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1 Introduction

There is a great deal of current interest in the study of nonlinear propagation of light

in periodic structures (see e.g., the recent reviews [1, 2, 3] and the references therein).

The combination of the Kerr nonlinearity of the fiber and the periodic variation of

the refractive index along the length of the fiber (fiber grating) produces a rich

variety of phenomena (bistability, multistability, switching behavior, etc.) that,

together with the recent developments in grating fabrication techniques, gives to

these periodic structures a very promising potential for use as components in all-

optical communication systems.

The localized structures that emerge from the balance between the nonlinearity

and the medium periodicity, called gap solitons, exhibit very small formation lengths,

enabling nonlinear pulse compression and soliton dynamics to be observed on length

scales on the order of centimeters. But possibly the most striking feature of gap

solitons is the ability to propagate (in theory) at any speed between zero and the

speed of light in the fiber without the grating. This possibility of trapping light (gap

soliton propagation at zero speed) is currently a topic of great interest because of

its future applications in the production of all optical buffers and storing devices.

The theoretical research on light propagation in fiber gratings is based on the

analysis and numerical simulations of the so-called nonlinear coupled mode equations

(NLCME). This system of equations accounts for the effect of propagation, nonlin-

earity and the medium periodicity, and can be derived from the Maxwell-Lorentz

equations (MLE) for electromagnetic wave propagation in a dielectric medium as-

suming that the solution is a superposition of two counterpropagating (backward

and forward) fields whose envelopes are slowly modulated on space and time. In the

derivation of the NLCME, the material dispersion terms are neglected because (due

to the slow envelope description) they are small as compared with the transport

terms. But this is a singular problem and the dispersion terms can give rise to small

dispersive scales that develop in the propagation time scale. This phenomenon is not

captured in the NLCME formulation and its correct description requires to consider

small material dispersion terms.

The main purpose of this research project is to validate the widely used NLCME.

That is, to determine whether the solutions of the NLCME constitute good approx-
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imations of the solutions of the original system (i.e., the material dispersion terms

can be safely ignored) or whether the dispersion terms are essential and the NLCME

should not be used. As a secondary goal, this research project also aims to describe

(applying numerical simulation techniques to the NLCME with dispersion and to

the MLE) the solutions that appear when the NLCME are no longer applicable

because the system develops small dispersive scales.

This report is organized as follows. In the next Section we introduce our physical

model for light propagation on a fiber grating: the one dimensional MLE, and study

its basic linear light propagation characteristics. The derivation of the NLCME with

material dispersion terms from the MLE is carried out in Section 3. The simplest

uniform solutions of the NLCME, namely, the continuous wave solutions, are in-

troduced in Section 4 and its linear stability properties, including the effect of the

material dispersion, are analyzed in Section 5, where some numerical simulations

of the NLCME with small dispersion are also performed to validate the theoretical

predictions. In Section 6 we describe a family of solitary wave pulse-like solutions

of the NLCME known as Gap Solitons, and in Section 7 we study its stability prop-

erties theoretically (defining and computing the Evans function) and numerically

(performing some numerical simulations of the NLCME). Numerical simulations of

the MLE are used in Section 8 to carry out a definitive check of the stability results

and of the validity of the envelope equations with dispersion. And finally, the main

results of this report are summarized in Section 9 and the details of the numerical

methods used to integrate the NLCME with dispersion and the MLE are given in

the Appendixes A and B.
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2 Maxwell-Lorentz equations

We describe the propagation of light in a fiber with a periodic grating and a cubic

nonlinearity using the one-dimensional Maxwell’s equations [4, 5] for the electro-

magnetic fields evolution together with an anharmonic Lorentz oscillator model for

the polarization (see e.g. [6, 7] and references therein),

∂B

∂t
=
∂E

∂x
, (1)

µ0
∂D

∂t
=
∂B

∂x
, (2)

D = ε0E + P, (3)

Ω−2
p

∂2P

∂t2
+ (1− 2∆n cos(2πx/λg))P − γP 3 = ε0χE. (4)

In the system above, the electric field E, the magnetic field B, the dielectric dis-

placement D and the polarization P are scalar fields that depend on the spatial

variable x and on time t. µ0 and ε0 denote, respectively, the permeability and the

permittivity of the vacuum. The characteristic frequency Ωp accounts for the non

instantaneous polarization response of the media, ∆n and λg represent the strength

and the period of the grating, that is, the strength and the period of the spatial

periodic variation of the refractive index of the fiber (∆n measures the size of the

nonuniformities of the refraction index relative to its mean value n0, see Fig. 1), χ

is the linear polarizability of the medium (n2
0 = 1 + χ) and γ > 0 is the coefficient

of the nonlinear Kerr effect.

�

��� ����	� 
��

Figure 1: One dimensional fiber with periodic variation of the refractive index.

In order to simplify subsequent calculations it is convenient to make the system
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(1)-(4) non dimensional using the following rescalings:

B =
√

µ0/(ε0γ)B̃, D = (1/
√

γ)D̃, E = (1/
√

(ε0γ) ˜)E, P = (1/
√
γ)P̃ ,

x = (λg/π)x̃, t = (λg/cπ)t̃,

here c2 = 1/(ε0µ0) is the vacuum speed of light. After dropping tildes, the nondi-

mensional Maxwell-Lorentz equations (MLE hereafter) can be written as

∂B

∂t
=
∂E

∂x
, (5)

∂D

∂t
=
∂B

∂x
, (6)

D = E + P, (7)

ω−2
p

∂2P

∂t2
+ (1− 2∆n cos(2x))P − P 3 = (n2

0 − 1)E, (8)

where the dimensionless finite time polarization response frequency is now ω2
p =

Ω2
pλ

2
g/(c

2π2). Notice that we have rescaled the spatial variable x to make wavenum-

ber of the grating equal to 2 (see eq. (8)). As we will see below, the reason for

this choice is that the wavetrains that resonate with the grating and develop along

the fiber will then have wavenumber 1. We have also used the rescaling to absorb

the vacuum properties ε0 and µ0 (the vacuum speed of light is now equal to 1 in

the rescaled variables) and the nonlinear coefficient γ. As a result, the MLE above

depend only on three dimensionless parameters: ω2
p, ∆n and n2

0.

We are interested in the description of the solutions of the MLE in the physically

relevant regime of small grating strength (i.e., near uniform refractive index fiber)

and small nonlinear Kerr effect, that is,

|∆n| � 1 and |E|, |B|, |D|, |P | � 1.

To achieve this goal we need to understand first the linear light propagation charac-

teristics in a uniform fiber. The next step, the weakly nonlinear analysis of the light

propagation in a nearly uniform fiber that is performed in the next section, is just

a small perturbation of this basic configuration of uniform fiber without nonlinear

effects.

This linear analysis is carried out by looking for uniform wavetrain solutions with
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spatial wavenumber k and frequency ωk,























E(x, t)

B(x, t)

D(x, t)

P (x, t)























=























Ek
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Pk























eikx+iωkt + c.c., (9)

in the linearized version of the MLE without grating ∆n = 0 (here c.c. stands for

the complex conjugate). This produces the following algebraic eigenvalue problem

ωkBk = kEk

ωkDk = kBk

Dk = Ek + Pk

(1− ωk
2/ω2

p)Pk = χEk

that has nontrivial solutions if and only if ωk satisfies the following fourth order

polynomial equation,

ω4
k − ω2

k(k
2 + ω2

pn
2
0) + ω2

pk
2 = 0, (10)

which, for n2
0 > 1 [4, 5, 8], has four real roots of the form

ωk = ±
√

(k2 + ω2
pn

2
0)/2±

√

(k2 + ω2
pn

2
0)

2/4− ω2
pk

2, (11)

with associated eigenvectors,










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
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
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
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
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
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




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kωk
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


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
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
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(12)

The four branches of the dispersion relation (11) are plotted in Fig. 2. The

k → −k symmetry of ωk comes from the invariance of the MLE without grating

(∆n = 0) under spatial reflections x → −x, and the ωk → −ωk symmetry is due

to the fact that the MLE are also invariant under reflection in time t → −t (time

reversal symmetry). For every wavenumber k there are four possible propagative

wavetrains of the form given in eq. (9), and the corresponding wavetrains with
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wavenumbers −k are the complex conjugates.


������
���

�

��� ���

���
Figure 2: Sketch of the dispersion relation (11).

It is interesting to notice that the two branches of ωk that remain in between +k

and −k correspond to wavetrains with polarization in phase with the electric field,

i.e., k2 − ω2
k > 0 in (12), while for the other two branches the fields are in opposite

phase. There are also two very different behaviors for large wavenumbers: one is

dominated by the finite time polarization response of the medium, ωk → ±ωp as

k → ±∞, and the other, ωk → ±k as k → ±∞, corresponds to propagation like in

the vacuum, without polarization effects.
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3 Envelope equation description

In this section we derive, from the MLE (5)-(8), the envelope equations that de-

scribe the weakly nonlinear propagation of light wavepackets in a fiber with periodic

variation of the refractive index.

The small nonuniformities of the refractive index, ∆n� 1, and the effect of the

small nonlinearity, |B|, |D|, |P |, |E| � 1, can be accounted for by allowing the linear

wavetrains obtained in the previous section (9) to be slowly modulated in space and

time






















E(x, t)

B(x, t)

D(x, t)

P (x, t)























=























Ek

Bk

Dk

Pk























A(x, t) eikx+iωkt + c.c. + . . . . (13)

Here A is the small amplitude of the wavetrain whose temporal and spatial varia-

tions take place in a much longer scale than that of the basic wavetrain (which is

assumed to be of order one, i.e., k ∼ 1 and ωk ∼ 1). The expression above represents

a wavepacket composed of modes with wavenumbers in a narrow band around k and

frequencies near ωk. Using standard multiple scales techniques, a single amplitude

equation (or envelope equation) can be obtained for the slow evolution of the ampli-

tude of the envelope of the wavetrain A(x, t). This kind of derivation for nonlinear

optics problems can be found in, e.g. [6, 7, 8], and in the review [9] for more general

pattern forming phenomena in physical systems of different nature. The method

used to derive the amplitude equations can be summarized as follows: insert the

expansion (13) into the MLE (5)-(8) and force the resonant terms to cancel at every

order to ensure that the solution remain bounded in the short time scale; the desired

amplitude equation is precisely this cancellation condition.

If we take (13) into the MLE (5)-(8), then the first order contribution of the

grating term is proportional to

2∆n cos(2x)(Aeikx+iωkt + c.c) = ∆n(ei2x + e−i2x)(Aeikx+iωkt + c.c). (14)

The expression above is composed of wavepackets with frequencies ±ωk and wavenum-

bers ±k ± 2, and gives rise to resonant terms (i.e., wavetrains that satisfy the dis-

persion relation (11)) only for k = ±1 (see Fig. 2). Therefore, as anticipated in the
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previous section, only those wavepackets (13) with wavenumber and frequency

k = ±1 and ωk = ω =

√

(1 + ω2
pn

2
0)/2±

√

(1 + ω2
pn

2
0)

2/4− ω2
p (15)

are affected by the grating. The effect of the grating manifests itself as a spatial

resonance that couples both wavepackets: the wavepacket with k = 1 produces a

resonant term with wavenumber k = −1 and the same frequency and vice versa

(see eq. (14)). Wavepackets with wavenumber k 6= ±1 do not feel the grating in

first approximation, they propagate like in a uniform fiber and the weakly nonlin-

ear evolution of its amplitude is then given by the standard nonlinear Schrödinger

equation, see e.g. [4, 5, 7, 8].

In the remaining part of this section we derive the amplitude equations for the

weakly nonlinear evolution of two resonantly interacting wavepackets with wavenum-

bers close to k = ±1.

We first eliminate the dielectric displacement D and the magnetic field B from the

MLE (5)-(8), and rewrite them as a system of two second order partial differential

equations for the polarization P and the electric field E,

∂2(E + P )

∂t2
=
∂2E

∂x2
, (16)

∂2P

∂t2
= −ω2

p(1− 2∆n cos(2x))P + ω2
p(n

2
0 − 1)E + ω2

pP
3. (17)

And we then look for solutions of the system above that are composed, at first order,

of two counterpropagating, slowly modulated wavetrains with wavenumbers k = ±1

and frequency ω (15)

{

E(x, t)

P (x, t)

}

= V0(A
+(x, t)eix+iωt + A−(x, t)e−ix+iωt) + c.c. + . . . , (18)

where, according to (12), the eigenvector V0 is given by

V0 =

{

ω2

1− ω2

}

,
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and the weakly nonlinear level of this approach requires essentially that

· · · � |A±
xx| � |A±

x | � |A±| � 1, · · · � |A±
t | � |A±| � 1 and ∆n� 1, (19)

that is, small amplitudes that depend slowly on space and time and small grating

strength.

The appropriate expansions for the solution of eqs. (16)-(17) and the amplitude

equations in powers of the small quantities ∆n, A±, A±
x , A±

xx,. . .(which will be treated

here as independent parameters) are thus of the form

{

E(x, t)

P (x, t)

}

= V0(A
+eix+iωt + A−e−ix+iωt) + c.c. +

+v+
1 A

+
x + v−1 A

−
x + v+

2 A
+
xx + v−2 A

−
xx + . . . , (20)

A+
t = α+

0 A
+ + α+

1 A
+
x + α+

2 A
+
xx + . . . , (21)

A−
t = α−

0 A
− + α−

1 A
−
x + α−

2 A
−
xx + . . . . (22)

Inserting the expansions above into eqs. (16)-(17), a linear nonhomogeneous system

is obtained for the contribution of each order. For the resonant terms, i.e., those

proportional to e±ix±iωt, a condition must be satisfied to ensure that there are not

secular terms in the short scale. In other words, the linear problems corresponding

to the resonant terms are singular and hence a solvability condition must be satisfied

by the nonhomogeneous part; these solvability conditions give the coefficients of the

amplitude equations.

Notice that only the resonant terms contribute to the amplitude equations and

only the amplitude equation for A+ has to be calculated because the corresponding

equation for A− can be obtained by simply applying the symmetry

x→ −x A+ ←→ A−, (23)

which comes from the spatial reflection symmetry of the original problem (5)-(8).

The linear terms in the amplitude equations can be easily anticipated because

they correspond to the Taylor expansion of the dispersion relation (11) at k = 1 (see

e.g. [9]),

i(ωk|k=1 − ω)A+ +
dωk

dk

∣

∣

∣

∣

k=1

A+
x − i

1

2

d2ωk

dk2

∣

∣

∣

∣

k=1

A+
xx + . . . .
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The first coefficient vanishes (see eq. (15)) and the second and third coefficients are,

respectively, the group velocity and the material dispersion, and, after making use

of eq. (10), can be written as

vg =
dωk

dk

∣

∣

∣

∣

k=1

=
ω(ω2 − ω2

p)

ω4 − ω2
p

, (24)

id = −i1
2

d2ωk

dk2

∣

∣

∣

∣

k=1

= −i1
2

ω3(ω2 − 1)(ω2 − ω2
p)(3ω

2
p + ω4)

(ω4 − ω2
p)

3
. (25)

The first order, resonant contributions of the grating to the expansion of the

solution (18) and to the amplitude equation (21) are of the form

W∆nA−eix+iωt and w∆nA−,

where the two component vector W is given by the following linear, singular non-

homogeneous problem

[

ω2 − 1 ω2

(n2
0 − 1)ω2

p ω2 − ω2
p

]

W = −ω2
p

[

0 0

0 1

]

V0 + 2iωw

[

1 1

0 1

]

V0.

This system can be solved only if the right hand side is orthogonal to the solution

of the adjoint problem

V a
0 =

{

ω2
p − ω2

ω2

}

.

This solvability condition gives the value of the coefficient of the amplitude equation

w = i
ω(1− ω2)

2(ω4 − ω2
p)
ω2

p. (26)

The first order contributions of the nonlinear term,

U1A
+|A+|2eix+iωt, U2A

+|A−|2eix+iωt and u1A
+|A+|2, u2A

+|A−|2,

are computed similarly. The following linear problems are obtained for the vectors

10



U1 and U2

[

ω2 − 1 ω2

(n2
0 − 1)ω2

p ω2 − ω2
p

]

U1 = −3ω2
p

[

0

(1− ω2)3

]

+ 2iωu1

[

1 1

0 1

]

V0,

[

ω2 − 1 ω2

(n2
0 − 1)ω2

p ω2 − ω2
p

]

U2 = −6ω2
p

[

0

(1− ω2)3

]

+ 2iωu2

[

1 1

0 1

]

V0,

and, after applying the solvability condition, the resulting amplitude equation coef-

ficients are given by

u1 = i
3ω(1− ω2)3

2(ω4 − ω2
p)
ω2

p and u2 = i
3ω(1− ω2)3

(ω4 − ω2
p)

ω2
p. (27)

Collecting the coefficients above (24)-(27) and applying the spatial reflection sym-

metry (23) the amplitude equations can be finally written as

A+
t = vgA

+
x + idA+

xx + w∆nA− + A+(u1|A+|2 + u2|A−|2) + . . . , (28)

A−
t = −vgA

−
x + idA−

xx + w∆nA+ + A−(u1|A−|2 + u2|A+|2) + . . . . (29)

Notice that the grating and nonlinear coefficients (26),(27) are purely imaginary.

This result could have been anticipated without any calculations because the am-

plitude equations have to be invariant under the transformation

t→ −t A± → A∓, (30)

that comes from the time reversal (t→ −t) invariance of the MLE (16),(17). Also,

the fact that the only nonlinearity in the MLE is cubic forces the nonlinear coeffi-

cients (27) to verify

u2 = 2u1.

We will consider the simplest possible geometrical configuration: propagation of

light in a fiber ring with length L � 1. The spatial periodicity condition for the

electric field and the polarization implies that the boundary conditions for A+ and

A− are (see eq. (18))

A+(x+ L)eiθ = A+(x, t), A−(x + L)e−iθ = A−(x, t). (31)

11



Here θ = L (mod2π) measures the mismatch between the natural wavelength of the

wavepackets (=2π) and the period of the domain, but we will restrict our analysis to

the particular case θ = 0 (i.e., ring length equals to an integer multiple of the basic

period of the wavepackets) to reduce the number of parameters of the problem.

There are two possible choices for ω (ω±) depending on the sign selected in (15),

see Fig. 3. As mentioned in the previous section, these two possibilities correspond to

a configuration with the electric field and the polarization in phase (for ω = ω−) and

in opposite phase (for ω = ω+). The group velocity (24) is positive in both cases (it

is the slope of the curve ωk at k = 1 in Fig. 3) but the sign of the material dispersion

coefficient d (25), which is related to the curvature of the curve ωk in Fig. 3, changes.

The nonlinear and grating terms have imaginary parts that are always negative; see

eqs. (26) and (27) and Fig. 3, and recall that, using the dispersion relation (10) for

k = 1, the denominator can be written as ω4 − ω2
p = ω2[(ω2 − 1) + (ω2 − ω2

pn
2
0)].

 �!�"�#

$

%�&
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)
*,+
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02143

Figure 3: Detail of the dispersion relation (11) with the two frequencies ω± for k = 1.

In order to make the nonlinear and grating coefficients positive, we will work with

the complex conjugates of the amplitudes and, to absorb some of the parameters of

the problem, we will also perform the following rescalings

x = Lx̃, t = (L/vg)t̃, A± =
√

vg/(L|u2|)Ã±, (32)

12



that, after dropping tildes, yield the scaled equations

A+
t = A+

x + iεA+
xx + iκA− + iA+(σ|A+|2 + |A−|2), (33)

A−
t = −A−

x + iεA−
xx + iκA+ + iA−(σ|A−|2 + |A+|2), (34)

A±(x+ 1, t) = A±(x, t), (35)

where ε = −d/(Lvg) � 1 is positive (negative) for ω = ω+(ω = ω−), the scaled

grating strength κ = ∆nL|w|/vg ∼ 1 is always positive, and the nonlinear coefficient

σ = 1
2
.

If we neglect the material dispersion terms (i.e., set ε = 0) in the system above

then the so-called nonlinear coupled mode equations (NLCME) are obtained,

A+
t − A+

x = iκA− + iA+(σ|A+|2 + |A−|2), (36)

A−
t + A−

x = iκA+ + iA−(σ|A−|2 + |A+|2), (37)

A±(x+ 1, t) = A±(x, t), (38)

Equations (36)-(37) represent a balance of the transport at the group velocity, the

effect of the grating and the Kerr nonlinearity. This hyperbolic system and its more

remarkable solutions have been widely studied theoretically and numerically, see e.g.

[10, 11, 2, 6, 12, 13, 15, 16, 17, 18, 19, 20, 14]. Also, some interesting generalizations

of the NLCME have been recently analyzed, including dual core fibers and quadratic

nonlinearities [3], stimulated Brillouin scattering [21] and nonlinear effects in the

grating strength [22, 23]. And similar hyperbolic systems have been used for the

description of Bose-Einstein condensates [24] and spontaneous Hopf bifurcations in

dissipative pattern forming systems [25, 26, 27].

The purpose of this research project is to study the effect of the addition of small

dispersive terms to the solutions of the NLCME, that is, to analyze the system (33)-

(35) in the limit ε → 0. There are some recent papers [28, 29, 30] that study the

NLCME with dispersive terms but they do not cover the physically relevant regime:

small dispersion coefficient.

The small dispersive terms of the system (33)-(35) constitute a singular pertur-

bation of the NLCME and introduce a new small dispersive scale ld ∼
√

|ε| � 1.

The solutions of the NLCME are approximated solutions (up to O(ε) errors) of the

system with small dispersion (33)-(35). Our goal is to determine which solutions of

13



the NLCME remain stable in the system with small dispersion and which ones are

unstable against perturbations containing small dispersive scales. For the solutions

that develop dispersive scales the dynamics predicted by the NLCME is not correct

and the complete system with dispersion must be integrated. Similar analyses can

be found in [27] in the context of the oscillatory instability in dissipative systems,

and in [31] for the onset of the Faraday instability in a nearly conservative system.

The next sections are dedicated to the study the effect of the small dispersion

in a well known family of solutions of the NLCME, namely, the continuous wave

solutions.
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4 Continuous wave solutions

The simplest solutions of the NLCME (36)-(38) are the so-called continuous wave

fields (CW) that correspond to amplitudes with steady, uniform modulus (see [17]

and [20]). These solutions are of the form

A+ = A+
cw = ρ cos θ eiαt+imx, (39)

A− = A−
cw = ρ sin θ eiαt+imx, (40)

where ρ ≥ 0 and θ ∈ [−π
2
, π

2
], and the frequency and wavenumber of the amplitudes

are given by

α =
κ

sin 2θ
+
σ + 1

2
ρ2, (41)

m = (
κ

sin 2θ
− σ − 1

2
ρ2) cos 2θ. (42)

The corresponding physical fields (see eq. (18)) are the superposition of two uniform

counterpropagating wavetrains, and m and α represent, respectively, small correc-

tions to the basic wavetrains wavenumber and frequency. To be more precise, the

resulting wavenumbers and frequencies of the wavetrains in eq. (18) are 1± m
L

and

ω+ α
L
vg, with L� 1. The parameter ρ represents the total power propagating along

the fiber,

ρ2 = |A+
cw|2 + |A−

cw|2,

and θ measures the ratio between the two wavetrains. For θ = ± π
4

both amplitudes

have the same size and the physical fields take the form of a standing wave, while

for θ → 0 and θ → ±π
2

one of the amplitudes vanishes and the pattern inside the

fiber is a pure travelling wave.

In the linear limit of small light intensity (ρ = 0) the relation between the CW

wavenumber, m, and frequency, α, is given by

m2 = α2(1− κ2

α2
),

which is plotted in Fig. 4. It is clear form this figure that the main effect of

the grating in the linear light propagation characteristics (discussed at the end of

Section 2, see Fig. 2) is to open a frequency gap of size 2κ, centered at the resonant
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point (m,α) = (0, 0), i.e., (k, ωk) = (1, ω) in terms of the original variables (9),

for which there is no possible propagation. This opening of a “photonic band gap”

of excluded frequencies is a typical resonance effect in wave propagation problems

in linear periodic media. For the linear modes with wavenumbers near m = 0

(θ close to ±π
4

in eqs. (41) and (42), see Fig. 4) the reflection produced by the

grating is maximum and when we move away from the resonance point (θ → 0 and

θ → ±π
2
) the effect of the grating is gradually reduced and the linear propagation

characteristics of bare fiber (α = ±m, in our scaled variables) are recovered.

5
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Figure 4: Linear light propagation characteristics in a fiber grating showing the frequency gap.

As the power is increased, ρ > 0, the effect of the nonlinearity of the fiber comes

into play and the relation between the frequency and the wavenumber of the CW

becomes more complicated,

m2 = (α− σρ2)2(1− κ2

(α− (1+σ
2

)ρ2)2
).

The equation above is a fourth order polynomial equation in α and it does not have

real solutions if

|α− (
1 + σ

2
)ρ2| ≤ κ,

hence the frequency gap remains of size 2κ and it is just shifted upwards by the

nonlinear effects. The structure of the CW is essentially similar to that of the linear
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case, i.e., there are two CW with for every wavenumber m, if the power is below the

critical value

ρc =

√

2κ

|1− σ| ,

see Fig. 5a, while for ρ > ρc the nonlinear distortion becomes more important and

a region of higher multiplicity of CW solutions (up to 4) develops near m = 0 (see

Fig. 5b).

c

d

e

f

gih j�k

Figure 5: α−m plot of the CW with constant power ρ for a) ρ < ρc and b) ρ > ρc (σ = 1

2
).

We conclude the description of the CW introducing the representation of this

family of solutions in the (θ, ρ2) plane, shown in Fig. 6. This is a convenient way

to represent the CW because each point on the (θ, ρ2) plane corresponds to a single

CW and vice versa, and there are not multiple solutions. In Fig. 6, white (shaded)

regions correspond to positive (negative) wavenumber, and the thick lines are the

m = 0 curves, that are given by, see (42),

ρ2 = ρ2
× = − 2κ

(1− σ) sin(2θ)
and θ = ±π

4
. (43)

The CW inside the region ρ2 > ρ2
× in Fig. 6 correspond to those that lie along the

loop that appears for ρ > ρc in the α −m plots of the CW, see Fig. 5b. Constant

m (m 6= 0) lines are plotted in Fig. 6 as thin lines with arrows indicating the m

growing direction (recall that m→ ±∞ for θ → 0 and θ → ±π
2
, see eq. (42)). Note

that the only allowed values of the wavenumber m are those compatible with the
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periodicity boundary conditions (38), i.e., those of the form

m = 2πn, with n ∈ Z.

Figure 6: The (θ, ρ2) representation of the CW (σ = 1

2
).

It is interesting to notice also that this (θ, ρ2) representation is somewhat redun-

dant because the CW corresponding to θ and that corresponding to ± π
2
− θ are the

same after a spatial reflection (23). This results in the symmetry around θ = ± π
4

that can be appreciated in Fig. 6.
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5 Stability of the CW

The linear stability characteristics of the family of continuous wave (CW) solutions

(39)-(40) are obtained in this section. This is performed in two steps: we will first

study the stability of the CW against perturbations with wavenumber of order unity

(this completes the analysis presented in [17]), and we will then use the NLCME

with small dispersion terms (33)-(35) to compute the stability of the perturbations

that contain small dispersive scales.

The evolution of the infinitesimal perturbations of the CW, defined by

A+ = A+
cw(1 + a+), A− = A−

cw(1 + a−), with |a±| � 1,

is given by the linearized version of equations (33)-(35)

a+
t − a+

x = iκ(a−− a+) tan θ+iσρ2 cos2 θ(a++ a+)+iρ2 sin2 θ(a−+ a−)+iεa+
xx,

a−t + a−x = iκ(a+− a−)/ tan θ+iσρ2 sin2 θ(a−+ a−)+iρ2 cos2 θ(a++ a+)+iεa−xx,

a±(x+ 1, t) = a±(x, t).

This linear system is solved via the Fourier expansion

(a+, a−) =
∞

∑

k=−∞

(a+
k (t), a−k (t)) ei2πkx,

where k represents the spatial wavenumber of the perturbation and the coefficients

a±k satisfy the following system of ordinary differential equations

da+
k

dt
= i(2πk)a+

k +iκ(a−k − a+
k ) tan θ+iσρ2 cos2 θ(a+

k + a+
−k)

+iρ2 sin2 θ(a−k + a−−k)− iε(2πk)2a+
k , (44)

da−k
dt

= −i(2πk)a−k +iκ(a+
k − a−k )/ tan θ+iσρ2 sin2 θ(a−k + a−−k)

+iρ2 cos2 θ(a+
k + a+

−k)− iε(2πk)2a−k . (45)

The small parameter ε in the system above allows us to distinguish between two

essentially different types of perturbations that are studied separately: perturbations

with (k ∼ (1/
√

|ε|)� 1) and without (k ∼ 1) small dispersive scales.
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5.1 Perturbations with k ∼ 1 wavenumber

In this case the dispersive terms in eqs. (44)-(45) are small and can be neglected.

The resulting equations together with those corresponding to a±−k form a quartet

that is uncoupled from the equations for the other wavenumbers. If we look for

solutions of this quartet proportional to eΩt, the following fourth order polynomial

equation for Ω is obtained

(Ω2 + (2πk)2)2 + 2κ2(Ω2 + (2πk)2) + 4κρ2 tan θ

1 + tan2 θ
((2πk)2(1 + σ) + Ω2(1− σ))

+κ2 tan2 θ(Ω + i(2πk))2 +
κ2

tan2 θ
(Ω− i(2πk))2 = 0,

that can be turn into a real coefficient polynomial equation by means of the change

of variable Ω = iω

(ω2 − (2πk)2)2 − 2κ2(ω2 − (2πk)2) + 4κρ2 tan θ

1 + tan2 θ
((2πk)2(1 + σ)− ω2(1− σ))

−κ2 tan2 θ(ω + (2πk))2 − κ2

tan2 θ
(ω − (2πk))2 = 0. (46)

For the particular case of uniform perturbations, k = 0, the solutions of (46) can

be calculated explicitly

ω = 0 (double) and

ω = ±
√

4κ2

sin2(2θ)
+ 2κρ2(1− σ) sin(2θ),

and thus we have instability, i.e., Ω with positive real part, when

ρ2 > ρ2
0 = − 2κ

(1− σ) sin3(2θ)
. (47)

This instability region lies inside the higher multiplicity region ρ2 > ρ2
×, see eq.

(43), and is represented in Fig. 7. The condition above states that the CW that

correspond to the upper part of the loop represented in Fig. 5b are unstable. This

can be easily seen from expression (42): the vertical slope points in the α versus m

curve in Fig. 5b are given by the condition
∂m

∂θ
= 0 that is equivalent to ρ2 = ρ2

0.

In the limit of large wavenumbers, k → ±∞, the solutions of eq. (46) can be
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expanded as

ω = ω0 + ω1 + . . . , with |ω0| � |ω1| � . . . .

The first order term ω0 ∼ k � 1 satisfies the equation

(ω2
0 − (2πk)2)2 = 0,

whose solutions are of the form ω0=±2πk and correspond to purely imaginary values

of Ω. In order to determine the stability of the CW we have to compute the next

order correction ω1 ∼ 1 that is given by

ω2
1 = κ2 tan±2 θ − 2σκρ2 tan θ

1 + tan2 θ
.

The CW are then unstable if the imaginary part of ω1 is nonzero, and this occurs

inside the region defined by the conditions

ρ2 > ρ2
∞ =

κ tan±2 θ

σ sin(2θ)
, (48)

that is represented in Fig. 7. Notice that, for the CW in this region, all perturbations

with wavenumber above a certain threshold are unstable. This instability affects only

the upper branch of CW in Fig. 5a (θ > 0) and if the power on the fiber is such

that ρ2 > k/σ then all CW along this branch are unstable.

The stability analysis of the CW is completed with the determination of the

unstable perturbations with finite nonzero wavenumber. These perturbations cor-

respond to complex conjugate pairs of roots (with nonzero imaginary part) in eq.

(46),

ω = a± ib (b 6= 0) =⇒ Ω = ±b + ia unstable.

This task can be somewhat simplified by taking into account the invariance of eq.

(46) under the transformations

(ω, k)→ (−ω,−k) and (ω, tan θ)→ (−ω, 1/ tan θ)

that allows us to restrict the search to the parameter range

k > 0 and θ ∈ [−π
4
,
π

4
].
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Figure 7: Stability properties of the CW for σ = 1

2
(shading indicates instability). Thin solid lines

correspond to k̃1 = 0.25 + 0.25n, with n = 0, 1, 2, . . . . For a given value of κ, the CW above the
line k̃1 = 2π/κ are unstable.

Furthermore, if we use the scaled variables

ω̃ = ω/κ, k̃ = (2πk)/κ and ρ̃2 = ρ2/κ, (49)

then the strength of the grating, κ > 0, can be absorbed and eq. (46) can be

rewritten as

(ω̃2 − k̃2)2 − 2(ω̃2 − k̃2) + 4ρ̃2 tan θ

1 + tan2 θ
(k̃2(1 + σ)− ω̃2(1− σ))

− tan2 θ(ω̃ + k̃)2 − 1

tan2 θ
(ω̃ − k̃)2 = 0.
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The onset of complex roots takes place when both the equation above and its

derivative with respect to ω̃ vanish. From these two equations the values of θ and ρ̃2

are numerically computed for any given values of ω̃ and k̃, and the following results

are obtained:

• If θ > 0 then there are no more instabilities apart from the one already obtained

in the limit k → ±∞ (48), see Fig. 7.

• For negative θ and for each value of ρ̃2 = ρ2/κ there is a critical scaled wavenum-

ber k̃1 such that the perturbations with k̃ < k̃1 are unstable and those with

k̃ > k̃1 are stable (the curves of constant k̃1 value are plotted as thin solid lines

in Fig. 7). A CW will be then unstable if the perturbation mode with lowest

wavenumber (k = 2π) is unstable, that is, if

2π

κ
< k̃1, (50)

see (49). Note that the previous instability boundaries (47) and (48) depend

only on the combination of parameters ρ2/κ, while the new instability defined

by the condition above depends also on κ; for a given value of κ, all the CW

above the line k̃1 = 2π/κ are unstable, see Fig. 7.

• The CW near the ρ2 = ρ2
0 line present a small interval of stable scaled wavenum-

bers k̃ ∈ [0, k̃2], but this does not modify the instability region defined above

because, as it has been checked numerically, k̃2 remains always below k̃1/2.

Therefore, when we enter the region defined by condition (50) the CW become

unstable against perturbations with wavenumber k = ±1, that is, with one single

wavelength along the fiber. The lines of constant value of k̃1 mark another instability

limit for the CW, these lines move towards higher values ρ2/κ as k̃1 increases (see

Fig.7) and they enter the higher multiplicity region ρ2 > ρ2
×, see eq. (43), at the

critical value k̃1c = 2
√

(1 + σ)/(1− σ).

We can summarize the results on this section as follows. The linear stability of the

CW (without considering dispersion effects) is determined by the three conditions

given by eqs. (47),(48) and (50), and, depending on the strength of the grating κ,

we can have two different configurations that are sketched in Figs. 8 and 9. The CW

with positive θ, i.e., those on the upper branch of the α−m representation in Fig. 5,
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are always destabilized via the high wavenumber instability (48). While for negative

θ the situation is more complicated: if κ > κc = 2π/k̃1c = π
√

(1− σ)/(1 + σ) then

the finite wavenumber instability (50) dominates (Fig. 8), but for κ < κc the zero

wavenumber instability (47) is also present and destabilizes the CW with θ near − π
4
,

see Fig. 9. Notice that for large values of the power in the grating ρ2 all the CW

are unstable and that, as the power is increased the first CW to become unstable

are those that are close to pure TW, that is, those with θ near 0 or ±π/2.
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Figure 8: Stability properties of the CW for σ = 1

2
and κ > κc (shading indicates instability)

together with the corresponding α − m plots (see Fig. 5) for several representative values of ρ2

(solid and dashed lines indicate stable and unstable CW, resp.).

5.2 Perturbations with small dispersive scales

Figs. 8 and 9 summarize the stability properties of the CW in the context of the

NLCME (36)-(38), that is, without small dispersion terms (ε = 0 in eqs. (33)-

(35)). In the limit ε → 0, the effect of the dispersion terms on the stability of

the CW amounts to just a small correction of the results obtained in the previous

section (ε = 0) for perturbations with wavenumber k ∼ 1. This is not true for the

perturbations with wavenumber on the dispersive scale, i.e. |k| ∼ 1/
√

|ε| � 1 (see
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Figure 9: Stability properties of the CW for σ = 1

2
and κ < κc (shading indicates instability)

together with the corresponding α − m plots (see Fig. 5) for several representative values of ρ2

(solid and dashed lines indicate stable and unstable CW, resp.).

eqs. (44)-(45)). For these perturbations the dispersive terms must be retained and

their stability characteristics can be calculated using multiple scales techniques.

To this end we define the scaled wavenumber K = (2πk)
√

|ε| ∼ 1 and expand

the solution of eqs. (44)-(45) in the form

a+
K = a+

K0(t, T ) +
√

|ε| a+
K1(t, T ) + · · · , a−K = a−K0(t, T ) +

√

|ε| a−K1(t, T ) + · · · ,

where T = t/
√

|ε|. At first order we obtain

da+
K0

dT
− iKa+

K0 = 0,

da−K0

dT
+ iKa−K0 = 0,

whose general solution is given by

(a+
K0, a

−
K0) = (A+

K0(t)e
iKT , A−

K0(t)e
−iKT ).

Thus, in the fast time scale T , the group velocity term dominates and these short
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wave, dispersive perturbations simply travel in opposite directions. At the next

order we obtain

da+
K1

dT
− iKa+

K1 = [−dA
+
K0

dt
− i(κ tan θ +

ε

|ε|K
2)A+

K0 + iσρ2 cos2 θ(A+
K0 + A+

−K0)]e
iKT

+[iκ tan θA−
K0 + iρ2 sin2 θ(A−

K0 + A−
−K0)]e

−iKT ,

da−K1

dT
+ iKa−K1 = [−dA

−
K0

dt
− i(κ/ tan θ +

ε

|ε|K
2)A−

K0 + iσρ2 sin2 θ(A−
K0 + A−

−K0)]e
−iKT

+[iκ/ tan θA+
K0 + iρ2 cos2 θ(A+

K0 + A+
−K0)]e

iKT .

The higher order correction (a+
K1, a

−
K1) will then remain bounded in the fast time

scale T if the following equations are satisfied

dA+
K0

dt
= −i(κ tan θ +

ε

|ε|K
2)A+

K0 + iσρ2 cos2 θ(A+
K0 + A+

−K0),

dA−
K0

dt
= −i(κ/ tan θ +

ε

|ε|K
2)A−

K0 + iσρ2 sin2 θ(A−
K0 + A−

−K0).

These equations together with the corresponding ones for (A+
−K0, A

−
−K0) form a linear

system with constant coefficients that give the evolution the dispersive perturbations

with wavenumber ±K in the slow time scale t. The left (+) and right (−) propa-

gating perturbations (associated with the amplitudes A+and A−, respectively) are

uncoupled and their stability properties are given by the exponents

Ω+ = ±
√

(κ tan θ +
ε

|ε|K
2)(2σρ2 cos2 θ − (κ tan θ +

ε

|ε|K
2)), (51)

Ω− = ±
√

(κ/ tan θ +
ε

|ε|K
2)(2σρ2 sin2 θ − (κ/ tan θ +

ε

|ε|K
2)), (52)

and hence are unstable if the following conditions are satisfied

0 ≤ κ tan θ +
ε

|ε|K
2 ≤ 2σρ2 cos2 θ,

0 ≤ κ/ tan θ +
ε

|ε|K
2 ≤ 2σρ2 sin2 θ,
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that can be expressed as

ρ2 ≥ ρ2
+ =

tan θ

σ sin(2θ)
(κ tan θ +

ε

|ε|K
2) with tan θ ≥ ε

|ε|
K2

κ
, and (53)

ρ2 ≥ ρ2
− =

tan−1 θ

σ sin(2θ)
(κ tan−1 θ +

ε

|ε|K
2) with tan−1 θ ≥ ε

|ε|
K2

κ
. (54)

Notice that if we set K2 = 0 then the instability condition (48) is recovered, in other

words, the result for the limit k → ±∞ in the k ∼ 1 regime matches with the result

for K → 0 in the k ∼ 1/
√

|ε| � 1 regime.

The above instability criterion define a family of regions in the θ−ρ2 plane, which

depends on the parameter K2. The expression (53) is identical to (54) if we change

tan θ by 1/ tan θ, therefore it is enough to obtain the instability region defined by

the ρ2
+ condition; the corresponding one for ρ2

+ is simply the symmetric around the

vertical axes θ = ±π
4
.

Fig. 10 shows these regions for ε > 0 and several values of K2 > 0. A variation of

the wavenumber from k to k+1 results in a very small increment of K ∼
√

|ε| � 1,

so, in first approximation, we allow K2 to vary continuously in (53)-(54) and then

the CW with negative θ (θ ∈]− π
2
, 0[ in Fig. 10) are all rendered unstable. In exactly

the same way, if ε < 0 then all the CW with positive θ are destabilized, see Fig. 11.

² ³ ´µ·¶ ¸ ¹º »¼·½ ¾

¿ÁÀÃÂ	Ä
ÅÁÆÇÉÈiÊ

Figure 10: Dispersive instability conditions (53)-(54) for ε > 0, σ = 1

2
, and different values of K2

(arrows point towards increasing K2 direction and shading indicates instability).

Hence, the CW stability diagrams in Figs. 8 and 9 have to be complemented
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Figure 11: Dispersive instability conditions (53)-(54) for ε < 0, σ = 1

2
, and different values of K2

(arrows point towards increasing K2 direction and shading indicates instability).

with the following dispersive instability criterion:

– for ε > 0 (ε < 0), all CW with θ < 0 (θ > 0) are unstable. (55)

In other words, the dispersive instability destabilizes all the CW along the lower

(upper) branch in Fig. 5 if ε is positive (negative). And thus, for a given power

inside the fiber ρ, there can be bistability only for ρ > ρc, κ < κc and ε < 0 (see

Fig. 9).

The small dispersion terms have a dramatic effect in the stability of the CW and

they should not be ignored. The dispersive instability is not a higher order effect

that appears in a much larger time scale; its growth rate is of order unity (and

remains of order unity as ε→ 0, see eqs. (51)-(52)) and it develops in the transport

time scale (t ∼ 1) destabilizing small scales with typical size
√

|ε| � 1. Notice also

that, in the limit ε → 0, the dispersive instability condition (55) depends only on

the sign of the dispersion coefficient (relative to the nonlinear coefficients) and it

is present for both signs. For the CW with power higher than ρ∞, the beginning

of the destabilization of the intermediate scales can be seen from the k → ∞ limit

of the stability analysis without dispersion (see Fig. 7), but for all other CW this

instability is not detected if the dispersive terms are not taken into account, and the

use of the NLCME eqs. (36)-(37) would therefore lead us to wrong conclusions.
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5.3 Numerical simulations of the amplitude equations

In the following, we perform several numerical integrations of the NLCME equations

with small dispersive terms (33)-(35) in order to check the CW stability boundaries

obtained in the previous sections. The details of the numerical method can be found

in Appendix A.
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Figure 12: Stability properties of the CW (dispersive instabilities not shown) for σ = 1

2
and κ = 1,

shading indicates instability and dots correspond to the cases 1 and 2 CW.

We begin with the case 1 CW that corresponds to the parameter values σ = 1
2
,

κ = 1, ρ2 = 1 and θ = −π
4

and, according to eqs. (41),(42), has wavenumber m = 0

and frequency α = −0.25. The reconstructed original physical fields (see eq. (18))

produced by this spatially uniform CW take the form of a standing wave pattern

along the fiber. As it can be seen in Fig. 12, the only source of instability for this

CW is the dispersive instability: if ε < 0 then the perturbations containing small

dispersive scales are stable and unstable otherwise. This is corroborated by the

results of the numerical simulations of the amplitude equations (33)-(35) presented

in Figs. 13 and 14, where we plot the time evolution of the norm of the amplitudes,

‖A‖ =

√

∫ 1

0

|A|2 dx,

for negative and positive dispersion, respectively, starting from the case 1 CW with

a small perturbation. For negative dispersion the case 1 CW is stable and the small

initial perturbations do not grow (Fig. 13). The perturbations cannot decay to

zero because of the absence of dissipation in the system, and thus the value of the
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spatial derivatives remains finite but small (comparable to the size of the initial

perturbation, see Fig. 13). In contrast, if the dispersion is positive, the case 1 CW

is unstable due to the exponential amplification of the small dispersive scales (see

Fig. 14). This growth is not a slow time effect, it takes place in the time scale

t ∼ 1 and remains constant as ε→ 0, as it can be seen in the lower plot in Fig. 14,

where we have added for comparison the time evolution of the spatial derivatives for

two smaller dispersion values. The solution that develops consists of two counter-

propagating wavetrains with dispersive wavelength (∼ √ε) and is shown in Fig. 15;

notice how the number of peaks is approximately doubled when the dispersion is

divided by 4.
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Figure 13: Thick (thin) lines indicate the time evolution of the spatial norm of A+ (A−) and its
spatial derivative, for σ = 1

2
, κ = 1 and dispersion ε = −10−3. The initial condition is the case 1

CW with a random perturbation of size ∼ 10−3.

In order to check the zero wavenumber stability boundary (47) we have numer-

ically integrated the amplitude equations (33)-(35) starting from the case 2 CW

(σ = 1
2
, κ = 1, ρ2 = 4.5, θ = −π

4
, m = 0 and α = 2.375, see Fig. 12) with a small

random perturbation and negative dispersion, i.e., without dispersive instabilities.

Fig. 16 shows the resulting solution. The small values of the spatial derivatives indi-

cate that, as predicted by the linear stability theory, the destabilizing perturbation

mode is the uniform one (k = 0). Moreover, the solution appears to remain almost
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Figure 14: Thick (thin) lines indicate the time evolution of the spatial norm of A+ (A−) and its
spatial derivative, for σ = 1

2
, κ = 1 and dispersion ε = 10−3 (dashed lines correspond to smaller

dispersion values). The initial condition is the case 1 CW with a small random perturbation of
size ∼ 10−3.
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Figure 15: Snapshots of the solution of the amplitude equations (33)-(35) at t = 60 (|A+|:thick line,
|A−|:thin line), with parameters as in Fig. 14 and dispersion ε = 10−3 (above) and ε = 10−3/4
(below).
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uniform for all times and oscillates periodically between two states: one with both

amplitudes nearly equal (close to a SW in the original physical variables) and other

with A+ dominating over A+ (close to a TW). Note that eqs. (33)-(35) preserve the

total energy of the system, i.e.,

d

dt

∫ 1

0

(|A+|2 + |A−|2)dx = 0,

and therefore if the norm of one of the amplitudes increases the other has to decrease.
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Figure 16: Thick (thin) lines indicate the time evolution of the spatial norm of A+ (A−) and its
spatial derivative, for σ = 1

2
, κ = 1 and dispersion ε = −10−3. The initial condition is the case 2

CW with a random perturbation of size ∼ 10−3.

In the case 3 CW (σ = 1
2
, κ = 2, ρ2 = 7.2, θ = −π

4
, m = 0 and α = 3.4), if the

dispersion coefficient is kept negative, the destabilization is due only to condition

(50), see Fig. 17. The time evolution of the solution of the amplitude eqs. (33)-

(35) starting from the perturbed case 3 CW with ε = −10−3 is shown in Fig.

18. The norms of the amplitudes are almost constant during the integration time,

but the growth of the derivatives clearly indicates the onset of the instability that

takes the system away from the starting uniform CW solution. The perturbation

mode that destabilizes the CW is that with k = 1, i.e., that exhibiting one single

wavelength inside the domain (see Fig. 19), in agreement with the linear stability
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Figure 17: Stability properties of the CW (dispersive instabilities not shown) for σ = 1

2
and κ = 2,

shading indicates instability and dots correspond to the cases 3, 4 and 5 CW.

theory predictions.
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Figure 18: Thick (thin) lines indicate the time evolution of the spatial norm of A+ (A−) and its
spatial derivative, for σ = 1

2
, κ = 2 and dispersion ε = −10−3. The initial condition is the case 3

CW with a random perturbation of size ∼ 10−3.

For the case 4 CW (σ = 1
2
, κ = 2, ρ2 = 2, θ = π

4
, m = 0 and α = 3.5, see

Fig. 17) the situation is the opposite of that of the case 1 CW. Now the CW is

stable for positive values of the dispersion, as it can be observed in the numerical

simulations represented in Fig. 20, and the dispersive instability develops, producing
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Figure 19: Spatial profiles of the solution of the amplitude equations (33)-(35) at times t = 0, 5, 6
and 7, with all parameters as in Fig. 18.
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Figure 20: Thick (thin) lines indicate the time evolution of the spatial norm of A+ (A−) and its
spatial derivative, for σ = 1

2
, κ = 2 and dispersion ε = 10−3. The initial condition is the case 4

CW with a random perturbation of size ∼ 10−3.
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Figure 21: Top: thick (thin) lines indicate the time evolution of the spatial norm of A+ (A−) and its
spatial derivative, for σ = 1

2
, κ = 2 and dispersion ε = −10−3 (dashed lines correspond to smaller

dispersion values). The initial condition is the case 4 CW with a small random perturbation of
size ∼ 10−3. Bottom: space-time representation of the solution for two time units after t = 80.
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Figure 22: Thick (thin) lines indicate the time evolution of the spatial norm of A+ (A−) and its
spatial derivative, for σ = 1

2
, κ = 2 and dispersion ε = 10−3. The initial condition is the case 5

CW with a random perturbation of size ∼ 10−3.

small dispersive scales all over the domain, for negative dispersion (see Fig. 21). The

time plot of ||A±
x || in Fig. 21 shows the development of the dispersive instability

for several dispersion values; note that, as predicted by the linear stability theory,

the dispersive instability exponent tends to a nonzero constant as the dispersion

coefficient is reduced ε → 0. A space-time representation of the solution, once

the dispersive scales are well developed, is also included in Fig. 21. Notice that the

small dispersive scales are largely advected by the group velocity for short times, but

they also evolve on a slower timescale, t ∼ 1, to produce very complicated spatio-

temporal dynamics. And notice also that the final state in terms of the original

physical variables is even more complicated: it is the superposition of two faster

counter-propagating wavetrains with amplitudes modulated by A+ and A− (see 18).

Finally, the case 5 CW (σ = 1
2
, κ = 2, ρ2 = 2, θ = 0.1657 , m = 1 and

α = 7.645) is in the unstable side of condition (48), see Fig. 17. The numerical

simulation shown in Fig. 22 indicates that, again in accordance with the linear

stability results, the CW is unstable and the solution develops small dispersive

scales. Notice that the growth rate of the perturbations is much larger for this

case than for the previous ones. This is due to the fact that the extension of the
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interval of unstable wavenumbers is now much longer: it starts in the k ∼ 1 (48)

region and extends up to the dispersive region k ∼ 1/
√

|ε| (see Figs. 10 and 11).

Note also that the CW is inside the instability region that corresponds to the + sign

in (48) and hence only the amplitude A+ is unstable, as it can be seen in the initial

growth of the derivative in the lower plot of Fig. 22.
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6 Gap Solitons

Gap Solitons (GS) are solitary wave solutions of the NLCME (36)-(37) with tem-

poral frequencies inside the frequency gap that opens up in the linear propagation

characteristics of the grating, where uniform infinitesimal travelling wave states are

not possible (see Fig. 4). These pulse-like solutions are the result of the combined

effect of nonlinearity and grating reflection and have the property that they can

propagate along the grating with any velocity between zero and the speed of light

in the bare fibre. This is a very promising feature that gives the possibility (at least

theoretically) to have localized packets of electromagnetic energy at zero or very low

velocity in the laboratory frame.

This family of solutions, which are not true solitons since the NLCME with σ 6= 0

are not an integrable system, were introduced in [10, 11] and can written in the form

(see e.g. [13, 14, 6])

A+
GS(x, t) = −

√
κH(ξ) e−y/2+iϕ(ξ)−iκγt (56)

A−
GS(x, t) =

√
κH̄(ξ) ey/2+iϕ(ξ)−iκγt (57)

where ξ = κ(x− ct) is a moving spatial coordinate, c is the velocity of the GS

c = tanh y, with −∞ < y < +∞, (58)

κγ is its temporal frequency, with

γ = cos θ/ cosh y = cos θ
√

1− c2, with 0 < θ < π, (59)

and the functions H and ϕ are given by

ϕ(ξ) =
2σ sinh(2y) arctan{tan(θ/2) tanh[(cosh y sin θ)ξ]}

1 + σ cosh 2y
+ (sinh y cos θ)ξ, (60)

H(ξ) =
sin θ√

1 + σ cosh 2y cosh[(cosh y sin θ)ξ + iθ/2]
. (61)

Note that

H(−ξ) = H̄(ξ), ϕ(−ξ) = −ϕ(ξ), (62)

and that |H| reaches its maximum at ξ = 0 and then decays to zero monotonically
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and exponentially fast as ξ → ±∞.

The GS are solutions of the NLCME defined for −∞ < x < ∞ that correspond

to localized pulses propagating with constant velocity c over a zero background and

oscillating with frequency κγ, like the one represented in Fig. 23.
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Figure 23: Left: Gap Soliton at t = 0, A+(A−) thick (thin) line, with parameters σ = 1

2
, κ = 1,

c = 1

2
and θ = 2. Right: domain of existence of the GS in the c− γ plane (the dot corresponds to

the GS shown).

For fixed values of σ and κ, this is a two parameter (y, θ) family of solutions with

velocity and frequency in the ranges −1 < c < 1 and −
√

1− c2 < γ <
√

1− c2, see

eqs. (58) and (59). In the following we will represent the GS family in the c − γ

plane where it fills an open circle of radius one (Fig. 23). Notice also that the GS

remain invariant under the changes c→ −c, x→ −x and A+
GS ↔ A−

GS and therefore

we can limit our analysis to the GS with c ≥ 0.
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7 Stability of the Gap Solitons

In this section we compute the linear stability characteristics of the GS in the con-

text of the NLCME with small dispersion terms (33)-(34). We will proceed as we

did in Section 5 with the CW: we will first study the stability of the GS against

perturbations without dispersive scales, then the stability against dispersive pertur-

bations and finally we will perform some numerical simulations to check the stability

predictions.

Before starting with the stability calculations it is convenient to use the new space

variable ξ = κ(x− ct) to write the amplitude equations in a frame moving with the

soliton and to eliminate the strength of the grating κ > 0 and the frequency of the

soliton using the new time variable τ = κt and the new amplitudes

A± =
√
κB± exp[−iκγt].

With all these changes the amplitude equations (33)-(34) take the form

B+
τ − (c+ 1)B+

ξ = iεκB+
ξξ + iγB+ + iB− + i(σ|B+|2 + |B−|2)B+, (63)

B−
τ − (c− 1)B−

ξ = iεκB−
ξξ + iγB− + iB+ + i(σ|B−|2 + |B+|2)B−, (64)

where |ε| � 1 and the GS (56),(57) are now steady states (up to first order correc-

tions in ε)

B+
GS = −H(ξ)e−y/2+iϕ(ξ),

B−
GS = H̄(ξ)ey/2+iϕ(ξ).

The linear stability of the GS is analyzed as usual, taking

B± = B±
GS + b±, with |b±| � 1,

to eqs. (63)-(64) and linearizing, to obtain the system of equations

b+τ − (c+ 1)b+ξ = i[εκb+ξξ + (γ + φ+
1 )b+ + (1 + φ2)b

− + φ+
3 b̄

+ + φ4b̄
−], (65)

b−τ − (c− 1)b−ξ = i[εκb−ξξ + (γ + φ−
1 )b− + (1 + φ̄2)b

+ + φ−
3 b̄

− + φ4b̄
+], (66)
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with ξ-dependent coefficients that are given by

φ±
1 (ξ) = 2σ|B±

GS|2 + |B∓
GS|2 = (e±y + 2σe∓y)|H(ξ)|2 (67)

φ2(ξ) = B±
GSB̄

∓
GS = −H(ξ)2, (68)

φ+
3 (ξ) = σ(B+

GS)2 = σe−y+2iϕ(ξ)H(ξ)2, (69)

φ−
3 (ξ) = σ(B−

GS)2 = σey+2iϕ(ξ)H̄(ξ)2, (70)

φ4(ξ) = B+
GSB

−
GS = −ei2ϕ(ξ)|H(ξ)|2, (71)

and verify (see (62))

φ±
1 (−ξ) = φ̄±

1 (ξ) = φ±
1 (ξ), φ2(−ξ) = φ̄2(ξ),

φ±
3 (−ξ) = φ̄±

3 (ξ), φ4(−ξ) = φ̄4(ξ).

7.1 Perturbations without dispersive scales

In this case, the perturbations exhibit only scales that remain ξ ∼ 1 as ε→ 0. This

allow us to neglect, in first approximation, the dispersion terms in the system (65)-

(66), namely we set ε = 0 in eqs. (65)-(66). The resulting equations together with

their complex conjugates form a linear system of four equations whose solutions can

be written in the form












b+

b−

b̄+

b̄−













=













X+(ξ)

X−(ξ)

Y +(ξ)

Y −(ξ)













eiωτ , (72)

with ω and (X±, Y ±) given by the following ODE eigenproblem

ωX+ + i(c+ 1)X+
ξ = (γ + φ+

1 )X+ + (1 + φ2)X
− + φ+

3 Y
+ + φ4Y

−, (73)

ωX− + i(c− 1)X−
ξ = (γ + φ−

1 )X− + (1 + φ̄2)X
+ + φ−

3 Y
− + φ4Y

+, (74)

−ωY + − i(c + 1)Y +
ξ = (γ + φ+

1 )Y + + (1 + φ̄2)Y
− + φ̄+

3 X
+ + φ̄4X

−, (75)

−ωY − − i(c− 1)Y −
ξ = (γ + φ−

1 )Y − + (1 + φ2)Y
+ + φ̄−

3 X
− + φ̄4X

+. (76)

The spectrum of the problem above is composed of all ω ∈ C with associated nonzero
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eigenfunctions (X±, Y ±) that remain bounded as ξ → ±∞, either localized (point

spectrum) or not (essential spectrum).

A GS is then unstable if there are values of ω in its spectrum with negative

imaginary part. Note that the symmetries of eqs. (73)-(76)

(ω, ξ,X±, Y ±)→ (−ω,−ξ, Y ±, X±) (77)

and

ω → −ω̄, X± ↔ Ȳ ± (78)

allow us to restrict the analysis to

<ω ≥ 0 and =ω ≥ 0.

The first symmetry above follows from the spatial reflection (23) and time reversal

(30) invariance of the system and the second is due to the particular form of the

perturbation (72).

In the limit |ξ| → ∞ the system (73)-(76) becomes a constant coefficient linear

system and its solutions can be written in the form

(X±, Y ±) = (X±
0 , Y

±
0 )eiαξ, (79)

where the complex constants X±
0 , Y ±

0 and α satisfy

[γ − ω + (c+ 1)α]X+
0 +X−

0 = 0, (80)

[γ − ω + (c− 1)α]X−
0 +X+

0 = 0, (81)

and

[γ + ω + (c+ 1)α]Y +
0 + Y −

0 = 0, (82)

[γ + ω + (c− 1)α]Y −
0 + Y +

0 = 0. (83)

Imposing that these systems exhibit nontrivial solutions, we obtain

(γ − ω + cα)2 − α2 − 1 = 0 (84)
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for (80)-(81) and

(γ + ω + cα)2 − α2 − 1 = 0 (85)

for (82)-(83), and then for every value of ω we have, in general, four complex values

of α that give the behavior of the eigenfunctions as ξ → ±∞.
Real values of α correspond to eigenfunctions with oscillatory tails that remain

bounded and do not decay to zero as ξ → ±∞, see eq. (79). From eqs. (84) and (85),

real values of α are seen to occur only for real values of ω along the four branches

ω = cα± γ ±
√
α2 + 1, α ∈ R.

This defines the essential spectrum of (73)-(76), which is confined to the real line and

therefore it does not give rise to any instabilities. The essential spectrum is composed

of four semi-infinite segments of the real line bounded by the four extrema of the

expressions above: ±ω0 and ±ω1 (see Fig. 24) , where ω0 > 0 and ω1 > 0 are given

by

ω0 = −γ +
√

1− c2 and ω1 = γ +
√

1− c2.

ω

|γ| +

√

1 − c2

−|γ| +
√

1 − c2

Figure 24: Essential spectrum in the complex ω plane (thick line) with dots marking its edges.

Away from the essential spectrum, the roots of eqs. (84) and (85),

α±
X =

−c(ω − γ)±
√

(ω − γ)2 − (1− c2)
1− c2 (86)

and

α±
Y =

−c(ω + γ)±
√

(ω + γ)2 − (1− c2)
1− c2 , (87)

respectively, have nonzero imaginary parts with opposite signs (the + (−) super

index corresponds to the root with positive (negative) imaginary part). This is
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readily seen after taking into account that the imaginary parts of the roots α±
X can

be regarded as two real functions that depend continuously on ω, do not vanish in

the connected set obtained after removing the essential spectrum from the complex

plane (recall that the essential spectrum is precisely the set where =α = 0) and have

different signs at ω = 0; and the same holds true for α±
Y . In order to ensure that

both |X±| and |Y ±| remain bounded, we must remove the exponentially growing

eigenfunctions, and the only allowed asymptotic behaviors as ξ → ±∞ are

(X+, X−) = (−1, γ − ω + (c+ 1)α±
X)eiα±

X
ξ, (88)

(Y +, Y −) = (−1, γ + ω − (c+ 1)α±
Y )eiα±

Y
ξ. (89)

Summarizing, outside the essential spectrum, the eigenfunctions are given by

(73)-(76) together with the boundary conditions (88) and (89).

The point spectrum is now calculated by means of the so-called Evans function,

which is defined as follows (see e.g. [32, 33] and [34] for a recent review on this

topic). For each ω ∈ C outside the essential spectrum we integrate (73)-(76) both

from ξ → −∞ and from ξ → +∞ and starting from a linear combination of (88)

and (89), to obtain

(X±
− , Y

±
− ) = K1(X

±
1 , Y

±
1 ) +K2(X

±
2 , Y

±
2 )

and

(X±
+ , Y

±
+ ) = K3(X

±
3 , Y

±
3 ) +K4(X

±
4 , Y

±
4 ),

respectively. Note that once the appropriate asymptotic behavior is imposed, each

orbit depends linearly on two (complex) constants. These two orbits must have a

non void intersection at ξ = 0, namely they must satisfy (X±
− , Y

±
− ) = (X±

+ , Y
±
+ )

at ξ = 0. This is a homogeneous, fourth order linear system for K1, . . . , K4 and

we define the Evans function, E(ω), as the value of the determinant its coefficient

matrix. Therefore, it has nontrivial solutions if and only if

E(ω) = 0.

In other words, the Evans function detects the intersections of the stable and unsta-
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ble manifold of the fixed point (X±, Y ±) = (0, 0) of (73)-(76) and it is defined only

when (0, 0) is hyperbolic, that is, for ω values outside the essential spectrum. It is

an analytic function, as it follows from the analyticity of the constituent solutions

(X±
1 , Y

±
1 ), . . . (X±

4 , Y
±
4 ), with the property that its zeros coincide with the eigenval-

ues. Note that because of the symmetries (77) and (78) the Evans function must

also be such that

E(−ω) = E(ω) and E(ω) = E(ω̄). (90)

We can now analyze the stability of the GS just by applying the principle of

the argument to the Evans function along the contour depicted in Fig. 25, which

encircles the half complex plane that corresponds to ω with positive imaginary part,

to obtain the number of unstable eigenvalues.

m n o

Figure 25: Contour in the complex ω plane for the application of the principle of the argument to
E(ω). The thick line correspond to the essential spectrum and the black dots mark its edges.

In order to do this we have to take into account the following considerations:

• Using the analytic extension of the square roots in (86) and (87), we can extend

analytically the Evans function from the half complex plane =ω > 0 to the

essential spectrum, except at its edges, ±ω0 and ±ω1, where the extended

Evans function presents singularities. Note that the Evans function is not

continuous at the essential spectrum and thus its extensions from above and

below (namely, from =ω > 0 and from =ω < 0) do not coincide.

• The number of unstable eigenvalues is given by

n =
1

2π
∆ψC , (91)
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where ∆ψC is the increment of the argument of E along the contour in Fig. 25

(see e.g. [35] for a general description of the principle of the argument), which,

due to the first symmetry in (90), can be written as twice the increment of the

argument along the right half of the contour.

• ω = 0 is an eigenvalue with geometric multiplicity 2 and associated eigenfunc-

tions

(X±, Y ±) = (B±
GSξ, B̄

±
GSξ),

(X±, Y ±) = (iB±
GS,−iB̄±

GS),

which result from the two continuous symmetries of the system (63)-(64)

ξ → ξ + c1 and B± → eic2B±. (92)

But its algebraic multiplicity is four because we have also two generalized eigen-

functions

(X±, Y ±) = (−i∂B±
GS/∂c, i∂B̄

±
GS/∂c),

(X±, Y ±) = (−i∂B±
GS/∂γ, i∂B̄

±
GS/∂γ),

which come from the fact that b± = ∂B±
GS/∂c and b± = ∂B±

GS/∂γ satisfy

−BGSξ − (c+ 1)b+ξ = i[(γ + φ+
1 )b+ + (1 + φ2)b

− + φ+
3 b̄

+ + φ4b̄
−],

−BGSξ − (c− 1)b−ξ = i[(γ + φ−
1 )b− + (1 + φ̄2)b

+ + φ−
3 b̄

− + φ4b̄
+],

and

−iBGS − (c+ 1)b+ξ = i[(γ + φ+
1 )b+ + (1 + φ2)b

− + φ+
3 b̄

+ + φ4b̄
−],

−iBGS − (c− 1)b−ξ = i[(γ + φ−
1 )b− + (1 + φ̄2)b

+ + φ−
3 b̄

− + φ4b̄
+],

respectively, as it can be seen upon differentiation with respect to the soliton

parameters c and γ in the GS equation, i.e., in the steady state version of (63)-

(64) with ε = 0. In other words, the algebraic multiplicity is equal to four due to

the four-dimensionality of the family of gap solitons (that can be parametrized

in terms of c, γ and the two parameters in the continuous symmetries (92)),
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but c and γ do not produce any increment of the geometric multiplicity because

of the time-dependent character of change of variables performed in (63)-(64).

The contribution to (91) of the fourth order root ω = 0 is thus equal to −2, see

Fig. 25.

• The evaluation of the contribution of the outer arc in Fig. 25 requires to know

the asymptotic behavior of E as |ω| → ∞. In this limit, eqs. (73)-(76) simplify

drastically and the allowed solutions according to (88)-(89) are given, at first

order, by

(−eiωξ/(1+c), 0, 0, 0), (0, 0,−eiωξ/(1+c), 0) for ξ ≥ 0 and

(0, −2ω
(1−c)

e−iωξ/(1−c), 0, 0), (0, 0, 0, 2ω
(1−c)

e−iωξ/(1−c)) for ξ ≤ 0,

recall that =ω > 0. Therefore, E(ω) ∼ ω2 as |ω| → ∞, and the arc gives a

contribution of amount 1 to (91).

• The second symmetry in (90) ensures that the Evans function is real in the

segment of the real line that is not part of the essential spectrum (labeled 0 in

Fig. 25) and its contribution to (91) is equal to −no/2, where no is the number

of roots along the segment.

• The extended Evans function is not analytic at the edges of the essential spec-

trum but typically they do not contribute to (91) because E 6= 0 at ω = ±ω0,1

in a generic situation. The same argument can be used to conclude that, gener-

ically, there are no zeros in the rest of the essential spectrum (segments 1 and

2 in Fig. 25).

Collecting all the above mentioned contributions, the number of unstable eigenvalues

can be finally written as

n = −n0 − 1 +
1

π
(∆ψ1 + ∆ψ2), (93)

where ∆ψ1,2 represent the increment of the argument along the segments 1 and 2 in

Fig. 25. Note that the formula above requires the evaluation of the Evans function

only along the positive real axis.

The stability of the GS has been numerically analyzed using (93) for different

values of the parameters c and γ. The evaluations of the Evans function have been
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performed with an adaptive Runge-Kutta method of 4th order and the integrations

have been started at ξ = ±ξ∞, where ξ∞ has been taken large enough to ensure that

the GS amplitude is negligible at this point.

The results we have found are represented in Fig. 26 and can be summarized

as follows: (i) the GS are unstable for values of γ smaller than a certain γc that

is negative very small (see Fig. 26), and (ii) the onset of the instability always

takes place through the collision of two real eigenvalues in the 0 segment in Fig. 25

that become complex with a nonzero value of <ω (temporal frequency) that is also

presented in Fig. 26. For γ < γc more eigenvalues become unstable, both with zero

and nonzero temporal frequencies, but the stability is never regained.

c

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0.5

1

c

γ

ω
GS3

GS2 GS1

GS4

Figure 26: Left: GS stability diagram (shading indicates instability and dots correspond to the
numerical simulations in Section 7.3). Right: frequency of the neutral mode at instability onset.

These stability results agree with those presented by Barashenkov and collabo-

rators in [13, 14], which were calculated using Newton’s method combined with a

finite difference approximation on a finite interval of eqs. (73)-(76).

7.2 Perturbations with dispersive scales

We now complete the stability analysis of the GS with the study of the effect of

perturbations that contain small dispersive scales, that is, scales with a typical size

that goes as
√

|ε| when ε→ 0.

In this case, the dispersion terms cannot be neglected in eqs. (65)-(66) and the

eigenvalue problem that is obtained, after assuming exponential time dependence
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(see eq. (72)), can be written as

ωX++ i(c+ 1)X+
ξ = εκX+

ξξ + (γ + φ+
1 )X++ (1 + φ2)X

−+ φ+
3 Y

++ φ4Y
−, (94)

ωX−+ i(c− 1)X−
ξ = εκX−

ξξ + (γ + φ−
1 )X−+ (1 + φ̄2)X

++ φ−
3 Y

−+ φ4Y
+, (95)

−ωY +− i(c+ 1)Y +
ξ = εκY +

ξξ + (γ + φ+
1 )Y ++ (1 + φ̄2)Y

−+ φ̄+
3 X

++ φ̄4X
−, (96)

−ωY −− i(c− 1)Y −
ξ = εκY −

ξξ + (γ + φ−
1 )Y −+ (1 + φ2)Y

++ φ̄−
3 X

−+ φ̄4X
+, (97)

where the eigenfunctions (X±, Y ±) must decay to zero as ξ → ±∞.

If we now introduce the fast (dispersive) spatial variable η = ξ/
√

|ε| and expand

the solution of the system above as

(X±, Y ±) = (X±
0 , Y

±
0 )(η, ξ) +

√

|ε|(X±
1 , Y

±
1 )(η, ξ) + . . . ,

ω = ω0/
√

|ε|+ ω1 + . . . ,

with |ε| � 1, we obtain, at leading order, the following uncoupled homogeneous

system

ω0X
+
0 + i(c+ 1)X+

0η = 0, (98)

ω0X
−
0 + i(c− 1)X−

0η = 0, (99)

−ω0Y
+
0 − i(c+ 1)Y +

0η = 0 (100)

−ω0Y
−
0 − i(c− 1)Y −

0η = 0, (101)

whose solutions are of the form

X±
0 = A±

0 (ξ)eiω0η/(c±1),

Y ±
0 = B±

0 (ξ)eiω0η/(c±1),

where ω0 has to be purely real for the eigenfunctions to be bounded in the short scale

η. These expressions represent travelling waves that propagate in η to the left (+)

and right (−), with velocities 1 + c and 1− c, respectively, and exhibit modulations

in the longer scale ξ ∼ 1.

At next order, a system is obtained for (X±
1 , Y

±
1 ) that is identical to (98)-(101)

but with a nonzero right hand side. The equations for (A±
0 (ξ), B±

0 (ξ)) result from

applying solvability conditions to this system, i.e., from forcing (X±
1 , Y

±
1 ) to remain

49



bounded in the fast scale, and are given by

ω1A
+
0 + i(c+ 1)A+

0ξ = (γ + φ+
1 −

ε

|ε|κ
ω2

o

(c+ 1)2
)A+

0 + φ+
3 B

+
0 , (102)

ω1A
−
0 + i(c− 1)A−

0ξ = (γ + φ−
1 −

ε

|ε|κ
ω2

o

(c− 1)2
)A−

0 + φ−
3 B

−
0 , (103)

−ω1B
+
0 − i(c + 1)B+

0ξ = (γ + φ+
1 −

ε

|ε|κ
ω2

o

(c+ 1)2
)B+

0 + φ̄+
3 A

+
0 , (104)

−ω1B
−
0 − i(c− 1)B−

0ξ = (γ + φ−
1 −

ε

|ε|κ
ω2

o

(c− 1)2
)B−

0 + φ̄−
3 A

−
0 , (105)

together with the conditions that A±
0 → 0 and B±

0 → 0 as ξ → ±∞.

Notice that, as it happened for the CW in Section 5.2, dispersive perturbations

propagating to the left (+) and right (−) are uncoupled and the system above is

composed of two second order independent subsystems: (102),(104) and (103),(105).

In the limit ξ → ±∞, we have φ+
1 → 0 and φ+

3 → 0 (see (67) and (69)) and

the first subsystem becomes a constant coefficient, diagonal system with associated

spatial exponents λ,

(A+
0 , B

+
0 ) = (α, β)eiλξ,

of the form

λ = (ω1 ± (γ − ε

|ε|κ
ω2

o

(c+ 1)2
))/(c+ 1).

Both spatial exponents have the same imaginary part and for =ω1 6= 0 the two

corresponding asymptotic behaviors grow simultaneously unbounded as either ξ →
+∞ or ξ → −∞ (depending on the sign of =ω1), and therefore there is no other

possible bounded solution apart from the zero solution. The same holds true for the

second subsystem and allows us to conclude that there are no instabilities associated

with the perturbations with small dispersive scales.

In contrast to what was obtained for the CW in Section 5.2, the GS do not exhibit

dispersive instabilities. The required spatial decay of the dispersive perturbations as

ξ → ±∞ can only be achieved through the coupling that comes from the nonlinear

interaction terms in the NLCME (see eqs. (102)-(105)), which remains nonzero for

the CW but vanishes in the GS case as ξ → ±∞.
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7.3 Numerical simulations of the amplitude equations

The GS stability predictions are cross-checked here against the results of the numer-

ical simulation of the NLCME with small dispersion terms (33)-(35).

The code developed for the numerical integration of equations (33)-(35) assumes

periodic boundary conditions (see Appendix A). In order to simulate the NLCME in

an infinite domain we take a spatial period large as compared with the characteristic

length of the GS (L∞) and we then rescale space, time and the size of amplitudes

to make the spatial period one and the group velocity and the first nonlinear coef-

ficient also equal to one (see Fig, 27 for the explicit expressions of the rescalings).

Note that after these changes of variables the resulting strength of the grating, κ,

is increased and the dispersion, ε, is reduced. Note also that the validity of the nu-

merical simulations is limited in time because the finite length effects will eventually

contaminate the solution on the whole domain.
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x =

x∞
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Figure 27: Rescalings performed to transform the large finite domain of size L∞ into [0, 1].

We present the results of four simulations with parameters σ = 1
2
, κ = 40 and ε =

0 (dispersion is not considered in this first set of simulations because we are interested

only in instabilities due to perturbations without dispersive scales) starting from the

following GS with a small random perturbation of size ∼ 10−3 superimposed:

• GS1: c = 0 and γ = cos 1 = .5403 . . ..

• GS2: c = 0 and γ = cos 2 = −.4165 . . .

• GS3: c = 0.5 and γ =
√

3
2

cos 1 = .4679 . . .
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• GS4: c = 0.5 and γ =
√

3
2

cos 2 = −.3604 . . .

According to the stability analysis of the previous section, the GS1 is a stable

soliton (γ > 0 in Fig. 26). The simulation results are consistent with this: the

norm of the solution and its derivatives is almost constant for 50 time units with

only a small variation due to the initial perturbation (see top plot in Fig. 28), and

the x − t diagram in Fig. 28 indicates that the spatial profiles of the modulus of

the amplitudes remain practically unaltered, as it should be for a GS with zero

propagation velocity.

On the other hand, the GS2 is unstable (see Fig. 26) and the rapid development

of the oscillatory instability can be clearly appreciated from the simulation results

plotted in Fig. 29. From the evolution of the norm of the solution in the top plot

of Fig. 29 the frequency of the most unstable mode can be estimated ωestimated '
1.34 . . . , and this number is in very good agreement with the real part of the unstable

eigenvalue, ω ' 1.33 . . .+ i0.0338 . . ., computed applying Newton’s method to find

the zero of the Evans function. This is actually the only unstable eigenvalue as it

can be seen in the map of the zeros of the Evans function that is also included in

the middle plot of Fig. 29.

The GS3 is a stable soliton (see Fig. 26) that now propagates with velocity

0.5, and the results of the simulation presented in Fig. 30 corroborate again the

conclusions of the stability analysis: the norms remain almost constant and the

x − t diagram shows the soliton propagating to the right without any perceptible

distortion after 50 units of time (note that now the amplitudes of the GS are not

equal because this is a travelling pulse, y 6= 0 in (56)-(58)).

And for the last case, the GS4, the stability results indicate that it corresponds

to an unstable propagative soliton (see Fig. 26) and this is in good agreement with

the simulation results presented in Fig. 31. The instability that develops is again

oscillatory and its frequency estimated from the norm evolution of the solution,

ωestimated ' 1.17 . . ., is again very close to the unstable eigenvalue obtained solving

the equation E(ω) = 0, ω ' 1.166 . . . + i0.0218 . . . (middle plot of Fig. 31). Also,

the growth rate computed from E(ω) = 0 is now smaller than in the GS2 case and

produces a slower instability development, as it can be appreciated from the time

plots of ||A±
x || in Figs. 29 and 31.

Finally, in order to complete the numerical checking of the stability results, we
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have performed several simulations of the stable solitons GS1 and GS3 with κ = 40

and different values of the dispersion coefficient, namely, ε = ±4 10−4,±2 10−4 and ±
10−4. The numerics corroborate the theoretical results obtained in Section 7.2, that

is, no sign of any dispersive instabilities was detected. The numerical solutions found

were indistinguishable from those represented in Figs. 28 and 30 and therefore their

plots are omitted.
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Figure 28: Top: thick (thin) lines indicate the time evolution of the spatial norm of A+ (A−) and
its spatial derivative, for σ = 1

2
, κ = 40 and ε = 0. The initial condition is the GS1 with a random

perturbation of size ∼ 10−3. Bottom: space-time representation of the solution for four time units
right after t = 50 in the top plot.
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Figure 29: Top: thick (thin) lines indicate the time evolution of the spatial norm of A+ (A−) and
its spatial derivative, for σ = 1

2
, κ = 40 and ε = 0. The initial condition is the GS2 with random

perturbation of size ∼ 10−3. Middle: <E(ω) = 0 (=E(ω) = 0) contours in the complex ω plane in
solid (dashed) line. Bottom: space-time representation of the solution for the last four time units
in the top plot.
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Figure 30: Top: thick (thin) lines indicate the time evolution of the spatial norm of A+ (A−) and
its spatial derivative, for σ = 1

2
, κ = 40 and ε = 0. The initial condition is the GS3 with random

perturbation of size ∼ 10−3. Bottom: space-time representation of the solution for four time units
right after t=50 in the top plot.
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Figure 31: Top: thick (thin) lines indicate the time evolution of the spatial norm of A+ (A−) and
its spatial derivative, for σ = 1

2
, κ = 40 and ε = 0. The initial condition is a GS4 with random

perturbation of size ∼ 10−3. Middle: <E(ω) = 0 (=E(ω) = 0) contours in the complex ω plane in
solid (dashed) line. Bottom: space-time representation of the solution for the last four time units
in the top plot.
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8 Numerical simulations of the MLE

In order to confirm the validity of the amplitude equations with small dispersion

terms and the theoretical stability results obtained in the previous sections, we have

tested them against numerical simulations of the complete MLE (16)-(17).

The MLE simulations correspond to a ring shaped fiber grating geometry with a

large number of refractive index oscillations, that is, to periodic boundary conditions,

E(x + L, t) = E(x, t), P (x+ L, t) = P (x, t),

with L � 1, see Appendix B for the details of the numerical method. The initial

conditions used in all the simulations are slightly perturbed CW and GS configura-

tions.

The relation between the solutions of the MLE (16)-(17) and the amplitude equa-

tions (33)-(35), after taking into account the rescalings in (32), can be written as

{

E

P

}

=

{

ω2

1− ω2

}

√

vg

L|u2|
(Ā+eix+iωt + Ā−e−ix+iωt) + c.c. + . . . . (106)

The grating strength and the dispersion are related to their scaled counterparts by

∆n =
vg

L|w|κ and ε = − d

Lvg

, (107)

where L � 1 and the parameters ω, vg, d, w and u2 are given by (15), (24), (25),

(26) and (27) as functions of ω2
p and n2

0 only.

The structure of the actual physical patterns that result from (106) becomes more

clear if we rewrite the electric field as

E ∼ (Ā+eiωt + A−e−iωt)eix + c.c. + . . . ,

where the amplitudes A± depend slowly on space and time and thus remain approx-

imately constant in any region of extent ∆x ∼ 1 and for any time interval ∆t ∼ 1.

The complex number inside parentheses in the expression above,

Ā+eiωt + A−e−iωt = Meiϕ,
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can be regarded as the sum of two constant complex numbers that rotate with

opposite angular velocity ω (Fig 32a) and its modulus, M , gives the local amplitude

of the envelope of the pattern,

E ∼Meiϕ+ix + c.c. + · · · ∼M cos(x + ϕ) + . . . ,

see Fig 32b, that oscillates in time between the extreme values

Mmax = ||A+|+ |A−|| and Mmin = ||A+| − |A−||.

Therefore, if the amplitudes are nearly equal in a certain region, |A+| ' |A−|, then

M will oscillate between 0 and Mmax and ϕ will alternate between ±(ϕA+ +ϕA−)/2

(see Fig32a), and the pattern will locally look like a SW. On the other hand, if one of

the amplitudes dominates, |A+| � |A−|, then M is almost constant and ϕ behaves

approximately like ωt, and the pattern resembles a TW. For any other configuration

with arbitrary A+ and A− the resulting pattern will look more complicated; it will

be a superposition of SW and TW.
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Figure 32: Construction of the solution of the MLE from the amplitudes A±.

All CW simulations (shown in Figs. 33 to 37) have been carried out using the

following parameters: ω2
p = 1, n2

0 = 2 and L = 64(2π) (i.e., there are 128 oscillations

of the grating inside the fiber ring). For every simulation, the corresponding value

of ∆n is calculated from κ using eq. (107) and the sign of the dispersion is selected

by either choosing the + or the − sign in the equation for ω (15), see Fig. 3.

The number of Fourier modes and the time step used in the numerical scheme are

MFourier = 512 and ∆t = .01 (see Appendix B).
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In the results presented in Fig. 33 the initial condition is given by the CW1 in

Fig. 12 with a small perturbation superimposed. The first and second plot show

the time evolution of the norm of the electric field,

‖E‖ =

√

1

L

∫ L

0

|E|2 dx,

and correspond, respectively, to ω = ω− and ω = ω+, that is, to negative and positive

dispersion (see eq (107) and Fig. 3). The electric field pattern for the CW1 is a

uniform SW. The associated value of ||E|| oscillates very fast in time between 0 and

its maximum value, but this oscillation is too fast to be appreciated in the first two

plots of Fig. 33 and they just look like black patches. The MLE simulations confirm

the theoretical predictions: the CW1 is stable for negative dispersion (first plot in

Fig. 33) and unstable for positive dispersion (something starts to develop around

t = 60000 in the second plot). The corresponding spatial profiles of E at t = 75000

are given in the third and fourth plots of Fig 33: for negative dispersion (third

plot) a perfectly uniform oscillatory pattern is obtained but, for positive dispersion,

a modulation is clearly present (fourth plot). In order to be sure that this is a

dispersive instability we have repeated the unstable (ω = ω+) MLE simulation

in a four times longer domain (L = 256(2π)). The resulting spatial profile of E

at t = 160000 is shown in the last plot of Fig. 33. Notice how the number of

basic wavelengths is now four times higher but the number of wavelengths of the

modulation only approximately doubles (increases from 5 to 9), indicating the onset

of dispersive scales whose size goes as
√
L ∼ 1√

ε
.

Dispersion is negative in the simulation shown in Fig. 34, which starts from a

small perturbation of the CW2 in Fig. 12. According to the stability results from

Section 5, this CW is unstable and evolves to a spatially uniform, time periodic

solution (see Fig. 16). The solution of the MLE reproduces this behavior: the

fast oscillations of ||E|| in the top plot slowly alternate between going down to zero

(nearly equal amplitudes) and remaining away from zero (different amplitudes), and

E does not develop any slow spatial modulation (see bottom plot of Fig. 34).

Fig. 35 corresponds to a MLE simulation starting from the CW3 in Fig. 17 and

with negative dispersion. The linear theory now predicts a destabilization due to a

mode with one single wavelength inside the ring. This is again corroborated by the
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MLE simulation results, as it can be appreciated from the bottom plot of Fig. 35

that shows the spatial profile of E at the beginning of the instability development.

For longer times, the ||E|| plot in Fig. 35 indicates that the solution becomes more

complicated.

The initial condition for the two MLE simulations in Fig. 36 is the CW defined

by the parameters κ = 1, θ = π
4

and ρ2 = 1 (see Fig. 12) with a small perturbation.

The first and third plot correspond to positive dispersion and indicate that the

CW is stable. The dispersion is negative in the second and fourth plot where the

destabilization of the CW can be clearly seen in the time evolution of ||E|| and the

spatial profile of E shows dispersive modulations. This is in perfect agreement again

with the linear stability results in Section 5.

Fig. 37 shows the last of the CW related MLE simulations. Dispersion is taken

positive in this case and the initial condition is a perturbed CW with parameters

κ = 2, θ = π
4

and ρ2 = 3, which corresponds to a point in Fig. 17 above the

point labeled 4 and inside the shaded unstable region. As the stability calculations

predicted, the solution develops dispersive scales (see lower plot in Fig. 37) and the

development of the instability is now faster than in the previous cases (top plot in

Fig. 37) because now, as we saw in Section 5, the range of unstable wavenumbers is

larger: it begins in the transport regime and extends up to the dispersive region.

The aim of the subsequent MLE simulations is to check the GS stability predic-

tions obtained in Section 7. To this end, we use perturbed GS as initial conditions

and we set κ = 40 and L = 512(2π) to approximate an infinite geometry by means of

a large ring. The rest of the parameters are left unchanged, ω2
p = 1, n2

0 = 2, and the

number of Fourier modes and the time step used in the numerics are MFourier = 4096

and ∆t = .01.

The first three plots in Fig. 38 corresponds to a MLE simulation that starts

from GS1 in Fig. 26. According to the theoretical results from Section 7, this is

a stable soliton and this is also what is obtained from the MLE simulation. The

time evolution of ||E|| (first plot in Fig. 38) exhibits a fast oscillation between 0

(the c = 0 GS have equal amplitudes) and its constant maximum value. And the

snapshots of the spatial profiles of E at two different times (second and third plot)

show that the GS remains practically unchanged.

The initial condition used in the last two plots in Fig. 38 is the GS2 in Fig.
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26. This GS is unstable and this is what is found also in the simulation. The

development of the instability produces a slow time modulation in the fast oscillation

of ||E|| (fourth plot) and the distortion of the GS can be seen in the snapshot of E

(last plot).

The GS2 and GS4 in Fig. 26 are the initial conditions of the simulations presented

in Fig. 39. The GS2 is a stable moving soliton and this is confirmed by the uniform

oscillations of ||E|| in the first plot of Fig. 39 and the snapshots of E (second and

third plot) that show a translated undistorted GS. Notice that the GS amplitudes

are not equal in this case and thus the minimum of fast oscillation of ||E|| is not 0.

The GS4 is unstable and again this is reproduced in the MLE simulation: a slow

time oscillation can be appreciated in the time evolution of ||E|| (fourth plot) and

the MLE solution moves away from the GS as time advances (see the spatial profile

of E in the bottom plot of Fig. 39).

Finally, in agreement with the stability results presented in Section 7, the MLE

simulations showed no sign of any dispersive instabilities associated with GS. The

simulations in Figs. 38 and 39 correspond to negative dispersion (ω = ω−), but

the same simulations were run with positive dispersion (ω = ω+) and no significant

qualitative stability differences were found.
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Figure 33: MLE simulation results starting from a CW (κ = 1, θ = − π

4
and ρ2 = 1) with a 10−4

perturbation. From top to bottom: time evolution of the norm of E for ω− and ω+, spatial profiles
of E at t = 75000 for ω− and ω+, and spatial profile of E at t = 160000 for ω+ and L = 512π.
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Figure 34: MLE simulation results starting from a CW (κ = 1, θ = − π

4
and ρ2 = 4.5) with a 10−4

perturbation. Time evolution of the norm of E for ω− and spatial profile of E at t = 88000.

Figure 35: MLE simulation results starting from a CW (κ = 2, θ = − π

4
and ρ2 = 7.2) with a 10−4

perturbation. Time evolution of the norm of E for ω− and spatial profile of E at t = 4500.
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Figure 36: MLE simulation results starting from a CW (κ = 1, θ = π

4
and ρ2 = 1) with a 10−4

perturbation. From top to bottom: time evolution of the norm of E for ω+ and ω−, spatial profile
of E at t = 75000 and ω+, and spatial profile of E at t = 30000 for ω−.

65



Figure 37: MLE simulation results starting from a CW (κ = 2, θ = π

4
and ρ2 = 3) with a 10−4

perturbation. Time evolution of the norm of E for ω+ and spatial profile of E at t = 18000.
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Figure 38: MLE simulation results for ω− and starting from a GS with a 10−4 perturbation. From
top to bottom: time evolution of the norm of E starting from GS1 (c = 0 and γ = cos 1), spatial
profiles of E at t = 200 and 9000, time evolution of the norm of E starting from GS2 (c = 0 and
γ = cos 2) and spatial profile of E at t = 2500.
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Figure 39: MLE simulation results for ω− and starting from a GS with a 10−4 perturbation. From

top to bottom: time evolution of the norm of E starting from GS3 (c = 0.5 and γ =
√

3

2
cos 1),

spatial profiles of E at t = 150 and 6500, time evolution of the norm of E starting from GS4 (c = 0

and γ =
√

3

2
cos 2) and spatial profile of E at t = 2000.
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9 Concluding remarks

Material dispersion terms are systematically neglected in the standard amplitude

equation formulation (NLCME) used in the literature to describe the weakly non-

linear dynamics of light propagation in fiber gratings. We have analyzed in this

report the effect of dispersion in the light propagation patterns that set in the fiber

grating. To be more precise, this work focuses on the effect of dispersion on the sta-

bility of two important families of solutions, namely, the continuous waves (CW) and

the gap solitons (GS). We have obtained precise theoretical linear stability results

that have been successfully cross-checked against exhaustive numerical simulations

of the amplitude equations with small dispersion terms (33)-(35) and of the com-

plete physical model equations for light propagation in a fiber grating, i.e., the MLE

(16)-(17). The development of the numerical codes required to carry out the two

sets of simulations described above has also been part of the present research effort.

The main results in this report can be summarized as follows:

• The stability of the CW is drastically affected by dispersion. No matter how

small is the dispersion or what sign it has, there are always stable CW according

to the NLCME formulation that are dispersively unstable. The destabilization

produced by the small dispersive terms is not a higher order, longer time effect;

it takes place in the time scale of the NLCME and the associated growth rates

remain of order one as the dispersion coefficient goes to zero.

• The dispersion induced instability generates dispersive scales that are small

(∼
√
L � 1) as compared with typical scale of the NLCME (∼ L � 1) but

still large as compared with the wavelength of the basic wavetrains (∼ 1). Once

the dispersive scales are destabilized, they typically spread all over the domain

producing a very complicated spatio-temporal dynamics that is not captured

by the NLCME.

• This behavior is the result of the competition of two effects: the dominating

advection due to the group velocity and dispersion. It is interesting to notice

that this is a generic situation that will be present in any propagative system

with spatial reflection symmetry unless we manage to reduce the transport

produced by the group velocity (e.g. by tuning the parameters to approach a

69



codimension two point).

• There are several recent rigorous proofs (see [6] and [36]) that establish that

the solutions of the NLCME remain asymptotically close to solutions of the

complete physical model (the MLE). This seems to be in contradiction with

the results of this report, but this is not the case. These proofs do not contain

any stability result and this is a stability issue: when a stable NLCME solution

is dispersively unstable, its close MLE solution (without dispersive scales) is

also unstable and the MLE dynamics likes to move away from this solution

and develop dispersive scales, as the amplitude equations with small dispersive

terms predict.

• The GS do not exhibit any dispersive instability. This result has been obtained

from a linear stability analysis and has been checked against the numerical sim-

ulations of the amplitude equations with dispersion and the MLE. The reason

for this behavior lies in the fact that this is a propagative instability and its

growth requires the coupling that comes from the nonlinear interaction terms,

but these terms go to zero as the perturbation travels away from the soliton

center into its vanishing tails.

Summing up all the above remarks, we can conclude that, in general, the standard

NLCME formulation fails to predict dynamics of the system and the material dis-

persion terms should be taken into account (i.e., eqs. (33)-(34) should be used) to

appropriately describe the weakly nonlinear regime of light propagation in a fiber

grating.
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Appendix A. Numerical integration of the ampli-

tude equations (33)-(35).

In this appendix we briefly describe the numerical method used to integrate the

NLCME with dispersion terms (33)-(35).

The spatial periodicity of the problem (33)-(35) allow us to expanded its solution

in finite Fourier series [37, 38] as

(A+(x, t), A−(x, t)) =

NF
2

∑

k=−NF
2

+1

(a+
k (t), a−k (t))eik(2πx),

using an appropriately large number of Fourier modes NF. The resulting system of

ordinary differential equations for the Fourier modes (a+
k (t), a−k (t)) can be written

as

da+
k

dt
= c+k a

+
k + iκa−k + nk(a

+
j , a

−
j ),

da−k
dt

= c−k a
−
k + iκa+

k + nk(a
−
j , a

+
j ),

where c±k = ±i(2πk)− iε(2πk)2 and the nonlinear terms are given by

nk(a
+
j , a

−
j ) =

[

iA+(σ|A+|2 + |A−|2)
]

k
.

In order to avoid numerical instability problems associated with the large values

of the linear coefficients c±k for large k [39], we first rewrite the system of ODEs

above in the form

d(e−c+
k

ta+
k )

dt
= (iκa−k + nk(a

+
j , a

−
j ))e−c+

k
t,

d(e−c−
k

ta−k )

dt
= (iκa+

k + nk(a
−
j , a

+
j ))e−c−

k
t,

where the linear diagonal terms are integrated exactly, and we then integrate it using

a standard explicit fourth order Runge-Kutta method [39].The resulting integration
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scheme for a single time step of size ∆t can be summarized as follows

a±k (t + ∆t) = ec±
k

∆ta±k (t) +
∆t

6
[ec±

k
∆tK±

1k + 2ec±
k

∆t/2K±
2k + 2ec±

k
∆t/2K±

3k +K±
4k],

K±
1k = f±

k (a±j (t)),

K±
2k = f±

k (ec±j ∆t/2a±j (t) +
∆t

2
ec±j ∆t/2K±

1j),

K±
3k = f±

k (ec±j ∆t/2a±j (t) +
∆t

2
K±

2j),

K±
4k = f±

k (ec±j ∆ta±j (t) + ∆t ec±j ∆t/2K±
3j),

where f±
k (a±j ) = iκa∓k + nk(a

±
j , a

∓
j ) and the only drawback of the scheme above is

the fact that it requires to store the arrays of coefficients ec±
k

∆t/2, which take into

account the effect of the linear diagonal terms.

This integration procedure always handles the Fourier representation of the so-

lution (a+
k , a

−
k ). The solution is transformed to physical space only during the com-

putation of the nonlinear terms, which is performed in the following steps

(a+
k , a

−
k )

to Phys.−−−−−−→ (A+, A−)→ A±(σ|A±|2 + |A∓|2) to Fou.−−−−−−→ nk(a
±
j , a

∓
j ),

where the products of the amplitudes are computed in physical space and the so-

called 2/3 rule is used to remove the aliasing terms (see e.g. [38]).

This numerical procedure has been implemented in a C code and the FFTW

subroutines [40] have been used to perform the Fourier transforms. The typical

resolutions used to integrate equations (33)-(35) with dispersion coefficient in the

range |ε| = .001, . . . , .001/16 are NF = 256, . . . , 1024 and ∆t = .01, . . . , .001.

It is important to notice that the number of Fourier modes used for the numer-

ical integration of eqs. (33)-(35) should not be too large since otherwise the long

wavelength assumption (19) can be violated [31]. The correspondence between the

wavenumber of the Fourier modes of the solution of the MLE and the wavenumber

of the modes of the solution of the amplitude equations (33)-(35) is given by (see

expression (13))

kMLE = ±1 +
2π

L
kAE, with (

1

L
) ∼ |ε| � 1.
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Figure 40: Dispersion relation of the original ML equations (solid line) and of the amplitude
equations (33)-(35) (dashed line).

And the parabolic approximation produced by the amplitude equations to the true

dispersion relation is only accurate for those modes of the MLE with wavenumbers

near kMLE = ±1 (see the dashed line in Fig. 31). In order to avoid spurious solutions

of the amplitude equations with modes corresponding to wavenumbers away from

kMLE = ±1 (that are not damped because of the absence of dissipation in the

system), and to ensure that the dispersive scales (∼
√

|ε|) are properly represented

in the numerical simulations, the following relation must hold between the dispersion

coefficient |ε| � 1 and the number of Fourier modes used in the discretization of the

amplitude equations:
1

√

|ε|
� NF �

1

|ε| .

The above problem does not arise in strongly dissipative systems in which the dif-

fusive terms wipe out the high wavenumber modes.
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Appendix B. Numerical integration of the MLE

(16)-(17).

The Maxwell-Lorentz equations (16)-(17) with periodic boundary conditions in a

spatial domain of size L,

E(x + L, t) = E(x, t), P (x+ L, t) = P (x, t),

are integrated using in a numerical procedure completely similar to the one described

in Appendix A, that is, using spatial discrete Fourier series expansions and a 4th

order Runge-Kutta temporal scheme.

In order to do this, we first write the MLE as a first order system in terms of Ė,

E, Ṗ and P ,

∂Ė

∂t
=
∂2E

∂x2
+ ω2

p(1− 2∆n cos(2x))P − ω2
p(n

2
0 − 1)E − ω2

pP
3,

∂E

∂t
= Ė,

∂Ṗ

∂t
= −ω2

p(1− 2∆n cos(2x))P + ω2
p(n

2
0 − 1)E + ω2

pP
3,

∂P

∂t
= Ṗ ,

and we then expand the solutions in discrete Fourier series,

(Ė, E, Ṗ , P ) =
∑

k

(ėk(t), ek(t), ṗk(t), pk(t))e
i(2πk/L)x,

using an appropriately large number of Fourier modes. Note that it is enough to

compute the modes with nonnegative wavenumbers because the electric and polar-

ization fields are real fields and therefore verify

(ėk, ek, ṗk, pk) = (ė−k, e−k, ṗ−k, p−k).

The Fourier components of the grating term in the system above can be explicitly
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computed to give

[2 cos(2x)P ]k = [(ei2x + e−i2x)
∑

j

pje
ij( 2π

L
)x]k =

= [
∑

j

pj(e
i(j+nL)( 2π

L
)x + ei(j−nL)( 2π

L
)x)]k = pk−nL

+ pk+nL
,

where nL = L/π, and the resulting system of ODEs for the Fourier modes of the

solution can be finally written as

dėk

dt
= −(2πk/L)2ek + ω2

p(pk − 2∆n(pk−nL
+ pk+nL

))− ω2
p(n

2
0 − 1)ek − ω2

p[P
3]k,

dek

dt
= ėk,

dṗk

dt
= −ω2

p(pk − 2∆n(pk−nL
+ pk+nL

)) + ω2
p(n

2
0 − 1)ek + ω2

p[P
3]k,

dpk

dt
= ṗk,

with k = 0, . . . ,M.

This system, with a sufficiently large number of modes M , is integrated using an

explicit 4th order Runge-Kutta method. The computation of the nonlinear term

is carried out in physical space as explained in Appendix A and the discrete real

Fourier transforms are performed using the FFTW routines [40].
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