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ABSTRACT:

Navigation improvements are planned at J. T. Myers Locks and Dam on the Ohio River main stem. The
existing project consists of a navigation dam, a 1,200-ft-long by 110-ft-wide main lock chamber adjacent
to a 600-ft-long by 110-ft-wide auxiliary lock chamber. One of the improvements includes developing a
1,200-ft long lock chamber from the existing 600-ft-long lock chamber. The outlet design proposed for
the filling and emptying system in the extended lock section was a manifold type diffuser located within
the landside guide wall monolith and discharging toward the right (looking downstream) bank. A landside
diffuser would help minimize closure of the main lock during construction of the lock extension. A 1:25-
scale model was used to evaluate the outlet design. Modifications to the original design were made to im-
prove the hydraulic conditions at the outlet. The vanes in the original design outlet were angled down-
stream to direct the jets away from the right bank. This design was the type 2 outlet diffuser. A stilling
basin with two rows of baffle blocks and an end sill was developed to help dissipate the energy of the out-
let discharge and reduce the potential for scour. The banks were also reshaped to direct the outlet flow
downstream. The size riprap required to protect the area surrounding the outlet was determined. Hawser
forces were also measured on tows moored at various locations in the lower approach with solid and

floating guide walls.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes.
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
All product names and trademarks cited are the property of their respective owners. The findings of this report are not
to be construed as an official Department of the Army position unless so designated by other authorized documents.
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1 Introduction

Background

The U.S. Army Engineer District, Louisville, is planning navigation
improvements at J. T. Myers Locks and Dam on the Ohio River. These
improvements include extending the existing 600-ft'-long by 110-ft-wide
landside chamber to accommodate a tow consisting of 15 barges, 3 wide by 5
long (each barge 35 ft wide by 195 fi long), and towboat and also modifying the¢
approach walls for better tow entry and exit. Hite and Crutchfield (2004)
performed a model study to evaluate the lock filling and emptying system for the
lock extension. During this study, evaluation of the lock outlet was initiated but
was halted so the U.S. Amy Engineer District, Huntington, could use the lock
filling and emptying facility to study the filling and emptying system for the
Greenup navigation project. The outlet study was continued in another flume,
and this report provides the results of that investigation.

Prototype

The existing J. T. Myers Locks and Dam project is located on the Ohio River
approximately 846 miles below its head at Pittsburgh, PA, and about 3.5 miles
downstream from Uniontown, KY (Figure 1). The locks are on the Indiana side
of the river. The current lock system consists of a 110-ft-wide by 1,200-ft-long
main lock chamber adjacent to a 110-ft-wide by 600-ft-long auxiliary lock
chamber. The filling and emptying system for the 600-ft chamber is the single-
culvert bottom-lateral design with six laterals. A view of the existing J. T. Myers
Locks and Dam on the Ohio River is shown in Figure 2 along with a schematic of
a proposed lock expansion.

Purpose and Scope

The purpose of the investigation was to assist the Louisville District in
verifying the landside outlet design and make modifications to the design if
necessary to achieve acceptable performance. The landside outlet is preferable
over a riverside outlet for lock extension projects since closure of the main lock

! A table of factors for converting non-SI units of measurement to SI units is presented on
page vi.
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chamber will be minimized during construction of the outlet. The outlet was
evaluated based on flow patterns in the lower approach, tendencies for sediment

deposition, and hawser forces on a tow moored in the lower approach.
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Figure 1. Location map

Figure 2. J. T. Myers proposed lock extension looking downstream
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2 Physical Model

Description

The 1:25-scale model of the landside outlet reproduced a 600-ft-width and
1,500-ft-length of the lower approach beginning at the emptying valve for the
downstream filling and emptying system. The model included the reverse tainter
valve for emptving, the lock culvert between the emptying valve and outlet, the
landside outlet diffuser and portions of the lower approach topography.

Photographs of the outlet model are shown in Figure 3. To simulate emptying
operations in this model, the emptying valve was opcrated to reproduce the
discharge hydrographs for various valve operations. Thesc hydrographs were
obtained from the filling and emptving model results. The laterals in the lower
half of the chamber discharge back into a landside culvert that connects the
landsidc outlet diffuser. The model layout is shown in Plate 1. Details of the
original design diffuser, type 1 design, evaluated by Hite and Crutchfield (2004)
arc provided in Plates 2 and 3. The type 1 design diffuser was a converging
manifold type with eight ports 7-ft high by 4.5-ft wide. The jets from the ports
discharged normal to the landside bank. The type 2 design outlet diffuser was the
first design evaluated in the outlet model. This design shown in Platc 4 was
similar to the type 1 design in size. The vanes within the diffuser were angled
downstream to direct the jet flow in this direction.

Physical Model




a. View looking upstream of lower approach to locks
Figure 3. 1:25-scale section model of outlet (Sheet 1 of 4)

b. View of outlet area
Figure 3. (Sheet 2 of 4)
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c. Close-up view of outlet diffuser
Figure 3. (Sheet 3 of 4)

d. Emptying valve and culvert
Figure 3. (Sheet 4 of 4)
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Appurtenances and Instrumentation

Watcr was supplicd to the modcl through a circulating system. The lower
pool was maintained at ncar constant clevations during the emptying opcrations
using a long horizontal weir at the end of the flume. A constant hcad skimming
weir was uscd upstrcam from the outlet diffuscr to provide a discharge source. A
paddlc wheel type flow meter was calibrated in a scparate facility to insurc
proper working condition. The meter was then installed in the culvert upstream
from the emptving valve and the relationship between culvert discharge and gate
opening was established. Knowing this relationship, the correct emptying
hvdrographs could be reproducced using the emptying valve. Water-surface
clevations inside the lower approach modcl were determined using point gauges.
Dy¢ and confetti were used to study subsurface and surface current dircctions.
Small_ ncar ncutrally buoyant, beads were used to help evaluate sediment
deposition tendencics.

An automated data acquisition and control program, Lock Control' was used
to control the valve operation and collect strain gauge data for the hawscr force
mcasurcments. Four data channcls were used, onc for control of the emptying
valve and three for collecting strain gauge information. The data were usually
collected at a sampling rate of 10 Hz.

A hawscr-pull (force links) device used for measuring the longitudinal and
transverse forces acting on a tow in the lock chamber during filling and emptying
opcrations is shown in Figurce 4. Three such devices were used: one measurcd
longitudinal forces and the other two measured transversc forces on the
downstrcam and upstrcam cnds of the tow, respectively. These links were
machined from aluminum and had SR-4 strain gauges ccmented to the inncr and
outer cdges. When the device was mounted on the tow, one end of the link was
pin-connected to the tow while the other end was cngaged to a fixed vertical rod.
Whilc connccted to the tow, the link was free to move up and down with changes
in the water surface in the lock. Any horizontal motion of the tow causcd the
links to deform and varv the signal, which was recorded with a personal
computcr using an analog-to-digital converter. The links were calibrated by
inducing dcflection with known weights. Instantancous pressurc and strain gauge
data were recorded digitally with a personal computer.

! Written by Dr. Barry W. McCleave, Information Systcms Development Division,
Information Technology Laboratory. ERDC.
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Figure 4. Hawser-pull (force links) measuring device

Similitude Considerations

Kinematic similitude

Kincmatic similarity can be used for modeling free-surface flows in which
the viscous stresses are negligible. Kinematic similitude requires that the ratio of
inertial forces (oF” L) to gravitational forces (pgL’) in the model are equal to
those of the prototype. Here, p is the fluid density, V'is the fluid velocity, L is a
characteristic length, and g is the acceleration due to gravity. This ratio is
generally expressed as the Froude number, Ny

Np = —== (1)

where L, the characteristic length, is usually taken as the flow depth in open-
channel flow.

The Froude number can be viewed in terms of the flow characteristics.
Because a surface disturbance travels at celerity of a gravity wave, (gh)'"*, where
h is the flow depth, it is scen that the Froude number describes the ratio of
advection speed to the gravity wave celerity. Evaluation of the flow conditions in
the lower lock approach included measuring hawser forces on moored barges
during emptying operations. These hawscr forces are generated primarily by
slopes in the water surface.

Physical Model




Dynamic similitude

Modcling of forces is a significant purpose of the laboratory investigation.
Appropriate scaling of viscous forces requires the model be dynamically similar
to the prototype. Dyvnamic similarity is accomplished when the ratios of the
inertia forces to viscous forces (V1) of the model and prototype are equal. Here,
i is the fluid viscosity. This ratio of incrtia to viscous forces is usually expressed
as the Revnolds number

VL
Ny =— 2
R=7, (2)

where v is the kinecmatic viscosity of the fluid (v = j1/p) and the pipe diameter is
usually choscn as the characteristics length, L, in pressurce flow analysis.

Similitude for models

Modcling of lock filling and cmptying systems is not cntircly quantitative.
The svstem is composced of pressure flow conduits and open-channcl
components. Further complicating matters, the flow is unsteady. Discharges (N
and Ny) vary from no flow at the beginning of an opcration to peak flows within
a few minutes and then return to no flow at the end of the cycle. Fortunately
though, cngincers now have about 50 years of expericnce in conducting large-
scalc modcls and subscquently studving the corresponding prototype
performance. This study used a 1:25-scale Froudian modcl in which the viscous
differences were small and could be estimated based on previously modcl-to-
prototypc comparisons. Sctting the model and prototypc Froude numbcrs equal
results in the relations between the dimensions and hydraulic quantitics in the
following tabulation:

Characteristic Dimension’ Scale Relation Model:Prototype
Length Le=L 1:25

Pressure P.= L, 1.25

Area A=L° 1:625

Velocity V=L, "7 1:5

Discharge Q=L 1:3,125

Time T=L " 1:5

Force F=L° 1:15,625

! Dimensions are in terms of length.

These relations were used to transfer model data to prototype equivalents and
vice versa.
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Experimental Procedures

Evaluation of the lock outlet was based on observation of flow conditions in
the vicinity of the outlet, sediment deposition tendencies, energy dissipation
achieved by the outlet basin, and hawser forces experienced by tows moored in
the lower approach. Experiments were conducted to investigate these conditions
and obtain velocity and hawser forces measurements.
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3 Model Experiments and
Results

Velocities with Type 2 Lower Approach

Experiments with the type 2 lower approach were performed in the filling
and emptying model, Hite and Crutchfield (2004). The lower approach was
designated type 2 since it was modified from the topography originally placed in
the filling and emptying model. No data were collected with the original design
topography. The type 2 lower approach was reproduced in the outlet model,
Plate 1, and a close-up of the design is shown in Plate 5. Velocity measurements
were obtained at selected locations to help evaluate the flow patterns in the
vicinity of the outlet area. The measurements were made with an upper pool el'
of 342 and a lower pool el of 324 (18-ft lift). The upper pool was maintained at el
342 by opening the upper miter gates with the upper filling valves closed and the
emptying valves open. This provided the maximum velocities that could occur
during an emptying operation.

The velocity measurements obtained with the 18-ft lift are shown in Plate 6.
The highest velocity measured was 10.1 ft /sec in the middle of the apron at the
diffuser outlet. The dimensions of the apron were 20 ft wide by 84.5 ft long and
the invert el was 286. Since this area was subjected to the jet flow discharging
from the outlet diffuser during emptying, a concrete structure is recommended.
The flow in this area was highly turbulent as seen by a wide range in the velocity
magnitudes and directions in Plate 6. The velocity measurements were obtained
approximately 1 ft off the bottom.

Due to the configuration of the model (the model cutoff wall just upstream
from the diffuser), a concentrated eddy formed on the upstream side of the
diffuser from the jets discharging from the upstream ports. The jets discharging
from the middle of the diffuser were directed upward and outward at the end of
the apron with some of the flow contributing to the eddy on the upstream side
and the remaining flow spreading out in a downstream direction. High velocity
flow occurred near the water surface at the top of the landside bank line. A
velocity of 8.6 ft/sec was measured near the top bank approximately 400 ft
downstream from the diffuser. A velocity of 5.5 ft/sec was measured near the top

! All elevations (el) cited herein are in feet referenced to the National Geodetic Vertical
Datum. To convert feet to meters, multiply number of feet by 0.3048.
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bank 800 ft downstream from the diffuser. The velocity of the flow along the
_ bottom at the toe of the landside bank was low (1 to 2 ft/sec).

Type 2 Design Outlet

The outlet diffuser was modified in an effort to distribute more flow along
the floating guide wall and direct the flow in a downstream direction. The
velocities along the wall near the bottom were around 1 ft/sec and higher
velocities were preferred in this area to help reduce sediment deposits. Due to
time restraints in the filling and emptying model, the type 2 outlet diffuser and
lower approach were installed in another separate flume (Figure 3 and Plate 1)
and experiments were continued.

The type 2 design outlet shown in Plate 2 was developed to replace the
original design. The ports were angled (45 deg from the bank) in an effort to
direct the outlet discharge in a downstream direction. This should help distribute
the flow better in the arca between the landside floating wall and bank and could
also help prevent excessive sediment deposition near the floating wall. The
beginning of the floating guide wall was also moved to the end of the outlet
diffuser monolith to eliminate the presence of a floating wall over the outlet.

Bottom velocities were obtained with the type 2 design outlet and are shown
in Plate 7. The velocities were measured with a steady flow and represented the
maximum discharge that occurs during an emptying operation with a 2-min
valve. The velocities near the top bank were reduced from those measured with
the previous design and were higher near the toe of the bank. This indicated the
flow was spreading out better, although there was no significant change in the
bottom velocities between the toe of the bank and the floating wall. A fairly
strong eddy still occurred upstream from the outlet between top bank and the
outlet diffuser monolith wall.

Type 3 Design Outlet

A single row of baffle blocks was placed in the outlet basin to break up the
discharging jets and aid in the energy dissipation. The blocks were 4 ft high by
4.5 ft wide with a tapered downstream side. The face of the blocks was located
10 ft from the face of the outlet ports. Bottom velocities measured with this
design showed the blocks helped reduce the bottom velocities along the water’s
edge and also prevented the strong jet flow from reaching the water’s edge.

Type 4 Design Outlet

Vertical vanes were placed in the basin to try and provide more flow along
the floating guide wall. The vanes began in the basin at el 286 and tapered to el
300. The vanes helped direct more flow into the arca between the bank and
floating wall. The highest velocities along the bottom were measured where the
walls tied into el 300. Surface, middepth and bottom velocities were obtained

Chapter 3 Model Experiments and Results 11



with this design to determine the depth wise distribution of flow. The velocities
shown in Plate 8 indicated the highest velocities measured in the area between
the floating wall and the sloping bank, occurred at the toe of the bank. The
velocities in the lower approach did not show any large changes with depth.

Type 5 Design Outlet

A single row of baffle blocks was placed in the basin along with the vertical
vanes. This design was designated the type 5 design outlet. Velocities measured
at the bottom, middepth, and surface (Plate 9) revealed there was a slight
reduction in velocity at the bottom and surface where the vanes tied into el 300.
The velocities measured at the downstream riverside of the outlet basin were in

the upstream direction.

Types 6 and 7 Design Outlet

The last downstream port in the diffuser was modified to direct the discharge
from this port downstream. The face of this port, which was previously flush
with the outlet monolith, was extended so that the face was pointed downstream
to direct more flow parallel to the floating guide wall. Velocities were measured
with the modified port and with the vertical vanes (type 6 design outlet shown in
Plate 10) and with the vertical vanes and baffle blocks (type 7 design outlet
shown in Plate 11). There was a slight increase in the velocities in the middle of
the area between the bank and the floating wall with these two designs, however
there was a significant increase in the bottom velocity near the floating wall
where the basin transitioned to el 300. With the type 6 design outlet, the velocity
was 11.2 ft/sec compared to 2.1 ft/sec with the type 4 design outlet. Likewise, the
velocity measured at this location with the type 7 design outlet was 11.5 fi/sec
compared to 2.1 ft/sec with the type 5 design outlet. These high velocities were
not desired in this area.

Type 3 Lower Approach

For many of the designs evaluated, the bottom velocities measured where the
basin transitioned to el 300 were higher than desired. The basin size was
increased from 20 ft wide by 84.5 ft long to 100 f wide by 164.5 ft long to allow
more space for energy dissipation. The bank was reshaped to accommodate this
size basin. Based on the results of navigation experiments performed
concurrently in the 1:100-scale navigation model, the length of the floating guide
wall was also reduced to 400 ft. These modifications were designated the type 3
design lower approach and are shown in Plate 12.

Type 8 Design Outlet

The outlet design with the type 3 lower approach was designated the type 8
design outlet due to the increased basin size. The bottom velocities were higher

12 Chapter3  Model Experiments and Results




than desired (Plate 13), and eddies were observed both upstream and downstream
from the outlet diffuser. The jet flow from the outlet tends to run up the slope
from el 286 to el 300 at the outer downstream comer of the basin causing higher
velocities along the bank and eddies.

Type 9 Design Outlet

Two rows of baffle blocks and a vertical wall were installed in the basin as
shown in Plate 14. These modifications were employed to break up the jet flow
and confine the energy dissipation to an area closer to the outlet. These
modifications reduced the magnitude of the velocities on the bank as well as in
the upstream eddy. The size of the upstream eddy was still much larger than
desired although the magnitude of the velocities was less than the type 8 design
outlet. Velocities measured with the type 9 design outlet are shown in Plate 15.

Type 10 Design Outlet and Type 4 Lower
Approach

The bank was modified to reduce the size of the upstream eddy observed
with the types 8 and 9 design outlets. This modification, designated the type 4
lower approach, is shown in Plate 16. The outlet was also designated the type 10
design outlet since the shape of the basin was modified. The size of the eddy was
reduced and the velocity measurements shown in Plate 17 indicate the magnitude
of the highest velocity in the eddy was reduced slightly (from 5.1 to 4.9 ft/sec).
Overall, the flow direction was improved with the type 10 design outlet and the
type 4 lower approach.

Water-Surface Measurements Near Floating Wall

During the outlet operation, the water surface near the floating wall was
observed to rise above the lower pool elevation. Maximum water- surface
measurements were made during the emptying operation on each side of the
floating wall at 12.5 ft downstream from the outlet monolith and 12.5 ft upstream
from the end of the floating wall. These measurements, listed in Table 1, show
that the water-surface rises about 0.4 ft above the lower pool elevation at the
location near the outlet monolith and 0.3 ft above the lower pool near the end of
the floating wall. Time-histories were not obtained.

Chapter 3  Model Experiments and Results
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Table 1
Maximum Water-Surface Elevations, Across Floating Guide Wall,

Type 10 Design Outlet, 2-Min Empty Valve, Upper Pool el 342,
Lower Pool el 324

Landside [ Riverside
12.5 ft Downstream from End of Outlet Monolith
324.4 [324.4 # NGVD
12.5 ft Upstream from End of Floating Wall
324.3 [ 324.3 ft NGVD

Scour Experiments

An experiment was performed next to help determine the size stilling basin
required to adequately dissipate energy and contain the highly turbulent flow
from the outlet. The velocities measured with the type 10 design outlet basin
indicated the baffle blocks were working well and no jet type flow was observed
in the lower approach. Sand was placed in the model up to el 289 as shown in
Plate 18. The area in the vicinity of the basin was observed after three
consecutive tests with a 2-min emptying valve and the type 10 design outlet. The
main area of scour occurred just downstream from the basin as outlined in the
bottom schematic in Plate 18. The test indicated if the area enclosed by the end
sill was increased slightly, the scour could probably be reduced.

Types 11 and 12 Design Outlets

The downstream basin wall was aligned the same as the upstream basin wall
to form the type 11 design outlet shown in the middle of Plate 18. The vertical
end sill was replaced with one having a sloping upstream face. A 2-min emptying
valve was run for five consecutive times and the amount of scour from these
operations was observed. The extent of the scoured area was reduced from that
observed with the type 10 design outlet. The location of the maximum scour
depth is shown in Plate 18. The downstream comer of the basin was modified as
shown in Plate 18 to form the type 12 design outlet. Again, a 2-min emptying
valve was run for five consecutive times and the amount of scour from these
operations was observed. The scoured area was larger than the scoured arca with
the type 11 design outlet. A pocket of scour occurred along the wall where the
modification was made. The type 11 design outlet performed better than the type
12 design outlet so this design was placed back in the model for evaluating the
size riprap needed in the vicinity of the basin.
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Riprap Experiments
Type 1 riprap design

A plan view of the type 1 riprap design is shown in Platc 19. The design was
based on a velocity over the end sill of 6 ft/sec and the Hydraulic Design Criteria
(HDC) (HQUSACE 1988) for riprap placed in the dry for highly turbulent flow.
A ds, size stone of 6 in. with a blanket thickness of 18 in. was placed on top ofa
thin layer of sand and separated using a filter cloth. The limits of the riprap
gradation from Engineer Manual 1110-2-1605 (HQUSACE 1987) and the
gradation uscd in the model arc shown in Plate 20. The stability of the design
was evaluated after three consccutive 2-min emptying valve operations. No
movement was detected. The model was then allowed to run stcady with the
maximum discharge with a 2-min emptying valve for 15-min model time
(equivalent to 1 hr and 15-min prototype time). The filter cloth was exposed in
the two arcas shown in Photo 1. This type of operation is not expccted to occur;
however, sincc this size stone was small, additional experiments were performed
with a larger gradation.

Photo 1.  Exposure of filter cloth after experiments with type 1 riprap

Type 2 riprap design

The type 1 riprap located 15 ft immediately adjacent to the basin was
replaced with larger riprap. This plan was designated the type 2 riprap design
shown in Plate 21 and the gradation for this design is shown in Plate 22. The dso
size stone was 9 in. and the blanket thickness was increased to 2 ft. The model
was run steady with the maximum discharge from a 2-min emptying valve
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opcration for 20-min model time (cquivalent to 1 hr and 40-min prototypc time).
After 15 min of operation, slight movement of some of the smallcr stoncs was
obscrved: however, no filter cloth was exposed. This design was considered
stable for this tvpc of operation. The cddy upstrcam from the basin tended to
concentrate with stcady flow causing higher velocities that would not occur with
normal cmpty operations.

Velocitics were measured in the lower approach with the type 11 design
outlet and the type 2 riprap design (Plate 23). The lower pool elevation was 324
and the discharge was the maximum that occurs during a 2-min cmptying valve
operation. The velocitics near the bottom between the toe of the bank ncar the
cdgce of the water surface ranged from 2.6 to 3.1 ft/scc. The velocitics measured
between the floating wall and toc of the bank were low and were around 1 ft/scc.
These velocitics were not excessive and the tvpe 2 riprap design should protect
the banks in the vicinity of the outlet.

Lower Approach Experiments with Floating Wall

Experiments were performed next to evaluate the conditions in the lower
approach with the unsteady flows that occur during lock emptyving. Scdiment
deposition tendencics, flow patterns, velocities, and hawser forcc measurcments
were evaluated for various emptying valve operations.

Sediment deposition tendencies

Qualitative tests were performed with small neutrally buoyant beads to
obscrve where they would scttle in the lower approach after emptying valve
operations. The first experiment was performed with the beads placed within the
outlct basin as shown in Photo 2. A 2-min emptying valve opcration was
performed with upper pool ¢l 342 and lower pool ¢l 324, The modcl was then
slowly drained to avoid disturbing the beads that deposited in the lower
approach. Beads were obscrved on the landside of the floating wall ncar the
upstrcam end of the wall. The beads did not appear to deposit underneath the
floating wall. The position of the beads after the model was drained is shown in
Photo 3. Deposition occurred along the toe of the slope at the upstrcam cdge of
the riprap protection and in the lower approach between the floating guide wall
and the toc of the slope.
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Photo 2.  Initial placement of beads for floating wall experiments

Photo 3.  Deposition after initial experiment with floating wall

Another experiment was performed with the beads initially placed in the

emptying valve well instead of the basin as shown in Photo 4. Most of the beads
deposited in similar locations to the previous experiment as shown in Photo 5.
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Since not all the beads were recovered from the initial experiment, the quantity of
deposition was reduced. The most likely location for the sediment to deposit near
the floating guide wall is shown in Photo 6. This arca is adjacent to the vertical
wall that exists along the sloping scction between the basin (el 286) and the lower
approach (¢l 300). A few beads were observed ncar the wall at ¢l 300 and more
deposition was obscrved at the base of the vertical transition.

Photo 5. Deposition after initial placement in emptying valve well

Chapter 3 Model Experiments and Resuits
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Photo 6. Deposition near floating wall

The beads indicated that deposition of material from the outlet should be
expected along the slope just upstream from the upstream edge of the riprap and
in the lower approach between the floating wall and the toe of the bank slope as
indicated in Photos 3 and 5. Some deposition is likely to occur under the floating
guide wall near the upstrcam end of the wall.

Velocity measurements with unsteady flow

Additional velocity measurements were made in the lowcer approach during
the unsteady conditions that occur during emptying operations. The locations
chosen for obscrvation were those where higher velocitics were observed during
the steady flow releases from the outlet. The measurements were made 1 ft off
the bottom and are shown in Plate 24. The values shown are the maximum that
occurred during the 2-min emptving valve operation. A maximum velocity of 2.8
ft/scc was measured near the top of the right bank and compares to 4.9 ft/scc
measured at this location with steady flow (Plate 23). During the unstcady
conditions, the flow docs not have time to establish a dominant pattern and
thercfore the velocitics along the bank are not as high. The upstream velocity
along the bank shown in Plate 24 is higher than the measurement downstrcam
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indicating the presence of the eddy that was also obscrved during the steady flow
measurcments. This velocity, 3.9 ft/scc. was lower than the 5 to 6 ft/scc velocitics
measured with stcady flow. These measurements indicate that the tvpe 2 riprap
design placed on the banks should remain stable for flow conditions with upper
pool ¢l 342, lower pool ¢l 324, and a 2-min emptying valve.

Hawser force experiments

Hawser forces were measured on a 3-wide by 5-long barge arrangement
moored at three locations in the lower approach. The upstream end of the barges
was located 100 ft downstrcam from the lower pintle of the landside lock for
location 1 and 200 ft downstream from the lower pintle for location 2 (Plate 25).
The barges were moored on the river wall as shown in Plate 25 for location 3.
The hawser forces were measured using the hawser ring technique described in
Hite and Crutchficld (2004). The longitudinal hawser force and both the
upstrcam and downstrcam transverse forces were measured. Time-historics of
these forces were obtained for 1-, 2-, and 3-min valve operations.

Hawser force measurements, location 1. Typical time-historics obtaincd
with a [-min valve arc shown in Plate 26. Transverse hawser forces above 0 are
thosc that would move the barges to the right side of the lower approach (looking
downstrcam) and thosc hawser forces below 0 are thosc that would move the
bargcs to the left side of the lower approach. Longitudinal hawscr forces above 0
arc thosc that would move the barges upstream and thosc below 0 would move
the barges downstream. The highest force mcasured was the upstream transverse
hawser force toward the right side of the lower approach, the middle time-history
in Platc 26, and occurred just after the emptyving valve was completcly open. The
discharge from the outlet diffuser was near maximum just after the valve was
completely open. A higher velocity oceurred on the landside of the floating guide
wall duc to the outlet discharge. This caused the water surface on the landside to
drop slightly during the initial portion of the emptying operation. The drop in
water surface drew the upstream barges toward the floating guide wall. Later in
the emptying operation after the valve opencd. the velocitics on the landside of
the floating wall began to reduce, the water surface began to rise, and the
upstrecam barges moved to the left side of the lower approach. About 3 min after
the valve operation was begun, the hawser forces were small.

Typical time-historics with 2- and 5-min emptying valve opcrations arc also
shown in Plate 26. Similar trends were obscrved with these valve operations. The
upstrcam transverse forces were the highest measured although all maximum
hawscr forces were Iess than 3 tons. A list of the maximum values of the hawscr
forces measured at location 1 is provided in Table 2 and a plot of the average
maximum hawscr forces measurced for the 1-, 2-, and 3-min cmptying valve
opcrations is shown in Plate 27. The plot shows the highest forces measured were
the upstrcam right transverse hawser force.
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Table 2

Hawser Force Measurements, Lower Approach, 400-ft Floating
Guide Wall, Location 1, 18 ft-Lift, Upper Pool el 342.0, Lower Pool
el 324.0

Hawser Force, tons
Longitudinal US Transverse DS Transverse
Valve Time (min) us DS Right Left Right Left
1.0 45 -3.3 54 53 1.6 -3.2
41 -2.9 58 -5.1 1.9 -3.2
42 -3.4 56 55 22 -3.0
Average 4.3 -3.2 5.6 5.3 1.9 3.1
2.0 27 -2.8 48 -4.5 1.9 23
25 -2.0 41 -4.7 1.2 -2.0
22 -2.0 44 -4.6 1.0 -1.5
Average 2.5 2.3 44 4.6 1.4 -1.9
5.0 1.3 -1.6 2.1 -2.6 09 -1.2
1.3 -1.7 1.9 -3.0 0.6 -1.1
1.4 -1.5 21 -2.6 0.5 -1.4
Average 1.3 -1.6 2.0 2.7 0.7 -1.2

Hawser force measurements, location 2. The upstream end of the barges
was moved 100 ft farther downstream and this position was designated location
2. The hawser force measurements were repeated at location 2. Typical time-
histories with 1-, 2-, and 5-min valve operations are shown in Plate 28. Table 3
provides the maximum values measured at location 2 and Plate 29 shows a plot
of the average maximum hawser forces. The downstream longitudinal hawser
forces were the highest forces measured with the barges moored at location 2.

Table 3

Hawser Force Measurements, Lower Approach, 400-ft Floating
Guide Wall, Location 2, 18-t Lift, Upper Pool el 342.0, Lower Pool
el 324.0

Hawser Forces (tons)
Longitudinal US Transverse DS Transverse

Valve Time (min) us DS Right Left Right Left
1.0 53 -8.5 15 -3.5 1.0 -2.3

5.6 -7.0 1.6 -2.8 1.1 -1.4

5.6 -7.2 1.3 -2.9 1.2 -1.7
Average 5.5 -7.6 1.5 -3.1 1.1 -1.8
20 4.8 -6.0 1.1 -1.9 0.9

5.0 -5.6 1.0 -1.8 1.1 -1.3

5.1 -5.6 1.1 -1.8 0.9 -1.0
Average 5.0 5.7 1.1 -1.8 1.0 -1.1
5.0 2.2 -3.1 1.6 -2.1 29 -0.6

27 -2.8 0.9 -1.5 1.2 -0.8

24 -2.6 0.6 1.2 05 -0.8
Average 24 -2.8 1.0 -1.6 1.5 -0.8

Hawser force measurements, location 3. The upstream end of the barges
remained the same longitudinal distance from the lower pintle of the landside
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lock and the entire barge group was placed on the river wall for location 3. The
hawser forces were then measured for this location. Typical time-histories with
1-, 2-, and 5-min valve operations are shown in Plate 30. Table 4 provides a list
of the maximum values measured and Plate 31 shows a plot of the average
maximum hawser forces. The forces were similar in magnitude and direction to
those measured at location 2. The downstream longitudinal hawser forces were
the highest forces measured at location 3.

Table 4
Hawser Force Measurements, Lower Approach, 400-ft Floating
Guide Wall, Location 3, 18-ft Lift, Upper Pool el 342.0, Lower Pool
el 324.0
Hawser Forces {tons)
Longitudinal US Transverse DS Transverse
Valve Time (min) Us DS Right Left Right Left
1.0 6.0 6.7 1.4 22 2.0 241
53 6.3 1.7 25 2.4 1.8
53 6.7 1.4 2.4 13 2.2
Average 5.5 6.6 1.5 2.4 1.9 -2.0
2.0 438 -4.7 1.2 1.1 1.8 1.4
51 45 1.4 1.1 2.0 14
5.1 -4.4 0.9 1.4 16 1.4
Average 5.0 4.5 1.2 -1.2 1.8 -1.3
5.0 27 22 0.8 08 0.9 -0.9
27 2.4 0.9 1.3 13 1.9
2.4 2.4 0.8 0.7 0.8 -1.0
Average 2.6 2.3 0.8 0.9 1.0 -1.3

Comparison of hawser forces with floating wall, locations 1-3.
Comparison of the average maximum hawser forces measured with the type 11
outlet design and the floating guide wall are shown in Plate 32. The highest
transverse hawser forces were measured at location 1 and the highest longitudinal
hawser forces were measured at location 2. All hawser forces measured were less

than 9 tons.

Type 5 Lower Approach

The lower guide wall design was changed from a floating wall to a 400-fi-
long solid wall design as shown in Plate 33. This modification was designated the
type 5 lower approach. The sediment deposition experiments were repeated with
the solid guide wall to qualitatively determine areas of deposition. Velocity and
hawser force measurements were also obtained for comparison with the results
from the floating guide wall experiments.
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Chapter 3

Lower Approach Experiments with Solid Wall

Sediment deposition experiments with solid guide wall

The beads were placed within the outlet basin and a 2-min ecmptying valve
operation was performed with an upper pool el of 342 and a lower pool el of 324.
The model was then slowly drained to keep the deposited beads from moving.
The position of the beads after the model was drained is shown in Photo 7.
Deposition occurred in the vicinity of the riprap protection. An eddy formed
between the solid guide wall and the bank downstream from the basin. The eddy
caused the beads to deposit in the arca downstream from the outlet near the guide
wall. This cddy was slightly stronger than observed with the floating guide wall.
Slightly more material may deposit in this arca with the solid wall although most
of the sediment deposition will probably result from spillway flows.

Photo 7. Deposition after initial experiment with solid guide wall

Velocity measurements with unsteady flow and solid guide wall

Velocity measurements were obtained in the lower approach for the 2-min
valve operation with the solid guide wall in place. The maximum velocity that
occurred at selected locations in the lower approach during an emptying
operation with a 2-min valve operation was measured. Plates 34-36 show
measurements made 1 ft off the bottom, the middepth. and 1 ft below the surface.
The velocitics in the lower approach were not excessive; however, the eddy on
the landside of the solid guide wall was slightly stronger than observed with the
floating guide wall.

Model Experiments and Results
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Hawser force experiments with solid guide wall

Hawser force measurements with solid guide wall, location 1. Hawscr
forces were measured for barges moored in the same location as the floating
guide wall (Plate 23) and the same emptying valve operations, 1, 2, and 5 min.
Typical time-historics with a [-min valve operation arc shown in Plate 37 with
the barges moored at location 1. The highest force, 7.3 tons, occurred on the left
downstream transverse hawscr at about the time the valve was completely open.
Time-historics with a 2- and 5-min cmpty valve are also shown in Plate 37. The
maximum hawser forces were less than 3 tons with the 2-min valve and were
cqual to or less than 2.5 tons with the S—min valve. Table 5 lists the maximum
valucs measured and Plate 38 providcs a plot of the average maximum hawser
forces for the solid guide wall with the barges moored at location 1.

Table §
Hawser Force Measurements, Lower Approach, 400-ft Solid Guide
Wall, Location 1, 18-ft Lift, Upper Pool el 342.0, Lower Pool el 324.0
Hawser Forces (tons)
Longitudinal US Transverse DS Transverse
Valve Time (min) uUs DS Right Left Right Left
1.0 5.7 -5.4 4.4 -4.6 6.5 73
55 48 46 -4.8 6.2 73
55 5.4 5.0 -4.8 6.3 74
Average 5.6 -5.2 4.7 4.7 6.3 7.3
2.0 42 46 4.0 3.2 48 44
42 43 38 -3.1 47 42
Average 4.2 4.5 3.9 -3.2 4.3 4.3
5.0 1.3 1.2 15 16 2.0 25
1.1 -0.8 1.2 1.3 1.6 1.9
1.0 0.7 1.2 1.2 1.9 1.9
Average 1.1 -0.9 1.3 -1.4 1.8 2.1

Hawser force measurements with solid guide wall, location 2. Typical
time-historics with a 1-, 2-, and 5-min valve operations are shown in Platc 39
with the barges moored at location 2. The left upstrcam transverse hawscr forces
were higher at location 2 than at location 1 and the highest force, 7.0 tons,
occurred on the left upstrcam transverse hawser with the 1-min valve. Table 6
provides the maximum valucs measured and Plate 40 shows a plot of the average
maximum hawscr forces for the solid guide wall with the barges moored at

location 2.
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Table 6
Hawser Force Measurements, Lower Approach, 400-ft Solid Guide
Wall, Location 2, 18-ft Lift, Upper Pool el 342.0, Lower Pool el 324.0
Hawser Forces (tons)
Longitudinal US Transverse DS Transverse
Valve Time (min) us DS Right Left Right Left
1.0 4.7 -29 6.3 -7.0 4.7 5.7
4.6 =341 6.4 -7.0 4.6 5.6
4.2 =32 6.4 6.9 47 5.7
Average 4.5 -3.1 6.4 -7.0 4.7 5.7
2.0 3.2 -3.0 47 -4.7 3.4 -3.2
33 -2.6 4.6 -4.5 3.1 -3.3
Average 33 2.8 4.7 4.6 33 3.3
5.0 1.0 -141 21 -1.8 1.5 -1.5
0.9 -1.2 1.8 1.7 1.3 -1.6
0.9 -1.2 1.8 -18 1.3 1.5
Average 0.9 -1.2 1.9 -1.8 1.4 -1.5

Hawser force measurements with solid guide wall, location 3. Typical
time-histories with a 1-, 2-, and 5-min valve operations are shown in Plate 41
with the barges moored at location 3. The longitudinal hawser forces were the
largest forces measured at location 3. The highest force, 6.6 tons, occurred on the
upstream longitudinal hawser force with the 1-min empty valve operation.

Table 7 provides the maximum values measured and Plate 42 shows a plot of the
average maximum hawser forces for the solid guide wall with the barges moored
at location 3.

Table 7
Hawser Force Measurements, Lower Approach, 400-ft Solid Guide
Wall, Location 3, 18-ft Lift, Upper Pool el 342.0, Lower Pool el 324.0
Hawser Forces (tons)
Longitudinal US Transverse DS Transverse
Valve Time (min) us DS Right Left Right Left
1.0 6.6 56 2.6 2.1 2.7 28
6.0 65 2.7 X 25 26
6.1 6.2 23 21 2.3 26
Average 6.2 6.1 2.5 2.1 2.5 2.7
2.0 48 46 2.7 15 25 16
47 2.4 2.1 17 22 15
48 46 2.8 16 2.3 15
Average ‘ 4.8 -3.9 2.5 -1.6 2.3 1.5
5.0 1.1 14 0.7 07 0.8 0.9
1.0 12 0.8 0.7 0.7 0.9
13 1.0 0.8 05 12 08
Average 1.1 1.2 0.8 0.6 0.9 0.9
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Comparison of hawser forces with solid guide wall, locations 1-3

A comparison of the average maximum hawser forces measured at the three
locations for the solid guide wall is shown in Plate 43. The transverse hawser
forces measured at location 1 with a 1-min empty valve were the largest of the
conditions tested. The transverse hawser forces were higher at location 1 and 2
compared to location 3. The location of the barges did not significantly affect the
longitudinal hawser forces.

Comparison of Hawser Forces with Floating and
Solid Guide Walls

A comparison of the hawser forces measured at location 1 with the floating
and solid guide walls is shown in Plate 44. Both the longitudinal and transverse
hawser forces were higher with the solid wall for the 1- and 2-min empty valves.
The hawser forces were similar with the 5-min empty valve. A comparison of the
hawser forces at location 2 (shown in Plate 45) indicates the transverse hawser
forces were higher with the solid wall and the longitudinal hawser forces were
slightly higher with the floating wall. At location 3 (Plate 46), both the
longitudinal and transverse forces were similar for the floating and solid guide
wall.
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4 Summary and
Recommendations

The original design outlet for the lock extension project at J. T. Myers was
evaluated and modified slightly to improve the flow patterns in the lower
approach during emptying operations. The vanes in the diffuser manifold, type 2
design outlet diffuser (shown in Plate 4), were angled downstream to direct flow
away from the right bank and an outlet basin containing two rows of baffle
blocks and an end sill was added to improve energy dissipation. A riprap
protection design, type 2 riprap design, was developed and is recommended in
the vicinity of the outlet basin to prevent scouring of the channel invert. The type
2 riprap gradation was considered adequate for the bed and banks in the vicinity
of the outlet. If a larger size gradation is easier to obtain, it will also work. A
gradual reduction in size from the larger riprap to natural material is
recommended to prevent excessive scour at the termination of the larger riprap.

Several combinations of outlet basin designs and bank geometries were
investigated in addition to floating and solid guide walls. The stilling basin for a
landside diffuser needs to be effective in energy dissipation to prevent scouring
of the bed and banks. The type 11 design outlet which consisted of two rows of
baffle blocks 4 ft high by 4.5 ft wide and a 3-ft-high sloping end sill surrounding
the basin as shown in Plate 19 is recommended. The blocks and end sill were
effective in breaking up the jets discharging from the outlet and preventing any
strong concentrated flow in the lower approach during emptying. Other outlet
designs evaluated worked satisfactory, but were considered more costly to
construct. The bank was also reshaped to help reduce the size of the eddy that
formed upstream from the outlet basin during emptying and direct the flow in the
downstream direction.

Comparative experiments were performed with a 400-ft-long floating wall
and a 400-fi-long solid wall. During emptying operations with the type 11 design
outlet, eddies formed just upstream from the outlet and between the guide wall
and the right bank. Sediment deposition experiments showed that if sediment is
discharged from the outlet, it will likely deposit in the areas where the eddies
occur. Slightly more sediment may occur with the solid guide wall since the eddy
is stronger with this design. The most likely location for sediment to deposit with
the floating wall is near the upstream end near the outlet. Sediment deposition
should not be a problem from an outlet performance standpoint. Spillway flows
will probably be the source of any sediment deposition problems. The outlet
discharge should help keep the area in the vicinity of the outlet clean and tow
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traffic should help keep excessive sediment from depositing. However, the outlet
discharges will probably not be strong enough to sweep all of the sediment out of
the area between the guide wall and right bank since this area is so large.

There was not a significant difference in the flow patterns in the lower
approach between the floating and solid guide walls. The hawser force
experiments indicated the largest difference in the average maximum hawser
forces between the floating and solid guide walls occurred with the transverse
hawser forces at location 2 although these forces were not considered excessive.
Either the floating guide wall or the solid guide wall will function as needed. The
recommended design should be based on an economic evaluation.
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