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APPENDIX 

Table A: Examples of Parameter Measurement Information for Data Fusion 

Sample Sample 
Parameter Rate (Hz) Engr. Units Parameter Rate (Hz) Engr. Units 

1                                                  Aircraft Gas Path                                                  1 
Mach No. 25 N1 20 % RPM 
Pressure Altitude 25 FT N2 20 % RPM 
Calibrated Airspeed 25 KNOTS Burner Static Pressure 5 PSIA 
True Airspeed 26 KNOTS High Pressure Compressor Exit Total Temperature 5 DegC 
Indicated Airspeed 25 KNOTS EGT Total Temperature 20 DegC 
Angle of Attack 50 DEG Engine Inlet Total Temperature 5 DegC 
Alpha Dot, (AOA Rate) 6 DPS Engine Inlet Total Pressure 5 PSIA 
Roll Angle 60 FPS Low Pressure Turbine Exit Total Pressure 5 PSIA 
Pitch Angle 50 EPS Fuel Flow 5 PPH 
Heading Angle 50 DEG Low Pressure Compressor Exit Total Temperature 20 Deg C 
Roll Rate 
Pitch Rate 
Yaw Rate 

50 
50 
50 

DPS 
DPS 
DPS 

Low Pressure Compressor Exit Total Pressure 20 PSIA 
Structural Assessment Sensors                               | 

Stewart Hughes IDMS Sensor # 1 12.5K VDC 
Flight Path Angle 50 DEG Stewart Hughes IDMS Sensor #2 12.5K VDC 
Altitude Rate 25 FPM Stewart Hughes EDMS Sensor 12.5K VDC 
Total Temperature 10 DegC SwanTech Sensor #1 (Inlet Stator) 23.15K VDC 
Total Pressure 25 INHG SwanTech Sensor #2 (E-Flange) 23.15K VDC 
Static Temperature 10 DegC SwanTech Sensor #3 (Gearbox) 23.15K VDC 
Static Pressure 25 INHG SwanTech Sensor #4 (K-Flange) 

SwanTech Sensor #5 (#5 Bearing Oil Pressure) 
B-Flange High Frequency Acceleration 

23.15K 
23.15K 
46.3K 

VDC 
VDC 

g 

1                                               Commands 
High Press. Compressor Variable Vane Position 5 Inches 
Station 2.5 Bleed Valve Position 5 % Open B-Flange Low Frequency Acceleration 5.8K 9 
Thnjst Lever Angle 20 Degrees P-Flange High Frequency Acceleration 23.15K g 
High Pressure Turbine Clearance Valve Position 5 % Open P-Flange Low Frequency Acceleration 5.8K g 
Low Pressure Turtjine Clearance Valve Position 5 % Open Gearbox High Frequency Acceleration 46.3K g 
Air / Oil Heat Exchanger Valve Position 5 % Open Gearbox Channel 1 (X-axis Acceleration) 

Gearbox Channel 2 (Y-axis Acceleration) 
Gearbox Channel 3 (Z-axis Acceleration) 

23.15K 
23.15K 
23.15K 

g 
g 
g 

1                                              Oil/Fuel System 
Oil Quantity 2.5 Quarts 
Fuel Temperature at Fuel/Oil Heat Exchanger 5 DegC 
Main Oil Temperature 5 DegC 
Main Oil Differential Pressure 5 PSIG 
# 4 Bearing Compartment Exit Pressure 2,5 PSIG 
Fuel Pump Exit Pressure 20 PSIA 
#1, 2, 3 Bearing Compartment Exit Temperature 20 DegC 
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ABSTRACT 

Aircraft gas-turbine engine data are available from a variety of sources including on-board 
sensor measurements, maintenance histories, and component models. An ultimate goal of 
Propulsion Health Management (PHM) is to maximize the amount of meaningful information that 
can be extracted from disparate data sources to obtain comprehensive diagnostic and prognostic 
knowledge regarding the health of the engine. Data Fusion is the integration of data or 
information from multiple sources, to achieve improved accuracy and more specific inferences 
than can be obtained from the use of a single sensor alone. The basic tenet underlying the 
data/information fusion concept is to leverage all available information to enhance diagnostic 
visibility, increase diagnostic reliability and reduce the number of diagnostic false alarms. 

This paper describes a basic PHM Data Fusion architecture being developed in 
alignment with the NASA C17 Propulsion Health Management (PHM) Flight Test program. The 
challenge of how to maximize the meaningful information extracted from disparate data sources 
to obtain enhanced diagnostic and prognostic information regarding the health and condition of 
the engine is the primary goal of this endeavor. To address this challenge, NASA Glenn 
Research Center (GRC), NASA Dryden Flight Research Center (DFRC) and Pratt & Whitney 
(P&W) have formed a team with several small innovative technology companies to plan and 
conduct a research project in the area of data fusion as applied to PHM.^ Methodologies being 
developed and evaluated have been drawn from a wide range of areas including artificial 
intelligence, pattern recognition, statistical estimation, and fuzzy logic. This paper will provide a 
broad overview of this work, discuss some of the methodologies employed and give some 
illustrative examples. 

INTRODUCTION 

Reliable engine performance diagnostic methods have become an important factor in 
reducing the total cost of ownership of gas turbine engines. A pivotal requirement for successful 
diagnostics is the ability to detect and isolate engine system faults in a timely manner. To address 
this issue, the gas turbine industry has begun to focus on the development of intelligent engine 
health monitoring (EHM) systems. In the context of EHM systems, intelligence implies the ability 
to detect and isolate faults to a line replaceable unit (LRU) (diagnostics) as well as the ability to 
determine when maintenance should be performed (prognostics). One approach to achieving this 
level of intelligence involves the use of information fusion concepts. The net effect of such a 
system would be to increase diagnostic reliability, capability and coverage, decrease diagnostic 
false alarms, and support expandability and adaptability to new information sources. 

^ This effort was performed under sponsorship of NASA Glenn Research Center under contract no. 
NAS3-98005. 
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In this paper we shall describe a general architecture for information fusion as applied to 
aero-engines for the purpose of supporting engine diagnostics and prognostics. The general 
structure is adaptable in the sense that it can be expanded or contracted to fit the specific engine 
configuration and data infrastructure. Specific elements of the system will be described in terms 
of an example system being developed under a joint NASA GRC and DFRC research program on 
the C17-T1 aircraft. 

*l^--i 

CITGIobemaster 

DIAGNOSTICS AND INFORMATION FUSION 

The subject system described in this paper is a collaborative effort between NASA Glenn 
and Dryden Research Centers, Pratt & Whitney and several technology companies, and is 
closely aligned with a NASA C-17 Propulsion Health Management (PHM) Flight Test Program for 
the P&W F117 engine powering the C17-T1 military transport. The C-17 PHM Flight Test 
Program is flight testing a variety of sensors, and developing signal processing, analysis 
modules, and a high level reasoner for fault isolation. A general architecture for incorporating 
these elements has been defined and will be discussed in the sequel. 

.#1C 

Pratt & Whitney F117 Engine 

Before exploring the diagnostic fusion architecture, we should consider the possible 
sources of data and information that could potentially feed the process. To achieve the goal of 
increasing diagnostic capability and reliability, the system takes advantage of a number of 
technology elements, such as Signal Processing methods. Physics-based Models, Empirical 
Models, and High Level Reasoners to combine all of the information. The general architecture for 
implementing this strategy accommodates a wide range of engine sensors covering high and low 
bandwidth signals, including, but not limited to, aircraft, gas path, lubrication system, and 
structural indicators as well as special application engine health sensors. Some examples of 
these types of sensor measurements are described below. 

NASA/TM—2004-212924 



POTENTIAL DATA/ INFORMATION SOURCES 

Engine Gas Path Measurements 
These consist of some subset of inter-stage pressures and temperatures, spool 
speeds, fuel flow, etc. Depending on the engine type this can range from four flight 
parameters up to as many as 12. In addition, measurements such as inlet 
temperature, pressure, Mach No. and altitude define the flight condition and aid in the 
normalization of the main gas path parameters. 

Oil / Fuel System Measurements 
These consist of various oil system temperatures, pressures, fuel temperature and 
delivery pressure. Advanced sensors indicating oil quality and oil debris monitoring 
sensors as well as oil quantity measurements may be available. 

Vibration Measurements 
Some form of vibration monitoring is typically performed on most engines. This is 
usually on the low spool to measure Fan and Low Pressure Turbine (LPT) vibration, 
but may include high spool vibration probes as well as specific bearing and gearbox 
vibration measurements. 

Structural Assessment Sensors 
These sensors aid in assessing structural integrity of the engine. Examples include 
Inlet and Exhaust debris monitors, acoustic sensors, high bandwidth vibration 
sensors, multi-axis vibration, and blade tip clearance monitors. 

FADEC Codes 
The electronic engine control performs a myriad of performance tests on signal 
condition and fidelity. Cross channel checks can aid in determining whether or not a 
main engine sensor is drifting, going out of limit, or failing. Checks on bleed valves, 
active clearance control, and variable geometry can provide independent information 
regarding engine health and the health of various engine subsystems. 

Onboard Engine Models 
Accurate engine models embedded within the FADEC or residing within a dedicated 
PHM hardware unit can be used to generate virtual engine measurements to aid in 
detecting faulty engine instrumentation or confirming degraded engine performance. 
Self Tuning Onboard Real Time Models (STORM) have been developed for this 
purpose [1]. These models adapt themselves to changing conditions observed in the 
engine's measurement suite and can be used to estimate engine module degradation 
as well as to provide a suite of virtual sensors. 

Maintenance/Analysis History 
Information regarding the performance disposition of the major modules that 
comprise the engine can potentially be used as a-priori information to support the 
identification and estimation of performance changes within a Module Performance 
Analysis (MPA) program. Similarly, knowledge of past maintenance actions and past 
analysis results may also be used to aid in differentiating between engine component 
performance faults and engine controls and accessories malfunctions, such as bleed 
leaks, cooling problems, and similar problems. 

Companion Engine Data 
On multi-engine aircraft, information from the companion engines might be used to 
provide additional independent confirmation of instrumentation problems and engine 
events. 

NASA/TM—2004-212924 



Negative Information 
This pertains to a reasoning methodology more than an actual source of information. 
Negative information constitutes conditions that were not present but would or should 
have been perceived under the hypothesis that a certain fault scenario exists. In 
mathematical parlance, it is referred to as proof by contradiction. For example, if 
Active Clearance Control (ACC) were not enabled (i.e. a faulty operation) then 
Exhaust Gas Temperature (EGT) should increase. If EGT was not observed to 
increase, then the original assumption is probably false, i.e. ACC must be working 
properly. This type of information would best be employed in an expert system-like 
structure, which governs the overall analysis and processing of the engine data. 

POTENTIAL DATA / INFORMATION FUSION APPROACHES 

With such a wealth of potential information, one must decide in what manner to combine 
or fuse information for the stated diagnostic goal. In general, data can be fused at different levels, 
[2], for example: 

> sensor level fusion where multiple sensors measuring correlated parameters 
(e.g. oil pressures, exhaust gas temperatures, etc.) can be combined. 

> feature level fusion, where analysis information (e.g. component performance 
changes, event detection) resulting from independent analysis methods can 
be combined. 

> decision level fusion, where diagnostic actions (e.g. damage assessments, 
maintenance advisories) can be combined. 

The level of fusion that is appropriate will, in general, depend on many factors including 
available sensors, models, analysis algorithms, data monitoring and recording specifics 
(continuous vs. discrete data), computing platform, etc. In the case of engine diagnostics, it might 
be argued that different levels of information fusion will be required depending on whether the 
system is for a military or a commercial application. In military applications, dedicated Propulsion 
Health Management (PHM) systems utilizing independent engine monitoring and analysis 
hardware and/or direct FADEC involvement is not uncommon. In these scenarios, data are 
collected and analyzed in real time onboard the aircraft during flight. In commercial applications 
much of the data collected are discrete in nature (several data points per flight, typically at takeoff 
and caiise). This information is downloaded to ground-based computer systems for subsequent 
analysis and trending. It is also more likely that advanced sensors are used in the military 
environment (as in the 017 T1 program) than in commercial applications, where the historical 
trend is to minimize sensors and data collection hardware. 

In order to provide the most generic and expandable system which can be applied to a 
wide variety of engine applications with varied instrumentation and data sources, we have chosen 
to perform the information fusion at the feature level. The general architecture is depicted in 
Figure 1. This scheme provides for the potential inclusion of a variety of sensors, standard, special, 
low frequency and high frequency as well as other pieces of diagnostic relevant information that 
might be in the form of fault codes, maintenance records, and observations. The general structure 
provides for information synchronization to align the data to a common timeframe, analysis 
modules for salient feature extraction, and high-level fusion [3]. 

Figure 1 below, depicts a general configuration for an engine diagnostic/prognostic 
system incorporating the elements of information fusion discussed above. A specific PHM system 
incorporating data fusion may have some but not all of these elements depending on the type, 
quantity, and availability of sensors, models, and analysis methods. The general architecture 
does not address the specific nature of models and analysis or their interdependencies except to 
acknowledge that they exist and provide placeholders for them. 
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Figure 1: General PHM Information Fusion Architecture 

For a particular application there are a myriad of design and implementation issues that 
need to be resolved and defined. They include but are not necessarily limited to the following: 

1. Data Acquisition 
♦ Signal types (continuous vs. discrete) 
♦ Signal sampling rates 
♦ Signal synchronization across suite of sensors 
♦ Signal conditioning / processing 

2. Data Processing 
♦ On-board Processing 
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♦ Hardware capabilities/constraints 
♦ Processing bandwidth 
♦ Storage requirements 
♦ Reporting / Fault annunciation 
♦ Off-board Processing (if any) 
♦ Data communication infrastructure 

3.   Model / Analysis Algorithm Development 
♦ Physics-based model development specific to engine system/subsystem 
♦ Empirical mode! development 
♦ Interdependency between models and analysis algorithms 
♦ Development of expert system control program 
♦ Prognostic and Health reasoning systems 

Data analysis tools are required to reduce, analyze and interpret the information 
collected. This will generally consist of algorithms employing some form of modeling (either 
physics-based or empirical), along with attendant data reduction and fault detection, isolation and 
estimation algorithms specific to the type of data collected and engine system/sub-system being 
analyzed. The specific methodologies that might be employed in such an effort will be highly 
dependent on the particular data/information being collected. It should also be evident that there 
exists an implicit interdependency between the data available and the analysis algorithm as well 
as an interdependency between an analysis algorithm and the level of modeling available. 

As an example. Gas Path Analysis (GPA), which will be described later in the paper, 
utilizes a set of gas path measurements taken together to collectively assess changes in a set of 
module performance parameters. This type of analysis requires the use of physics-based models 
to represent the reference level from which a comparison is to be made in order to estimate 
changes in performance from that reference level. This defines a dependency between model 
and method. Likewise, the algorithms typically employed to estimate these performance changes 
have a predictor/corrector structure in that a-priori knowledge of the type of fault encountered will 
directly impact the estimator's ability to accurately assess the fault level. Thus, if our sensor suite 
includes an electro-static inlet debris monitor, for example, then having a positive (debris 
ingestion) annunciation would indicate a FOD event that would allow a focusing of the estimation 
algorithm to those Modules most likely affected, thus increasing the likelihood of correctly 
detecting and isolating the fault. Thus there can be an interdependency between data/information 
and the analysis algorithm. 

The general architecture incorporates several modules that provide signal processing 
and conditioning, and engine health feature extraction through the use of physics-based and 
empirical model analysis. It also uses a two tier high level fusion process wherein the engine 
health features are combined to form a comprehensive engine health assessment, using ancillary 
engine information from engine control fault codes, and maintainer and pilot observations, to provide a 
knowledge base for software directed maintenance. The functionality within these modules will be 
described below in terms of the specific C17-T1 PHM application alluded to at the beginning of 
this paper. 

-     C17-11 PHM APPLICATION 

The NASA C17 PHM Flight Test program and the Data Fusion program are multi-year 
research initiatives focused on defining and flight-demonstrating integrated PHM system 
technologies suitable for civil and military aircraft application. The C17-T1 is powered by four 
Pratt & Whitney F117 turbofan engines. Engine #3 of the T1 aircraft has been instrumented 
beyond the typical Bill of Material (BOM) sensor suite with extensive gas path, oil system, 
vibration and structural assessment sensors, making it a prime candidate for information fusion 
research.   In the following sections the elements of the C-17 T1 aircraft data fusion application 
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(see Figure 1) will be reviewed including instrumentation and data sources, modeling and 
algorithms, and high level fusion. 

C17-T1 INSTRUMENTATION AND DATA SOURCES 

Examples of the types of parameters available on this research airframe can be found in 
Table A in the Appendix. 

A complete list can be found in [4]. In addition, a number of FADEC discrete data bits and 
flags for annunciating engine bleed, variable stator vane actuation, and health status are also 
available. Most of the sensors listed in Table A are common flight instrumentation and require no 
further explanation. The sensors listed under the category structural assessment are not so 
common and are undergoing flight evaluation on the T1 aircraft as part of the C-17 PHM Flight 
Test program. These advanced sensors are briefly described below. 

The Inlet Debris Monitoring Sensor (IDMS) is mounted in the inlet forward of the FAN and 
monitors the electrostatic charge associated with debris ingested at the engine inlet. It is 
designed to detect the size, quantity, velocity, and to a limited extent composition of debris (i.e. 
damaging/non-damaging) entering the inlet. 

The Engine Distress Monitoring Sensor (EDMS) is installed in the upper actuator housing 
of the thrust reverser casing. This sensor monitors the electrostatic charge of debris exiting the 
engine, which is lil^ely to have been produced by engine distress. This system monitors the 
exhaust for changes in the level or nature of this debris. Normal healthy engine operation results 
in a small amount of erosion of various engine components that show up as fine particulate within 
the gas path. Changes in the nature or quantity of this exhaust debris have the potential for being 
an early warning of excessive wear or incipient failures. 

The Stress Wave Analysis Sensor (SWAN) is a lightweight integrated circuit piezoelectric 
transducer that monitors structurally borne ultrasonic sound vibrations to measure the energy 
created by shock or friction events. It is an external sensor that requires a mount point that 
provides a mechanical sound path to the component being monitored. Five of them are mounted 
on the engine gearbox and flanges. 

A set of 3 High Frequency Vibration Sensors (HFVS) are mounted on the engine. One is 
located on the gearbox, one on engine case flange B (forward), and one on flange P (aft). These 
sensors will allow the high frequency response of the components of the engine and gearbox to 
be tracked. 

MODELING AND ALGORITHMS 

Of equal importance, in a data fusion effort, as the data itself, is the repertoire of analysis 
tools required to reduce, analyze and interpret the information collected. For the application at 
hand, a set of specialized algorithms employing both physics-based and empirical methodologies 
has been employed. These include 1) data alignment for synchronizing the raw data/information 
to a common sample rate for subsequent analysis; 2) gas path anomaly detection which offers an 
empirical model of nominal gas path behavior with quantitative metrics for inferring the level of 
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departure from normal when applicable; 3) gas path analysis which provides for the isolation, 
estimation and tracking of engine Module performance faults; and 4) lubrication system modeling 
taking the form of empirically derived models for estimating oil quantify and bearing pressure. A 
brief synopsis regarding the nature of these algorithms is given below; a detailed description is 
beyond the scope of the present paper. 

Data Alignment 

As Table A indicates, the information being collected ranges dramatically in bandwidth 
from 2.5Hz to 50Hz for the low frequency sensors and from 5.8KHz to 46.3KHz for the high 
frequency sensors. Referring to the system architecture in Figure 1, the high frequency 
information will be processed by specialized algorithms in order to capture the salient information 
content of the signal and distilled to low bandwidth feature information at approximately 1 Hz. As a 
precursor to eventual information fusion, these data along with the remaining low frequency 
sensor signals is time synchronized to a common sampling rate. For this application, the data 
alignment frequency is 20Hz and is accomplished by up and down sampling of the raw signal. 

Gas Path Anomaly Detection 

A PHM system generally has provisions for the detection and isolation of known fault 
conditions. During the course of engine operation, however, it is possible to encounter fault 
conditions or other off-nominal situations that were either never anticipated, never modeled or 
incorrectly modeled or never encountered in previous engine operation. Such events can be 
referred to as anomalies and it is prudent to provide for the detection of such occurrences [5,6]. 

To address unanticipated anomalies empirical models developed from a statistically 
significant sample of nominal engine operation data can be used to form the basis for an anomaly 
detector. These types of models typically take the form of Artificial Neural Networks (ANN) and 
are trained to output normal engine operation measurement estimates. When compared to actual 
measurements they provide a basis for making a statistical determination as to whether or not the 
observations at hand conform to what is considered "normal" operation. An empirical model of 
the gas path components is under development for the C17-T1 PHM system. The underiying 
modeling mechanism is a Radial Basis Function (RBF) ANN. During the training process for 
these types of ANNs, the training data is self-organized into a group of classes wherein each 
class is modeled by an n-dimensional Gaussian function referred to as a radial basis function. 
These functions capture the statistical properties and dimensional inter-relationships between the 
input and output engine data parameters. The structure an RBF ANN is depicted in Figure 2. 

Weights 

Basis Units 

Figure 2: Radial Basis Function ANN 

The Gas Path Anomaly Detector (AD) for the C17-T1 is configured as a set of several 
RBF ANNs, each representing a particular flight regime or operational characteristic to enhance 
the accuracy of the overall detector. For example there is an RBF ANN for steady state operation 
with and without stability bleed off-take, acceleration and deceleration. Simple regime recognition 
logic controls the selection of the appropriate RBF ANN. Pre-processing of engine parameters in 
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terms of standard day corrections and range normalization are made prior to input into the ANN. 
The primary output of the system is a (fuzzy-like) detection variable that takes on the values 
between 0 {anomalous data) and 1 {normal data). A threshold and median filtering is applied to 
the output to produce a discrete binary parameter to serve as a detection flag. A representation of 
this model is depicted in Figure 3, below. 
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Figures: Gas Path Anomaly Detector Model 

In addition to the binary AD output parameter, individual input parameter distance 
measures are available which quantify each parameter's contribution to the data's classification 
as normal or anomalous. Collectively, these provide an empirical signature for anomalous data 
and are particularly helpful in determining in-range sensor faults. A graphical depiction of the 
output for a segment of an actual C17-T1 flight with a simulated Fuel Flow bias added (as an 
anomaly) is given in Figure 4. 

OiBdcrCXtpit 
1=N3itd 

0=ATinl 

A. 
T 

hmk 

Wf^ 

=*«=>■-   <z:> LJ "t: t^ t_i 

llS nMlMUMi... 
'11 

Han/addbdtoreEl aatahaB 

-FiiElfkwIkgeBdktmEl 

til#||l-aa^.tSitirWiW 
Figure 4: Graphical depiction of Gas Path Anomaly Detector output 
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The upper chart in Figure 4 portrays the raw output (blue) and the threshold (binary) 
output (orange) of the AD for nominal operation and an implanted (simulated) fuel flow fault. The 
lower chart is a color-coded graphical representation of the individual input parameter distance 
measures, where blue signifies normal and red signifies abnormal. 

Gas Path Analysis 

Traditional Gas Path Analysis provides for the isolation, estimation and tracking of engine 
Module performance faults. As a three decade old practice, it has been the subject of 
considerable research and a variety of methods have evolved using such disparate techniques 
such as optimal estimation, fuzzy logic. Neural Networks, Bayesian Belief Networks, and Kalman 
Filters. [7-14]. The efficacy of any of these methods depends on many factors and is somewhat 
application dependent, although they all share the same characteristic of assessing change in 
performance relative to some reference. In the context of the present application we have chosen 
a modified Kalman Filter approach with the frame of reference being the monitored engine at time 
of installation. 

For the C17-T1 the reference level is obtained via a hybrid engine model consisting of a 
simple real-time physics based State Variable engine Model (SVM) coupled with an empirically 
determined modeling element to form a hybrid model representation of the monitored C17-T1 
engine. The empirical element takes the form of a Multi-Layer Perceptron (MLP) Artificial Neural 
Network (ANN) that models the difference between the subject engine (at installation) and the 
SVM. The above elements, in combination with a Kalman Filter observer acting on the residuals 
between the hybrid model and the monitored engine, provides the requisite process for 
performing the gas path analysis. The configuration (in its most simplistic form) is given in Figure 5. 

Switch Setting:     1    Training 
2    Implementation 

ANN 
^l^matsd residuals^ 

SVM 

F117 
Engine 

O 
IP} 

o 
{P} IP*} 

Tuners  (x) 
KF 

Iratial Tuners ( Xn ) 

Figure 5: C17-T1 Hybrid Model Gas Path Analysis System 
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In Figure 5, the output from the Kalman Filter observer (KF) labeled Tuners, refers to a 
vector of module performance changes (from installation) which are estimated from the 
measurement residual input to the Kalman Filter. These Tuners are tracked over time for 
diagnostic purposes, and also fed back to the SVM to update the model measurement predictions 
w/hich in the closed loop are forced to match the actual engine measurements (on the average), 
i.e. driving the residuals to zero. The empirical element (MLP ANN) in the hybrid representation is 
required to mitigate the effects (on the Tuners) of model inaccuracies and deficiencies. Figure 6 
below illustrates this effect on the Tuners for actual C17-T1 engine data. 
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Figure 6: Establishing the Zero Reference for IVIodule performance tracking 

Once the reference level is established (zero on the average) for the Module 
performance deltas, only then can component deterioration be effectively tracked over time. For 
the interested reader, an introductory presentation of this methodology is given in [15]. 

Lubrication System Modeling 

Initial work in this area has taken the form of empirically derived models for estimating Oil 
Quantity (POILQ) and number 4 bearing pressure (PN4SP) from other available engine oil 
system measurements (iVIain Oil Temperature and Pressure), gas path measurements, and other 
engine and flight parameters, a total of 14 input parameters (see Table 1 below). 

Table 1: Input Parameters for Initial Empirical Lubrication Model 

Parameter name Description 
ptfuel Fuel Temperature at Fuel/Oil Heat Exchanger 
ptoil Main Oil Temperature 
poilp Main Oil Differential Pressure 
pfc Air / Oil Heat Exchanger Valve Position 
ptt2 Engine Inlet Total Temperature 
ppt2s Engine Inlet Total Pressure 
pacwf Fuel Flow 
pnl N1 
pn2 N2 
mach Mach 
palt2 Pressure Altitude (hp) 
hdot Altitude Rate 
alpha Angle of Attack 
ptrasi Thrust Lever Angle 
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Initially neural networks were considered for modeling the lubrication system data, however, due 
to computational burden in training these ANNs, simple linear models were considered. Those 
models took the form: 

y(t) = CiUi (t) + c^Uj (t) +. • + CpUp(t) 

where y(t) is the target variable at time t, Ui(t) are the corresponding input variables, and c, are the 
input weighting coefficients. There are p variables used as input to the model. The linear 
modeling problem is to estimate the c/s given "training" data. It was found that linear models fit 
the lubrication data as well as the neural net models. To further reduce complexity, a model 
reduction process using a backwards elimination approach was applied to identity the optimal 
subset of input variables for both models (POILQ and PN4SP). This resulted in models with 7 
input variables, albeit, different variables for each model. An example of the response for the Oil 
Quantity parameter versus the actual measured Oil Quantity is given in Figure 7. 

ProEllcted Oil Qunntity 

POILQ 

Data Points 

Figure 7: Measured versus Predicted Oil Quantity 

Further detail can be found in [161 

Other Models and Algorithms 

Models and algorithms used for processing the Inlet Debris and Engine Distress Monitors 
(IDMS/EDMS), Stress Wave sensor and vibration data are in their initial development (for the 
C17-T1 program) and will not be discussed in the present paper. 

HIGH LEVEL FUSION 

The principal objective of the High Level Fusion Module shown in Figure 1 is to transform 
multiple sources of engine health and performance information into a diagnosis/prognosis 
knowledge base. Embedded in this transformation process is a fundamental understanding of gas 
turbine system malfunctions, as well as a systematic methodology for inserting evidence to 
support a specific root cause of the malfunction. The information fusion occurs through an 
algorithm that attempts to combine the supporting evidence in order to optimize the utility of the 
diagnostic information. The term ufility is used in the context of minimizing all diagnostic decision 
errors such as false alarms, missed detections, and incorrect malfunction isolation. 

Diagnostic feature information available from the models and analysis algorithms 
discussed in the preceding section, along with engine and aircraft operational information may be 
considered as a whole in a high-level fusion module for the purposes of extracting an overall 
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engine health assessment. For the C17-T1 application we have envisioned two levels of 
information fusion. The first level accepts feature information and delivers an engine health 
assessment that feeds a second tier that also accepts maintainer and pilot observations and 
engine maintenance history information and returns a recommended maintenance action. Both of 
these high-level fusion processes are being developed within the C17 PHM Flight Test program 
and Data Fusion program and are currently in the initial modeling stage. 

The second tier of information fusion described above consists primarily of a Failure 
Modes Effects and Criticality Analysis (FMECA) model of the F117 engine along with a line 
maintainers' Fault Isolation Manual (FIM) procedure. The mathematical vehicle for encapsulating 
this information is a Bayesian Belief Network (BBN) that consists of a collection of directed 
graphs with conditional probabilities linking the nodes of the graphs and a process of updating the 
conditional probabilities using Bayes Law [17] as information (observations) become available. 
Bayesian Belief Networks require accurate conditional probability information to initialize the 
network. In the present application, the FMECA analysis component reliability information is used 
to seed the process. A discussion of Bayesian Belief Networks is outside the scope of the present 
presentation but can be found in a number of references in the general literature [18,19]. 

The first level of information fusion deals with information of a more subjective nature for 
which precise conditional probabilities would be difficult to assess and assign and BBNs are 
known to be computationally burdensome. Unlike the second fusion tier that depends on a human 
interface to provide observational information, the primary level would operate in real time during 
flight. Thus, the BBN was not deemed to be an appropriate mathematical mechanism for 
accomplishing the information fusion at the primary level. A suitable alternative for the BBN that is 
more computationally tractable is the Fuzzy Belief Network (FBN) [20,21]. Like the BBN it uses a 
directed graph framework but uses fuzzy belief functions to assign a level of confidence in lieu of 
exact conditional probabilities. An in-depth description of the high-level fusion module FBN 
process is outside the scope of the present paper. It will suffice to say that the FBN construction 
is dictated by the particular engine data and analyzed features available within a given application 
and requires expert knowledge (and experience) to formulate the parametric inter-relationships 
and assignable fuzzy levels of confidence. 

The advantage of first tier fusion can be appreciated by considering a hypothetical 
example scenario. Consider the output of the Gas Path Analysis (GPA) module described in the 
previous section that does not directly address measurement errors in the form of bias or drift. If, 
for example, a fault in the fuel flow measurement system were encountered resulting in a bias 
shift in fuel flow, the results of the Gas Path Analysis would be corrupted in that the shift would be 
interpreted as a combination of component performance shifts. However, as Figure 4 suggests, 
the Gas Path Anomaly Detector (AD) would likely perceive and flag the non-nominal condition, as 
well as returning an abnormally high Fuel Flow measurement distance metric. The combination of 
the GPA and the AD results would allow us to infer the Fuel Flow measurement error and 
effectively ignore the (erroneous) GPA performance excursions. Conversely, if there had been a 
component performance shift instead, (a FOD or DOD event, for example) then once again we 
would see performance changes in the GPA. In this case we would also likely see an AD fault 
flag accompanied by measurement distance metrics in more than just one parameter. This 
combination of GPA and AD results would allow us to infer that an event has occurred and that 
the reported GPA results can be taken with increased confidence. Clearly the inclusion of other 
sensor information and analysis features could further substantiate or refute a given hypothesis in 
terms of reported confidence level. Constructing the inter-relationships between sensor and 
feature information available across the disparate information sources, along with assigned 
confidence levels, is the challenge of the high-level fusion task. 
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SUMMARY 

A pivotal requirement for successful diagnostics is the ability to detect and isolate engine 
system faults in a timely manner. Data Fusion provides for the integration of data or information 
from multiple sources, in order to enhance diagnostic visibility, increase diagnostic reliability and 
reduce the number of diagnostic false alarms. 

In this paper we have discussed an approach to developing an information fusion system 
for aero gas turbine engines. A general architecture for an on-board data fusion system has been 
presented and examined which addresses a variety of potential data sources. A specific data 
fusion methodology that is being developed under a NASA C17-T1 PHM research program was 
presented covering data sources, signal processing, and some traditional and novel analysis 
modules for engine health feature extraction. A brief overview of a high-level fusion module 
framework was also given. 

FUTURE WORK 

Future work on this project will focus on the development of the Fuzzy Belief Network for 
combining feature information from the various analysis modules. Initially this will applied to the to 
gas path components as alluded to earlier and will be incrementally expanded to include other 
components and feature information. 
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APPENDIX 

Table A: Examples of Parameter Measurement Information for Data Fusion 

Sample Sample 
Parameter Rate (Hz) Engr. Units Parameter Rate (Hz) Engr. Units 

1                                                  Aircraft Gas Path                                                  | 
Mach No. 25 N1 20 % RPM 
Pressure Altitude 25 FT N2 20 % RPM 
Calibrated Airspeed 25 KNOTS Burner Static Pressure 5 PSIA 
True Airspeed 25 KNOTS High Pressure Compressor Exit Total Temperature 5 DegC 
Indicated Airspeed 25 KNOTS EGT Total Temperature 20 DegC 
Angle of Attack 50 DEC Engine Inlet Total Temperature 5 DegC 
Alptia Dot, (AOA Rate) 6 DPS Engine Inlet Total Pressure 5 PSIA 
Roll Angle 50 FPS Low Pressure Turbine Exit Total Pressure 5 PSIA 
Pitch Angle 50 FPS Fuel Flow 5 PPH 
Heading Angle 50 DEC Low Pressure Compressor Exit Total Temperature 20 Deg C 
Roll Rate 
Pitch Rate 
Yaw Rate 

50 
50 
50 

DPS 
DPS 
DPS 

Low Pressure Compressor Exit Total Pressure 20 PSIA 
Structural Assessment Sensors                                  | 

Stewart Hughes IDMS Sensor # 1 12.5K VDC 
Flight Path Angle 50 DEC Stewart Hughes IDMS Sensor #2 12.5K VDC 
Altitude Rate 25 FPM Stewart Hughes EDMS Sensor 12.5K VDC 
Total Temperature 10 DegC SwanTech Sensor #1 (Inlet Stator) 23.15K VDC 
Total Pressure 25 INHG SwanTech Sensor #2 (E-Flange) 23.15K VDC 
Static Temperature 10 DegC SwanTech Sensor #3 (Gearbox) 23.15K VDC 
Static Pressure 25 INHG SwanTech Sensor #4 (K-Flange) 

SwanTech Sensor #5 (#5 Bearing Oil Pressure) 
B-Flange High Frequency Acceleration 

23.15K 
23.15K 
46.3K 

VDC 
VDC 

g 

I                                                  Commands 
High Press. Compressor Variable Vane Position 5 Inches 
Station 2.5 Bleed Valve Position 5 % Open B-Flange Low Frequency Acceleration 5.8K g 
Thrust Lever Angle 20 Degrees P-Flange High Frequency Acceleration 23.15K g 
High Pressure Turbine Clearance Valve Position 5 % Open P-Flange Low Frequency Acceleration 5.8K g 
Low/ Pressure Turbine Clearance Valve Position 5 % Open Gearbox High Frequency Acceleration 46.3K g 
Air / Oil Heat Exchanger Valve Position 5 % Open Gearbox Channel 1 (X-axis Acceleration) 

Gearbox Channel 2 (Y-axis Acceleration) 
Gearbox Channel 3 (Z-axis Acceleration) 

23.15K 
23.15K 
23.15K 

g 
g 
g 

Oil/Fuel System 
Oil Quantity 2.5 Quarts 
Fuel Temperature at Fuel/Oil Heat Exchanger 5 DegC 
Main Oil Temperature 5 DegC 
Main Oil Differential Pressure 5 PSIG 
# 4 Bearing Compartment Exit Pressure 2.5 PSIG 
Fuel Pump Exit Pressure 20 PSIA 
#1, 2, 3 Bearing Compartment Exit Temperature 20 DegC 
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