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Summary 
 
This research effort developed and tested frameworks and algorithms for use in air warfare 
planning systems.  It focused on the use of simulation models as predictive tools for generating 
potential outcomes of proposed plans, and incorporating realistically high degrees of complexity 
and uncertainty into optimization of plans. 
 
In this effort, the planning process is organized as a hierarchy of decisions, as follows: 

• The top-most level, “Force/Roles”, allocates forces across combat roles (Counter Air, Air 
Defense, Target Reduction, AAF Suppression, and Other) for the remainder of the 
planning horizon.  This is the broadest, longest-term decision level. 

• The next level down, “Targets/Missions”, assigns forces to specific targets and missions, 
both offensive and defensive, in a given planning period.   

• The third level, “Routes/Engagements”, assigns specific routes and engagements to 
individual forces on an assigned mission.   

• The bottom level, “Flight Control”, addresses real-time piloting, navigation, and fire 
control.   

 
This effort focused on developing and integrating the top two levels.  The algorithms for the 
Forces/Roles allocation function at the top level (Level 1 planning) use a stochastic gradient 
(hill-climbing) approach to evaluate and improve upon proposed “Blue” plans using estimated 
average marginal benefits of alternative force reallocations.  The evaluation metric is the net 
discounted value from hitting enemy targets. Plans are iteratively adjusted in the direction of 
increasing estimated marginal benefits until no improving reallocations can be identified.   
 
Each proposed Blue plan is evaluated with a “Stochastic Evaluator”.  The evaluator repeatedly 
samples from a probability distribution describing the (uncertain to Blue) Red force levels.  For 
each sample, the Stochastic Evaluator uses a succession of linear program based mathematical 
models to determine an optimal Red response to the Blue plan, conditioned on the current 
assumed Red force level.  The mathematical models provide both the Red force allocation, 
comparable to Blue’s current plan, as well as marginal relative resource values based on the 
linear programming dual variables or “shadow prices”.  For each period in the planning horizon, 
a separate mathematical model will develop a Red response for the subsequent periods.  
However, only the Red force allocation and dual variables relating to the first period of each 
model are retained.  In this rolling optimization approach, a multi-period look-ahead strategy is 
used to plan future responses and to determine the best current (first-period) Red action.  The 
future portion of the plan is discarded as new information becomes available, and plans are re-
optimized in each period.  Once the first-period decision has been determined, a single-period 
probabilistic simulation model simulates an outcome for forces lost and targets damaged.  The 
surviving forces/targets become the assumed starting state for the next period, and the process is 
repeated until all periods in the planning horizon have been evaluated.  Finally, the results from 
all of the samples are aggregated to generate a probability distribution of potential outcomes.
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The algorithms for the Targets/Mission assignment function at the second level (Level 2 
planning) similarly use a Stochastic Evaluator to generate a distribution of potential outcomes 
conditioned on Red’s force levels.  However, both base locations and the force quantities are 
included in the more detailed Level 2 plan since mission targets are being identified, and combat 
range becomes a factor.  To generate specific Blue and Red target assignments as a function of 
the Level 1 role allocations, a greedy heuristic was developed to assign target-hitting aircraft on 
each side to the highest-value targets.  Supporting forces for the target-hitting aircraft are then 
sequentially assigned on each side to maximize the probability of mission success.  The Level 2 
assignment algorithms can be used in stand-alone mode, but are also integrated into the Level 1 
analysis to generate the detailed force deployments used by the simulation model. 
 
A battery of tests measured the performance and validity of the resulting algorithms on a test 
dataset describing a notional Korean peninsula scenario.  One set of tests demonstrated the 
ability of the hill-climbing algorithm to generate significant improvements to initial Blue plans.  
In other tests, plans with varying weights placed on survivability were generated by varying the 
horizon weight parameter. Placing more weight on survival resulted in greater allocations to the 
Air Defense role and away from the Target Reduction role.  A final series of tests placed the 
planning algorithms in a decision cycle, similar to how they would be used in practice.  Each 
cycle represented a period of a simulated conflict. Varying the maximum number of 
improvements per cycle showed how the plan optimization process adds value during the 
operational planning cycle. Poor intelligence on enemy forces demonstrably skewed the plan 
away from desired goals.  In all of the tests, run-time performance remains a concern.  With 
several minutes required to evaluate each plan, fully optimizing a plan over a 5-period planning 
horizon requires many hours.   
 
This project successfully demonstrated the use of an integrated hierarchical planning as a 
framework for air warfare planning.  It showed that linearized decision spaces can usefully 
approximate problems that would otherwise be intractable due to size and uncertain dynamics.  
Linear programming and simulation can operate in tandem over an extended planning horizon to 
help generate high-level plans tuned to the objectives of the planners.  Uncertainty was handled 
by simulation and sampling.  We showed how to automatically generate more detailed plans that 
are consistent with top-level plans, and that that effective plan optimization algorithms can be 
embedded in an operational planning cycle operating over a multi-period conflict.
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Introduction 

Problem Domain 
 
Figure 1 outlines a hierarchical organization of military planning for air warfare, to be used as a 
reference framework.  The levels are briefly described below. 
 

Flight Control

Routing/Engagements

Targets/Missions

Forces/
Roles

 
 

Figure 1. Levels of Operational Planning for Air Warfare 
 
Level 1 - Assign Forces and Roles 
 
The top level (Forces/Roles) sets force sizing and generic roles for different airframes over an 
extended planning horizon, and over a wide battle area.  Roles include Counter Air, Air Defense, 
Target Reduction, and AAF Suppression.  Many of the decisions at this level must be determined 
well in advance of any conflict.  In this sense, this level precedes and hence lies above real-time 
operational planning. However, all military plans are subject to change once the conflict begins.  
Emerging intelligence changes the perceived enemy status, and event sequences often unfold in 
unexpected ways.  It may become desirable to allocate more or fewer aircraft to their originally 
planned roles as time passes.  The planning horizon at this level may be on the order of days or 
weeks to accommodate integration with overall war plans.  Decisions from this level form an 
overall strategy for the conflict. 
 
Level 2 - Assign Missions 
 
The next level (Targets/Missions) determines specific targets for specific aircraft in a given 
attack wave. (For simplicity, flexibility and realism, air missions are organized into “waves” that 
may occur at a rate such as one per day or three per day.)  Targets are defined generically as 
spatially localized tasks or activities to which air resources can be assigned.  They may include 
defense of friendly targets as well as destruction of enemy targets, and may denote regions, 
weapon systems, or facilities.  Thus, the different “roles” discussed above all are consistent with 
the concept of target assignment.  A target list with defined target values or priorities is the basis 
of planning at this level.  The planning horizon at this level is typically on the order of hours to 
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days to account for emerging targets and changing, frequently updated intelligence such as battle 
damage assessment. 
 
Level 3 - Schedule Routes and Engagements 
 
The third level (Routing/Engagements) determines specific routes for aircraft to follow from 
their base to their assigned targets and back.  It can also determine what enemy forces should be 
engaged en route to the final objectives (targets).  At this point, decision-making is influenced by 
the near real-time state of operations to include positions of specific enemy units. The planning 
horizon at this level is on the order of minutes to hours to account for force locations. 
 
Level 4 Flight Control  
 
The lowest level (Flight Control) refers to real-time piloting, navigation, and fire control.  
Decisions are on the level of detailed activities such as “jink-left” or “fire-missile”.  The 
planning horizon at this level is on the order of seconds to minutes.  The flight control layer is 
not addressed in this project. 
 
Appendix B specifies the detailed problem domain definition.  The domain includes Forces 
(Aircraft and AAF), Missions, Orders of Battle, Targets, Locations, Plans, Planners, and 
Intelligence Estimates.  The data used to populate the domain model came primarily from two 
sources.  The first was a spreadsheet dataset used by AFRL/IFSB for model testing known as 
“the Korean Scenario”.  This provides data for a subset of US forces in and around South Korea.  
The second was a well known public web site (http://www.globalsecurity.org), providing data on 
North Korean forces and bases.   

Previous Research 
 
Early models for planning and optimizing in air combat focused on simplified stochastic games 
and differential games (Isaacs, 1965).  Karlin (1959) discusses the application of dynamic 
programming, linear programming, and network flow analysis to the problem.  Dresher (1981) 
provides a number of interesting and still relevant formulations on topics such as the “Tactical 
Air-War Game”, which we used for a simplified Level 1 (Forces/Roles) allocation problem, and 
“Defense of Targets of Many Values”, which has useful implications for our Level 2 
(Targets/Missions) analysis. 
 
Significant research, largely within the DARPA JFACC (Joint Force Air Component 
Commander) program (Heise and Morse, 2000), has investigated planning of military operations 
near the third or even fourth level (Routing/Engagements or Flight Control) discussed above.   
Many of these efforts emphasized a control-system based mathematical framework.  Mukai et al. 
(2000) provides a differential game formulation for opposing air and ground units.  Unit 
movement (on a 2-D grid) and attrition are governed by differential equations.  The controls are 
the speed, direction, and engagement “intensity” of each unit in each time period.  The value of 
the game is determined by a quadratic payoff function that tends to: 1) minimize distance 
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between units and their designated target locations, and 2) maximize enemy losses for any given 
level of friendly losses.  Cruz, et al. (2002) formulate a similar problem where the unit state 
describes location, the number of “platforms”, and the number of weapons per platform.  The 
controls are movement, salvo size, and choice of target.  The objectives are again to maximize 
enemy losses while minimizing friendly losses.  McEneaney and Ito (2000) attempt to optimize 
both aircraft routes and engagement decisions made against hostile missile units and fixed 
strategic targets.  The unit state describes location (for aircraft and mobile missiles) and “health”.  
The objective is to destroy strategic targets while each side tries to minimize its own losses and 
maximize its opponent’s.  The controls are determined via a two-level hierarchical optimization 
procedure.  First, the aircraft routing through the hostile region is determined; next, the time 
ordering of aircraft engagements with missile sites is determined.  
 
Each of the JFACC efforts above discretizes the decision space, creating a “curse of 
dimensionality” for combinatorial optimization algorithms.  They also assume perfect knowledge 
of the true system state at all times.  Finally, some may involve decisions best left – at least for 
now – to humans on the scene. (For a fascinating, and still relevant, though controversial, 
discussion on human vs. computer decision-making, see Dreyfus - 1994)  A more recent paper 
by McEneaney et al. (2003) refocuses their earlier model on unmanned combat air vehicles and 
points out that the formulation provided is for lower levels of a decision hierarchy.  He suggests 
that the highest level decides strategic planning and resource allocation; a middle level 
determines aircraft routes, engagement assignments, and support activities; while the lowest 
level determines targeting and vehicle guidance.  The paper also introduces the notion of having 
only partial information on the system state.  In a final nod to reality, the paper recognizes the 
severe problem size limitations imposed by combinatorial explosion. 
 
Cave and Busch (2003) also take a control-system approach to formulating the operational 
planning problem within an Aerospace Operations Center. They provide examples of how the 
system could work at the third level (Routing/Engagements) for aircraft being routed to targets 
across a hostile battlefield.  The system explicitly accounts for uncertainty, but modeling of Red 
counter-action dynamics is limited.  The existence of higher decision making levels is mentioned, 
but an integration framework is not discussed. 
 
The algorithms developed and tested in this project build on the preceding ideas and extend them 
with several related advances in decision sciences.  The main additional concepts from the 
literature that were incorporated into our integrated hierarchical planning approach are as follows. 
 
• Simulation-optimization (Carson and Maria, 1997; Dippon, 2003).  Stochastic gradient (hill-

climbing) techniques useful for simultaneously estimating local response surface shapes (i.e., 
how does the expected value to Blue change with alternative Blue decisions?) from samples 
generated by probabilistic simulation, and adjusting Blue’s decisions to maximize expected 
value, have a long tradition in what is now called simulation-optimization.  These ideas reach 
back to the Evolutionary Operations (EVOP), Kiefer-Wolfowitz, and Robbins-Munro 
iterative adjustment procedures for climbing unknown response surfaces.  Our approach 
exploits simulation-optimization techniques to automatically improve Blue’s plan, while 
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adding the novel feature of an embedding Red’s best response strategy (by “optimizing out” 
Red’s choices via a multi-period linear programming approximation). 

• Game theory and linear programming.  From classical game theory (e.g., Dresher, 1981) we 
adopted the idea of letting Red adopt a best response to Blue’s plan, thus encouraging Blue to 
identify a traditional minimax strategy (when one exists in pure strategies).  In effect, this 
assumes that Red will have excellent intelligence and respond as if well informed about 
Blue’s plans.  If this perspective turns out to be overly pessimistic, Blue’s plan will be re-
optimized immediately (in one period) to take advantage of Red’s sub-optimal play.  We 
exploited the idea of shadow prices and hierarchical (Dantzig-Wolfe) decomposition from 
large-scale and decentralized linear programming to coordinate among levels of the decision 
hierarchy and to help optimize out Red’s planning decisions.  In a departure from traditional 
game theory, solutions were required to be pure strategies, i.e., randomized plans were ruled 
out as unrealistic to implement, despite their potential theoretical advantages. (This entails no 
loss of generality if the pure strategy sets are convex and each player’s payoff function is 
continuous in both Red’s and Blue’s pure strategies and is quasi-concave in its own pure 
strategies.  But such nice mathematical results are not available for the discrete allocation 
optimization choice sets of practical interest in real conflicts; hence we simply enforced a no-
randomization constraint.) Finally, we applied ideas of mechanism design from modern game 
theory, to formulate the conflict as a bi-level hierarchical optimization problem, in which 
Blue chooses a plan assuming that Red will choose a best response to it. This avoids the need 
to find (probably unrealistic and computationally daunting) Bayesian Nash equilibria, and 
reduces the problem to one that can be solved by adaptive optimization methods (with 
suitable technical precautions, such as the inclusion of tabu-search type restrictions (Glover 
and Laguna, 1998) to prevent hill-climbing optimization routines from cycling.) 

• Reinforcement learning and adaptive optimization.  In a real air conflict “game”, neither 
player necessarily knows the structure or data of the games – e.g., the payoff functions and 
the transition functions in Markov games (Lagoudakis and Parr, 2002).  Common-knowledge 
priors from which to compute theoretical Bayesian Nash equilibria cannot be justified.  To 
model such realistically incomplete knowledge, we assumed that players can only sample 
from the distribution of outcomes for different pairs of Red and Blue decisions, via 
simulation.  Thus, the players are treated as both learning about the payoff function and 
adaptively optimizing their decisions as the game evolves.  Our models and algorithms 
therefore combine ideas from adaptive dynamic programming, especially multi-period rollout 
heuristics (Bertsekas et al., 1997) for solving Red’s multi-period optimization problem, with 
“learn as you go” ideas from reinforcement learning. Rollout heuristics take a simple 
decision rule (e.g., based on an LP model, in our case) and apply it several steps ahead to 
forecast returns over a finite look-ahead horizon.  Then, they re-optimize the initial (simple) 
decision using the forecast returns as an approximate value function.  Reinforcement learning 
estimates value functions for state-specific decisions from sample data (Lagoudakis and Parr, 
2002) and adjusts the decision rules to improve expected values.  Both sets of ideas play 
essential roles in the algorithms and heuristics that follow.  We apply them directly to the 
conflict simulation, rather to a simplified Markov game, to make the solutions as realistic as 
possible. 
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Methods, Assumptions, and Procedures 

General Algorithm 

Level 1:  Allocating Forces to Roles 
 
Level 1allocate Blue’s forces to roles.   We use the following roles for purposes of illustration, 
although the method is general:  Counter Air, Air Defense, Target Reduction, AAF Suppression, 
and Other.  Appendix B summarizes the input data, and the following sections provide greater 
detail where needed.  Level 1 allocates a fraction of each type of Blue force to each role for each 
time period in the planning horizon.  An allocation can also be interpreted as a plan or as a high 
level “Course of Action” (COA). 
 
The following Blue plan improvement algorithm accomplishes this allocation: 
 

Blue Plan Improvement Algorithm 
 
INPUTS:  An initial feasible plan for Blue; initial values for the parameters (ω, α, ε) = 
(horizon weight, discount factor, force reallocation proportion step size); D1 = the starting 
problem domain data (including probability distribution for Red’s forces, targets, etc) 
 
OUTPUTS:  An array PBijt giving the fraction of Blue’s force of type i resources allocated 
to role j in period t, for each t in the planning horizon.  This is a Level 1 plan for Blue. 
 

1. Initialize the horizon weight (ω = .50), the discount factor (α = .80), and the force 
reallocation proportion (ε = .10), to values between 0 and 1.  Set the planning 
iteration index z =0.  Initialize using an initial feasible Blue plan.  This is an array of 
non-negative allocation fractions, )0(ijtPB  for each force i, role j, and time period t 

(t=1,2,…T) subject to )0(ijtPB  ≥ 0, ∀=∑ ,1)(
j

ijt zPB i, j, t.  (This initial plan may be 

generated randomly, via a heuristic, or imported from an external source.) 
2. Given )(zPBijt , simulate the probability distribution of optimized Red responses and 

outcomes using ω and α along with the starting problem domain data (forces, 
targets, etc), D1.  This will provide a mean and a standard deviation, )(zijtπ and 
sijt(z), of relative marginal value for each Blue force, role, and time period (more 
details below). 

3. Use )(zijtπ and sijt(z) to modify Blues’s current plan to improve Blue’s expected 
objective function.  In general, we seek the reallocation of force where the net, 
statistically significant gain, is greatest. 

4. Adjust Blue’s allocations in the direction indicated, by adding ε to the gaining role 
allocation and subtracting ε from the losing role allocation (if the losing role 
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allocation is currently less than ε we use that proportion instead) to obtain 
)1( +zPBijt .  Set z =z  + 1. 

5. If no further statistically significant improvements are found, STOP, otherwise 
return to Step 2 

 
 
In Step (1), default values of the input parameters are provided in parenthesis.  It is necessary to 
introduce a list of remembered “tabu” elements (Glover and Laguna, 1998) to the plan 
improvement search in Step (4) to prevent a reallocation from being reversed for some number 
of improving steps, thus preventing cycling. 
 
Step (3) of the plan improvement algorithm generates K sample values for each incumbent plan.  
Each individual “sample” outcome is a function of an instance of the possible Red force states.  
The Red force state is drawn from a probability distribution that is assumed to be a result of the 
latest intelligence estimates.  At Level 1, the outcome is generated according the following 
general algorithm: 
 

Blue Plan Stochastic Evaluator (Level 1) 
 
For k = 1 to K 
 

Set the estimated Red force levels by sampling from their probability distribution 
based on D1(k).  Set Vk(z) = estimated net Value to Blue of plan )(zPBijt to 0. 
For t = 1 to T 
 

a) Determine Red’s approximate best response in period t by optimizing over 
the next T – t + 1 time periods using Dt(k) and the horizon weight, ω. Select 
the first period of the solution as Red’s response in period t, obtaining both 
Red’s role allocation, )(zPRijt , and Blue’s relative marginal resource values, 

k
ijtπ . 

b) Using )(zPBijt , )(zPRijt , and Dt(k), create Level 2 plans for period t for both 
Blue and Red. 

c) Use the Level 2 Plans to determine target assignments. 
d)  Use the target assignments to allocate forces, and run the stochastic 

simulator for 1 period. 
e) Set the Red and Blue force and target states to those found at the end of the 

one-period simulation, and update the problem data: Dt(k) → Dt+1(k) 
f) Set Vk(z)= Vk(z)+ αt-1Vkt(z) where Vkt(z) is the observed net value to Blue 

extracted from targets during the period t simulation. 
 
END 

END 
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Compute 
K

z
k
ijt

ijt
π

π =)( = and sijt(z) = 
( )

)1(
1

2

−

−∑
=

K

K

k
ijt

k
ijt ππ

, the average and standard deviation 

over K iterations for the k
ijtπ  returned by Step (a). 

 
The outputs of the algorithm are the )(zijtπ , sijt(z), and the Vk(z).  Note that the discounted Blue 
net values, Vk(z) are not used in the optimization algorithm, but can be examined to view its 
performance or to compare alternative improvement algorithms (as in the “Testing” section). 
 
The approach used in the Stochastic Evaluator is illustrated in Figure 2 below.  The long-term 
optimization will capture long-term effects.  The short-term response is then guided by the long-
term response.  The short-term simulations capture uncertainty. 
 
 

 1 2 3 4 5 6 …… T

….. 

V1 V2 V3 V4 V5 V5 ….. VT

Approximate, deterministic,
long-term optimization models

Stochastic, short-term 
simulation models 

 
 

Figure 2. Optimization/Simulation Scheme to Generate T-Period Outcome 
 
The horizon weight, ω, and the discount factor, α, work in tandem.  The horizon weight places a 
value on survival of forces beyond the T period planning horizon.  A short term perspective, ω = 
0, implies that forces have no value beyond T.  As a result, the relative marginal resource values 
for forces will be skewed in favor of the Target Reduction Roles.  A long-term perspective, ω = 1, 
implies that survival is given high consideration.  Forces are conserved at the expense of more 
immediate target value extraction.  The discount factor, α, on the other hand, is not a control 
parameter, but an evaluation parameter.  It acknowledges that, other things being held equal, we 
prefer shorter conflicts to longer ones.  Target value extraction occurring early is more valued 
than the same target value extraction occurring later. 
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The optimization technique used in Step (a) is described in further detail below in the section, 
“Level 1 Mathematical Programming Formulation.  Step (b) is described below in the section 
“Creating a Level 2 Plan”.  The stochastic simulation of Step (c) is described further under 
“Simulation Model”. 

Level 2:  Assigning Forces to Targets 
 
Level 2 is the lowest level modeled in this project – no downward integration was required.  
Many of the steps required for a Level 2 analysis are performed automatically at Level 1, since a 
detailed Level 2 plan is needed to simulate the outcome of the corresponding Level 1 allocation.  
To give the user some control over the target assignment process of Level 2, it must be possible 
to evaluate alternative plans.  That is the role of the Level 2 Stochastic Evaluator described in 
this section. 
 

Blue Plan Stochastic Evaluator (Level 2) 
 
If automated target selection is desired, initialize Blue’s target set to Null.  Initialize the 
domain data D1 to include the target set:  D1(BlueTargetSet) 
 
For k = 1 to K 
 

1) Set the estimated Red force levels by drawing an instance from their probability 
distribution:  D1(k, BlueTargetSet) 

2) Using ijtPB , ijtPR , and D1(k,BlueTargetSet), create Level 2 plans for both Blue and 
Red. 

3) Using the Level 2 Plans to make target assignments, run the stochastic simulator for 
one period to obtain, Vk , the net value to Blue extracted from targets during the kth  
simulation. 

END 
 
The primary output is the Vk.  The Vk can also be recomputed as an average over the targets 
selected as shown in the AFSimPlan User Guide 
 

Level 1 Mathematical Programming Formulation 
 
This section describes a method to optimize Red force allocation over T periods, given a T-
period Blue force allocation (i.e., a Level 1 Plan).  The Blue allocation is determined by the 
current Blue plan.  The approach also returns Blue’s relative marginal values of resources in the 
form of linear programming shadow prices. To enable a linear programming approach, 
constraints on force quantities are relaxed to allow fractional forces.  A further relaxation on Red 
attrition is described and limitations of the technique are identified. 
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In each period, t (t =1, 2,…T), surviving forces on both sides are first allocated to some 
combination of roles: {Counter Air,  Air Defense, Target Reduction,  AAF Suppression, and 
Other}.  Attrition then occurs in each force/role combination according to rules regarding which 
offensive and defensive roles may oppose each other.  These rules are encapsulated in attrition 
rate matrices, described below.  Forces in the Other role in a given time period do not participate 
in combat activities and do not undergo significant attrition1.  The force types in the Level 1 
model correspond to the different airframes and AAF types.  AAF can only fulfill the Air 
Defense and Other roles.  All force types can be assigned to the Other role. 

variables: 

raijt = # of Red forces of type i allocated to role j at the beginning of  t; i=1,2,…Fr; j = 1-5 
baijt = # of Blue forces of type i allocated to role j at the beginning of  t; i=1,2,…Fb; j = 1-5 
rijt = # of Red forces of type i, surviving period t attrition, that were allocated to role j at the 
beginning of period t 
bijt = # of Blue forces of type i, surviving period t attrition, that were allocated to role j at the 
beginning of period t 
 
Assume j = 3 represents the Target Reduction role.  Only forces assigned to this role can directly 
“extract” value by destroying enemy targets. 

r(t), ra(t)=row vectors of length Fr*5 of Red force quantities (all i,j) in period t 
b(t), ba(t)=row vectors of length Fb*5  of Blue force quantities (all i,j) in period t 
 
input parameters: 

 PBijt = Blue’s weights for force i, role j, in period t (these sum to 1.0 across a given (i,t) - 
this is the current Blue conceptual plan) 

 LAMBDAB = rate at which Blue forces (i,j) destroy Red forces (i',j') (2-d matrix) 
 LAMBDAR = rate at which Red forces (i',j') destroy Blue forces (i,j) (2-d matrix) 

 
The LAMBDAx matrices reflect the invulnerability of the Other role. 

 vbi = average value reduction (from red’s perspective) that Blue force i in the Target 
Reduction role achieve 

 sbi = salvage value factor for Blue force i  
 vri = average value reduction (from red’s perspective) that Red force i in the Target 

Reduction role achieve 
 sri = salvage value factor for Red force i  
 vrTotal = the total remaining value of all Red targets (Red perspective) 
 b(0) = any initial feasible assignment of current Blue forces to roles 
 r(0) = any initial feasible assignment of current Red forces to roles 

 
  
Optimizing from Red’s perspective, the problem is initially formulated as P(T). 
                                                 
1 Their attrition rate may actually be a relatively small nonzero value that does not have a major impact on high-
level strategy. 
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P(T): 
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expected attrition:  t =  1, 2, 3.... T 

 

b(t) = max(0, ba(t) - ra(t)*LAMBDAR)     
r(t) = max(0,  ra(t) - ba(t)*LAMBDAB) 
  
Red reallocation: t = 1, 2,....T 

∑∑
=

−
=

=
5

1
)1(

5

1 j
tij

j
ijtij rraI  i =1,2,…Fr  (Iij=1 if role j is feasible for force i; 0 otherwise)  

  

Blue reallocation to plan: t = 1,2,....T 

baij’t = PBij’t * ∑j bij(t-1)  i=1,2,…Fb;  j’ = 1,2,3,4,5 

 

nonnegativity: 

raijt, rijt, baijt, bijt ≥ 0  

 

Discussion 
 
Note that the Red allocation proportions, PRijt(z), discussed in the previous section are 

determined by PRijt(z) = 
∑ j ijt

ijt

ra
ra

.

.  The Blue relative marginal values for resources, k
ijtπ , are the 

values of the dual variable, i.e., “shadow prices” on the “Blue reallocation to plan” constraints. 
 
This is a conservative formulation in that aircraft must survive the entire mission to extract target 
value.  In the simulation, aircraft must only survive the first ½ of the mission to extract target 
value. 
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Forces surviving until period T are given a salvage value equal to sbi*vbi (for blue) or sri*vri (for 
red).  This reflects the fact that forces have value beyond the scope (planning horizon) of the 
model. 
 

To solve this formulation via linear programming, eliminate the nonlinear “max” in the attrition 
dynamics for Blue by replacing the attrition equations with: 

b(t) ≥ ba(t) - ra(t)*LAMBDAR  t = 1, 2,…T 

There is no incentive for b(t) to be large since the Blue variables only enter the objective 
function with negative sign.  In most cases, there is a disincentive for them to be large, so that the 
left hand side will be set to zero when the right hand side is negative.  In the other cases, the 
value of b(t) will not matter since there is no effect on the objective function.  An example would 
be the numbers of Blue forces allocated to non target reducing roles in period T (bijT, j ≠ 3) 

This approach would not work for the Red variables, since they enter the objective function with 
positive sign.  The problem would be unbounded.  In principle, one could enforce the Red 
attrition constraints by introducing binary variables, yijt = 0,1 such that: 

r(t) = y(t)*[ra(t) - ba(t)*LAMBDAB] t = 1, 2,…T 

But this formulation would not be computationally practical to solve directly as there are many 
binary variables, and the constraints are nonlinear.  The reallocation at each period further 
complicates the solution; an airframe/role combination that goes to zero in one period may 
become nonzero in the next through a reallocation.  The y(t) must also be constrained to make 
physical sense, i.e., once an entire force type has been eliminated, the corresponding yijt  must 
remain at 0 for subsequent t.  We instead first solve the relaxed problem using: 

r(t) = ra(t) - ba(t)*LAMBDAB; -∞ ≤  r(t)   ≤   ∞  t = 1, 2,…T  

to represent Red’s attrition, while eliminating the nonnegativity constraints on the r(t).  Refer to 
this relaxed formulation as RP(T).  Solutions to RP(T)  have several notable characteristics: 

 Red can have attrition in an (i,j,t ) combination even if there are no Red forces allocated 
there. This will result in a negative value for the corresponding element of r(t). 

 This “fictitious attrition” will be deducted from the quantity that can be allocated in 
period t+1. 

 It is possible that no feasible solution can be found.  If all units of a given force type are 
destroyed by real or fictitious attrition by period t, there is no way to allocate positive 
quantities, ra(t+1).  However, we must retain the lower bound of 0 on the allocated 
quantities, otherwise the LP will allocate negative quantities to the invulnerable Other 
role to pump up the allocation to other roles. 

 The solution to RP(T) will provide a lower bound on the objective function (value to red) 
of P(T) since Red may have higher attrition in the solution than is warranted by the 
allocations.  (Note that negative Red values will decrease attrition on blue, perhaps to the 
point of having negative attrition.) 

 The infeasibilities in this approach increase as T increases since the negative attrition is 
cumulative. 
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We have developed a practical heuristic to generate a good feasible (but not necessarily optimal) 
solution to P(T) that accounts for the above considerations.  Because of this, and the fact that we 
are modeling stochastic attrition and target reduction with average deterministic values, we will 
only extract the period 1 solution for Red’s allocation.  Similarly, we will only extract the 
shadow prices on Blues period 1 allocation.  But for these values to capture long-term effects, 
we still must extend (“roll out”) the model out to T periods.  We proceed with the following 
algorithm to ensure a T period feasible solution: 

 

Generating Good Feasible Solutions to P(T) 
 

1. For t' = 1,2,…T 
a. Solve RP(t') 
b. Refer to the Red solution variables as rijt and raijt (post-attrition variables 

and allocation variables).  For each post attrition variable rijt <  0, t=1,2,…t',  
add a constraint to the LP such that rijt =  0. 

2. solve RP(T) 
 
This algorithm requires solving (T+1)(T+2)/2 – 1 linear programs for a single sample of the 
Level 1 Stochastic Evaluator. 
 
It may also be possible to devise a more efficient branch and bound scheme to find a globally 
optimal solution, but this is beyond the scope of the current effort. 

The above algorithms yield the proportion of aircraft Red allocated to each role in each 
period.  We can compute CRijt from these to get the Red equivalent to Blue’s plan.  As noted 
above, the optimality of the Red plan is more suspect for higher values of t, but only the first 
period allocation is used, even though the LP is run for T periods in an attempt to estimate longer 
term effects, consistent with the “rollout” heuristic principle (Bertsekas et al., 1997).  This 
approach was also explored in Yost and Washburn, who applied it to attack aircraft hitting 
targets in stages. 
 

The LP model also provides prices for the Blue allocation, indicating where Blue could benefit 
by adjustments to the plan.  The prices are the dual variables of the “Blue reallocation to plan” 
constraints.  Blue’s value is obtained by recomputing the objective function using v’s for Blue. 

The formulation is conservative in that it assumes that target-reducers (i.e., hitting or striking 
planes)must survive the period to obtain target value in that period. 

In the domain model, TargetEffectiveness is the average capability degradation per strike, by 
target, when this aircraft is in the Target Reduction role.  We represent this using Eik, the 
effectiveness of airframe i when used against target k. The domain attribute, RedValue, is the 
value that Blue believes that Red currently places on a target.  Represent this using vR

k for targets 
on Reds target list (Blue assets) and vB

k for targets on Blues target list (Red assets) 
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In practice (and in the simulation model), each side will likely strike the targets in order of 
decreasing marginal expected value.  If we were modeling Red only, we could include this 
feature using concave piecewise costs in the objective function, automatically forcing Red to hit 
the highest value targets first.  However, this will not work for Blue since Blue values come into 
the objective function with a negative sign.  Blue would thus get assigned to hitting lowest value 
targets first.  One could force a priority order on Blue or include specific targets in Blue’s plan 
by expanding PBijt to PBijtk.  (One could even automate the computation of these factors using the 
PBijtk and the Eik)  However, doing so requires making assumptions on the attrition rate prior to 
even running the model. 
 

Attrition Rate Matrices 
 

Both the Level 1 LP model and the Level 2 simulation require attrition rate matrices - the rates 
per mission at which opposing forces might be expected to destroy each other.  The Level 2 
simulation is used in the Stochastic Evaluators for both Level 1 and Level 2.  In this section, we 
first derive the attrition rates for the Level 2 case, when we know the specific quantities of 
opposing forces.  We then show how we can approximate the rates for the Level 1 LP, where 
precise numbers of opposing forces are not yet known.  The attrition rate matrices are a function 
of underlying values: 

 

λ( i; i') = the rate per hour at which forces of type i destroy opposing weapons of type i' when 
engaged solely against forces of type i'. (In practice, from external testing/simulations) 

 

ψ (i, j, t ; i', j', t') = the allocation of fire from weapons of type i, role j, attacking/defending target 
location t to opposing weapons of type i', role j' assigned to attack/defend at target location t', 
∑∑∑ =

' ' '

1)',',';,,(
i j t

tjitjiψ  (computed using fire-attribution method below). 

 

z(i, j; i') = the number of hours per mission period spent by force type i engaging enemy weapon 
systems of force type i',  when assigned to role j (computed via time-over-target method below). 
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These combine to form: 

 

λ (i, j, t ; i', j', t') = λ( i; i') x ψ (i, j, t ; i', j', t') x z(i, j; i') where 

 

λ (i, j, t ; i', j', t') = the rate/mission at which weapons of type i, role j, attacking/defending target 
location t, destroy opposing weapons of type i', role j', assigned to attack/defend at target 
location t'. 

 

Note that the rates are independent of the bases from which the forces originate. Base location 
only determines which forces may feasibly reach which targets based on the combat range 
(including any aerial refueling) of the forces.  Further, the matrix λ (i, j, t ; i', j', t’) will be 
sparse in most cases where targets are scattered over a large area; that is, there are fewer 
interactions among target locations. 

Fire-Attribution Method 
 

There are many schemes for computing fire-allocation as a function of weapon characteristics 
and weapon quantities.  In our model, we assume an allocation based on the relative numbers of 
enemy weapon systems where: 

Allocation of fire against enemy weapon system k' = 
∑

k
k

k

N
N '  

where Nk is the number of enemy weapon systems of type k.  Since these quantities can change 
each time period through attrition, this type of allocation must be recomputed every time period.  
In addition, we must determine which weapon systems should be considered in direct opposition 
to each other at a given time, i.e., engaged in combat, over a large battlefield.   

 

The number of opposing weapon systems is estimated based on circular “combat zones” around 
target centers.  The idea is that when weapon systems are assigned to defend a specific target 
location, they will attack offensive weapon systems within a certain radius of the target center.  
Conversely, weapon systems assigned to attack a specific target location will attack defensive 
weapon systems within a certain radius of the target center.  The size of these circular combat 
zones are dependent on the specific force types involved and are assumed to be a function of 
underlying characteristics such as weapon range,  performance constraints, and tactical 
considerations.   Weapon systems assigned to attack a target location are assumed to engage in 
combat within these zones.   The overall effect of this approach is to create “fuzzy locations” 
with partial interactions occurring across location boundaries.  In reality, a force defending a 
target may cover a larger area, or it may not even have a specific target to defend.  It may engage 
an attacking force at some distance from any final target area.  However, the main purpose of 
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these combat zones is to allocate fire among various weapon systems that are likely to come into 
contact with one another. 

 

Notional combat zones may overlap.  To illustrate, suppose that an offensive weapon system is 
attacking target location A, as in Figure 3 below.  The circle about A represents the “target 
attack radius” of the offensive force type.  The circles about B and C represent the “target 
defense radius” of defensive weapon systems at those target locations.  We also know the  

 

C

B

A

 
Figure 3.  Allocation of Fire for Offensive Forces at Target Location A 

 
number of weapon systems of the given type assigned to defend each target location.  Assume 
that we want to know the number of opposing weapon systems of a given type for the purpose of 
allocating the fire of offensive weapon systems (as in the equation above) attacking target 
location A.  The total number of defensive weapon systems in opposition at location A are then 
assumed to be those defensive weapon systems assigned to defend A as well as a fraction of 
those assigned to defend B and C.  The fractions are determined by the size of the overlap with 
target location A.  For example, suppose that 0.20 of target location C overlaps target location A.  
Then we will attribute 20% of the weapon systems assigned to defend target location C as being 
in opposition to offensive weapon systems attacking target location A.  Thus for any given target 
location, the number of opposing defensive forces is estimated by adding “overlapping forces” to 
those specifically assigned to defend that target location.  Note that each defensive force type 
may have its own target defense radius.  Separate computations are needed to determine the 
attribution quantities (the “Nk”) for each weapon system type.  Let: 
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f(i, j, t; i', j', t') = the fraction of defensive forces (i', j') assigned to defend target location t' 
(within defense radius, r(i')) engaged by forces (i, j) assigned to attack target location t (within 
attack radius, r(i)).  Assume f(i, j, t; i', j', t') = 1. 

N(i', j', t') = the number of defensive forces (i', j') assigned to defend target location t'. 

I(i,j; i', j') = 1 if weapon system (i', j') is vulnerable to weapon system (i, j); 0 otherwise  

∑∑∑
=

' ' '
)',';,()',','()',',',,,(

)',';,()',','()',',';,,()',',';,,(

i j t
jijiItjiNtjitjif

jijiItjiNtjitjiftjitjiψ  

The reverse situation is used to determine the fire allocation of defensive forces.  Suppose that 
we are determining the allocation of fire for defensive forces of a given type at target location A 
as depicted in Figure 4 below.  The size of the combat zones is again determined by the target 
defense radius of the defensive weapon systems at A, and the target attack radius of offensive 
forces at target locations B and C. 

 

The defensive forces will be firing at enemy forces assigned to attack target location A, as well 
as portions of those assigned to attack target locations B and C. 

C

B

A

 
Figure 4.  Allocation of Fire for Defensive Forces at Target Location A 

 
The equation for ψ (i, j, t ; i', j', t') above holds in the defensive case with the redefinitions: 

 

f(i, j, t; i', j', t') = the fraction of offensive forces (i', j') assigned to attack target location t' (within 
attack radius, r(i')) engaged by forces (i, j) assigned to defend target location t (within defense 
radius, r(i)).  Assume f(i, j, t; i', j', t') = 1. 

N(i', j', t') = the number of offensive forces (i', j') assigned to attack target location t'. 
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Time-Over-Target Method 
 

The approach for time-over-target is based on the attack and defense radii discussed above.  The 
additional parameter required is the average combat speed of the attacking forces.  The conflict 
length is based on the speed of the attacker.  We compute the average time the attacker needs to 
travel from the edge of the relevant combat zone to its center and back (2 radii).  Let: 

s(i) = the average combat speed of attacking force i .  (0 or NA for fixed defenses) 

Then when i  is assigned an offensive role j: 

z(i, j; i') = 2ra(i)/s(i) 

where ra(i) is the attack radius of force i.  When i is assigned a defensive role j: 

z(i, j; i') = 2rd(i)/s(i')  

where rd(i) is the defense radius of force i. 

 

Level 1 Approximation 
 

The formulation above for attrition rates can be adapted to the Level 1 LP model with several 
approximating steps.  However, the inaccuracies increase the further out in time we try to 
project.  This is one reason we always retain only the first period results from the LP in our 
general algorithm.  Let: 

 

λ( i; i') = the rate per hour at which forces of type i destroy opposing weapons of type i' when 
engaged solely against forces of type i'. (From external testing/simulations) 

ψ(i, j; i', j') = the allocation of fire from weapons of type i, role j, to opposing weapons of type i', 
role j'. ∑∑ =

' '

1)',';,(
i j

jijiψ  

z(i, j; i') = the number of hours per mission period spent by force type i role j, engaging enemy 
weapon systems of force type i'. 

 

Which combine to form: 

 

λ (i, j; i', j') = λ( i; i') x ψ(i, j; i', j') x z(i, j; i')  
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where  λ (i, j; i', j') = the rate/mission at which weapons of type i, role j, destroy opposing 
weapons of type i', role j'.  The allocation of fire terms still require I(i,j; i', j') = 1 if weapon 
system (i', j') is vulnerable to weapon system (i, j); 0 otherwise.  Now we let: 

 

N(i,j) = the current number of weapon systems of force type i assigned to role j.  

 

Then: 
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The fire allocation terms, ψ, are time dependent as they depend on the current number of forces 
in each assigned role/target location.  We can most easily compute λ (i, j; i', j', t'; τ) for red, 
where τ is the time period, since we have the parameters PBijτ (Blue plan).  Let, N(i) = the total 
current amount of Blue force i.  We can compute an approximate ψ specific to each time period 
via:   
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Note this assumes that attrition among different Blue forces i, will occur in the same proportions.  
It is somewhat more difficult to compute the fire allocation of Blue forces against Red - we do 
not know the allocation of Red forces to roles a priori since that is the function of the LP.  
Instead, we let Blue fire allocations be computed as: 

∑
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since we do know the total number of Red forces of each type at the beginning of the planning 
horizon.  (Note that we assume I(i,j; i', j') = 0 if roles j or j' are infeasible for forces i or i' 
respectively.)  The effect is to allocate the total attack strength allocated against a Red force type 
into each feasible role within that force type.  While seemingly a crude approximation, this 
works reasonably well because the LP tends to channel each Red force into a single optimal role 
in a given time period.  We also must consider that due to varying rates of attrition among force 
types, even this approximation becomes less accurate over time.  We again rely upon that fact 
that we only extract the first period results from each LP to compensate. 
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Update of AAF Target Values 
 
AAF (anti-aircraft forces) have no intrinsic target value in the model.  While they are mission 
targets, their value comes from their ability to degrade forces attacking targets that have intrinsic 
value such as bridges, airbases, ports, etc.  This implies that within the Level 1 LP Model, AAF 
are treated strictly as forces.  In the Level 2 simulation, they are treated as both targets and forces, 
but no target value is extracted from them.  The single way that AAF target value enters the 
model is in target prioritization during the process of creating a level 2 plan for both sides (see 
“Creating a Level 2 Plan” below). 
 
In the case of AAF targets we need to make use of Level 1 shadow prices on AAF resources and 
the values of the targets they are presumed to defend.  The shadow price reflects the contribution 
to long term value.  We implemented a simple pro-rating scheme as follows: 

 

π = the period 1 shadow price on a unit of AAF resource j from the Level 1 LP (assume for now, 
without loss of generality, that a side has only one type of AAF).   

vt = the value of target t.   

T = the set of all non-AAF targets 
 
Recall the geographical overlap factors, f, discussed in “Attrition Matrices” above.  Let: 
 
ft(t') = fraction of non-AAF target t defended from force i by AAF at location t' 
 
where the fraction is determined by the overlap of combat radii centered at locations t and t'.  The 
combat radii used are the TargetDefenseRadius attribute of AAF. 
 

∑
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)'(  = the weighted average value of non-AAF targets defended by AAA at 

location t' 
 

T
v

v Tt t∑∈= = the average target value of non-AAF targets 

If  t' is an AAF target: 
 

v
tvvt
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The value of AAF target t' is the Level 1 shadow price of AAF scaled by the ratio of average 
target value defended by t' to overall average target value. 
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Creating a Level 2 Plan 
 
The algorithm to build a Level 2 plan for Blue and/or Red (CreateLevel2Plan.m) assumes Red 
and Blue Planner input data populated as follows: 
 

 Blue Force instances have been created.  Since the algorithm uses their assigned role we 
assume that the role assignments in each instance are consistent with the current Level 1 
Blue Plan. 

 
 Blue Force instances have an assigned base location with known Latitude and Longitude. 

 
 For the case of Red, one “dummy instance” of each Force type (unique name) has been 

created to provide force characteristics.  The instance does not need an assigned role or 
base. 

 
 Red Force quantity estimates are provided by Force type and Base in the form of an 

intelligence estimate.  Each base has known Latitude and Longitude. 
 

 The Red planner contains a populated Level1Plan (from the Level 1 algorithms) defining 
the Role proportions for each Force type. 

 
 Targets on the target list of each side have been fully populated, including imputed values 

for AAF type targets. 
 
The outputs of the algorithm are data structures RedForceAssignments(i,j,t) and 
BlueForceAssignments(i,j,t) giving the quantities assigned to each Force i, Role j, Target t.  The 
domain of t is the Blue target list followed by the Red target list.  Aircraft can be assigned to 
aircraft on the opposing target list in the case of the Air Defense role. 
  
The algorithm can compute just a Red Level 2 plan if Blue already has an externally or 
previously generated Level 2 Plan.  In that case, the Blue plan is held fixed.  Blue can also be 
constrained to strike only within a specified subset of targets. 
 
Greedy assignments generate the initial solution.  A series of improving swaps of target-hitting 
aircraft (Target Reduction and AAF Suppression) and subsequent reallocations of Air Defense 
and Counter Air are used to improve the solution where each side operates in turn.   The 
assignment processes for the two sides proceed via a “Blue Phase” and a “Red Phase”.  Each 
phase consists of three main steps in the following sequence: 
 

1. Assign target hitting aircraft to targets 
2. Opposing Air Defense aircraft and AAF are assigned to targets in response to (1) 
3. Assign Counter Air to targets to escort the aircraft in (1) and defend against the aircraft in 

(2) 
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Each assignment step is based on a greedy heuristic that assigns each aircraft to the target where 
it can produce the highest expected value extraction (target destruction) or destruction of enemy 
aircraft.  Aircraft can only be assigned to targets within range of their home base.  Assignment to 
a given target can occur if a maximum allocation has not been reached, or if all targets already 
have a maximum allocation.  In the case of target hitting aircraft, the maximum allocation is a 
sum of the expected target reduction proportion that will occur.  The default is 2.0; this accounts 
for the stochastic nature of the target strikes and the fact that some aircraft may be destroyed 
before reaching their targets.  In the case of Air Defense or Counter Air, the maximum allocation 
reflects the expected proportion of opposing aircraft destroyed.  The default is 1.0.  We provide a 
simplified statement of the assignment algorithm below: 
 
1.  Perform an initial greedy-based assignment of forces using a Blue Phase followed by a Red 
Phase.  Let redTargetSet be the resulting set of targets assigned to Red target strike aircraft and 
blueTargetSet be the comparable set for Blue (blueTargetSet can also be specified in advance). 
 
2.  For each target, t,  compute a net value to blue, V(t), using the production function 
V(t)=ValueEstimator(RedForceAssignments(:,:,t),BlueForceAssignments(:,:,t),t).  We abbreviate 
this function as V(R(t),B(t),t). 
 
3.  Set: 
improving = TRUE 
BlueTabuSet = {} 
RedTabuSet = {} 
TabuTime = 10 
Iteration=0; 
While (improving) 
  

Iteration=Iteration+1 
 

3A.  Blue Phase:  (hold the Red Phase solution fixed.) 
 
bestImprovement = 0; 
For each pair2 (t1,t2) of targets in blueTargetSet 
For each type of target strike aircraft and target strike roles in t1 
If (t1,t2,type i, role j not ε BlueTabuSet) 

 
Switch one unit of target strike aircraft from target t1 to t2, providing assignment 
B'.  Let  Vest(t1,t2) = V(R(t1),B'(t1),t1) + V(R(t2),B'(t2),t2) and V(t1,t2)= 
V(R(t1),B(t1),t1) + V(R(t2),B(t2),t2) 

If (Vest(t1,t2) > V(t1,t2) ) 

                                                 
2 If blueTargetSet has > 10 targets we select a random subset of 10 targets. 
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Perform Steps 2 and 3 of a Blue Phase assignment to update assignment B' 
and to compute R'. 
Compute Vnew(R'(t),B'(t),t) for each t (with R'(t) ≠ R(t) OR B'(t) ≠ B(t)) 
 
If (∑Vnew - ∑ V > bestImprovement) 

bestImprovement = ∑Vnew - ∑ V 
bestSwap = [t1, t2, i, j] 
bestB = B' 
bestR = R' 
bestV = Vnew 

 
If (bestImprovement > 0) 

 
Perform bestSwap (B = bestB, R = bestR, V = bestV) 
Improving = TRUE 
Reverse operation: (t2, t1, type i, role j)  BlueTabuSet with IncludeTime = 
Iteration 

Else 
Improving = FALSE. 

 
Remove any elements from BlueTabuSet with IncludeTime < Iteration-TabuTime 

 
3B.  Red Phase: (hold the Blue Phase solution fixed) 
 
[This is analogous to the Blue Phase except that Red seeks the swap with the largest net 
decrease in value to blue] 

 
Discussion 
 
Each greedy assignment step considers the number of aircraft available for a given role.  For 
Blue, the individual instances define availability.  For Red, the Level1Plan proportions and the 
estimated force quantities by base give the total numbers available.  For both Red and Blue, the 
target location and base location are used to evaluate assignment feasibility.  The target must be 
within the range of the aircraft. 
 
The test, Vest(t1,t2) > V(t1,t2), considers only the changes of value attributable to the swap of 
target strike aircraft.  Since it does not also consider any subsequent reallocation of Air Defense 
and Counter Air occurring in the Blue phase it is an approximation or “hint”.  Its chief purpose is 
the speed up the algorithm, which is subject to combinatorial growth as targets increase. 
 
The algorithm was implemented with tabu (Glover and Laguna, 1998) methods to avoid cycles 
(which were observed during testing).  A cycle is where a swap keeps getting reversed, leading 
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to an infinite loop.  Each time a swap occurs, the algorithm may not reverse the swap for a 
specified number of cycles. 
 
A limit on the number of iterations can be specified in advance.  A limit of 0 implies that only an 
initial feasible solution is desired. 
 
The production function V(R(t),B(t),t) produces a net value to Blue from the perspective of both 
Red and blue, based on the Target.RedValue and Target.Value attributes.  Blue operates on Blue 
perspective values while Red operates on Red perspective values. 
 
The production function V(R(t),B(t),t) estimates the value extracted at each target when a given 
combination of Red and Blue forces are present, assuming no interactions with other nearby 
targets.  First, attrition at the target occurs according to deterministic rate matrices.  Then, target 
value extraction occurs according to the cumulative distribution function for the exponential 
distribution modeling target effects.  This approach turned out to be both fast and stable.  
Interestingly, we found that few (less than 10) improvements could be made to the initial greedy 
solution for Red and Blue plans. 
 

Stochastic Simulator 
 
The attrition and target engagement simulation (AerialAttrition2.m) operates at planning Level 2.  
Since Level 2 incorporates target and mission planning, the simulation model must distinguish 
between target locations.  The input includes the number of aircraft by side, force type, and role 
assigned to attack or defend each target.  These quantities were determined using the algorithm 
described in Creating a Level 2 Plan above. 
 
The simulation consists of three main phases: 
 
Phase 1 Pre-Target: Counter Air, Target Reduction, and AAF Suppression on each side fights it 
out with opposing AAF and other Air Defense for 1/2 time period.  Attrition reduces the force 
quantities. 
 
Phase 2 Target:  Surviving Target Reduction and AAF Suppression aircraft on each side engage 
Targets to determine a score.  The capability indices at the targets are reduced accordingly. 
 
Phase 3 Post-Target:  Aerial battle of Phase 1 recommences for remaining 1/2 of time period 
with remaining aircraft 
 
The planning logic assumes that the primary objective of the air campaign is to support the 
forces (hit Targets) on the ground.  If more planes can be allocated to this role, the score will be 
higher.  Clearly, a myopic strategy of assigning too many aircraft, too soon to Target Reduction 
may not work well.  The enemy Air Defense may need to be eroded first so that Target 
Reduction forces do not all get destroyed. 
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Attrition Logic 
 
The attrition portions of the simulation (Phases 1 and 3) are designed as a multi-weapon type, 
stochastic “Lanchester” model.  The state of each side (Red/Blue) is provided by a state-vector of 
weapon-system types (as in Popken and Cox, 2000) by location.  Each unit on each side has a set 
of parameters designating the rate at which they can destroy opposing force types.  To illustrate: 
 
λij = the rate (per planning period) at which forces of type i destroy opposing forces of type j 
when engaged solely against weapons of type j (assume that i and j incorporate the notion of 
force type, role, and location). 
 
Since each unit can potentially destroy more than one opposing type, a probabilistic fire 
allocation scheme has been devised.  It is based on the “fractional allocation method” discussed 
in Anderson and Miercort (1989).  The probability of a unit of weapon type i on side s, selecting 
an opposing weapon type j on side s' is given as: 
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s = the allocation of fire from a weapon of type i on side s when that weapon is engaging an 
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ijC the corresponding fire allocation weighting coefficient 
 
Wi

s = the number of weapons of type i on side s; i = 1,2,3, .. Ns, s ∈ {R, B} 
 
Ns = the number of different weapon types on side s; s ∈ {R, B} 
 
Note that this allocation rule is state-dependent in that it depends on the current number of 
surviving weapons of each type on each side.  Aij

s is constructed to concentrate fire on the 
weapon types with greater number.  In some cases, one can improve the allocation by 
appropriate selection of s

ijC .  Anderson and Miercort (1989) suggest that: 
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Ei
s = the average number of engagements per time period made by a weapon of type i on side s 

(against all enemy weapons).  Note that Ei
s is the inverse of the mean of the interfiring time 

distribution for weapon system i; i = 1, 2, 3, .. Ns, s ∈ {R, B}. 
 
Pij

s = the probability of kill per engagement by a weapon of type i on side s when that weapon is 
engaging an enemy of type j; i = 1, 2, 3, .. sN  , j = 1, 2, 3, .. 'sN , s ∈ {R, B}. 
 
This formulation tends to focus fire on targets that are most effective by weapons which are the 
most effective against them.  However, problems arise when opposing forces are relatively 
defenseless but are nevertheless very desirable for targeting (e.g.  Mig-29 vs. B52).  The 
equation above would give them a low or zero allocation.  For this reason, we use a simple 
allocation where the parameters, s

ijC , are set to 1.0; allocation is based on relative numbers of 
opposing forces at a given location. 
 
 
Next, we need to know how to determine what gets destroyed and when in the simulation.  We 
define the “total destruction rate” as: 

 

λj
s = the total rate at which weapons of type j on side s are being destroyed by weapons on the 

opposing side, or 
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We assume that the casualty process is a Markov process with rate, λj
s.  Therefore the time 

between kills for each weapon type j on side s has an exponential distribution with mean (1/ λj
s)  

(similar to the Bonder-Ferrell approach to determining Lanchester rate coefficients (Taylor, 
1983)).  But since these rates change with the force populations, they must be updated after each 
kill.  This process occurs within the following attrition simulation algorithm: 
 
Set Wi

s = the surviving number of weapons of type i on side s; i = 1,2,3, .. Ns, s ∈ {R, B}. 
clock=0 

while clock < T 
 

1. compute the fire allocation fractions Aij
s 

 

2. compute the total destruction rate for weapons of type j on side s:  ∑=
=
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3. determine the next time to destruction, tj

s, for each weapon type by drawing from an 
exponential probability distribution E(λj

s) 
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4. find tmin = minj,s(tj

s) 
 

5. if (clock + tmin < T) 
 

a. for s and j such that tj
s = minj,s(tj

s), set Wj
s =Wj

s –1 
 

6. set clock = clock + tmin 
 

Target Engagement Model 
 
Target engagement occurs during the second or middle phase of the simulation (via 
EngageTargetList2.m in the accompanying MATLAB files).  The surviving Target Reduction 
and AAF Suppression aircraft on each side hit the target in the target location to which they are 
assigned. 
 
For each target location, the model works through the targeting aircraft on each side.  First, the 
current time period must be within the window of opportunity defined for the target.  The actual 
damage done by an aircraft is then determined probabilistically.  The damage is modeled as an 
exponential random variable with a mean value equal to the target effectiveness (average 
capability reduction by target) of the aircraft.  After each strike, the target lists are updated and 
value reduction is accumulated to score the engagement.  No value can be extracted from a target 
once its capability falls below a desired damage level. 
 
Note that each target has two different “values”, one according to Blue’s value system, the 
second according to Blue’s perception of Red’s value system.  The target engagement model 
returns the scores from both value systems. (Higher level algorithms will assume that each side 
seeks to optimize decisions according to their own value system.) 
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Results and Discussion 

Database 
 
The data used to populate the domain model came primarily from two sources.  The first is a 
spreadsheet dataset used by AFRL/IFSB for model testing known as “the Korean Scenario”.  It 
provides data for a subset of US forces - on the order of several hundred individual aircraft - in 
and around South Korea.  The second major source, a well known public web site 
(http://www.globalsecurity.org), was used to obtain data regarding North Korean forces and 
bases.    The test database contains 13 Blue force types and 7 Red (North Korean) force types, 
including both aircraft and AAF on each side.  Blue has 15 base locations, each of which is a 
target for Red.  Red has 201 targets, including bases, SAM sites, ground force concentrations, 
and various infrastructure targets.   
 
Some of the domain attributes were approximated with plausible, if not completely accurate, 
values.  Approximate data suffice to explore the dynamics of the planning algorithms.  The 
approximations included the combat effectiveness (kills/hr when a unit of force type i is in 
combat against force type j), target effectiveness (capability degradation per mission by force i 
against target t) and the target values.  To compute combat effectiveness, we used some simple 
heuristic rules based on a relative force strength index.  For target effectiveness, we used a scale 
that was based on the lbs of munitions carried by an aircraft versus an estimate of lbs. of 
munitions needed to destroy a target.  For target values, we used estimates based on examples 
from the AFRL data set.  (These rules are documented in the GenerateTables.m file in the 
TestingAndMaintenance folder of the accompanying MATLAB files.  Also see the installation 
instructions on how to use this function file to generate revised data). 

Verification Testing 
 
The purpose of this testing is to ensure that no errors or warnings occur over a range of input 
data values provided by a random data generator and by the final Korean scenario data set.  All 
algorithm outputs appeared properly formed with reasonable values.  All controls on the 
MATLAB GUI panels (see Appendix A: AFSimPlan Software) functioned as expected with 
correct displays and invoked behaviors. 

Performance Testing 
 
The purpose of this testing was to determine the runtime requirements of the major algorithms.  
We first used the MATLAB “profile” function to find and eliminate bottlenecks.  The next step 
was to benchmark the test machine using the MATLAB “bench” function (Figure 5).  This 
provides a baseline for comparing the performance results to those obtained on a different 
machine. 
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Figure 5.  MATLAB Benchmark for the Test Machine 

Level 1 
 
The following performance tests were performed: 
 
1. Record the average time required to perform a stochastic evaluation of a given Blue Level 1 

plan with 10 sample iterations per evaluation. 
2. Test the plan optimization time for a 5 period plan: 

a. Vary N (the max  # of improvement steps used to obtain a revised Blue Plan)  set 
of N = {100,200,…. Max} 

b. Set the Blue plan to an uninformed (flat) prior distribution for the feasible roles for 
each force. Set K  = 10 = number sample evaluations per Level 1 Blue plan.  Set the 
horizon weight to 1.0. 

c. Record the total time required to complete optimization for each optimization level, N. 
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N 
(improvement 

steps) 

Total time 
(hr) 

Cumulative 
Time/Step 
(min) 

Time/Step 
for Interval 

100 7.26 4.36 4.36 
200 13.31 3.99 3.63 
300 18.86 3.77 3.33 
400 23.98 3.60 3.07 
500 28.89 3.47 2.95 
600 33.79 3.38 2.94 
700 38.63 3.31 2.91 
726 39.85 3.29 2.81 

Table 1.  Level 1 Performance Testing Summary 
 
We see that each plan evaluation requires several minutes for 10 sample iterations, an average of 
4.36 minutes each for the first 100 improvements and 2.81 for the last 26.  The evaluation times 
become smaller as the forces are concentrated into fewer roles than the initial flat prior 
distribution.  The times are also somewhat less for smaller horizon weights (not shown), as 
forces are further concentrated into fewer roles.  We also see that the time required to fully 
optimize the Blue Plan can be very lengthy.  In the case of horizon weight = 1, almost 40 hours 
were required on the benchmark machine.  It should be noted that less time is required for 
smaller horizon weights; however, this is not due to efficiency.  With lower horizon weights the 
relative marginal values (shadow prices) are smaller, causing the plan improvement algorithm to 
quit because of a lack of statistically significant differences in role allocations.  For example, at 
horizon weight = 0, the algorithm quits after about 350 improvement steps.  At that point it has 
operated on allocations in periods 1, 2, and part of 3.  It cannot detect differences in allocations 
beyond period 3.  At horizon weight = 1, all forces, roles, and periods were operated upon. 

Level 2 
 
The following performance tests were performed: 
 
1. Set K = 100 = the number of sample iterations per Level 2 Blue plan.  Set the Level 1 Blue 

plan to an uninformed (flat) prior distribution for the feasible roles for each force. 
2. Vary the number of improving cycles, N, in the Level 2 Optimizer N = {0,10,20,30, etc}.  

Record the total time required to create a Level 2 Plan for the set of N. 
3. Record the time required to evaluate each given plan with K =10 sample iterations. 
 
At Level 2, we first create a Level 2 Blue plan using the greedy heuristic described previously.  
We then evaluate the plan with the Level 2 Stochastic Evaluator.  In the tests reported below, the 
random number generator was reset before each “Create” and each “Evaluate” so that the results 
could be fairly compared.   
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N Create 

Time (sec) 
Evaluation 
Time (sec) 

Mean Plan 
Value 

Std. Dev  

0 3.275 408.13 6458.29 206.35 
10 51.91 345.58 6465.50 154.60 
20 53.30 349.90 6465.50 154.60 

Table 2. Level 2 Performance and Face Validity Testing Summary 
 
We see that the plan creation time is relatively quick (a few seconds) if no improving iterations 
are made.  Adding N=10 improving iterations provides a big jump in run-time to almost a minute.  
However, there is no corresponding increase in Evaluation Time.  The results above actually 
show a small decrease but that is merely random variation. The implications of the Plan Value as 
a function of N are discussed in the next subsection below.  

Face Validity 

Level 1 
 
It is important for plans to reflect varying emphasis on short versus long term considerations.  In 
the short run, there is no value given to survivability beyond the planning horizon.  In this test we 
create Level 1 Blue plans using different horizon weights. 
 

1. Vary the horizon weight to place varying emphasis on near versus long term – horizon 
weight  = {0, .5,  1.0}.  Set K=10.  Set the planning horizon to 5 periods. 

2. For each horizon weight 
d. Initialize the Blue Level 1 plan to an uninformed (flat) prior. 
e. Create a fully re-optimized Level 1 Blue plan and record the plan result. 

 
 
horizon weight Counter Air Air Defense Target Reduction AAF Suppression Other

0 2.30 4.90 47.47 4.07 6.27
0.5 0.70 19.90 41.67 1.00 1.73
1 1.20 23.00 39.60 0.20 1.00  

Table 3.  Total Allocations By Role Over the Planning Horizon 
 
Table 3 summarizes the resulting plans by summing role allocations over all forces and time 
periods.  As expected, Target Reduction is deemphasized with higher horizon weights.  The 
other significant change is in Air Defense.  At the same time, the other three role allocations 
show decreases.  That Air Defense increases, rather than say, Counter Air, reflects the objectives 
in our model.  Both Red and Blue are trying to maximize target value extraction.  By assigning 
aircraft to Air Defense, Blue can both protect targets and reduce Red forces through attrition.  
This improves longer term survivability since Red then has fewer planes with which to attack 
Blue forces. 
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When the horizon weight = 0, operating the plan optimization algorithm would again be 
expected to increase the discounted net Blue plan value.  For higher horizon weights, the 
optimizing algorithm should produce less net Blue value over the planning horizon, since 
survivability becomes a greater consideration.  Figures 6 and 7 show the discounted net Blue 
plan value as a function of improving steps for the cases with horizon weight = 0 and 0.50. 
 

 
Figure 6.  Net Blue Plan Value vs. Improving Iterations (Horizon Weight=0) 
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Figure 7. Net Blue Plan Value vs. Improving Iterations (Horizon Weight = .50) 

 
Both cases show a generally steady upward trend in net Blue plan value.  With a horizon weight 
of zero, the net time discounted value extracted by the final plan is approximately 65% higher 
than for the original plan.  With a horizon weight of 0.50, the value increases by approximately 
50%.  However, both cases display regions where the net Blue plan value has a locally 
decreasing trend, most markedly when the horizon weight = 0, between 75 and 100 improving 
iterations. This is not random variation: the phenomenon was observed for different random 
number seeds.  We investigated the reallocations occurring at that point and found that forces 
were being shifted from Counter Air to Target Reduction.  Our current hypothesis on the source 
of these dynamics is that they are caused by elements of the current linear programming 
formulation, which assume that Blue can always extract target value at an average rate per 
aircraft type.  Red, on the other hand, has an explicit upper bound on the maximum target value 
extraction.  A similar constraint on Blue could render a Blue input allocation infeasible, thereby 
requiring performance reducing workarounds.  So in some situations, Blue Target Reduction 
forces will “overrun” red targets – there are not enough Red targets to hit.  This over-allocation is 
then reflected in the simulation.  The planes moved from Counter Air to Target Reduction by the 
LP subject all Blue forces to greater attrition.  At the same time, the former Counter Air forces 
have no targets remaining to hit.  Therefore the overall net target extraction is reduced until 
additional adjustments are made by the optimizer.  Optimizing the plan for a relatively few steps 
from a given starting point is not guaranteed to increase value when Red targets are near 
exhaustion.   
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Level 2 
 
The Level 2 validation test examined how the net Blue plan values change as a function of the 
number of improving iterations using the Level 2 plan creation algorithm.  Of course, 
improvements are being made simultaneously to both Red and Blue plans; that is, each step 
involves first a Blue improvement, and then a Red improvement.  After several improving 
iterations, it is possible to wind up with a net Blue plan value with little net change.  Table 2 
above shows the plan values as a function of the number of iterations.  Recall that the algorithm 
begins with a greedy based initial assignment for each side, and then the improving iterations 
operate on the initial plan.  The improvements made little difference (and no incremental 
improvements after 10 iterations in any test case examined), suggesting that the initial plan may 
suffice in many cases, unless a more effective improvement routine can be discovered. 
 

Statistical Comparisons between Planned and “Actual” Conflict 
 
The last set of tests exercise the algorithms as they might be employed during actual use, 
applying them to the same simulated conflict used by the internal planning algorithms.  (This 
highlighted differences due to approximations made by the planner rather than differences due to 
mismatches between the simulation and reality.)  Figure 8 illustrates the evaluation process. 
 

 
Figure 8.  Model Use during a Planning Cycle 
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The first test demonstrates how the planner adds value to the plans during the operational 
planning cycles.  The stopping condition for the conflict is that Blue can no longer extract net 
positive value, (e.g., because all Red targets are destroyed).  With the horizon weight set to 0 and 
the discount factor to 0.80, the optimizer was allowed to make N improving iterations, where N ε 
{0, 50, 100}.  The initial plan is the uninformed (flat) prior, where forces are allocated evenly 
across feasible roles for five periods  We assumed perfect intelligence estimates for this 
particular test (relaxed in the next test), so the number of samples per evaluation is K= 1.   After 
each cycle, the plan is updated by discarding the already used first period.  Then, if there are 
sufficient periods left in the conflict to allow it, we add on a new period to the plan, also set to an 
uninformed prior.  It could take much iteration to fully optimize a five-period plan.  However, 
we are only using the first period of the plan at a time, so a full optimization is not necessary.  In 
practice, a longer plan would be constructed to facilitate integrating air warfare plans with other 
military planning outside of the scope of this model.  Five runs were made for each value of N, 
with results shown in Table 4 below. 
 
 

N/Cycle Stopping 
Point t 

Mean 
Value 
Extracted 

Std. Dev.  

0 10-15 7002.8 133.70 
50 5-6 8884.7 283.54 
100 3 9381.3 346.19 

Table 4.  Value Extraction during a Conflict 
 
Clearly, the plan optimization adds significant additional value from 0 iterations to 50 iterations.  
The difference in mean value extracted at 100 versus 50 iterations is also statistically significant 
but shows that there are decreasing returns from the additional iterations.  (However, the 
additional iterations would also help build the plan for future periods, which could be important 
for coordinating plans with external units.) 
 
The second test quantifies the performance of the planner with respect to the accuracy of the 
intelligence.  The previous test assumed that the “Intelligence Estimator” of Figure 6 above was 
“omniscient” – it always knew the exact number of Red forces remaining.  We now use a “poor”, 
systematically biased, Intelligence Estimator.  It is given an “assumed detection probability” of 
0.90.  That is, Blue believes that it can detect 90% of Red’s forces, and scales the result 
accordingly.  However, the “true detection probability” is actually 50%.  Blue will consistently 
underestimate Red forces.  Both scenarios involve the same number of “actual” Red forces.  
Setting the horizon weight to 0.50 as before, the number of samples per evaluation, K, will be 10 
with poor intelligence and 1 with perfect intelligence.  Table 5 summarizes the results from five 
runs of each scenario.   
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Scenario Mean Value Std. Dev.  
Omniscient (Perfect Intel) 7572.6 112.81 
Poor Intel 8094.5 104.25 

Table 5. Discounted Net Blue Values Extracted with Varying Intelligence Quality 
 
The set of runs with poor intelligence extracted significantly higher Blue value than those with 
perfect intelligence!  This is because, with a horizon weight of .50, we are optimizing a weighted 
average of Blue value and survivability.  Refer back to Figures 6 and 7.  The optimized net Blue 
value is lower at a horizon weight of 0.50 versus a horizon weight of 0.  Poor intelligence thus 
creates a situation similar to having a lower horizon weight.  When intelligence is poor (Red is 
underestimated), the optimizer believes that survivability considerations are less necessary, since 
there are seemingly fewer Red forces to contend with.  The resulting plan overemphasizes Target 
Reduction, with a higher than anticipated attrition rate.
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Conclusions 
 
The project successfully demonstrated the use of an integrated planning hierarchy as a 
framework for air warfare planning.  It showed that linearization of the decision space can be 
used to approximate a problem that would otherwise be intractable due to its size and uncertain 
dynamics.  Within the evaluator, linear programming and simulation operated in tandem over an 
extended planning horizon to generate optimized Red responses, assumed outcomes, and relative 
marginal force values.  Uncertainty was successfully handled with sampling approaches.  We 
showed how more detailed plans can be automatically generated that were consistent with top 
level plans.  Last, we demonstrated how the plan optimization algorithms can be embedded in an 
operational planning cycle operating over a multi-period conflict, and showed that the 
quantitative impacts of poor intelligence and false beliefs about enemy forces can lead to 
inappropriate plans.  This provides a quantitative foundation for assessing and managing Blue’s 
risks by selecting plans that are robust to uncertainties about intelligence, while perhaps reducing 
performance on the “best guess” intelligence (in case it proves to be wrong.)  Optimally hedging 
bets (i.e., current decisions) against imperfect intelligence is an important topic for future 
development that can be explored starting from the approach illustrated in Table 5.  
 
With several minutes required to evaluate each plan, fully optimizing a plan over a 5-period 
planning horizon required many hours on the benchmark machine.  There may be ways to 
address this issue through more efficient solution of the nonlinear mathematical programs at the 
heart of the planning system and/or by using statistical approximations to multi-period value 
functions (Lagoudakis and Parr, 2002).  Our approach involved successive solution of linear 
programs, requiring (T+1)(T+2)/2 – 1 linear programs for each sample of the Level 1 Stochastic 
Evaluator, where T is the number of periods in the planning horizon.  The advantage of the linear 
programs is their automatic computation of relative marginal resource (force) values in the form 
of shadow prices.   
 
Regarding potential future research, the system could be enhanced by making the target values 
and capabilities dynamic.  The current model is driven by the “extraction” of target value.  
Dynamic target values could be generated by a monitoring program that oversees all elements of 
a conflict and computes current relative values consistent with an Effects Based Operations 
(EBO) approach.  It could build on the current capability of the model to represent differing Blue 
and Red perceptions of target value.  It would also be reasonable to express target values as 
probability distributions, given the typical uncertainties associated with targeting and damage 
assessments.   Further, target capabilities could change to reflect repair of damaged targets.  
Lastly, the results of this project also suggest that research into extending the planning process to 
the third level (Routes/Engagements) is warranted.  Many of the basic elements of the approach - 
linearization, sampling, high-level simulations, and rolling forward through a planning horizon - 
would likely be very useful in such an extension.
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Appendix A:  AFSimPlan Software 

Overview 
 
The AFSimPlan software (see Figure A1) implements the algorithms described in this report.  
The algorithms are written in MATLAB, and are accessed from the MATLAB command 
window via MATLAB GUI controls as described in the Users Guide below.  Since the 
MATLAB files are essentially source code, the user can also make revisions to the algorithms or 
default parameters with the MATLAB editor. The MATLAB files reside in the C:/Program 
Files/Systems View/AFSimPlan/MATLAB directory.   
 
The working data file, planningData.mat, is a MATLAB format compressed data file that 
contains the MATLAB objects (see Appendix B: Domain Model) needed to run the algorithms. 
It resides in the C:/Program Files/Systems View/AFSimPlan/data directory.  MATLAB Load and 
Save commands embedded within the application operate on the data file. 
 
The application framework also contains an SQL database (in the same data folder), containing 
the same type of data as planningData.mat, but in a relational database format.  The SQL 
database provides longer term storage of domain data.  It also provides a standardized format 
more accessible to other external data systems. 
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Import/Export Commands
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Figure A1.  AFSimPlan Architecture 

 
The user can view and make edits to the SQL data tables through an interface set up in MS 
Access.  The user needs to navigate to the C:/Program Files/Systems 
View/AFSimPlan/data/OpSim-Phase1_SQL.mbd file and open it with MS Access.  The first 
time the user does this he needs to refresh the links between tables (see Installation Instruction 
below).   
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The user will need a software tool to “Attach” and “Detach” the SQL database.  The database 
must be detached before it can be moved or copied.  For convenience, the install will provide a 
copy of the freeware, “MSDE Manager®”.  The user could also use other tools or even SQL 
Server to perform the same function. 
 
The AFSimPlan application also provides a means to import/export between the working file, 
planningData.mat, and the SQL files.  The application modules that perform this task were 
written in C# and are implemented in the MS .NET framework.  These modules operate behind 
the scenes and are invoked from the MATLAB based GUI controls. 
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User Guide 

Level 1 Analysis 
 
This portion of the application is invoked by typing “level1analysis” at the MATLAB command 
prompt.  The control panel shown in Figure A2 below will be displayed. 
 

 
 

Figure A2.  Level 1 Controls 
 
1.  Initialize Plan (Button).  This button invokes the Stochastic Evaluator, providing a set of 
sample net Blue values for the current Level 1 Blue plan (role allocation).  The function makes 
use of both Iterations/Evaluation and Horizon Weight (approx. 4.5 minutes on benchmark 
machine for 10 iterations). 
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Iterations/Evaluation (Edit Field).  The number of samples desired for each evaluation of 
the current plan.  Note that each sample requires about 30 seconds on the benchmark 
machine. 
Horizon Weight (Edit Field).  The relative emphasis placed by the plan on short term 
versus long term considerations.  A (minimum) value of 0 implies short term, while a 
value of 1.0 (maximum) implies long term.  A short term perspective places no value on 
aircraft surviving beyond the planning horizon. 

 
2. Identify/Constrain Improvements: 
 
 

Display Plan (Button).  Displays the results of the last completed plan evaluation (see 
Figure A3 below).  Two types of information are displayed for each Blue Force Type.  
The first, Marginal Value, is the average resource price for that force returned by the 
linear programs within the Stochastic Evaluator.  The Marginal Value reflects the 
expected contribution to the net Blue value obtained by adding an additional unit of that 
force.  Since the values are specific to roles, the height of the colored band for a role 
corresponds to the relative Marginal Value for a given force/role combination.  The 
second type of information is the Current Allocation.  It shows the proportional allocation 
to each force/role allocation. 

 

 
Figure A3.  Sample Plan Display 

 
Improvements for a given force type can be visually identified by scanning for large 
differences in the height of the role contributions to Marginal Values.  If allowed by the 
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Current Allocation, a swap of forces between the roles would lead to an increase in net 
Blue value.  For example, Blue would be better off if F18C’s were moved from AAF 
Suppression to Air Defense.  The Current Allocation shows that this swap would be 
feasible. 

 
Time Period (Edit Field). This function makes use of the Time Period field to determine 
what time period of the plan should be displayed.  
 
Display Value Distribution (Button).  This displays the results of the most recent plan 
evaluation with respect to the net Blue value obtained (see Figure A4 below).  The graph 
is the empirical cumulative probability distribution for net Blue value (the probability that 
the value is less than or equal to the x coordinate). 

 

 
Figure A4.  Sample Net Blue Value Cumulative Distribution 

 

Search Categories 

The user has the option of constraining any search for improvements to the current plan.  Only 
the Forces, Roles, and Time Periods selected from the list boxes on the left will be searched for 
improving reallocations.  The user can use SHIFT-left mouse button to select groups of items in 
each list box, and CTRL-left mouse button to select multiple non-consecutive items. 

3.  Improve Plan (Button). This button invokes a “hill climbing” algorithm that finds 
improvements to the current Level 1 Blue plan.  The algorithm searches over the Search 
Categories selected above.  If the user makes no selections. the search will be unconstrained.  
The search algorithm uses the Stochastic Evaluator to analyze each (re)allocation, thus it utilizes 
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both Iterations/Evaluation and Horizon Weight.  The algorithm completes when no further 
statistically significant improvements can be found, or once it makes Max Improvements number 
of improving reallocations.  Since the search process can be lengthy, it is often advisable to limit 
the total iterations via Max Improvements.  During the search, a display will appear (after the 
initial evaluation) showing the current net Blue value as a function of the number of 
improvements as in Figure 6 of the Testing section.  After every improving step, the computer 
will make a “double-beep” sound and the net value graph will update (approximately 4.5 minutes 
per improvement on the benchmark machine for 10 iterations/improvement, less for large 
numbers of improvements – see Testing section). 

 

Max Improvements (Edit Field) The maximum number of improvements allowed by the 
Improve Plan function. 

 

Import (Button).  This will first invoke the import/export utility.  The utility will update the local 
copy of the data (planningData.mat) from the SQL database.  The local copy will then be read 
into MATLAB.  Last, the control panel will be refreshed with the new data.  A second MATLAB 
command window (minimized) will briefly appear during this process. 

Export (Button).  First the current data is saved to the local copy of the data (planningData.mat). 
Next, the import/export utility will update the SQL database with the output values from the 
current analysis (it does not update the basic domain data).  A second MATLAB command 
window (minimized) will briefly appear during this process. 

Save (Local) (Button). This saves the current data in MATLAB to the local copy of the data 
(planningData.mat).  

Move to Level 2 (Button).  Invokes the control panel for Level 2 Analysis 

 

While using the Stochastic Evaluator (Initialize Plan or Improve Plan), the following warning 
may appear in the MATLAB command window “Warning: LP failed to converge”. This happens 
when the MATLAB provided “linprog,m” optimization routine fails to find a solution, even 
though the problem is feasible.  The AFSimPlan software handles this by either discarding the 
current random sample and getting a new one, or perturbing the inputs and trying again.  The 
problem with the LP seems to occur about once out of every 50,000 LPs.  During a 10 sample 
stochastic evaluation, 200 LP’s are run.  Therefore, in a long “Improve Plan” run of say, 300 
improvements, you have a good chance of seeing one of these warnings. 

Level 2 Analysis 
 

This portion of the application is invoked by typing “level2analysis” at the MATLAB command 
prompt, or by pressing Move to Level 2 from the Level 1 control panel.  The control panel 
shown in Figure A5 below will be displayed. 
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Figure A5.  Level 2 Controls 

 
 
The Level 2 Analysis is constrained by the Level 1 Blue plan determined during the Level 1 
Analysis above.  The first step is to find a conforming Level 2 Plan. 
 
1. Revise Plan (Button). This will create the Level 2 Plan.  If no targets are preselected in the list 
box above the button, the algorithm will select its own best set of high value targets. 
 

Preselect Blue Target Set (list box).  Optionally, select the targets to be hit by clicking on 
each target (use CTRL-left mouse button) 
 
Clear All (Button).  Clears all selections in the list box 

 
After the plan has been revised, the Evaluation Results will be cleared until a new evaluation 
occurs (requires only a few seconds on the benchmark machine). 
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2.  Evaluate Plan (Button).  This invokes the Level 2 Stochastic Evaluator, providing sample 
values for the current period.  Upon completion, the results are displayed by target in Evaluation 
Results. The function makes use of Num. Iterations. 
 

Num. Iterations – the number of samples taken to make the evaluation 
 
Display Value Distn. (Button) - provides a cumulative probability distribution of the 
current net Blue sample values analogous to Figure A4 above. 

 

This evaluation is significantly faster than the similar Level 1 evaluation (approx. 30 seconds on 
the benchmark machine for 10 iterations) 

 

Save (local) (Button) - the same operation as in Level 1 Analysis. 

Export (Button) - the same operation as in Level 1 Analysis. 
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Appendix B:  Domain Model 
 
The domain model diagram shows a UML specification (Booch, et al., 1999) for the domain 
objects implemented in MATLAB.  The domain objects contain all of the problem domain 
related data in a standard format for use by the various algorithms.  The implementation makes 
use of the “object-oriented” features of MATLAB.  The domain model shown below is an image 
of the UML specification in the software design tool, Enterprise Architect (filename af.eap).  A 
free, read-only version of the software, as well as a trial version, is available at the company 
website: http://www.sparxsystems.com.au/ . 



 

 

 

 
 



 

51 

 

 
 

List of Symbols, Abbreviations, and Acronyms 
 
 
AAF – Anti-Aircraft Forces (e.g. SAM, Patriot) 
 
AFSimPlan – Air Force Simulation Planning -the name of the software implementation of this 
research 
 
COA – Course of Action 
 
JFACC (Joint Force Air Component Commander) a DARPA research program 
 
LP – linear program - a mathematical modeling formulation 
 
MATLAB – the scientific programming software language used to implement the algorithms 
 
SAM – surface to air missile 
 
UML – Unified Modeling Language 


