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Abstract

This dissertation is concerned with the development of implementable ana-

lytical models for the estimation of the remaining lifetime probability distribution

of a component subject to a randomly evolving environment. The models incor-

porate estimated parameters via environmental or degradation measures obtained

from component sensors. We consider three distinct stochastic process models for

the random environment: a temporally nonhomogeneous Markov environment, a

temporally homogeneous Markov environment, and a temporally homogeneous semi-

Markov environment. The hybrid approach unites real environment state or degrada-

tion measures with analytical, stochastic failure models to numerically compute the

distributions and their moments. Additionally, it is shown that the lifetime distribu-

tions resulting from the homogeneous Markov environment and a special case of the

nonhomogeneous Markov environment are distributions of the matrix-exponential

type. Because the lifetime distribution in the semi-Markov case is computation-

ally intensive, we instead utilize phase-type (PH) approximations that transform the

semi-Markov environment to a time-homogeneous Markov environment. The numer-

ical experiments indicate that the analytical techniques developed in this research

hold great promise for remaining lifetime prognosis in a variety of contexts.

ix
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HYBRID STOCHASTIC MODELS FOR REMAINING

LIFETIME PROGNOSIS

I. Introduction

1.1 Background

The overarching mission of the United States Air Force is to “fly, fight, and

win.” Capabilities and technologies which improve the means by which the US Air

Force flies, fights, and wins are continuously sought. For example, unmanned aerial

vehicles (UAVs) have greatly increased the amount of time an aircraft remains in

flight. Laser and satellite guided munitions have drastically improved the ability

of the US Air Force to successfully complete their missions. Stealth aircraft have

tremendously enhanced the ability to win with their capacity to attack enemy tar-

gets virtually unseen. The Joint Strike Fighter (JSF), the newest fighter aircraft in

production, is part of an ongoing effort to address all three aspects of the Air Force

mission. Its state-of-the-art munitions delivery technology seeks to provide unpar-

alleled capability to put “bombs on target” and destroy enemy aircraft. Its most

up-to-date stealth technology seeks to conceal its very presence from enemy radars.

These technology enhancements, and the overall functionality of the aircraft, rely

upon its operational status. If the aircraft is down for repairs or waiting for parts,

the “fly and fight” portions of the mission are obviously impacted while the “win”

portion may well be impacted by how long it takes to return the aircraft to an oper-

ational status. Thus, maintenance and logistics teams continually seek methods to

return aircraft to an operational status in an efficient manner.

An area which will provide a great enhancement in the JSF’s ability to remain

airborne rests in maintenance and logistics. Current procedures call for an aircraft
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to take off, fly its mission, return to base, land, and then be readied for the next

mission. In this protocol, maintenance and (to a lesser degree) logistics activities,

do not begin until after the aircraft has landed. Maintenance personnel obtain

a list of malfunctioning systems from both the pilot and aircraft diagnostics and

then begin the process of locating and repairing (or replacing) failed components.

The amount of time required to locate failures, coupled with the availability of

replacement parts, can severely degrade the operational effectiveness of the aircraft.

To lessen this impact, a JSF product team [35] is working towards the development of

an autonomic logistics (AL) program which seeks to produce high sortie generation

rates, high mission reliability rates, a small logistics footprint, and a significant

reduction in ownership costs including reduced manpower.

The AL program relies on four key elements: a prognostics and health man-

agement (PHM) system, an autonomic logistics information system (ALIS), a main-

tainer, and a support system. The PHM system and ALIS begin functioning as soon

as the aircraft is operational. In theory, the PHM system examines the aircraft’s

critical components, detects any faults or failures and provides future failure proba-

bilities on currently operating components. This information is transmitted to the

maintainer via the ALIS. From an operational point of view, the value of such a

system is obvious because the maintainer receives advance notice of an impending

failure via the ALIS and is able to initiate the maintenance and logistic processes to

prepare for any repairs or replacements before the aircraft lands. However, the tech-

nology to fully implement the AL program has not been completely developed. This

dissertation focuses on a portion of the technology to implement the PHM system

of the AL program.

The PHM system includes both diagnosis and prognosis of the system and its

associated components. The science of diagnostics can be defined as the detection,

isolation, and identification of a fault or failure whereas prognosis attempts to esti-

mate, with some degree of certainty, the remaining useful lifetime of the system. In
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diagnosis, a fault indicates degraded operation whereas failure indicates operation

has ceased. Routine checkups, instantaneous failures, degraded performance, and

other criteria may indicate a fault or failure has occurred. Once detected, methods

to isolate the impacted components and assess the level of damage to those compo-

nents are employed. If not fully isolated and identified, additional faults and failures

related to the original failure are more likely. Prognosis naturally relies upon, but is

distinct from the diagnosis of a system. The ultimate goal of prognosis is to assess

the current health of a system in order to make inferences about the future health of

the system. The ability to predict when a component will fail has obvious benefits.

These benefits include reduced risk of catastrophic failure, utilization of the full life-

time, a capability to plan for a failure instead of reacting to a failure and secondary

damage, as well as many other benefits. If a failure is accurately diagnosed, then

prognosis obviously has no value. However, if diagnosis indicates a system is operat-

ing with or without faults, then prognosis is useful to assess the remaining lifetime

of critical system components.

While the value of remaining lifetime prognosis is clear, implementation is

nontrivial. Diagnosis has been used for many years in mechanical systems and com-

ponents, and the methods to automatically diagnose these systems correctly have

improved greatly by enhancements in detection, isolation and identification of faults

and failures. However, implementing a prognosis capability in such systems has not

been realized to the same degree. This is partly due to the increased reliability of

components and systems wherein it may take years to observe a single fault or fail-

ure (e.g. seat belts in a car). In such cases, there is little, if any, historical lifetime

data on components, thus complicating the task of lifetime estimation. If sufficient

lifetime data are available, lifetime distributions (parametric or nonparametric) can

be developed to predict a component’s lifetime using standard statistical techniques.

However, without lifetime data, some have resorted to periodic replacement policies,

but this type of maintenance strategy may not fully utilize the useful life of the
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component. Still others use an event-driven replacement strategy where components

are replaced after the occurrence of a fixed number of events, such as the number of

aircraft landings. Optimal maintenance strategies continue to be a major concern

for analysts in military and commercial settings. Therefore, a prognosis methodol-

ogy, not contingent on lifetime observations, will ultimately enable the PHM system

implementation.

Smith, et al. [81] determined that the prognostic capability of the PHM system

supporting the AL program is crucial to the development of the Joint Strike Fighter.

Henley, et al. [31] have concluded that “AL will not work without PHM.” Since sys-

tem diagnosis is well defined and currently implemented on many systems, successful

AL hinges upon successful prognosis. The major contribution of this dissertation

is the development of a hybrid approach that combines analytical techniques with

real-time component degradation data to determine the probability distribution of

the full and remaining lifetime of components for the purpose of system prognosis

and possible implementation into the PHM system. The uniqueness of this contri-

bution rests in the specification of the lifetime distribution using only degradation

data in lieu of failure time observations. Current methodologies (e.g. time series

analysis and artificial neural networks) estimate lifetimes and prediction intervals

associated with those lifetimes. These techniques, however, require sufficient data to

observe trends or train and validate the resulting model for each component. The

techniques developed in this dissertation will be sufficiently generic to provide the

lifetime distribution for degradation data provided by sensors attached to a com-

ponent. The proposed techniques require knowledge of the random environment in

which the system operates. Additionally, while the results are highly relevant to

Air Force applications, a broader contribution will be made to the growing field of

degradation-based reliability analysis.

This dissertation does not seek to improve diagnosis capabilities, but is focused

on providing contributions in the area of systems prognosis. Arguably, the most
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important hurdle in the implementation of systems prognosis is the ability to assess

the future health of a component given no failure time observations. We provide

a technique to perform systems prognosis without failure time observations via the

determination of the remaining lifetime distribution using degradation data and

associated information from the random environment in which the system operates.

1.2 Problem Definition and Methodology

This dissertation is primarily focused on the development of analytical models

that can be employed to estimate the remaining lifetime probability distribution

by using degradation measures obtained from existing component sensors. These

distribution estimates are extremely important in the overall context of systems

prognosis to assess the current health of the component and predict its remaining

lifetime.

The approach of this dissertation combines analytical models found in wear

processes with degradation-based reliability to provide a methodology to obtain the

remaining lifetime distribution of a single-unit system. While lifetime observations

are rarely available, sensors attached to a component are capable of providing in-

formation directly indicating the degradation of the component and/or current en-

vironmental conditions. However, given only real-time sensor measures, there does

not exist a method to analytically compute the remaining lifetime distribution of the

component.

This dissertation develops analytical results for the lifetime distribution that

incorporate real data, provided by sensors, of a single-unit system operating in a

random environment modelled as a nonhomogeneous and homogeneous, continuous-

time Markov chain. We consider solving this problem under two scenarios: when the

environment is observable and when degradation is observable. We show through

goodness-of-fit tests that this estimated lifetime distribution is statistically equiva-

5



lent to simulated lifetime distributions. Additionally, it is shown that the remaining

lifetime distribution is determined via the lifetime distribution resulting in the ca-

pability to perform systems prognosis. These results are then extended to account

for a more general environment modelled as a semi-Markov process. Finally, it will

be shown that this process requires phase-type (PH) distribution approximations to

numerically implement the analytical lifetime distribution.

1.3 Dissertation Outline

Chapter II examines current prognosis procedures in military and industrial

systems as well as other prediction techniques. In Chapter III, we derive analytical

results for the lifetime distribution by consideration of the nonhomogeneous and

homogeneous Markovian environment in which the unit operates. We then show

these distributions are a subset of a much larger class of distributions whose moments

are easily obtainable. Chapter III also provides and demonstrates the procedures for

numerical implementation of these analytical results.

Chapter IV examines a more general random environment; however, our main

results in this chapter are extremely difficult to implement numerically. This diffi-

culty is illustrated through three examples that result in complex matrix equations.

Working around this complexity provides the basis for Chapter V wherein we apply

techniques that approximate the more general environment and allow us to numer-

ically evaluate the lifetime distribution using the techniques developed in Chapter

III. Finally, we highlight the contributions and recommendations of this dissertation

and suggest future areas of research in Chapter VI.

6



II. Literature Review

The overall aim of this research is to obtain the remaining lifetime distri-

bution for the purpose of performing systems prognosis. Some prognosis methods

already exist, as shown in Section 2.1, but do not necessarily incorporate degra-

dation data or provide the remaining lifetime distribution. The methods given in

Section 2.2 incorporate a steady stream of empirical data which could include degra-

dation data. These are primarily state estimation techniques with the objective to

predict some future state given the history of the process. Thus, their intention

is not to provide the remaining lifetime distribution. Many analytical models (e.g.

shock and wear models) provide a closed-form solution for the lifetime distribution,

but provide little guidance on numerical implementation and may not be able to

incorporate real-time degradation data. Lastly, Section 2.4 compares and contrasts

failure-based approaches, which require failure time observations, and degradation-

based approaches which require simplifying assumptions to estimate the lifetime and

remaining lifetime distributions.

2.1 Systems Prognosis

This section provides a sampling of some organizations that have incorporated

systems prognosis in their operations. Though the majority of this discussion is

devoted to military applications, it does include industrial and medical applications

as well.

The US Army [22] designated that material developers should emphasize diag-

nosis and prognosis in the design, development and improvement of their equipment.

Hence, the US Army has attempted to incorporate various aspects of systems prog-

nosis. Kangas, et al. [38] addressed the health monitoring of the M1A1/A2 Battle

Tank. The turbine engine diagnosis using artificial neural networks (TEDANN)

methodology focused on diagnostics, but did provide a capability to predict future
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availability of the vehicle and schedule maintenance via trend analysis. Greitzer,

et al. [29] indicated that the short-term and long-term trend analysis capability

in TEDANN is based on linear regression. Additionally, the author introduced a

methodology called life extension analysis and prognostics (LEAP) and applied it

to the US Army’s M1 Abrams tank [28] and a diesel locomotive engine [94]. Su, et

al. [82–84], were funded by the US Army Logistics Integration Agency to develop a

prognostics framework focused on an entire system rather than a single component

of that system. This framework was initially based upon the diagnostic analysis and

repair tool set (DARTS) and has the ability to accept prediction information from

neural networks, time/stress measurement devices, vibration monitoring, oil moni-

toring, sensors, trend analysis, and statistical analysis. Parts reliability, degradation

data, failure mode data, and other prognostic related data were also integrated into

the framework. Furthermore, Su, et al. [83] provided a summary of over sixty ar-

ticles surveying prognostics research in the military, academia, and industry. His

summary included applications such as power plants, US Navy ships, wind tunnels,

and helicopters using techniques such as artificial and polynomial neural networks,

Kalman filters, rule based expert systems, fuzzy logic, and statistical network mod-

eling. Su, et al. [83] indicated these were prognostic techniques, but none provided

the remaining lifetime distribution.

In spite of these attempts to incorporate systems prognosis in the US Army,

Keeney, et al. [43] mentioned that embedding diagnosis and prognosis capabilities is

a major challenge and examined numerous questions associated with this task. He

indicated that the process was not complete due to funding limitations and provided

requirement specifications that have derailed systems diagnosis and prognosis inte-

gration. However, to speed the process, Keeney, et al. [43] indicated that the US

Army Logistics Integration Agency had initiated a new project called the Embedded

Diagnostics and Prognostics Synchronization (EDAPS) with the purpose of pulling

together all current US Army efforts in embedded diagnostics and prognostics.
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The US Navy has also adopted the previously mentioned prognostics frame-

work [66], but it appears to be mainly a diagnostic framework with the ability to

incorporate systems prognosis information on individual components as that infor-

mation becomes available. Hardman, et al. [30] helped generate a US Navy strategy

to develop diagnosis and prognosis procedures for helicopter drivetrains using rule-

based and model-based analysis techniques. The authors indicated that extrapola-

tion of key data, statistical parameters of diagnostic indices, and trend analysis are

techniques that enable failure prediction. However, it was stated that each failure

mode for a specific component type might require a separate analysis.

In the private sector, manufacturers have also adopted the concept of systems

prognosis. Caterpillar [13] attached pump vibration sensors to hydraulic pumps on

backhoes for the purpose of detecting a 10% flow loss from an established base-

line. They trained and tested a neural network on autoregressed, filtered data.

BorgWarner Cooling Systems [11] published a brochure on their fan drives for light

trucks and sport utility vehicles claiming the fan speed feedback signal allows for di-

agnosis and prognosis of the electronic control module. Cummins Inc. [20] mention

in the industrial specifications for their QST30 engines that the CELECTTM elec-

tronic engine management provides electronics for diagnosis and prognosis. There

are also purchasable options on the engine that provide trend data for assistance in

maintenance decisions.

In the medical community, prognosis is mainly associated with the determi-

nation of the most important factors related to the detection, progression, and pre-

vention of illnesses. For example, the National Institute of Child Health and De-

velopment (NICHD) [63] published a pamphlet on sudden infant death syndrome

(SIDS) and stated that improvements in screening tools relied upon knowing the

abnormalities that cause death where proper prognosis and diagnosis would play a

major role in these tools. Park, et al. [71] examined a new cancer therapy by noticing

how the inhibitor p27 suppressed the growth of established lung cancer. Previous
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research in tumors had indicated that p27 possibly had a prognosis capability. Most

all medical applications attempt to find the most important factors behind certain

life shortening diseases and ailments. Once these factors are known, procedures may

be applied to predict the remaining lifetime of a patient.

Many of the prognosis techniques mentioned in this section rely upon state

estimation techniques which are examined in the next section. We notice that none of

these current system prognosis techniques allow for the incorporation of degradation

data, and nor do they provide the remaining lifetime distribution.

2.2 State Estimation Approaches to Prognosis

If a sufficient amount of time-dependent data is available, then stochastic state

estimation techniques are often used to determine the state, or functional value of the

system, at a future point in time. Most of the applications in Section 2.1 incorporate

these techniques that include regression, time series, Kalman filters, neural networks,

and others. Probability distributions are not usually estimated from state estimation

techniques, but can be if sufficient data exists. These techniques rely heavily on past

data to predict future performance. In some cases where multiple data sets exist, it

is feasible to use statistical techniques or simulation which can provide an estimate

of the failure time distribution. In the following subsections, a few common state

estimation procedures are reviewed.

2.2.1 Regression Techniques

This section provides an overview of the concepts and techniques associated

with regression analysis. Regression analysis uses the existing data and determines

the relationships, if any, between the measurable outcome and the variables con-

tributing to that outcome (e.g. life expectancy is the outcome and exercise and

diet are the variables contributing to that outcome). Neter, et al. [64] provided the
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framework on the statistical relation for the purpose of prediction. A general linear

regression model is given by

Yi = β0 + β1Xi,1 + β2Xi,2 + . . . + βp−1Xi,p−1 + εi, i = 1, . . . , n (2.1)

where Yi is a random variable denoting the value of the ith trial’s response, β0,

β1, . . . , βp−1 are estimated parameters, Xi,1, Xi,2, . . ., Xi,p−1 are the values of the

predictor, or contributing variables, and εi is the random error with mean = 0,

variance = σ2, and covariance = 0. The term linear results from the estimated

parameters, not the predictor variables. For example, Equation (2.2) is a linear

model whereas Equation (2.3) is a nonlinear model.

Yi = β0 + β1X
2
i,1 + β2

3
√

Xi,2 + β3Xi,1X
2
i,2 + εi. (2.2)

Yi = β0 + β2
1X

2
i,1 + β2

3
√

Xi,2 + β3Xi,1X
2
i,2 + εi. (2.3)

Define the regression function for the regression model in Equation (2.1) as

E[Y ] = β0 + β1X1 + β2X2 + . . . + βp−1Xp−1. (2.4)

Regression analysis seeks to estimate the parameters of the regression function,

β0, β1, . . . , βp−1, in order to find a representative model by the method of least

squares. The method of least squares defines a variable Q, where

Q =
n∑

i=1

(Yi − β0 − β1Xi,1 − β2Xi,2 − . . .− βp−1Xi,p−1)
2 (2.5)

and attempts to find estimates for β0, β1, . . . , βp−1, denoted by b0, b1, . . ., bp−1, which

minimize Q for the observations (X1, Y1), (X2, Y2), . . ., (Xn, Yn). The simultaneous

solution to the equations formed by taking the derivative of Q with respect to β0,
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β1, . . . , βp−1 provides the least squares estimates, b0, b1, . . ., bp−1. Least squares

estimates are desired because they are unbiased and have minimum variance resulting

in

Ŷ = b0 + b1X1 + b2X2 + . . . + bp−1Xp−1. (2.6)

The method of maximum likelihood can also be used to estimate β0, β1, . . . , βp−1 if

the probability distribution of the error terms is known.

Li, et al. [55] discussed mainly diagnosis results based upon a regression model,

but also included some details on prognosis. They examined an adaptive prognostics

approach where a future bearing defect size was calculated at time t+∆ (∆ > 0) given

the bearing running condition and defect size at time t. This adaptive algorithm,

based on a recursive least squares algorithm applied to a defect power law-based

propagation model, was then employed to account for the time-varying behavior and

used to predict future impending failures. Additionally, as mentioned in Section 2.1,

regression is employed for prognosis in many medical applications. Typical response

variables include life expectancy or recovery time with predictor variables such as

age, family history, personal habits, and amount of time spent exercising in a week.

The details in this section scarcely scratch the surface of regression analysis.

Neter, et al. [64] provide much more detail on linear and nonlinear regression models

as well as the dangers of extrapolating beyond the observed data in their text.

However, regression is not the only state estimation method used for prognosis.

2.2.2 Time Series Analysis

In addition to regression analysis, time series or autoregressive-integrated mov-

ing average (ARIMA) processes, also known as trend analysis, is a common state

estimation technique used for prognosis. The information in this section can be found
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in Box and Jenkins [12] unless specifically cited otherwise. The following notation

is helpful for the methods presented in this section.

µ is the mean of the time series data
z1, z2, . . . , zn are time ordered observations
w1, w2, . . . , wn are differenced time ordered observations
B is the backshift operator where Bzt = zt−1 and Bmzt = zt−m

I is the identity operator
∇ is the difference operator where ∇zt = zt − zt−1 = (I −B)zt

at, at−1, at−2, . . . ∼ N(0, σ2
a) are known as a white noise process

σ2
a is the variance of the white noise process at

φ1, φ2, . . . , φp are the unknown parameters of an autoregressive process
θ1, θ2, . . . , θq are the unknown parameters of a moving average process
φ(B) = I − φ1B − φ2B

2 − · · · − φpB
p is an operator of order p

θ(B) = I − θ1B − θ2B
2 − · · · − θqB

q is an operator of order q

An ARIMA model is a generic construct which incorporates autoregressive (AR)

processes, moving average (MA) processes, and a capability to account for non-

stationary data. Given z̃t = zt − µ, an AR process of order p is mathematically

defined as

z̃t = φ1z̃t−1 + φ2z̃t−2 + . . . + φpz̃t−p + at (2.7)

which is similar to Equation (2.1) and can be rewritten as

φ(B)z̃t = at. (2.8)

Observed data provides estimates for µ, φ1, φ2, . . . , φp. An MA process of order q is

defined as

z̃t = at − θ1at−1 − θ2at−2 − . . .− θqat−q (2.9)

and can be rewritten as

z̃t = θ(B)at (2.10)
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where observed data provides estimates for µ, θ1, θ2, . . . , θq.

A non-stationary model must be transformed into a stationary model before

the AR and/or MA techniques are appropriate. This transformation normally occurs

through differencing, (I−B)d, but can also be accomplished by taking the logarithm

of the time series data. Therefore, a complete ARIMA model of order (p, d, q) is

mathematically defined as

φ(B)(I −B)dz̃t = θ(B)at. (2.11)

This model can describe both stationary and non-stationary time series but requires

a significant amount of data to estimate µ, φ1, . . . , φp and θ1, . . . , θq.

Before any parameters can be estimated, the order for each process in the

ARIMA model must be determined. The purpose of this step is to make the process

stationary, if need be, by determining d, and then determine the number of param-

eters to be estimated by identifying both p and q. Box and Jenkins [12] specifically

state that the methods to identify the order of an ARIMA model are inexact and that

“statistically ‘inefficient’ methods must necessarily be used.” Thus, graphical meth-

ods are very helpful in the determination of these orders. Personal judgement used to

determine the values of p, d, and q are often based on the estimated autocorrelation

and partial autocorrelation functions. Given N is the total number of observations,

z̄ is the mean of these observations, and K ≤ N
4
, the kth lag autocorrelation ρk is

estimated by

rk =
ck

c0

(2.12)

where

ck =
1

N

N−k∑
t=1

(zt − z̄)(zt+k − z̄), k = 0, 1, 2, . . . , K. (2.13)
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The autocorrelation function is a plot of the values of rk at each lag k. Given the

autocorrelation function, if rk approaches zero, or ‘dies out’, quickly, the time series

is considered stationary. If the autocorrelation does not approach zero quickly, then

differencing is required. The value for d is determined using this autocorrelation

function where d, normally 0, 1, or 2, is increased by one until the series is deemed

stationary. With d estimated, the autocorrelation and partial autocorrelation func-

tions are used to find p and q. Using rk as estimates for ρk, the following system of

equations are solved for φ̂kk,




1 r1 r2 · · · rk−1

r1 1 r1 · · · rk−2

...
...

...
. . .

...

rk−1 rk−2 rk−3 · · · 1







φ̂k1

φ̂k2

...

φ̂kk




=




r1

r2

...

rk




. (2.14)

The partial autocorrelation function is formed by plotting φ̂kk at each lag k and the

order p of an autoregressive process is equal to, in most cases, the last ‘nonzero’ lag p

of the partial autocorrelation function. Additionally, the order q of a moving average

process is equal to, in most cases, the last ‘nonzero’ lag q of the autocorrelation func-

tion. The term ‘nonzero’ defines a cutoff point where the remaining k− q and k− p

lags in the autocorrelation and partial autocorrelation functions, respectively, come

close to zero. If there is no cutoff point in either the autocorrelation or partial auto-

correlation functions, then a combined ARMA process is required. In this combined

scenario, either the autocorrelation function or partial autocorrelation function will

be infinite with damped exponentials and/or sine waves after the first q− p or p− q

lags, respectively. It should be clear that there is some leeway in the identification

of p, d, and q. Once all three orders are determined, the ARIMA model parameters

can be estimated.
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An ARIMA(p, d, q) with d 6= 0 will have n = N−d observations, w1, w2, . . . , wn

and can be written as

at = w̃t − φ1w̃t−1 − φ2w̃t−2 − . . .− φpw̃t−p + θ1at−1 + θ2at−2 + . . . + θqat−q (2.15)

where E[wt] = µ and w̃t = wt − µ. Chatfield [17] shows that, when estimating

the parameters of an ARIMA(p, d, 0) model, the parameters, φ1, φ2, . . . , φp, can be

estimated with least squares by minimizing

S =
N−d∑

t=p+1

[w̃t − φ1w̃t−1 − φ2w̃t−2 − . . .− φpw̃t−p]
2 (2.16)

with respect to φ1, φ2, . . . , φp. Additionally, Box and Jenkins [12] and Chatfield [17]

show that for N reasonably large, the solution to the matrix equation Rφ̂ = r

provides estimates close to the least squares estimates in Equation (2.16) where

R =




1 r1 r2 · · · rp−1

r1 1 r1 · · · rp−2

r2 r1 1 · · · rp−3

...
...

...
. . .

...

rp−1 rp−2 rp−3 · · · 1




(2.17)

φ̂
T

=
[

φ̂1 φ̂2 . . . φ̂p

]
(2.18)

rT =
[

r1 r2 . . . rp

]
. (2.19)

Chatfield [17] mentions that “efficient explicit estimators” for an ARIMA(0, d, q)

process cannot be found. Therefore, an iterative technique must be used with suit-

able starting values for θ1, θ2, . . . , θq. While Chatfield [17] provided a starting point

for θ1, Box and Jenkins [12] provided a system of equations where initial estimates
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for all θ’s are found by simultaneously solving

rk =
−θk + θ1θk+1 + θ2θk+2 + · · ·+ θq−kθq

1 + θ2
1 + θ2

2 + · · ·+ θ2
q

(2.20)

for k = 1, 2, . . . , q. Given initial estimates and the portion of Equation (2.15) per-

taining to moving averages, Chatfield [17] provided the recursive equations,

a1 = w̃1

a2 = w̃2 − θ1a1

a3 = w̃3 − θ1a2 − θ2a1

...

an = w̃n − θ1an−1 − θ2an−2 − · · · − θqan−q (2.21)

which are then used to calculate the sum of squares,
n∑

t=1

a2
t . For q ≤ 3, this method

is repeated for updated estimates of θ1, θ2, and θ3. The MA model, Equation (2.10),

is then plotted with each set of estimates to find the least squares estimate which

happens to be the lowest plot. If the order of the MA process exceeds three, Chatfield

[17] discussed other iterative optimization techniques, which are not discussed here,

that could be used. If additional data becomes available, the entire ARIMA process

should be repeated. If the order of the ARIMA model has not changed, it is still

necessary to re-estimate the parameters with additional data.

Jardim-Goncalves, et al. [34] used ARIMA models to predict when comput-

erized numeric control (CNC) lathe and mill machines would fail. These machines

were monitored with sound, vibration, and power consumption sensors in real time

and the authors were able to forecast whether the machines required maintenance in

future time periods given acceptable ranges on the monitored parameters. Patankar

and Ray [72] examined the fatigue crack growth prediction problem with a forecast-

ing model under variable-amplitude loading. The developed forecasting model was
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shown to be adequate for real time applications. As seen, time series analysis, as

presented here, can predict a future state at a future time. Another method that

can perform this function is Kalman filtering.

2.2.3 Kalman Filtering

This section examines another state estimation technique called a Kalman filter

with scalar states and scalar observations. A Kalman filter incorporates the signal

embedded with noise and forms what can be considered a sequential minimum mean

square error estimator (MMSE) of the signal. The signal is considered a state model.

Kay [42] called the Kalman filter an important generalization of the Wiener filter

because of its ability to handle non-stationary vector signals and noise as compared

to the stationary scalar signals and noises required for the Wiener filter.

Define sn, n = 0, 1, . . . , N − 1, as the signal to be estimated at a discrete time

point n. The recursive scalar state equation, also called a first-order Gauss-Markov

process, is

sn = asn−1 + un, n ≥ 0 (2.22)

where |a| < 1 is a weighting coefficient and un is white Gaussian noise with zero

mean and variance σ2
u. At n = 0, s−1 is the initial state where s−1 ∼ N(µs, σ

2
s) and

µs and σ2
s are determined by the previous data. Additionally, s−1 is independent of

all un. The scalar observation equation is defined as

xn = sn + wn, n ≥ 0 (2.23)

where each xn is an observation and wn is zero mean Gaussian noise with variance

σ2
n which can change over time. Given observations, {x0, x1, . . . , xn}, filtering occurs

when these observations are used to estimate sn as n increases. The Kalman filter is

the MMSE which recursively calculates the estimator ŝn. The estimator of sn using
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n observations, denoted by ŝn|n, is

ŝn|n = E[sn|x0, x1, . . . , xn]

= ŝn|n−1 + E[sn|xn] (2.24)

if xn is uncorrelated with all previous observations. Since xn is generally correlated

with previous observations, a correction to the old estimator, ŝn|n−1 is required.

Kay [42] mentioned there is a portion of xn which is uncorrelated with the

previous observations and defines this portion as

x̃n = xn − x̂n|n−1 (2.25)

where x̂n|n−1 =
n−1∑
k=0

akxk and ak are optimal weighting coefficients. Equation (2.24)

can now be rewritten with the correction as

ŝn|n = ŝn|n−1 + E[sn|x̃n]. (2.26)

Since ŝn|n−1 is the prediction of sn from {x0, x1, . . . , xn−1}, Equation (2.22) becomes

ŝn|n−1 = aŝn−1|n−1 (2.27)

because E[un|x0, x1, . . . , xn−1] = E[un] = 0.

Additionally, Kay [42] provided the derivations for the minimum prediction

mean square error, Kalman gain, the correction, and the minimum mean square
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error. Those equations are respectively,

Mn|n−1 = a2Mn−1|n−1 + σ2
u (2.28)

Kn =
Mn|n−1

σ2
n + Mn|n−1

(2.29)

ŝn|n = ŝn|n−1 + Kn(xn − ŝn|n−1) (2.30)

Mn|n = (1−Kn)Mn|n−1. (2.31)

This scalar Kalman filter formulation can be generalized to vector states with

scalar observations and also to vector states and vector observations. These gener-

alizations, however, are invalid given a nonlinear state equation and/or observation

equation. The extended Kalman filter was developed to account for these nonlinear-

ities.

Ray and Tangirala [75] used Kalman filters for the real time computation of

fatigue crack dynamics as an alternative to solving the Kolmogorov forward equation.

In a later paper, these authors [76] also examined fatigue crack growth prediction

using Gauss-Markov processes which did not require solution of the extended Kalman

filter equation. However, validation of the model with real data was limited in

this scenario. Additionally, Ray and Tangirala [76] assumed that the crack length

itself was distributed lognormally and combined state estimation procedures and

parametric failure time distributions.

As seen in the title of the article [75], Kalman filtering is considered a prognosis

technique by estimating some state value at a future point in time. Evolutionary

strategies also claim to be a prognosis technique by providing information on the

state of the system at a future point in time.
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2.2.4 Evolutionary Strategies

Artificial neural networks, genetic algorithms, fuzzy logic, and other learning

techniques comprise a class of approaches known as evolutionary strategies. These

techniques have some ability to “learn” using past history and subsequently attempt

to predict the state or outcome given a new set of input data. Hence, these techniques

are the most frequently used in current prognosis procedures. Neural networks are

examined in this section.

According to Tsoukalas and Uhrig [88], artificial neural networks work in a

manner similar to actual neurons found in the human brain. Each neuron has den-

drites which are the input paths, a soma which processes the inputs and an axon

which is the output path. Neurons receive and transmit information to other neu-

rons through synapses, or gaps between the dendrites and axons with chemicals that

alter the flow of electrical charges. The artificial neural network has inputs or ob-

servations, x0, x1, . . . , xn, that act as dendrites. The inputs are pre-multiplied by a

separate weight, wi,j representing the synapses. The soma in the artificial neural

network performs two functions. It sums all the weighted inputs, Sj =
n∑

i=1

wi,jxi,

for the neuron, j, and then transforms this summation for output. Tsoukalas and

Uhrig [88] indicate that a transfer function acts as a nonlinear filter on each Sj

which provides the output that travels along the axon for each neuron. The transfer

function can take the form of a threshold function, a signum function, a sigmoidal

function or other type of function and limits the range of the output. The most

common activation function is the logistic function where

Φ(Sj) =
1

1 + e−αSj
. (2.32)

An artificial neural network is formed by a collection of these artificial neurons.

This network normally has an input layer, one or more hidden layers, and an output

layer. Each layer, with the exception of the input layer, consists of a number of
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neurons. Weights are designated for each input from the input layer to neurons in

the hidden layer. Given the transfer function results from the hidden layer, another

set of weights is applied as inputs to the output layer. The final transfer function

results from the output layer form the overall outputs of the artificial neural network.

An artificial neural network [88] with three inputs, four neurons in the hidden layer,

and two neurons in the output layer is shown in Figure 2.1. While weights are

attached to each arrow, only weights for input x1 and neuron 7 are shown.

1 2 3

4 5 6 7

98

w17

w78

w79

w14

w15 w16

Output Layer

Hidden Layer

Input Layer

x1 x2 x3

y9y8

Figure 2.1: Artificial Neural Network

The application of artificial neural networks relies upon many sets of data

and their associated outputs. The concept is to learn the patterns of association

between the data inputs and their associated outputs for the purpose of prediction

given another set of inputs. Initial weights in the network may assume any value,

but Tsoukalas and Uhrig [88] indicate that smaller randomized weights work best

from their experience. The network adjusts these weights by minimizing the error,
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normally in the least squares sense, between the predicted and actual output. The

process of adjusting the weights in neural networks is called training and occurs

iteratively. Once training of the weights is complete, additional data can be used

to validate or fine tune the model. Once fully trained, prediction using the neural

network model can commence.

Li and Ray [56] examined the utility of using back-propagation neural networks

to predict fatigue damage. Their methodology was used to decrease the computa-

tional time required for the conventional method of numerically solving nonlinear

differential equations. In addition, the authors stated that this neural network could

possibly be used for real time analysis of fatigue damage models and other types of

failure models in addition to predicting remaining service life.

Other state estimation techniques exist. For example, Ray and Patankar [78]

used a deterministic state-space model with state variables for the crack length and

the crack opening stress in their fatigue crack propagation model. The model was

modified by using Karhunen-Loève expansion of the crack length and a random

process for the crack opening stress. The authors obtained a closed-form solution of

the stochastic differential equation for the non-stationary statistic of the crack growth

process. In a number of papers, Ray and his co-authors [56,72,75,76,78] used various

state estimation techniques to model fatigue crack growth. The authors mentioned

in these (and numerous other papers not referenced here) that these models could

be used to predict the remaining life. In [77], Ray used his model for remaining

life prediction and risk analysis examining both Virkler data [90] and Ghonem and

Dore data [26] by generating the non-stationary probability distribution function

of fatigue crack damage. Ray [77], assumed that both sets of data were lognormal

distributed and used his model of fatigue crack growth to determine the parameters

of the lognormal distribution for these data sets. Given the parameters, the author

used Monte Carlo simulation to find the probability distribution function for the

remaining lifetime. With respect to the Virkler data [90], Ray [77] compared his
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generated probability distribution with empirical degradation levels at 11 mm, 14

mm, and 20 mm with good results.

These state estimation techniques, with respect to systems prognosis, are pri-

marily used to predict the time when a given process will enter a failure state. Given

multiple degradation paths, state estimation techniques can also, in some cases, es-

timate the failure distribution with current statistical techniques and some assump-

tions. Thus, the capability to determine the remaining lifetime distribution is quite

limited with respect to state estimation techniques when relying upon the degra-

dation data alone. We next examine analytical models that provide the close-form

analytical solution of the lifetime distribution.

2.3 Stochastic Shock and Wear Models

The primary focus of this dissertation is the specification of the remaining life-

time distribution for a degrading component assuming that a monotonic failure path

of degradation data is provided. Section 2.2 examined techniques focused mainly on

state estimation real data. This section reviews analytical models that provide ana-

lytical results for lifetime distributions.

A discrete-time, finite-state shock model can be employed for the purpose of

modelling cumulative damage to an individual component. In this basic form, such

models provide a means to compute the cumulative distribution function of the

random time required to reach a failure state. The failure state in the shock model

corresponds to a prespecified level of cumulative damage which is assumed to be a

monotonically increasing function of time. We formalize a shock model as follows.

Define the random variable Xn as the damage state at time (or duty cycle) n with

sample space Ω = {1, 2, . . . , b} where b is an absorbing state. The stochastic process,

{Xn : n ≥ 0}, either remains in its current damage state or transitions to a higher

damage state at each time step. Component failure occurs when the stochastic
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process first enters the state b. There is no reliance on the history of the process

which implies that {Xn : n ≥ 0} is a discrete-time Markov chain (DTMC) [50]

satisfying the Markov property

P{Xn+1 = j|Xn = i, Xn−1 = in−1, . . . , X0 = i0} = P{Xn+1 = j|Xn = i}. (2.33)

Bogdanoff and Kozin [10] examine both a one-step and a multi-step shock model.

In a one-step shock model, P{Xn+1 = i|Xn = i} = pi, 0 < pi < 1, meaning that in

one time epoch, the system retains its current level of cumulative damage and does

not transition to the next damage level. The cumulative damage increases to the

next damage state with probability P{Xn+1 = i + 1|Xn = i} = 1 − pi. No other

transitions are allowed in this simplistic model. The transition probability matrix

for this DTMC is

P =




p1 q1 0 0 · · · 0 0

0 p2 q2 0 · · · 0 0
...

. . .

0 0 0 0 · · · pb−1 qb−1

0 0 0 0 · · · 0 1




where qi = 1−pi. The multi-step shock model is similar to the one-step in that there

is zero probability that the process attains a lower cumulative damage level and that

there is some probability, pi,i, that the process retains its current cumulative damage

level. However, in the multi-step model, there exists some probability that a shock

will increase the cumulative damage one or more levels. Let pi,j ≡ P{Xn+1 = j|Xn =

i}, i ≤ j. Additionally,
∑
j

pi,j = 1, 0 < pi,j < 1, i = 1, . . . , b − 1, and j = 1, . . . , b.
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The transition probabilities for this DTMC are

P =




p1,1 p1,2 p1,3 · · · p1,b−1 p1,b

0 p2,2 p2,3 · · · p2,b−1 p2,b

...
. . .

0 0 0 · · · pb−1,b−1 qb−1,b

0 0 0 · · · 0 1




.

With transition probability matrices defined for one-step and multi-step shock

models, standard DTMC analyses may be employed to obtain the cumulative distri-

bution function of the random time to first reach the failure state, b. Define αj as

the probability that state j is initially occupied, αj = P{X0 = j}, j = 1, 2, . . . , b−1.

We note that P{X0 = b} = 0 since the process cannot start in a failed state. The

initial probability distribution is defined as α = [α1 α2 · · · αb−1 0] . Further

define

α
(n)
j = P{Xn = j}, j = 1, 2, . . . , b

where α
(n)
j ≥ 0 and

b∑
j=1

α
(n)
j = 1. Letting α(n) = [α

(n)
1 α

(n)
2 · · · α

(n)
b ] and using

results from DTMCs, the marginal distribution vector of Xn is

α(n) = αP n, n = 0, 1, 2, . . . (2.34)

Let Tb be a random variable denoting the first time that the DTMC reaches the

cumulative damage level b where

Tb = min{n > 0 : Xn = b}. (2.35)

Let F (k) ≡ P{Tb ≤ k}, k = 0, 1, 2, . . .. The model structure makes it clear that

P{Tb ≤ 0} = 0. Suppose {Tb < k}. Since Tb is the first time the DTMC reaches
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the cumulative damage level b, then Tb occurred before time k implying {Xk = b}.
Next, consider the event {Tb = k}. In this case, the first time to reach the cumulative

damage level b occurred at time k, which, by the definition of Tb, is {Xk = b}. Thus,

it is seen that the event {Tb ≤ k} is equivalent to the event {Xk = b} and by

Equation (2.34),

P{Tb ≤ k} = α
(k)
b .

Kolesar [48] provided an example of the multi-step basic shock model utility.

While not concerned with finding the lifetime distribution, the author used the shock

model formulation to find the conditions and optimal rules for equipment replace-

ment. Valdez-Flores and Feldman [89] also examined a multi-step shock model in

optimally selecting partial repair policies for Markov models. In an example prob-

lem, the authors provided a slight variation in the multi-step shock model where

pi,i = 0 for i = 1, . . . , b− 1 and pb,b = 1. Kasumu and Lešanovský [41] formulated a

very similar model to [48] but used a one-step shock model instead to determine the

optimal replacement policy.

Extensions of the simplistic version of the shock model with respect to cumu-

lative damage have been formulated. These extensions include the analysis of shock

arrival time, shock magnitude, cumulative shocks, and others. Lee and Lee [54]

provided another use and extension of the basic one-step shock model by analyzing

low-cycle fatigue life prediction under multiaxial loading for 316L stainless steel. In

rare cases, it is possible for transitions to occur from state i to state i− 1 or i + 1 as
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shown in their transition probability matrix

P =




p1 q1 0 0 · · · 0 0 0

r2 p2 q2 0 · · · 0 0 0

0 r3 p3 q3 · · · 0 0 0
...

. . .

0 0 0 · · · rb−1 pb−1 qb−1

0 0 0 · · · 0 0 1




where ri+pi+qi = 1. The authors used this shock model to compute and compare the

lifetime distributions formed from different angle loadings and provided the loading

angle where the material failed quickest. Esary, et al. [24] are responsible for one of

the earliest and most important papers dealing with shock models and their extension

to wear processes. The authors examined the lifetime distribution of a device as a

function of the probabilities, P̄j, of surviving j shocks, j = 0, 1, 2, . . .. The device is

subject to shocks governed by a Poisson process with lifetime distribution

H(t) = 1−
∞∑

j=0

P̄je
−λt(λt)j

j!
, t ≥ 0 (2.36)

where 1 ≥ P̄0 ≥ P̄1 ≥ . . . and the probability of failure on the jth shock is pj =

P̄j−1 − P̄j. Assuming 1 = P̄0, it was shown that H(t) has an increasing failure

rate (IFR) if P̄j/P̄j−1 is decreasing in j = 1, 2, . . .. Gottlieb [27] extended the results

of [24] by relaxing the assumption of a Poisson damage process. However, he assumed

that as the cumulative damage increases, the probability that additional damage

will cause failure also increases. Gottlieb [27] provided conditions on the damage

process that proves the device’s lifetime distribution has an IFR. Shanthikumar and

Sumita [80] analyzed a system whose failure was caused by the occurrence of a

shock greater than some prespecified level. Associated with their shock model was
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a correlated pair (Xn, Yn) of renewal sequences with joint distribution function

FX,Y (x, y) = P{Xn ≤ x, Yn ≤ y}, n = 0, 1, 2, . . . . (2.37)

Transform results, an exponential limit theorem, and the properties of the failure

times were obtained for two models based on the magnitude of the nth shock defined

by the random variable Xn. The first model considered Xn’s correlation with the

length, Yn, of the interval since the last shock and the second model considered Xn’s

correlation with the length, Yn, of the subsequent interval until the next shock. If

Xn and Yn are independent and Yn are identically and exponentially distributed,

the shock model reduces to that in [24]. In [80], the authors assume that Xn and

Yn are correlated. Defining {N(t) : t ≥ 0} as the counting process associated with

Yn, Shanthikumar and Sumita [80] further define M(t) as the maximum shock that

occurs in time t. Given a shock greater than a prespecified level z, the lifetime

distribution, Tz, is

P{Tz ≤ t} = P{M(t) > z}. (2.38)

Let Ω be the sample space for the correlated pair of renewal sequences, (Xn, Yn).

Similar to Equation (2.35), the failure time Tz(ω), is

Tz(ω) = inf{t : M(ω, t) ≥ z} (2.39)

for each sample path ω ∈ Ω. For the correlation between shock magnitude and the

length of the interval since the last shock, the authors defined V (z, t) = P{M(t) ≤ z}
and Wz(t) = P{Tz ≤ t}. Conditioning on the first renewal time, Y1, using the re-

generative property for (Xn, Yn), taking the Laplace transform of V (z, t) and using

the dual relationship in Equation (2.38), the lifetime distribution, P{Tz ≤ t}, was

determined, as well as the first and second moments. However, the marginal dis-
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tributions and marginal densities for Equation (2.37) are required to determine the

lifetime distribution. The system failure time for the case of correlated shock magni-

tude and the time interval until the (n+1)th shock was derived in a similar manner.

Shanthikumar and Sumita [80] also proved that by assuming 0 < FX,Y (x, y) < 1,

0 < x < ∞, 0 < y < ∞ and E[Y ] < ∞,

Tz

E[Tz]

dist−→ U (2.40)

as z → ∞ where P{U ≤ x} = 1 − e−x. Sumita and Shanthikumar [85] provided

similar results to [80] for the lifetime distribution of a system subject to shocks.

In [85], however, a system failure occurred when the cumulative magnitude of shocks

exceeded a prespecified value z instead of a single shock exceeding some prespeci-

fied level in [80]. Furthermore, the lifetime distribution contained in [85] was a

2-dimensional Laplace transform whereas the distribution in [80] was 1-dimensional.

Igaki, et al. [33] examined a trivariate stochastic process with random shocks, Xn, at

random intervals, Yn, with random system state Jn. Their purpose was to extend the

results in [80] and [85] and to incorporate the influences of an environmental process

on the correlation between Xn and Yn as shown by the similarity to Equation (2.37)

of the joint distribution function

Fi,j(x, y) = P{Xn+1 ≤ x, Yn+1 ≤ y, Jn+1 = j|Jn = i} (2.41)

where F(x, y) = [Fi,j(x, y)]. The system lifetime distribution and its moments were

explicitly derived for two shock models where failure in one is defined by a shock

greater than some prespecified level and failure in the other is defined by the cu-

mulative damage reaching a prespecified level. Igaki, et al. [33] also proved that if

FX,Y (x, y) is replaced by F(x, y) in the assumptions for Equation (2.40) and F(∞,∞)

is an ergodic stochastic matrix, then Equation (2.40) holds for the trivariate process.

Waldmann [92] also examined a system subject to shocks and accumulating damage.
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He related the shock process to an environmental process described by varying ex-

ternal and internal factors. This work provided sufficient conditions for an optimal

replacement decision rule with respect to total cost and some bounds associated with

this rule. The probability that the system survives to time n is given by g(an, in, xn)

and {Yn : n ≥ 0} = 0 where an is the cumulative damage following the decision

to replace or not replace the system, in is the state of the environment, xn is the

magnitude of the nth shock, and {Yn : n ≥ 0} is either 0 or 1, indicating the system

is functioning or failed. If the accumulated damage exceeded an environmental state

dependent, prespecified critical value, then the system should be replaced. Puri and

Singh [74] provided results to find an optimal replacement time based on cost con-

siderations of shocks, maintenance, and replacement. The shock models addressed

thus far apply only to instantaneous jumps in the cumulative damage at discrete

times. Another methodology that addresses cumulative damage is a wear model.

Wear models differ from shock models in that damage accrues continually over

time, without jumps and a failure occurs only when the level of cumulative damage

reaches some prespecified value, x. Continuous deterioration and aging are other

terms that are normally associated with wear models. The cumulative damage at

time t is defined by the stochastic process {X(t) : t ≥ 0} with no initial damage, i.e.

X(0) = 0 and is an increasing function. Esary, et al. [24] proved that if {X(t) : t ≥ 0}
is a Markov process and if P{X(t + ∆t)−X(t) ≤ u|X(t) = z} is decreasing in both

z and t for t ≥ 0, z ≥ 0, and ∆t ≥ 0, then the associated first passage time to reach

the cumulative damage value, x,

Tx = inf{t : (X(t) > x} (2.42)

has an increasing hazard rate average (IHRA) distribution. Oluyede [68] defined F ,

which is a right-continuous distribution where F (0+) = 0, to be an IHRA distribu-
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tion if and only if for all 0 ≤ α ≤ 1 and x ≥ 0,

F (αx) ≥ F
α
(x) (2.43)

where F = 1 − F . Additionally, given a nonnegative, non-decreasing function g, F

is also an IHRA distribution if and only if

∫
g(x)dF (x) ≤

{∫
gα

(x

α

)
dF (x)

}1/α

(2.44)

for all 0 ≤ α ≤ 1.

Abdel-Hameed [2] examined a device subject to wear and modelled the wear,

{X(t) : t ≥ 0}, as an increasing Lévy process [39], which is a stochastic process with

stationary, independent increments and continuous in probability for every positive

ε. That is,

lim
s→t

P{|X(t)−X(s)| > ε} = 0, t ≥ 0. (2.45)

Abdel-Hameed [2] defined a random failure threshold, Y , and designated the failure

time of the device as

TY = inf{t : X(t) > Y }. (2.46)

It was shown that if the Lévy measure µ is finite, then the right-tail probability,

G, where G(x) = P{Y > x}, and the survival probability both have increasing

failure rates or both have decreasing failure rates given further assumptions on G.

Kharoufeh [44] examined the wear of a single-unit system subject to a random en-

vironment modelled as a continuous time Markov chain (CTMC). The failure time

distribution and moments were completely specified in the transform space.
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Lastly, some models incorporate both shock and wear. Hordijk and Van Der

Duyn Schouten [32] incorporated both shock and wear models into their Markov deci-

sion drift process. The drift process is defined by the nine-tuple (S,A1, A2, q, Π, p, c1, c2, f)

where Π defines the jump distribution which governs the shock model and f is the

drift function defining the wear process. The main result of this paper was to provide

an average optimal policy. Çinlar [18] also examined the combination of shock and

wear models in addition to Markov additive processes and Lévy processes.

For the most part, these analytical models provide little in the area of numerical

implementation. If examples are provided, they normally assume specific parameter

values. Thus, there is no specified manner to incorporate degradation data into these

analytical models. Thus, we turn our attention to examining the methods to obtain

the remaining lifetime distribution in reliability theory.

2.4 Failure and Degradation-Based Reliability

Failure-based reliability is used to estimate the lifetime distribution and its

parameters when sufficient, complete (and/or censored) failure time data exists.

If prior knowledge of the lifetime distribution exists for similar components, then

often the lifetime distribution is assumed to follow the same distribution of a similar

component. For example, Elsayed [23] wrote about numerous distributions, including

the Weibull, exponential, lognormal, and normal, and discussed various components

whose failure times were characterized by these distributions. He mentioned the

exponential model could best describe components operating at normal conditions

and with failure due to a secondary cause while the lognormal could best describe

the life data of a semiconductor failure mechanism.

However, if the distribution and/or its parameters are unknown, methods are

available to determine the “best” distribution and its parameters. Software pack-

ages such as BestFit [8] and ExpertFit [25] provide test statistics on many types of
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distribution and estimates of the distribution parameters by fitting the lifetime data

to many different, but well-known distributions. BestFit fits up to 27 different dis-

tributions while ExpertFit claims 40 distributions. These distributions are ranked in

order by the Chi-squared, Kolmogorov-Smirnov, and/or the Anderson-Darling tests.

A downfall of these software packages is that only a limited number of distributions

can be compared and the failure data may not originate from any of these well-

known distribution. Numerous other techniques which account for censored failure

data exist but are not examined in this dissertation.

Degradation-based reliability focuses on using measures of component degrada-

tion, not failure data, to assess the remaining lifetime of a component. Degradation

is also known as cumulative damage. Chao [16] provided an excellent review of degra-

dation topics that included four sets of degradation data, the methodology used to

determine shelf lives, the study of growth curves, sigmoids, degradation data col-

lection, and methods to model the degradation process. While little detail is given,

he does quickly mention the wear model through Equation (2.42). Additionally, he

mentioned that if

X(t) = a + bt + W (t) (2.47)

where W (t) is Brownian motion, is used to estimate the cumulative damage, then

the lifetime distribution is inverse Gaussian.

Meeker and Escobar [59] devoted a chapter to degradation analysis. Their

general degradation path model, given the observed sample degradation yi,j of unit

i at time tj, is

yi,j = Di,j + εi,j, i = 1, . . . , n, j = 1, . . . , mi (2.48)

where Di,j is the actual path of unit i at time ti,j and εi,j ∼ N(0, σε) is residual devia-

tion. Additionally, Di,j is a function of ti,j and the unknown parameters β1,i, . . . , βk,i.
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While Meeker and Escobar [59] indicated that β1,i, . . . , βk,i can be estimated and then

employed to predict future degradation of the individual unit, the remainder of their

discussion focused on inferences and predictions about the population which required

the mean values and covariances of the unknown parameters, β1, . . . , βk. No further

insight for estimating the single-unit degradation path was included.

Lu and Meeker [57] reviewed nonlinear regression models and formed a two-

stage method to estimate the model parameters. Stage 1 parameter estimates were

obtained from each degradation path. These estimates were then transformed, if

necessary, to ensure the parameter estimates came from a multivariate normal dis-

tribution. All Stage 1 estimates were then combined to determine estimates of the

mean, variance, and covariance which were then utilized to find the lifetime dis-

tribution. Chan and Meeker [15] incorporated time series modelling to estimate

the degradation probability distribution at a given point in time and the lifetime

probability distribution for solar reflector material. The degradation was modelled

with an autoregressive (AR) process using predicted daily degradation based on data

recorded from previous years. Monte Carlo simulation provided numerous sample

paths which were used to form empirical distribution functions for the degradation

and lifetime distributions.

If lifetime observations and degradation data are not available, accelerated life

testing can quickly provide such data. Meeker and Escobar [59] state that highly

reliable components motivate the need for accelerated degradation tests (ADT) and

accelerated life tests (ALT) which can provide degradation and lifetime data. These

tests increase the use-rate, aging-rate, or stress level of a component in an effort to

decrease the amount of time required for component degradation and failure. The

authors provided numerous strategies and techniques which allow degradation and

lifetime information in accelerated tests to be appropriately used in real time analysis.

Additionally, Meeker, et al. [60] provided a general framework for accelerated tests

to better predict life performance in a highly-variable environment.
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These accelerated tests, however, require knowledge of the relation between

the accelerated variables and accelerated time in order to convey the results to

non-accelerated components. Elsayed [23] indicated that model identification and

parameter estimation are two important problems with accelerated life tests because

there is no method to determine if the model and parameters determined from ac-

celerated life tests are accurate without having actual failure information. Other

difficulties [59] with accelerated tests include:

1. Choosing appropriate variables that affect failure,

2. Extraneous failures resulting from high levels of accelerated variables,

3. Extrapolating if more than one failure mode is present, and

4. Verifying acceleration’s representation of actual process.

Given these difficulties, accelerated tests may provide an inaccurate representation

of the actual process and may not be suitable for certain reliability assessments.

This chapter has examined current applications of systems prognosis, prognosis

from state estimation techniques, analytical models providing a closed-form lifetime

distribution, and failure-based and degradation-based reliability. No single method

or implementation in this chapter provides the capability, without making simpli-

fying assumptions, to incorporate real-time degradation data and to determine the

remaining lifetime distribution which enables systems prognosis. In Chapter III, we

derive analytical models, examine numerical techniques, and demonstrate through

numerical implementation our procedures to obtain the remaining lifetime distribu-

tion which does enable systems prognosis.
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III. Mathematical Model Description

This chapter provides the general mathematical model description and main

results for the cumulative distribution function (CDF) of the time to reach a prespec-

ified degradation threshold using real-time degradation and the associated random

environment of a single-unit system. Analytical models for the lifetime distribution

provide a viable means for assessing the remaining lifetime of the system within

the context of systems prognosis. Hence, our purpose for this chapter is to analyze

models that can be numerically implemented for the development of a prognostic

capability.

In order to account for the impact of the unit’s random environment, the

environment is modelled as a finite-state, continuous-time stochastic process Z ≡
{Z(w) : w ≥ 0}. In particular, we assume that the degradation rate of the single-unit

system depends on the state of its random environment and that the time spent in

that state has an associated probability distribution. Assuming the system operates

to failure without any repairs, the cumulative degradation up to time w may be

described by a monotonically increasing stochastic process X ≡ {X(w) : w ≥ 0}.

Initially, the system is assumed to be in perfect working order but degrades in

its random environment until the cumulative degradation of the system exceeds a

fixed threshold value x, at which time it fails. The lifetime is denoted by the random

variable T (x). The lifetime distribution is our main focus since the remaining lifetime

distribution can be determined from the lifetime distribution as will be shown in

Section 3.4.

The remainder of this chapter is organized as follows. The next section provides

a summary of the assumptions regarding the mathematical model for the Markovian

environment. Section 3.2 provides the derivations of the full lifetime distribution

when the system is subject to a nonhomogeneous and homogeneous Markovian en-

vironment. In Section 3.3, we demonstrate that the lifetime distribution is a matrix-
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exponential distribution with easily derived moments. In Section 3.4, we show that

the remaining lifetime distribution is obtained directly from the lifetime distribution–

a necessary result for enabling systems prognosis. Section 3.5 examines numerical

methods to implement the analytical models. It begins by separately examining

the estimation techniques associated with observable environments and observable

degradation, the data sources utilized to demonstrate these estimation techniques,

and the goodness-of-fit test required to test our procedures. This chapter concludes

by examining four illustrative examples based upon the two cases of an observable

environment and observable unit degradation.

3.1 Markovian Environment

We first consider the case in which the random environment is modelled as a

continuous-time Markov chain (CTMC), Z ≡ {Z(w) : w ≥ 0}. The process has

sample space S = {1, ..., K}, where K is a positive integer, and the random variable

Z(w) represents the state of the random environment at time w. Before reviewing

the rudimentary concepts of a CTMC, we first review time-homogeneous discrete-

time Markov chains (DTMC) as a stochastic process, {Yn : n ≥ 0}, embedded at

transition epochs, as shown in Figure 3.1, with one-step transition probabilities given

by

pi,j = P{Yn+1 = j|Yn = i, Yn−1 = in−1, . . . , Y0 = i0}
= P{Yn+1 = j|Yn = i} (Markov property)

= P{Y1 = j|Y0 = i} (Time homogeneity). (3.1)

For a time-homogeneous CTMC, Define qi,j as the transition rate from state i to j,

i 6= j, and

qi = −qi,i =
∑

j

qi,j (3.2)
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Figure 3.1: Sample path of a continuous-time Markov chain.

where once the system enters state i, it will remain in i for a random amount of

time that is distributed exponentially with parameter qi. The elements, qi,j form the

time-homogeneous infinitesimal generator matrix, Q. Define τn as the nth transition

epoch and let Yn ≡ Z(τ+
n ), n ≥ 0 be the state of the environment just after the nth

transition. A sequence of bivariate random variables, {(Yn, τn) : n ≥ 0} is a Markov

renewal sequence if for all n ≥ 0,

Ψi,j(w) = P{τn+1 − τn ≤ w, Yn+1 = j|τn, Yn = i, τn−1, Yn−1 = i, . . . , τ0, Y0}
= P{τn+1 − τn ≤ w, Y1 = j|Y0 = i} (3.3)

where τ0 = 0, τn+1 ≥ τn, and Yn ∈ S. Each of these variables play a role in the

definition of a CTMC.

Definition 1. ([50]) If the stochastic process, {Z(w) : w ≥ 0}, has piecewise con-

stant, right continuous sample paths and {(Yn, τn) : n ≥ 0} is a Markov renewal

sequence that satisfies

Ψi,j(w) = pi,j (1− eqiw)
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then Z is a continuous-time Markov chain.

For a nonhomogeneous continuous-time Markov chain, the holding time distri-

bution may vary over time, but is always exponentially distributed as shown through

an example of a three-state infinitesimal generator,

Q(w) =




−2w w w

4w −7w 3w

2w w −3w


 (3.4)

where, for example, the amount of time spent in the second state is exponentially

distributed with rate parameter 7w. With a clear understanding of a homogeneous

and nonhomogeneous CTMC and its associated infinitesimal generator matrix, we

continue with the development of the more general case of the nonhomogeneous

environment.

Uniquely associated with state i of the nonhomogeneous Markov environment

is a degradation rate, r(i). The collection of all degradation rates is given by

D = {r(1), . . . , r(K)}. If Z(w) = i ∈ S, then the degradation rate, r(Z(w)) = r(i).

Additionally, the environment jumps from state i ∈ S to state j ∈ S at time w ac-

cording to the transition probability matrix P(v, w) ≡ [pi,j(v, w)], where pi,j(v, w) ≡
P{Z(w) = j|Z(v) = i}. Define X(w) as the cumulative degradation of the system

up to time w and let X ≡ {X(w) : w ≥ 0} denote the monotonically increasing

degradation process defined on [0,∞). Çinlar [18] indicated that a Markov additive

process, (X ,Z), could include a cumulative deterioration process and a Markovian

process to find the lifetime distribution under a random threshold. Analysis of the

bivariate process, {(X(w), Z(w)) : w ≥ 0}, using a specified failure threshold, is the

means by which we obtain the lifetime distribution.
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The cumulative degradation up to time w ≥ 0 is modelled as a Markov reward

model of the form

X(w) =

∫ w

0

r(Z(u))du (3.5)

where X(0) ≡ 0. The system’s lifetime expires when the cumulative degradation

exceeds a fixed threshold value x. The lifetime distribution of the system is

F (x,w) ≡ P{T (x) ≤ w}. (3.6)

Due to the dual relationship

T (x) = inf{w : X(w) > x}, (3.7)

it follows that

F (x,w) = 1− P{X(w) ≤ x}. (3.8)

Define the joint distribution,

Vi,j(x, v, w) = P{X(w) ≤ x, Z(w) = j|Z(v) = i} (3.9)

where Vi,j(x, v, w) is the joint probability that, at time w, the degradation of the sys-

tem has not exceeded the failure point x and the environment process is in state j ∈ S

at time w given that the environment was in state i ∈ S at time v, v < w. The matrix

V(x, v, w) ≡ [Vi,j(x, v, w)]. The row vector α(v) = [α1(v) · · · αK(v)], αi(v) ≡
P{Z(v) = i}, is the probability distribution of Z at time v where

K∑
i=1

αi(v) = 1, (3.10)
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and e is a K-dimensional column vector of ones. Thus, the lifetime distribution may

be written as

F (x, v, w) = 1−α(v)V(x, v, w)e. (3.11)

While Equation (3.11) provides the lifetime distribution, it is obvious that we must

solve for Vi,j(x, v, w) in Equation (3.9) and we begin by showing that Vi,j(x, v, w) sat-

isfies a partial differential equation (PDE) in x and w when Z is a nonhomogeneous,

continuous-time Markov chain (CTMC).

3.2 Full Lifetime Distribution

3.2.1 Time-Nonhomogeneous Markov Environment

This subsection considers the case in which the system is subject to a nonho-

mogeneous Markov environment. We derive a PDE for the K×K matrix V(x, v, w)

which is then solved via Laplace transforms. The inversion of the transform provides

the lifetime distribution as a key step in finding the remaining lifetime distribution.

Theorem 1 provides our first main result.

Theorem 1. If the environment process, Z, with finite-state space S, is a non-

homogeneous, Markov chain with infinitesimal generator matrix, Q(w) ≡ [qi,j(w)],

i, j ∈ S, then the matrix V(x, v, w) satisfies the matrix PDE

∂V(x, v, w)

∂w
+

∂V(x, v, w)

∂x
RD = V(x, v, w)Q(w), (3.12)

where RD is a diagonal matrix of the degradation rates, diag(r(1), . . . , r(K)).

Proof. We prove the theorm by considering both the right- and left-sided

limits with respect to the time and spatial variables. For the right-sided limit with

respect to the time variable and the left-sided limit with respect to the spatial vari-

able, let ε > 0 denote a small time increment and let v < w, where v, w ∈ [0,∞).
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By our previous definition,

Vi,j(x, v, w + ε) = P{X(w + ε) ≤ x, Z(w + ε) = j|Z(v) = i}.

Using the law of total probability,

Vi,j(x, v, w + ε) =
∑

k

P{X(w + ε) ≤ x, Z(w + ε) = j|Z(w) = k, Z(v) = i}

× P{Z(w) = k}
=

∑

k

P{Z(w + ε) = j|X(w + ε) ≤ x, Z(w) = k, Z(v) = i}

× P{X(w + ε) ≤ x|Z(w) = k, Z(v) = i}P{Z(w) = k}.

Since the state of the environment is independent of the cumulative degradation,

Vi,j(x, v, w + ε) =
∑

k

P{Z(w + ε) = j|Z(w) = k, Z(v) = i}

× P{X(w + ε) ≤ x|Z(w) = k, Z(v) = i}P{Z(w) = k}. (3.13)

By definition, the probability of transitioning from state k to state j at time w is

pk,j(w, w + ε) = P{Z(w + ε) = j|Z(w) = k}, (3.14)

and from [47], it is well known that

pk,j(w,w + ε) =





1 + qj,j(w)ε + O(ε), k = j

qk,j(w)ε + O(ε), k 6= j
(3.15)

where O(ε) denotes a function that is ‘little oh of ε’. That is, a function f is O(ε) if

lim
ε→0

f(ε)

ε
= 0. (3.16)
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From the Markov property of the Z process, we have that

P{Z(w + ε) = j|Z(w) = k, Z(v) = i} = P{Z(w + ε) = j|Z(w) = k}. (3.17)

Applying the Markov property and substituting Equation (3.14), Equation (3.13)

becomes

Vi,j(x, v, w + ε) =
∑

k

pk,j(w, w + ε)P{X(w + ε) ≤ x|Z(w) = k, Z(v) = i}

×P{Z(w) = k}.

By unconditioning, we obtain

Vi,j(x, v, w + ε) =
∑

k

pk,j(w, w + ε)P{X(w + ε) ≤ x, Z(w) = k|Z(v) = i}

=
∑

k

pk,j(w, w + ε)Vi,k(x− r(k)ε, v, w). (3.18)

Substituting the case k = j, applying Equation (3.15), and simplifying gives

Vi,j(x, v, w + ε) = (1 + qj,j(w)ε + O(ε))× Vi,j(x− r(j)ε, v, w)

+
∑

k 6=j

pk,j(w, w + ε)Vi,k(x− r(k)ε, v, w)

= Vi,j(x− r(j)ε, v, w)

+ε
∑

k

qk,j(w)Vi,k(x− r(k)ε, v, w) + O(ε). (3.19)

By rearranging the terms of Equation (3.19),

Vi,j(x, v, w+ε)−Vi,j(x−r(j)ε, v, w) = ε
∑

k

qk,j(w)Vi,k(x−r(k)ε, v, w)+O(ε). (3.20)
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Adding Vi,j(x, v, w)− Vi,j(x, v, w) to the left side of Equation (3.20) results in

[Vi,j(x, v, w + ε)− Vi,j(x, v, w)]− [Vi,j(x− r(j)ε, v, w)− Vi,j(x, v, w)]

= ε
∑

k

qk,j(w)Vi,k(x− r(k)ε, v, w) + O(ε). (3.21)

Dividing by ε and multiplying the second term on the left side of Equation (3.21)

by −r(j)/− r(j) gives

Vi,j(x, v, w + ε)− Vi,j(x, v, w)

ε
− (−r(j))

Vi,j(x− r(j)ε, v, w)− Vi,j(x, v, w)

−r(j)ε

while the right side of Equation (3.21) becomes

∑

k

qk,j(w)Vi,k(x− r(k)ε, v, w) +
O(ε)

ε
.

Now let ε → 0+ to obtain the right-sided limit with respect to the time variable and

the left-sided limit with respect to the spatial variable shown by

∂V +
i,j(x, v, w)

∂w
+ r(j)

∂V −
i,j(x, v, w)

∂x
=

∑

k

qk,j(w)Vi,k(x, v, w) (3.22)

where the superscripts (+) and (−) respectively denote the partial derivative from

above and from below (that is, right-sided and left-sided derivatives).

For the left-sided limit of the time variable and the right-sided limit of the

spatial variable, let ε > 0 denote a small time increment and let v < w − ε < w,

where v, w ∈ [0,∞). Assume the environment process is in state j at time w and let

δ = r(j)ε denote an arbitrarily small degradation increment. Then,

Vi,j(x + δ, v, w) = P{X(w) ≤ x + δ, Z(w) = j|Z(v) = i}.
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Using the law of total probability,

Vi,j(x + δ, v, w) =
∑

k

P{X(w) ≤ x + δ, Z(w) = j|Z(w − ε) = k, Z(v) = i}

× P{Z(w − ε) = k}
=

∑

k

P{Z(w) = j|X(w) ≤ x + δ, Z(w − ε) = k, Z(v) = i}

× P{X(w) ≤ x + δ|Z(w − ε) = k, Z(v) = i}P{Z(w − ε) = k}.

Since the state of the environment is independent of the cumulative degradation,

Vi,j(x + δ, v, w) =
∑

k

P{Z(w) = j|Z(w − ε) = k, Z(v) = i}

× P{X(w) ≤ x + δ|Z(w − ε) = k, Z(v) = i}P{Z(w − ε) = k}. (3.23)

The probability of transitioning from state k to state j at time w − ε is given by

pk,j(w − ε, w) = P{Z(w) = j|Z(w − ε) = k}, (3.24)

and

pk,j(w − ε, w) =





1 + qj,j(w − ε)ε + O(ε), k = j

qk,j(w − ε)ε + O(ε), k 6= j.
(3.25)

From the Markov property of the Z process, we have that

P{Z(w) = j|Z(w − ε) = k, Z(v) = i} = P{Z(w) = j|Z(w − ε) = k}. (3.26)
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Applying Equation (3.26) and substituting Equation (3.24), Equation (3.23) becomes

Vi,j(x + δ, v, w) =
∑

k

pk,j(w − ε, w)P{X(w) ≤ x + δ|Z(w − ε) = k, Z(v) = i}

×P{Z(w − ε) = k}.

By unconditioning, we obtain

Vi,j(x + δ, v, w) =
∑

k

pk,j(w − ε, w)P{X(w) ≤ x + δ, Z(w − ε) = k|Z(v) = i}.

For the above summation, let δ = r(j)ε. Then

Vi,j(x+r(j)ε, v, w) =
∑

k

pk,j(w−ε, w)P{X(w) ≤ x+r(j)ε, Z(w−ε) = k|Z(v) = i}

=
∑

k

pk,j(w − ε, w)P{X(w − ε) ≤ x + r(j)ε− r(k)ε, Z(w − ε) = k|Z(v) = i}

=
∑

k

pk,j(w − ε, w)Vi,k(x + r(j)ε− r(k)ε, v, w − ε). (3.27)

Substituting the case k = j, applying Equation (3.25), and simplifying gives

Vi,j(x + r(j)ε, v, w) = (1 + qj,j(w − ε)ε + O(ε))× Vi,j(x, v, w − ε)

+
∑

k 6=j

pk,j(w − ε, w)Vi,k(x + r(j)ε− r(k)ε, v, w − ε)

= Vi,j(x, v, w − ε)

+ ε
∑

k

qk,j(w − ε)Vi,k(x + r(j)ε− r(k)ε, v, w − ε) + O(ε). (3.28)

By rearranging the terms of Equation (3.28),

Vi,j(x + r(j)ε, v, w)− Vi,j(x, v, w − ε)

= ε
∑

k

qk,j(w − ε)Vi,k(x + r(j)ε− r(k)ε, v, w − ε) + O(ε). (3.29)
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Adding Vi,j(x, v, w)− Vi,j(x, v, w) to the left side of Equation (3.29) results in

[Vi,j(x + r(j)ε, v, w)− Vi,j(x, v, w)]− [Vi,j(x, v, w − ε)− Vi,j(x, v, w)]

= ε
∑

k

qk,j(w − ε)Vi,k(x + r(j)ε− r(k)ε, v, w − ε) + O(ε). (3.30)

Dividing by ε, multiplying the first term on the left side of Equation (3.30) by

r(j)/r(j), and rewriting the second term on the left side gives the left side as

r(j)
Vi,j(x + r(j)ε, v, w)− Vi,j(x, v, w)

r(j)ε
+

Vi,j(x, v, w − ε)− Vi,j(x, v, w)

−ε

while the right side of Equation (3.30) becomes

∑

k

qk,j(w − ε)Vi,k(x + r(j)ε− r(k)ε, v, w − ε) +
O(ε)

ε
.

Now let ε → 0+ to obtain the left-sided derivative with respect to the time variable

and the right-sided derivative with respect to the spatial variable shown by

∂V −
i,j(x, v, w)

∂w
+ r(j)

∂V +
i,j(x, v, w)

∂x
=

∑

k

qk,j(w)Vi,k(x, v, w). (3.31)

By combining Equation (3.22) and (3.31), it is seen that the partial derivatives of

Vi,j(x, v, w) exist for each i, j and Vi,j(x, v, w) satisfies the partial differential equation

∂Vi,j(x, v, w)

∂w
+ r(j)

∂Vi,j(x, v, w)

∂x
=

∑

k

qk,j(w)Vi,k(x, v, w) (3.32)

which may be written in matrix form as

∂V(x, v, w)

∂w
+

∂V(x, v, w)

∂x
RD = V(x, v, w)Q(w), (3.33)

¤
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Equation (3.12) forms a system of PDEs that must be solved simultaneously. For

example, if the environment has two states (i.e. K = 2), then there are four PDEs

to solve with four unknown functions. Suppressing the arguments of Vi,j, i, j ∈ S,

these PDEs are

∂V1,1

∂w
+ r(1)

∂V1,1

∂x
= q1,1(w)V1,1 + q2,1(w)V1,2

∂V1,2

∂w
+ r(2)

∂V1,2

∂x
= q1,2(w)V1,1 + q2,2(w)V1,2

∂V2,1

∂w
+ r(1)

∂V2,1

∂x
= q1,1(w)V2,1 + q2,1(w)V2,2

∂V2,2

∂w
+ r(2)

∂V2,2

∂x
= q1,2(w)V2,1 + q2,2(w)V2,2. (3.34)

In general, if the environment has K states, there are K2 PDEs with K2 unknown

functions. Since x and w are weakly coupled, the method of separation of variables

cannot be used to solve this system of equations. Thus, we resort to a Laplace

transform approach.

By definition (cf. [67]), the Laplace transform of an absolutely integrable func-

tion, h(w), is

h∗(s) =

∞∫

0

e−swh(w)dw, Re(s) > 0 (3.35)

and the Laplace transform of its derivative, h′(w), which is also absolutely integrable

is

L(h′(w)) ≡
∞∫

0

e−swh′(w)dw = sh∗(s)− h(0). (3.36)
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Additionally, it is well-known (cf. [50]) that the relationship between the Laplace

transform and Laplace-Stieltjes transform (LST) is

h̃(s) = sh∗(s) (3.37)

where the LST of h, denoted by h̃(s), is given by

h̃(s) =

∞∫

0

e−swdh(w), Re(s) > 0. (3.38)

We now show that solving the PDE in Equation (3.12) provides the LST of the

lifetime distribution given by

F̃ (u, v, w) =

∞∫

0

e−uxdF (x, v, w). (3.39)

Theorem 2. Suppose the system is subject to a nonhomogeneous, finite Markov en-

vironment process Z whose distribution at time v is α(v), has infinitesimal generator

matrix, Q(w), and degradation rate matrix, RD. The Laplace-Stieltjes transform of

the lifetime distribution, with respect to x, is

F̃ (u, v, w) = 1−α(v) exp




w∫

v

(Q(τ)− uRD)dτ


 e, Re(u) > 0. (3.40)

Proof. Assume that V(x, v, w) is absolutely integrable in x for each v and w

and that ∂V(x, v, w)/∂w is also absolutely integrable. Define

V∗(u, v, w) =

∞∫

0

e−uxV(x, v, w)dx (3.41)
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as the matrix Laplace transform of V(x, v, w) with respect to x. Taking the Laplace

transform of both sides of Equation (3.12) yields

∂V∗(u, v, w)

∂w
+ (uV∗(u, v, w)−V(0, v, w))RD = V∗(u, v, w)Q(w). (3.42)

Applying the initial condition, V(0, v, w) = 0, and simplifying, the ordinary differ-

ential equation (ODE) in w yields

dV∗(u, v, w)

dw
+ V∗(u, v, w)(uRD −Q(w)) = 0. (3.43)

This ODE is not exact and we must find an integrating factor to obtain its solution

[49]. Thus, multiplying each term by the integrating factor on the right

µ(w) = exp




w∫

0

(uRD −Q(w))dw


 , (3.44)

and simplifying, provides

d

dw


V∗(u, v, w) exp




w∫

0

(uRD −Q(w))dw





 = 0. (3.45)

After integrating with respect to w,

V∗(u, v, w) exp




w∫

0

(uRD −Q(w))dw


 = C (3.46)

where the matrix C is u−1I after applying the initial condition, V∗(u, v, 0) = u−1I.

Thus,

V∗(u, v, w) exp




w∫

0

(uRD −Q(w))dw


 = u−1I, (3.47)
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and

V∗(u, v, w) = u−1


exp




w∫

0

(uRD −Q(w))dw






−1

= u−1 exp




w∫

0

(Q(w)− uRD)dw


 . (3.48)

Since this derivation ranges from v to w, we further simplify to

V∗(u, v, w) = u−1 exp




w∫

v

(Q(τ)− uRD)dτ


 , (3.49)

and by taking the LST of Equations (3.11) and (3.49), we obtain,

F̃ (u, v, w) = 1−α(v)Ṽ(u, v, w)e.

¤

While this result provides the analytical lifetime distribution of a system sub-

ject to a nonhomogeneous Markov environment, the procedures required to numer-

ically implement this distribution are nontrivial. Specifically, estimating the time

variant generator matrix, Q(τ), requires an enormous amount of data. Moreover,

there is no guarantee that the integral of Equation (3.49) can be evaluated. Under

certain conditions of the generator matrix, we demonstrate that we can obtain the

moments for the lifetime distribution in Equation (3.40) in Section 3.3.2. Since this

analytical result is not viable for systems prognosis, we turn our attention to time

homogeneous environments.

3.2.2 Time-Homogeneous Markov Environment

In this subsection, we impose a more restrictive assumption by assuming a

homogeneous Markovian environment. We retain the Markov property of the Z
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process

P{Z(w + ε) = j|Z(w) = k, Z(v) = i} = P{Z(w + ε) = j|Z(w) = k}, v < w

which shows the history of the process before time w is not relevant. We also impose

time homogeneity which mathematically implies

P{Z(w + ε) = j|Z(w) = k} = P{Z(ε) = j|Z(0) = k}, for all ε > 0,

or pk,j(w + ε, w) = pk,j(ε), where the distribution of the Z process over any two

non-overlapping intervals of length ε are the same. For the nonhomogeneous Marko-

vian environment, this is not the case and the distributions may differ while pre-

serving the Markov property. Additionally, homogeneity removes the time depen-

dency of the generator matrix such that Q(τ) = Q, for all τ , and α(v) becomes

α = [α1 · · · αK ] , αi ≡ P{Z(0) = i}. Thus, we drop the dependency of the joint

distribution Vi,j(x, v, w) on v and simply write

Vi,j(x,w) = P{X(w) ≤ x, Z(w) = j|Z(0) = i}.

Additionally, the LST of the lifetime distribution, F (x,w) assuming a homogeneous

Markovian environment will be denoted by

F̃ (u,w) =

∞∫

0

e−uxdF (x,w). (3.50)

The next theorem provides an analytical result for the LST of the lifetime distribu-

tion.

Theorem 3. Suppose the system is subject to a homogeneous finite Markovian envi-

ronment process Z with initial distribution, α, infinitesimal generator Q, and degra-

dation rate matrix, RD. The Laplace-Stieltjes transform of the lifetime distribution
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is

F̃ (u,w) = 1−α exp((Q− uRD)w)e, Re(u) > 0. (3.51)

Proof. Let Q(τ) = Q and v = 0. Then Equation (3.40) becomes

F̃ (u,w) = 1−α exp




w∫

0

(Q− uRD)dτ


 e

= 1−α exp

(
(Q− uRD) τ

∣∣∣∣
τ=w

τ=0

)
e

= 1−α exp((Q− uRD)w)e

¤

The integral in this proof is legitimate since the integral of a matrix is a matrix of

integrals of the individual elements in the matrix.

The same result, expressed as the Laplace transform of the lifetime distribution,

F (x,w), is derived by Kulkarni, et al. [51]. However, the authors used a purely

probabilistic approach and obtained the distribution as a two-dimensional transform.

They inverted the LST with respect to w to obtain the Laplace transform of F (x,w)

with respect to x. We began with a nonhomogeneous, joint probability distribution

and found a PDE that was then changed into an ODE. This ODE was solved via

transforms to obtain the one-dimensional Laplace-Stieltjes transform of the lifetime

distribution, F (x, v, w). Imposing homogeneity, we obtained the Laplace-Stieltjes

transform of F (x, w).

Equations (3.40) and (3.51) have a particular structure that allows for further

analysis. Specifically, we show in the next section that these two equations, un-

der certain conditions for the nonhomogeneous environment, are matrix-exponential

distributions that lead to simple analytical moment expressions.

54



3.3 Moments of the Lifetime Distribution

The transforms of the lifetime distributions, Equations (3.40) and (3.51), are

expressed in such a way that obtaining the moments are straightforward in most

cases. Let Y denote a positive random variable with cumulative distribution function

(CDF) F (·) whose LST is F̃ (s) and let the nth moment of Y be denoted E[Y n]. The

transform method for computing the nth moment of a distribution is through the

nth order differentiation of the LST such that

E[Y n] = (−1)n dnF̃ (s)

dsn

∣∣∣∣∣
s=0

(3.52)

where dnF̃ (s)/dsn is the nth derivative of the F̃ (s) with respect to s. However, this

equation cannot be utilized to find the moments of the distributions in Equations

(3.40) and (3.51) because the matrices in the matrix exponential do not commute.

In other words, RDQ 6= QRD in general. Thus, we must resort to other methods in

order to obtain the moments. This section explores the matrix-exponential distribu-

tion which allows us to find the LST of the moments in a simpler fashion than that

shown in [44] and [46].

3.3.1 Matrix-Exponential (ME) Distributions

Asmussen and Bladt [6] define a matrix-exponential (ME) distribution as a

probability distribution on [0,∞) with a rational Laplace transform. Let YA denote

a positive random variable with CDF A(w) = P{YA ≤ w}. The distribution A(·) is

a ME distribution with representation ME(α,T, s) if

A(w) = 1 + α exp(Tw)T−1s (3.53)

where α is a row vector, T is a real or complex valued matrix, and s is a column

vector. While the authors note that it may be difficult to determine when a triple,
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(α,T, s), designates a ME distribution, it is necessary that αT−1s = 1 and αs ≥ 0.

Given a ME distribution, the moments are easily determined. Asmussen and Bladt

[6] give the nth moment as

E[Y n
A ] = (−1)n+1n!αT−n−1s. (3.54)

Bladt and Neuts [9] rewrite Equation (3.53) by letting s = −Te because indicate it

is always possible to choose s = −Te (see [6]). Making this substitution results in

the ME distribution

A(w) = 1−α exp(Tw)e (3.55)

with representation ME(α,T) and nth moment

E[Y n
A ] = (−1)nn!αT−ne. (3.56)

3.3.2 ME Distribution Moments

Suppose a single-unit system is subject to a time-nonhomogeneous Markovian

environment process, Z, with lifetime distribution as shown in Equation (3.40). The

following definitions and theorems, summarized from Olmsted [69], define an analytic

function used in our next result.

Definition 2. A power series in (τ − a) is a series of the form

∞∑
n=0

an (τ − a)n (3.57)

where {an} and a are constants.
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Theorem 4. If a power series in (τ − a) has a positive radius of convergence, and

if

f(τ) ≡
∞∑

n=0

an (τ − a)n (3.58)

is in the interval of convergence, then f(τ) is continuous and has continuous deriva-

tives throughout that interval and

an =
f (n)(a)

n!
, n ≥ 0 (3.59)

where f (n)(a) is the nth-order derivative of f(τ) at a. The Taylor series for f(τ) is

f(τ) = f(a) + f ′(a)(τ − a) +
f ′′(a)

2!
(τ − a)2 + . . . . (3.60)

Definition 3. A function f is analytic at τ = a if and only if it has a Taylor series

at τ = a which represents the function in some neighborhood of τ = a.

Theorem 5. The sum of analytic functions is analytic if division by zero is not

involved.

The following result shows that the moments of a component’s lifetime may be

computed if its nonhomogeneous infinitesimal generator matrix consists of analytic

functions.

Theorem 6. If qi,j(τ) is an analytic function for i, j ∈ S, i 6= j, then

F̃ (u, v, w) = 1−α exp (T(u) (w − v)) e, Re(u) > 0,

is a ME(α,T(u)) distribution whose nth moment (n ≥ 1) is

E[T n(u)] = (−1)nn!αT(u)−ne, Re(u) > 0, (3.61)
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where

T(u) =




O1,1(v, w)− ur(1) · · · O1,K(v, w)

O2,1(v, w) · · · O2,K(v, w)
...

. . .
...

OK,1(v, w) · · · OK,K(v, w)− ur(K)




.

and Oi,j(v, w) is the remaining series after (w− v) is factored from the power series

integration.

Proof. Let qi,j(τ) be an analytic function. Then,

w∫

v

(Q(τ)− uRD)dτ =




w∫
v

(q1,1(τ)− ur(1))dτ · · ·
w∫
v

q1,K(τ)dτ

w∫
v

q2,1(τ)dτ · · ·
w∫
v

q2,K(τ)dτ

...
. . .

...
w∫
v

qK,1(τ)dτ · · ·
w∫
v

(qK,K(τ)− ur(K))dτ




where each qi,j(τ) has a power series representation including qi,i(τ) because

qi,i(τ) = −
∑

j

qi,j(τ).

Hence, each
w∫
v

qi,j(τ)dτ results in a collection of (wp−vp) terms, p is a positive integer,

with associated coefficients. The diagonals have an additional term of −(w−v)ur(i).

Whether p is odd or even, (w−v) can be factored out of each of the (wp−vp) terms.

Let Oi,j(v, w) be the remaining series once (w − v) is factored. Then,

w∫

v

(Q(τ)− uRD)dτ =




O1,1(v, w)− ur(1) · · · O1,K(v, w)

O2,1(v, w) · · · O2,K(v, w)
...

. . .
...

OK,1(v, w) · · · OK,K(v, w)− ur(K)




(w − v).
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Let

T(u) =




O1,1(v, w)− ur(1) · · · O1,K(v, w)

O2,1(v, w) · · · O2,K(v, w)
...

. . .
...

OK,1(v, w) · · · OK,K(v, w)− ur(K)




.

Then

F̃ (u, v, w) = 1−α exp (T(u)(w − v)) e. (3.62)

¤

Without Equation (3.56), we would be required to use Equation (3.52) for which

the lifetime moments in the nonhomogeneous Markovian environment are not easily

computed. As an example, let

Q(τ) =


 −3τ 3τ

2τ −2τ


 , (3.63)

RD =


 1 0

0 4


 . (3.64)
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It is clear that Q(τ) is analytic. Then

w∫

v

(Q(τ)− uRD)dτ =

w∫

v


 −3τ − u 3τ

2τ −2τ − 4u


 dτ

=


 −3

2
τ 2 − uτ 3

2
τ 2

τ 2 −τ 2 − 4uτ




∣∣∣∣∣∣

w

v

=


 −3

2
w2 − uw 3

2
w2

w2 −w2 − 4uw


−


 −3

2
v2 − uv 3

2
v2

v2 −v2 − 4uv




=


 −3

2
w2 − uw + 3

2
v2 + uv 3

2
w2 − 3

2
v2

w2 − v2 −w2 − 4uw + v2 + 4uv




=


 −(3

2
w + 3

2
v + u) 3

2
(w + v)

w + v −(w + v + 4u)


 (w − v).

Thus,

F̃ (u, v, w) = 1−α exp





 −(3

2
w + 3

2
v + u) 3

2
(w + v)

w + v −(w + v + 4u)


 (w − v)


 e, Re(u) > 0,

and the nth moment computed through the numerical inversion (with respect to u)

of the Laplace-Stieltjes transform

E[T n(u)] = n!α


 −(3

2
w + 3

2
v + u) 3

2
(w + v)

w + v −(w + v + 4u)



−n

e, Re(u) > 0.

It is easily shown that the one-dimensional lifetime distribution for the homo-

geneous Markovian environment shown in Equation (3.51) is a ME distribution since

it satisfies αT−1s = 1 and αs ≥ 0.

Proposition 1. Suppose the single-unit system is subject to a homogeneous Markov

environment process Z with initial distribution, α, infinitesimal generator Q, and
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degradation rate matrix, RD. The Laplace-Stieltjes transform of the lifetime distri-

bution,

F̃ (u, w) = 1−α exp((Q− uRD)w)e, Re(u) > 0,

is a ME(α,Q− uRD) distribution with moments

E[T n(u)] = (−1)nn!α(Q− uRD)−ne, Re(u) > 0. (3.65)

This result highlights the ease with which the moments for any ME distribution

can be computed. The transform of Equation (3.65) can be inverted numerically us-

ing the one-dimensional inversion algorithm of Abate and Whitt [1]. Equation (3.65)

can also be compared with the results of Kharoufeh [44] and Kharoufeh and Sipe [46]

who derived moments for their two-dimensional and one-dimensional lifetime distri-

butions using Equation (3.52). First, to show these results are equivalent, note that

E[T n(u)] = (−1)nn!α(Q− uRD)−ne

= (−1)nn!α((−1)(uRD −Q))−ne

= (−1)nn!α(−1)−n(uRD −Q)−ne

= n!α(uRD −Q)−ne (3.66)

which is the same result provided in [44] and [46]. Thus, concluding that the life-

time distribution is a ME distribution provides a significant advantage over previous

methods for determining the moments of the lifetime distribution. With the lifetime

distribution and its moments derived, we now shift our attention to deriving the

remaining lifetime distribution which ultimately leads to the ability to implement

and perform system prognosis.
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3.4 Remaining Lifetime Distribution

Thus far we have derived analytical models of the lifetime distribution of a

system subject to nonhomogeneous and homogeneous Markov environments and

have shown that we can easily find the moments, specifically for the homogeneous

case. We have also noted that it would be very difficult to numerically implement

the lifetime distribution assuming a nonhomogeneous environment. Thus, we turn

our attention solely to the homogeneous environment. In this section we show that

if we have the full lifetime distribution then we also have the remaining lifetime

distribution which is critical for performing systems prognosis.

Assume that the system has not failed by time ξ0. The remaining lifetime

distribution is given by

R(x,w|ξ0) = P{T (x) ≥ w + ξ0|T (x) > ξ0}
=

P{T (x) ≥ w + ξ0, T (x) > ξ0}
P{T (x) > ξ0}

=
P{T (x) ≥ w + ξ0}

P{T (x) > ξ0}
=

1− F (x,w + ξ0)

1− F (x, ξ0)

=
αV(x,w + ξ0)e

αV(x, ξ0)e
. (3.67)

From Equation (3.67), it is obvious that the remaining lifetime distribution is ob-

tainable if the full lifetime distribution is known. By the method of integrating the

tail, the nth moment of the lifetime distribution, for n ≥ 1, is given by

m(n)(x) ≡ E[T n(x)] =

∫ ∞

0

nwn−1P{T (x) > w}dw

=

∫ ∞

0

nwn−1αV(x,w)edw, (3.68)
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and the nth moment of the unit’s remaining lifetime, given that it has survived at

least ξ0 time units, is

m(n)(x|ξ0) ≡ E[T n(x)|T (x) > ξ0]

=

∫ ∞

0

nwn−1R(x,w|ξ0)dw

=
1

αV(x, ξ0)e

∫ ∞

ξ0

nwn−1αV(x,w)edw. (3.69)

While we derived closed-form expressions for the Laplace-Stieltjes transform of

the moments of the lifetime, these are not readily available for the remaining lifetime

distributions. However, the mean remaining lifetime may be obtained if

m(1)(x|ξ0) =
1

αV(x, ξ0)e

∫ ∞

ξ0

αV(x,w)edw (3.70)

is evaluated numerically.

While the analytical models derived in this chapter do provide the full and

remaining lifetime distributions, the incorporation of real-time degradation data into

these analytical models must be developed in order to provide a capability to perform

systems prognosis. We show in the remainder of this dissertation that it is possible

to numerically incorporate degradation data from a system subject to homogeneous

environments. We first examine numerical methods associated with each parameter

in the lifetime distribution based upon a homogeneous continuous-time Markov chain

(CTMC) and demonstrate in Chapter IV that we can further generalize the CTMC

by relaxing the Markov assumption.

3.5 Numerical Methods

This section provides the numerical methods, data sources, goodness-of-fit tests

and examples required to demonstrate that the remaining lifetime distribution for

systems prognosis is viable and numerically implementable. A basic assumption,
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however, is that data obtained from optimally-located sensors provides the informa-

tion required to implement the techniques in this section. There are four numerical

examples which increase in complexity in order to demonstrate our procedures.

For the homogeneous Markovian environment, we examine two scenarios to

find the lifetime distribution given in Equation (3.51): an observable environment

and observable degradation. The observable environment scenario requires estima-

tion of the generator matrix Q, whereas the observable degradation scenario requires

estimation of Q, the initial probability distribution vector (α), the diagonal matrix

of degradation rates (RD), and the number of environment states, K. Having this

information allows us to characterize the probability distribution and moments of the

random lifetime as well as the remaining lifetime distribution. We begin by exploring

estimation techniques for the observable environment, specifically the infinitesimal

generator matrix and then explore estimation techniques for the observable degra-

dation scenario, specifically the initial probability distribution, the diagonal matrix

of degradation rates, and the number of environment states, K. We examine the use

of two data sources and briefly explore the statistical tests used to determine the

viability of the estimation techniques via the accuracy of the lifetime distribution

itself.

3.5.1 Observable Environment

We first assume that the environment process {Z(w) : w ≥ 0} is continuously

observable over the time interval [0, T ]. The system has not failed by time T , and be-

gan its lifetime in perfect working order at time 0 (i.e., X(0) ≡ 0). The environment

is continuously observed up to time T so that, at each transition epoch, we record

the current and subsequent states of the random environment. Some additional no-

tation will make the procedure more transparent. Let qi,j denote the rate at which

the environment transitions from state i ∈ S to state j ∈ S, j 6= i. Since we assume

a homogeneous Markovian environment process {Z(w) : w ≥ 0}, the holding time in
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state i, given that the subsequent state is j(j 6= i), is exponentially distributed with

rate parameter qi,j. Let Ni,j(T ) denote the random, integer number of transitions of

the process from i to j in a time interval of length T . Moreover, let Hi(T ) denote

the total holding time in state i ∈ S during [0, T ]. It is known [3,7] that

qi,j = lim
T→∞

Ni,j(T )

Hi(T )
. (3.71)

Therefore, for sufficiently large T , we may approximate qi,j, j 6= i by

qi,j ≈ q̂i,j(T ) =
Ni,j(T )

Hi(T )
. (3.72)

The diagonal elements of the generator matrix are obtained as

q̂i,i(T ) = −
∑

j 6=i

q̂i,j(T ) i ∈ S. (3.73)

We note that, for a fixed observation interval, it is also possible to estimate the

generator matrix by observing k independent sample paths of the Z process. Define

N
(k)
i,j as the total number of transitions from state i to j over all k trials and define

H
(k)
i as the total holding time in state i over all k trials. The off-diagonal elements

of the generator matrix are given by

qi,j = lim
k→∞

N
(k)
i,j

H
(k)
i

(3.74)

so that for k independent sample paths, the estimate of qi,j, j 6= i is

qi,j ≈ q̂
(k)
i,j =

N
(k)
i,j

H
(k)
i

. (3.75)
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We obtain the diagonal elements by

q̂
(k)
i,i = −

∑

j 6=i

q̂
(k)
i,j i ∈ S. (3.76)

It has been shown in [7] that

qi,j = lim
T→∞

Ni,j(T )

Hi(T )
= lim

k→∞
N

(k)
i,j

H
(k)
i

. (3.77)

In the examples, we show that we can adequately estimate qi,j for the observ-

able environment scenario. Thus, the only requirement for systems prognosis in an

observable environment is the estimation of the generator matrix which we demon-

strate in Section 3.5.5. While this is a valid scenario, the most difficult scenario is

clearly having only degradation data. This next scenario requires additional estima-

tion techniques in the case when only the degradation of the system is observable.

3.5.2 Observable Degradation

In this subsection, we find that all of the estimation techniques hinge upon the

determination of the degradation rates. We rely upon the assumption that there is

a one-to-one relationship between the number of degradation rates and the number

of environment states. Thus, the collection of the initial degradation rates of each

degradation path provides the capability to find the initial probability distribution,

and some estimate of the number of degradation rates provides an estimate for the

number of environment states. Additionally, we can estimate when the degradation

rates change which provides the number of transitions and the time spent in the

associated environment state so that the generator matrix can be estimated. We

now examine each of these techniques in detail and provide a step-by-step procedure

at the end of this subsection for the estimation of these parameters in the observable

degradation scenario.
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To estimate the degradation rates, we approximate the true degradation path

using simple, piecewise linear functions that pass through a finite number of obser-

vations. The slope of each line segment approximates the degradation rate over a

given time interval. Let T ≡ {tj : j = 0, 1, 2, . . . , M}. For each observation time

tj ∈ T , we approximate the potential degradation rates of the process via

γj ≡ X̂(tj)− X̂(tj−1)

tj − tj−1

, j = 1, 2, . . . , M. (3.78)

Additionally, we assume that the length of the time interval between two observations

(tj − tj−1) is fixed for all intervals and we gather these observed rates in the set

Γ ≡ {γj : j = 1, 2, . . . , M} over the interval [t0, tM ]. We then perform K-means

cluster analysis to obtain K distinct environment states. The centroid of each cluster

corresponds to the mean degradation rate for each state of the environment. While

this method may be elementary, we demonstrate its effectiveness in the examples.

The techniques to estimate the number of environment states can be somewhat

subjective. If the true lifetime distribution is known, numerical measures that use

some criteria to calculate the distance between the true and approximated distribu-

tions may be used to find the best value of K over some range of K. Conover [19] pro-

vides some useful measures, such as the Cramér-von Mises test two-sample statistic

and the Kolmogorov-Smirnov (KS) test statistic, to accomplish this task. However,

since the true distribution is unknown and sought, such approaches are not applica-

ble. It may be possible to obtain a good estimate of K by relying on the experience

of subject matter experts (SMEs) or through an evaluation of the degradation rates

via cluster analysis.

The opinions of subject matter experts are frequently used, but cannot be

relied upon in all circumstances. The experts may potentially miss environment

states which have not been observed or overestimate the number of states if some

can be combined due to little difference in the degradation rates. Thus, we must rely
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upon an assumed one-to-one relationship between the number of environment states

and the number of degradation rates. From this assumption, the determination of

the number of degradation rates also provides the number of environment states.

In light of this discussion, cluster analysis techniques, using the observed degra-

dation data, appear to hold the most promise for determining the number of degrada-

tion rates, and thus, the appropriate number of environment states. Cluster analysis

techniques consist of hierarchical and nonhierarchical methods that attempt to de-

termine the best partitioning of the data. In what follows, we discuss the reasons

for using nonhierarchical techniques rather than hierarchical ones.

Hierarchical cluster analysis consists of agglomerative and divisive methods.

The agglomerative method initially places each data point into its own cluster. Then

using some distance measure, e.g. Euclidean distance, the ‘closest’ set of data are

combined and the newly formed cluster is represented by its mean. This process

continues until only a single cluster remains. Divisive methods, on the other hand,

initially consider the entire data set as a single cluster. Then, using some distance

measure, e.g. farthest neighbor, the single cluster is split into two clusters. This

process continues until the number of clusters equals the number of data points. A

dendrogram or tree structure (see Figure 3.2) is the standard graphical technique

used to analyze the results of hierarchical cluster analysis.

The dendrogram displays combinations of clusters. However, if this technique

is used for more than 50 data points, the graph can become difficult to read and

interpret. With large data sets, it may be more appropriate to display only the last

30 clusters as shown in Figure 3.2 which combines 2000 observations.

Hierarchical clustering techniques work well if the number of data observations

are small. While we encountered a significant time requirement to process over 5000

observations, hierarchical clustering techniques have other drawbacks. They do not

use relocation strategies which allow reassignment of data points to another cluster.

Additionally, some criteria based upon the distance between the clusters must be
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Figure 3.2: An example of a dendrogram using 2000 observations.

developed to find the best partition. This criteria ‘cuts’ the dendrogram to provide

the number of clusters. For example, adding a cut line to Figure 3.2 partitions

the dendrogram into three clusters as shown in Figure 3.3. Since the data used
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Figure 3.3: Dendrogram with three clusters.

for this dendrogram were generated from three environment states, partitioning the

dendrogram into three clusters was appropriate. However, of the 2000 data points,

1882 data points would fall into the first cluster, 31 in the second cluster, and 87 in the
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final cluster which does not well represent the actual breakout. Lastly, many of the

hierarchical methods are adversely affected by outliers [87]. With these undesirable

effects, nonhierarchical clustering techniques, such as K-means cluster analysis, were

considered as an alternative method for determining an appropriate estimate of the

number of environment states. For our purposes, we assume the number of clusters

is equivalent to the number of environment states.

A key component of most cluster analysis techniques is the determination of

the number of clusters in a set of observations. Milligan and Cooper [61] used known

data sets (with known number of clusters) and compared 30 clustering techniques

to determine how each technique performed on these data sets. While no technique

found the correct number of clusters for all data sets, Milligan and Cooper [61]

indicated that Calinski and Harabasz’ [14] method performed better than the others.

Hence, we use this technique to estimate the number of environment states. Timm

[87] labeled this technique the pseudo F -statistic which has the value FK and is

plotted for 2, 3, . . . , K. Additionally, Calinski and Harabasz [14] indicated that the

absolute maximum, the first local maximum, or a point with a comparatively rapid

increase designates the best choice for the number of clusters. The authors also

stated that if the value FK is monotonically increasing in K, then the number of

clusters should equal the number of observations.

Assuming there are K clusters, the technique compares K-means via one-

way analysis of variance (ANOVA). Designate ȳi as the mean of each cluster i,

i = 1, 2, . . . , K, and ni as the number of observations in the ith cluster where

N =
K∑

i=1

ni. (3.79)

and

ȳ =
1

K

K∑
i=1

ȳi (3.80)
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is the overall sample average of degradation rates. Define the sum of squares between

clusters, SSB, as

SSB =
K∑

i=1

ni(ȳi − ȳ)2. (3.81)

and the sum of squares within clusters, SSW , as

SSW =
K∑

i=1

ni∑
j=1

(yi,j − ȳi)
2. (3.82)

where yi,j is the jth degradation rate observation in the ith cluster. The F -ratio for

K clusters, 2 ≤ K < N , is

FK =
SSB/(K − 1)

SSW/(N −K)
. (3.83)

Our objective is to find the “best” value of K via Equation (3.83), over some set

K, where FK is the absolute maximum, the first local maximum, or a point at which

the function exhibits a comparatively rapid increase. Let K ≡ {2, 3, . . . , J} where J

is a positive integer (greater than 2). For the sake of computational expedience, it is

ideal to choose the smallest value of K that leads to an appropriate representation

of the underlying process. As a first resort, we apply the second criterion suggested

in [14], choosing that value of K corresponding to the first local maximum over K
given by

K̂ = min{K ∈ K : FK > FK+1}. (3.84)

However, in case FK is strictly increasing in K, we resort to the remaining two

criteria to estimate the smallest possible value. For example, consider a data set

with 100,000 observations from ten clusters. The K-means clustering method was

applied with K = 2, 3, . . . , 15 and the FK values were computed for each K. These

values are plotted in Figure 3.4 and indicate either eleven clusters using the absolute
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maximum FK value, five clusters if using the first local maximum, and eleven clusters

for a point with a comparatively rapid increase. Since one of our concerns is a small

sample space, we specifically focus on the first local maximum as our method to

estimate the number of environment states and provide examples of this technique

later in the dissertation. This technique appears to best fulfill our requirement for

the determination of the number of environment states.
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Figure 3.4: Values for FK showing 10 or 11 clusters.

The following steps provide a synopsis of the estimation techniques for the

observable degradation scenario. These estimated parameters can then be utilized

to approximate the lifetime distribution and ultimately, the remaining lifetime dis-

tribution for use in systems prognosis.

Step 0: Initialization.

At time t0 ≡ 0, observe X̂(t0) ≡ x0.

Step 1: Observe degradation measures.

Observe the degradation at times t1 < · · · < tM , M ∈ N and form the set of

observation times

T ≡ {tj : j = 0, 1, 2, . . . , M}. (3.85)
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with observations X̂(tj), j = 0, 1, 2, . . . , M . It is assumed that, at time tM , the

single-unit system has not failed.

Step 2: Approximate the failure path.

After observing the degradation path up to time epoch tM , approximate the

true failure path by a simple piecewise-linear approximation that connects the

observed degradation measures for each element of T .

Step 3: Approximate degradation rates via finite difference methods.

For each observation time tj ∈ T , approximate the degradation rates of the

process by the difference equation

γj ≡ X̂(tj)− X̂(tj−1)

tj − tj−1

, j = 1, 2, . . . , M. (3.86)

For simplicity, we assume that the length of the time interval between two

observations (tj − tj−1) is fixed for all intervals. For the discrete sampling

interval, [t0, tM ], gather the observed rates in a set,

Γ ≡ {γj : j = 1, 2, . . . , M}.

Step 4: Compute the K̂ distinct degradation rates.

Select an appropriate value K̂ via Equation (3.84) applied to observations in

the set Γ. This may be accomplished by using any standard statistical software

package. Define C = {C1, C2, . . . , CK̂} as the set of K̂ distinct clusters such that

Ci ∩ Cj = ∅, j 6= i, and µi denotes the centroid of cluster Ci, i = 1, 2, . . . , K̂.

Each γj ∈ Γ is therefore assigned to exactly one cluster in C such that the

estimated degradation rate of environment state j ∈ S is r̂(j) ≡ µj.

Step 5: Construct new degradation path.

Construct a new piecewise linear degradation path by replacing each γj ∈ Γ
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by r̂(j) ≡ µj. (Note: if r̂(j) = r̂(j + 1) for some j, then the two adjacent line

segments are replaced by a single line segment with slope equal to r̂(j).)

Step 6: Approximate generator matrix.

Using the piecewise linear estimate of the degradation path of Step 5, estimate

the K̂-dimensional generator matrix Q by Q̂tM using Equations (3.72) and

(3.73).

3.5.3 Data Sources and Experimentation

This section examines both the simulated and empirical data used to evaluate

the estimation techniques discussed in this section. For the simulated data, we

define numerous infinitesimal generator matrices with between two and fifteen states

as well as twenty states. Additionally, we define degradation rate matrices and initial

probability distributions when required. Since the amount of time spent in any state

is assumed to be exponentially distributed, and the system is degrading at a specific

rate while in that state, we generate numerous sample degradation paths so that

the six steps of subsection 3.5.1 may be applied. For example, Figure 3.5 shows five

degradation sample paths simulated from a known generator and degradation rate

matrix.

By simulating these degradation paths, we can compare the lifetime distri-

butions resulting from estimated generator matrices and degradation rate matrices

with lifetime distributions resulting from the known generator matrices and degra-

dation matrices. The “closeness” of the distributions is statistically evaluated via

goodness-of-fit tests discussed in the next section.

For the empirical data tests, we obtained a data set from Virkler, et al. [90]

which contains observations of the number of cycles required to propagate a crack to

a given length in 2024-T3 aluminum alloy. Sixty-eight (68) sample paths were used to

form an empirical lifetime distribution at various crack lengths (failure thresholds).

While this empirical distribution cannot provide the true lifetime distribution, it does
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Figure 3.5: A sample of five linear degradation paths.

provide a distribution to test our procedure against using standard goodness-of-fit

tests. A graphical depiction of all 68 sample paths is shown in Figure 3.6.
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Figure 3.6: Crack propagation for 68 samples of 2024-T3 aluminum alloy.

3.5.4 Goodness-of-Fit Test

This section provides the theoretical foundation for the goodness-of-fit test

used to compare two distributions throughout the remaining text. Using known
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parameters in one lifetime distribution and estimated parameters from Sections 3.5.1

and 3.5.2 in the other lifetime distribution, this test provides the basis to indicate

whether these two distributions are statistically equivalent, and as such, is critical

to the veracity of the results in the next subsection.

The Cramér-von Mises test statistic [19] is used to compare two empirical

CDFs. The null hypothesis that two distribution functions, U1 and U2, are equivalent

is

H0 : U1(x) = U2(x), for all x ∈ (−∞,∞)

and the alternative hypothesis is

H1 : U1(x) 6= U2(x), for at least one value of x.

The test statistic, κ2, with empirical distribution functions U1 and U2 evaluated at

x1, x2, . . . , xr and y1, y2, . . . , ys is defined as

κ2 =
rs

(r + s)2

{
r∑

i=1

[U1(xi)− U2(xi)]
2 +

s∑
j=1

[U1(yj)− U2(yj)]
2

}
. (3.87)

For the scenarios we examine, we compare the CDFs, one from the known process

and one from the estimated process, at m fixed points, τ1, τ2, . . . , τm. Since r = s

and xi = yi = τi, the appropriate test statistic simplifies as

κ2 =
1

2

m∑
i=1

[U1(τi)− U2(τi)]
2 . (3.88)

We denote the critical value by κ∗. If κ2 < κ∗, then we fail to reject the null

hypothesis that U1 ≡ U2. We now have all the required elements to adequately

estimate and test the procedure.
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3.5.5 Illustrative Examples

This section demonstrates that we can implement the numerical techniques

discussed earlier and shows that we can obtain accurate approximations of the life-

time and remaining lifetime distributions. We first show that we can accurately

estimate the infinitesimal generator matrix, based upon exponentially distributed

holding times, the degradation rates, and the number of environment state. We

then show that we can accurately approximate the lifetime distribution which pro-

vides the remaining lifetime distribution. We examine four cases, where for each case,

we compare, via goodness-of-fit tests, the approximated distribution resulting from

estimated parameters and the true distribution resulting from known parameters.

Both distributions are formed via Equation (3.51). The four cases are summarized

as follows:

Case I. Observable Environment.

Estimate the elements of the generator matrix Q using simulated data.

Case II. Observable Degradation.

Estimate the elements of the generator matrix Q, the degradation rates, r(i), i =

1, 2, . . . , K, and the initial probability distribution α using simulated data.

Case III. Observable Degradation.

Estimate the elements of the generator matrix, Q, the degradation rates,

r(i), i = 1, 2, . . . , K, the initial probability distribution α, and the number

of environment states using simulated data.

Case IV. Observable Degradation.

Estimate the elements of the generator matrix, Q, the degradation rates,

r(i), i = 1, 2, . . . , K, the initial probability distribution α, and the number

of environment states using real data.

The primary purpose in each case is to compare the lifetime distributions

formed by inversion of the Laplace-Stieltjes transform in Equation (3.51). The first
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two cases compare the known lifetime distribution resulting from known parameters

and the approximated lifetime distribution resulting from known and estimated pa-

rameters. The third case compares the known lifetime distribution resulting from

known parameters and the approximated lifetime distribution resulting from esti-

mated parameters whereas the fourth case compares an empirical lifetime distribu-

tion resulting from 68 observations and the approximated lifetime distribution re-

sulting from estimated parameters. Additional details and some remaining lifetime

distribution comparisons are provided in each case.

Case I. Observable Environment

For each j ∈ S, there exists a known degradation rate for the single-unit

system, namely r(j). The environment evolves over time and is observed over the

interval [0, T ]. We provide three test cases, namely when the environment process

(Z) assumes values on a state space with cardinality 2, 5 and 10, respectively. For

each test case, the elements of the generator matrix Q were drawn from a continuous

uniform population on (20, 40). That is, for j 6= i,

qi,j ∼ U(20, 40) i, j ∈ S.

In the usual way, the diagonal elements of the generator matrix are

qi,i = −
∑

j 6=i

qi,j i ∈ S.

The associated degradation rates (r(j), j = 1, 2, . . . , K) were drawn from con-

tinuous uniform populations on the interval (20, 80). In all cases, the failure threshold

value was fixed at x = 1. Moreover, the true generator matrix Q is estimated by

the matrix Q̂T with T = 100, 500, 5000 using Equations (3.72) and (3.73). Uncon-

ditional and residual cumulative probability values were computed using Equation

78



(3.51) (and Equation (3.67)) using a variant of the numerical inversion algorithm

of Moorthy [62]. We compare the CDFs, created by the true and estimated pro-

cesses, at m fixed points, τ1, τ2, . . . , τm. For this experiment, and those that follow,

goodness-of-fit tests were conducted (at the 0.05 level) to compare the CDFs.

For a 2-state CTMC, the degradation rates, generator matrix and generator

matrix estimates at times T = 100, 500, and 5000 are

D =
[

34.81 78.23
]

Q =


 −34.64 34.64

22.01 −22.01




Q̂100 =


 −30.71 30.71

24.26 −24.26




Q̂500 =


 −31.71 31.71

19.61 −19.61




Q̂5000 =


 −34.99 34.99

22.03 −22.03




For the 5-state CTMC, the degradation rates and generator matrices are

D =
[

32.26 44.88 28.66 70.33 37.48
]

Q =




−131.34 30.24 38.73 24.42 37.96

32.64 −110.57 31.87 24.00 22.07

29.87 30.78 −128.44 30.11 37.69

24.05 21.07 23.04 −105.27 37.11

33.00 37.66 39.53 36.46 −146.66



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Q̂100 =




−119.64 22.16 29.29 25.80 42.40

20.59 −106.97 19.52 12.90 53.96

29.41 37.99 −123.14 17.20 38.54

32.35 18.99 42.30 −124.48 30.83

32.35 25.33 39.05 25.80 −122.52




Q̂500 =




−118.69 31.21 29.02 26.64 31.82

25.35 −126.10 38.49 19.37 42.89

42.85 29.10 −142.86 26.64 44.28

16.90 24.34 32.57 −109.78 35.98

35.00 21.69 38.49 36.32 −131.50




Q̂5000 =




−121.19 32.39 29.23 24.94 34.63

30.62 −116.07 27.54 19.96 37.95

36.15 30.81 −127.07 21.91 38.20

26.57 25.71 30.98 −119.74 36.48

38.02 22.08 38.59 37.98 −136.67




For the 10-state CTMC, the degradation rates and generator matrices are

D =
[

38.72 47.73 55.07 71.24 79.16 38.12 72.08 65.69 69.47 25.99
]

Q =




−249.09 20.91 20.12 27.11 30.55 24.70 33.65 20.97 36.87 34.21

30.29 −291.05 24.21 33.20 32.69 31.36 39.88 38.15 39.75 21.52

21.51 27.76 −281.16 36.86 30.70 29.77 35.24 36.04 27.07 36.22

30.76 25.78 24.77 −249.99 25.99 20.13 33.48 27.31 28.13 33.65

22.15 38.18 32.17 35.72 −274.54 23.16 39.61 38.23 22.12 23.20

37.14 24.15 29.79 36.24 30.43 −272.03 27.12 24.24 28.09 34.84

24.95 29.01 31.68 38.61 26.67 25.17 −263.45 27.46 33.35 26.55

24.43 33.32 24.25 32.97 28.96 28.70 26.05 −255.71 23.04 33.98

30.68 30.71 38.00 28.50 24.74 25.24 38.05 33.92 −274.66 24.80

26.42 36.67 23.84 26.82 31.37 34.29 28.71 28.23 38.44 −274.79



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Q̂100 =




−251.26 25.63 17.37 49.96 20.49 20.21 9.35 38.98 41.79 27.48

15.93 −280.64 28.95 24.98 56.33 26.95 42.06 7.80 50.15 27.48

21.24 25.63 −290.09 14.99 46.09 20.21 28.04 31.18 75.23 27.48

31.86 32.04 34.75 −315.24 30.73 47.16 28.04 46.77 50.15 13.74

15.93 57.67 34.75 19.99 −321.07 47.16 28.04 38.98 16.72 61.84

26.55 25.63 23.16 24.98 10.24 −227.67 18.69 38.98 25.08 34.35

37.17 38.45 40.54 24.98 46.09 6.74 −280.68 31.18 41.79 13.74

0.00 32.04 23.16 14.99 15.36 26.95 28.04 −228.02 66.87 20.61

37.17 57.67 17.37 54.96 10.24 20.21 23.36 7.80 −276.89 48.10

31.86 12.82 46.33 19.99 25.61 26.95 9.35 38.98 33.43 −245.30




Q̂500 =




−253.89 30.98 23.87 31.51 18.57 32.27 29.55 19.84 37.87 29.42

23.69 −257.95 32.82 32.56 27.86 28.06 27.36 28.66 22.99 33.95

19.17 26.02 −234.36 25.21 32.50 25.25 31.74 20.95 29.76 23.76

30.45 28.50 31.33 −272.35 30.18 26.66 43.78 20.95 37.87 22.63

28.20 24.78 34.31 27.31 −278.84 28.06 26.27 40.79 35.17 33.95

22.56 19.83 17.90 15.76 31.34 −214.58 28.46 23.15 21.64 33.95

34.97 34.70 44.76 33.61 48.75 42.09 −316.51 19.84 35.17 22.63

12.41 42.13 43.27 21.01 42.95 16.84 27.36 −261.02 39.22 15.84

37.22 35.94 23.87 18.91 22.05 25.25 32.83 24.25 −254.28 33.95

28.20 24.78 44.76 28.36 13.93 32.27 33.93 33.07 31.11 −270.41




Q̂5000 =




−243.61 30.08 20.45 30.69 20.55 35.77 24.75 25.80 30.13 25.39

20.62 −261.76 27.75 24.39 39.39 25.40 26.53 35.88 27.33 34.49

22.85 22.99 −245.86 24.39 34.08 29.65 32.72 22.52 33.87 22.79

27.70 34.81 38.64 −288.45 31.16 33.77 41.21 27.27 28.49 25.39

30.93 30.61 24.03 24.80 −250.59 29.25 26.21 27.50 23.36 33.89

24.59 31.13 29.61 19.22 24.53 −243.31 26.32 27.61 26.16 34.13

33.04 37.70 32.53 33.38 44.29 32.18 −308.65 25.12 40.17 30.23

21.24 38.36 34.92 25.11 39.92 22.07 28.00 −269.60 32.58 27.40

36.64 38.49 28.95 30.18 19.23 25.40 32.72 24.11 −274.91 39.21

36.02 24.17 37.84 31.83 25.59 37.36 25.69 34.74 25.46 −278.71




Table 3.1 provides a summary of the Cramér-von Mises test statistics when

comparing cumulative probability values obtained by simulating the true process

with generator Q with those of numerical Laplace transform inversion obtained using
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Q̂T . Three observation periods were considered in this experiment, and for the

remaining lifetime tests, we fixed ξ0 = E[T (x)].

Table 3.1: Cramér-von Mises test statistics for Case I (κ∗=0.461, α = 0.05).
Distribution Run Length K = 2 K = 5 K = 10

T = 100 7.013E-03 4.233E-02 9.477E-03

F̂ (x, t) T = 500 1.649E-03 7.895E-03 2.130E-03
(m=48) T = 5000 9.941E-05 9.019E-05 1.986E-06

T = 100 5.511E-03 3.821E-02 7.455E-03

1− R̂(x, t|ξ0) T = 500 1.223E-03 6.553E-03 2.113E-03
(m=50) T = 5000 5.544E-05 8.092E-05 2.576E-06

It is noted that, in all eighteen experiments, we fail to reject the null hypothesis

that the two cumulative distribution functions are equivalent. Thus, if the environ-

ment process can be partitioned into K distinct and observable states with known

degradation rates, our approach provides a viable approximation procedure that does

not require lifetime observations; it requires only a count of environment transitions.

Case II compares the approximated distribution resulting from the estimation of the

degradation rates and the generator matrix given a known number of environment

states with the true distribution resulting from the known parameters.

Case II. Observable Degradation

For this scenario, we first simulate linear degradation paths generated via a

known environment process with K = 3 distinct states and known degradation rates

D = {r(1), r(2), . . . , r(K)}. Five hundred degradation sample paths, similar to the

five shown in Figure 3.7, were generated for this experiment.

Setting t0 ≡ 0, we observe the level of degradation at M equally spaced points

in time such that tM = 20. That is, the degradation process is observed up to time

20. Figure 3.8 on the left depicts a sample of observations for five degradation sample

paths. Additionally, Figure 3.8 shows how these observations were used to form new

piecewise, linear degradation sample paths.
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Figure 3.7: A sample of five linear degradation paths.
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Figure 3.8: Piecewise approximations, M = 10, to the linear degradation paths.

Combining Figures 3.7 and Figure 3.8 visually shows how we are using the

simulated data to form new sample paths for estimation purposes. This combination

is shown in Figure 3.9.

Before forming a new sample path from each of the 500 generated degradation

paths, we visually ensured that the true lifetime distribution, as determined from

numerical inversion using the known generator matrix and degradation rates, was a
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Figure 3.9: Simulated versus approximated degradation sample paths.

close approximation to the empirical lifetime distribution formed from the 500 time

observations of the simulated degradation paths at a degradation value of 152.6.

After examining the results in Figure 3.10, we decided to continue our estimation

technique.
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Figure 3.10: Analytical CDF versus Simulated CDF
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Following this confirmation, we utilize these piecewise linear approximations to

obtain the lifetime and remaining lifetime distribution. In each scenario, we observe

the system up to time tM = 20 but vary the inter-observation time. In particular, we

consider M = 20, 100, and 200 observations on [0, 20], respectively. The assumed unit

failure threshold was fixed at x = 152.6 units. The same 500 simulated degradation

sample paths were used for each value of M to estimate a new generator matrix

and new degradation rates at times 4.0, 8.0, and 12.0, respectively. The generator

matrices are shown in Table 3.2 and the degradation rates are shown in Table 3.3.

Table 3.2: Estimated generator matrices for each M at three times.

M T = 4 T = 8 T = 12

20



−0.81 0.53 0.29

0.38 −0.71 0.33
0.28 0.55 −0.84






−0.75 0.48 0.27

0.33 −0.62 0.28
0.27 0.51 −0.78






−0.74 0.48 0.26

0.31 −0.60 0.29
0.26 0.50 −0.76




50



−1.81 0.64 1.17
0.68 −1.91 1.23
0.83 0.68 −1.52






−1.76 0.58 1.18
0.67 −1.85 1.17
0.79 0.67 −1.46






−1.78 0.63 1.14
0.63 −1.79 1.16
0.74 0.70 −1.45




100



−3.30 2.08 1.23
1.55 −2.98 1.42
1.29 2.15 −3.44






−3.30 2.12 1.18
1.54 −2.89 1.35
1.26 2.19 −3.46






−3.35 2.15 1.20
1.52 −2.89 1.37
1.25 2.18 −3.43




200



−5.88 3.86 2.02
3.21 −5.86 2.65
2.30 4.41 −6.71






−5.84 3.85 1.99
3.22 −5.85 2.63
2.38 4.35 −6.73






−5.86 3.88 1.99
3.21 −5.83 2.62
2.37 4.32 −6.69




500



−10.17 6.71 3.46
7.42 −13.18 5.76
3.65 9.91 −13.56






−10.07 6.73 3.34
7.35 −13.10 5.75
3.60 9.86 −13.46






−10.00 6.70 3.30
7.35 −13.12 5.77
3.60 9.87 −13.47




Actual



−16.10 12.04 4.06
16.84 −26.52 9.69
5.98 21.76 −27.75



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Table 3.3: Estimated degradation rates for each M at three times.
Samples (M) Run Length r̂(1) r̂(2) r̂(3)

T = 4 0.0441 0.0600 0.0765
20 T = 8 0.0443 0.0599 0.0762

T = 12 0.0441 0.0597 0.0759
T = 4 0.0361 0.0847 0.0604

50 T = 8 0.0366 0.0848 0.0604
T = 12 0.0361 0.0838 0.0596
T = 4 0.0285 0.0602 0.0924

100 T = 8 0.0287 0.0605 0.0928
T = 12 0.0284 0.0601 0.0923
T = 4 0.0207 0.0625 0.1039

200 T = 8 0.0211 0.0629 0.1040
T = 12 0.0210 0.0628 0.1038
T = 4 0.0133 0.0658 0.1179

500 T = 8 0.0134 0.0657 0.1177
T = 12 0.0135 0.0659 0.1177

Actual 0.0066 0.0655 0.1311

It is very interesting to note how both the generator matrices and the degrada-

tion rates slightly vary from times T = 4.0, T = 8.0, and T = 12.0 for each value of

M . Additionally, we notice that both the generator matrices and degradation rates

are converging to the true generator matrix and degradation rates as the number

of observations over the time interval increases. Of particular interest is how the

second degradation rate is very close to the exact rate while the first and third rate

are not as close. This can be explained by the K-means clustering technique. The

interior degradation rates are better estimated by the centroid of each cluster while

the exterior points are not. For r(1) and its estimate r̂i(1), r̂i(1) ≥ r(1) and for r(K)

and its estimate r̂j(K), r̂j(K) ≤ r(K), for all i, j. However, as we will demonstrate,

this difference in the outer degradation rates does not significantly affect the overall

results. Given the estimates at each M , the next step is to compare the distribu-

tions obtained from numerical inversion of the lifetime distribution. The estimated

generator matrices and degradation rates at times T = 4.0, T = 8.0, and T = 12.0,

for each value of M are examined and are shown in Figures 3.11, 3.12 and 3.13.
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Figure 3.11: CDF comparison with t20 = 20 (left) and CDF with t50 = 20 (right).
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Figure 3.12: CDF comparisons with t100 = 20 (left) and CDF with t200 = 20 (right).

While the lifetime distributions in these figures appear close, we checked the

equality of the lifetime distributions, as well as the remaining lifetime distribu-

tions, by comparing the approximated distribution with the true distribution via

the Cramér-von Mises goodness-of-fit test at m = 20 using Equation (3.88). The

results of this experiment, summarized in Table 3.4, indicate that we would fail to

reject the null hypothesis that the approximated and true distributions are the same

for the 18 distribution comparisons (nine lifetime and nine remaining lifetime).

Thus, by using observations of unit degradation up to a fixed point in time,

we conclude that we are able to adequately approximate the lifetime and remaining
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Figure 3.13: CDF comparison with t500 = 20.

Table 3.4: Cramér-von Mises statistic for Models 1-4 (κ∗=0.461 at α = 0.05).
M Interval F̂ (x, t) ξ0 1− R̂(x, t|ξ0)

20 [0.0,4.0] 0.0157 4.0 0.0189
[0.0,8.0] 0.0210 8.0 0.1213
[0.0,12.0] 0.0247 12.0 0.1633

100 [0.0,4.0] 0.0095 4.0 0.0197
[0.0,8.0] 0.0088 8.0 0.0476
[0.0,12.0] 0.0087 12.0 0.0639

200 [0.0,4.0] 0.0053 4.0 0.0149
[0.0,8.0] 0.0051 8.0 0.0336
[0.0,12.0] 0.0052 12.0 0.0266

lifetime distribution of the component for these simulated degradation paths via

estimation of the degradation rates and generator matrix. We now turn our attention

to Case III where we examine the feasibility of obtaining a good approximation of

the lifetime and remaining lifetime distributions via estimation of the number of

environment states, the degradation rates, and the generator matrix.
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Case III. Observable Degradation

To illustrate our method to determine the number of environment states K̂, we

began with models having a known number of environment states. We noticed our

method to select K̂ worked well in many scenarios, but some scenarios designated

fewer states than the known number of environment states. Four examples, two

modelled with a 5-state environment (Models 1 and 2) and two modelled with a

10-state environment (Models 3 and 4), were examined. Using Equation (3.83), for

K = 2, . . . , 15, and choosing the first local maximum, we can find K̂. Table 3.5

contains the FK values for K = 2, . . . , 15, for all four models where K̂ is underlined.

Table 3.5: Values of FK(×105)
K Model 1 Model 2 Model 3 Model 4

2 1.6549729 0.8181652 0.2850496 1.2135811
3 3.0908480 1.2615370 0.4007699 1.4698324
4 4.0673686 1.1724026 0.4211020 2.0085264
5 3.8208568 1.5243076 0.6602448 2.6493771
6 3.2499389 2.2097990 0.6982035 2.0623002
7 6.6786389 2.2156051 0.9551702 3.6891118
8 7.2785629 2.8230510 1.1446319 4.0491842
9 10.762887 3.2351094 1.0479320 5.0331320
10 7.3831984 2.5987248 0.6973468 4.6961658
11 5.8765496 3.7692757 1.3063962 6.3385019
12 9.9207365 4.3081416 1.8050071 8.0903999
13 8.5587210 2.7749692 0.8572278 5.2739689
14 15.161074 5.2694757 0.8588647 10.272132
15 12.455254 5.6134761 1.3868170 9.9281135

As shown in Table 3.5, the known 5-state environments have K̂ = 4 and K̂ = 3

for Model 1 and Model 2 respectively while the known 10-state environments have

K̂ = 8 and K̂ = 5 for Model 3 and Model 4 respectively. To determine if each

K̂ adequately estimates the known K value, we estimated the degradation rates

and generator matrix associated with each of the four models. Additionally, we

examined K̂ + 1 for each model. We then determined the approximated and true

lifetime distributions using Equation (3.51) and compared these distributions using
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the Cramér-von Mises test. The graphs for Model 2 and Model 4 are shown in 3.14

and the summarized results for all models are contained in Table 3.6. Thus, using the

Cramér-von Mises test, we fail to reject the null hypothesis that the approximated

and true lifetime distributions are the same.
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Figure 3.14: Distributions with known 5-state (left) and 10-state (right).

Table 3.6: Cramér-von Mises statistic for Models 1-4 (κ∗=0.461 at α = 0.05).
Model K K̂ κ2

1 5 4 2.3056E-02
5 5 3.2317E-02

2 5 3 8.2275E-03
5 4 4.7578E-02

3 10 8 3.5704E-02
10 9 3.5397E-02

4 10 5 2.0722E-02
10 6 2.7385E-02

To conclude this case, we chose Models 1 and 3 to examine the remaining life-

time distribution because these two models most closely estimate the actual number

of states. Those results, shown in Table 3.7 also indicate that we fail to reject the

null hypothesis that the approximated and true remaining lifetime distribution are

the same.
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Table 3.7: Cramér-von Mises statistic for Model 1 and Model 3 (κ∗=0.461 at α = 0.05).

Model K K̂ ξ0 κ2

1 5 4 17.5311 1.0179E-01
5 5 17.5311 1.0733E-01

3 10 8 13.4249 1.6783E-01
10 9 13.4249 1.4709E-01

Case IV. Observable Degradation

Finally, we illustrate the implementation of Equation (3.51) and the associated

estimation techniques using real degradation data. Virkler, et al. [90] produced this

degradation data by tracking the number of load cycles required to grow a crack in

2024-T3 aluminum alloy under specified stress. Degradation paths were obtained for

68 test specimens and are shown in Figure 3.6. For a more thorough treatment of

fatigue crack dynamics, the reader is referred to the paper by Ray and Tangirala [76]

and the references contained therein.

We begin our procedure by letting X(w) denote the length of the crack at

time w and assuming that the (linear) rate at which the crack grows is subject to

its random environment (applied stress, ambient conditions, and other factors). It is

assumed that these environmental factors can be characterized by {Z(w) : w ≥ 0},
a homogeneous Markov process on a finite-state sample space S = {1, 2, . . . K}. We

observe all 68 sample paths to estimate the generator matrix, Q, for the Z process.

In the experiment that follows, the component is said to fail whenever the crack

length exceeds a value of 45 mm. We estimate the off-diagonal generator matrix

values by

qi,j ≈ q̂(68) =
N (68)(i, j)

H(68)(i)
(3.89)

as defined in Equation (3.75). As a quality check, we hypothesize that the estimated

cumulative probability values will converge to the true cumulative probability values

as the observation period approaches the failure time. It should be noted, however,

that our ‘true’ cumulative probability values are obtained via the empirical cumula-
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tive probabilities for the 68 degradation paths at x = 45 mm. We assume that these

68 observations provide a ‘close’ approximation to the underlying true distribution.

We designate three points in the data, specifically 25 mm, 35 mm, and 41

mm, which correspond to approximately 55%, 77%, and 91% of the lifetime. Setting

K = 3, we initially demonstrate that our hypothesis is correct after estimating the

degradation rates and the generator matrix. Using Equation (3.51) to approximate

the distribution, we can see in Figure 3.15 that we are approaching the empirical

distribution for x = 45 mm. Additionally, using Equations (3.65) and (3.69) at

n = 1, we compute the mean lifetime required to reach a fixed threshold value x as

well as the mean residual lifetime. For each case, we estimate a new generator matrix

and degradation rates. In the actual data sets, we have that the initial measured

crack length is approximately 9.0 mm (i.e., X(0) ≈ 9.00 mm). Table 3.8 provides the

comparison of the level-crossing times over the 68 degradation paths. Using Figure

3.15 and Table 3.8, we feel confident that we can adequately estimate the parameters

of the lifetime distribution and proceed with the entirety of our approach.

Table 3.8: Mean lifetime and remaining lifetimes (×105), ξ0 = actual m(1)(x).
m(1)(x) m(1)(x|ξ0)

x (mm) Actual Model Actual Model

10 0.318574 0.325974 0.349943 0.347018
15 1.183405 1.150109 1.268688 1.293640
20 1.638693 1.530864 1.738733 1.771963
25 1.938014 1.800568 2.042441 2.113597
30 2.158575 2.021006 2.286812 2.368369
35 2.326253 2.116553 2.458462 2.508772
41 2.464467 2.298747 2.611653 2.633815

Applying our methodology, we begin by using FK to estimate the number of

environment states, K̂ at the three designated points. As seen in Table 3.9, we select

two clusters at 55% of the lifetime, nine clusters at 77% of the lifetime (due to the

sharp increase), and twelve clusters at 91% of the lifetime. Since 91% of the lifetime
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Figure 3.15: Comparison of cumulative probability values.

appears to offer the closest match to the empirical distribution in Figure 3.15, we

focus our attention on this set of data.

Table 3.9: Values of FK(×104).
K 55% 77% 91%

2 0.845912 1.716694 1.934667
3 0.770946 2.045060 2.448228
4 0.700849 2.267842 2.866000
5 0.637918 2.412888 3.248069
6 1.789474 2.506080 3.620849
7 1.984733 2.627177 3.934574
8 2.230180 2.658314 4.208318
9 2.570793 2.669967 4.374201
10 2.785035 4.566412 4.448147
11 3.017830 4.974103 4.744162
12 2.993362 5.272737 4.830633
13 3.714449 5.683212 4.796518
14 4.167025 5.850034 4.800008
15 4.292031 6.608150 4.745232

Estimates of the generator matrix and degradation rates were constructed for

K̂ = 2, 3, 4, 9, and 12 using 91% of the data. The resulting distributions for each
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scenario were compared to the empirical distribution at a fixed number of points

(m = 65) using the Cramér-von Mises test and are summarized in Table 3.10.

Table 3.10: Cramér-von Mises test statistic (κ∗ = 0.461 at α = 0.05).
K̂ F̂ (x, t) ξ0 1− R̂(x, t|ξ0)

2 1.398488E-01 2.534 6.124815E-01
3 8.671149E-02 2.534 1.395285E-01
4 4.525246E-01 2.534 4.383202E-01
9 7.657227E-01 2.534 2.235864E-00
12 8.723972E-01 2.534 1.667689E-00

For the lifetime distribution, we fail to reject the null hypothesis that the

distributions are equal in the Cramér-von Mises test for K̂ = 2, 3, and 4. For

the residual lifetime distributions, we fail to reject the null hypothesis that the

distributions are equal in the Cramér-von Mises test for K̂ = 3 and 4. At this point,

our estimate for the number of environment states is suspect because the FK-value

in Table 3.9 for 91% of the data indicates that twelve states is the best estimate

for K. However, as shown in Table 3.10 for K̂ = 12, we reject the null hypothesis

that the distributions are equivalent. A possible reason for the lack of fit may be

that we require additional data to adequately estimate the elements of the generator

matrix and associated degradation rates. However, this issure cannot be explored as

additional data is not available. Other possible reasons for the poor fit at K̂ = 12

may be that the state holding times are not exponentially distributed or that the

data might be nonstationary.

Results for this example suggest that a smaller representation may exist that

allows a better approximation of the lifetime distribution. Table 3.10 indicates that

K̂ = 3 or 4 adequately approximates the empirical distribution. However, additional

research is required to determine if a smaller representation exists.

This chapter has provided analytical results for the lifetime distribution of the

time required for a single-unit system to reach a prespecified cumulative degradation

threshold operating in a nonhomogeneous and homogeneous Markovian environment.
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For the case of a homogeneous Markov environment, given a sensor that tracks and

relays information about the known environment or the real-time degradation level

of a component, our technique provides a capability to obtain the remaining lifetime

distribution of that component and provide failure time probabilities required for

systems prognosis.

While, this methodology is a contribution to degradation-based reliability [45],

it is quite restrictive. By assuming a Markovian environment, our results are limited

to environments that spend an exponential amount of time in each state. In reality,

this assumption will not be valid in many cases which motivates the need to relax this

assumption. The next chapter explores a semi-Markov environment which allows the

amount of time spent in each environment state to be generally distributed.
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IV. Homogeneous Semi-Markov Environments

Chapter III provided analytical results and numerical procedures using ob-

servable environment and observable degradation data to obtain the remaining life-

time distribution required for systems prognosis. These results assumed the system

was operating in a Markovian environment which required the amount of time spent

in each state of the environment to be exponentially distributed. In reality, how-

ever, this assumption may not hold. In this chapter, we relax the assumption of

exponential holding times by assuming the system operates in a semi-Markovian

environment. This environment allows transitions from one state to another in the

same manner as the Markovian environment, but does not require that the amount of

time spent in each state be exponentially distributed. This procedure substantially

improves the ability to model a variety of real-world environments as compared to

the procedures of Chapter III.

In this chapter, we provide a brief review of semi-Markov processes (SMP)

by highlighting some of their fundamental definitions and properties. Following

this review, in Section 4.2 we present the main results for the lifetime distribution

of a single-unit system that continuously degrades in an environment modelled as

a homogeneous SMP. In Section 4.3, we provide three illustrative examples that

demonstrate the difficulties associated with numerical implementation of this lifetime

distribution result, but then establish in Chapter V that these difficulties can be

overcome to ultimately extend the utility of the procedures developed in Chapter

III.

4.1 Review of Semi-Markov Processes

The time homogeneous semi-Markov process (SMP) is a generalization of the

homogeneous continuous-time Markov chain (CTMC). Both processes can have an

infinite number of states and also have embedded at transition epochs a discrete-time
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Markov chain (DTMC), {Yn : n ≥ 0} with transition probabilities

pi,j = P{Yn+1 = j|Yn = i}. (4.1)

Let Z ≡ {Z(w) : w ≥ 0} be a continuous-time stochastic process. As seen in

Figure 4.1, define τn as the nth jump epoch and let Yn ≡ Z(τ+
n ) be the state of the

environment just after the nth transition.
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Figure 4.1: Sample path of a semi-Markov process.

Recall that a sequence of bivariate random variables, {(Yn, τn) : n ≥ 0} is a Markov

renewal sequence if, for all n ≥ 0,

Ψi,j(w) = P{τn+1 − τn ≤ w, Yn+1 = j|τn, Yn = i, . . . , τ0, Y0}
= P{τn+1 − τn ≤ w, Y1 = j|Y0 = i}. (4.2)

where τ0 = 0, τn+1 ≥ τn, and Yn ∈ S. If the stochastic process has piecewise constant,

right continuous sample paths and {(Yn, τn) : n ≥ 0} is a Markov renewal sequence,

then Z is a semi-Markov process [50] with semi-Markov kernel Ψ(w) = [Ψi,j(w)]. A
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homogeneous semi-Markov process has

Ψi,j(w) = {τ1 ≤ w, Y1 = j|Y0 = i}. (4.3)

Holding times, or sojourn times, are defined by τn−τn−1, n ≥ 1 and the holding time

distributions are

Hi(w) =
∞∑

j=0

Ψi,j(w). (4.4)

This short review of a semi-Markov process provides the necessary definitions

that lead to the development and derivation of the lifetime distribution and the

illustrative examples in the remaining sections of this chapter.

4.2 Lifetime Distribution Results

If the environment Z is modelled as a semi-Markov process, the Markov prop-

erty still holds with respect to the embedded DTMC but not with respect to the

state holding times which are not exponentially distributed in general. Thus, we

cannot apply the standard techniques employed in Section 3.2 to obtain the lifetime

and remaining lifetime distribution.

For a system subject to a semi-Markov environment, we derive the lifetime

distribution via a bivariate distribution based upon Equation (3.6) similar to that

shown in Kulkarni, et al., [52]. Let the rate of degradation of the system at time

w > 0 be governed by the random environment modelled as a homogeneous semi-

Markov process (SMP). Specifically, the time spent in any particular state of the

environment is generally distributed. Recall that Z = {Z(w) : w ≥ 0} represents a

stochastic process with sample space S = {1, ..., K}, where K is a positive integer,

and the random variable Z(w) represents the state of the random environment at

time w. Associated with each state of the environment is a degradation rate where
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the collection of all degradation rates is again given by D = {r(1), . . . , r(K)}. If

Z(w) = i ∈ S, then r(Z(w)) = r(i). Additionally, the environment jumps from

state i ∈ S to state j ∈ S according to the one-step embedded transition probability

matrix P ≡ [pi,j], where pi,j ≡ P{Y1 = j|Y0 = i}.

Let

ψi,j(w) =
dΨi,j(w)

dw

where ψ(w) ≡ [ψi,j(w)]. Define the conditional lifetime distribution

Fi(x,w) ≡ P{T (x) ≤ w|Z(0) = i}

and define the Laplace-Stieltjes transform (LST) of Fi(x,w) with respect to w as

F̃i(x, s) ≡ E(e−sT (x)|Z(0) = i)

so that

F̃ (x, s) =
n∑

i=1

F̃i(s, x)P{Z(0) = i}

denotes the LST of the unconditional distribution F (x, w) ≡ P{T (x) ≤ w} with

respect to w. Additionally, let the Laplace transform of F̃ (x, s) with respect to x be

F̃ ∗(u, s). Theorem 7 provides the main result of this chapter.

Theorem 7. If the environment process, Z, with finite-state space S, is a homoge-

neous semi-Markov process, then

F̃ ∗(u, s) = α[I−ψ∗(u, s)]−1[A(u, s)−H∗(u, s)]r (4.5)
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where α is the initial probability distribution vector of the Z process, I is a K ×K

identity matrix, the matrix

ψ∗(u, s) =




ψ∗1,1(s + r(1)u) ψ∗1,2(s + r(1)u) · · · ψ∗1,K(s + r(1)u)

ψ∗2,1(s + r(2)u) ψ∗2,2(s + r(2)u) · · · ψ∗2,K(s + r(2)u)
...

...
. . .

...

ψ∗K,1(s + r(K)u) ψ∗K,2(s + r(K)u) · · · ψ∗K,K(s + r(K)u)




,

A(u, s) = diag[1/(s+r(1)u), 1/(s+r(2)u), . . . , 1/(s+r(K)u)], H∗(u, s) = diag[H∗
1 (s+

r(1)u), H∗
2 (s + r(2)u), . . . , H∗

K(s + r(K)u)], and

r ≡




r(1)

r(2)
...

r(K)




.

The result will be proved by a standard Markov renewal argument.

Proof.

E(e−sT (x)|τ1 = h, Z(0) = i) =





e−sx/r(i) if h ≥ x
r(i)

, (Case 1)

e−sh
∑
j

pi,jF̃j(x− r(i)h, s) if h < x
r(i)

, (Case 2).

For Case 1, the LST of the unit lifetime is exp(−sx/r(i)) because the system first

transitions after time x/r(i). In Case 2, the system first transitions before time

x/r(i) and hence, must account for the remaining time between h and x/r(i). Un-

100



conditioning with respect to the initial state, we obtain

F̃i(x, s) =

∞∫

0

E(e−sT (x)|τ1 = h, Z(0) = i)dHi(h)

=

x
r(i)∫

0

e−sh
∑

j

pi,jF̃j(x− r(i)h, s)dHi(h) +

∞∫

x
r(i)

e−sx/r(i)dHi(h)

=
∑

j

pi,j

x
r(i)∫

0

e−shF̃j(x− r(i)h, s)dHi(h)

+e−sx/r(i)

(
1−Hi

(
x

r(i)

))
. (4.6)

If Z(w) depends only on the previous state and not on τ1, then

Ψi,j(w) = P{τ1 ≤ w, Z(τ+
1 ) = j|Z(0) = i}

= P{Z(τ+
1 ) = j|Z(0) = i}P{τ1 ≤ w|Z(0) = i}

= pi,jHi(w)

which allows Equation (4.6) to also be written as

F̃i(x, s) =
∑

j

x
r(i)∫

0

e−shF̃j(x− r(i)h, s)dΨi,j(h) + e−sx/r(i)

(
1−Hi

(
x

r(i)

))
(4.7)

Taking the Laplace transform of Equation (4.6) with respect to x and doing a change

of variable, where we designate y = r(i)h and dy = r(i)dh, results in
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F̃ ∗
i (u, s) =

∞∫

0

e−uxF̃i(x, s)dx

=

∞∫

0

e−ux




∑
j

pi,j

x
r(i)∫

0

e−shF̃j(x− r(i)h, s)dHi(h) + e−sx/r(i)

(
1−Hi

(
x

r(i)

))

 dx

=

∞∫

0

e−ux




∑
j

pi,j

x
r(i)∫

0

e−shF̃j(x− r(i)h, s)hi(h)dh + e−sx/r(i)

(
1−Hi

(
x

r(i)

))

 dx

=
∑

j

pi,j

∞∫

0

e−ux

x∫

0

F̃j(x− y, s)e−sy/r(i)hi

(
y

r(i)

)
dy

r(i)
dx +

∞∫

0

e−uxe−sx/r(i)dx

−
∞∫

0

e−uxe−sx/r(i)Hi

(
x

r(i)

)
dx

=
∑

j

pi,j

r(i)

∞∫

0

e−ux

x∫

0

F̃j(x− y, s)e−sy/r(i)hi

(
y

r(i)

)
dydx +

1
s

r(i)
+ u

−
∞∫

0

e−uxe−sx/r(i)Hi

(
x

r(i)

)
dx

=
∑

j

pi,j

r(i)

∞∫

0

e−ux

x∫

0

F̃j(x− y, s)e−sy/r(i)hi

(
y

r(i)

)
dydx +

r(i)

s + r(i)u

−
∞∫

0

e−uxe−sx/r(i)Hi

(
x

r(i)

)
dx. (4.8)

Oberhettinger and Badii [67] provided the Laplace transform

H∗
i (r(i)u− s) =

∞∫

0

e−ux
esx/r(i)Hi

(
x

r(i)

)

r(i)
dx. (4.9)
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Using this transform for the last integral in Equation (4.8), we obtain

F̃ ∗
i (u, s) =

∑
j

pi,j

r(i)

∞∫

0

e−ux

x∫

0

F̃j(x− y, s)e−sy/r(i)hi

(
y

r(i)

)
dydx

+
r(i)

s + r(i)u
− r(i)H∗

i (s + r(i)u). (4.10)

This result may also be obtained by performing a change of variable with z =

x/r(i) and r(i)dz = dx and applying the Laplace transform damping theorem where

L{e−atf(t)} = f ∗(s + a). To reduce the remaining double integral, we note that

H(y, s) =

x∫

0

F̃j (x− y, s) g(y, s)dy =⇒ H∗(u, s) = F̃ ∗
j (u, s) g∗(u, s).

This implies that g(y, s) = exp(−sy/r(i))hi(y/r(i)) where Equation (4.9) is applied

to find that g∗(u, s) = r(i)h∗i (s + r(i)u). This reduces Equation (4.10) to

F̃ ∗
i (u, s) =

∑
j

pi,j

r(i)
F̃ ∗

j (u, s)r(i)h∗i (s + r(i)u) +
r(i)

s + r(i)u
− r(i)H∗

i (s + r(i)u)

=
∑

j

pi,jF̃
∗
j (u, s)h∗i (s + r(i)u) +

r(i)

s + r(i)u
− r(i)H∗

i (s + r(i)u). (4.11)

Collecting the F̃ ∗
i (u, s) and F̃ ∗

j (u, s) terms,

F̃ ∗
i (u, s)(1− pi,ih

∗
i (s + r(i)u))−

∑

j 6=i

pi,jF̃
∗
j (u, s)h∗i (s + r(i)u),

and applying the matrix operation, A ◦B, known as the Hadamard product, where

A ◦B ≡ [ai,jbi,j], for all i, j, results in the matrix form,

[I−P ◦ h∗(u, s)]F̃∗(u, s), (4.12)
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where I is a K x K identity matrix and

h∗(u, s) =




h∗1(s + r(1)u) h∗1(s + r(1)u) · · · h∗1(s + r(1)u)

h∗2(s + r(2)u) h∗2(s + r(2)u) · · · h∗2(s + r(2)u)
...

...
. . .

...

h∗K(s + r(K)u) h∗K(s + r(K)u) · · · h∗K(s + r(K)u)




,

P ◦ h∗(u, s) =




p1,1h
∗
1(s + r(1)u) p1,2h

∗
1(s + r(1)u) · · · p1,Kh∗1(s + r(1)u)

p2,1h
∗
2(s + r(2)u) p2,2h

∗
2(s + r(2)u) · · · p2,Kh∗2(s + r(2)u)

...
...

. . .
...

pK,1h
∗
K(s + r(K)u) pK,2h

∗
K(s + r(K)u) · · · pK,Kh∗K(s + r(K)u)




and

F̃∗(u, s) =




F̃ ∗
1 (u, s)

F̃ ∗
2 (u, s)

...

F̃ ∗
K(u, s)




.

Collecting the remaining terms of Equation (4.11),

r(i)

(s + r(i)u)
− r(i)H∗

i (s + r(i)u),

results in the matrix form

[A(u, s)−H∗(u, s)]r (4.13)
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where A(u, s) = diag[1/(s + r(1)u), 1/(s + r(2)u), . . . , 1/(s + r(K)u)], H∗(u, s) =

diag[H∗
1 (s + r(1)u), H∗

2 (s + r(2)u), . . . , H∗
K(s + r(K)u)], and

r =




r(1)

r(2)
...

r(K)




.

Thus, Equation (4.11) in matrix form is

[I−P ◦ h∗(u, s)]F̃∗(u, s) = [A(u, s)−H∗(u, s)]r

F̃ ∗(u, s) = α[I−P ◦ h∗(u, s)]−1[A(u, s)−H∗(u, s)]r. (4.14)

If Z(w) depends only on the previous state, then ψi,j(w) = pi,jhi(w) and the appro-

priate Laplace transform of ψi,j(w), ψ∗i,j(s + r(i)u) = pi,jh
∗
i (s + r(i)u), allow us to

remove the Hadamard product and rewrite Equation (4.14) as

F̃ ∗(u, s) = α[I−ψ∗(u, s)]−1[A(u, s)−H∗(u, s)]r (4.15)

where

ψ∗(u, s) =




ψ∗1,1(s + r(1)u) ψ∗1,2(s + r(1)u) · · · ψ∗1,K(s + r(1)u)

ψ∗2,1(s + r(2)u) ψ∗2,2(s + r(2)u) · · · ψ∗2,K(s + r(2)u)
...

...
. . .

...

ψ∗K,1(s + r(K)u) ψ∗K,2(s + r(K)u) · · · ψ∗K,K(s + r(K)u)




.

It is noted that both Equations (4.14) and (4.15) are extremely difficult to

evaluate. To demonstrate this difficulty, we examine three specific examples.
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4.3 Illustrative Examples

This section provides three specific examples of the lifetime distribution of a

single-unit system subject to a homogeneous semi-Markov environment. The first

example assumes that environment state holding times are distributed according

to an exponential distribution, the second a hyper-exponential distribution and the

third an Erlang distribution.

4.3.1 Exponential State Holding Times

The distribution function for an exponential random variable with rate param-

eter qi is given by

Hi(w) = 1− e−qiw

and the Laplace transform of Hi(w) evaluated at s + r(i)u is

H∗
i (s + r(i)u) =

1

s + r(i)u
− 1

s + r(i)u + qi

(4.16)

The probability density function for an exponential(qi) random variable is

hi(w) = qie
−qiw

so that

h∗i (s + r(i)u) =
qi

(s + r(i)u + qi)
. (4.17)
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Additionally, for this example, pi,i = 0 and pi,j = qi,j/qi for i 6= j, where qi =
∑
i 6=j

qi,j.

Substituting pi,j and Equations (4.16) and (4.17) into Equation (4.14),

I−P ◦ h∗(u, s) =




1 −q1,2

s+r(1)u+q1
· · · −q1,K

s+r(1)u+q1

−q2,1

s+r(2)u+q2
1

. . . −q2,K

s+r(2)u+q2

...
. . . . . .

...

−qK,1

s+r(K)u+qK

−qK,2

s+r(K)u+qK
· · · 1




(4.18)

and

A(u, s)−H∗(u, s) =




1
s+r(1)u+q1

0 · · · 0

0 1
s+r(2)u+q2

. . . 0
...

. . . . . .
...

0 0 · · · 1
s+r(K)u+qK




. (4.19)

If we rearrange

F̃∗(u, s) = [I−P ◦ h∗(u, s)]−1[A(u, s)−H∗(u, s)]r

to

[I−P ◦ h∗(u, s)]F̃∗(u, s) = [A(u, s)−H∗(u, s)]r, (4.20)

incorporate Equations (4.18) and (4.19), and then simplify, Equation (4.20) is equiv-

alent to the continuous-time Markov chain result shown in [51] and given as

F̃ ∗
i (u, s) =

r(i)

s + r(i)u + qi

+
n∑

j=1
j 6=i

qi,j

s + r(i)u + qi

F̃ ∗
j (u, s). (4.21)

We next consider holding times that are distributed according to a hyper-exponential

distribution.
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4.3.2 Hyper-exponential State Holding Times

By definition [50], the distribution function of a hyper-exponential random

variable with j-phases and rates, λi,j, is

Hi(w) =





1−
ni∑

j=1

αi,je
−λi,jw, w ≥ 0

0, w < 0

(4.22)

which implies that

H∗
i (s + r(i)u) =

∫ ∞

0

e−(s+r(i)u)w

[
1−

ni∑
j=1

αi,je
−λi,jw

]
dw

=
1

s + r(i)u
−

ni∑
j=1

∫ ∞

0

e−(s+r(i)u)wαi,je
−λi,jwdw

=
1

s + r(i)u
−

ni∑
j=1

αi,j

s + r(i)u + λi,j

(4.23)

where αi,j is the probability that the process enters phase j in state i of the semi-

Markov kernel. Additionally, the probability density function for a hyper-exponential

random variable is

hi(w) =





ni∑
j=1

αi,jλi,je
−λi,jw, w ≥ 0

0, w < 0

(4.24)

so that the Laplace transform evaluated at s + r(i)u is given by

h∗i (s + r(i)u) =

∫ ∞

0

e−(s+r(i)u)w

ni∑
j=1

αi,jλi,je
−λi,jwdw

=

ni∑
j=1

αi,jλi,j

s + r(i)u + λi,j

. (4.25)
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By substituting Equations (4.23) and (4.25) into Equation (4.14), F̃ ∗(u, s)

reduces to

α




1
n1∑
j=1

α1,jλ1,j
s+r(1)u+λ1,j

− p1,1 −p1,2 · · · −p1,K

−p2,1
1

n2∑
j=1

α2,jλ2,j
s+r(2)u+λ2,j

− p2,2
. . . −p2,K

...
. . . . . .

...

−pK,1 −pK,2 · · · 1
nK∑
j=1

αK,jλK,j
s+r(K)u+λK,j

− pK,K




−1

r.

This representation provides the 2-dimensional transform of the lifetime distribution

of a single-unit system subject to a semi-Markov environment with holding times that

have a hyper-exponential distribution. This result is general enough to allow each

state of the semi-Markov process to be distributed with a different hyper-exponential

distribution. However, numerical inversion of this matrix and the inversion of the

Laplace transform are nontrivial. We next show another example, incorporating

one of the simplest nonnegative distributions, is equally challenging with respect to

obtaining the lifetime distribution.

4.3.3 Erlang State Holding Times

By definition [50], the distribution function for an Erlang random variable with

ni phases and rate parameter λi is given by

Hi(w) =





1−
ni−1∑
j=0

e−λiw (λiw)j

j!
, w ≥ 0

0, w < 0

. (4.26)

Making use of the identity

L
(

wn−1eaw

(n− 1)!

)
=

1

(s− a)n
, (4.27)
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the Laplace transform of Hi(w) evaluated at s + r(i)u is

H∗
i (s + r(i)u) =

1

s + r(i)u
− 1

s + r(i)u + λi

− λi

(s + r(i)u + λi)2
− . . .

=
(λi)

ni

(s + r(i)u)(s + r(i)u + λi)ni
. (4.28)

Additionally, the probability density function for an Erlang(ni, λi) random variable

is

hi(w) =





λie
−λiw (λiw)ni−1

(ni−1)!
, w ≥ 0

0, w < 0
(4.29)

so that

h∗i (s + r(i)u) =
(λi)

ni

(s + r(i)u + λi)ni
. (4.30)

By substituting Equations (4.28) and (4.30) into Equation (4.14), F̃ ∗(u, s) reduces

to

α




s + r(1)u + (1−p1,1)λ
n1
1

a1,n1

(−p1,2)λ
n1
1

a1,n1
· · · (−p1,K)λ

n1
1

a1,n1

(−p2,1)λ
n2
2

a2,n2
s + r(2)u + (1−p2,2)λ

n2
2

a2,n2

. . . (−p2,K)λ
n2
2

a2,n2
...

. . . . . .
...

(−pK,1)λ
nK
K

aK,nK

(−pK,2)λ
nK
K

aK,nK
· · · s + r(K)u + (1−pK,K)λ

nK
K

aK,nK




−1

r
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where ai,ni
is obtained recursively by

ai,1 = 1

ai,2 = ai,1(s + r(i)u + λi) + λi

ai,3 = ai,2(s + r(i)u + λi) + λ2
i

ai,4 = ai,3(s + r(i)u + λi) + λ3
i

...
...

ai,ni
= ai,ni−1

(s + r(i)u + λi) + λni−1
i (4.31)

It should be noted that if ni = 1, for all i, then F̃∗(u, s) for an Erlang(ni, λi) distri-

bution reduces to the exponential case shown earlier.

The illustrative examples in this section have demonstrated the difficulty in

obtaining the lifetime and remaining lifetime distributions. Even if real environment

data or degradation data could be incorporated into these analytical results, taking

the two-dimensional inverse Laplace transform to obtain the lifetime distribution

would be nontrivial. These results allow greater flexibility in modelling real world

systems than the Markovian environment examined in Chapter III. The results of

Chapter V provide a way to circumvent the analytical difficulties of Chapter IV

and allow us to utilize the analytical results in Chapter III. In particular, it will be

shown that a Markovian environment can be constructed via phase-type distribution

approximations in order to facilitate implementation of Equations (3.51) and (3.67).
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V. Phase-Type Approximations

Numerical implementation of the semi-Markov environment results of Chap-

ter IV is nontrivial, even if the holding time distributions are known. To remedy

this problem, we turn our attention to phase-type (PH) distributions which can

approximate the holding time distributions in the homogeneous semi-Markovian en-

vironment. Moreover, PH-distributions retain the Markov property which allows

us to utilize the analytical lifetime distribution result of Equation (3.51) while the

system still operates in a semi-Markovian environment. Another key point is that

PH-distribution approximations are easily determined from both observable environ-

ment and observable degradation data. Hence, these approximations may be used

to bypass the analytical results contained in Chapter IV.

This chapter begins by introducing PH-distributions and their main properties

in addition to some specific types of PH-distributions. In Section 5.2, we explore PH-

distribution approximations to general distributions by highlighting a few alternative

approaches and comparing these procedures numerically. Our purpose is to choose

the “best” PH-distribution approximation in the sense of a minimal representation.

Following this numerical examination, we estimate the lifetime distribution utilizing

PH-distribution approximations of state holding time distributions using only real,

observed data.

5.1 Properties of PH-Distributions

The class of matrix-exponential (ME) distributions discussed in Section 3.3.1

contains all PH-distributions. Hence, PH-distributions also possess a rational Laplace

transform, but Neuts [65] indicates PH-distributions do not contain complex param-

eters. The majority of the properties contained in this section can be found in [65],

but are restated here for completeness.
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Define a homogeneous continuous-time Markov process having m + 1 states

with infinitesimal generator

Υ =


 T T0

0 0


 , (5.1)

and (α, αm+1) as the initial probability distribution of Υ where α is a row vector.

For the m×m matrix T, Ti,i < 0 and Ti,j ≥ 0, i 6= j. Additionally, Te+T0 = 0 and

αe+αm+1 = 1 where T0 is a column vector and e is a column vector of ones. In this

formulation, Neuts [65] assumes the first m states are transient and that the final

state, m + 1, is absorbing where absorption is certain to occur in a finite amount of

time.

Definition 4. The probability distribution, F (·), of the time until absorption into

state m + 1, with associated initial probability distribution, (α, αm+1) of Υ is

F (w) = 1−α exp(Tw)e. (5.2)

Definition 5. The probability distribution, F (w), on [0,∞) is a phase-type distri-

bution if and only if it is the time until absorption in a finite Markov process as that

shown in Equation (5.1). This PH-distribution has representation PH(α,T).

Neuts [65] indicates that the noncentral moments of a PH-distribution are the same

as those for the the ME-distribution in Equation (3.56). We will make use of one

theorem that Neuts [65] provides on PH-distributions.

Theorem 8. A finite mixture of PH-distributions is a PH-distribution.

We provide examples of a general PH-distribution and three special cases of

the general PH-distribution with both a visual [70] and mathematical representation

to help clarify the differences. Additional PH-distributions referenced in subsequent
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sections provide only the mathematical representation. A three-phase, general phase-

type distribution is shown in Figure 5.1 where pi,j is the probability that the finite

Markov process transitions from state i to state j. Additionally, upon entering

state i, an exponential amount of time, with rate λi, is spent in that state before

transitioning to the next state. The process ends upon entering the absorbing state.

Figure 5.1 displays a PH-distribution with representation PH(α,T) where α =

[p0,1 p0,2 p0,3] and

T =




−λ1 p1,2λ1 p1,3λ1

p2,1λ2 −λ2 p2,3λ2

p3,1λ3 p3,2λ3 −λ3


 . (5.3)
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p02
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p13
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p32p21

p24

p14

Figure 5.1: A three-phase general PH-distribution.

A three-phase acyclic PH-distribution is graphically shown in Figure 5.2 where

α = [p0,1 p0,2 p0,3] and

T =




−λ1 p1,2λ1 p1,3λ1

0 −λ2 p2,3λ2

0 0 −λ3


 . (5.4)

Acyclic PH-distributions are similar to general PH-distributions in that pi,j is the

probability of transitioning from state i to state j and an exponential amount of
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Figure 5.2: A three-phase acyclic PH-distribution.

time, with rate λi, is spent in state i before transitioning to the next state. However,

this PH-distribution [70] does not allow transitions from state i to state j if i > j. A

special case of an acyclic PH-distribution is the Coxian distribution. This case allows

transitions only to the adjacent, higher state or the absorbing state. A three-phase

Coxian distribution is shown in Figure 5.3 where α = [1 0 0] and

T =




−λ1 p1,2λ1 0

0 −λ2 p2,3λ2

0 0 −λ3


 . (5.5)
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Figure 5.3: A three-phase Coxian distribution.

Lastly, another type of acyclic PH-distribution, and a subset of the Coxian

distributions, is the k-phase Erlang distribution where the amount of time spent in

each state is exponentially distributed with rate λ and only the first and last state
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allow transitions to the absorbing state. A three-phase example is shown in Figure

5.4 where α = [1 0 0] and

T =




−λ p1,2λ 0

0 −λ λ

0 0 −λ


 . (5.6)
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Figure 5.4: A three-phase Erlang distribution.

The acyclic, Coxian, and k-phase Erlang distributions are discussed in greater detail

in the Section 5.2.

5.2 Approximating a General Distribution

This section provides the necessary background to choose an appropriate PH-

distribution approximation method required for the transformation of the semi-

Markovian environment into a Markovian environment in order to utilize the an-

alytical lifetime distribution. We examine the PH-distribution approximation meth-

ods, minimal PH-distribution representations, reasonings for choosing a moment-

matching method, and then compare the various moment-matching methods. This

section demonstrates that if we have holding time observations, which are obtainable

from an observable environment and observable degradation, then we can obtain

a PH-distribution approximation. Section 5.3 establishes that the individual PH-
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distribution approximations explored in this section are useful for transforming the

homogeneous semi-Markovian environment into a homogeneous Markovian environ-

ment where the analytical lifetime distribution result can be estimated, resulting in

extended applicability. This section first summarizes various methods to obtain a

PH-distribution approximation.

5.2.1 Summary of Methods

Choosing an appropriate PH-distribution approximation is not an easy task

and one must carefully examine the literature for techniques and comparisons. Os-

ogami and Harchol-Balter [70], Perros [73], Johnson [36], and Altiok [5] provide

excellent summaries of techniques to obtain PH-distribution approximations. These

techniques rely mostly upon an estimate of the squared coefficient of variation (c2) of

the distribution, defined as the variance divided by the mean squared. The range for

c2 is broken into three intevals, 0 < c2 ≤ 0.5, 0.5 < c2 ≤ 1.0, and c2 > 1.0. Once the

c2 value is estimated, various techniques, including the method of moments, max-

imum likelihood, and minimum distance, are used to estimate the PH-distribution

parameters. The method of moments is further subdivided into mainly either two-

or three-moment methods while nonlinear programming techniques are often asso-

ciated with maximum likelihood and minimum distance techniques. There is little

dispute that a k-phase Erlang [4] distribution provides the “best” approximation for

c2 < 0.5 where best is normally synonymous with minimal representation. However,

the best method and type of PH-distribution approximation for c2 > 0.5 is not as

obvious.

In order to use the minimum distance estimation, Perros [73] indicated that

sample observations from the distribution to be approximated are required to find

this PH-distribution approximation. However, for our purposes, the unit lifetime

distribution is unknown; hence, we cannot employ this technique. Additionally,

Lang and Arthur [53] provided a comparison of PH-distribution approximations us-
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ing two moment-matching and two maximum-likelihood parameter estimation tech-

niques. The overall comparison favors the moment-matching techniques. Perros [73]

indicated that the maximum likelihood and minimum distance techniques require

nonlinear optimization. Johnson [36] pointed out that many of the problems as-

sociated with maximum likelihood techniques, such as multiple global optima and

slow convergence, have been encountered in fitting PH-distributions. For these rea-

sons, we select moment matching as our technique to estimate the parameters of a

PH-distribution approximation.

With this moment matching technique comes some confusion as to the number

of moments that should be matched as well as the type of PH-distribution approx-

imation. It is generally better to match as many moments as possible since two

distributions are equivalent if all moments match. However, as the number of mo-

ments increases, the data requirements increase as do the number of phases required

for the approximation. Osogami and Harchol-Balter’s [70] provide the best overall

summary of these techniques although they indicated Marie [58] used two moments

to match a generalized Erlang for c2 < 1 and also used two moments to match a

two-phase Coxian for c2 ≥ 0.5. Perros [73] also indicated that Marie [58] advocated

a two-phase Coxian for c2 ≥ 0.5. Marie [58] provided a two moment matching algo-

rithm for a k-phase Erlang approximation if 0 < c2 ≤ 0.5 and a two-phase Coxian

approximation if 0.5 < c2 < 1.0. Altiok [5] and Telek and Heindl [86] provided

three moment matching algorithms if c2 > 1 where Altiok used a two-phase Coxian

approximation and Telek and Heindl [86] used a two-phase canonical acyclic PH-

distribution. Initially, the two-phase canonical acyclic PH-distribution transitions

to state 1 with probability p or transitions to state 2 with probability 1 − p. If the

transition to state 1 occurs, then an exponential amount of time, with rate λ1 is

spent in state one and then an exponential amount of time, with rate λ2 is spent

in state two before absorption. If the transition to state two occurs initially, then

an exponential amount of time, with rate λ2 is spent in state two before absorption.
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This two-phase canonical acyclic PH-distribution [86] has α = [p 1− p] and

T =


 −λ1 λ1

0 −λ2




where 0 ≤ p ≤ 1 and 0 < λ1 ≤ λ2. Osogami and Harchol-Balter [70] provided a three-

moment matching algorithm which covered most all nonnegative distributions using

an Erlang-Coxian PH-distribution approximation. This N -phase Erlang-Coxian PH-

distribution [70] combined a k-phase Erlang and a two-phase Coxian with α =

[p1 0 . . . 0 0 0] and

T =




−λ1 λ1 0 0 0 0

0 −λ1 λ1 0 0 0
...

. . . . . . . . . . . .
...

0 0 0 −λ1 λ1 0

0 0 0 0 −λ2 p2λ2

0 0 0 0 0 −λ3




where 0 < p1 ≤ 1 and 0 ≤ p2 ≤ 1. It should be noted that if p1 6= 1, then there

will be an initial jump in probability at 0. Before we compare these various PH-

distribution approximations, we address the concept of a minimal PH-distribution

as both Osogami and Harchol-Balter [70] and Telek and Heindl [86] address it in

their articles.

5.2.2 Minimal PH-Distribution

Our intention is to provide a technique that can be implemented quickly to

obtain the lifetime and remaining lifetime distributions for systems prognosis. Hence,

a minimal PH-distribution is desired because the smallest representation requires
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the fewest estimated parameters. However, the literature can be confusing on what

constitutes a minimal representation.

Neuts [65] defines a minimal PH-distribution as one whose matrix T is as small

as possible and indicated that the minimal representation for a PH-distribution is

a difficult, unsolved problem. However, Osogami and Harchol-Balter [70] recently

mapped general distributions to minimal PH-distributions. Both are correct in

their statements, however. Osogami and Harchol-Balter [70] clarify in their article

that their resulting distribution is minimal with respect to a specific acyclic PH-

distribution when matching three moments, and hence, is not minimal with respect

to the general PH-distribution to which Neuts [65] referred. Additionally, Telek

and Heindl [86] examined canonical forms [21] which are a subclass of acyclic PH-

distributions that also admit minimal representations. Hence, neither of these recent

techniques consider general PH-distributions; they both restrict their method to a

subset of PH-distribution (acyclic PH-distributions) and then restrict their method

even further by considering only the first three moments. Those who claim a min-

imal PH-distribution representation most often use some form of an acyclic PH-

distribution and not a general PH-distribution.

Since it is important to use a minimal or near-minimal PH-distribution in our

technique, we continued to examine minimal acyclic PH-distributions. Altiok [5]

does not address minimal representation in his article, but since Marie’s [58] two-

moment approximation for 0 < c2 ≤ 0.5 is in line with [4], it provided the minimal

representation with respect to two moments. Telek and Heindl’s [86] three-moment

approximation also provides a minimal representation and Osogami and Harchol-

Balter’s [70] three-moment approximation provides near minimal representations.

We next examine procedures to choose between these techniques.
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5.2.3 Choosing an Appropriate PH-Distribution

If a general distribution has c2 < 0.5, a k-phase Erlang distribution [58] should

be used via the first two non-central moments, µ1 and µ2, where

c2 =
µ2 − µ2

1

µ2
1

, (5.7)

and

1

k
≤ c2 <

1

k − 1
. (5.8)

Aldous and Shepp [4] showed that this value, k, is the minimal number of phases

in an acyclic PH-distribution. Marie [58] used c2 and k to find the two remaining

parameters, a and λ1, of the associated k-phase Erlang distribution where

a = 1− 2kc2 + k − 2− (k2 + 4− 4kc2)1/2

2(c2 + 1)(k − 1)
(5.9)

and

λ1 =
1 + (k − 1)a

µ1

(5.10)

resulting in the k × k matrix

T =




−λ1 aλ1 0 0 0

0 −λ1 λ1 0 0

0 0 −λ1 λ1 0
...

...
. . . . . . . . .

0 0 0 0 −λ1




. (5.11)
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For clarification, Marie [58] referred to the representation of Equation (5.11) as a

generalized k-phase Erlang whereas Neuts [65] uses the representation

TNeuts =




−λ1 λ1 0 0

0 −λ2 λ2 0
...

. . . . . . . . .

0 0 0 −λk




. (5.12)

The difference between these two representations is quite significant as Neuts’ [65]

representation cannot transition to the absorbing state until the final phase whereas

Marie’s [58] representation can transition to the absorbing state from the initial

and final phase. Additionally, the amount of time spent in each state is exponen-

tially distributed with the same rate parameter, λ1, in Marie’s [58] representation,

but Neuts’ [65] representation has a different rate for each state. This dissertation

will use Marie’s representation (Equation (5.11)) of the generalized k-phase Erlang

distribution when c2 < 0.5.

If a general distribution has 0.5 ≤ c2 ≤ 1, Telek and Heindl’s [86] approach and

Marie’s [58] approach provide a PH-distribution approximation. Marie [58] matched

two moments of the general distribution with a two-phase Coxian distribution and

Telek and Heindl [86] matched three moments of the general distribution to their

two-phase canonical acyclic PH-distribution. However, for their method to work in

this range of c2, Telek and Heindl [86] require bounds on the third moment of the

form

3µ3
1(3c

2 − 1 +
√

2(1− c2)
3
2 ) ≤ µ3 ≤ 6µ3

1c
2. (5.13)

If the third moment does not fall within these bounds, the method should not be

used. There were no bounds on Marie’s approach to estimate the three parameters
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using the first two noncentral moments, µ1 and µ2, where

λ1 =
2

µ1

, λ2 =
1

µ1c2
, a =

1

2c2
(5.14)

resulting in a two-phase Coxian distribution where

T =


 −λ1 aλ1

0 −λ2


 . (5.15)

Lastly, if a general distribution has c2 > 1, Sauer and Chandy [79] used a

two-branch hyper-exponential distribution after matching two moments. Whitt [93]

also used a two-branch hyper-exponential distribution, Altiok [5] a two-phase Coxian

distribution, and Telek and Heindl [86] a two-phase canonical acyclic PH-distribution

after matching three moments. Whitt [93] showed that for c2 > 1, it is best to

match at least three moments to reduce the maximum relative error between the

true and approximated distributions. Consequently, we do not recommend using the

method of Sauer and Chandy [79] which matches only two moments. Additionally,

Whitt’s [93] hyper-exponential distribution requires three parameter estimates as

well as the determination of the parameter, r, which is estimated from the first

three parameter estimates. Since Telek and Heindl’s method and Altiok’s method

required only three parameter estimates, we decided to examine their methods to

approximate a general distribution with c2 > 1. However, both methods place the

same restriction on the true distribution’s third moment, namely

µ3 >
3(c2 + 1)2µ3

1

2
. (5.16)

If this restriction is not satisfied, neither method is appropriate.

Osogami and Harchol-Balter’s [70] moment matching techniques are not based

on the squared coefficient of variation, but do require estimates for the first three
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moments. They fit three moments for c2 > 0 and provide three methods, a sim-

ple closed-form method, an improved closed-form method, and a numerically sta-

ble closed-form method. Let the minimal number of phases for their acyclic PH-

distribution that matches the first three moments be ϑ. Their simple close-form

method has at most, ϑ + 2 phases, their improved closed-form method has at most,

ϑ + 1 phases, and their numerically stable closed-form method has at most, ϑ + 2

phases. Their Erlang-Coxian (EC) distribution is able to match almost all non-

negative distributions. This claim is based upon the second and third normalized

moments, m2 and m3, where

m2 =
u2

u2
1

m3 =
u3

u1u2

. (5.17)

It was shown [37] that a PH-distribution and a general distribution agree on their

first three moments if and only if m3 > m2 > 1. Additionally, all nonnegative

distributions satisfy m3 ≥ m2 ≥ 1 which justifies this claim (see [40]).

We chose to numerically compare those moment-matching techniques high-

lighted in this subsection that provide a minimal, or near minimal, representation

of an acyclic PH-distribution. Specifically, we compare the PH-distribution approxi-

mation techniques of Marie [58], Altiok [5], Telek and Heindl [86], and Osogami and

Harchol-Balter [70].

5.2.4 Comparison of Techniques

We compare PH-distribution approximations of Weibull, beta, and gamma

distributions over the ranges 0 ≤ c2 ≤ 0.5, 0.5 < c2 < 1, and c2 > 1. For the range,

0 ≤ c2 ≤ 0.5, we compare Marie’s [58] and Osogami and Harchol-Balter’s [70] PH-

distribution approximations with known Weibull, beta, and gamma distributions.

For the range, 0.5 < c2 < 1, we compare Marie’s [58], Telek and Heindl’s [86],
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and Osogami and Harchol-Balter’s [70] PH-distribution approximations with known

Weibull, beta, and gamma distributions. Finally, for c2 > 1, we compare Altiok’s [5],

Telek and Heindl’s [86], and Osogami and Harchol-Balter’s [70] PH-distribution with

known Weibull, beta, and gamma distributions. Table 5.1 provides the general

distributions, their noncentral moments, and their squared coefficients of variation.

All moments were computed using the Matlabr computing environment. In Table

5.1, Weibull(a, b) represents a Weibull distribution with scale parameter a and shape

parameter b, Beta(a, b) represents a beta distribution with shape parameters a and

b, and Gamma(a, b) represents a gamma distribution with shape parameter a and

scale parameter b. We use these distributions to form our comparisons.

Table 5.1: Lower moments and c2 for various distributions.
Distribution µ1 µ2 µ3 c2

Weibull(2.5, 3.0) 0.658 0.490 0.400 0.132
Beta(2.0, 4.0) 0.333 0.143 0.071 0.286
Gamma(2.5, 2.0) 5.000 35.000 315.000 0.400
Beta(1.2, 4.0) 0.231 0.082 0.036 0.538
Gamma(1.3, 2.0) 2.600 11.960 78.936 0.769
Weibull(3.0, 1.03) 0.340 0.225 0.219 0.943
Gamma(0.7, 2.0) 1.400 4.760 25.704 1.429
Weibull(3.0, 0.6) 0.241 0.238 0.494 3.091
Beta(0.1, 2.0) 0.048 0.017 0.009 6.452

Approximation Comparisons (0 < c2 < 0.5)

This section provides detailed comparisons for Weibull(2.5, 3.0), beta(2.0, 4.0),

and gamma(2.5, 2.0) distributions shown in Table 5.1. The PH-distribution approx-

imations are those due to Marie [58] and Osogami and Harchol-Balter [70].
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For the Weibull(2.5, 3.0) distribution, Marie’s [58] PH-distribution approxima-

tion has α = [1 0 · · · 0] with T matrix




−12.07 11.98 0 0 0 0 0 0

0 −12.07 12.07 0 0 0 0 0

0 0 −12.07 12.07 0 0 0 0

0 0 0 −12.07 12.07 0 0 0

0 0 0 0 −12.07 12.07 0 0

0 0 0 0 0 −12.07 12.07 0

0 0 0 0 0 0 −12.07 12.07

0 0 0 0 0 0 0 −12.07




(5.18)

whereas Osogami and Harchol-Balter’s [70] PH-distribution approximation has a

1× 10 row vector α = [0.977 0 . . . 0] and a 10× 10 T matrix,




−14.02 14.02 0 · · · 0

0 −14.02 14.02 0 · · · 0
...

. . . . . . . . . . . .
...

0 . . . 0 −14.02 14.02 0

0 . . . 0 −25.97 21.55

0 . . . 0 −12.87




. (5.19)

Figure 5.5 shows the actual distribution comparisons while Table 5.2 compares

the number of phases and the maximum absolute deviation (MAD) in probability.

Table 5.2: Weibull(2.5, 3.0) versus PH approximations.
Method c2 Phases MAD

Marie 0.132 8 0.0354
Osogami 0.132 10 0.0399
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Figure 5.5: Phase-type approximation of a Weibull(2.5, 3) cdf.

For the beta(2.0, 4.0) distribution, Marie’s [58] PH-distribution approximation

has α = [1 0 0 0] with T matrix




−11.58 11.05 0 0

0 −11.58 11.58 0

0 0 −11.58 11.58

0 0 0 −11.58




(5.20)

whereas Osogami and Harchol-Balter’s [70] PH-distribution approximation has α =

[0.933 0 0 0 0] with T matrix




−14 14 0 0 0

0 −14 14 0 0

0 0 −14 14 0

0 0 0 −14 14

0 0 0 0 −14




. (5.21)
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Figure 5.6 shows the actual distribution comparisons while Table 5.3 compares the

number of phases and the maximum absolute deviation (MAD) in probability.
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Figure 5.6: Phase-type approximation of a Beta(2.0, 4.0) cdf.

Table 5.3: Beta(2.0, 4.0) versus PH approximations.
Method c2 Phases MAD

Marie 0.286 4 0.0324
Osogami 0.286 5 0.0667

For the gamma(2.5, 2.0) distribution, Marie’s [58] PH-distribution approxima-

tion has α = [1 0 0] with T matrix




−0.562 0.508 0

0 −0.562 0.562

0 0 −0.562


 (5.22)
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whereas Osogami and Harchol-Balter’s [70] PH-distribution approximation has α =

[1 0 0] with T matrix




−0.500 0.500 0

0 −0.877 0.744

0 0 −0.456


 . (5.23)

Figure 5.7 shows the actual distribution comparisons while Table 5.4 compares the

number of phases and the maximum absolute deviation (MAD) in probability.
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Figure 5.7: Phase-type approximation of a Gamma(2.5, 2.0) cdf.

Table 5.4: Gamma(2.5, 2.0) versus PH approximations.
Method c2 Phases MAD

Marie 0.400 3 0.0214
Osogami 0.400 3 0.0020

We next examine the comparisons for 0.5 < c2 < 1.0.
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Approximation Comparisons (0.5 < c2 < 1.0)

This section provides detailed comparisons for beta(1.2, 4.0), gamma(1.3, 2.0),

and Weibull(3.0, 1.03) distributions shown in Table 5.1. The PH-distribution ap-

proximations are provided in Marie [58], Telek and Heindl [86], and Osogami and

Harchol-Balter [70].

For the beta(1.2, 4.0) distribution, Marie’s [58] PH-distribution approximation

has α = [1 0] with T matrix


 −8.67 8.06

0 −8.06


 . (5.24)

Telek and Heindl’s [86] PH-distribution approximation is not applicable because

their third moment bounds were violated. Osogami and Harchol-Balter’s [70] PH-

distribution approximation has α = [0.87 0 0] with T matrix




−11.16 11.16 0

0 −12.32 12.17

0 0 −10.42


 . (5.25)

Figure 5.8 shows the actual distribution comparisons while Table 5.5 compares the

number of phases and the maximum absolute deviation (MAD) in probability.

Table 5.5: Beta(1.2, 4.0) versus PH approximations.
Method c2 Phases MAD

Marie 0.538 2 0.0399
Telek N/A N/A
Osogami 0.538 3 0.1299
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Figure 5.8: Phase-type approximation of a Beta(1.2, 4.0) cdf.

For the gamma(1.3, 2.0) distribution, Marie’s [58] PH-distribution approxima-

tion has α = [1 0] with T matrix


 −0.77 0.5

0 −0.5


 (5.26)

and Telek and Heindl’s [86] PH-distribution approximation has α = [0.78 0.22]

with T matrix


 −0.47 0.47

0 −1.07


 , (5.27)

whereas Osogami and Harchol-Balter’s [70] PH-distribution approximation has α =

[1 0] with T matrix


 −1.07 0.84

0 −0.47


 . (5.28)
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Figure 5.9 shows the actual distribution comparisons while Table 5.6 compares the

number of phases and the maximum absolute deviation (MAD) in probability.
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Figure 5.9: Phase-type approximation of a Gamma(1.3, 2.0) cdf.

Table 5.6: Gamma(1.3, 2.0) versus PH approximations.
Method c2 Phases MAD

Marie 0.769 2 0.0150
Telek 0.769 2 0.0086
Osogami 0.769 2 0.0086

For the Weibull(3.0, 1.03) distribution, Marie’s [58] PH-distribution approxi-

mation has α = [1 0] with T matrix


 −5.88 3.12

0 −3.12


 (5.29)
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and Telek and Heindl’s [86] PH-distribution approximation has α = [0.524 0.476]

with T matrix


 −3.12 3.12

0 −5.81


 , (5.30)

whereas Osogami and Harchol-Balter’s [70] PH-distribution approximation has α =

[0.987 0] with T matrix


 −8.51 5.99

0 −3.10


 . (5.31)

Figure 5.10 shows the actual distribution comparisons while Table 5.7 compares the

number of phases and the maximum absolute deviation (MAD) in probability.
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Figure 5.10: Phase-type approximation of a Weibull(3.0, 1.03) cdf.

We next examine the comparisons for c2 > 1.
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Table 5.7: Weibull(3.0, 1.03) versus PH approximations.
Method c2 Phases MAD

Marie 0.943 2 0.0022
Telek 0.943 2 0.0022
Osogami 0.943 2 0.0133

Approximation Comparisons (c2 > 1.0)

This section provides detailed comparisons for gamma(0.7, 2.0), Weibull(3.0,

0.6), and beta(0.1, 2.0) distributions shown in Table 5.1. The PH-distribution ap-

proximations provided in Altiok [5], Telek and Heindl [86], and Osogami and Harchol-

Balter [70].

For the gamma(0.7, 2.0) distribution, Altiok’s [5] PH-distribution approxima-

tion has α = [1 0] with T matrix


 −2.31 1.22

0 −0.55


 (5.32)

and Telek and Heindl’s [86] PH-distribution approximation has α = [0.527 0.473]

with T matrix


 −0.55 0.55

0 −2.31


 , (5.33)

whereas Osogami and Harchol-Balter’s [70] PH-distribution approximation has α =

[1 0] with T matrix


 −2.31 1.22

0 −0.55


 . (5.34)

Figure 5.11 shows the actual distribution comparisons while Table 5.8 compares the

number of phases and the maximum absolute deviation (MAD) in probability.
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Figure 5.11: Phase-type approximation of a Gamma(0.7, 2.0) cdf.

Table 5.8: Gamma(0.7, 2.0) versus PH approximations.
Method c2 Phases MAD

Altiok 1.429 2 0.0248
Telek 1.429 2 0.0248
Osogami 1.429 2 0.0248

For the Weibull(3.0, 0.6) distribution, Altiok’s [5] PH-distribution approxima-

tion has α = [1 0] with T matrix


 −8.08 1.25

0 −1.32


 (5.35)

and Telek and Heindl’s [86] PH-distribution approximation has α = [0.155 0.845]

with T matrix


 −1.32 1.32

0 −8.08


 , (5.36)
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whereas Osogami and Harchol-Balter’s [70] PH-distribution approximation has α =

[1 0] with T matrix


 −8.08 1.25

0 −1.32


 . (5.37)

Figure 5.12 shows the actual distribution comparisons while Table 5.9 compares the

number of phases and the maximum absolute deviation (MAD) in probability.
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Figure 5.12: Phase-type approximation of a Weibull(3.0, 0.6) cdf.

Table 5.9: Weibull(3.0, 0.6) versus PH approximations.
Method c2 Phases MAD

Altiok 3.091 2 0.1090
Telek 3.091 2 0.1090
Osogami 3.091 2 0.1090

For the Beta(0.1, 2.0) distribution, Altiok’s [5] and Telek and Heindl’s [86]

PH-distribution approximations do not exist because their 3rd moment bounds were

violated, whereas Osogami and Harchol-Balter’s [70] PH-distribution approximation
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has α = [0.241 0] with T matrix


 −14.24 10.90

0 −6.01


 . (5.38)

Figure 5.13 shows the actual distribution comparisons while Table 5.10 compares the

number of phases and the maximum absolute deviation (MAD) in probability.
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Figure 5.13: Phase-type approximation of a Beta(0.1, 2.0) cdf.

Table 5.10: Beta(0.1, 2.0) versus PH approximations.
Method c2 Phases MAD

Altiok DNE DNE
Telek DNE DNE
Osogami 6.452 2 0.7589

Table 5.11 contains a summary of all comparisons where it is important to

note that Altiok’s [5] and Telek and Heindl’s [86] approximation techniques did not

provide an approximation in a few cases because the third moment restrictions were

violated. Additionally, the maximum absolute deviation in probability is not neces-
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sarily a good measure because those approximation methods marked by an asterisk,

specifically Osogami and Harchol-Balter’s [70] PH-distribution approximations, have

a probability mass at time 0. Thus, when comparing individual distributions, there

does not appear to be a PH-distribution approximation technique that clearly pro-

vides a better approximation over the other techniques when comparing individual

distributions. However, the method we present in the next section combines PH-

distribution approximations to obtain the lifetime distribution

Table 5.11: Summary of PH-distribution comparisons.
Distribution Approximation Method c2 Phases MAD

Marie 8 0.0354
Weibull(2.5, 3.0) Osogami∗ 0.132 10 0.0399

Marie 4 0.0324
Beta(2.0, 4.0) Osogami∗ 0.286 5 0.0667

Marie 3 0.0214
Gamma(2.5, 2.0) Osogami 0.400 3 0.0020

Marie 2 0.0399
Telek N/A N/A

Beta(1.2, 4.0) Osogami∗ 0.538 3 0.1299
Marie 2 0.0150
Telek 2 0.0086

Gamma(1.3, 2.0) Osogami 0.769 2 0.0086
Marie 2 0.0022
Telek 2 0.0022

Weibull(3.0, 1.03) Osogami∗ 0.943 2 0.0133
Altiok 2 0.0248
Telek 2 0.0248

Gamma(0.7, 2.0) Osogami 1.429 2 0.0248
Altiok 2 0.1090
Telek 2 0.1090

Weibull(3.0, 0.6) Osogami 3.091 2 0.1090
Altiok N/A N/A
Telek N/A N/A

Beta(0.1, 2) Osogami∗ 6.452 2 0.7589
∗αm+1 6= 0

For the purpose of ultimately estimating lifetime distributions, we require that

each of the holding time distributions in the semi-Markov process be approximated
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with a PH-distribution. This subsection has demonstrated that we can approximate

various nonnegative distributions with PH-distributions. While this procedure does

increase the size of the original sample space, a newly formed infinitesimal genera-

tor matrix, which incorporates these PH-distribution approximations, provides the

means to employ the results in Section 3.5 to obtain the lifetime and remaining

lifetime distributions.

5.3 Conversion to a Markov Environment

This section details the procedures used to transform a time-homogeneous

semi-Markov process (SMP) with generally distributed, nonnegative state holding

times, into a time-homogeneous continuous time Markov chain (CTMC) for the es-

timation of the lifetime distribution. We first summarize the method and then make

two lifetime distribution comparisons by using a newly formed CTMC in Equation

(3.51) with known α,RD, and K. These lifetime comparisons provide sufficient ev-

idence to select Osogami and Harchol-Balter’s [70] PH-distribution approximation

technique as the preferred method for this conversion. We then conclude our analysis

by showing that we may use this approach, via the estimation techniques provided

in Section 3.5, to compute the lifetime distribution using only degradation data.

5.3.1 Transformation Process

Phase-type distribution approximations to general distributions arise regularly

in queueing analyses [58,65,93]. However, methods to transform a SMP into a CTMC

using PH-distribution approximations to the general holding time distributions in a

SMP are less well known. The holding time distributions in a SMP are the diagonal

elements of the semi-Markov kernel, as defined by Equation (4.4), and these diag-

onal elements are required for a PH-distribution approximation. The off-diagonal

elements in the semi-Markov kernel provide the transition probabilities from the cur-

rent state to the next state. Thus, if we are transforming a SMP into a CTMC, we
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require a PH-distribution approximation for the sojourn time distribution of each

state as well as the conditional, one-step transition probabilities. Our technique, as

graphically depicted in Figure 5.14, incorporates a PH-distribution approximation

to each holding time distribution in the semi-Markov process as well as either Equa-

tions (3.72 - 3.73) or Equations (3.75 - 3.76). These equations provide the method to

transition from the absorbing phase of the current PH-distribution approximation to

the initial phase of the next PH-distribution approximation. Each q̂i,j is multiplied

by some large value, M , in order to make this transition near instantaneous.
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Figure 5.14: Graphical depiction of modified state transition diagram (K = 3)

Mathematically, a three-state SMP with general holding time distributions,

H1(w), H2(w), and H3(w), and PH-distribution approximations

Ĥ1(w) = 1−α1e
T1we1

Ĥ2(w) = 1−α2e
T2we2

Ĥ3(w) = 1−α3e
T3we3
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with associated T0
1,T

0
2, and T0

3 would result in the expanded infinitesimal generator

matrix,

Q̂s =




T1 T0
1 0 0 0 0

0 Mq̂1,1 M1,2 0 M1,3 0

0 0 T2 T0
2 0 0

M2,1 0 0 Mq̂2,2 M2,3 0

0 0 0 0 T3 T0
3

M3,1 0 M3,2 0 0 Mq̂3,3




(5.39)

where Ti is a mi ×mi matrix, T0
i is a mi × 1 column vector, and Mi,j is a 1 ×mj

row vector where Mi,j = [Mq̂i,j 0 . . . 0]. Through this representation, we can

immediately see a major disadvantage of this approach. The three-state SMP will

expand to at least a nine-state CTMC because each Ĥi(w) has, at a minimum, a

two-phase PH-distribution approximation and an absorption state. Of course, this

assumes that the general distribution does not have c2 = 1 which indicates Hi(w) is

an exponential distribution requiring only one phase.

Using this information, we next form lifetime distributions by simulating an

SMP environment and then comparing lifetime distributions with those formed via

Equation (3.51) where we assume α,RD, and K are known and that Q = Q̂s as

shown in Equation (5.39). Our purpose is to demonstrate that we can adequately

transform the SMP into a CTMC while at the same time comparing Marie’s [58],

Altiok’s [5], Telek and Heindl’s [86] and Osogami and Harchol-Balter’s [70] PH-

distribution approximation techniques.

5.3.2 Lifetime Distribution Comparisons

In this section, we compare two sets of lifetime distributions. The first set

compares the lifetime distribution from a simulated three-state SMP environment, a

twelve-state CTMC environment formed from Telek and Heindl’s [86], Marie’s [58],
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and Altiok’s [5] PH-distribution approximations, and a thirteen-state CTMC envi-

ronment formed from Osogami and Harchol-Balter’s [70] PH-distribution approxima-

tions. The second set compares the lifetime distribution from a simulated three-state

SMP environment with a sixteen-state CTMC environment formed from Osogami

and Harchol-Balter’s [70] PH-distribution approximations.

The first set of comparisons has an SMP environment where the holding times

are distributed according to the following distributions,

H1(w) ∼ Gamma(1.3, 2.0)

H2(w) ∼ Beta(2.0, 4.0)

H3(w) ∼ Weibull(3.0, 0.6).

with degradation rates,

RD =




0.4 0 0

0 1.5 0

0 0 4.0




and transition probability matrix,

P =




0 0.6 0.4

0.1 0 0.9

0.25 0.75 0


 .

The twelve-state CTMC environment, with infinitesimal generator, Q̂s, uses

the lowest MAD in probability of the non-Osogami PH-distribution approximations

for these general distributions. We used Telek and Heindl’s [86] PH-distribution

approximation for Gamma(1.3, 2.0), Marie’s [58] PH-distribution approximation for

Beta(2.0, 4.0) and Altiok’s [5] PH-distribution approximation for Weibull(3.0, 0.6)
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where T1 is given by Equation (5.27), T2 is given by Equation (5.20) and T3 is given

by Equation (5.35). Additionally, for the transition rates, qi,j,

Q =




−1.0 0.6 0.4

0.1 −1.0 0.9

0.25 0.75 −1




and M = 100000. Since Telek and Heindl’s [86] PH-distribution approximation has

α1 6= 1, we must add an additional state to Q̂s. We modify T1, using M = 100000 to

make the transition near-instantaneous, to include this initial probability distribution

where

T1 =




−100000 78000 22000

0 −0.47 0.47

0 0 −1.07


 , (5.40)

in place of

T1 =


 −0.47 0.47

0 −1.07


 . (5.41)

Additionally, we must adjust the degradation rate matrix, RD, for the newly formed

CTMC. For this twelve-state CTMC,

RD(i, j) =





0.4, i = j, 1 ≤ i ≤ 4

1.5, i = j, 5 ≤ i ≤ 9

4.0, i = j, 10 ≤ i ≤ 12

0, elsewhere

. (5.42)

The third lifetime distribution in this first set of comparisons uses a thirteen-

state CTMC environment using Osogami and Harchol-Balter’s [70] PH-distribution
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approximations for gamma(1.3, 2.0), beta(2.0, 4.0), and Weibull(3.0, 0.6) distribu-

tions where T1 is given by Equation (5.28), T2 is given by Equation (5.21), and T3

is given by Equation (5.37). The generator matrix, Q, and M -value are the same

as the twelve-state CTMC. For the matrix, T2, we append another row because α

has α1 6= 1. In this case, both T2 and T0
2 require modification using M = 100000

resulting in

T2 =




−100000 93300 0 0 0 0

0 −14 14 0 0 0

0 0 −14 14 0 0

0 0 0 −14 14 0

0 0 0 0 −14 14

0 0 0 0 0 −14




(5.43)

and

T0
2 =




6700

0

0

0

0

14




. (5.44)

For this thirteen-state CTMC,

RD(i, j) =





0.4, i = j, 1 ≤ i ≤ 3

1.5, i = j, 4 ≤ i ≤ 10

4.0, i = j, 11 ≤ i ≤ 13

0, elsewhere

. (5.45)
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The expanded generator matrix, Q̂s, associated initial probability distribution, α,

and R̂D are used to obtain the lifetime distribution via

F̃ (u,w) = 1−α exp((Q̂s − uR̂D)w)e, Re(u) > 0,

and the remaining lifetime distribution via

R̂(x,w|ξ0) =
1− F̂ (x, w + ξ0)

1− F̂ (x, ξ0)
.

Comparisons between the three lifetime and remaining lifetime distributions at fail-

ure threshold level x = 50 are shown in Figure 5.15 and Table 5.12 where ξ0 = 42.194.
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Figure 5.15: CDF comparisons for 3-state SMP, 12-state CTMC, and 13-state CTMC.

Table 5.12: Cramér-von Mises test statistics: PH-distribution approximation tech-
niques. (κ∗=0.461, α = 0.05).

Technique Number of States F̂ (x,w) 1− R̂(x,w|ξ0)

Combination 12 9.412E-05 5.632E-04
Osogami and Harchol-Balter 13 2.605E-05 1.157E-04
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In this example, Osogami and Harchol-Balter [70] provide a better approxima-

tion than Telek and Heindl’s [86], Marie’s [58], and Altiok’s [5] combined technique

for the lifetime distribution and the remaining lifetime distribution.

We provide one other set of comparisons based on a three-state SMP where

H1(w) ∼ Beta(2.0, 4.0)

H2(w) ∼ Beta(0.1, 2.0)

H3(w) ∼ Beta(1.2, 4.0)

with degradation rates,

RD =




0.1 0 0

0 1.0 0

0 0 2.0




and transition probability matrix,

P =




0 0.7 0.3

0.6 0 0.4

0.2 0.8 0


 .

The PH-distribution approximations have T1 as defined by Equation (5.21),

T2 as defined by Equation (5.38), and T3 as defined by Equation (5.25), but each Ti

and T0
i were modified similarly to that shown in Equations (5.43) and (5.44) because

the initial probability distribution is not [1 0 . . . 0]. In this comparison,

Q =




−1.0 0.7 0.3

0.6 −1.0 0.4

0.2 0.8 −1



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and M = 100000 resulting in a 16×16 generator matrix for this CTMC environment.

The lifetime distributions are shown in Figure 5.16 where the Cramér-von Mises test

statistic for F̂ (x,w) is 2.455E-05 and for 1− R̂(x,w|ξ0), at ξ0 = 12.464, is 5.358E-05.

No combination of the other approximation techniques would produce a lifetime or

remaining lifetime distribution.
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Figure 5.16: CDF comparisons for 3-state SMP and 16-state CTMC environments.

These two sets of comparisons have addressed two important issues. The first

is whether the lifetime distribution resulting from the transformation from an SMP

environment to a CTMC environment retains enough accuracy to be practically

valuable. The maximum absolute deviation for both sets of comparisons were less

than 0.003 in probability which indicates the estimate is accurate in these cases. The

second issue is the selection of the best PH-distribution approximation technique

from the combination of Marie [58], Altiok [5], Telek and Heindl [86], and Osogami

and Harchol-Balter [70]. While Osogami and Harchol-Balter’s technique might add

an extra state for each PH-distribution approximation, their approximation was

closer in the first set of comparisons and the other PH-distribution approximation

techniques could not be utilized to form a lifetime distribution in the second set of
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comparisons. Thus, it is concluded that Osogami and Harchol-Balter’s technique

best suits our purposes.

While it is possible to adequately approximate the lifetime distribution by

transforming the SMP environment into a CTMC environment, it is not clear that we

can effectively estimate the initial probability distribution, the degradation rates, the

transition probabilities, the number of environment states, and the PH-distribution

approximations given only a sequence of degradation observations. The next subsec-

tion demonstrates that we can, in fact, perform these operations using only degra-

dation data.

5.3.3 Observable Degradation Comparisons

This section demonstrates that the numerical methods developed in Chapter

III to find the lifetime distribution for a single-unit system subject to a CTMC

environment, coupled with the methods presented in this chapter to transform a

SMP into a CTMC, present a viable method to obtain the lifetime distribution (and

hence the remaining lifetime distribution) for use in systems prognosis. While we

rely on Equation (3.51), once the degradation rates are estimated, R̂D is modified

in a manner similar to that shown in Equations (5.42) and (5.45). Additionally, we

let Q = Q̂s. To complete the numerical implementation procedures, Osogami and

Harchol-Balter [70] PH-distribution approximation required the first three noncentral

moments, µ1, µ2, and µ3, and those are estimated by [91]

µ̂1 =
1

ns

ns∑
i=1

Yi, µ̂2 =
1

ns

ns∑
i=1

Y 2
i , µ̂3 =

1

ns

ns∑
i=1

Y 3
i (5.46)

where ns is the total number of holding time observations and Yi is the ith holding

time observation.
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We generated 1000 sample degradation paths using a five-state SMP with

respective state sojourn distributions

H1(w) ∼ Gamma(0.7, 2.0)

H2(w) ∼ Weibull(3.0, 1.03)

H3(w) ∼ Gamma(2.5, 2.0)

H4(w) ∼ Weibull(2.5, 3.0)

H5(w) ∼ Beta(0.1, 2.0)

and associated state degradation rates,

RD =




0.2 0 0 0 0

0 0.75 0 0 0

0 0 1.1 0 0

0 0 0 1.85 0

0 0 0 0 2.4




with transition probability matrix,

P =




0 0.5 0.2 0.2 0.1

0.4 0 0.2 0.2 0.2

0.2 0.3 0 0.1 0.4

0.1 0.1 0.2 0 0.6

0.3 0.2 0.2 0.3 0




.

For each of the 1000 sample degradation paths, we implemented the procedure

of Section 3.5.1, where at t0 = 0, X̂(t0) = 0. We observed the degradation paths until

t200 = 300 and then approximated these sample paths by creating piecewise-linear

approximations. From these new sample paths, we collected all of the approximated

rates and performed K-means cluster analysis for K = 2, 3, . . . , 15. At this point, we
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calculated the FK-values shown in Table 5.13 which indicates the first local maximum

at K̂ = 3. For completeness, we also examine K̂ = 2 and K̂ = 5.

Table 5.13: Values of FK(×106)
K FK

2 0.0712
3 0.7848
4 0.6457
5 1.1511
6 1.1467
7 1.7381
8 1.6264
9 1.5232
10 2.1041
11 2.7835
12 2.9877
13 2.9603
14 1.3027
15 3.5333

The estimated degradation rates for K̂ = 2, 3, and 5 are given in Table 5.14.

We then use these new degradation rates to form new sample paths and find q̂i,j.

Table 5.14: Estimated degradation rates.

r̂(i) K̂ = 2 K̂ = 3 K̂ = 5

1 1.1317 1.5092 0.2582
2 0.3581 0.3404 1.7089
3 — 1.0717 1.3616
4 — — 1.0895
5 — — 0.7030

For K̂ = 2,

Q̂ =


 −0.0875 0.0875

0.2939 −0.2939


 , (5.47)
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for K̂ = 3,

Q̂ =




−0.5459 0.1044 0.4415

0.0567 −0.2985 0.2418

0.0611 0.0787 −0.1398


 , (5.48)

and for K̂ = 5,

Q̂ =




−0.3192 0.0163 0.0432 0.1381 0.1216

0.0725 −0.5973 0.1162 0.3285 0.0801

0.0665 0.0451 −0.5802 0.4016 0.0670

0.0384 0.0183 0.0526 −0.1661 0.0568

0.1820 0.0309 0.0637 0.2970 −0.5736




. (5.49)

Since H(k)(i) in Equation (3.76) is the sum of the individual holding times, we can

easily collect these holding times and use Equation (5.46) to estimate the moments

for Osogami and Harchol-Balter’s [70] PH-distribution approximation technique. For

K̂ = 2, Q̂s is an 8× 8 matrix where

T1 =




−0.1051 0.1051 0

0 −1.0774 0.1155

0 0 −0.1080




and

T2 =




−0.5320 0.5320 0

0 −0.6775 0.0043

0 0 −0.1362


 .

151



For K̂ = 3, Q̂s is a 17× 17 matrix where

T1 =




−3.33 3.33 0 0 0 0 0 0

0 −3.33 3.33 0 0 0 0 0

0 0 −3.33 3.33 0 0 0 0

0 0 0 −3.33 3.33 0 0 0

0 0 0 0 −3.33 3.33 0 0

0 0 0 0 0 −3.33 3.33 0

0 0 0 0 0 0 −33.655 0.00016

0 0 0 0 0 0 0 −0.0345




,

T2 =




−0.5422 0.5422 0

0 −0.6838 0.0039

0 0 −0.1346


 ,

and

T3 =




−0.1899 0.1899 0

0 −0.9586 0.1427

0 0 −0.1765


 .

Finally, for K̂ = 5, Q̂s is a 42× 42 matrix where

T1 =




−0.6047 0.6047 0

0 −0.6823 0.00085

0 0 −0.0916


 ,
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T2(i, j) =





−5.9871, i = j, 1 ≤ i ≤ 10

5.9871, j = i + 1, 1 ≤ i ≤ 10

−256.35, i = j = 11

1.9998× 10−6, i = 11, j = 12

−0.00495, i = j = 12

0, elsewhere

,

T3(i, j) =





−4.9387, i = j, 1 ≤ i ≤ 8

4.9387, j = i + 1, 1 ≤ i ≤ 8

−9.6513, i = j = 9

2.6148× 10−4, i = 9, j = 10

−0.07246, i = j = 10

0, elsewhere

,

T4 =




−0.2482 0.2482 0

0 −0.7784 0.1131

0 0 −0.2057


 ,

and

T5(i, j) =





−4.3293, i = j, 1 ≤ i ≤ 7

4.3293, j = i + 1, 1 ≤ i ≤ 7

−7.9305, i = j = 8

2.6284× 10−4, i = 8, j = 9

−0.0705, i = j = 9

0, elsewhere

.
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Lastly, for K̂ = 2, α̂ is a 1× 8 row vector where α̂1 = 0.335, α̂5 = 0.665 and α̂i = 0,

elsewhere. For K̂ = 3, α̂ is a 1 × 17 row vector where α̂1 = 0.075, α̂10 = 0.649,

α̂14 = 0.276,and α̂i = 0, elsewhere. For K̂ = 5, α̂ is a 1 × 42 row vector where

α̂1 = 0.531, α̂5 = 0.016, α̂18 = 0.078, α̂29 = 0.171, α̂33 = 0.204, and α̂i = 0,

elsewhere. Using the estimates for α,RD, and Q in Equation (3.51) for K̂ = 2, 3,

and 5, we obtain the lifetime distributions shown in Figure 5.17 which are compared

to the simulated SMP at failure threshold level x = 400. The numerical comparisons

are provided in Table 5.15, ξ0 = 420.118, where we fail to reject the null hypothesis

that the simulated distribution and the analytical distributions are equivalent at

α = 0.05. Thus, we conclude that it is possible to obtain the lifetime and remaining

lifetime distribution of a single-unit system subject to a semi-Markov environment.
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Figure 5.17: Lifetime comparisons of a system subject to a SMP environment.

This chapter demonstrates a methodology that removed the requirement to

utilize the difficult to implement, analytical lifetime distributions derived in Chapter

IV. By converting the semi-Markovian environment into a Markovian environment,

we utilize the analytical lifetime distribution derived in Chapter III and show that
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Table 5.15: Cramér-von Mises statistic for SMP conversion (κ∗=0.461, α = 0.05).
K̂ Number of States F̂ (x,w) 1− R̂(x,w|ξ0)

2 8 3.172E-02 5.331E-02
3 17 1.314E-02 7.284E-02
5 42 7.649E-04 5.061E-03

both observable environment and observable degradation data provide the necessary

holding time observations to approximate the PH-distributions required to make

this conversion. This capability includes and extends the applicability of the results

contained in Chapter III. If sensors, attached to a component, provide information

on the observable environment or on the observable degradation, then assuming the

environment can be modelled as a homogeneous semi-Markovian process, we can

obtain the remaining lifetime distribution and the failure time probabilities required

to make probabilistic decisions that impact autonomic logistics. In the next chapter,

we conclude by providing our contributions, recommendations, and future research.
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VI. Conclusions, Recommendations, and

Future Work

This chapter provides a summary of the methodological and practical con-

tributions of this dissertation in addition to recommendations for the actual imple-

mentation of these procedures. Lastly, we provide areas of future research interest.

6.1 Dissertation Contributions

The first methodological contribution was the mathematical characterization

of a single-unit system’s randomly evolving environment. We characterized this en-

vironment as a nonhomogeneous, continuous-time Markov chain (CTMC), a homo-

geneous CTMC, and a homogeneous, continuous-time semi-Markov process (SMP).

For the nonhomogeneous CTMC environment, we obtained an analytical result for

the lifetime distribution of the system and demonstrated that we can obtain the

moments of this distribution in a simple case. For the homogeneous CTMC envi-

ronment, we obtained an analytical result for the lifetime distribution of the system

and demonstrated that we can obtain the moments of this distribution in all cases.

For the homogeneous SMP environment, we obtained an analytical result for the

lifetime distribution of the system.

The practical contributions involve the numerical implementation of the ana-

lytical results. Assuming a homogeneous CTMC environment process, we provide

statistical estimation techniques for an observable environment and observable degra-

dation. This numerical implementation imparts the remaining lifetime distribution

in both scenarios and illustrates that, if a sensor provides environment or degradation

data, then systems prognosis is feasible. For the case of a homogeneous SMP envi-

ronment, we provided approximation procedures via phase-type (PH) distributions.

This numerical implementation also provides the remaining lifetime distribution and
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greatly expands its applicability to an observable environment and observable degra-

dation with non-exponential environment state holding times. We next offer some

recommendations on the implementation of these procedures.

6.2 Recommendations

The practical contributions specifically mentioned two scenarios: observable

environment and observable degradation. If sensors provide data on the environment,

then we recommend estimating the squared coefficient of variation for the holding

times in each state. If this value is close to one, then the procedures developed

for the homogeneous CTMC environment developed in Sections 3.2.2 and 3.5 are

applicable; otherwise, procedures developed for the homogeneous SMP environment

detailed in Section 5.3 are required. If sensors provide degradation data, the number

of states and degradation rates must be estimated first. With this information,

the squared coefficient of variation for the holding times should be determined and

the recommendation for the observable environment followed. However, if there are

concerns that the time-homogeneity assumption is violated, these techniques should

not be implemented.

Converting the SMP to a CTMC is a challenging process. While we recommend

using Osogami and Harchol-Balter’s [70] technique in most cases, if the squared

coefficient for each distribution is less than 0.5, then we recommend using Marie’s [58]

technique. PH-distributions are extremely powerful, but methods to construct these

approximations vary significantly. Thus, practitioners should take care to implement

the appropriate approximation for a given system.

6.3 Future Research

Over the course of this research, potentially fruitful areas for future research

were discovered. We present those that hold the most promise.
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In order to solve the partial differential equation leading to the lifetime dis-

tribution, we were required to take the Laplace transform of the PDE; However,

weak analytical solutions may exist. Additionally, it may be possible to obtain an

approximate numerical solution and bypass the Laplace transform.

While we were unable to numerically implement the non-homogeneous environ-

ment, it is possible that an age- or degradation-state dependent model may be more

appropriate and provide the means to determine the lifetime distribution numeri-

cally. As an example, consider the analysis of the Virkler [90] data. The analysis

may have failed due to the fact that we applied a time-stationary approach to a

possibly non-stationary data set.

A better method to estimate the number of environment states should be

developed. In a real-time environment, our procedure may become slow, resulting

in delayed results. It was noticed that a two- or three-state CTMC often provided

better results for the lifetime distribution than the estimate K̂. While it is possible

that this observation holds only in the cases we examined, additional study of this

phenomenon could be very fruitful as the benefits of a smaller state size are enormous.

This dissertation examined scenarios having a small number of states. If the

state size increased dramatically, we may be unable to estimate the lifetime distri-

bution in a timely manner. Numerical experiments indicated that as the number

of states increased, the time required to perform the K-means clustering technique

also increased. Additionally, numerical inversion of Laplace transforms becomes

more costly (and error prone) as the state size increases. Methods to account for a

large number of states should be explored.

Lastly, no exploration of error propagation was conducted. Error is com-

pounded possibly in the estimation of the parameters for the generator matrix, the

degradation rates and the number of environment states. As the number of envi-

ronment states increases, so does the number of parameters to be estimated and the

error associated with the model. Better estimation techniques and an associated
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minimal number of environment states would help alleviate this problem. Once the

estimates are incorporated in the lifetime distribution, an inverse transform must be

performed. This inverse transform result introduces additional error because it is

an approximation of the actual lifetime distribution. Obtaining the exact lifetime

distribution analytically or possibly an approximate numerical solution to the PDE

in lieu of numerical Laplace transform inversion would also help.

The United States Air Force is developing its next generation aircraft and is

seeking to reduce the risk of catastrophic failures, maintenance activities, and the

logistics footprint while improving its sortie generation rate through a process called

autonomic logistics. Vital to the successful implementation of this process is remain-

ing lifetime prognosis of critical aircraft components. Complicating this problem is

the absence of failure time information; however, sensors located on the aircraft are

providing degradation measures. This research has provided a method to address

at least a portion of this problem by uniting analytical lifetime distribution mod-

els with environment and/or degradation measures to obtain the remaining lifetime

distribution.
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