
r ■-::-■'■'■ :■ • ■ ■—^ ^ ^——/- ■ ■

REPORT DOCUMENTATION PAGE
Public reporting burden for this collection of informallon is estimated to average 1 hour per response. Including the time for rei Ari_L,-oJ\.-Al\.-lJK-U4-
Ihe data needed, and completing and reviewing this collection of information. Send comments regarding tNs burden estimate
reducing Ihls burden to Washington Headquarters Services. Directorate for Information Operations and Reports. 1215 Jeffers)
Management and Budget, PaperworV Reduction Project (0704-0188), Washington, DC 20509

7. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
2-SeDt.-2004

rl. REPORT TVi
Final Report

^V^</
Intaining
jnsfor
)fliceof

MarcTTZOOO - NovemperZVJ03
4. TITLE AND SUBTITLE

CIPIAF for Information Assurance Institute

6. AUTHORIS)

Professor Fred B. Schneider

~ND',

5. FUNDING NUMBERS

F49620-01-1-0312

7. PERFORMING ORGANIZA TION NAME(S) AND ADDRESS(ES)

Cornell University
4130 Upson Hall
Ithaca, NY 14853

8. PERFORMING ORGANIZATION
REPORT NUMBER

39412

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)

USAiF,AFRL
AF Office of Scientific Research
801 N. Randolph Street, Room 732
Arlington, VA 22203 'Jie

10.\ SPONSORING / MONITORING
A GENCY REPORT NUMBER

N/A

11. SUPPLEMENTARY NOTES

-■V N/A,

72a. DISTRIBUTION/AVAILABILITYSTATEMENT

Approved for Public Release; distribution is Unlimited

12b. DISTRIBUTION CODE

N/A

13. ABSTRACT (Maximum 200 Words)

Three scientists were supported, each for one year, to learn about computer security. The research and
educational accompHshments of each are summarized.

20041008 245
14. SUBJECT TERMS

Trustworthy systems, language-based security
IS. NUMBER OF PAGES

11
16. PRICE CODE
 '. N/A.

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

IS. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescrlbad by ANSI Std. Z39-18
298-102

CIPIAF for Information Assurance Institute
AFOSR Grant F49620-01-1-0312

Final. Report

Fred B. Schneider
Computer Science Department

Cornell University-
Ithaca, New York

1 Introduction

This CIPIAF award facilitated research efforts at the AFRL/Cornell Infor-
mation Assurance Institute (lAI) while, at the same time, providing funds
for three young researchers to acquire the background needed for doing re-
search in computer system trustworthiness. We supported:

• Michael W. Hicks, already educated as a Computer Scientist when
he arrived at lAI, used the CIPIAF award to become better educated
about computer security. Hicks delayed starting as an assistant pro-
fessor at University of Maryland by one year to work as a CIPIA fellow
at lAI.

• Michael A. Marsh is a recent Ph.D. in physics. After taking un-
dergraduate and masters-level courses during his first year at Cornell,
Mike spent a year engaged in research on algorithms for implementing
trustworthy distributed services. He has since accepted a position at
the University of Maryland Institute for Advanced Computer Science.

• Amal J. Ahmed, already educated as a Computer Scientist when
she started, used the CIPIAF award to become better educated about
computer security. She recently accepted a position as a post-doctoral
fellow at Harvard University, Division of Engineering and Applied Sci-
ence, where she will spend the 2004-2005 academic year.

In the sections that follow, we detail the research accomplishments and
publications for each of these young scientists.

I

2 Final Report: Michael W. Hicks

Period of support: 2001-2002

2.1 Description of Research Accomplishments

Cyclone. Cyclone-^ is a programming language based on iC that strives
to improve software security and reliability by eliminating large classes of
vulnerabilities. In particular, the Cyclone language rules out programs that
have buffer overflows, danghng pointers, format string attacks, and so on.
High-level, type-safe languages, such as Java, Scheme, and J^L also provide
this assureince, but they lack the ability to control data representations and
memory management that is C's hallmark. Furthermore, porting legacy C
code to these languages and interfacing with legacy C libraries is a difficult
and error-prone process. The goals of Cyclone are 1) to give programmers
the same low-level control and performance of C while substantially improv-
ing the security and reliability of their code, and 2) to make it easy to port
or interface with legacy C code.

Hicks was interested in Cyclone as a systems programming language;
i.e. a language used to write operating systems, networking software, etc.
To support systems programming, he explored richer interfaces for Cyclone
API's that support usage invariants, modular programming, and he explored
better support for low-level services, such as memory management and re-
source control. Hicks also worked with Greg Morrisett to add so-called
unique pointers to Cyclone to allow malloc/free-style memory manage-
ment while rernaining provably safe and secure. Many aspects of this work
improve on recent related work, particularly the ability to store unique point-
ers in non-unique data structures, and to "forget" unique pointers to be
handled by a garbage collector.

MediaNet. MediaNet^ is a network for delivering streaming media. The
central technical challenge is one of availability: media streams must be
delivered within resource-limited environments while using the network effi-
ciently and meeting the demands of targeit applications. This project grew
out of the DARPA-funded PCES project, which is concerned with delivering
UAV reconnaissance data to military sources. In this context, we must also
ensure the security of the data being delivered and the infrastructure that
delivers it.

^Project homepage: http://www.cs.comell.edu/projects/cyclone/.
^Project homepage: http: //www. cs. Cornell. edu/people/mhicks/medizmet.htm.

MediaNet is constructed as an overlay network of compute nodes, which
both forward and transform streaming data to meet user preferences. These
preferences are described as data-flow graphs of computations, and these
computations are scheduled on the compute nodes by an on-line global
scheduler. Users can specify alternative, but lower-utihty configurations
for handling high load. The goal of the global scheduler is to maximize user
utility while using the network efficiently under changing loads. Both the use
of an on-line global scheduler and the use of user-driven, specification-based
quality-of-service are novel contributions.

Hicks did the majority of the work for this project—including design,
implementation (in Cyclone, to improve system reliability and security),
and performance analysis—working closely with Robbert van Renesse, who
first proposed the architecture and implemented a prototype of the global
scheduler. Some of the results are summarized in a paper co-authored with
van Renesse, where experiments show that MediaNet can deliver improved
performance for users and the network relative to non-adaptive or locally-
adaptive networks.

Hicks also worked with Mark Linderman of the Air Force's Rome Lab to
understand how MediaNet might work as part of the Air Force's Joint Bat-
tlespace Infosphere (JBI) infrastructure. Many military appUcations will re-
quire streaming data (whether video/audio, weather data, target movement
information, combat status, etc.) to be delivered in a timely and secure
manner, under stressed conditions. While more work remains to be done,
MediaNet should be able to deliver such data flexibly, and it maps well to
the JBI architecture in many ways; for example, in-network computations
resemble the JBI concept of a fuselet.

Dynamic Software Updatings. Hicks' doctoral dissertation focused on
the problem of upgrading running software for a variety of reasons, such as
to fix bugs, add new features, add monitoring support, etc. This ability is
important for systems that provide non-stop service, such as financial trans-
action processing systems, air traffic control systems, network routers, etc.
At the same time, the updating process should be robust and secure: access-
control and automatic support must ensure that the updating mechanism
cannot be used to subvert an updateable system.

Prior to arriving at lAI, Hicks had not performed any formal analysis to
prove strong assurance properties for software updates. But once at Cornell,
with Gavin Bierman, Peter Sewell, and Gareth Stoyle of the Cambridge
University Computer Laboratory, he developed a formal system for modeling

dynamically updateable programs. A number of formal mechanisnas were
considered:

• As a foundation, they developed a calculus for /ate binding. This
system is observationally equivalent to a call-by-value lapibda calculus,
but delays Substituting a term for a variable until the "last possible
moment." By being less eager, updates to higher-order functions can
be captured in a sensible and elegant manner, which goes beyond prior
approaches. Late binding is also a useful foundation for mobile code.

• Rather than make every bound variable potentially updateable, they
designed a calculus in which the user designates whether a variable
access should be fixed to a statically-known binding' or whether it
should look for the newest (dynamic) version. This calculus generalizes
prior work in that it can, in ^ single calculus, express a variety of
updating strategies proposed in the literature for different systems.

• Abstract types are useful in updateable programs: abstract values can
be changed at any time as long as the abstract type implementation
is also changed (and is not currently operating on the concrete repre-
sentation). They generalized this idea to apply to named types that

. are not necessarily abstract by using a mechanism similar to .existen- .
tial types. This technique ought to provide both better assurance of
correctness, and greater flexibility in expressing updates.

2.2 Educational Experiences

Hicks attended four Cornell Computer Science Graduate classes:

• CS 514: Distributed Systems (Fall 2001)

• CS 611: Programming Language Semantics (Fall 2001)

• CS 711: Special Topics in PL: Language-based security (Spring 2002)

• CS 513: Computer Security (Spring 2002)

He also lectured twice for Greg Morrisett's CS 314 Fall class in computer
architecture, and regularly attended the Systems Lunch.

Publications

[1] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling
Wang, and James Cheney. Region-based memory management in Cy-
clone. Proceedings of the ACM Conference on Programming Language
Design and Implementation (PLDI) (ACM, June 2002), 282-293.

[2] Michael Hicks, Angelos D. Keromytis, ajid Jonathan M. Smith. A secure
PLAN. IEEE Transactions on Systems, Man, and Cybernetics, Part C,
33 (3), Special Issue on Technologies Promoting Computational Intel-
hgence. Openness and Programmability in Networks and Internet Ser-
vices, Part I, August 2003.

[3] Michael Hicks, Jonathan T. Moore, and Scott Nettles. CompiUng PLAN
to SNAP. Proceedings of the Third International Working Conference on
Active Networks (IWAN) Volume 2207 of Lecture Notes in Computer
Science, Springer-Verlag (October 2001), 134-151.

[4] Michael Hicks, Jonathan T. Moore, David Wetherall, and Scott Nettles.
Experiences with capsule-based active networking. Proceedings of the
DARPA Active Networks Conference and Exposition (DANCE) (IEEE,
May 2002), 16-24.

[5] Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. Experi-
ence with safe manual memory management in Cyclone. Proceedings of
the International Symposium on Memory Management (ISMM) October
2004.

[6] Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James Ch-
eney, and Yanling Wang. Cyclone: A safe dialect of C. Proceedings of the
USENIX Annual Technical Coriference (USENIX, Jiihe 2002)^ 275-288.

[7] Michael Hicks, Adithya Nagarajan, and Robbert van Renesse. User-
specified adaptive scheduling in a streaming niedia network. Proceedings
of the IEEE Conference on Open Architectures (OPENARCH) (April
2003), 87-96.

I

3 Final Report: Michael A. Marsh

Period of support: 2001-2003

3.1 Description of Research Accomplishments

Distributed Blinding Protocol. Distributed services often store secrets
encrypted with a public key for which the system holds a private key that is
split, using a secret sharing scheme, into multiple pieces. If such secrets must
be treinsferred between two distributed services, then a protocol is required
for converting a ciphertext encrypted with one pubhc key into a ciphertext
for the saane plaintext encrypted with another public key. Developing such
protocols was one of the subjects of Marsh's study, in collaboration with
Lidong Zhou (Microsoft Research, Mountainview GA), Anna Redz (Royal
Institute of Technology, Stockholm Sweden), and Fred B. Schneider.

Blind decryption is commonly used when the recipient of the secret is an
individual. It involves the receiving individual selecting a random number
(the blinding factor) which is then entangled with the encrypted secret so
that the servers performing the decryption do not learn the secret value.
In particular, decryption of a bhnded encryption produces a plaintext that
appears random but that the recipient can transform (by "dividing out" the
blinding factor) into the original secret.

Under the auspices of this postdoc. Marsh and collaborators were able to
extend blinding to the case where the recipient is another distributed service
that must eventually hold the secret (encrypted w:ith a different pubhc key)
and whose servers may not individually learn the secret. The new protocol
requires constructing a pair of ciphertexts that encrypt the same random
number- The random number must not be learnable by any individual server
or small coeilition of servers, and the ciphertexts must be provably plaintext-
equivaleiit. The protocdl accorriphsKes this Tor the EIGSWM cryptbSptem.

Marsh's specific contributions to this effort were in devising the initial
protocol and later making modifications to eliminate particular wea,knesses
that were later discovered. Marsh also was the one who initially noticed the
value of distributed blinding factors.

Cornell Data Exchange (CODEX). As an outgrowth of prior research
at Cornell on a secure publish/subscribe system, Marsh determined that
commercial off-the-shelf (COTS) systems could be used to disseminate en-
crypted data provided a secure mechanism existed for distributing the de-
cryption key. This led to the development of CODEX, which is a key man-
agement and distribution service that employs distributed trust in order to

provide strong security guarantees about the confidentiality, integrity, and
availability of the keys it stores.

CODEX uses Byzantine quorfims to achieve availability and uses secret
sharing to preserve confidentiality of certain cryptographic keys. Integrity of
CODEX responses are guaranteed by using threshold cryptography to dig-
itally sign those responses; a signature is produced only if enough CODEX
servers have participated in processing the request. (The assumption is that
an adversary is unable to compromise that many CODEX servers.)

CODEX supports a very flexible access control regime, which can be
implemented with credential certificates. For example, the creator of a key
managed by CODEX can specify the kinds of recipients permitted access to
the key without knowing the identities of those recipients. Client keys are
stored encrypted with the CODEX service pubUc key, and blind decryption
(see above) using the corresponding shared private key is employed to convey
a client's key to an authorized recipient in a way that does not expose that
key to any CODEX server.

Marsh implemented CODEX and has successfully tested it in both local
and Internet environments. The source is approximately 42K lines of new
C++ code, including comments. Some CODEX functionality is not yet
implemented (notably the full generality of the access control mechanism)
but the framework for these features are in place. A full description of
CODEX and the experimental results was invited for publication in the
inaugural issue of the new journal IEEE Transactions on Dependable and
Secure Computing.

Byzantine Quorum Systems Software Package. For designs that
use Byzantine quorum systems, a system developer must program message
broadcasting, secure communications hnks, and coordination software to
manage relations between hosts. Clearly, a software toolbox with this func-
tionality would speed the implementation of new secure distributed system.
Marsh thus invested time in designing and programming that toolbox.

Spurred by the need for these tools in constructing CODEX, work-in
earnest began in December 2002. The toolbox now includes twelve separate
Ubraries. In addition to the general-purpose tools mentioned above, the
toolbox also includes cryptosystem abstractions, secret sharing and thresh-
old cryptography tools, and an event infrastructure for implementing single-
threaded concurrency.

This set of libraries was successfully used to construct CODEX. While
largely an independent effort, some of the implementation was influenced by

Lidong Zhou's COCA implementation.

3.2 Educational Experiences

Marsh attended various graduate-level courses while at Cornell, and he also
regularly attended the weekly Systems Lunch seminar. ,

In Fall 2002, Marsh assisted Fred Schneider in teaching CS 513, System
Security, beUeving that this would be a chance to learn a bit more about
what's involved in taking a faculty position. In addition to anS|Wering student
questions and grading projects. Marsh led the question-and-answer sessions
and coordinated the grading policies and workload distribution between the
other teaching assistants. Marsh also served as the official Uaison between
the students and teaching assistants with regard to grades knd grading is-
sues. He deUvered two course lectures on the topic of secret sharing, the
area of his research.

Marsh reviewed papers for the 16th IEEE Computer Security Founda-
tions Workshop (CSFW) and the Workshop on Formal Aspects in Security
& Trust (FAST). In addition, he attended the 2003 IEEE Symposium on
Security and Privacy, which was held in Berkeley CA from May 11 to May
u. ■■

Publications

[1] Michael A. Marsh, Lidong Zhou, Anna Redz, and Fred B. Schneider.
Distributed Bhnding for ElGamal and Its Application to Disseminat-
ing Secrets. Technical Report TR 2004-1920, Cornell Computer Science
Depewtment, January 2004.

[2] Michael A. Marsh and Fred B. Schneider. CODEX: A robust andsecure
secret distribution system. To appear, IEEE Transactions on Dependable
and Secure Computing 1, No. 1.

4 Final Report: Amal J. Ahmed

Period of support: 2003-2004

4.1 Description of Research Accomplishments

L^: A Linear Language with Locations. Advanced type systems have
proven efTective for enforcing safety and security properties in programming
languages such as Java, Typed Assembly Language, and Cyclone. A central
shortcoming in the type systems of all of these languages is that types can
only capture invariants for mutable objects and not time-varying properties.

Type systems that support strong updates allow the type of a mutable
object to change whenever the contents of the object is updated. That is, the
type of a mutable location can change from program point to program point.
Tracking strong updates is extremely useful when writing low-level systems
code—for instance, to ensure that device drivers respect certain protocols—
or to track security relevant properties in C code. Unfortunately, most typed
imperative languages, including Java and ML, do not allow strong updates.

In joint work with Greg Morrisett and Matthew Fluet, Ahmed devel-
oped L^, a linear language that supports strong updates. The essential idea
is that for each memory cell there exists a unique (linear) capabiUty which
is required in order to access the cell. She and her collaborators also de-
veloped extensions needed to model shared (type-invaxiant) references, as
in traditional imperative languages like ML and Java. Here, the capability
to access a reference cell is unrestricted, but strong updates are disallowed.
The extensions include primitives for thavring—-regaining the abiUty to per-
form strong updates on shared references whose types are frozen—and for
"re-freezing" a cell once the "frozen" type has been restored.

There has been a great deal of work on adapting some notion of linearity
to real prograriimihg languages like' JsLva, iriclud^ing^ ownership lypes aSid
confinement types. L^ could provide a convenient foundation for modeUng
many of these high-level mechanisms.

Dynamic Security Labels and Noninterference. Information flow
policies provide the means to express strong security requirements for data
confidentiality and ktegrity. Recent work on security-typed programming
languages has shown that information flow can be analyzed statically, en-
suring that programs will respect the restrictions placed on data. However,
real computing systems have security policies that vary dynamically and that
cannot be determined at the time of program analysis. For example, a file
has associated access permissions that cannot be known with certainty until

9

it is opened. Although one security-typed programming language (JFlow
and its successor Jif) included support for dynamic security labels, there
had been no demonstration that a general mechanism for dynajnic labels
can securely control information flow.

Upon Ahmed's arrival at Cornell, Andrew Myers and fjantian Zheng
were working on an expressive language in which information flow is securely
controlled by a dependent type system, yet the security classes of data can
vary dynamically. The goal was to show that any well-typed program in
this language is provably secure because it satisfies noninterference, a strong
end-to-end security property. When apphed to confidentialitjy, for instance,
noninterference ensures that confidential information cannoti be released by
the program. '

Ahmed contributed to this project by developing a technique to prove
noninterference even when the language supports (type-invariant) mutable
references and cycles in the memory. The proof technique is based oil con-
structing a model of types as partial equivalence relations (PERs) on pairs
of expressions and their respective memory states. The model is based on
the operational behavior of the language.

Myers and Zheng subsequently used another existing proof technique to
establish noninterference for their language. However, Ahmed has recently
started working with Greg Morrisett to try to use PER models to establish
operational equivalence (and noninterference) in languages that are more ex-
pressive than that of Myers and Zheng; that is, languages for which existing
proof techniques for noninterference do not. suffice.

Foundational Proof-Carrying Code.- Proof-carrying code (PCC) is a
framework for mechanically verifying the safety of machine language pro-
grams. A program tlxatjs successfully verified by a PCC sysj;emi^
anteed to be safe to execute, but this safety guarantee is contingent upon
the correctness of various trusted components, including a large set of low-
level typing rules. Foundational PCC systems seek to minimize the size of
the trusted computing base. Mmed's prior w^^
plored how to eliminate the need to trust complex, low-level type systems
by providing machine-checkable proofs of type soundness for real machine
languages.

Region-Based Memory Management and Foundational PCC. The
Princeton Foundational PCC system lacks support for the reuse of memory.
Informally, to add such support, one must be able to construct machine-

10

checkable soundness proofs for typed machine languages that permit the
types of memory locations to change. Ahmed has been working with Andrew
Appel and David Walker on how to add support for region-based memory
management to the FPCC framework. A language with support for regions
allows one to create a new region, allocate memory in some specified region,
deallocate an entire region at once, etc. Thus far, they have shown how to
construct type soundness proofs for a low-level lambda calculus with region
primitives, without breaking the existing model used by the Foundational
PCC system. The model of this region-calculus supports type-invariant
mutable references in the style of ML and Java, as well as, the reuse of
memory locations at different types.

4.2 Educational Experiences

Ahmed attended two graduate-level courses during the past year:

• CS 711: Advanced Programming Languages Seminar: Language-Based
Security and Information Flow (Cornell University, Fall 2003)

• CS 255: Topics in Language-Based Security (Harvard University, Spring
2004)

She gave a lecture for Andrew Myers' CS 711 and also gave a. guest lecture
for Greg Morrisett's CS 255 on Foundational Proof-Carrying Code.

At Cornell, Ahmed regularly attended the weekly Languages and Com-
pilers seminar, the Systems Lunch seminar, and the Programming Lan-
guages Discussion Group.

Publications, . . ,_ ^ _„ _„„__„ _™

[1] Amal Ahmed, Matthew Fluet, and Greg Morrisett. L^: A linear language
with locations. Technical Report, July 2004.

[2] Amal Ahmed, Limin Jia, and David Walker. Reasoning about hierar-
chical storage.> IEEE Symposium on Logic in Computer Science (LICS)
(Ottawa, Canada, June 2003), 33-44.

[3] Andrew C. Myers and Lantian Zheng. Dynamic security labels and
noninterference. Workshop on Formal Aspects in Security and Trust
(FAST), (Toulouse, France, August 2004.)

11

