaces for AAW Applications
- Study Influence on Laminar Flow of PVGJ, AAW, and AS

Laminar Flow on Swept Wings

<u>Distributed Roughness Elements</u>

PAYOFF:

PROBLEM: Crossflow Induced Transition

Favorable pressure gradient stabilizes traveling (TS) waves in boundary layer, but does not affect stationary (crossflow) waves. In the past, suction has been required for crossflow stabilization.

SOLUTION: Distributed Roughness

Elements (DREs) of the proper spacing (wavelength) and size can create "favorable" disturbances that overwhelm the amplified-wavelength disturbances that otherwise lead to transition.

Benefit to Sensorcraft: Laminar Flow Results in Large TOGW Reductions

Many DRE Questions Remain

- How to design distribution.
- Is it robust?
 - -M, C_L , Re
 - -Bending, twist, environments
- Must it be active or adaptive?
 - -Spacing, placement, bump height, dimple depth...
 - -If so, how do we change the distribution?
- How do we demonstrate it?
 - -Tunnel, flight test, flight experiment, combination?
 - -Under what conditions?
- Will it work at high C_L?

Adaptive Structures Applications for Sensorcraft

Trailing Edge

MAW Multi-Component Mechanical Structure Trailing Edge Flap Design

Equivalent Compliant Structure Trailing Edge Flap Design

For Sensorcraft, Adaptive Structures Are being Applied to:

- Control Wing Shape for Optimal Aerodynamic Performance Throughout the Mission
- Manage & Alleviate Structural Loads

Adaptive Compliant Trailing Edge Tailoring Airfoil Performance

- Variable geometry compliant trailing edge
- Adaptive TE expands low drag bucket via stagnation point/pressure gradient control
- Allows entire loiter to be performed at exceptionally high airfoil L/D (≈125-165)

Adaptive Trailing

Edge Alone

Maintains "Low
Drag Bucket" Over

Wide Range of C

AAW and Application to Sensorcraft

 Basic AAW uses conventional control surfaces to aeroelastically shape the wing throughout the mission

- In fighter applications, <u>AAW</u>
 exploits wing aeroelasticity for:
 - structural load reduction
 - control authority increase
 - induced drag reduction
- Fighter design studies have shown the impact of AAW on structural weight and TOGW

t/c = 0.040

aspect ratio = 5.0

t/c = 0.035

For Sensorcraft AAW Could:

- •Reduce Structural Design Loads
- •Improve L/D
- •Improve Antenna Performance

NGC Task 2 Wind Tunnel Model Installation

NASA/Langley TDT

- Model to be Mounted Off Side Wall
 - Model Pitch and Plunge Restrained
- Shape Control Achieved with Combination SLA Trailing Edge and Hydraulic Actuated Control Surface
- Gust Load Alleviation (GLA) Test Using Hydraulic Actuated Control Surface
- Different Test Mediums for Each Test Goal
 - -Shape Control Air
 - -GLA R134a

Technology Interactions

- Interaction of Technologies Key to Integration
- •Must be Compatible with Sensors (Materials, Location, etc.)

Flow Control is in Competition with Other Technologies

- Active Wing Technologies Have the Potential to Significantly Impact SensorCraft Design & Performance
- The HiLDA Program Will Provide Needed Quantitative Information

High L/D Active (HiLDA) Wing

OBJECTIVES:

- Apply <u>AFC</u>, <u>AAW</u>, and <u>Adaptive Structures</u>, to a Sensorcraft wing design for load reduction and improved L/D
- Demonstrate critical technologies in wind tunnel
- Prepare for demonstration of high aerodynamic efficiency in upcoming 6.3 program

PAYOFFS:

 Reduced structural loads and improved L/D for Sensorcraft vehicle weight reduction

APPROACH:

- Apply AAW to Sensorcraft wing configuration & evaluate structural weight savings and L/D improvement
- Determine optimum airfoil shape throughout mission profile
- Evaluate active flow control methods to alleviate off-design requirements
- Apply active flow control and adaptive structure design to maximize aerodynamic efficiency
- Demonstrate integrated design in wind tunnel

ADAPTIVE STRUCTURES Adaptive Wing Shape for Drag Minimization and Gust Load Alleviation

ACTIVE FLOW CONTROL

ACTIVE AEROELASTIC WING

High L/D Active (HiLDA) Wing

Objective

 Prepare for demonstration of ultra-efficient wing in upcoming 6.3 program

Problem

- Need significant increases in structural and aerodynamic efficiency to meet range/loiter requirements Sensorcraft concept.
- Reduced structural loads and improved L/D for Sensorcraft vehicle weight and cost reduction

Customers

NASA, UAV, Sensorcraft, ASC/RA, ACC-ISR

Schedule / Milestones

TASK 1 (LMAC, NGC)
Technology Assessments
Integrated Benefit Analysis
Active Wing Design
AAW (Boeing)
TASK 2
Develop Tunnel Testing Plan
Design, Fab, & Test (NGC)

DRE Quick Look (LMAC)

DRE Robust

FY01 FY02 FY03 FY04

Technical Challenges

- Determine individual and combined technology impacts on Sensorcraft
- AAW/AFC/AS specific issues
- Integrated design of active wing to max. efficiency

Players

Partners

·NASA

Performers

- Task 1 Lockheed, Northrop
- •Task 2 Lockheed, Northrop, Boeing