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I. ILLUSTRATION

Atomic density following two optical masks optical masks.

II. STATEMENT OF THE PROBLEM STUDIED

The problem studied in this project was a theoretical and experimental investigation of the potential application
of atom-Þeld interactions for creating nanostructures. In particular, schemes were developed that allow one to use
optical radiation having wavelength λ to produce matter wave gratings having period λ/2n where n is an integer
greater than 2. A long term goal of the project, not realized in the current funding cycle, was the deposition of
these nanostructures on a substrate. Methods for probing the density patterns with nanometer resolution were also
explored, as were applications in atom interferometry. The research effort is a combined theoretical-experimental
program, with the theory component housed at the University of Michigan and the experimental component at New
York University.
This report covers the period 7/1/00-6/30/04. The principle results are summarized below. More detail can be

found in previous annual interim progress reports and in reprints of articles published under support of this Grant.

III. SUMMARY OF IMPORTANT RESULTS

A. Theory

Several theoretical proposals were developed for creating and probing sub-λ matter wave gratings.

� A new type of pump-probe spectroscopy was reported [1] for carrying out pump-probe spectroscopy on a ground-
state Raman transition in a thermal vapor. The pump and probe Þelds each consist of a pair of optical Þelds
that drive a Raman transition. Not only do all the analogues of conventional non-linear spectroscopy exist for
such a system, but new interference effect were also found occur. Moreover the line widths involved in this
spectroscopy are much narrower than those of optical transitions, limited only by the effective decay rate of the
ground state sublevels involved in the Raman transition.

� A careful analysis of large angle beam splitters was undertaken [2]. It was found that, although such beam
splitters do separate atoms into widely separated velocity classes, the existence of more than two velocity classes
degrades any matter wave gratings that are formed by such a beam splitter. As such, the underlying period of
such beam splitters is λ/2 rather than λ/2n, as desired. Alternative methods involving interactions with two
pairs of standing wave Þelds (similar to a compound lens) increase then Þdelity of the gratings [3, 4].

� One of the most important Þndings was the possibility, in a single interaction zone, to create matter wave
gratings that are a fraction of an optical wavelength, without any restrictions imposed by excited state lifetimes
[5]. A novel Raman geometry is used in which a pair of Raman Þelds is used to drive a Raman transition. Each
Raman Þeld itself is composed of a pair of counterpropagating traveling wave Þelds. The Raman Þeld act as a
standing wave Raman Þeld and reduce the basic periodicity of the problem from λ/2 to λ/4. Moreover, by a
proper choice of Þeld polarizations, the basic periodicity for total sub-level populations can be reduced to λ/8.
In this manner one creates optical potentials having period equal to λ/8 [6]. Calculations have been completed
to show that a new type of sub-Doppler cooling also exists for this atom-Þeld geometry. An experiment is under
way to test the theory. The techniques can be extended to a multicolor Raman geometry that will allow for
further reduction of the periodicity.

� Large angle beam splitters resulting from inhomogeneous static Þelds were also investigated as a means for
scattering into a narrow momentum wave packet. [7]. The beam splitter we proposed consists of a magnetic
quadrupole and a homogeneous bias magnetic Þeld. This combination of Þelds produces a scattering potential
having a spatially homogeneous gradient near the center of the quadrupole, while outside of this region the
potential is still non-linear. For a beam of 87Rb atoms, a quadrupole size a = 1 cm, and a target grating period
λg = 100 nm, and requiring the corrections to be not larger than 10%, we found that the beam velocity u,
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the beam radius b, the half-thickness of the acceleration zone d, and the magnetic Þeld gradient B0 have to be
chosen as u ≈ 16 m/s; b ≈ 88µ; d ≈ 0.34 cm, B0 ≈ 170 G/cm.

� A large angle beam splitter based on Bragg scattering using chirped laser Þelds was also considered [8]. The
chirped Þeld sequentially brings into resonance a chain of transitions in a Bragg ladder. Calculations for a beam
having zero angular divergence indicate that the method is robust and can easily produce a 50-50 beam splitter
with high efficiency. Momentum transfers as large as 50~k can be realized with modest laser power. The angular
divergence of the beam is the critical limiting factor; however, with proper state preparation, it is still possible
to get sufficient ßux for applications.

B. Experiment

1. Higher harmonics in a magneto-optical trap

Experiments are carried out in the time domain in a magneto-optical trap (MOT). During the funding period,
sub-λ resolution of matter wave gratings was demonstrated using both optical phase and amplitude grating pulses to
excite the atoms. Off-resonant optical Þelds were used in an echo sequence to create higher harmonic matter wave
gratings [9]. Gratings having spacing λ/2 could be detected using conventional Bragg scattering, but gratings having
smaller periods do not coherently back-scatter the laser radiation. A novel three-pulse echo scheme was used to detect
gratings having period of λ/4. This was the Þrst such direct observation of gratings of this type.
Most of the work during the funding period was concentrated on amplitude rather than phase gratings. To create

an amplitude grating, an optical mask was used consisting of an optical standing wave pulse applied to a laser-cooled
atomic cloud. The frequency of the mask pulse is made resonant with the F = 3 to F 0 = 3 transition (5S1/2 to 5P3/2)
in 87Rb. The excited F 0 = 3 hyperÞne state can decay to the F = 2 ground hyperÞne state (as well as the F = 3
ground state) allowing a net loss of atoms from the initial F = 3 ground state hyperÞne level. Such a pulse can be
thought of as producing an atomic periodic structure, in that all atoms not at the nodes of the standing wave will be
pumped into the F = 2 hyperÞne level, and effectively lost.
The optical mask pulse can also be used to image a periodic atomic structure. Measurement of the total population

of atoms remaining in the F = 3 state after an optical mask pulse gives the number of atoms that were at the positions
of the standing wave nodes immediately before the pulse. (The total population can be measured by recording the
ßuorescence from a resonant traveling wave Þeld). By performing a sequence of experiments, each with a different
position of the imaging mask pulse, one can map out the atomic density distribution. Using a sequence of two masks
(one for production of the matter wave amplitude grating and one for its detection), we Þnd that density peaks having
widths of order λ/15 ≈ 50 nm were created by the optical mask [10].
If one applies two optical mask pulses separated by time T , one would expect to see atomic structure with period

λ/2n at times (n+ 1)T/n after the Þrst pulse. This is analogous to echo formation in coherent transients. We have
observed gratings with period as small as λ/10 = 78 nm in our experiments. Examples are shown in Fig. ??(a) - (c).
If we choose T to be greater than the Talbot time (which is the inverse of the recoil frequency), then quantum

effects play an important role in the resulting atomic structures. For example, with appropriate values of the pulse
separation T , we have observed structures with period λ/4 and λ/6 at times 2T after the Þrst mask pulse, as shown
in Fig. ??(d) - (e). Classically, one would only expect to see structures of period λ/2 at this time. These results
represent an observation of the Talbot-Lau effect, also illustrated by the differences in Figs. ??(b),(f). The differences
are a direct manifestation of quantum, matter-wave effects.

2. Beam Experiments

Experiments were carried out on one-dimensional transverse cooling of the atomic beam. The degree of cooling was
determined by time-of-ßight measurements of the velocity distribution. These measurements were made by imaging
the ßuorescence from the atomic beam downstream from the cooling region to get the size of the beam. The results
of these experiments indicate that signiÞcant cooling is taking place. Typical parameters are a beam velocity of
about 500 m/s, with a longitudinal spread of about 40% (full width at half max). Typical densities were about
108 atoms/cm3 at 1 meter from the source, and atomic ßuxes of about 5 × 1012 atoms/second. Although a smaller
transverse velocity spread should result in a magnetic grating free induction decay (MGFID) signal of longer duration,
no such effect was observed. We were unable to get a MGEcho signal which is one of the goals of the project.
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FIG. 1: Images of atomic density generated with the Talbot-Lau effect: (a) - (c) is the atomic density measured at varous times.
(d) and (e) shows the atomic density measured at t = 2T for different values of the recoil phase ωqT . The difference between
these curves and those of (a) are due to matter-wave interference. (f) shows a shift the position of the maxima compared to
(b) due to matter-wave interference. Open circles are data and the solid lines are Þts.

C. Miscellaneous

Several other calculations have been carried out. In collaboration with the group of M. Pinard in France, we have
shown that spin squeezing can be achieved on Raman transitions for atoms coupled to a cavity Þeld [11]. Both self
squeezing (coupling to a coherent state of the Þeld) and squeezing transfer (coupling to a squeezed state of the Þeld)
were analyzed. Moreover, we found that, if the ground state coherence is pumped via additional Þelds, the spin
squeezing that can be obtained is increased dramatically [12]. A fundamental calculation of spin squeezing for atoms
coupled to a cavity mode without any losses was completed [13]. Somewhat surprisingly, even in the limit of an
intense coherent state for the cavity Þeld, spin squeezing occurs despite the fact that spins squeezing cannot occur
for a classical Þeld. As long as the number of atoms in the cavity is of the order of the number of photons in the
Þeld, quantum aspects of the Þeld remain important. A calculation of the Goos-Hachen effect in negatively refractive
media was completed [14]. It was also shown that a proposed scheme for suppression of spontaneous emission is
fundamentally ßawed [15]. In collaboration with P. Milonni at Los Alamos, we investigated the modiÞcation of the
decay rate of an impurity atom embedded in a dielectric medium [16]. There has been some controversy concerning
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the modiÞed decay rate and we were able to resolve this problem using a microscopic approach in calculating the decay
rate. This was a fundamental calculation that should shed some light on this problem. Currently we are extending the
calculation to higher orders in the dielectric density to compare our results with "exact" polariton models. We have
also provided theoretical support for an experiment on a �dipole blockade� using Rydberg atoms, having implications
for storage of quantum information [17] With S. Malinovskaya, we have investigated methods for coherent control of
selective excitation of closely spaced molecular vibrational transitions [18, 19]. Together with Richard Brewer, PRB
wrote a chapter on Coherent Transients for the Encyclopedia of Modern Physics [20].
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