
A Review of Computer-Based Human
Behavior Representations and Their

Relation to Military Simulations

John E. Morrison

I N S T I T U T E F O R D E F E N S E A N A L Y S E S

IDA Paper P-3845

Log: H 04-000049

August 2003

Approved for public release;
distribution unlimited.

This work was conducted under contracts DASW01 98 C 0067/
DASW01 02 0012, Task AK-2-2190, for the Defense Modeling and
Simulation Office. The publication of this IDA document does not
indicate endorsement by the Department of Defense, nor should the
contents be construed as reflecting the official position of that Agency.

© 2003, 2004 Institute for Defense Analyses, 4850 Mark Center Drive,
 Alexandria, Virginia 22311-1882 • (703) 845-2000.

This material may be reproduced by or for the U.S. Government pursuant
to the copyright license under the clause at DFARS 252.227-7013
(NOV 95).

I N S T I T U T E F O R D E F E N S E A N A L Y S E S

IDA Paper P-3845

A Review of Computer-Based Human
Behavior Representations and Their

Relation to Military Simulations

John E. Morrison

iii

PREFACE

This paper was prepared as part of an IDA task entitled “DMSO Mission Review”

sponsored by the Defense Modeling and Simulation Office (DMSO). The IDA task

leader was Dr. Dexter Fletcher. Technical cognizance of the work was assigned to

CAPT Michael Lillienthal, Director of DMSO.

v

CONTENTS

EXECUTIVE SUMMARY ... ES-1

I. INTRODUCTION .. I-1

A. Background ... I-1

B. Model Limitations ... I-2

1. Models Eliminated From Consideration .. I4
2. Alternatives to Rule-based Cognitive Modeling I-5

C. Organization of This Paper .. I-8

II. DESCRIPTIONS OF HBR MODELS ... II-1

A. Atomic Components of Thought (ACT) .. II-2

1. Model Purpose and History of Development II-2
2. Principal Metaphors and Assumptions .. II-2
3. Cognitive/Behavioral Functions Represented II-3
4. Applications .. II-4
5. Technical Considerations .. II-5
6. Evaluation ... II-6

B. Adaptive Resonance Theory (ART) .. II-6

1. Model Purpose and History of Development II-6
2. Principal Metaphors and Assumptions .. II-7
3. Cognitive/Behavioral Functions Represented II-8
4. Applications .. II-9
5. Technical Considerations .. II-9
6. Evaluation ... II-10

C. Architecture for Procedure Execution (APEX) .. II-10

1. Model Purpose and History of Development II-10
2. Principal Metaphors and Assumptions .. II-11
3. Cognitive/Behavioral Functions Represented II-12
4. Applications .. II-13
5. Technical Considerations .. II-14
6. Evaluation ... II-15

D. Business Redesign Agent-Based Holistic Modeling
System (Brahms) .. II-15

1. Model Purpose and History of Development II-5
2. Principal Metaphors and Assumptions .. II-16

vi

3. Cognitive/Behavioral Functions Represented II-18
4. Applications .. II-19
5. Technical Considerations .. II-20
6. Evaluation ... II-22

E. Cognition and Affect Project (CogAff) ... II-22

1. Model Purpose and History of Development II-22
2. Principal Metaphors and Assumptions .. II-23
3. Cognitive/Behavioral Functions Represented II-25
4. Applications .. II-26
5. Technical Considerations .. II-26
6. Evaluation ... II-27

F. Cognition as a Network of Tasks (COGNET) ... II-27

1. Model Purpose and History of Development II-27
2. Principal Metaphors and Assumptions .. II-28
3. Cognitive/Behavioral Functions Represented II-29
4. Applications .. II-30
5. Technical Considerations .. II-30
6. Evaluation ... II-31

G. Cognitive Complexity Theory (CCT) .. II-31

1. Model Purpose and History of Development II-31
2. Principal Metaphors and Assumptions .. II-32
3. Cognitive/Behavioral Functions Represented II-33
4. Applications .. II-33
5. Technical Considerations .. II-34
6. Evaluation ... II-35

H. Cognitive Objects within a Graphical EnviroNmenT (COGENT) II-36

1. Model Purpose and History of Development II-36
2. Principal Metaphors and Assumptions .. II-36
3. Cognitive/Behavioral Functions Represented II-37
4. Applications .. II-37
5. Technical Considerations .. II-38
6. Evaluation ... II-38

I. Concurrent Activation-based Production System (CAPS) II-39

1. Model Purpose and History of Development II-39
2. Principal Metaphors and Assumptions .. II-39
3. Cognitive/Behavioral Functions Represented II-40
4. Applications .. II-41
5. Technical Considerations .. II-42
6. Evaluation ... II-43

vii

J. Construction-Integration (C-I) Theory .. II-43

1. Model Purpose and History of Development II-43
2. Principal Metaphors and Assumptions .. II-44
3. Cognitive/Behavioral Functions Represented II-48
4. Applications .. II-49
5. Technical Considerations .. II-49
6. Evaluation ... II-51

K. Distributed Cognition (DCOG) ... II-51

1. Model Purpose and History of Development II-51
2. Principal Metaphors and Assumptions .. II-52
3. Cognitive/Behavioral Functions Represented II-54
4. Applications .. II-55
5. Technical Considerations .. II-55
6. Evaluation ... II-55

L. Executive Process/Interactive Control (EPIC) ... II-56

1. Model Purpose and History of Development II-56
2. Principal Metaphors and Assumptions .. II-56
3. Cognitive/Behavioral Functions Represented II-57
4. Applications .. II-57
5. Technical Considerations .. II-58
6. Evaluation ... II-59

M. Human Operator Simulator (HOS) .. II-59

1. Model Purpose and History of Development II-59
2. Principal Metaphors and Assumptions .. II-59
3. Cognitive/Behavioral Functions Represented II-60
4. Applications .. II-61
5. Technical Considerations .. II-61
6. Evaluation ... II-62

N. Man-Machine Integrated Design And Analysis System (MIDAS) II-63

1. Model Purpose and History of Development II-63
2. Principal Metaphors and Assumptions .. II-64
3. Cognitive/Behavioral Functions Represented II-66
4. Applications .. II-67
5. Technical Considerations .. II-67
6. Evaluation ... II-69

O. Micro Systems Analysis of Integrated Network of
Tasks (Micro SAINT) ... II-69

1. Model Purpose and History of Development II-69
2. Principal Metaphors and Assumptions .. II-70
3. Cognitive/Behavioral Functions Represented II-70
4. Applications .. II-71

viii

5. Technical Considerations .. II-71
6. Evaluation ... II-72

P. Operator Model ARchitecture (OMAR) .. II-73

1. Model Purpose and History of Development II-73
2. Principal Metaphors and Assumptions .. II-73
3. Cognitive/Behavioral Functions Represented II-74
4. Applications .. II-75
5. Technical Considerations .. II-76
6. Evaluation ... II-78

Q. PSI ... II-79

1. Model Purpose and History of Development II-79
2. Principal Metaphors and Assumptions .. II-79
3. Cognitive/Behavioral Functions Represented II-81
4. Applications .. II-82
5. Technical Considerations .. II-82
6. Evaluation ... II-83

R. Situation Awareness Model for Pilot-in-the-Loop
Evaluation (SAMPLE) .. II-83

1. Model Purpose and History of Development II-83
2. Principal Metaphors and Assumptions .. II-84
3. Cognitive/Behavioral Functions Represented II-86
4. Applications .. II-87
5. Technical Considerations .. II-87
6. Evaluation ... II-89

S. State, Operator, And Result (Soar) .. II-89

1. Model Purpose and History of Development II-89
2. Principal Metaphors and Assumptions .. II-93
3. Cognitive/Behavioral Functions Represented II-94
4. Applications .. II-98
5. Technical Considerations .. II-98
6. Evaluation ... II-100

III. SUMMARY AND CONCLUSIONS.. III-1

References ... Ref-1

Glossary... GL-1

ix

TABLES

ES-1. HBR Models Reviewed in the Present Study .. ES-2

I-1. Comparison of the Present Study with Two Previous Reviews of
HBR Models ... I-3

II-1. HBR Models Reviewed in the Present Study .. II-1

III-1. Summary of Cognitive and Behavioral Functions Represented in HBR
Models Reviewed in the Present Study ... III-2

III-2. Summary of Cognitive and Behavioral Functions Required by Roles
That HBR Models Could Assume in Military Simulations III-4

ES-1

EXECUTIVE SUMMARY

One of the goals of the Defense Modeling and Simulation Office (DMSO) has

been to promote the development and assessment of computational human behavior rep-

resentations (HBRs) that potentially provide synthetic forces—Red and Blue—for live,

virtual, and constructive military simulations. The purpose of this paper is to review the

domain of HBRs that could be integrated with military simulations. The intent is to pro-

vide the modeling and simulation (M&S) community an understanding of specific HBR

models and to identify specific interoperability problems.

Table ES-1 presents the names and associated acronyms or abbreviations of the

19 HBR models reviewed in the present study. The following topic areas were chosen to

frame the discussion of each model and to orient the review toward those who are inter-

ested in applying HBR models to military simulations:

• Model Purpose and History of Development

• Principal Metaphors and Assumptions

• Cognitive/Behavioral Functions Represented

• Applications

• Technical Considerations

• Evaluation.

To make generalizations across these models, each HBR was evaluated on

whether it supported the following cognitive and behavioral functions:

• Perception • Learning

• Psychomotor performance • Decision-making

• Attention • Problem solving

• Situation awareness (SA) • Cognitive workload

• Short-term memory (STM) • Emotional behavior

• Long-term memory (LTM) • Social behavior.

ES-2

Table ES-1. HBR Models Reviewed in the Present Study

Model Name
Acronym/

Abbreviation

Atomic Components of Thought ACT

Adaptive Resonance Theory ART

Architecture for Procedure Execution APEX

Business Redesign Agent-Based Holistic Modeling System Brahms

Cognition and Affect Project CogAff

Cognition as a Network of Tasks COGNET

Cognitive Complexity Theory CCT

Cognitive Objects within a Graphical EnviroNmentT COGENT

Concurrent Activation-Based Production System CAPS

Construction-Integration Theory C-I Theory

Distributed Cognition DCOG

Executive Process/Interactive Control EPIC

Human Operator Simulator HOS

Man-machine Integrated Design and Analysis System MIDAS

Micro Systems Analysis of Integrated Network of Tasks Micro SAINT

Operator Model ARchitecture OMAR

PSI PSI

Situation Awareness Model for Pilot-in-the-Loop Evaluation SAMPLE

State, Operator, And Result Soar

The analysis suggested some generalizations concerning the current state of the

art in human behavior modeling:

• Decision-making is a universal function of all models. This is not surprising
since the overwhelming majority of HBR models can be classified as “rule-
based” in their use of if-then, condition-action, “production” rules.

• All the models can represent either STM or LTM. Most of the models are
derived from the tradition of human information processing, which employs
the tools and the metaphors of computer science. Memory storage is a central
concept to both disciplines.

• The “front-end” of cognition (perception and attention) is well represented in
most models. Similarly, the ultimate output from cognition (psychomotor
action) is modeled, at least to a minimal degree, in most models. The atten-
tion to inputs and outputs may also be a reflection of the information-pro-
cessing tradition in human behavioral modeling.

ES-3

• Learning and problem-solving functions are represented in only five models.
Taken together with the ability of many models to emulate the “front-end” of
cognition, this orientation suggests the following: Whereas most HBR mod-
els may be good at reacting to expected situations (i.e., situations for which
they are programmed), they may not be so good at adapting to novel
situations.

• The capability to emulate SA is explicitly represented in only 4 of the
19 models. However, this deficiency may be more apparent than real. Since
most models have the capability to emulate perception and attention, they
may also represent SA functions if appropriately modified.

• Very few of the models have the capability to simulate emotional or social
behaviors. Recent publications and presentations suggest that these may be
“growth areas” for current and future HBR models.

I-1

I. INTRODUCTION

A. BACKGROUND

The role of the Defense Modeling and Simulation Office (DMSO) has been to

coordinate modeling and simulation (M&S) efforts within the Department of Defense

(DoD). One of DMSO’s specific goals is to promote the development, assessment, and

reuse of computational human behavior representations (HBRs) that potentially provide

synthetic forces—Red and Blue—for live, virtual, and constructive military simulations.

The purpose of this paper is to review HBRs that could be integrated with military simu-

lations. The intent is to provide the M&S community an understanding of specific HBR

models and to identify specific interoperability problems.

The HBR models reviewed in this paper share a common intent: to provide com-

prehensive and integrated computational models of human behavior. However, among

the models, marked differences exist with respect to focus and/or resolution. For instance,

some of the models reviewed could be viewed as examples of “unified theories of cogni-

tion” (Newell, 1990). That is, the models comprise a single set of covert mental mecha-

nisms that simulate the full range of human cognitive activities—from object perception

and recognition to abstract problem solving. In contrast, another group of models may be

identified as “performance models” because they simulate only the observable outcomes

of covert and overt behavior. The distinction between cognitive and performance models,

while conceptually valid, is that most models incorporate aspects of performance and

cognition for practical reasons. For instance, cognitive models must have a performance

component to simulate human actions that result from mental processing. Similarly, per-

formance models often incorporate covert processing to simulate militarily important but

essentially mental phenomena, such as decision-making and situation awareness (SA).

Another differentiating characteristic of HBR models pertains to the issue of rep-

resentation—that is, the manner in which the external world is mapped to the internal

processes and states of the simulated human. Most HBR models employ some form of

symbolic representation in that human information processes (e.g., input, storage, and

retrieval) are simulated by the manipulation of a finite set of discrete symbols. In such

I-2

systems, symbols acquire meaning because they refer to specific entities or entity classes

in the external world. Symbolic representations are not only congruent with common

concepts in linguistics, but also with software programming principles. In contrast,

connectionist models provide important nonsymbolic or subsymbolic approaches to

representation. Connectionistic models represent internal structures by an interconnected

network of links and nodes. In such models, nodes do not represent fixed entities; rather,

they acquire their meaning through the continuous adjustment of the links to which they

are connected. Compared with symbolic models, these analogue connectionistic systems

are less compatible with digital computing systems. Nevertheless, the published literature

contains numerous examples demonstrating that digital systems are able to emulate con-

tinuous connectionistic systems. Moreover, some HBR models that are primarily sym-

bolic in nature have incorporated nonsymbolic components in the hope of simulating a

wider range of cognitive, behavioral, or performance phenomena. Thus, as in the previ-

ous discussion of cognitive vs. performance models, the distinction between symbolic

and nonsymbolic modeling does not provide mutually exclusive categorization scheme

for HBR models.

The present review of HBR models elaborates on two previous ones. Pew and

Mavor (1998) provided an extensive review of HBR models. Their work, conducted

under the auspices of the National Research Council (NRC) at the request of DMSO,

identified 11 architectures that were extant as of 1997. Ritter, Shadbolt, et al. (2002) sub-

sequently conducted a similar study, sponsored by the United Kingdom’s Defence

Evaluation and Research Agency (DERA), which updated the Pew and Mavor review

(through June 2001) by covering 7 additional cognitive architectures not included in the

1998 review.

Table I-1 shows the models reviewed in the two previous studies and the models

reviewed present study. The present study reviews 19 different models. It includes most

models reviewed in the two previous works but has added 6 new models that have

reached sufficient maturity to warrant inclusion.

B. LIMITATIONS

Although I had access to a great deal of published research on the models, I was

able to gain only superficial practical experience using the HBR models. Deep

I-3

Table I-1. Comparison of the Present Study With Two Previous Reviews of HBR Models

Model Included in Review?: Yes or No

Model Name
Acronym/

Abbreviation

Pew and
Mavor
(1998)

Ritter,
Shadbolt

et al. (2001)

Present
IDA

Study

Atomic Components of Thought ACT Yes No Yes

Adaptive Resonance Theory ART No No Yes

Architecture for Procedure Execution APEX No Yes Yes

Artificial Neural Networks ANNs Yes No Noa

Business Redesign Agent-Based Holistic
Modeling System

Brahms No No Yes

Cognition and Affect Project CogAff No Yes Yes

COGnition As a NEtwork Of Tasks COGNET Yes No Yes

Cognitive Complexity Theory CCT No No Yes

Cognitive Objects within a Graphical
EnviroNmenT

COGENT No Yes Yes

Concurrent Activation-Based Production
System

CAPS No No Yes

Construction-Integration Theory C-I Theory No No Yes

Distributed Cognition DCOG No No Yes

Elementary Perceiver And Memorizer EPAM No Yes Nob

Executive Process/Interactive Control EPIC Yes No Yes

Human Operator Simulator HOS Yes No Yes

Belief-Desire-Intention architecture BDI No Yes Noc

Man-machine Integrated Design and
Analysis System

MIDAS Yes No Yes

Micro Systems Analysis of Integrated
Network of Tasks

Micro SAINT Yes No Yes

MIDAS Redesign Yes No Yesd

Operator Model ARchitecture OMAR Yes No Yes

PSI PSI No Yes Yes

Situation Awareness Model for Pilot-in-the-
Loop Evaluation

SAMPLE Yes No Yes

Sparse Distributed Memory SDM No Yes Nob

State, Operator, And Result Soar Yes No Yes

Notes for Table I-1:
a Reasons for excluding ANNs from the present study are discussed in Section I.B.1.
b Deemed a “micro” model of cognition, focusing on memory processes.
c Reasons for excluding BDI from the present study are discussed in Section I.B.3.
d The redesign of MIDAS is discussed in the history and development of the MIDAS model.

I-4

understanding of the models is acquired only through extensive use of them. On the other

hand, even a superficial analysis of models helps in understanding the breath of the

domain.

1. Models Eliminated From Consideration

Even a cursory review of this area reveals a wide variety of models and tech-

niques that could support military simulations. To limit the boundaries of the present

review and sharpen its focus, it was restricted to models whose primary purpose is to

emulate a wide range of actual human behavior and processes. This restriction eliminated

the following classes of models from consideration:

• Nonhuman models. Some models incorporate aspects of intelligent behavior
and reasoning that are highly constrained in content and maximized in per-
formance. Examples include expert systems for medical diagnoses or com-
puter systems specifically designed to challenge chess grand masters (e.g.,
Big Blue). Thus, while such models are clearly “intelligent,” they are also
distinctively nonhuman.

• Micro-models of cognition. Computational models of individual cognitive
functions, such as memory or auditory perception, are numerous. While these
models are useful theoretically, they are too narrowly focused to provide
realistic simulations of integrated human behavior and performance.

• Competence models. Researchers in psychology and linguistics have devel-
oped computational models of linguistic understanding. While these models
are interesting, they have limited implications for the overt behavior and
human performance representations needed in military simulations.

Also excluded are models that provide a comprehensive simulation of human

behavior but pose implementation problems that preclude their incorporation into military

simulations. Often, these problems center on computer coding. For instance, the model of

cognition and perception developed by Ulric Neisser (1967; 1976) is comprehensive and

authoritative. However, this model is largely qualitative and has not been implemented in

computer code. Such models were excluded not because they were invalid, but because

they were not amenable to computer-based simulations.

Serious implementation problems remain in the models that are included in this

review. With respect to the practicality of implementation, the present report probably

erred in the direction of inclusion rather than exclusion. In other words, some of the

I-5

models undoubtedly have serious computer problems that require special expertise in

computer science and artificial intelligence (AI).

2. Alternatives to Rule-based Cognitive Modeling

Most of the reviewed models are rule-based systems for simulating serial and par-

allel cognitive structures and processes. The elements of these systems are “productions”

that take an if-then or condition-action form. Three alternative approaches to rule-based

cognitive modeling have received some interest as potential HBRs but are not included in

this review: Artificial Neural Net (ANN), Evolutionary Computation (EC), and Belief-

Desire-Intention (BDI) models. The exclusion of these approaches from the review is

explained in some detail below because of the general interest in these types of models.

a. Artificial Neural Net (ANN) Models

Based on concepts developed in the 1940s (e.g., McCulloch and Pitts, 1943),

ANNs are densely interconnected, parallel computing structures intended to emulate the

mammalian brain in structure and function. The processing elements of ANNs corre-

spond to the individual neurons of the brain, with weighted associations among elements

simulating the synaptic connections. Learning and memory effects are modeled as

adjustments to and persistence of those neural weights.

The original purpose of ANNs was to model nervous system functions. As ANNs

have evolved, however, the neural network metaphor has become less literal and more

figurative. While ANNs may not provide accurate models of biological functions, they

have some unique advantages over traditional computing architectures. For instance, it

can be shown that ANNs are less susceptible to noise and memory loss than are tradi-

tional computers. ANNs have also been successfully used as a statistical technique for

predicting complex events.

As models of cognition, ANNs have successfully modeled feature detection pro-

cesses in perceptual pattern recognition. Not only do these models provide a plausible

explanation of perception, but they have also led to the production of practical machine

recognition systems. However, human models of perception based on ANNs apply only

to perception and thus constitute examples of micro-models of cognition. Also, aspects of

I-6

neural nets have been incorporated into more comprehensive rule-based HBR models

(e.g., ACT-R,1 SAMPLE, C-I, and COGENT) to form hybrid systems.

With one notable exception, no one has developed a neural net model as a com-

prehensive cognitive model. The exception is ART (Adaptive Resonance Theory), which

uses neural networks as a centerpiece to explain and model a range of cognitive pro-

cesses. For this reason, the ART model was included as the only example of an ANN

used to simulate human behavior. See Section II.B for more information about ART.

b. Evolutionary Computation (EC) Models

EC refers to a class of computational models designed to solve a broad set of

problems. In this sense, EC is similar to an ANN. The unique aspect of EC is its use of

the biological concepts of evolution and natural selection as computational metaphors.

Although EC models are able to solve problems, they do so in a nonhuman way.

The central notion is to employ a computational model of biological evolution to reach

novel solutions that are adapted to the detailed demands of the situation. According to

Porto, Fogel, and Fogel (1998), most evolutionary programs can be distilled into the fol-

lowing four-step process:

1. Identifying the population of candidate solutions initializes the program.

2. Existing solutions are then randomly varied through a process of mutation,
recombination, or both.

3. Competing solutions are evaluated with respect to a measure of merit.

4. Solutions are selected to determine which will survive for the next iteration.
Once the solutions are selected, the process restarts at step 2.

Unlike traditional cognitive modeling, EC does not start with a set of predefined

actions or rules or with an explicit knowledge base. Although expert knowledge can be

folded into an evolutionary model to make it more efficient, the strength of this approach

is its relatively low level of dependence on domain expertise.

1 The Atomic Components of Thought (ACT) is a comprehensive model of cognition developed by John
R. Anderson and colleagues at Carnegie Mellon University (CMU). The ACT model (ACT-A)
appeared in the fall of 1974, and it has been continuously updated since that time. The current model,
called ACT-R, appeared in Anderson (1993), and updated versions of the model have been
forthcoming since that time. See Section II.A for more information about ACT.

I-7

EC is best suited to difficult problems that possess nonlinear or arbitrary con-

straints. For instance, it has been applied to difficult problems, such as classifying types

of breast cancers, predicting chaotic time series, and deriving novel tactics for tank pla-

toons (Porto, Fogel, and Fogel, 1998). Even though the latter problem would appear rele-

vant, the EC simulation employed in this study was not constrained to behave like

humans and was allowed unlimited time to arrive at an appropriate solution. Conse-

quently, it was not included in this review of HBRs.

c. Belief-Desire-Intention (BDI) Models

BDI is a model for developing intelligent software agents based on a philosophi-

cal theory of practical reasoning (Bratman, 1987). As implied in the title, a BDI model

comprises three essential components:

1. Beliefs. Beliefs are some data structure that represents the state of the world.
They are generally equivalent to the more common notion of “knowledge,”
but are based on perceived or “likely” states of the world that may or may not
be true at any given moment. Rao and Georgeff (1995) describe beliefs as
something that provides information on the state of the system.

2. Desires. Desires are information about priorities or payoffs of system objec-
tives. They correspond generally to “goals” as used in rule-based models;
however, unlike goals, they are numerous, subject to change, and may be
mutually incompatible. Desires represent the motivation underlying the BDI
system (Rao and Georgeff, 1995).

3. Intentions. Intentions are committed plans of action. The essence of BDI in
that it solves the practical problem of choosing a course of action in a
dynamic environment. Constantly reconsidering the entire domain of actions
at each instant in time is too expensive computationally; conversely, uncon-
ditional commitment to a single course of action could result in failure to
achieve objective(s). The solution is to focus on a subset of actions corre-
sponding to current desires (committed plans) but be capable of reconsid-
ering these actions at crucial moments. Intentions are the deliberative
component to BDI models (Rao and Georgeff, 1995).

The BDI model represents the requirements of an intelligent computational agent.

The model is not intended to represent actual human cognitive structures and processes,

although the components bear some resemblance to the elements of rule-based cognitive

models, such as Soar and ACT-R. Nevertheless, the fundamental motivation in con-

structing BDI models is to make computationally efficient and effective intelligent

I-8

agents—not to model human cognition. For these reasons, BDI models were not included

in the present review.

C. ORGANIZATION OF THIS PAPER

Section II summarizes each of the HBR models selected for review. The review

focuses on topics that are useful to those who are interested in applying HBR models to

military simulations and is organized as follows:

• Model Purpose and History of Development

• Principal Metaphors and Assumptions

• Cognitive/Behavioral Functions Represented

• Applications

• Technical Considerations

• Evaluation.

Section III provides summary comments about HBR models. These comments are

brief, which is consistent with the paper’s focus on the usefulness and applicability of

particular HBR models rather than the overall state of the art in cognitive modeling.

II-1

II. DESCRIPTIONS OF HBR MODELS

Table II-1 lists each of the 19 HBR models reviewed in this paper. This table also

indicates the Section II paragraph in which the discussion takes place.

Table II-1. HBR Models Reviewed in the Present Study

Section/
Paragraph Model Name

Acronym/
Abbreviation

II.A Atomic Components of Thought ACT

II.B Adaptive Resonance Theory ART

II.C Architecture for Procedure Execution APEX

II.D Business Redesign Agent-Based Holistic Modeling System Brahms

II.E Cognition and Affect Project CogAff

II.F Cognition as a Network of Tasks COGNET

II.G Cognitive Complexity Theory CCT

II.H Cognitive Objects within a Graphical EnviroNmentT COGENT

II.I Concurrent Activation-Based Production System CAPS

II.J Construction-Integration Theory C-I Theory

II.K Distributed Cognition DCOG

II.L Executive Process/Interactive Control EPIC

II.M Human Operator Simulator HOS

II.N Man-machine Integrated Design and Analysis System MIDAS

II.O Micro Systems Analysis of Integrated Network of Tasks Micro SAINT

II.P Operator Model ARchitecture OMAR

II.Q PSI PSI

II.R Situation Awareness Model for Pilot-in-the-Loop Evaluation SAMPLE

II.S State, Operator, And Result Soar

II-2

A. ATOMIC COMPONENTS OF THOUGHT (ACT)

1. Model Purpose and History of Development

The Atomic Components of Thought (ACT)2 is a comprehensive model of cogni-

tion developed by John R. Anderson and his colleagues at Carnegie Mellon University

(CMU). According to a recent tutorial on ACT (Lebiere, 2002), ACT serves several dif-

ferent purposes: to provide a unified theory of mind, to account for experimental data, to

develop educational systems and environments, to design human-computer interfaces,

and to interpret data from brain imaging. It is significant to note that, among this diverse

set of purposes, Lebiere included the role of ACT in computer-generated forces—that is,

to “…provide cognitive agents to inhabit training environments and games” (slide 3, ¶ 5).

ACT evolved from the Human Associative Memory (HAM) model developed by

Anderson and Bower (1973). HAM was a connectionist model of semantic memory that

represented Anderson’s doctoral research at Stanford University. ACT represents the

synthesis of HAM and a production system theory of memory (Newell, 1973).

The first ACT model (ACT-A) appeared in the fall of 1974, and it has been

updated since that time. The current model, called ACT-R, appeared in Anderson (1993),

and updated versions of the ACT-R model have been forthcoming since that time. The

current version of ACT-R is 5.0, which is intended to serve as a beta version for 6.0. Ver-

sion 5.0 differs from the previous one (Version 4.0) in that it includes perceptual-motor

components. The ACT-R group at CMU conducts yearly summer workshops and main-

tains an active Web site at http://act.psy.cmu.edu. Textbooks by Anderson (1976, 1983,

1990, 1993) provide lengthy theoretical explications of the ACT model and its chrono-

logical history. A recent article summarizes the history of ACT and focuses on the inno-

vations provided by the most recent version, ACT-R 5.0 (Anderson et al., 2002).

2. Principal Metaphors and Assumptions

Two central concepts in ACT-R are rational analysis and the distinction between

declarative and procedural knowledge. According to the rational analysis concept, each

2 Although the use of the acronym “ACT” has been relatively stable, the definition of the acronym has
evolved over the years. The original definition was the “Adaptive Character of Thought,” which was
the title of an influential textbook by Anderson (1990). However, Anderson and Lebiere (1999)
published ACT-R 4.0 in a book whose title suggested a new definition of ACT: “Atomic Components
of Thought.” Others have suggested, perhaps facetiously, that ACT stands for “Anderson’s Cognition
Theory.”

II-3

component of cognition in ACT-R is optimized with respect to environmental demands

but constrained by computational limitations.3 Anderson argues that this aspect of cogni-

tion is the result of evolution. This rationality is modeled by a cost-benefit model of

decision-making—that is, when the model is forced to choose between strategies, it takes

the one that maximizes the probability of success while minimizing the costs in compu-

tational terms.

Regarding the distinction between knowledge types, declarative knowledge refers

to one’s stored information concerning facts about the world. In ACT, this knowledge is

modeled as a semantic network, not unlike the memory representation in HAM. In con-

trast, Anderson contends that our knowledge of actions (i.e., how to do something) is

quite different. This procedural knowledge is modeled as a production system. Declara-

tive and procedural knowledge are parts of long-term memory (LTM). These two systems

communicate through working memory (WM), which is not a separate memory sub-

system but rather the subset of knowledge that is currently active.

ACT-R 5.0 incorporates a more modular conception of cognition (Anderson et al.,

2002). Its modules are conceived as encapsulated information-processing sites that are

devoted to functions, such as identifying objects in visual field, controlling limbs,

retrieving information from LTM, and so forth. The modules communicate through lim-

ited capacity buffers that place chunks of declarative data (representing the results of

their information processing, into buffers that can trigger processing by central produc-

tion systems). The result of such cognitive processing can, in turn, trigger more informa-

tion processing in the modules.

3. Cognitive/Behavioral Functions Represented

Input and output (i.e., sensory and motor) functions were primitively modeled in

the original version of ACT. A relatively new, specialized version, ACT-R/PM, was

developed to provide those needed capabilities. ACT-R/PM was subsequently incorpo-

rated into ACT-R 4.0 and its successor, ACT-R 5.0. According to the Computer-Human

Interaction Laboratory (CHIL) Web page (http://chil.rice.edu/byrne/RPM/project.html),

ACT-R/PM represents

 “…a synthesis of John Anderson’s ACT-R theory, Mike Matessa’s Visual
Interface for ACT-R, and Dave Kieras and Dave Meyer’s EPIC

3 The “R” in ACT-R stands for “rational.”

II-4

[Executive Process/Interactive Control] system. ACT-R/PM uses the
ACT-R production system/Bayesian network as its core cognitive model,
and a parallel set of perceptual-motor modules (much like EPIC). The
specific modules are derived from the Visual Interface and similar
modules in EPIC” [Computer-Human Interaction Laboratory (CHIL),
2002].

Learning is represented at the symbolic and the subsymbolic levels. At the sym-

bolic level, chunking occurs in declarative memory by application of existing rules. New

rules are learned through analogy and example. At the subsymbolic level, learning is

represented by changes to activation and strength parameters.

Errors and forgetting are products of processes at the subsymbolic level (below

individual productions)—namely, activation and strength parameters of the semantic

network. Productions may not fire because activations levels are below some threshold.

Similarly, incorrect productions may fire because their threshold levels are relatively high

with respect to correct productions. Activation and strength parameters also affect the

latency of responding.

ACT was originally developed to address cognitive activity and is quite good at

simulating individual intellectual functions, such as attention, decision-making, and

problem solving. However, as is true for most models of individual cognitive processing,

the ACT-R architecture has no representation for affective variables (emotion and moti-

vation) and does not model collective performance.

4. Applications

ACT-R is an academic model explicitly designed to provide a unified theory of

cognition and account for experimental data. Nevertheless, ACT-R has had several prac-

tical applications, which includes providing the basis for intelligent tutors for math and

computer science aimed at secondary education. ACT-R has also been used to model

human-computer interaction (HCI) as an HCI design aid, and it has provided a frame-

work for interpreting data from brain imaging. As of September 2002, over 100 published

models had been developed in ACT 4.0 (Anderson et al., 2002).4

More recently, Anderson has stated that he wants ACT-R to provide computer-

generated forces to inhabit training environments and games. An example is work

4 The current version of ACT-R (5.0) is downwardly compatible will thus run all models developed in
Version 4.0.

II-5

performed by Salvucci, Boer, and Liu (2001) to predict the effects of cell phone usage on

driving behavior and vice versa. ACT-R controls a driving simulator and simulated cell

phone that represents the use by humans in the same simulation environment.

5. Technical Considerations

A fundamental consideration in implementing ACT-R models is the update rate of

50 msec. This parameter represents a simulation of actual cognitive processing as

opposed to a limitation in software or hardware capabilities.

a. Inputs and Input Aids

In terms of input, the user must enter a complete depiction of the initial knowl-

edge state (including declarative and procedural knowledge) and specify all appropriate

parameters, which are extensive if the perceptual/motor modules are used. Currently, full

exploitation of the ACT-R model requires the modeler to be conversant in LISP (LISt

Processing). However, a graphic “stand-alone environment” has been developed for

Windows and Macintosh operating systems and permits the non-LISP programmer to

create, run, and debug ACT-R models. According to the developers, the tools available in

the stand-alone versions are also helpful to the veteran ACT-R modeler in running,

inspecting, and debugging ACT-R models. The model and input aids, along with refer-

ence manuals for experienced users and tutorials for beginners are available for download

at the ACT-R Web site: http://act-r.psy.cmu.edu.

b. Model Output and Analysis Tools

If appropriate, ACT-R provides the capability to model the environment sepa-

rately from human information processing. ACT-R provides three types of outputs:

1. A trace of productions that fire during execution

2. All changes to WM that occur during execution

3. Items in declarative knowledge that are used in productions.

c. Language and Interfaces

ACT-R is written in Common LISP,5 and users of the full versions (4.0 and 5.0)

must have installed Macintosh Common LISP (MCL) or Allegro Common LISP (ACL)

5 Common LISP is a high-level, all-purpose, object-oriented, dynamic, functional programming
language.

II-6

for Windows machines before downloading ACT-R. The Windows version of 5.0 is also

includes a stand-alone version, which allows the user to run ACT-R without ACL; how-

ever, the stand-alone version does not offer all the features of full version [e.g., no com-

piler, no debugger, and none of the ACL Integrated Development Environment (IDE)

tools]. A facility is also available to run limited ACT-R models on the Web.

6. Evaluation

Of all the cognitive models, ACT-R is perhaps the best grounded in experimental

psychology research literature. However, despite the developmental tools, users still find

ACT-R models difficult to develop, and its parameters are especially difficult to estimate

without extensive experimentation.

B. ADAPTIVE RESONANCE THEORY (ART)

1. Model Purpose and History of Development

Adaptive Resonance Theory (ART) is a neural net model designed to explain

basic sensory and cognitive processes, including perception, recognition, attention, rein-

forcement, recall, and WM. The purpose of ART is to model behavioral processes and

fundamental brain dynamics. Stephen Grossberg introduced the model in 1976 in a pair

of papers in Biological Cybernetics (Grossberg, 1976a; 1976b). Grossberg and his col-

leagues (including, most notably, his wife Gail A. Carpenter) continue to develop the

ART model at Boston University’s Department of Cognitive and Neural Sciences and the

Center for Adaptive Systems.

Several Web sites have been established to promote and support ART modeling,

including

• The home page for Boston University’s Department of Cognitive and Neural
Sciences and the Center for Adaptive Systems, which provides on-line publi-
cations relating to ART models written by the principal developers. The Web
site address is http://cns-web.bu.edu.

• The “ART Gallery: A Neural Network Simulation Package” developed by
Lars Liden, which contains downloads of some ART source code and related
documentation. The Web site address is
http://cns-web.bu.edu/pub/laliden/WWW/nnet.html.

• The “Adaptive Resonance Theory (ART) Clearinghouse” created by Daniel
Tauritz (a member of the faculty in computer science at the University of

II-7

Missouri-Rolla), which contains an extensive bibliography and useful intro-
ductions to ART modeling. The Web site address is
http://web.umr.edu/~tauritzd/art.

2. Principal Metaphors and Assumptions

One of the prime motives for developing ART was to address the stability-plas-

ticity dilemma endemic to ANNs. This dilemma pertains to the fact that while humans

are able to retain knowledge of past experience and knowledge (stability), they also are

able to respond and change in response to new information (plasticity). ANNs typically

represent memory by the relative persistence of weights associated with connections

among nodes in the network. The dilemma is that traditional ANNs cannot adapt to new

information if the weights hold values indefinitely. On the other hand, ANNs can poten-

tially lose accumulated knowledge if the weights continuously change in response to

input.

ART solves the stability-plasticity dilemma by postulating a two-level organiza-

tion for WM. The bottom, or input, level (F1) analyzes individual items or features in

WM, whereas the top, or output, level (F2) simulates the functions of superordinate con-

cepts. LTM acts to modulate the weights of directed links between the two levels.

Bottom-up signals (F1 to F2), modulated through LTM, influence the selection of cate-

gories, while top-down signals (F2 to F1) exert the effects of expectations on perception

and learning. Top-down expectations are compared against stimulus input, resulting in

the amplification of input that matches expectations and the suppression of input that

does not match expectations. This architecture has two important implications for mod-

eling cognition:

• First, top-down processes modulate attention. Mismatches between top-down
expectations and input trigger attention, whereas matches prevent irrelevant
stimuli from eroding previously learned knowledge.

• Second, matches between expectations and input result in a reciprocal feed-
back between bottom-up and top-down systems. The resulting resonance,
which is identified with consciousness (e.g., Grossberg, 1995; 1999), leads to
long-term modifications in the network (i.e., learning).

ART models are structurally divided into two feedback subsystems. The atten-

tional subsystem is depicted as gain controls that match bottom-up activation with top-

down expectations. This subsystem adjusts neural activation to form appropriate

categories and expectations and to diminish the effects of noise. The orienting subsystem

II-8

is depicted as a single parameter that depicts the sensitivity to mismatches. When this

subsystem detects a novel situation, it resets the system to search for a more appropriate

recognition code. The latter subsystem is stabilizing because it prevents the network from

adjusting to irrelevant stimuli.

3. Cognitive/Behavioral Functions Represented

ART’s two-level structure makes it particularly well suited for simulating

bottom-up- and top-down-controlled perceptual processes. Several ART models have

been developed for modeling perceptual phenomena and illusions, including visual per-

ception, visual object recognition, auditory source identification, and variable-rate speech

recognition (Grossberg, 1999).

Learning is driven by the resonance state—that is, adjustments to the link weights

occur because of prolonged resonance (activation), not because of momentary, bottom-up

sensory activation. Thus, ART resonance serves as an indicator of when the system is

receiving data worthy of learning (Grossberg, 2000).

LTM is represented by the weights corresponding to links among nodes in the

network. These weights multiply signals in the pathway to determine effects on target

nodes. Short-term memory (STM) is depicted as the pattern of activation initiated by

bottom-up signals from sensory systems and by top-down signals modulated through

LTM links.

Attentional phenomena are modeled by feedback subsystems. The attentional sub-

system nonspecifically inhibits all feature detectors that do not receive a suprathreshold

excitatory signal based on learned expectations. This effectively makes the system shut

off the perception of features that it does not expect and “pay attention” to those features

that it does expect. The orienting feedback system, in contrast, detects novel stimuli that

signal when the system should break the focus of attention and search for a different and

more appropriate pattern of features.

Although ART provides models for sensory and cognitive processes, it is not

appropriate for spatial or motor processes. Grossberg (1995, 1999) pointed out that this

does not indicate a deficiency of the model; rather, it represents a fundamental difference

between sensory-cognitive processes and spatial-motor processes: Catastrophic forgetting

would have a devastating effect on sensory and cognitive processes, whereas such for-

getting is a good property for spatial and motor representation. Grossberg (2000) pointed

II-9

out that if we did not forget, the parameters that controlled our childhood limbs would

continue to control our larger and stronger adult limbs. Grossberg explained the differ-

ences between sensory-cognitive and spatial-motor phenomena by contrasting mecha-

nisms. In ART, sensory-cognitive learning and memory are based on an excitatory match

process that promotes stable learning and inhibits catastrophic forgetting. On the other

hand, learning in the spatial and motor realm is governed by an inhibitory mismatch

process, which promotes the constant adjustment of gains to sensor-motor maps. Further,

the fact that spatial and motor learning does not involve excitatory resonance explains

why procedural memory is unconscious (Grossberg, 1999).

Some phenomena of human decision-making under risk are described by affective

balance theory (Grossberg and Gutowski, 1987). This particular theory was derived to

predict conditioning findings, such as the partial reinforcement effect, based on an oppo-

nent process mechanism called the gated dipole. Although this neural network model is

related to ART, affective balance theory is treated as a separate model.

4. Applications

Krafft (2002) rightly characterized ART not as a single model, but rather as a

family of models, each addressing a different problem in cognition. For instance, the old-

est and most basic model is ART1 (Carpenter and Grossberg, 1987a), which was

designed to learn and recognize binary patterns. In contrast, ART2 (Carpenter and Gross-

berg, 1987b) was designed to categorize arbitrary sequences of analog input patterns.

ART3 (Carpenter and Grossberg, 1987c) explores parallel search while specifically

simulating biological processes (i.e., neural transmission). Finally, ARTMAP (Carpenter,

Grossberg, and Reynolds 1991) recognizes arbitrarily ordered vectors of items.

5. Technical Considerations

a. Input and Input Aids

Modelers must completely specify those aspects of the external world that they

wish the ART model to recognize and/or learn. For ART, and for other ANNs, the exter-

nal world is usually a relatively simple stimulus pattern. In contrast, HBR requires little

in the way of initial input. Instead, the system “learns” much of the input information

through training routines.

II-10

Liden (1995) has provided documentation to support the development of ART

models. The document is available for download at the Boston University’s Department

of Cognitive and Neural Sciences and the Center for Adaptive Systems. The Web address

for this document is http://cns-web.bu.edu/pub/laliden/WWW/nnet_doc.html.

b. Model Output and Analysis Tools

The output from ART, as from any ANN, is a pattern of activation. This pattern

can be mapped to particular responses, thereby simulating choice behavior among a

potentially large number of alternatives. Although ART can simulate discrete responding,

it cannot currently simulate continuous control. To our knowledge, no specialized analy-

sis tools are available for analyzing ART output.

c. Computer Language and Interfaces

ART can be downloaded from the ART Gallery (Linden, n.d.) as “a series of C

procedures intended to be called from within other code…” (¶ 1). Three versions of the

procedures—UNIX, DOS, and Visual Basic (for use in MS Windows applications)—are

available. Although these procedures should, in principle, be relatively easy to interface

with other cognitive models and simulations, no examples of such interactions were

found.

6. Evaluation

Of all the HBR models reviewed, ART is the only pure connectionist model—that

is, it has no symbolic components. Although theoretically pure, this aspect of the model

limits its applications to the simplest tasks, such as choice-type behaviors. Anderson et al.

(2002) recently argued that while it may be theoretically possible to simulate symbolic

processing with a connectionist model, it may not be practically possible to do so. They

point out that models that are able to simulate complex behaviors (e.g., continuous con-

trol of aircraft) have major symbolic components.

C. ARCHITECTURE FOR PROCEDURE EXECUTION (APEX)

1. Model Purpose and History of Development

The purpose of the Architecture for Procedure Execution (APEX) is to model

human performance in complex, dynamic environments. APEX supports a variety of

modeling goals, including the development of models to stand in for humans in training

II-11

simulations, the evaluation and design of human-machine systems, the prediction of the

effects of new technologies on human operators, and the exploration of scientific theories

of human performance (Freed et al., 2002). The aspect of APEX that distinguishes it from

other models with similar goals is its explicit emphasis on reducing the expertise and time

required to develop HBR models.

Michael Freed developed APEX as part of his doctoral dissertation at North-

western University, which was completed in 1998. APEX continues to be developed by

researchers at the National Aeronautics and Space Administration (NASA) Ames

Research Center (ARC) and at CMU. Freed and his colleagues are currently trying to

build a network of users and maintain Web pages at two sites:

• NASA ARC: http://human-factors.arc.nasa.gov/apex

• CMU: http://www.andrew.cmu.edu/~bj07/apex.

2. Principal Metaphors and Assumptions

At the highest level of abstraction, APEX comprises two major components: an

action selection system and a resource allocation architecture. The first major component

of APEX, action selection, is based on a Reactive Action Package (RAP) planning

scheme, which was developed by Firby (1989) for AI applications. Although RAP was

not explicitly intended to model human behavior, knowledge in RAP is represented as

tasks (or procedures) organized into a goal hierarchy, a scheme that is consistent with

many theories of human decision-making and problem solving. Freed incorporated RAP

into APEX because of its ability to interleave the execution of multiple tasks in a com-

plex and changing environment.

The second major component of APEX, the resource architecture, represents the

individual elements in the information-processing system, such as perception, cognition,

and motor elements. The architecture models the limitations of those information-

processing elements, which constrain the action selector system. Current resources that

are simulated include those related to cognition, perception, and motor functions.

Resource components are articulated to the extent needed for specific applications. For

instance, a model of kinesthetic sensing might be required for psychomotor-dominated

tasks (e.g., aircraft pilot) but not for cognitively dominated tasks (e.g., air traffic con-

troller). The user has the capability to define additional resources as needed.

II-12

Knowledge elements in APEX are represented as procedures defined by the Pro-

cedure Definition Language (PDL). PDL is a formalism designed to translate the results

from task analyses into a form that APEX can execute. PDL procedures are production-

like constructions, which are roughly equivalent to “methods” in the GOMS model.6

APEX models are based on task analyses where procedures are broken down into smaller

components (e.g., “steps”) that can embed more detailed steps or call other procedures.

The lowest order behaviors in this scheme are termed “primitive actions” and are defined

by the PDL language rather than by task analysis. Currently, seven such primitives are

defined for PDL (Freed et al., 2002).

Procedures in APEX are not necessarily fixed linear tasks. In APEX, the steps of

a procedure can be ordered in three different ways:

1. Serial order. This is implemented in PDL by using a “waitfor” clause so that
one step is the precondition for the next step in sequence.

2. Parallel order. If not under the control of a “waitfor” clause, steps can be
executed simultaneously, subject to resource constraints.

3. Priority order. The priority of a step for a particular resource can be continu-
ously computed so that order is dependent on the current situation. Shifting
priorities can lead to an interruption of ongoing procedures.

3. Cognitive/Behavioral Functions Represented

Currently, vision is the only mode of perception simulated in APEX. Vision is

represented as a feature-extraction process, where each visual object is described by a

fixed set of feature types: color, intensity, shape, orientation, size, position, motion-

vector, and blink rate (Freed, 1998). During visual perception, the visual resource is tem-

porarily blocked. The visual resource model also controls vision by specifying a

restricted field of view, variable acuity, and a time lag between sensing and interpreting

visual information (Freed et al., 2002). The visual perception process is under the control

of the interaction between objects in the external environment and vision resources (i.e.,

bottom-up processes) and of the long-term knowledge and short-term expectations about

the situation (top-down processes). Although the current perceptual model is limited to

6 GOMS (Goals, Operators, Methods, and Selection rules) is the best-known engineering model of
human information processing and performance (Card, Moran, and Newell, 1983). GOMS is described
and discussed in more detail in the context of CCT (see Section II.G).

II-13

vision, the potential exists for users to extend the APEX model to other modes of stimu-

lus input.

Output (i.e., motor) functions are initiated by the start-activity primitive. For each

type of action, a “class” must be defined. This type of action is further defined by two

types of “methods,” update-activity and complete-activity, which describe what happens,

respectively, during and at the completion of the action. Thus, the user can simulate

actions to the level of detail required by the application. Two particular types of outputs

(voice and hand) are predefined in terms of existing resources and innate or standard pro-

cedures (e.g., say and grasp) (Freed, 1998).

APEX simulates the performer at a particular level of competence and does not

simulate the processes or effects of learning. The model does, however, simulate the sim-

ple storage and retrieval of information from memory. The model specifies two types of

memory: a visual memory and a long-term semantic memory. Visual memory is a buffer

for storing the results of visual processing. The primary purpose of this component is to

allow an agent to retain a representation of the visual field after attention shifts to new

locations. Semantic memory is a resource that allows storage and retrieval of long-term

information. Information in memory is either confirmed, revised, or replaced. APEX does

not model memory loss from either decay or through interference.

Decisions in APEX are modeled according to classic decision theory. The process

consists of n steps with the first n – 1 steps describing information acquisition tasks to

obtain relevant information. The nth step is to employ a decision rule that uses the infor-

mation to choose among alternative responses. The number and type of factors consid-

ered may or may not depend on current workload.

APEX is designed for complex, yet highly routinized, procedures—that is, tasks

that have a finite number of known actions and outcomes. As a result, problem solving

and other open-ended tasks cannot be simulated in APEX.

4. Applications

Although the purpose of APEX is to create a general simulation model applicable

to a range of tasks and situations, published research has been limited to a single applica-

tion: air traffic control (ATC).

II-14

5. Technical Considerations

a. Input and Input Aids

The basic input is an analysis of the task(s) to be simulated. GOMS and equiva-

lent task analysis methods appear to be easily translated into APEX code (John, et al.,

2002; Freed and Remington, 2000). The principal aid in translating task analyses into

PDL code is the Apex Reference Manual (Freed et al., 2002).

b. Model Output and Analysis Tools

Sherpa, the graphic user interface (GUI) for APEX, provides a range of services

including starting, stopping, and replaying APEX models. With regard to output, Sherpa

provides a textual trace of APEX models, showing when individual operators stop and

start relative to the initiation time for the entire procedure. These data can then be used to

produce PERT charts. Sherpa can also be used to filter data from multiple runs and then

direct the results to be saved in a file for analysis off line.

c. Computer Language and Interfaces

APEX is free and available for download from the two Web sites identified ear-

lier.7 The system runs under a LISP interface. Separate software distributions apply for

Mac (OS 9), Windows (2000, 1998), and Linux systems for the current version of

APEX (2.2). This version requires MCL or CLISP,8 according to documentation. The

beta version of APEX (2.3) is built on Allegro Common LISP and runs uniformly on

Linux, Solaris, Mac (OS X), and Windows (2000) machines.

In current applications of APEX (for ATC), the simulated world is contained

within the system. However, the architecture includes essential infrastructure for simula-

tion, trace event logging, and mechanisms for interoperating with external simulations

(Freed et al., 2002).

7 NASA ARC (http://human-factors.arc.nasa.gov/apex) and
CMU (http://www.andrew.cmu.edu/~bj07/apex).

8 Common Lisp is a high-level, all-purpose, object-oriented, dynamic, functional programming
language. CLISP is a Common Lisp implementation by Bruno Haible, then of Karlsruhe University,
and Michael Stoll, then of Munich University, both in Germany. It mostly supports the Lisp described
in the American National Standards Institute (ANSI) Common Lisp standard.

II-15

6. Evaluation

The overall goal of APEX is to develop a model that minimizes the time and

expertise required to develop models of humans interacting with machines and their envi-

ronment. It appears that the developers have succeeded, but only for individual tasks of a

highly routine nature. Also, of all the models reviewed in the present study, APEX is one

of the newest and has not been subjected to the scrutiny of multiple applications.

D. BUSINESS REDESIGN AGENT-BASED HOLISTIC MODELING SYSTEM
(Brahms)

1. Model Purpose and History of Development

The Business Redesign Agent-Based Holistic Modeling System (Brahms)9 is an

agent-based simulation tool for modeling the activities of groups in different locations.

The original developers of Brahms were Bill Clancey, Dave Torok, Maarten Sierhuis,

and Ron van Hoof, who were colleagues at NYNEX Science and Technology located in

White Plains, New York. Brahms was first developed from 1992 to 1997, with funding

from NYNEX and in collaboration with the Institute for Research on Learning (IRL) in

Menlo Park, California. The genesis of Brahms has its roots in a practical problem:

implementing a high-speed data line for NYNEX customers. This process required inter-

action between a sales representative and a trunk supervisor and between those people

and critical office equipment (e.g., telephones, faxes). Their interactions were not well

represented in off-the-shelf (OTS) simulations, including cognitive-based models of per-

ception and problem solving and business models of work functions. Brahms was spe-

cifically designed to represent aspects of teamwork that are not found in most models

(e.g., collaboration, “off-task” behaviors, multitasking, interrupt and resume, informal

interaction, and geography).

Project funding for Brahms was discontinued when NYNEX merged with Bell

Atlantic in 1997, at which point the NASA ARC started to fund Brahms development and

applications. The software is owned by IRL, a Silicon Valley-based national research and

development (R&D) center that focuses on learning and innovation for schools and the

workplace. The software is licensed to NASA and is available for research purposes only.

Release of the software for commercial purposes has not been approved. The principals

9 Over the years, the acronym definition has become less relevant. The name is now spelled in upper and
lower case, like Soar, and is now used simply as the product name for a modeling language.

II-16

(Clancey, Sierhuis, and van Hoof) work for Agent iSolutions, a NASA ARC project team

that is developing work systems solutions using agent-based technology. Their Web site

address is http://www.agentisolutions.com/home.htm.

2. Principal Metaphors and Assumptions

In some ways, Brahms can be considered innovative because it uses a multiagent

simulation to represent interactions among people. In other ways, however, Brahms is

quite traditional: Behaviors are organized into hierarchies, and decision-making is repre-

sented by production rules. In terms of scope, it is midway between a macro model of

organizational functions (such as those represented in business models) and a micro

model of cognition (such as Soar or ACT-R) (Sierhuis and Clancey, 1997).

The metaphors and assumptions of Brahms are drawn from three domains: socio-

technical systems theory described by Emery and Trist (1960), activity theory introduced

by Vygotsky in the 1930s and formalized by Leont’ev (1979) and situated cognition

theory by Suchman (1987) and Clancey (1997).

a. Socio-Technical Systems Theory

Socio-technical systems theory is concerned with the relationship between the

social system of humans and the technical systems of the modern workplace. Central to

the notion of a social system is the concept of human work practices, which are defined

as the formal and informal activities of workers as identified by ethnographic techniques.

A work practice refers to “…the collective activities of a group of people who collaborate

and communicate, while performing these activities synchronously or asynchronously”

(Sierhuis et al., 2000, p. 100). This concept of work differs from Frederick W. Taylor’s

classic conceptions in that work is not defined solely by inputs and outputs, but instead

focuses on the workers’ actual behaviors and processes, especially those processes related

to social interactions among workers. Brahms represents work practices as the actions of

autonomous software agents that are expressly designed to capture those interactions.

b. Activity Theory

In a recent publication, Clancey (2002) asserts that most cognitive models incor-

porate the meta-assumption that cognition and behavior can be described as tasks to be

accomplished or problems to be solved. He argues that this assumption is, at best, seri-

ously deficient and proposes that the alternative to task-based analysis of overt and covert

II-17

behavior is one based on activities. Clancey defines activities as socially meaningful and

located behaviors that take time, and usually involve interaction with tools and the envi-

ronment. Activity-based analyses allow researchers to account for a variety of important

behavioral and cognitive phenomena that are not well captured in traditional models,

such as off-task activities (e.g., waiting), nonintellectual motives (e.g., hunger), sustain-

ment—as opposed to active pursuit—of goal states (e.g., playful interaction), and coupled

perceptual-motor dynamic actions (e.g., following someone).

According to Clancey (2002), consciously monitored task performance and prob-

lem solving is but one of four types of operations, or physical behaviors, that are sub-

sumed by activity theory. The other three are unconscious sequences of performance (i.e.,

automated processes), ritualized sequences of performance (i.e., scripts), and consciously

sustained dynamic relations (e.g., conversations, reading for pleasure, Web browsing).

The fundamental unit of activity is the “frame,” which is a sociocultural construct that

makes behavior meaningful. The two types of frames in Brahms are (Clancey et al.,

1998):

1. Workframes. The most central representational unit in Brahms is work-
frames, which are implemented as situation-action rules that describe top-
level activities that may potentially be performed by individuals or members
of defined groups.

2 . Thoughtframes. The covert equivalent of workframes is thoughtframes,
which model reasoning or thinking processes that have implications for agent
beliefs.

c. Situated Cognition

The central concept of situated cognition is that cognitive structures and processes

are not independent of the contexts in which they are used. The strong interpretation of

this statement is that the influence is so great that symbolic cognitive representations or

descriptions are irrelevant and should be replaced by systems that react directly to the

environment without the intervention of such descriptions. In contrast to this strong inter-

pretation, Clancey (1993) espouses a weak interpretation of situated cognition that

recognizes the value of symbolic models for understanding behavior. He maintains that

the mistake made by symbolic modelers is that they confuse the abstract representations

of cognition for cognition itself. For instance, although deliberation can be modeled as an

internal process that links perception and action, the neurophysiological reality is that it is

more like a cycle of coordinated sensory-motor acts. The acts may call on some sort of

II-18

stored knowledge, but the very act of remembering “reinvents” the knowledge in light of

the new situation. Strong and weak interpretations of situated cognition agree that

research (as well as computational models) should be based on ethnographic methods that

focus on the analysis of behavior in a real-world context.

3. Cognitive/Behavioral Functions Represented

Consistent with the situated cognition point of view, internal representations of

cognition or perception are minimized in Brahms. At the same time, Brahms is a rea-

sonably comprehensive modeling language in which users can embed internal structures

and processes as needed. However, the developers caution that incorporating internal

components to Brahms agents causes decreased model parsimony and increased com-

puter processing time. Another impediment is that the developers provide no library of

cognitive subroutines or advice in developing such components.

The processes and products of perception and attention are modeled through

detectables. In Brahms, a detectable is a production rule that defines the states of the

world (facts, in Brahms) that can be noticed by human agents. When detectables are acti-

vated, two things happen:

1. The observed facts about the world become incorporated as beliefs of the
agent.

2. These beliefs are matched against the conditions portion of the detectable
production rule, which may affect the ongoing activity (workframe, in
Brahms) by initiating one of the following actions: continue, abort, complete,
impasse, and end-activity.

Perception is modeled as an errorless process in that facts are translated directly into

beliefs.

Actions are also modeled errorless processes. Overt actions occur in the context

of a workframe, a rule-based construct that organizes agent activities. A workframe com-

prises three components: preconditions, which ensure that an activity occurs in appro-

priate circumstances; actions themselves, which take time and may consume resources;

and the consequences of those actions, which are expressed as changes to facts or beliefs.

Only one workframe is active at any one time. However, activity in a workframe

can be interrupted at any time to start or continue another one. Then, under the appropri-

ate conditions, the interrupted workframe can be continued at some later time. The intent

is to model the situated nature of multitasking behavior: “People are always working on

II-19

many different activities, but our context forces us to be active in only one. However, at

any moment, we can change focus and start working on another competing activity, while

queuing others” (Acquisti et al., (2001, p. 4-130).

Stored knowledge (i.e., memory) is modeled as a set of beliefs. These are encoded

as first-order propositions stating facts that the agent regards as being true or false.

Brahms does not provide for second-order beliefs—that is, beliefs concerning other

agent’s beliefs. In other words, beliefs are local to agents, in contrast to facts, which are

general states of the world. Agents start with an initial set of beliefs that are changed as

the simulation is executed. Beliefs can be changed as a consequence of actions taken,

changes in world states (facts) that are detectable by agent, and communications with

other agents. Brahms does not distinguish between short- and long-term knowledge stor-

age or states.

Reactive decision-making is modeled in Brahms using thoughtframes, which are

similar to workframes but entail no overt action. Using production rules, thoughtframes

provide the mechanisms through which agents make inferences about the world. In con-

trast to workframes, thoughtframes consume no time or resources.

Social interactions are explicitly modeled in Brahms in that human agents interact

with objects in the world and with other agents. The most direct method of interaction

among agents is through communication, which is modeled as either requesting or

receiving beliefs from another agent. (An agent does not have to request communication

to receive it.) In agent-to-agent communication, the message sender and the target are

specified. A variant form of communication is broadcasting, where an agent transmits

beliefs to all agents in a predefined area. Like perception, communication is a direct

transmission of beliefs that are instantaneous and errorless.

4. Applications

The original applications of Brahms were for modeling business work practices at

NYNEX. Two detailed models were created: “front-end” order processing at the Business

Network Architecture Center of NYNEX and “back-end” coordination required to make

and prioritize assignments of service technicians to jobs (Clancey et al., 1998). To extend

the model to a completely different setting, Brahms was also used to describe the coordi-

nation of patient visits to an outpatient clinic in a large healthcare maintenance

organization.

II-20

Since the move of Brahms and support personnel from NYNEX to NASA ARC,

the modeling has concerned space-related missions. Brahms has been used to model the

following situations:

• Interactions between crewmembers and the Personal Satellite Assistant (PSA),
a softball-sized flying robot designed to operate autonomously onboard
manned spacecraft in pressurized micro-gravity environments (Bradshaw et
al., 2001).

• Operations during the proposed Victoria mission to the South Pole of the
Moon that will employ a semi-autonomous robotic rover (Sierhuis, Clancey,
and Sims, 2002).

• Offloading activities related to the Apollo Lunar Surface Experiments Pack-
age (ALSEP) on the Apollo 12 mission (Sierhuis et al., 2000).

• Activities aboard the Flashline Mars Arctic Research Station (FMARS), a live
simulation of a Martian-manned mission conducted in the Canadian arctic
(Clancey, 2002).

5. Technical Considerations

a. Input and Input Aids

In contrast to individual cognitive models, which are based on detailed task analy-

ses, the fundamental inputs for Brahms are gained through ethnographic techniques (i.e.,

observing while participating in the work setting). Video analysis of everyday work set-

tings provide an essential source of data. The Brahms group (e.g., Sierhuis, Clancey, and

van Hoof, 1999), from their earliest work, has emphasized the importance of including in

the design team the people being studied to provide the primary context for developing

and using models. Clancey (2002) performed a variation on this theme when he (the

modeler) joined the work team of people being studied for the FMARS project. In that

regard, Sierhuis (1996) provided a discussion of ethnographic techniques appropriate for

Brahms development.

Input to Brahms is organized by component (sub)models. According to the

Brahms Tutorial (Acquisti et al., 2001), the typical simulation can be organized into

seven component models:

1. Agent model. The groups (of people, usually), individual agents (people),
and their interrelationships

II-21

2. Activity model. The activities that can be performed by agents and objects
(inanimate artifacts)

3. Communication model. The communication among agents and between
agents and objects

4. Timing model. The temporal constraints and relationships between activities

5 . Knowledge model. The initial beliefs and thoughtframes of agents and
objects

6. Object model. The objects (artifacts) in the world used as resources by
agents or used to track information flow

7. Geography model. The specification of geographical areas and potential
paths in which agents and objects perform their activities.

Brahms’ models are developed, implemented, and otherwise supported by inte-

grated software known as Personal Agent. This software kit includes Brahms Builder and

Brahms IDE (Integrated Development Environment). Both are used to support the devel-

opment of Brahms models. The older Builder software will eventually be replaced by the

newer IDE software, but Builder currently has functionalities that IDE does not yet have,

so the developers are supporting both.

b. Model Output and Analysis Tools

Although Brahms could be used to produce quantitative performance measures,

the developers suggest that it be used in a qualitative fashion. For instance, Clancey et al.

(1998) suggest that the Brahms users should regard its runs as a “theatrical play” that one

views and critiques in a holistic and qualitative fashion. To facilitate this process, Brahms

includes the AgentViewer application, which is a stand-alone Visual Basic application.

AgentViewer parses the results of Brahms run, which have been saved as a MicroSoft

Access relational database, and displays it as a two-dimensional (2-D) graphic time line

(Acquisti et al., 2001) showing the activities of all agents and objects.

c. Computer Language and Interfaces

Brahms is an agent-based, as opposed to an object-based, programming language

(Acquisti et al., 2001). The current version is written in Java. The original version was

written in G2, expert systems software produced by Gensym.

Brahms has no interfaces with military simulations or with other cognitive mod-

els. However, Brahms has been integrated with CONFIG, a heterogeneous system for

II-22

modeling interactive physical components and controls. The integrated Brahms/CONFIG

system has been used to simulate the Mars space habitat, where Brahms simulates the

physical layout and the work practices pertaining to this environment and CONFIG pro-

vides a simulation of the habitat’s life support system (Clancey and Malin, 2002).

Brahms developers are currently developing a Java-based interface with Adobe Atmos-

phere to provide three-dimensional (3-D) depictions of simulations.

6. Evaluation

The key strength of Brahms is its ability to model social as well as man-machine

interactions in complex environments. The fact that Brahms has modeled complex socio-

technical environments, such as NASA missions, suggests that it would be highly appli-

cable to military scenarios requiring collective action, such as tactical planning and

preparing. Also, the unique theoretical position inherent in Brahms allows its models to

capture those kinds of work activities that are not well represented in traditional goal-

driven cognitive models, such as waiting or following others.

Brahms does not incorporate a detailed model of internal cognitive structure or

process. However, proponents note that the open-systems approach allows the incorpora-

tion of more sophisticated models of cognition as needed. It would seem that the Brahms

model, which is strong on social interactions but weak on individual cognition, would

make a perfect match with Soar or ACT-R, which are strong on individual cognition but

weak on social interactions. The lack of collaboration is somewhat surprising.

Finally, in some senses, Brahms is a traditional HBR model in its use of software

agents and production rules. However, it is very innovative in its incorporation of new

concepts of behavior and cognition, such as activity theory and situated cognition. Some

readers find the theoretical aspects of Brahms to be thought-provoking and original.

Others find the theory overly difficult because it is not well related to extant HBR

theories.

E. COGNITION AND AFFECT PROJECT (CogAff)

1. Model Purpose and History of Development

The Cognition and Affect Project (CogAff) is a multidisciplinary project main-

tained at the University of Birmingham (United Kingdom) by Aaron Sloman and his col-

leagues in the School of Computer Science and by Glyn Humphreys in the School of

II-23

Psychology. The primary purpose of CogAff is to understand how humans and other

animals work. A secondary purpose is to discover how intelligent software agents can be

improved.

The CogAff group was started in 1991 by Aaron Sloman, in collaboration with

Glyn Humphreys. The associated SimAgent toolkit was introduced in October 1994.

CogAff and SimAgent were largely based on work that Sloman had done previously at

the University of Sussex, where he was Director of Poplog development, a multilanguage

AI environment incorporating Pop-11, Common LISP, Prolog, and Standard ML. Some

of the earliest work on CogAff dates to a 1981 paper by Aaron Sloman and Monica

Croucher. Some of the initial funding for the toolkit was provided by the UK Joint

Research Council Initiative on HCI and Cognitive Science (1992–1995), the University

of Birmingham (1994–1995), and DERA (1994–1998). More recent support has come

from Leverhulme and Sony.

Sloman and the University of Birmingham continue to support the CogAff pro-

ject. The Web site address is http://www.cs.bham.ac.uk/~axs/cogaff.html.

2. Principal Metaphors and Assumptions

The developers insist that CogAff is not a cognitive architecture per se but rather

a conceptual space for describing existing and even potential cognitive architectures. For

instance, H-CogAff is an example of a specific architecture derived from CogAff that

describes an architecture for human cognition.

The H-CogAff space is described in terms of two dimensions. The first dimension

defines three “layers” of cognition, which correspond roughly to stages in evolutionary

development:

1. Level 1 is the oldest layer and comprises reactive mechanisms. It is defined
mainly negatively since this level lacks the ability to represent and to com-
pare or evaluate future actions and consequences of those actions. These
mechanisms are commonly modeled as condition/action rules but could be
modeled by neural nets or chemical mechanisms. It can be shown that such
mechanisms can lead to complex behaviors but at the cost of explosive stor-
age requirements and/or excessive training or evolution time. Sloman specu-
lates that these mechanisms are largely determined by genetics, with few
changes produced by learning.

2. Level 2 is a newer layer that comprises deliberative mechanisms to generate
“what-if” inferences. These mechanisms enable planning, predict future

II-24

occurrences, and explain past occurrences. These functions require composi-
tional representational capabilities, an associative store of reusable generali-
zations, and a WM for storing plans and comparing options.

3. Level 3 is the newest layer and comprises reflective or meta-management
processes. These processes concern emotions that result from self-observa-
tion and self-monitoring skills. Because these skills involve voluntary control
of thought processes, they are thought to be uniquely human.

The second dimension, the so-called “triple towers,” concerns the three stages of

information processing: perception, central processing, and action. The concept is that

information flows through the organism from sensors to motors, with some internal pro-

cessing intervening between input and output (Sloman, 2003). The flow does not always

proceed in that particular order, however. It may flow from internal to sensory processing

in the case of conceptually driven perception. It may also skip internal processing alto-

gether in the case of highly overlearned reactions.

The triple layers and triple towers combine to form a 3 × 3 matrix. This structure

implies that specific information-processing systems have evolved for each of the layers

of development. For example, Sloman (2003) speculated that primates have developed

perceptual systems for view-invariant object recognition to abstract reasoning. However,

an ordered flow through the matrix—such as information entering a low level,

proceeding up a hierarchy of abstraction, and then back down for responding—is not

assumed. Nor does the model assume subsumption, where higher levels of information

processing have control of lower ones. Rather, the architecture is depicted as a labyrinth

with many alternative paths.

A central notion of the theory is that emotion is not a general state with associated

numerical parameters; rather, it is a semantic process—that is, a product of information

processing. The theory gives rise to three types or levels of emotions:

• Primary emotions are the products of reactive mechanisms. Sloman (2001)
labels these as “proto-emotions” (e.g., freezing, fighting, fleeing, attending,
and mating), which result from direct stimulation and have no components of
self-awareness.

• Secondary emotions are the result of deliberative processes and can thus be
evoked by events that did not happen. Examples include anticipation, appre-
hension, and hope. Secondary emotions (e.g., frustration) can also be evoked
when deliberative processes are interrupted (perturbed) by primary emotions.

II-25

• Tertiary emotions are higher order concepts such as adoration and humilia-
tion, which require reflection on the deliberative processes. Tertiary emotions
are also caused by interruptions or diversions (perturbances) of deliberative
processes.

3. Cognitive/Behavioral Functions Represented

Perceptual and motor functions are represented as stages in the model. Further-

more, just as different types of emotions correspond to the three layers of cognition, dif-

ferent classes of perceptual and motor functions correspond to those levels (Sloman,

2003). For instance, perceptions serving reactive mechanisms may need to be sensitive to

fine external detail, whereas perceptions serving abstract deliberative mechanisms must

perceive larger patterns (i.e., “chunks”) of information. Likewise, motor responses asso-

ciated with reactive systems may be simple, unmediated, and direct reactions to input,

whereas responses associated with abstract systems may be more complex, receiving

input from a variety of layers and requiring translation (unpacking) before execution. The

exact nature of the perceptual and motor systems within CogAff is not specified,

however.

Memory functions also differ with regard to the three layers of cognitive pro-

cessing. The reactive layer corresponds to stimulus-response behaviors and requires no

internal memory. Alternatively, the environment is used as memory. A short-term reus-

able WM is a key component of the deliberative layer, where the human performs “what

if” analyses before responding. In addition to WM, the deliberative layer also uses a

content addressable LTM to extend the analyses beyond the immediately perceived

world. LTM becomes even more important for the reflective layer because of its abstract

quality.

Based on Sloman’s (2003) arguments that humans can perform tasks simultane-

ously, CogAff employs multiple independent agents to model parallel task performance.

Although the model does not include features to simulate social phenomena, the fact that

the architecture comprises multiple independent agents implies that this capability could

be developed.

The model does not include specific modules for learning, decision-making,

problem solving, or other cognitive functions. However, with effort, a user could develop

these functions within the intelligent agent architecture of the model.

II-26

4. Applications

CogAff’s developers regard it primarily as a research project and secondarily as

an engineering project. Consequently, few practical applications of the project have been

attempted. The agents presently occupy very simple worlds. More complexity is planned

for the future. At the same time, the developers feel that CogAff with its SimAgent

toolkit has several potential practical applications, including “...the design of intelligent

software of many kinds (e.g., factory controllers, personal assistants, teaching systems,

hazard warning systems, aids to managing disasters, etc.) [and the] design of more

‘believable’ agents in computer games and entertainments” (Sloman, 2002, ¶ 5).

5. Technical Considerations

a. Input and Input Aids

CogAff models are developed and implemented using the SimAgent toolkit. The

toolkit was developed in the Poplog software environment, which is an extension of the

Pop-11 language and includes several other languages: Common LISP, Prolog, and Stan-

dard ML. The toolkit includes three components:

1. Poprulebase. This is written in Pop-11, a forward chaining production sys-
tem that includes a module for developing neural nets and other nonsymbolic
systems

2. The Sim agent library. This is a Pop-11 extension that permits the design
and implementation of reusable extendable software modules

3. RCLIB package. This is a Pop-11 extension that is a graphics library for
building graphics demonstrations and complex graphics control panels.

The SimAgent toolkit is available from the University of Birmingham School of Com-

puter Science Web site: http://www.cs.bham.ac.uk/~axs/cog_affect/sim_agent.html. The

download is free.

b. Model Output and Analysis Tools

The CogAff model does not appear to have specialized output or analysis tools.

However, the people associated with Pop-11 and Poplog projects formed Integral Solu-

tions Limited (ISL), which first produced the Clementine Data Mining System in 1994.

In fact, Clementine was written mostly in Pop-11.

II-27

In 1998, ISL was purchased by SPSS, Inc., a leading supplier of desktop business

analysis and data mining software. This alliance integrated Clementine with a suite of

numeric and graphic statistical techniques. It would appear that supplementing CogAff

with Clementine and SPSS analysis tools would result not only in a desirable product, but

also a practicable one to develop.

c. Computer Language and Interfaces

The SimAgent toolkit was developed in the Poplog environment and is written

mostly in Pop-11. Software for Poplog is available at a University of Birmingham

(United Kingdom) Web site: http://www.cs.bham.ac.uk/research/poplog/freepoplog.html.

The software runs on a variety of UNIX and Linux systems. A personal computer (PC)

version of SimAgent is available but does not include the graphics component (RCLIB).

6. Evaluation

The potential scope of CogAff is impressive. One of the more interesting aspects

of CogAff is the integration of emotional and cognitive processes. Another strong point

of the model is that it is based on a long history of computer science applications in intel-

ligent agents.

On the negative side, the developers provide very little in the way of aids for

developing CogAff models. This may be the primary reason that practical applications of

CogAff to date are few when compared with Soar or ACT-R.

F. COGNITION AS A NETWORK OF TASKS (COGNET)

1. Model Purpose and History of Development

Cognition as a Network of Tasks (COGNET) is a symbolic computational model

of cognition. In contrast to many models reviewed in this study, the primary purpose of

COGNET is not to test psychological theories; rather, the goal of COGNET is “…to

facilitate the cognitive task analysis and description of specific work domains” (Zachary,

Ryder, and Hicinbotham, 1998, p. 16).

COGNET was developed by Wayne W. Zachary, an anthropologist and computer

scientist, to serve as the focal product for CHI Systems, Inc., a company that he founded

in 1985. The model dates to a 1989 report by Zubritsky and Zachary on the description of

the requirements of anti-submarine warfare (ASW). The user model in the ASW

II-28

application was subsequently used to develop an intelligent, adaptive computer interface

for the tasks (Zachary et al., 1990; Ryder and Zachary, 1991).

In 1996, CHI Systems announced the development of the Generator of Interface

Agents (GINA), which was a software workbench for developing intelligent agents based

on the COGNET theory (Zachary, Le Mentec, and Schremmer, 1996). GINA continues to

provide an R&D tool for COGNET. A commercial version of GINA, called iGEN™, is

currently being marketed by CHI Systems. Brief descriptions of iGEN™ and COGNET

are provided at the CHI Systems Web site: http://www.chiinc.com/.

The most recent version of the modeling system is COGNET-P (Zachary, Ryder,

and Le Mentec, 2002). The developers contended that previous versions of COGNET

modeled human competency. COGNET-P was specifically designed to model perform-

ance and included mechanisms for incorporating time and accuracy constraints. The

model also included a metacognition component that accounts for executive control of

cognitive processes and self-awareness of some of the processes.

2. Principal Metaphors and Assumptions

COGNET models complex cognitive behavior by assuming that humans are cap-

able of performing multiple tasks simultaneously. The COGNET model is a symbolic

computational model that processes information serially; however, at any one time, the

model allows several tasks to be in various states of completion, but only one of these

tasks is actually executing. Thus, with rapid attention switching, COGNET simulates par-

allel processing.

The overall framework separates internal processing mechanisms from explicitly

represented knowledge. This internal information-processing system, called Blackboard

Architecture for Task-Oriented Networks (BATON), is generic since it applies to all

types of tasks. BATON is subdivided into three subsystems:

1. A sensory/perceptual subsystem for converting incoming physical data into
symbolic information that can be used by the information-processing system

2. An internal cognitive subsystem that constructs and operates on a mental
model of the world

3. An action/motor subsystem for manipulating the external world.

The perceptual and cognitive subsystems are linked by a critical information store

called “extended working memory,” which subsumes STM, LTM, and WM stores

II-29

postulated in most models of human memory.10 This memory provides a temporary store

for all knowledge required to perform the task. The COGNET architecture includes a

formal model for representing all forms of task knowledge, which can be subdivided into

four parts:

1. A network of tasks expressed as compiled GOMS11 goal hierarchies for rep-
resenting chunks of procedural knowledge

2. Perceptual demons that perceive the external world in parallel and “shriek”
for the attention of the cognitive processor [incorporated from Selfridge’s
Pandemonium model of attention (1959)]

3. A multipaneled blackboard for representing and organizing the declarative
information relating to the problem

4. Actions that provide mechanisms for having an effect on the world.

3. Cognitive/Behavioral Functions Represented

Perceptual and motor functions in COGNET are not modeled according to a spe-

cific theory. Rather, perceptual and motor functions are modeled according to a simula-

tor-centric approach (Le Mentec et al., 1999). According to this notion, which was

developed specifically for integrating COGNET agents into simulations, all to-be-

perceived information is represented as objects associated with specific perceptual func-

tions that are called whenever an object is made available by the simulation. The user is

free to insert characteristics, such as decay from iconic store, as part of those functions.

Similarly, actions are simply modeled with two attributes: time to complete the act and

physical response resource (e.g., right/left arm or leg). A COGNET metacognitive mod-

ule tracks response resources. Again, more complicated response phenomena can be

modeled if desired.

Although perceptual and motor functions are represented in COGNET, this model

is probably better suited for contemplative, open-ended tasks that are not strongly per-

ceptualmotor in nature. For instance, COGNET is inappropriate for fast-paced tasks

demanding psychomotor skill, such as tank gunnery. However, COGNET is particularly

10 Zachary, Ryder, and Le Mentec (2002) do not deny that STM/LTM effects exist; rather, they contend
that the distinction between the two types of memory stores is unnecessary to model cognitive
processes.

11 GOMS (Goals, Operators, Methods, and Selection rules) is the best-known engineering model of
human information processing and performance (Card, Moran, and Newell, 1983). GOMS is discussed
in more detail in the context of CCT (Section II.G).

II-30

well suited to modeling complex time-constrained, multitask situations that require per-

formers to switch the focus of their attention repeatedly.

The rule-based task knowledge components of COGNET provide the capability to

model cognitive processes, such as problem solving and decision-making. The semantic

frameworks instantiated in COGNET’s blackboard provide the means with which the

system acquires and maintains SA (Hicinbotham, 2001).

Metacognitive functions are included in COGNET-P, the most recent version of

COGNET. These functions permit the user to model self-awareness phenomena, such as

subjective workload (Zachary, Ryder, and Le Mentec, 2002). The metacognitive control

functions, together with the ability to model independent cognitive agents, also provide

the capability, at least in principle, to model coordination among multiple team members

(Zachary and Le Mentec, 2000).

4. Applications

The original applications of COGNET were in vehicle-tracking tasks in the con-

text of ASW (Zubritsky and Zachary, 1989) and ATC (Seamster et al., 1993). COGNET

has since been used commercially to design interfaces for telephone operators (Ryder et

al., 1998) and as the basis for an intelligent tutoring system embedded in a shipboard tac-

tical air defense system (Zachary et al., 1999).

5. Technical Considerations

a. Input and Input Aids

COGNET input and output is managed through the iGEN™ set of software tools,

which include the following capabilities:

• The COGNET Graphical Representation (CGR) model and other tools for
creating and editing user models

• Tools for debugging and testing user models

• A module for translating the CGR model to a COGNET Executable Lan-
guage (CEL), which can be run on the execution engine and compiled as an
intelligent “kernel.”

II-31

b. Model Output and Analysis Tool

A fourth iGEN™ capability is a communications “shell.” This shell includes an

application programming interface (API) that links the compiled kernel with the specific

application environment, which may be a training simulation or an external environment

created in COGNET. This shell also includes the capability to script interactions between

the BATON cognitive engine and the environment.

c. Computer Language and Interface

COGNET and iGEN™ were written in C/C++ and can be run on a variety of plat-

forms, including Microsoft Windows, Macintosh, and UNIX-based operating systems.

According to Emmerson and Nibbelke (2000), proficiency in iGEN™ modeling is diffi-

cult, but the system provides more help and documentation and is more user friendly than

comparable cognitive models.

6. Evaluation

Of the cognitive models, COGNET is perhaps one of the more practical ones

because it is focused on engineering applications as opposed to theory building. One of

the principal advantages of COGNET is its “shell,” which allows users to interface with

other applications, including models and simulations. As pointed out by Emmerson and

Nibbelke (2000), the COGNET model and other applications can reside on different

machines that communicate through the Transmission Control Protocol/Internet Protocol

(TCP/IP) or an analogous procedure.

G. COGNITIVE COMPLEXITY THEORY (CCT)

1. Model Purpose and History of Development

In a 1985 paper, David E. Kieras and Peter G. Polson (1985) introduced Cognitive

Complexity Theory (CCT) as an elaboration of the Card, Moran, and Newell’s (1983)

concepts of GOMS (Goals, Operators, Methods, and Selection rules) and the MHP

(Model Human Processor). The purpose of CCT is to provide the theoretical basis for an

engineering mode of interface design.

CCT provides the theoretical base for a GOMS analysis tool, called Natural

GOMS Language or NGOMSL. Several similar analysis tools, such as the Keystroke-

Level Model, Card-Moran-Newell (CMN) GOMS, and Cognitive-Perceptual-Motor

II-32

(CPM) (John and Kieras, 1996), derived from GOMS are used to support the design of

interfaces. NGOMSL differs from the other tools in that it is based on an explicit model

of cognition, albeit a simplified and highly constrained one, that enables such tools to

predict performance, learning, and transfer phenomena.

The simple CCT model provides the theoretical basis for NGOMSL. In contrast,

the follow-on executable forms of NGOMSL—GOMS Language (GOMSL) and, the

more recent version, GOMS Language Evaluation and Analysis-3 (GLEAN3)—are based

on the more complex and comprehensive EPIC cognitive architecture (Kieras, 1999).

Nevertheless, CCT remains a simple and useful model of cognition that represents human

performance on certain types of serial tasks.

2. Principal Metaphors and Assumptions

CCT is based on Card, Moran, and Newell’s (1983) concept of GOMS, which

models human performance using four major constructs: Goals, Operators, Methods, and

Selection rules. The GOMS and CCT models assume that human action is oriented and

organized to achieve specific goals. The elemental actions required to reach those goals

are operators. Operators, in turn, are organized into related sets called methods. Opera-

tors can refer to elemental perceptual or motor acts or may call other methods that are

oriented to subordinate goals of performance. Thus, human performance is organized to

satisfy a hierarchical structure of goals and subgoals. The fourth GOMS construct, selec-

tion rules, is invoked when multiple methods exist for accomplishing a specific goal.

The CCT model comprises two major components (Bovair, Kieras, and Polson,

1990): a device model, which is modeled as a generalized transition network (Kieras and

Polson, 1985), and a user model, which is the more important component that models the

user’s knowledge as task methods and operators. CCT represents these user model ele-

ments as production rules, with the stipulation that they be executed in strict sequential

order. In addition to representing external primitive acts, productions also alter the con-

tents of WM. According to the theory, the productions are the fundamental units of cog-

nition. Productions are also assumed to be equally difficult to learn and can be transferred

to a new task at no cost in task performance. Task “complexity” is defined by counting

individual productions, which can be done at least three ways:

1. Number of production rules in LTM (index of learning difficulty)

2. Number of cycles in WM (index for difficulty of use)

3. Number of shared productions among systems (index of transfer).

II-33

3. Cognitive/Behavioral Functions Represented

CCT represents sequential task performance only and, consequently, does not

incorporate many complex cognitive or behavioral functions. Perceptual and motor func-

tions are simply represented by external operators that exchange information between the

simulated user and simulated environment. Perceptualmotor phenomena, other than basic

temporal relations, are not represented. Likewise, attention and situational awareness are

not represented in CCT. Kieras and Polson (1985) explicitly excluded cognitive processes

from the model because they felt that the large increase in model complexity would not

be accompanied by a corresponding gain in understanding the cognitive complexity of

interface design.

Nevertheless, CCT provides several “built-in” mental operators to represent cov-

ert cognitive processes. For instance, CCT has mental operators for aiding the basic

decision-making process, for setting up a new goal, and for storing and retrieving ele-

ments from memory. However, CCT does not provide a representation for acquiring

these elements in the first place—that is, it provides no model of learning.

With respect to memory, CCT distinguishes between LTM and WM. LTM is rep-

resented as a set of production rules. WM, in contrast, is represented declaratively as a

list of attributes and values. WM can be directed to drop information (“forget” com-

mand), but information is not automatically lost from WM. Also, WM capacity is not

explicitly limited. The developers advise users to examine WM contents and exchanges

during model runs to determine cognitive load, which is defined as the number of extant

goals in WM at any point in time.

4. Applications

Most applications of CCT and NGOMSL have been related to HCI. Initially, CCT

was used to evaluate the cognitive complexity of text editing and menu systems (e.g.,

Polson, Muncher, and Engelbeck, 1986). NGOMSL was subsequently used to study the

interactions of humans and full-sized Macintosh software for the computer-aided design

(CAD) of factory workstations (Gong and Kieras, 1994; Kieras, Wood, et al., 1995).

More recently, GLEAN has been used to generate initial estimates of task times

for an air defense officer operating a Navy Aegis watch station (Freeman et al., 2002).

GLEAN was used early in the design process, employing a notional interface. Time

II-34

estimates were then passed onto other more complex models to further refine the design

requirements.

5. Technical Considerations

a. Input and Input Aids

CCT models require the user to provide three categories of information in struc-

tured formats:

1. A set of task instances that describe the performance requirements, including
relationships among task methods and goals

2. A specification of general and specific knowledge required to interact suc-
cessfully with the interface expressed in a modified production rule format

3. An abstract representation of device states and transitions.

One of the explicit purposes of developing CCT and NGOMSL was to facilitate

human model development. Kieras (1994) noted two problems with related models. First,

production-system computer languages [e.g., the Parsimonius Production System (PPS)]

are difficult to use because of their excessive abstraction and detail (much like an assem-

bler computer language). Second, task analyses are not performed in a standardized and

reliable manner. NGOMSL was developed to address both issues, and, although its fea-

tures were developed especially for CCT, NGOMSL can be used to develop any sort of

GOMS model. With regard to user support, Kieras (1994, 1996) has produced two manu-

als that detail the procedures for developing models of HCI using NGOMSL.

b. Model Output and Analysis Tools

GOMSL, the computer-executable variant of NGOMSL, is designed to be used

with a software utility called GLEAN (GOMS Language and Analysis). The original ver-

sion of GLEAN was explicitly based on CCT (Kieras, Wood, et al., 1995), but the newest

version, GLEAN3, is grounded in EPIC, which is a more comprehensive cognitive

architecture than CCT (Kieras, 1999). (EPIC is discussed in some detail in Section II.L of

this paper.) Downloads of GLEAN and support documents are available at David E.

Kieras’s GOMS Web site: http://www.eecs.umich.edu/~kieras/goms.html.

GLEAN provides detailed output regarding model execution, including the capa-

bility to trace the sequence of methods (steps) executed, the contents of WM, and the

II-35

state of the simulated device. In addition, the final output includes the frequency, average

time, and total execution time of each operator and method (Kieras, Wood, et al., 1995).

Based on formulae derived by Kieras (1994), GLEAN also provides some per-

formance predictions, including the following:

• Task execution time, based on the total number of productions to be
performed

• Procedure learning time, based on the number of new productions to be
learned

• Transfer of training, based on the number of productions shared by the origi-
nal and transfer tasks

• Time to memorize, based on the number of chunks required to learn.

c. Computer Language and Interfaces

The original version of GLEAN was implemented in Macintosh Common LISP.

The newest version (GLEAN3) is written in C++. GLEAN3 models can be composed to

operate two in two modes. The first mode is like a stand-alone simulation tool, where

device functions are simulated within the GLEAN system. This mode is the standard ver-

sion and requires the user to know NGOMSL. The second mode is an advanced mode,

where the user employs a library of class definitions that support developing multiple,

fully interactive devices and multiple humans. No additional programming support is

available for this mode, which requires that the user be fully conversant in C++ object-

oriented programming.

6. Evaluation

Based on the popular MHP and GOMS, CCT provides a simple, concise, and

face-valid model of human cognition. However, its simplicity leads to problems. First,

the CCT model is limited to a constrained category of tasks: man-machine interface pro-

cedures that are strictly sequential. Second, important aspects of cognition, especially

input and output processes, are not modeled in any detail. Both of these problems are

addressed in GLEAN3 (Kieras, 1999); however, the underlying model for GLEAN3 is

the more complex EPIC model, not CCT.

Parallel comments can be directed toward the modeling tools. The GLEAN code

is conceptually simple and well documented. On the other hand, the code is a bit cluttered

II-36

with “housekeeping statements” (e.g., responses to procedure calls, declarations, returns),

which have no psychological significance.

H. COGNITIVE OBJECTS WITHIN A GRAPHICAL ENVIRONMENT
(COGENT)

1. Model Purpose and History of Development

Cognitive Objects within a Graphical EnviroNmentT (COGENT) is a modeling

system for developing and exploring models of cognitive processes. It was developed by

Rick Cooper, John Fox, and their colleagues at the School of Psychology, Birbeck Col-

lege (London) and at the Advanced Computational Laboratory, Imperial Cancer Research

Fund.

COGENT evolved from a project named “Abstract Design Rendering Executable

Models” (AD REM) that spanned from October 1990 to October 1995. The purpose of

AD REM was to develop a standardized method to model cognitive structures and pro-

cesses. The principal outcome of that project was an object-oriented version of Sceptic, a

high-level simulation language for modeling cognition (Cooper, 1995). The COGENT

project started in 1996 upon the completion of AD REM and is presently supported by

the United Kingdom’s Engineering and Physical Sciences Research Council.

Downloads of COGENT are available at a Web site maintained by the School of

Psychology at Birbeck College (London): http://cogent.psyc.bbk.ac.uk. Version 2.1 was

released on October 26, 2001, and a beta release of Version 2.2 became available on

September 20, 2002, and continues to be developed. Both versions are available in two

releases: a student release, which can be downloaded for free and used for academic and

noncommercial use, and a professional release for other uses.

2. Principal Metaphors and Assumptions

In contrast to models such as Soar and ACT-R, the sole intent of COGENT is to

provide tools for cognitive modeling, not to provide an overall architecture for cognition

(Cooper, Yule, and Sutton, 1998). Although relatively atheoretical, COGENT makes a

few innocuous assumptions about cognition. First and foremost, COGENT assumes the

principle of “functional modularity”—that is, the belief that intellectual functions can be

described as the interaction among semi-autonomous subsystems (Cooper, 1995).

II-37

The fundamental components of COGENT are low-level processing components

or objects. Each of these components is completely configurable in that different capa-

bilities can be assigned to different instances of objects in the same category. For

instance, STMs and LTMs are modeled by separate buffers with different characteristics

and parameter values. Including memory buffers, COGENT is divided into five basic

components (Yule and Cooper, 2000):

1. Memory buffers. General-information storage devices that can model a vari-
ety of STM and LTM effects.

2. Rule-based processes. Objects that contain sets of rules, formatted like pro-
duction systems, for processing information.

3. Connectionist networks. A nonsymbolic or subsymbolic system for mod-
eling spreading activation, feed-forward, learning, and other processes.

4. Input sources/output sinks. Although not formal parts of cognitive models,
these components allow the modeler to control the model and determine out-
comes from it.

5. Inter-module communication links. Connections that enable communica-
tions among other components through read or write operations.

3. Cognitive/Behavioral Functions Represented

Memory is modeled as buffers, which are general-information storage devices

that can be used for short- and long-term storage. Buffer properties specify capacity limi-

tations, decay parameters, access restrictions, and other characteristics—as specified by

the user.

Other cognitive functions are not pre-specified in COGENT. The modeler must

build processes as appropriate. For instance, COGENT has no pre-specified learning

mechanism; however, one could be contrived through the use of appropriate parameters

in the connectionist network.

4. Applications

Because of the developers’ association with cancer research, several COGENT

models have been built around medical diagnosis tasks and skills (e.g., Cooper and Fox,

1997). In the tutorial for Cognitive Science Society, Yule and Cooper (2000) built a dem-

onstration model using the assumptions of the so-called “modal model of memory”

II-38

(Atkinson and Shiffrin, 1968), which displayed recency and primacy effects. It has also

been used to model concept learning in children and HCI.

5. Technical Considerations

a. Input and Input Aids

The central idea of COGENT is to present a visual programming environment for

creating, editing, and testing cognitive models. As described by Yule and Cooper (2000):

The programming environment allows users to develop cognitive models
using a box and arrow notation that builds upon the concepts of functional
modularity (from cognitive psychology) and object-oriented design (from
computer science) (p. 2).

In addition to these inherent visual aids, COGENT also has a “research programme man-

ager” who keeps track of the evolution of the model as it is developed by iterative

improvements. The model history is depicted as a graphic time line with branches.

b. Model Output and Analysis Tools

The user can view, in real-time, changes to the contents of components as the

model operates. Model outcomes can be quantitative or qualitative. For instance,

COGENT can be programmed to display the current state of a model playing the Tower

of Hanoi. In addition, the COGENT package includes advanced data visualization tools

(tables, plots, and histograms) to analyze model outputs. Finally, COGENT includes a

Model Testing Environment, which can be used to schedule experiments in which “sub-

jects” are run in blocks of trials that systematically vary selected parameters.

c. Computer Language and Interfaces

Version 1 of COGENT was developed in Prolog for UNIX systems. Version 2.X

runs on MS Windows 95/98/NT (and possibly Windows 2000) and on various versions of

UNIX. An Apple Macintosh version also runs in the X windows server of OS X.

6. Evaluation

On the positive side, COGENT is remarkably user friendly and can conform to a

wide variety of cognitive structures and processes. However, because the system is atheo-

retical, it forces the user to provide or develop a detailed model of cognitive processes

II-39

that may not be well understood. Also, no evidence exists of the widespread adoption of

COGENT or of examples of COGENT interactions with other models or simulations.

I. CONCURRENT ACTIVATION-BASED PRODUCTION SYSTEM (CAPS)

1. Model Purpose and History of Development

The Concurrent Activation-based Production System (CAPS) was developed by

Marcel Just, Patricia Carpenter, and their colleagues at CMU. The original version of

CAPS was a simple production system for modeling reading (Thibadeau, Just, and

Carpenter, 1982). A unique aspect of the original model was that it incorporated subsym-

bolic aspects (spreading activation) into the symbolic production system representation.

The next generation of CAPS—Concurrent, Capacity-Constrained Activation-Based Pro-

duction System (CC CAPS, or simply, 3CAPS)—introduced the concept that the total

amount of activation is constrained and that the total value varies among individuals (Just

and Carpenter, 1992). The most recent computational model, 4CAPS, is organized into

collaborative modules, which are intended to correspond to the functions of different

cortical areas (Just, Carpenter, and Varma, 1999).

The Center for Cognitive Brain Imaging (CCBI) at CMU is responsible for CAPS

development. The Office of Naval Research (ONR) funded workshops to disseminate

3CAPS in 1995 and 1996. The current thrust is in modeling brain function; however, the

theory is undergoing further development. The Web site for CAPS and other projects at

the center is http://coglab.psy.cmu.edu/.

2. Principal Metaphors and Assumptions

The metaphors and assumptions are best understood by describing them in the

context of the model’s development. CAPS, even in its earliest form (Thibadeau, Just,

and Carpenter, 1982), was conceived as a hybrid model incorporating a symbolic pro-

duction system and subsymbolic activation values and an associative network. Like Con-

struction-Integration (C-I) theory (see Section II.J), this early version of CAPS focused

on reading comprehension and made the following assumptions about human cognition:

• Elements in WM (facts) have value attributes (activations) that reflect their
strength or the degree to which they are believed.

• An element can cause a production to fire if it matches symbolically the con-
ditions component of the production and the activation value exceeds a speci-
fied threshold.

II-40

• Cognitive processing is represented by production firings, which cause acti-
vation to be propagated. The flow of propagation proceeds from one WM
element (called the source) multiplied by a factor (called the weight) to
another element (called the target).

• Processing is explicitly parallel—that is, no limit exists for the number of
productions that can fire on the same cycle, and no explicit mechanism exists
to resolve conflicts.

• LTM (a declarative knowledge database) exists separately from WM.

The next iteration of the model (3CAPS) added the constraint that the total

amount of activation in WM was capped at some specified value (Just and Carpenter,

1992). This total activation can be used to keep elements active in WM or to propagate

activation by firing production rules. If the system capacity is exceeded, elements in WM

may be forgotten and/or productions may have to be fired several times to activate,

thereby slowing down performance. The actual constraining value varies from person to

person, accounting for individual differences in WM performance.

The most recent version of the model (4CAPS) is designed specifically to model

brain activation patterns involved in high-level cognition (Just, Carpenter, and Varma,

1999). These patterns are represented by modules of production systems that model spe-

cific areas of the brain, such as Broca’s area, Wernecke’s area, and the dorsolateral pre-

frontal cortex. Just as with these brain areas, the 4CAPS model recruits the appropriate

module to perform a task but modifies the recruitment if the task changes in size or in

quality of its demands. The primary output of 4CAPS is the location and amount of pro-

cessing per unit time, which is designed to predict the pattern of brain activity recorded

by technologies such as functional magnetic resonance imaging (fMRI) and positron

emission tomography (PET).

3. Cognitive/Behavioral Functions Represented

CAPS models represent central cognitive functions (e.g., comprehension) and do

not include peripheral functions, such as perceptualmotor acts. All knowledge is encoded

as productions in long-term storage, and no mechanisms to acquire or modify that knowl-

edge (i.e., learning) are included in CAPS.

One function of attention is to allocate resources among cognitive processes. The

3CAPS model implements the following allocation strategy: When capacity limits are

II-41

exceeded, storage and activation processes are decremented in proportion to current

demands. No other allocation scheme or function of attention is modeled.

Memory structures and processes are explicitly defined in CAPS. LTM includes

procedural and declarative components. WM, in contrast, is exclusively declarative—that

is, it contains only facts. Forgetting is modeled by decrementing the activation values of

“old” elements that remain in WM from cycle to cycle without receiving explicit

activation. Just and Carpenter (1992) characterized this as “…continuous forgetting by

displacement” (p. 135).

CAPS provides the ability to simulate simple problem solving and decision-

making behavior as comprehension-like processes.

4. Applications

To date, most applications of CAPS have been limited to experimental or labora-

tory tasks designed to tap specific cognitive structures and/or processes. For instance, Just

et al., (1996) developed a sentence comprehension task that systematically varied diffi-

culty and correlated it with the pattern of brain activity measured by fMRI. Just, Carpen-

ter, and Varma (1999) later modeled the behavioral results and the pattern of brain

activations using 4CAPS. Goel, Pullara, and Grafman (2001) have also used 3CAPS to

model the performance of normal performers and patients with lesions to the prefrontal

cortex as they attempted to solve the Tower of Hanoi puzzle (a popular, experimental

problem solving task). Hegarty (2001) used 3CAPS to model a mechanical reasoning task

(mental animation), where respondents predict the direction of rotation of a particular

component in a complex system of interacting objects (e.g., rope and pulley).

The apparent exception to the use of CAPS for academic applications is Kirlik

and Byrne’s (1994, reported in Byrne, 1994) development of a “situated” CAPS model

(S-CAPS) for representing a “real-world” task: performing a preflight check of aircraft

systems. The model requires the simulated performer to make safety checks, which are

interrupted by a critical message from the control tower. The pilot is required to compre-

hend the message and determine whether to reply and then to continue completing the

safety checks. The model computed the number of decide-act cycles required to complete

the safety checks under three conditions: with no checklist, with a checklist but no pen,

and with a checklist and pen. The findings indicate that external support (i.e., checklist

and pen) reduced the WM requirement and the number of cycles to complete the safety

check.

II-42

5. Technical Considerations

As with many other models reviewed in this paper, CAPS has a fixed update rate

of 50 msec.

a. Input and Input Aids

The user must specify all elements of the task or problem and their interrelation-

ships. For instance, in the mechanical reasoning example, Hegarty (2001) had to parse the

mental animation task into individual strands and components that represent elements in

WM. Each element is represented as a proposition that can be recognized in the condi-

tions component of production rules. Then, the initial activation values of all elements

(ranging between 0 and 1) and the weights corresponding to relations between pairs of

elements must be specified. The user must also specify the threshold for activation and

the maximum total activation value allowed.

Documentation and technical support are available through Sashank Varma’s

Web site at Vanderbilt University:

http://peabody.vanderbilt.edu/ctrs/ltc/varmas/varmas.html.

b. Model Output and Analysis Tools

The basic outputs from CAPS are activation values of each element per cycle.

Activations can be translated into choice behavior if the choices are defined as specific

patterns of activations. If the “correct response” is so identified, statistics such as the

number of processing cycles required to reach that state can be calculated. Another type

of outcome is to determine the tradeoff between processing cycles and constraints for a

specific model. However, the user must generate the results “by hand” because no analy-

sis tools for CAPS currently exist.

c. Computer Language and Interfaces

3CAPS is implemented in Common LISP for the Apple Macintosh. Two versions

currently exist: Version 3.1 for 68040-based Macs and Version 4.1 for PowerPC-based

Macs. The CAPS software has not yet been interfaced with other cognitive models or

military simulations.

II-43

6. Evaluation

An outstanding feature of CAPS is that it represents processing capacity in a theo-

retically plausible and empirically valid manner. CAPS is also unique in its systematic

representation of individual differences. As a practical model of cognition, however,

CAPS is hampered by a lack of real-world applications. To implement CAPS in military

simulations would require considerable development, and such a developmental effort

would be handicapped by a lack of documentation.

J. CONSTRUCTION-INTEGRATION (C-I) THEORY

1. Model Purpose and History of Development

The Construction-Integration (C-I) theory was developed by Walter Kintsch and

his colleagues at the Institute of Cognitive Science (ICS) at the University of Colorado.

The original model was derived from a theory of sentence processing by Kintsch and

Dutch linguist Teun A. van Dijk in the late 1970s and early 1980s (e.g., Kintsch and van

Dijk, 1978). Kintsch (1998) has since argued that the comprehension process provides a

general paradigm for cognition.

Two important extensions of C-I Theory are currently under development at ICS

or allied organizations at the University of Colorado. The first is a model of behavior

using novel computer interfaces developed by Muneo Kitajima and Peter G. Polson

(1997) called LInked model of Comprehension-based Action planning and Instruction

(LICAI). This model was derived from C-I Theory to model the ability to comprehend

incomplete instructions from systems with GUIs. These same researchers developed a

related model for exploring new Web sites, which they have labeled Comprehension-

based Linked model of Deliberate Search (CoLiDeS) (Kitajima, Blackmon, and Polson,

2000).

The second development is that LICAI and the general C-I model have incorpo-

rated some of the concepts of Latent Semantic Analysis (LSA). LSA is an automated,

corpus-based system for deriving meanings of individual words, sentences, paragraphs,

and entire essays. It transforms word usage patterns into an n-dimensional semantic

space. The meaning of any item is a vector in this space. LSA has been used to explain

the disproportionately rapid rate of language acquisition in children given the apparent

paucity of stimulus input. The LSA network has been used to model the structural

II-44

relationships in LTM as posited by C-I. Kintsch (1998) has shown reasonable results

from LSA when a spreading activation model is used to link items.

All three models are under active development at the University of Colorado.

Links to the three models can be obtained through the University of Colorado ICS Web

site: http://psych-www.colorado.edu/ics.

2. Principal Metaphors and Assumptions

C-I Theory, LICAI, and LSA are closely interrelated models but differ somewhat

in their metaphors and assumptions. Therefore, each is discussed separately below.

a. C-I Theory

At the most general level, C-I Theory differs from other HBR models derived

from Newell and Simon’s General Problem Solver (GPS) in two important respects:

• First, the representational unit is a proposition, not a production. In C-I
Theory, a proposition is defined as the smallest unit of meaning to which a
truth value can be attached. It usually corresponds to a component of a sen-
tence, such as an individual phrase or clause. Propositions are normally rep-
resented as an ordered tuple consisting of a predicate and associated
arguments. These arguments include the specific action to be performed and
the object(s) of the action. Propositions are linked (associated) by their
shared arguments—that is, the strength of the associations is a function of the
number of arguments that the nodes have in common.

• The second fundamental difference between C-I and traditional Newell-
Simon models is the central cognitive process. For Soar and ACT-R, the
central process is problem solving. In contrast, the central process in C-I
Theory is comprehension. One implication of focusing on comprehension is
that the C-I model stresses goal formation, as opposed to goal use in ACT-R,
Soar, and related models. The goal formation process in C-I Theory guides
all internal search processes.

As implied by the title, C-I is a two-stage process. During the first stage (con-

struction), approximate, inaccurate representations are formed via weak (i.e., general or

context-insensitive) rules. These rules are represented as productions that do not result in

precise inferences; rather, the rules are relatively sloppy and result in an initial output that

is incoherent and perhaps even contradictory (Kintsch, 1998). The primary purpose of

such rules is to generate a network of associated propositions that are associated with the

input; however, because the rules are sloppy, some of the associates will be closely

II-45

related to the target meaning, and some will be much more remote. The number of

retrieval attempts, k, is a parameter of the model and is usually set between 5 and 7. Thus,

construction is conceived as a bottom-up process in that it is primarily data-driven.

The tentative representations generated during the construction stage are assimi-

lated in the second (integration) stage. This process constrains comprehension through a

spreading activation process that is propagated through the network of propositions, pro-

ceeding from the source (goals, context) to the target (potential responses). Nodes that are

mutually reinforced associations are strengthened and elaborated, while weak unsup-

ported ones are pruned. Activation continues until the interpretation of the input is clear

or until it is clear that continued activation provides no further clarification. Thus, inte-

gration is portrayed as a top-down, constraint-satisfaction phase.

One replication of these two stages is a “cycle,” which is the fundamental tempo-

ral C-I unit of comprehension. The purpose is to converge on the “correct” interpretation

of the input—that is, a stable state in which the nodes that are meaningfully related to the

target are activated and the nodes that were originally retrieved but not related to the tar-

get are suppressed. For complex input (e.g., connected discourse), comprehension is a

series of C-I cycles, where a subset of the results from one cycle are carried over to the

next cycle. This aspect of the model is dependent on two more parameters, in addition to

k (the number of retrieval attempts):

1. ni, the size of the “chunk” (i.e., in number of propositions) comprehended on
cycle i. This parameter varies as a function of the complexity of input and the
competence of the performer. In examples provided by Kintsch and van Dijk
(1978), this parameter varied between 7 and 12 in a single example of con-
nected discourse.

2. s, the subset of ni propositions that are stored in an STM buffer to be carried
over to the next cycle. This parameter could also vary as a function of input
and performer but is usually set at a small constant value, such as 4.

b. LICAI

In much the same manner that a skilled reader constructs a contextually appro-

priate interpretation of text, a skilled computer user selects actions based on his/her com-

prehension of the current situation. The situation is defined by the user’s current goals

and expectations, the information on the display, and the information retrieved from

LTM—including facts about objects on the display and task procedures.

II-46

In accord with C-I Theory, HCI is conceived as a two-stage comprehension pro-

cess. During the construction phase, users generate propositions representing the three

aspects of the situation. The propositions are interrelated by a network defined by the

overlap in proposition arguments. Analogous to the original C-I Theory, the construction

stage in LICAI generates alternative action sequences and the knowledge necessary to

choose among them. During the integration phase, a spreading activation process rein-

forces relevant knowledge nodes and suppresses irrelevant ones. The process ensures that

the action selected is appropriate to the current situation.

In the context of solving arithmetic word problems, Kintsch (1988) recognized

that solutions require the recognition and specification of appropriate procedures that

have their own domain-specific structure and syntax. This required the addition of spe-

cial-purpose strategies that were represented as production rules. Similarly, actions in

LICAI are represented as action-object pairs (Kitajima and Polson, 1995). This represen-

tation has three components:

1. A proposition that specifies the action performed, display object on which to
be acted, and the object’s functions

2. A set of conditions expressed as one or more propositions

3. Another set of propositions that are added to the network representing the
results of the action.

Propositions related to action-objects are interrelated with other propositions (e.g., task

and device goals, display objects, information retrieved from LTM) in a network that acts

to constrain the choice of appropriate action-objects. In LICAI, action-objects are rela-

tively fine-grained physical responses (e.g., MOVE MOUSE CURSOR, DOUBLE

CLICK). Thus, the responses of users are truly “constructed,” as opposed to recalled as

an organized schema.

The LICAI model was specifically designed to model the exploration of computer

GUIs. Kitajima and his colleagues have since applied concepts of LICAI to deliberate

searches of the Web for specific information. CoLiDeS represents further development of

the C-I/LICAI tradition with two notable improvements (Byrne, 2002):

1. An explicit model of attention to guide the user toward acting on a particular
screen object

2. A model of “informational scent-following” based on the semantic similarity
of Web page labels and content.

II-47

c. LSA

LSA (Latent Semantic Analysis) is a theory of how people learn word meanings

from patterns of actual usage (Landauer, 1998; Landauer and Dumais, 1997; Landauer,

Foltz, and Laham, 1998). The theory is based on mathematical and statistical techniques

that calculate the interrelationships among passages and items within passages for various

print-based corpora, such as encyclopedias, newspaper text, or more specialized sources

(e.g., psychology textbooks). The analyses reduce these huge databases to 100–500 latent

dimensions. Individual items or passages are represented as vectors in this high dimen-

sional space. The cosine between vectors measures the relatedness between items or pas-

sages, and vector length measures the importance of the item relative to the training

corpora.

LSA has been used to simulate various tasks that are heavily dependent on word

meanings. For instance, LSA has been shown to predict synonym judgments between

pairs of words; simulate results from lexical priming experiments; and mimic synonym,

antonym, singular-plural, and compound-compound word relationships (Landauer, Foltz,

and Laham, 1998). Perhaps one of LSA’s more interesting practical applications is in

essay grading (Landauer et al., 1997). Most relevant to this review, however, are the

applications of LSA to C-I Theory and to CoLiDeS (Kitajima, Blackmon, and Polson,

2000).

In C-I Theory, the strength of associations between propositional nodes is a func-

tion of the number of shared arguments. An implication is that the coherence of a passage

can be measured by the average strength of associations among individual items. The

problem was that the process of identifying all propositions and their arguments had to be

done by hand. LSA can be used to identify potentially associated items and to provide a

surrogate measure of passage coherence. Kintsch (2002) also showed how LSA and C-I

Theory combine to explain the effects of context on predicates or simple noun-verb

sentences.

To the extent that LICAI incorporates C-I, it could use LSA to quantify relations

among propositions. However, LSA has a more explicit role in CoLiDeS, where it pro-

vides the measure of relatedness between the representation of a user’s goal and screen

objects, thereby operationalizing the concept of information scent (Kitajima, Blackmon,

and Polson, 2000). It is also used as a Web site design aid to either confirm or identify

appropriate headings and/or link labels for Web pages according to the correspondence

between these elements and their corresponding passages (Blackmon et al., 2002).

II-48

3. Cognitive/Behavioral Functions Represented

Although the process of comprehension appeals to perceptual concepts, specific

perceptual processes are not represented in these models. Rather, the model requires users

to “pre-process” input in the form of propositions.

On the other hand, the CoLiDeS model does provide attentional mechanisms that

segment or parse the display into elements based on perceptual features, such as high-

lighted or outlined areas, and then focus on parts of the display that relate most directly to

the user’s task goals (Blackmon et al., 2002). Similarly, psychomotor actions are primi-

tively represented. Actions are merely selected—not specified in detail.

C-I and LICAI/CoLiDeS models assume the traditional distinction between LTM

as the locus of permanently stored knowledge and WM as the currently activated subset

of LTM elements that comprise one’s momentary focus of attention. Ericsson and

Kintsch (1995) point out that WM is traditionally conceived as being limited and tempo-

rary and that transfer to and from LTM is slow and error-prone. This characterization

does not explain expert performance where skilled actors have virtually unlimited access

to LTM and are able to encode large amounts of information quickly into LTM. To

account for expert performance, which includes the comprehension skills of ordinary

readers, Ericsson and Kintsch specify conditions under which WM provides performers

relatively unconstrained access to LTM through well-structured retrieval cues. Because

this capacity, called long-term working memory (LTWM), requires specific retrieval and

storage structures built up through experience, LTWM—unlike its short-term counter-

part—is not a generalizable capacity. In terms of C-I Theory, WM corresponds to the

limited number of nodes to which a performer can attend during any one C-I cycle. In

expert performance, those limited nodes can be connected to a complex structure of addi-

tional nodes in LTM that become activated during performance. This concept of LTM

represents the scope and complexity of human knowledge, which can be modeled by

LSA (Kintsch, Patel, and Ericsson, 1999). According to this concept, items in WM auto-

matically generate an LTWM for associated items in its immediate semantic neighbor-

hood as defined by LSA.

With regard to higher cognitive functions, Kitajima and Polson (1997) charac-

terize C-I Theory as incomplete because it does not include specific mechanisms for

learning and problem solving. Decision-making is also not explicitly represented,

although C-I and LSA do model simple choice behavior. Also, even though C-I and

II-49

related models represent individual competence and performance, no provisions are

available for modeling social interactions.

4. Applications

C-I has been used to model text comprehension and action planning. Although the

C-I model has been used primarily in academic research, the associated models

(LICAI/CoLiDeS and LSA) have been oriented toward practical applications. As a model

of HCI, LICAI has been used to help design GUIs. Similarly, CoLiDeS has been used to

design Web pages. Details on applications of LICAI and CoLiDeS are available on

Muneo Kitijama’s Web page at Japan’s National Institute of Advanced Industrial Science

and Technology: http://staff.aist.go.jp/kitajima.muneo/index.html.

LSA also has several applications as a tool for C-I and CoLiDeS and other

semantically based models of cognition. LSA can be used as a general performance aid

for writers and, with additional tools, can be used to grade essays automatically. Details

on these applications can be found at the Web site for Knowledge Analysis Technologies

(http://www.knowledge-technologies.com), the company that provides services based on

LSA technology.

No evidence exists that any of these models has interacted with other cognitive

models or with a military simulation.

5. Technical Considerations

a. Input and Input Aids

In contrast to most symbolic cognitive models, C-I and related representations do

not require the user to input or otherwise specify a detailed rule or knowledge base. For

some applications, the LSA database provides the contents of knowledge.

C-I models do, however, require the user to translate the simulated performer’s

input into a form the model can use. For C-I and LICAI, this input must be in the form of

propositions. This process is not automated, but procedural manuals for propositional

analysis are available to guide the modeler (e.g., Bovair and Kieras, 1984; Turner and

Greene, 1977). CoLiDeS does not require propositions as input, but it does require the

modeler to segment the display(s) into meaningful regions and labels that serve much the

same purpose.

II-50

For LICAI and CoLiDeS, the modeler must also encode user goals. User goals for

LICAI are input as informal propositions, whereas goals for CoLiDeS can be expressed

in natural language (NL).

b. Model Output and Analysis Tools

Because the LICAI and CoLiDeS models are based on the process of compre-

hension, their primary output is the meaning constructed from input and constrained by

knowledge. Generating behavior from this process requires the addition of production

rules (action-object pairs). LICAI and CoLiDeS have been used to predict the simple

choice behavior of computer users, and LICAI has even been used to predict errors in

display-based HCI (Kitajima and Polson, 1995). No specialized tools are available for

analyzing model outputs.

c. Computer Language and Interfaces

A computer implementation of C-I Theory was designed by Kintsch and Jon Rob-

erts, an ICS computer programmer. This version was designed for Mac OS 9.1, but it

may work for more recent versions. (No MS Windows version is currently available.)

The software and an accompanying user’s manual (Mross and Roberts, 1992) can be

downloaded free from the following ICS file transfer protocol (FTP) Web site:

ftp://psych.colorado.edu/pub/CI-Model.hqx.

The LICAI model has been implemented using Mathematica programs (Kitajima

and Polson, 1998; Kitajima, Soto, and Polson, 1998). These models typically include

algorithms to simulate the model’s computationally intensive processes, such as

spreading activation. However, large parts of the models are not computer implemented.

For instance, the cycling process is only semi-automated. The choice of exactly what

chunks are carried over to the next cycle is specified by the modeler. Again, Kintsch and

Vipond (1978) suggest a “leading edge” strategy, which biases selection toward superor-

dinate and recent propositions.

CoLiDeS is much more qualitative in nature and is designed to be run interac-

tively with a Web page designer. Marilyn H. Blackmon’s Web page at the University of

Colorado’s ICS—http://psych.colorado.edu/~blackmon/CWW.html—contains procedural

guidance on using CoLiDeS. One of Muneo Kitajima’s Web

pages—http://staff.aist.go.jp/kitajima.muneo/CoLiDeS_Demo.html—contains a demon-

stration of the model’s use.

II-51

Tools for using LSA and access to some LSA databases are directly available

from the LSA Web site: http://lsa.colorado.edu.

6. Evaluation

One of the greatest disadvantages of symbolic models is that most—if not all—of

their knowledge base must be identified before model execution. However, that is not

true for these models (C-I Theory, LICAI, and LSA). They are especially applicable to

tasks that have no clear goals. The model comprehension processes can be used to deter-

mine user goals. It is also good at describing search-and-error-prone behavior in HCI.

Ritter, Shadbolt, et al. (2002) also pointed out the following: Because of the

research lineage of C-I, these models provide a relatively high-fidelity representation of

text comprehension. However, many of the other types of basic cognitive processes (e.g.,

perception, learning, problem solving) are not represented in these models.

Although aspects of C-I and related models are computational, the models are not

fully integrated enough to simulate human action in a dynamic environment. Conse-

quently, considerable development would be needed to convert these models into a form

that military simulations could use.

K. DISTRIBUTED COGNITION (DCOG)

1. Model Purpose and History of Development

Robert G. Eggleston, Kate McCreight, and Michael J. Young developed the Dis-

tributed Cognition (DCOG) model at the Air Force Research Laboratory (ARFL) Human

Effectiveness Directorate at Wright Patterson Air Force Base, Ohio. Eggleston, Young,

and McCreight (2000) explained that they use the phrase “distributed cognition” in two

senses: Agent cognition is not under the control of a single executive, and individual

agents respond directly to environment, effectively distributing cognition through envi-

ronmental objects. R. G. Eggleston described the model’s purpose and aim as follows:

DCOG is an emerging computational architecture that supports complex
and adaptive behavior. Its aim is to support the modeling of expert
behavior in complex work in a manner that allows multiple strategies or
methods by which an agent achieves expert performance (personal com-
munication, October 9, 2002).

II-52

DCOG is a computer representation of the concepts of cognitive engineering

developed by Jens Rasmussen and his colleagues at the Danish Atomic Energy Commis-

sion Research Establishment Risø. The primary impetus for DCOG was for it to serve as

an HBR in the Agent-based Modeling and Behavior Representation (AMBR) model com-

parison project, which was sponsored by AFRL and ONR, with some limited funding by

DMSO. The purpose of the AMBR project was to advance the state of the art in cognitive

modeling by demonstrating and comparing the ability of four computer-based HBRs

(DCOG, Soar, COGNET, and ACT-R) to emulate human behavior on a computer-

controlled ATC task. The initial developers workshop was held in October 1999. The

research was conducted in three rounds. Gluck and Pew reported the results from

Round 3 at the Cognitive Science Society Meeting in July 2002 (Gluck and Pew, 2002).

Although DCOG was designed with a particular requirement in mind, Eggleston

and his colleagues plan to continue to develop DCOG into a more general and robust

model of human capabilities and limitations (R. G. Eggleston, personal communication,

October 9, 2000). Their immediate plans are to respond to the newest AMBR challenge

problem, which will require a more formal architecture of memory. Long-term plans are

to apply DCOG to other work domains.

2. Principal Metaphors and Assumptions

The work domain in DCOG, which is adapted from Rasmussen’s (1983) frame-

work, is described by a 2-D matrix called the Abstraction-Decomposition Space (ADS)

(Eggleston, Young, and McCreight, 2000). The abstraction dimension classifies work

knowledge with respect to its focus on the ends-means distinction, with knowledge

ranging from the most general functional meanings to the specific aspects of physical

processes and material forms. The decomposition dimension classifies knowledge with

respect to the whole-part relationship, which ranges from the total system on the one end

to the individual components of the system on the other end.

Using verbal protocol analyses, Eggleston, Young, and McCreight (2001) showed

that a trace of cognitive elements reveals subtle shifts in cognitive strategies used to solve

complex real-world problems. These researchers contrasted the traces of engineers and

electronic technicians while these engineers/electronic technicians undertook the same

troubleshooting task. Although both performers start at the most abstract areas in the

space and end at the most concrete areas, these researchers showed that technicians

II-53

employ much less reasoning about the functional characteristics of the system than do

engineers.

Eggleston, Young, and McCreight (2001) also cited research indicating that indi-

viduals are able to change their path dynamically through the ADS in reaction to the

environment. For instance, under low cognitive workload, individuals can choose to

explore the abstract aspects of the task. Under higher workload conditions, the same indi-

viduals can stick to the more concrete aspects of the ADS in an effort to minimize cogni-

tive storage and processing demands. The preference for one or the other strategy is

dependent not only on environmental conditions, but also the performers’ preferred level

of arousal—that is, some individuals may seek more difficult solutions to increase

arousal, while others choose less difficult solutions to decrease their arousal level. The

DCOG model was specifically designed to model shifts in strategy caused by environ-

mental changes and/or individual differences in experience and disposition.

The ADS space for the ATC task in the AMBR project was depicted as a goal

hierarchy (Eggleston, Young, and McCreight, 2001). At the highest level of abstraction is

the functional purpose of the ATC task: to provide coordinated use of airspace. This

overall purpose is parsed into two abstraction functions or goals: avoid preventable

delays and prevent accidents. Each of these two goals is parsed further into a set of

lower-level behavioral strategies and actions. The links among elements in this hierarchy

can be varied in strength to model the different trajectories that workers can take through

the space.

In accord with the Rasmussen taxonomy, DCOG emulates differences in the level

of information processing as a function of the information observed in the environment

(Eggleston, Young, and McCreight, 2000; Rasmussen, 1983). The lowest level is skill-

based processing, which is triggered by environmental stimuli perceived as signals. Sig-

nals are continuous quantitative indications of environmental states that do have not sym-

bolic meaning. Because signals do not require cognitive processing, they serve to connect

the worker directly with the environment. The next level is rule-based processing, which

is initiated by signs. Signs are stimuli that provide information about the states of the

environment and are directly associated with a particular object or action. The highest

level is knowledge-based processing, which is governed by perceived symbols. In con-

trast to the signals or signs, symbols require deliberate cognitive processing of meaning-

ful information. The worker’s current proficiency and his or her present task determines

whether a stimulus is perceived as a signal, sign, or symbol. For instance, a novice

II-54

performer may perceive a stimulus as a symbol that requires considerable knowledge-

based processing to interpret, while an expert performer may perceive the same stimulus

as a sign that is directly associated with a particular action. In DCOG, such experience

differences are modeled as variations in knowledge structures and cognitive strategies.

3. Cognitive/Behavioral Functions Represented

DCOG does not model psychomotor phenomena. However, perception and atten-

tion are modeled though schema-type knowledge structures that directly recognize

meaningful situations (e.g., aircraft moving toward an area border). In addition, two types

of eye movements are modeled: visual scanning and directed gaze. Eye movements in

visual scanning are for identifying “areas of tension” in the display, whereas a directed

gaze is used to follow specific targets while actively controlling or handing off the

aircraft.

LTM is modeled as storage for procedural information that is organized by sch-

emata. WM is modeled as the activation of one or more of these schemata in memory.

DCOG does not model the acquisition of memory contents (i.e., learning). How-

ever, the latest AMBR requirement stipulated that DCOG model the effects of learning a

secondary task (concept learning) that was embedded in the primary task [ATC (air traf-

fic control)]: Subjects had to learn to make correct decisions to accept or reject altitude

change requests, based on three bi-variate properties of the aircraft (percent fuel

remaining, aircraft size, and turbulence level) (Diller and Tenney, 2002).

Reactive decision-making is implicitly modeled in the selective activation of

schemata. DCOG does not model more deliberative forms of decision-making or

problem-solving behavior.

A unique aspect of DCOG is its ability to model workload effects. In DCOG,

workload is defined with reference to the number of actionable schemata in WM (Eggle-

ston, Young, and McCreight, 2001). If workload is low (three schemata or fewer), the

simulated performer scans areas of tension and updates aircraft information, waiting to

process the next aircraft that nears the transition border. If workload is high (four or more

schemata), the simulated performer processes the aircraft closest to the border without the

scanning or updating.

DCOG is a model of individual performance. As such, it provides no capacity to

model social or collective behaviors.

II-55

4. Applications

So far, DCOG has been applied to only two ATC tasks: transferring aircraft from

one sector to another and responding to requests for speed increases. Developers are

seeking new applications, but none have been identified (R. G. Eggleston, personal com-

munication, October 11, 2002).

5. Technical Considerations

a. Input and Input Aids

Input to the DCOG model includes a complete and detailed specification of task

strategies and the conditions under which each is applicable. The source code for DCOG

is not in releasable form, and no documentation or aids are currently available to support

development of models (R. G. Eggleston, personal communication, October 11, 2002).

b. Model Output and Analysis Tools

As stipulated by the original AMBR challenge (Tenney and Spector, 2001),

DCOG generated the following output variables: response times, workload ratings, and a

composite penalty score designed to measure overall controller performance. In the latest

version of the challenge (AMBR III), a requirement was added: to measure the number of

errors committed on the concept-learning task as a function of practice.

c. Computer Language and Interfaces

The original version of DCOG was implemented in Allegro Common LISP. The

latest version is implemented in Java 2 v1.4, and the developers plan to stay current with

Java updates (R. G. Eggleston, personal communication, October 11, 2002). As stipulated

by the AMBR challenge, DCOG was interfaced with the ATC simulation implemented in

Distributed Operator Model Architecture (D-OMAR) via a High-Level Architecture

(HLA) Run-Time Interface (RTI).

6. Evaluation

The unique feature of DCOG is its ability to model individual differences and

workload effects in an explicit fashion. On the other hand, the utility of DCOG for gen-

eral application is seriously limited by the fact that the model has been developed for a

single job task and the software has not been documented and is not in a releasable form.

II-56

L. EXECUTIVE PROCESS/INTERACTIVE CONTROL (EPIC)

1. Model Purpose and History of Development

The purpose of the Executive Process/Interactive Control (EPIC) model was to

describe in detail the peripheral cognitive processes—that is, the perceptual and the psy-

chomotor processes. The developers, David E. Kieras and David E. Meyer at the Univer-

sity of Michigan, specifically acknowledged that the MHP (Model Human Processor)

developed earlier by Card, Moran, and Newell (1983) served as the basic framework

within which they devised the EPIC model. However, in contrast to MHP, which is a

practical model of cognitive processes relevant to HCI, Kieras and Meyer (1995) regard

EPIC as having broader and more scientific goals because it represents “…a larger scien-

tific endeavor to represent important theoretical concepts of human intelligence or abili-

ties” (p. 1).

EPIC is currently under active development by the Brain, Cognition, and Action

Laboratory at the University of Michigan. The laboratory is directed by David Meyer and

is sponsored by ONR. More information is available at the David Meyer’s EPIC Web

site: http://www.umich.edu/~bcalab/epic.html. The Principal Investigator (PI) for the

EPIC project is David Kieras: http://www.eecs.umich.edu/~kieras/epic.html.

EPIC is currently being used to make predictions of outcomes from laboratory

experiments, but it is also touted as serving an engineering function in modeling human-

system interaction and designing appropriate interfaces.

2. Principal Metaphors and Assumptions

An important impetus for EPIC was the developers’ sense that the current (i.e.,

circa 1995) HBR models represented individual humans as a pure cognitive system or

“disembodied intelligence” that directly perceives and acts on its environment (Kieras

and Meyer, 1995). EPIC was designed specifically to model those input/output (I/O)

details of perception and motor action. For instance, visual processing is modeled as two

separate processes: sensation and perception, with the latter process controlling ocular

motor movement. Likewise, motor processing is modeled by a detailed three-phase pro-

cess. The movement is

1. Prepared by generating a list of movement features

2. Initiated after all features are processed

II-57

3. Executed by making the desired mechanical motions.

The EPIC architecture is comprised of a set of interconnected processors that

operate simultaneously and in parallel. The processors are standard ruled-based con-

structs (i.e., production systems) under the control of an executive process. Although the

executive process assumes a central role in EPIC, it is modeled as a set of production

rules no different from other rules: The executive works by enabling and disabling other

productions or by controlling the sensory/motor peripherals directly. In other words,

executive control is not modeled as a separate cognitive component but rather as an inte-

gral part of the cognitive system.

3. Cognitive/Behavioral Functions Represented

Clearly, one of EPIC’s strengths is that it provides detailed models of sensory and

motor processes. Visual processing is modeled as two separate processes: sensation and

perception. Likewise, motor processing is modeled by a detailed three-phase process that

controls the preparation, initiation, and execution of movements.

The model includes several distinct sites for memory storage, including a long-

term store of declarative knowledge about performing the tasks in question, a procedural

memory of compiled productions, and a WM that contains symbolic information for

testing and applying production rules in procedural memory. In contrast to most other

rule-based models, central memory stores in EPIC are not limited in either capacity or

retrieval processing; rather, the observed limitations in human information processing are

modeled as limitations in peripheral (i.e., perceptual or motor) systems.

The EPIC model provides no model of the learning processes or of problem

solving. Because it is a model of individual performance, it has no capability to model

collective behavior. A reactive sort of decision-making is emulated via the production

system rules, and attention is controlled through the executive process, which is a subset

of those rules.

4. Applications

EPIC, which was developed primarily to model HCI, was designed to model sim-

ple, dual-task situations. It has been applied primarily to laboratory tasks that serve as

analogues of those situations. Meyer and Kieras (1997a; 1997b) describe some of EPIC’s

laboratory research applications. In the practical arena, EPIC has been used to model

telephone operator call-completion tasks.

II-58

5. Technical Considerations

a. Input and Input Aids

Some of the knowledge base and performance parameters are predefined in EPIC.

The user must completely specify the task environment (i.e., the objects with which the

simulated human is to interact) and the knowledge specific to the task. The production

system knowledge base is input through the PPS (Parsimonious Production System)

interpreter. Kieras and Meyer (1998) provide some technical guidance on the EPIC

architecture, although they explicitly caution that this document does not provide the

details necessary to build EPIC models.

Many of EPIC’s features of are now embodied in the GLEAN model (Kieras,

1999). Rather than creating and modifying complex databases from PPS productions,

GLEAN directly imports results from GOMS task analyses as coded in GOMS Language

(GOMSL). The discussion of CCT in Section II.G provides more details about GLEAN

and GOMSL.

b. Model Output and Analysis Tools

The fundamental output for EPIC is the trace of model methods (steps) executed.

If the EPIC model is implemented in GLEAN, the software system includes additional

statistics such as frequency, average time, and total execution time of each operator and

method. The software also tracks other indicators, such as the contents of WM and the

state of the simulated device.

c. Computer Language and Interfaces

The standalone EPIC model is designed for Apple Power PC Macintosh platforms

using Common LISP, Version 4.3. EPIC source code and installation instructions are

available at Web site ftp://ftp.eecs.umich.edu/people/kieras/EPIC/EPIC_distribution.

Potential users are cautioned to contact David Kieras (kieras@eecs.umich.edu) before

trying to use the software.

The cognitive processor, which contains and controls WM and the production rule

interpreter, has an update rate of 50 msec. The other components also have associated

processing times, but they can be set by the user.

EPIC has been successfully incorporated into Soar and ACT-R.

II-59

6. Evaluation

Of the macro models, EPIC is probably the most constrained (being focused on

the details of input and output). This characteristic makes it a good research tool for

making precise predictions about the order and timing of responses. At the same time,

this characteristic limits its practical import. Perhaps its greatest benefit to simulation is

its ability to be used in hybrid systems to enhance the perceptualmotor aspects of other

models, such as Soar and ACT-R.

M. HUMAN OPERATOR SIMULATOR (HOS)

1. Model Purpose and History of Development

The purpose of the Human Operator Simulator (HOS) is to provide a model of

human capabilities and limitations to support the design of human-machine systems.

HOS is an example of a Siegel-Wolf discrete event model that dates to the late 1950s

(Siegel and Wolf, 1962; 1969). The fundamental assumption of these models is that the

dynamics of human performance can be derived from the sequence and timing of discrete

subtasks. The organization of subtasks is described by a network metaphor; thus, Siegel-

Wolf models are sometimes referred to as “task network” simulations.12 The innovation

of HOS is that it integrates the concept of a task network with “micro-models” of human

perceptualmotor and cognitive performance (Zachary, Campbell, et al., 2001).

HOS has been updated several times since its initiation. The initial version was

developed by R. J. Wherry, Jr. (1976) for the U.S. Navy. The last standalone version of

the model (HOS V) was developed by Glenn, Schwartz, and Ross (1992). However,

much of the logic and functions of HOS have been incorporated into two models, which

are under active development: the present version of COGNET model (see Section II.F),

and the Integrated Performance Modeling Environment (IPME) of Micro SAINT (see

Section II.O).

2. Principal Metaphors and Assumptions

One approach to describing HOS is to focus on assumptions. Perhaps the most

central assumption of HOS is that human performance is described by a network of

12 The SAINT (Systems Analysis of Integrated Network of Tasks) model, the predecessor of Micro
SAINT (described in Section II.O), is another descendent of these Siegel-Wolf concepts.

II-60

discrete subtasks. Another general assumption is that the time to complete a task is cal-

culated as the sum of times required to execute the component subtasks and required

processes—that is, the model assumes additivity of components. In addition to these gen-

eral assumptions, Pew and Mavor (1998) identified the following three specific assump-

tions that constrain HOS models:

1. The human operator has only a single channel of attention. Time-sharing is
accomplished through rapid attention switching.

2. Operator tasks are all highly proceduralized and predictable. HOS can repre-
sent simple decisions but not complex problem solving involving open-ended
tasks.

3. The human operator does not commit errors during task performance.

Harris, Iavecchia, and Dick (1989) describe the HOS software as being based on

the creation of interfaces among three major simulation components:

1. Simulation objects. Simulation objects represent the configuration of dis-
plays and controls. Objects are sorted into categories (e.g., dials, digital dis-
plays) and defined by a list of attributes (e.g., size, color, position).

2. A task network. A task network defines the procedures used to operate the
crewstation. Model actions are represented as a verb-object pair (e.g., turn on
switch). These actions can be embedded in rules, which specify the conditions
under which the action should be taken.

3. Micro-models. Micro-models describe how the human interacts with the dis-
plays and controls. These micro-models are software modules that calculate
the length of time required to complete each subtask based on component pro-
cesses that underlie task performance (e.g., perception, information pro-
cessing, motor response).

3. Cognitive/Behavioral Functions Represented

The time to perceive information from the environment is explicitly modeled

from estimates of the time to touch or to fixate visually and then mentally derive infor-

mation from visual displays. Similarly, response times are modeled by the time required

to perform an action using a particular body part. If that part is busy, the model simulates

the time required to choose an alternative method (e.g., swap hands) and execute the

action.

Attention is explicitly modeled as a single-channel process in which only one sub-

task is executed at a time. HOS maintains a list of subtasks to be completed and chooses

II-61

among them based on a priority assigned by the user or calculated from other factors,

such as the time it has been attended to and the idle time since initiation. Changes to pri-

ority or environmental stimuli may lead to the interruption of the execution of one sub-

task and the initiation of another. The processing of an interrupted subtask is resumed at

the point of interruption. Rapid attention switching is assumed because such interruptions

and resumptions consume no processing overheads.

The network of subtasks implies some form of permanent (i.e., long-term) mem-

ory; however, LTM effects (e.g., interference or organization) are not explicitly modeled

in HOS. In contrast, STM is explicitly modeled as a decay function that degrades the

probability of retrieving an estimated value or previous state as a function of time. HOS

includes no representation of learning.

If-then type of statements are used to simulate simple reactive decision-making.

HOS adds another layer of fidelity by calculating decision time based on the number of

alternatives and the complexity of the decision. However, other higher order cognitive

processes (i.e., problem solving and comprehension) are not modeled.

4. Applications

In general, HOS has been used to simulate performance of humans interacting

with some sort of display. The initial application of HOS was for describing person-

machine interactions in an air antisubmarine task for the Navy (Wherry, 1976). Glenn

and Doane (1981) also used HOS to predict eye-scan behavior in NASA’s Terminal Con-

figured Vehicle (an experimental Boeing 737 airliner).

5. Technical Considerations

a. Input and Input aids

The user must input all environmental objects (e.g., displays and controls) and a

complete task and subtask hierarchy that specifies sequential dependencies among sub-

tasks. In addition, subtask execution times must be specified. Based on extensive reviews

of the literature, many of those parameters have default values; however, the user can

change those values as needed. Initial versions of HOS were deterministic because users

entered only single values for parameters. Later versions allowed users to specify distri-

butions of input values, which are used to generate Monte Carlo runs of the simulation.

The latest version of HOS (Version V) includes editors, libraries, and data files to support

II-62

the development and use of HOS models. HOS V also includes a graphic aid for defining

the task network.

b. Model Output and Analysis Tools

The principal output for HOS is a list of messages about tasks that were executed

during simulation runs. Each message contains the time, the type of behavior, and the

object (display, control, function, procedure) to which the behavior was directed. An

HOS component program, the Human Operator Data Analyzer/Collator (HODAC), uses

these output data to construct time lines and to accumulate statistics on time spent by

body part, actions, procedures, steps within procedures, and interactions among devices.

If the model is run in a Monte Carlo mode, distributions of results are provided.

c. Computer Language and Interfaces

Earlier versions of HOS were written in FORTRAN. The latest version (HOS V)

is written in C to run on MS DOS. No known instances exist to indicate that HOS has

been interfaced with a military simulation.

6. Evaluation

It is reported that HOS is relatively easy to use and is based on relatively well-

validated psychological data and models. At one time, HOS was the most popular man-

machine model for human-factors applications (Green, 1999). On the other hand, the

output from HOS is limited to response times, which has narrow relevance to military

simulations. The ultimate problem with HOS, however, is that it is no longer supported as

a standalone model. The current interest in HOS stems from its historical significance as

a computer-based human behavior model and from aspects of HOS that have survived as

components to two HBR models—COGNET and Micro SAINT—that are under active

development and have been interfaced with military simulations.

II-63

N. MAN-MACHINE INTEGRATED DESIGN AND ANALYSIS SYSTEM
(MIDAS)

1. Model Purpose and History of Development

The U.S. Army and NASA, supported by Sterling Software Incorporated,13 began

development of the Man-Machine Integrated Design and Analysis System (MIDAS) in

1983 as part of the Army Aircrew/Aircraft Integration (A3I) Program at the NASA ARC.

Jim Hartzell, Barry Smith, and Kevin Corker produced the initial version of MIDAS in

1986 (Corker, 2001). According to Corker and Smith (1993), the purpose of MIDAS is

…to revise the system design process in order to place more accurate
information into the hands of the designers early in the process of human
engineering design so that the impact and cost of changes are minimal. It
is also intended to identify and model human/automation interactions with
flexible representations of human-machine function (first page of article).

Although the primary purpose of MIDAS is to provide an engineering aid, it is

also regarded as an exploratory development project whose purpose is to advance the

state of human performance modeling. As such, MIDAS has been revised continuously

by the NASA ARC team since its initiation. In 1996, a major rearchitecturing project was

begun by NASA ARC [Sherman Tyler (Sterling Software) and Jay Shively (government

project officer)]. MIDAS v2.0 was released in 2001 but is still in the Beta release mode

(Hart et al., 2001). The NASA ARC work on MIDAS is described at its Web site:

http://caffeine.arc.nasa.gov/midas/index.html.

One of the MIDAS principals, Kevin Corker, left the A3I program in 1999 to

head San Jose State University’s Human Automation Integration Laboratory (HAIL).

However, he and his colleagues at HAIL remain involved with the A3I program at NASA

ARC in the development of the original MIDAS model (now called “Core MIDAS”), and

HAIL has taken the lead in developing an elaboration of MIDAS, which has been named

“Air MIDAS.” Information on HAIL’s involvement in both projects is available at

http://www.engr.sjsu.edu/hfe/hail.

13 Sterling Software was acquired by Computer Associates in March 2000.

II-64

2. Principal Metaphors and Assumptions

MIDAS developers have described their model as one that is derived from first

principles—that is, MIDAS modules are explicitly designed to model human capabilities

and limitations. At the same time, MIDAS is not designed to be a unified theory of cog-

nition; rather, it is intended to be first and foremost a design aid (Gore and Corker, 1999).

According to Pew and Mavor (1998), the most fundamental assumption made by MIDAS

is that “…the human operator can perform multiple, concurrent tasks, subject to avail-

able, perceptual, cognitive, and motor resources” (p. 75). These assumptions are com-

pletely consistent with the object-oriented agent structure of the simulation software.

According to Tyler et al. (1998), the most recent revision of the MIDAS archi-

tecture is divided into five high-level components:

1 . The domain model that supports the components necessary to run the
simulation

2. A graphics system to enable users to visualize the simulation

3. An interface to allow users to input model specifications

4. The simulation system for controlling the simulation and collecting data

5. The results analysis system for analyzing simulation data after these data
have been collected.

The domain model is further decomposed into the environment, which encompasses the

crewstation; the vehicle, which contains the crewstation; the crewstation itself; and the

human operators, which comprise the crew.

One of the principal purposes of the MIDAS rearchitecture was to align the

human operator model more closely with typical models of human information pro-

cessing (Tyler et al., 1998). According to Hart et al. (2001), the human operator model

comprises six components: sensory input, memory, decision-making, attention, SA, and

output behavior.

a. Sensory Input

Visual and auditory inputs are processed by separate models of sensation and per-

ception. Sensory operators query the visual or auditory scene to determine whether they

contain perceivable objects. Perception, on the other hand, depends on the objects’ asso-

ciated attributes and information about surroundings (e.g., ambient light and noise). The

visual model distinguishes between foveal vision, which simulates fixation and attention

II-65

to specific objects, and peripheral vision, which emulates the human’s ability to be dis-

tracted by visual stimuli to which he/she is not attending. Auditory processing is modeled

in two stages: detection and comprehension. Partial comprehension is not allowed, and

interruptions to auditory input result in losing the entire message. MIDAS’ visual

processing of objects outside of the crew station proceeds in three stages: detection, rec-

ognition, and identification. Inside the crewstation, identification is automatic because the

crewmembers are assumed to have an adequate mental representation of the crewstation

equipment.

b. Memory

Memory is divided into declarative and procedural components. LTM for declara-

tive information is represented by a database of assertions (“beliefs”), whereas WM

includes current beliefs that define the present context. Beliefs are encoded as symbolic

expressions describing properties of objects.

Procedural knowledge is represented by a set of primitive procedures. WM refers

to the subset of procedures under active processing by the procedure interpreter and is

limited in capacity.

A scheduler controls the flow from WM to LTM. This transfer is limited such that

if some threshold value is exceeded, attributes of the activity in WM are forgotten but not

the memory tag associated with the activity.

c. Decision-Making

Reactive decision-making processes are encoded as procedures using the high-

level scripting language called Operator Procedure Language (OPL). As a programming

language, OPL takes input (arguments) and invokes other procedures. OPL can model

simple procedures and more complex behaviors, such as selecting between alternatives,

repetition, passively monitoring for a perceived condition, and performing concurrent

tasks.

d. Attention

This module, which is based on Wicken’s Multiple Resource Theory (MRT) of

attention, monitors an account of six different “channels”: visual input, auditory input,

spatial cognitive processing, verbal cognitive processing, motor output, and voice output.

Before initiating an action, the relevant resources are secured. If sufficient resources are

II-66

not available, task performance is systematically degraded. This module is also consulted

to estimate workload within each of the channels.

e. SA (Situation Awareness)

Jay Shively developed the MIDAS model of SA. This model computes two quan-

tities: actual SA vs. perceived SA. Actual SA is the portion of situational elements that

the operator knows relative to the situation elements that he would know under ideal con-

ditions. Perceived SA is similarly defined but does not include elements for which the

operator has no knowledge.

f. Output Behavior

Behavioral output is composed of primitive motor actions. These actions have

effects on equipment and on simulation objects. To visualize actions, MIDAS v2.0

includes two anthropometric models. Jack® is a model of a full body, which was

developed by Norman Badler at the University of Pennsylvania and is currently marketed

by Unigraphics Solutions, Inc. Because of licensing restrictions associated with Jack®

and the computer processing requirements of running Jack®, MIDAS v2.0 also includes

a simpler model that includes just the head and hands. This latter anthropometric model is

the only one implemented in Air MIDAS.

3. Cognitive/Behavioral Functions Represented

Many of the details about cognitive and/or behavioral functions are intrinsic to the

model and were therefore described in greater detail under “Principal Metaphors and

Assumptions.” The following summarizes those functions.

As described previously, MIDAS includes a symbolic simulation of visual and

auditory perception. Action primitives model motor processes and their effects. Input and

output processes, as well as cognitive processes, are under the control of an attention

process based on Wicken’s MRT.

MIDAS models the experienced performer and thus has no provision for learning.

On the other hand, the storage and retrieval functions of LTM and WM are modeled.

WM, which is viewed as a subset of LTM, is modeled as a capacity-limited process.

Reactive decisions, even those involving complex dependencies, can be modeled

using OPL. However, more complex cognitive processes (e.g., problem solving) cannot

be modeled without substantial development.

II-67

One of the intriguing aspects of MIDAS is that it has the capability to model mul-

tiple crewmembers and crewstations. Thus, it is able to model the interactions among

crewmembers.

4. Applications

The first application of MIDAS in 1985 was to model a military mission per-

formed by an Army Cobra AH-1 attack helicopter. Since then, MIDAS has been used to

simulate a varied set of tasks and vehicles, including

• Use of a proposed unmanned underwater vehicle for seeking out and
destroying mines on the ocean floor (U.S. Navy)

• Design of high-speed wireless communication and navigation systems for
emergency response vehicles and 911 dispatch stations (Communications
Research Company)

• Automation options for the next-generation nuclear power plant
(Westinghouse)

• Development of an improved Mission Oriented Protection Posture (MOPP)
ensemble for helicopter aircrews (U.S. Army)

• Evaluation of a civilian version of the Marine V-22 Osprey tilt-rotor vertical
take-off and landing (VTOL) aircraft (NASA)

• Advanced air traffic technologies for commercial transport operations
(NASA)

• Design of an upgrade to the cockpit instrumentation in the Space Shuttle
(NASA).

5. Technical Considerations

a. Input and Input Aids

Using flight tasks as a model, the user must specify three sets of inputs:

1 . The crewstation design (cockpit geometry, display/control layout, and
equipment functionality)

2. Details concerning the mission and its context (task lists, planned operator
activities, flight profiles, waypoints, scenarios objects)

3 . Human operator characteristics (cognitive attributes and physical/motor
attributes).

II-68

In MIDAS v1.0, users also had to specify all goals and procedures that operators use to

reach those goals. With the advent of v2.0, users can specify more abstract behaviors, the

details of which are then filled in by the library of primitive actions.

Input is aided by a GUI. This interface is organized into a set of hierarchical

screens or editors that can be navigated by a tabbed file deck metaphor. The interface

provides several different views of the simulation for editing and running user models.

b. Model Output and Analysis Tools

MIDAS provides two types of outputs. The first type of output is the results

obtained interactively during MIDAS runs. Interactive analyses are supported by the

animated anthropometric model and other animation views of the model in action (e.g.,

operator’s view, wingman’s view, “bird’s eye” view). The user can also interactively

view data displays to view specific changes in model states (e.g., workload). These inter-

active outputs support traditional human factors analyses, including usability standards

such as MIL-STD-1472, Design Criteria Standard. Human Engineering.

The second type of output refers to post-run statistical analyses of the results from

simulation runs. These analyses, accessed through the user interface, include operational

time lines, information flow during performance, and summaries of mission effectiveness

and other measures (e.g., workload and SA).

c. Computer Language and Interfaces

The original version of MIDAS (v1.0) was written in a combination of

FORTRAN, LISP, C, and C++ to run on multiple computers. One of the goals of the

MIDAS redesign was to reduce the large and unwieldy software computational require-

ments. According to Smith and Tyler (1997), the older model comprised 350,000 lines of

code at one point, about half of which were devoted to dynamic anthropometry. The

newer version of MIDAS (v2.0) is written completely in C++ and hosted on a single Sili-

con Graphics Workstation. Air MIDAS continues to use the older MIDAS combination

of software, but plans to reintegrate the two versions of MIDAS into a C++ system are in

progress.

MIDAS is a standalone constructive simulation system that has not yet been used

to interact with other HBR models or military simulations. The model operates in scaled-

time, as opposed to real-time. The simulation update interval is 100 msecs of simulated

time.

II-69

6. Evaluation

The sheer size and extent of MIDAS is a strength and a weakness. It allows the

user to model the detail of man-machine interactions and observe the results through

sophisticated performance animations; however, it also makes creating and executing

models difficult for the user. Also, while not impossible in principle, an effort to allow

MIDAS to interact with other HBR models and simulations would require a significant

development effort.

O. MICRO SYSTEMS ANALYSIS OF INTEGRATED NETWORK OF TASKS
(Micro SAINT)

1. Model Purpose and History of Development

This HBR evolved from a model called SAINT (Systems Analysis of Integrated

Network of Tasks), which was developed by the Air Force to simulate complex man-

machine systems (Pritsker et al., 1974). Like HOS, SAINT evolved from the Siegel-Wolf

concept of a task network—that is, that task performance can be reduced to performance

on a hierarchy of discrete tasks and subtasks. The innovation of SAINT was to convert

the modeling concepts of Siegel and Wolf (1962, 1969) into a general simulation tool.

K. Ronald Laughery, Jr. established Micro Analysis and Design (MA&D) in 1981

to develop a commercial version of SAINT for implementation on PCs.14 The resulting

product, marketed as “Micro SAINT,” is a discrete event simulation environment that is

designed for modeling complex processes. MA&D currently develops and markets two

other products that use Micro SAINT as the simulation engine. The first is the Integrated

Performance Modeling Environment (IPME), which incorporates the HOS micro-models

to model the details of sensory input and motor output (see Section II.M). The second

product is WinCrew, which models the experiences of individuals and/or crews during

task performance to estimate workload. Micro SAINT, along with IPME and WinCrew,

have been incorporated into the Army’s Improved Performance Research Integration

Tool (IMPRINT), which is a set of modeling tools that assess the interaction of soldier

and system performance throughout the lifecycle of a military end item.

14 As with HOS, SAINT was developed for a mainframe computer.

II-70

2. Principal Metaphors and Assumptions

Laughery and Corker (1997) characterize Micro SAINT as a reductionist model,

in that it assumes that large, meaningful behavior acts (e.g., attack target) can be validly

decomposed into successively smaller behavioral units (e.g., acquire target, engage tar-

get, and reengage target if necessary). The process of decomposition continues until an

“elemental” level of analysis is reached, where analysts can validly provide estimates of

performance. The resulting task network is a summary of the results from this hierar-

chical decomposition process. In addition to hierarchical relations, the network also

specifies the branching logic and sequential dependencies that exist among task elements.

The task network is derived through a task analysis process. The resulting net-

work comprises two types of elements: nodes and relationships. The nodes represent

subtasks and are defined by the release conditions, which are the set of stimulus circum-

stances that must be met before the task is initiated; the time required to complete the

subtask; and beginning and ending effects, which defined variables shared among nodes.

These effects can also refer to external systems that can be modeled along with human

performance to create closed loop human-machine systems. The relationships among

nodes are defined by shared variables, which define the decision logic that determines

alternate pathways through the task network. Three types of decisions are modeled:

1. Probabilistic, where the initiation of a particular subtask is dependent upon a
random process

2. Tactical, where the initiation of a subtask depends upon a calculated value

3. Multiple, where more than one subtask is initiated at a time.

3. Cognitive/Behavioral Functions Represented

Micro SAINT is a simulation tool—not a cognitive model. As such, the basic tool

does not include some cognitive functions. On the other hand, the generic nature of Micro

SAINT’s tools allows it to be modified to simulate some of these functions. To determine

whether a function can be represented in Micro SAINT, it was assumed that the function

has been implemented in either the basic Micro SAINT model, one of the Micro SAINT-

related products (IPME or WinCrew), or published Micro SAINT algorithms.

Micro SAINT models basic perceptual phenomena, such as detection time and

probabilities. More detailed models of perception are simulated by the IPME HOS

engine, which is not included in the standard Micro SAINT package. Likewise, Micro

II-71

SAINT provides the basic simulation of the accuracy and timing of response outputs, but

more detailed simulations are available only through the IPME HOS engine.

Micro SAINT does not explicitly model attention processes, although it does

emulate serial and/or parallel processing. However, the CrewCut module (not a part of

the standard package) models the effects of attentional processes on workload and stress.

The decision logic inherent in Micro SAINT enables a wide range of decision-

making behaviors—from rapid recognition-primed decision-making to more deliberative

processes. On the other hand, open-ended problem solving cannot be modeled by the

software without a major development project.

As is common among task network models, the underlying task analysis focuses

on expert task performance and does not account for learning, forgetting, or other error-

inducing process.

4. Applications

Micro SAINT has been used to develop constructive or analytic models of per-

formance on a wide variety of individual and collective tasks, including many military

applications. Recent examples include

• Modeling cultural differences in the operation of the Integrated Air Defense
System (IADS)

• Developing models of performance to be integrated into military weapons
systems in the Combat Automation Requirements Testbed (CART)

• Simulating recognition-primed decision-making, a theory of natural decision-
making under time stress.

5. Technical Considerations

a. Input and Input Aids

The fundamental input to Micro SAINT is a detailed task analysis, which includes

the identification and classification of all subtasks and the interrelationships among them.

The user also needs to provide values related to the time required to complete each sub-

task, including means, standard deviations, and distribution shapes.

Micro SAINT includes a full array of aids for inputting task data, including

graphic editors for constructing task networks, developing task descriptions, and defining

II-72

task branching decision logic. Users can also refer to a library of predefined functions in

creating their own functions.

b. Model Output and Analysis Tools

Micro SAINT output includes estimates of task completion times, accuracy of

task outcomes, and measures of operator workload. It also has data collection and display

modules for viewing results after computer runs and an animation viewer to observe out-

put during the runs.

c. Computer Language and Interfaces

Micro SAINT and WinCrew are implemented in Microsoft Windows. IPME, in

contrast, is a UNIX-based system written in C and C++. The present version is written for

the Linux RedHat 6.2 (or better) operating system operating on Silicon Graphics

IRIX 6.5 hardware.

Micro SAINT models have been interfaced with modular semi automated forces

(ModSAF) to provide higher fidelity human behavior representations in that simulation

(e.g., LaVine et al., 1999). In general, Micro SAINT communicates with other software

applications through COM Services, an optional add-on module. This service facilitates

the creation of middleware (using applications such as Basic, Visual C++, or HLA)

between Micro SAINT and another application. This service allows users to start, stop,

and continue the model by line command and to pass variable values into and out of

Micro SAINT.

6. Evaluation

Micro SAINT is one of the most popular approaches for representing human

behavior, partly because of MA&D’s dedication to user support. Its popularity is also a

result of its flexibility as a simulation tool. Because it is not wedded to a particular theo-

retical viewpoint, users have capitalized on its flexibility to simulate a variety of HBR

phenomena using a range of theoretical mechanisms. For instance, Micro SAINT has

been used to simulate decision-making using the recognition-primed decision-making

model (Warwick et al., 2001). While such complex models and theory-driven models can

be developed feasibly on Micro SAINT, they are sometimes more difficult and awkward

to develop in a model that does not include some basic cognitive processes. For instance,

II-73

in the Warwick et al. (2001) study, a model of LTM, which is not included in Micro

SAINT, had to be developed to simulate the memory-driven decision process.

P. OPERATOR MODEL ARCHITECTURE (OMAR)

1. Model Purpose and History of Development

Stephen Deutsch and his colleagues at Bolt, Beranek, and Newman (BBN) Corpo-

ration15 developed the Operator Model ARchitecture (OMAR) for AFRL. The earliest

technical reports on OMAR date to 1993 (e.g., Deutsch, Adams, et al., 1993; Deutsch,

MacMillian, and Cramer, 1993), but the model developers trace OMAR’s roots to work

on distributed computing performed at BBN in the mid to late 1980s (Agha, 1986; Abrett,

Burstein, and Deutsch, 1989). The original purpose of OMAR was to simulate the inter-

actions of small numbers of human operators executing tasks and operating equipment in

a complex environment. Such complex environments required operators to manage these

actions in the face of frequent interruptions. ATC, to include the behavior of controllers

and aircrews, was chosen as the archetypal environment for initial development of

OMAR.

In 1998, OMAR was redesigned as a distributed system (Distributed OMAR or

D-OMAR) to interact with a range of other applications/systems, namely other simula-

tions or HBR models (Cramer, 1998). As a result, its purpose has been broadened to

serve as a programming environment and testbed for developing human behavioral mod-

els. In that role, D-OMAR served as the central simulation in the AMBR project, spon-

sored by AFRL and DMSO. In the AMBR project, D-OMAR simulated the ATC

environment within which other HBR models simulated human participants (Deutsch and

Benyo, 2001). D-OMAR documentation and software can be downloaded from the BBN

OMAR Web page: http://omar.bbn.com.

2. Principal Metaphors and Assumptions

One assumption of OMAR is that human behavior in a complex and interactive

environment is proactive and reactive—that is, humans operate on the basis of some goal-

oriented agenda but must also respond to frequent interruptions. Another characteristic of

these environments is that tasks occur concurrently within and among multiple operators.

15 The company is now known as “BBN Technologies” and is a subsidiary of Verizon Communications,
Incorporated.

II-74

However, OMAR does not assume that these parallel and interactive activities and func-

tions are under the control of a central executive. This aspect of OMAR is based on

recent psychophysiological data indicating that behavior is controlled by a relatively

small set of semi-independent brain centers (Deutsch, 1998; Deutsch and Adams, 1995).

These data indicate that the smallest functional groupings comprise relatively large

groups of neurons presumably controlling meaningful chunks of behavior. Deutsch

(1998) interpreted these findings as indicating that modeling complex parallel processes

could be accomplished entirely using symbolic mechanisms—that is, without using sub-

symbolic (i.e., associative) components to model individual neurons and their

interconnections.

Based on these assumptions, OMAR models human behavior as interactions

among independent computational agents. These agents can represent different people or

different functions within a single person. An important aspect of OMAR is the absence

of an executive process or scheduler that controls these parallel activities. The order of

execution depends on the initiating conditions of procedures or the activation level of

tasks. Thus, order emerges from the dynamics of task interactions that alter those activa-

tion levels. Thus, OMAR can specify explicit sequential dependencies among tasks while

allowing some activities to occur in parallel.

3. Cognitive/Behavioral Functions Represented

For the ATC task, OMAR emulates audition and vision processing. Perception is

emulated as occurring in stages or “layers” that proceed from input (sensation) through

output (response). For instance, the processing of auditory messages is a three-stage

process:

1. Hearing, which is initiated by auditory input

2. Message-understanding, which is a cognitive process initiated by hearing

3. Attending, which represents the hearer’s attending and reacting to the spoken
message.

The particular demands of aircrews suggest a fourth auditory process: ignoring messages

that are broadcast on the ATC network but that are directed toward other aircraft. Simi-

larly, visual processing is a two-stage process. The first stage is identifying the visual

event, and the second is responding to the event by triggering the set of appropriate pro-

cedures. An additional reading stage is used to simulate the ATC operator’s activities

required to understand the situation when he/she takes over control of airspace from the

II-75

previous controller at the start of a shift. This stage processing interpretation implies that

motor activity is a part of perception. In essence, motor actions close the loop on the per-

ceptual categorization process.

Much like OMAR’s lack of an executive processor, no single process or compo-

nent represents attention (Deutsch, 1997). Rather, attention is modeled as an emergent

quality from the proactive and reactive reactions of sensory processing.

The schema-like constructs of Simple Frame Language (SFL), a knowledge rep-

resentation system, emulate the organization and function of LTM. However, the model

does not posit a global short-term store. Instead, it assumes that performers are experts

who access LTM directly through recognition processes. For instance, the model simu-

lates the memory required to monitor aircraft (e.g., remembering the position of an air-

craft’s icon on a radar scheme) by having the performer constantly revisit each aircraft.

OMAR uses Flavors Expert (FLEX), an expert system toolkit, to model decision-

making as a rule-following process. However, it does not emulate more complex

problem-solving processes nor does it simulate the effects of learning.

The multiagent architecture of OMAR is especially suited to model social inter-

actions. For the ATC model, OMAR models in-person interactions among aircrew mem-

bers, “party-line” radio communications among aircrews, and telephone communication

between ATC centers in adjacent sectors.

4. Applications

OMAR has been used primarily to simulate behavior related to ATC. Within that

environment, OMAR agents have modeled a variety of players, including different mem-

bers of aircrews as well as controllers.

Outside of ATC applications, D-OMAR has been used to provide synthetic team

members for the Distributed Dynamic Decision-making (DDD) simulator under devel-

opment by Aptima, Inc. (2001). In this application, DDD was used to simulate the inter-

active environment of Airborne Warning and Control System (AWACS). D-OMAR has

also been employed as the simulation backbone of the Air Operations Enterprise Model

(AOEM), which emulates command and control (C2) organizations and processes

involved in planning and preparation of air operations (Brown, 2000).

As described earlier, D-OMAR has also been used to provide the simulation envi-

ronment for the AMBR project (Deutsch and Benyo, 2001). In that particular project,

II-76

D-OMAR played the part of the simulation, not a candidate cognitive model. The simpli-

fied ATC task used in the AMBR project was also used to evaluate display characteristics

for decision support systems (MacMillan, Deutsch, and Young, 1997).

5. Technical Considerations

a. Input and Input Aids

According to the User/Programmer Manual (Freeman, 2002), the user’s primary

input is the specification of the simulation scenario. With respect to ATC applications,

three aspects of the simulation scenario must be specified:

1. Agents and their tasks. The user must specify all players and the behaviors
that they perform in the scenario, including a specification of goals and rules
that govern those behaviors.

2. Effects of communications on agents and tasks. Users must specify how
and when communications interrupt ongoing activities.

3. Relevance of communications. Users must specify, for each agent, the types
of communications that are directly relevant to enable them to focus their
attention.

To aid in scenario and model development, OMAR includes a Developer’s Inter-

face, which includes a suite of software tools used in developing human performance

models or agent-based systems. For data input purposes, this graphics-based toolset

includes a Concept Editor for defining SFL objects, and a Procedure Browser for dis-

playing a graphic view of the structure of goals and procedures.

b. Model Output and Analysis Tools

The Developer’s Interface also includes output and performance analysis tools.

The first is a Simulator Control Window from which the user can monitor the activities

and events in the simulation as they occur. After the simulation occurs, the OMAR Time

Line summarizes simulation events either as a task time line, which is a GANTT-style

chart that provides data on simulation goals and procedures, or an event time line, which

organizes event data by agent. Finally, a Post-Run Analysis Tool permits the user to per-

form analyses of scenarios that were run previously.

II-77

c. Computer Language

According to Deutsch (2002), OMAR uses three different knowledge representa-

tion languages:

1. SFL (Simple Frame Language). SFL is a direct descendent of KL-ONE and
is used to define all objects in the simulation world. In OMAR, SFL provides
the function of declarative knowledge.

2. Simulation Core (SCORE). Based on ACTORS semantics (Agha, 1986),
SCORE is a procedural language for defining agents used to represent indi-
viduals or capabilities within individuals. SCORE tasks are SFL objects.

3. FLEX (Flavors Expert). FLEX is an expert system toolkit used in OMAR
to simulate rule-based behavior and decision-making.

The original OMAR software has evolved into two forms. The first is referred to

as OmarL, or the LISP implementation of OMAR. This is an update of the original event-

based OMAR simulation, which was written in ACL (Allegro Common LISP) with the

graphics in Common LISP Interface Manager (CLIM). The present version of OMAR

(4.0) requires two additional software components: ACL Version 6.1, which is a product

of Franz, Inc., and the Java Software Development Kit (SDK) Version 1.3.1 or later,

which can be downloaded from the Sun Web site (http://java.sun.com) for free.

The other form is OmarJ, which is the new Java implementation of D-OMAR.

(D-OMAR was originally written in LISP.) OmarJ is not an HBR model per se; rather, it

is a system for managing systems of agents. OmarJ requires the Java SDK 1.3 or better to

be mounted on the machine that runs OmarJ. From Web site http://omar.bbn.com, OmarL

and OmarJ can be downloaded, and relevant documentation can be obtained.

d. Interfaces

To facilitate communication with other applications, D-OMAR is constructed in

“layers” (Cramer, 1998). At the core of the system is the original version of OMAR,

written in LISP (OmarL). To this core, D-OMAR adds OmarJ, which provides the fol-

lowing key components:

• A procedural language (ScoreJ) for controlling parallel program execution

• A time management system (scorej.OmarClock) that keeps track of executing
threads

• An inter-process communication mechanism (Signals) for coordinating
thread execution

II-78

• An automatic event recording capability (not available in current version)

• An external communications system.

The latter component, an external communications system, is the key component

of D-OMAR for interfacing with other models and simulations. The user has a choice of

three implementations:

1. A Java implementation of the standard D-OMAR protocol, where objects are
sent across a “socket” by first sending a data type code, followed by the data.

2. A Jini network implementation that allows OmarJ nodes to use the Jini net-
work to send signals back and forth and to interface with non-Omar Jini
nodes.

3. A Control of Agent-Based Systems (CoABS)16 grid built on top of a Jini
network.

The capability of D-OMAR to be interfaced with other HBR models was demon-

strated in the AMBR project, where it was used to provide the ATC simulation environ-

ment. In that project, D-OMAR was successfully linked with the Air Force’s DCOG,

ACT-R, COGNET/iGEN, and EPIC-Soar.17 D-OMAR has also been used to control

Jack®, an animated, interactive virtual simulation of a human (Deutsch, MacMillan,

et al., 1997).

6. Evaluation

Of all models, OMAR offers the most elaborate and validated system for inter-

facing with other models and simulations. OMAR is also one of the few models that

simulates the interactions among multiple performers. On the other hand, OMAR (or at

least, OmarL) has not been tested as a standalone HBR model outside the context of ATC

(air traffic control).

16 CoABS is a Defense Advanced Projects Agency (DARPA)-sponsored system that provides many
services useful to agent systems.

17 EPIC-Soar is an integrated hybrid model of EPIC and Soar.

II-79

Q. PSI

1. Model Purpose and History of Development

PSI18 is a computational theory of psychology that focuses on the interaction of

cognitive, emotional, and motivational processes. It is currently under development by

Dietrich Dörner and his colleagues at the Institut für Theoretische Psychologie der Otto-

Friedrich-Universität Bamberg. According to Bartl and Dörner (1998), the purpose of the

PSI project is to create “…an intelligent, motivated, emotional agent…which is able to

survive in arbitrary domains of reality.” The developers have constructed domains spe-

cifically to compare the behavior of PSI agents with the behavior of actual humans.

The University of Bamberg (Germany) currently maintains a Web site on PSI at

http://www.uni-bamberg.de/~ba2dp1/psi.html. PSI software is available at this site, but

all the documentation and most of the additional information at the site are provided in

German. The following review is based almost entirely on the few English papers that

have been published on their Web site (Dörner and Hille, 1995; Bartl and Dörner, 1998;

Strohschneider, 2002) and on the Ritter, Shadbolt, et al. (2002) review of PSI and other

cognitive models developed in Europe.

2. Principal Metaphors and Assumptions

The central psychological construct in PSI is motivation, which is represented by

a homeostatic or hydraulic metaphor. Motivators are portrayed as tanks filled with liq-

uids, which must be kept within certain tolerance levels. When the level deviates from the

ideal, a motivator is launched to activate behaviors to restore the levels. Bartl and Dörner

(1998) identify six different motivators, which are sorted into three categories of needs as

follows:

I. System needs intended to address an organism’s existential requirements:

(1) Water

(2) Energy

18 PSI is usually presented in all capital letters, but has not been defined as an acronym. According to
Dietrich Dörner, “PSI is not an acronym. It just is the first letter of the Greek word for "soul". And this
is because it is our intention with the PSI-project not only to simulate cognition, but motivation,
emotion and what we call “action regulation” too. Just the whole soul! And that's the idea behind PSI”
(personal communication, December 29, 2003).

II-80

II. Preservation needs designed to maintain an organism’s structures:

(3) Pain avoidance

III. Information needs that have a more cognitive or social basis:

(4) Certainty

(5) Competence

(6) Affiliation.

The multiple needs interact, sometimes in complex fashion, to activate specific

behaviors. For example, consider the interaction of two information needs (certainty and

competence). A need for certainty is increased when PSI learns that the results of an

action have not been predicted correctly, whereas a need for competence is satisfied when

other needs (e.g., water) are fulfilled. Low certainty levels may launch exploratory

behavior, but, if certainty and competence are low, PSI may elicit flight. On the other

hand, moderately low competence may elicit “adventure-seeking” behavior to prove

one’s competence, but excessively low competence may not.

Action strategies are governed by Rassmussen’s (1983) three-level hierarchy of

information processing. That is, PSI first tries to satisfy system goals using automatized

skills. If this is not successful, PSI resorts to knowledge-based behavior, including

schemata-like structures. Finally, if all else fails, the system uses trial-and-error to

accomplish goals.

Several needs can be active at once. A motive selection mechanism designates a

single need as the actual intention—that is, the activated motive. The mechanism simply

selects the intention with the highest expectancy value, which is defined as the product of

the perceived probability of fulfilling the need and the level of need. The resulting prod-

uct is referred to as motive “strength.”

In PSI, emotions and cognitions are not separate processes; rather, they are the

result of external situations and act to modulate both processes. The primary mechanisms

for shaping or modulating cognition and motivation are as follows:

• Activation level. The strengths of various needs lead to specific behaviors
and to an increase in general activation level, which speeds information pro-
cessing and may trigger either or both of the two modulators described
below.

• Resolution level (RL). Perceptions are modeled as comparisons among
schemata. RL refers to the required exactness of those comparisons. At low,

II-81

general activation levels, RL is high, which results in slow but reliable pro-
cessing. At high activation levels, RL is low, which leads to fast but inaccu-
rate processing.

• Selection threshold (SL). SL refers to the ability of PSI to change dynami-
cally the threshold needed for activating a need. This mechanism effectively
defends intentions against competing needs, thereby protecting PSI against
strong behavioral oscillations.

To illustrate the role of emotion in PSI, Dörner and Hille (1995) use “anger” as an

example. The external event correlated with the emotion “anger” is the unexpected hin-

dering of a system goal (Bartl and Dörner, 1998). This experience triggers the following

prototypical styles of information processing:

• High activation level (i.e., the person processes information at a high rate of
speed)

• Low RL (decisions are less likely to take current conditions into account).

• High SL (behavior is resistant to change)

In addition, the person is likely to update the image of the actual situation at a low rate, so

that they are relatively unresponsive to changes in the environment. Under these condi-

tions, “…it is appropriate to be angry” (Dörner and Hille, 1995, ¶ 13).

3. Cognitive/Behavioral Functions Represented

According to Ritter, Shadbolt, et al. (2002), visual perception is modeled through

a “Hypercept” process that

…scans the (simulated) environment for basic features. It raises hypothe-
ses about the sensory schemas to which the features may belong and tests
these hypotheses by subsequent scanning of the environment (comparable
to saccadic eye-movements). If a pattern is not recognizable, a new
schema is generated (p. 45).

With regard to perceptualmotor functions, Ritter, Shadbolt, et al. (2002) indicate that

basic actions can be combined into complex sensory-motor programs through learning.

Memory is a simple log of perceptions and activities, and forgetting is modeled as

a decay of that record. Forgetting is important because it acts to make schemata increas-

ingly abstract over time. STM is modeled as the “head” of the record. Elements in STM

are transitioned in continuous fashion to an episodic memory, and the remnants of the

record (stripped of detail) are eventually transitioned into LTM. Emotions interact with

II-82

memory in that records associated with need satisfaction or with pain have a greater

chance of surviving to LTM than do simple sequences of events.

According to Ritter, Shadbolt, et al. (2002), PSI can model a wide variety of

learning situations, including associative and perceptual learning, operant conditioning,

sensory-motor learning, goal learning (i.e., remembering situations that lead to need satis-

faction), and aversions (i.e., remembering situations or needs that cause needs).

Decision-making processes are modeled as expected utility problems. In addition,

according to Ritter, Shadbolt, et al. (2002), PSI includes several built-in problem-solving

strategies, including hill climbing and trial and error.

4. Applications

Bartl and Dörner (1998) modeled PSI’s play on BioLab, a computer-based game

that depicts the biological production of sugar beets for energy production. Comparisons

between PSI and humans (college students at the University of Bamberg) indicated that

PSI and humans were very similar in performance on component processes of the game.

However, the best humans were able to beat the PSI model in overall production. The

authors speculated that the difference was caused by the fact that PSI had no language or

metacognitive capability to contemplate its own actions and strategies. They also con-

tended that such capabilities could easily be modeled in PSI.

5. Technical Considerations

a. Input and Input Aids

The generic tools associated with Delphi 4, the implementation language for PSI,

can be used to develop PSI models. However, the exact input requirements for PSI are

not clear because die Unterlagen werden auf Deutsch geschrieben (the documents are

written in German).

b. Model Output and Analysis Tools

Output from PSI includes momentary states of motives and the speed and accu-

racy of simulated behavior. The current model of PSI is personified by a cartoonish tiny

blue steam engine that chugs across a landscape in search of food, water, and nuggets of

gold. This model is able to learn from experience and express emotion through an ani-

mated face that is projected along with the PSI “creature.”

II-83

Currently, no known output analysis tools are associated with PSI.

c. Computer Language and Interfaces

According to Ritter, Shadbolt, et al. (2002), PSI is implemented in Delphi Pascal

in a Microsoft Windows environment. The source code can be downloaded from the

following Web site: http://www.uni-bamberg.de/ppp/insttheopsy/psi-software.html.

No known examples exist of interfacing PSI with other models or simulations.

6. Evaluation

PSI is a complex system that is difficult to evaluate for two reasons: Most of the

literature concerning the model is published in German, and it is far from a complete

model of human cognition (Ritter, Shadbolt, et al., 2002). On the other hand, it is one of

the few HBR models that even attempts to integrate motivation and emotion with cogni-

tive processes.

R. SITUATION AWARENESS MODEL FOR PILOT-IN-THE-LOOP
EVALUATION (SAMPLE)

1. Model Purpose and History of Development

The original purpose of the Situation Awareness Model for Pilot-in-the-Loop

Evaluation (SAMPLE) was to provide a model of individual and crew SA in air combat.

The purpose of SAMPLE has expanded to include modeling SA in other types of per-

formance environments.

SAMPLE was developed by Greg L. Zacharias, Karen A. Harper, and their col-

leagues at Charles River Analytics (CRA), Inc. According to Mulgund et al. (2000),

SAMPLE has three different modeling predecessors:

• The first predecessor to SAMPLE was the Optimal Control Model (OCM)
(Kleinman, Baron, and Levinson, 1971), which is an information-processing
model for simulating performance on continuous, closed-loop tasks. The sen-
sory limitations and information-processing models from OCM were adopted
in SAMPLE.

• The second predecessor to SAMPLE was the Procedure-Oriented Crew
Model (PROCRU), which integrated continuous movement with discrete
procedural actions of crews (Baron et al., 1980). Particularly relevant to the
development of SAMPLE, Zacharias, Baron, and Muralidharan (1981)

II-84

developed a PROCRU model of crew performance on anti-aircraft artillery
tasks that made the task of situation assessment an explicit part of the
simulation.

• The third predecessor to SAMPLE was the Crew/System Integration Model
(CSIM), which provided structural formalism for many of the concepts in the
two previous models (Zacharias and Baron, 1982). SAMPLE incorporated
many aspects of the information processing, situation assessment, and
decision-making modules of CSIM and integrated with Rasmussen’s (1983)
three-tier model of information processing and skilled behavior.

CRA continues to develop SAMPLE and related products under the sponsorship

of the AFRL’s Human Effectiveness Directorate. An interim delivery of the enhanced

SAMPLE architecture and tools was scheduled for July 2002, and final delivery was

scheduled for June 2003 (K. Harper, personal communication, May 28, 2002).

2. Principal Metaphors and Assumptions

One of the more fundamental assumptions of SAMPLE is that situation assess-

ments and the decisions based on those assessments are driven by a pattern recognition

process as described by Klein’s (1989) Recognition-Primed Decision-making (RPD)

model. In RPD, decisions are based on rapid assessments of the current situation. This

model is viewed in stark contrast to classic decision-making theories in which the per-

former deliberately assesses utilities associated with alternative courses of action.

The SAMPLE model also assumes, in accord with Endsley’s (1988) concepts,

that SA can be decomposed into three increasing levels of awareness:

• Level 1 (detection). Detection is the lowest level of SA and is defined as the
perception of key elements of the situation in space and in time. In other
words, it refers to perception of the elements of the current situation.

• Level 2 (identification). The middle level of SA is the integration of the
elements perceived in Level 1 into an understanding of the situation.

• Level 3 (prediction). Prediction represents the highest level of SA, which is
the projection of the current situation into the near future.

Like other HBRs, SAMPLE incorporates a stage model of information pro-

cessing. The details of information flow are consistent with Rasmussen’s (1983) three-

tier model of processing:

II-85

• Skill-based behavior. This is the least complex level of processing and is
viewed as a data-driven pattern-recognition process. This behavior pertains to
well-practiced skills and involves little or no higher order processing.

• Rule-based behavior. If the pattern recognition process fails to identify an
associated response, the model searches a set of rules, which are viewed as
compiled situation-action pairs. This behavior is characterized by the use of
standardized procedures.

• Knowledge-based behavior. This applies when the performer faces new or
unusual situations for which no standardized procedures exist. In this case,
the performer invokes problem-solving processes to address the task.

The architecture of SAMPLE is divided into three stages of processing: informa-

tion processing, situation assessment, and decision-making/procedure execution (Zacha-

rias et. al, 1996; Mulgund et al., 2000).

• Information Processing. The information-processing stage comprises two
submodels—a continuous state estimator and a discrete event detector. In
accord with OCM (Kleinman and Baron, 1971), the state estimator predicts
continuous data via a Kalman filter. The output from this submodel bypasses
the next two stages and feeds directly into a task execution component. This
architectural feature of SAMPLE is intended to model skill-based behavior.

The discrete event detector, which is simulated by a fuzzy/Boolean logic sys-
tem, transforms sensory data into situationally relevant semantic variables or
cues. This aspect of SAMPLE simulates the use of contextual knowledge that
is typical of human task performance. In contrast to the state model, output
from the event model is sequentially processed by the next two processes
(situation assessment and decision-making). This aspect of the model is
intended to emulate rule-based behavior.

• Situation Assessment. This stage emulates information fusion and reasoning
required in a multitask environment. The agents for this process are based on
Bayesian belief networks, which represent knowledge using nodes and links
that carry and modify information propagated among nodes. This network
constitutes a high-level representation of and memory for perceived events.
The assessment process involves matching events passed on from the infor-
mation processor with these stored representations. All three of Endsley’s
levels of SA are incorporated in this process. These representations include
pre-programmed a priori knowledge and updates to SA that propagate
through the network in simulated real time.

• Decision-Making/Procedure Execution. The final stage is represented by
two submodels: a procedure selector and a procedure executor, which

II-86

represent rule-based decision processing and psychomotor skill performance,
respectively. The decision-making component is simulated by an expert sys-
tem that employs production system rule sets. The model assumes that the
system’s rule bases are sufficient to address all situations; thus the third level
of Rassmussen’s hierarchy (knowledge-based behavior) is not explicitly
modeled by SAMPLE.

Psychomotor performance is represented by the conversion of selected pro-
cedures into information required to control the vehicle. These motor-
oriented data are organized into three channels: information, controls, and
communications.

3. Cognitive/Behavioral Functions Represented

Perceptual effects are modeled as the translation of sensory data (i.e., state or

event information) into symbolic information relevant to the situation. Delays in onset of

motor actions are modeled, but other motor-related details are not.

Attention is explicitly modeled as a subcomponent of the information-processing

stage. The attention subcomponent is a selection process that reflects the inability of the

human to process all available information. The selective attention process is under the

control of the decision-making stage, which ensures that attention is focused on informa-

tion directly relevant to current tasks and procedures. Harper and Zacharias (2002) point

out two limitations of SAMPLE’s attention model:

1. The model allows the simulated operator to perform multiple tasks without
suffering a concomitant degradation in performance.

2. Although attention adjusts the field of view in accordance with task goals,
the agent processes all information within the view to the same level of detail
and accuracy.

SAMPLE includes four separate memory stores that serve as repositories for per-

ceptual events, situational assessments, decision rules, and procedures. The model does

not distinguish between an STM/WM and a more permanent LTM. Further, the model

assumes that the performer knows all procedures (i.e., is an expert) but adapts behavior

on the basis of the current situation. Thus, no learning effects are modeled.

Decision-making is modeled as a reactive, rule-based process. Problem solving, a

knowledge-based behavior in Rasmussen’s parlance, is not modeled in SAMPLE.

The agent architecture of SAMPLE enables the user to emulate multiple perform-

ers. In Mulgund et al. (2000), developers modeled a four-aircraft situation (two red, two

II-87

blue), where the blue pair of aircraft pilots share their situational awareness to allow the

leader to direct other flight members in engaging the threat.

4. Applications

SAMPLE was originally designed to model situation assessment for the tactical

aviation pilot. However, the developers insist that SAMPLE is domain independent, and

it has since been applied to several different contexts, including

• Nuclear power plant operations (Zacharias et al., 1994)

• Commercial aviation (Harper et al., 1998)

• Military operations in urban terrains (Harper et al., 2000)

• Control of unmanned aerial vehicles (UAVs) (Hanson, Sullivan, and Harper,
2001)

• Decision-making of individual infantrymen and of fireteam and squad lead-
ers (Aykroyd et. al, 2002).

5. Technical Considerations

a. Input and Input Aids

The fundamental inputs to a SAMPLE model are the results from a cognitive task

analysis (CTA).19 To incorporate the input from CTAs, the results are organized as a

feed-forward network of nodes and links that describe the mental model of the expert per-

former. Three types of nodes in that network correspond to theoretical mechanisms in

SAMPLE: fuzzy system, belief network, and expert systems. In addition, SAMPLE sup-

ports I/O modules that act as interfaces for data going into or coming out of the model.

Generic nodes allow the user to include object-oriented code for functions that are not

easily modeled by fuzzy systems, belief networks, or expert systems.

To aid users in developing SAMPLE models, CRA has developed a software util-

ity called the Graphical Agent Development Environment (GRADE). One of the GRADE

tools is a graphic aid for developing the overall organization (the topology) of the mental

model. Separate tools exist or are proposed for developing the fuzzy system belief net-

work and expert system components of the model (Harper et al., 2001).

19 Of the numerous extant CTA methods, Hanson et al. (2002) suggest that the one that is most
compatible with SAMPLE models is the so-called Goal-Directed Task Analysis (GDTA) method,
which was specifically designed by Endsley and associates to identify the SA requirements of tasks.

II-88

b. Model Output and Analysis Tools

SAMPLE produces records of activities and time lines for all three model compo-

nents (information processing, situation assessment, and decision-making). One unique

source of output is based on the distinction between two pilot models used by SAMPLE:

a reference pilot who receives perfect information about the situation state and events but

does not control the aircraft and an acting pilot who receives information through

onboard systems (radar, displays, and so forth) and controls the aircraft accordingly.

SAMPLE compares data produced by both models to produce three types of metrics, cor-

responding roughly to the three SA levels as defined by Endsley (1988):

• Information disparity. This measure focuses on pilot errors in aircraft state
estimation.

• SA disparity. This measure determines the difference between actual and
assessed belief values.

• Combat advantage index. This is an index of the advantage that the own-
ship has over its target in altitude, speed, and geometric potentials. It is nor-
malized to vary from +1 (greatest ownship advantage) to –1 (greatest
ownship disadvantage).

GRADE will also include the capability to step through the model and freeze the

agent state to examine current perception and knowledge states (Harper et al., 2001). This

feature will presumably aid the developer in validating the model with subject matter

experts (SMEs). GRADE also will also provide a feature to visualize and trace model

performance after execution. This feature affords another level of model validation and

analysis.

c. Computer Language and Interfaces

Interagent communication is accomplished through the Command and Control

Simulation Interface Language (CCSIL), a special language developed by the DARPA

Command Forces (CFOR) project to model communication among entities in the Dis-

tributed Interactive Simulation (DIS) environment. According to Harper et al. (2001),

future plans call for a more generic approach to agent communication, such as eXtensible

Markup Language (XML).

According to Mulgund et al. (2000), the basic SAMPLE software was imple-

mented using object-oriented C++ on a UNIX workstation. The other components are

implemented as follows:

II-89

• Fuzzy logic reasoning is performed using software derived from the Matlab
Fuzzy Logic Toolbox.

• Belief network modeling is implemented using Bnet, a stand-alone C++ sys-
tem developed by CRA, Inc.

• Expert system functions are performed using the C Language Integrated Pro-
duction System (CLIPS) expert system shell.

SAMPLE has been used to provide the HBR model in at least two military

simulations:

1 . Boeing’s Man-in-the-Loop Air-to-Air System Performance Evaluation
Model (MIL-AASPEM) (Mulgund et al., 2000; Hanson et al., 2002)

2. Simulation Technology, Inc.’s Integrated Unit Simulation System (IUSS)
(Aykroyd et al., 2000).

SAMPLE has also been used to control the behavior of virtual humans by interfacing

with Boston Dynamic’s DI-Guy™. SAMPLE has not been interfaced with other cogni-

tive models, however.

6. Evaluation

SAMPLE is good at modeling the “front-end” of cognition—particularly SA. It

does not, however, model some of the higher-level processes, such as learning and prob-

lem solving. At the output end of cognition, SAMPLE provides a relatively undetailed

model of psychomotor performance.

S. STATE, OPERATOR, AND RESULT (Soar)

1. Model Purpose and History of Development

Soar, which formally stands for State, Operator, And Result,20 is perhaps the most

popular HBR model gauged by the number of adherents. As its name implies, Soar’s

concept of cognition involves a search through a problem space and application of

operators to states in order to achieve a result. Part of Soar’s popularity can be traced to

the fact that it is a multifaceted model that addresses disparate audiences. Ritter, Baxter,

et al. (2002) articulate three different, yet interrelated, purposes for Soar:

20 According to Ritter, Baxter, et al. (2002), the Soar developer community stopped regarding Soar as an
acronym. Hence, it is not usually written in all caps.

II-90

1. Soar represents a unified theory of cognition. This vision of Soar emphasizes
its heuristic value for developing theories of cognition.

2. Soar embodies a set of principles and constraints derived from its theory of
cognition. In this sense, Soar provides an integrative cognitive architecture
from which one can construct applied models of knowledge-based behavior,
including problem solving, learning, and human interaction with external
systems and environments.

3. Soar is an AI language. This view implies that Soar is a technology that sup-
ports the development of HBR models.

Soar has its roots in work begun in the 1950s by Allen Newell, J. C. Shaw, and

Herbert Simon to demonstrate that computers could address complex problem solving.

The first model produced by this group was the Logic Theorist (LT), which was designed

to devise proofs of geometry theorems (Newell and Simon, 1956; Newell, Shaw, and

Simon, 1957). Those same researchers extended the ideas of the LT to different types of

problems in the GPS (General Problem Solver) model (Newell, Shaw, and Simon, 1958;

Newell and Simon, 1972).

Soar was born from the Newell’s specific desire to allow users to write directly

onto problem spaces (Carley and Wendt, 1991). In 1982, Newell’s graduate student, John

Laird, tried to avoid the complications of production systems and implemented the prob-

lem space in a LISP-based system called Task Experimenter (TEX), which subsequently

became known as Soar 1. Because TEX lacked the control structures for adding knowl-

edge, the next version (Soar 2), developed in 1983, was implemented using production

systems software (Laird and Rosenbloom, 1994). The principal theoretical improvement

of Soar 2 was its ability to acquire knowledge through a process known as subgoaling.

Another graduate student, Paul Rosenbloom, joined the team in 1983, and he and Newell

successfully applied the Soar model to problems in computing and cognition.

The first public paper on Soar was presented by Laird and Newell in 1983. Work

on the system spread quickly to other sites as the graduate students moved on to other

institutions. Rosenbloom (1994) provided this summary of the first decade of work on

Soar in the United States:

Soar started as a standard collaboration between a faculty member (New-
ell) and a graduate student (Laird). In ’83, John and I finished our degrees
and agreed to stay on at CMU and work with Allen on pushing Soar as a
general cognitive architecture. In ’84, John and I both left CMU and
moved to the San Francisco Bay Area [Rosenbloom to Stanford University

II-91

and Laird to the Xerox Palo Alto Research Center (PARC)]. We kept up
the collaboration on Soar, but now at a distance. The first workshop
occurred in ’86 (at Stanford) and was instigated by the fact that we now
had two semi-independent groups working on Soar (one at CMU and one
at Stanford/Xerox), and we needed to increase the interactions among
them to maintain a coherent project. We’ve continued to hold workshops
in the US approximately every 8–10 months since then. The first few
alternated between Stanford and CMU. Michigan was then added to the
mix after John moved there in ’86. USC/ISI [University of Southern Cali-
fornia/Information Science Institute] replaced Stanford after I moved here
in ’87. Ohio St. later joined the rotation after a critical mass of Soar
researchers grew up there (and they showed interest in holding workshops)
(¶ 1).

As Soar propagated throughout the United States, Soar communities were also

spreading to Europe. Rosenbloom (1994) associates these developments with visits by

several European researchers to CMU—in particular, John Michon of the University of

Groningen in the Netherlands and Richard Young of the Medical Research Council in

Cambridge, England. The first European Soar Workshop was held in 1988 in England,

and subsequent events have been held at various sites on the continent. Soar also has

three “official” academic sites in England at the Universities of Nottingham, Hertford-

shire, and Portsmouth.

From 1992 to 1997, DARPA sponsored further development of Soar in a project

involving the groups at CMU, at USC/ISI, and at the University of Michigan Artificial

Intelligence Laboratory. The purpose of the project, which was called Soar/Intelligent

Forces (IFOR), was to develop intelligent automated agents for tactical air simulation.

Two models were developed for Soar/IFOR:

1. TacAir-Soar, which models a variety of fixed wing air-to-air and air-to-
ground missions

2. RWA-Soar, which models rotary-wing aircraft missions.

The first operational test of TacAir-Soar was in the context of the Synthetic

Theater of War-Europe (STOW-E) training exercise. This was a theater-level exercise

held at 18 sites. TacAir-Soar “flew” friendly blue sorties and provided opposing force

aircraft to pit against friendly pilots in virtual simulations. The final test was STOW-97,

during which TacAir-Soar and RWA-Soar provided all air missions as specified in the air

tasking order.

II-92

At the conclusion of the Soar/IFOR project, some team members formed Soar

Technology, Inc. to continue the development of intelligent synthetic forces for defense

applications and to explore applications in other areas, such as commerce, finance, secu-

rity, and consumer goods. Founded by John Laird, Soar Technology, Inc. is located in

Ann Arbor, Michigan, and employs a diverse staff of computer scientists and cognitive

psychologists to achieve those goals.

Soar is also a core technology employed by the Institute for Creative Technolo-

gies, which was founded by Paul Rosenbloom and others. Affiliated with the University

of Southern California, this research center was started in 1999 with a 5-year,

$44.3 million contract with the U. S. Army’s Simulation, Training, and Instrumentation

Command (STRICOM).21 The purpose of the center is to incorporate technologies from

the entertainment and game industries to create immersive and compelling simulation

environments for training applications.

The first purely commercial application of Soar was the rule engine called

Knowledge-Based Agent (KB Agent). KB Agent is a product of ExpLore Reasoning

Systems, Inc., which was formed in 1995 to help organizations build automated decision

aids. KB Agent uses the Soar architecture to provide a tool for modeling and imple-

menting business expertise that is based on a model of human cognition. The purpose is

to go beyond traditional rule-based systems by providing facilities for hierarchical

abstraction, search, and learning.

Soar is currently under active development at several sites around the world.

More information about academic efforts in the United States can be obtained at the fol-

lowing Web sites:

• The University of Michigan:
http://ai.eecs.umich.edu/soar

• Carnegie Mellon University:
http://www-2.cs.cmu.edu/afs/cs/project/soar/public/www/home-page.html

• The University of Southern California:
http://www.isi.edu/soar/soar-homepage.html.

Three other Soar Web sites are associated with universities in England:

1. The University of Nottingham:

21 STRICOM has since been renamed the Program Executive Office for Simulation, Training, and
Instrumentation (PEO STRI).

II-93

http://www.nottingham.ac.uk/pub/soar/nottingham/soar-faq.html

2. The University of Hertfordshire:
http://phoenix.herts.ac.uk/~rmy/cogarch.seminar/soar.html

3. The University of Portsmouth:
http://www.dcs.port.ac.uk/~hirsta/soarteam.htm.

Finally, information on Soar development is also available from two commercial Web

sites:

1. Soar Technology, Incorporated:
http://www.soartech.com

2. Explore Reasoning Systems, Incorporated:
http://www.ers.com.

2. Principal Metaphors and Assumptions

The development of Soar is explicitly constrained by three general assumptions

about human cognition and behavior: Behavior is flexible and goal-driven, learning

occurs continuously from experience, and elementary cognitive processes occur well

within one second (Lewis, 2001).

Another guiding principle of Soar is that it should comprise a small set of

orthogonal mechanisms (Rosenbloom et al., 1991). This assumption drives the model not

only toward simplicity, but also toward uniformity in architecture. For instance, the Soar

has a single type of structure or process for LTM structure, learning, task representation,

and decision-making.

Harking back to some of the original work on GPS and other AI approaches to

problem solving, Soar depicts all behavior as movement through problem spaces. A prob-

lem space defines the states and operators that apply to the task at hand. The knowledge

required to execute tasks are modeled as production rules, which are condition-action

pairs. The conditions’ component of productions define access paths to knowledge stored

in memory, whereas the action component defines the memory contents themselves

(Lewis, 2001).

II-94

The course of information processing in Soar is described by the “decision cycle.”

Hill (1999) describes the decision cycle as a four-phase iterative process:22

1. Input. This phase mimics human perception. Input productions take infor-
mation from the external world and place the contents into WM.

2. Elaboration. Productions in LTM are matched against the contents of WM
and fire in parallel so that all relevant knowledge is retrieved. The process
continues until no more rules match and productions cease firing (quies-
cence). In this phase, the contents of WM are not changed. Rather, these pro-
ductions have two outcomes: They create “preferences” or “proposals” for
actions that are evaluated in the decision phase, and they issue direct com-
mands to the motor system.

3. Output. Motor commands are executed. Resulting changes in internal and
external conditions are considered during the decision phase.

4. Decision. Proposals for action are examined and, as a result, the system
selects appropriate operators. If no such action is called for or several com-
peting actions are indicated, Soar recognizes an impasse, which automati-
cally sets up a subgoal (creates a new space) for resolving the impasse. If the
subgoal recognizes another conflict, another subgoal is declared for solving
that impasse, creating a goal stack. This process proceeds in iterative fashion
until all impasses have been resolved. Once the decision phase ends, the
cycle begins again.

3. Cognitive/Behavioral Functions Represented

In Soar, perception is represented by encoding productions that take data off of a

perceptual buffer (called the input link) and place the results into WM. Similarly, motor

actions are represented by decoding productions that translate WM elements into a form

that the motor system can use and place results on an output link. Perceptions and actions

are modeled at the entity level—that is, the virtual performer “perceives” or “acts” with

direct access to a fixed set of object attributes, such as entity type, location, color, orien-

tation, and so forth. Sensory models are used to filter what information is potentially per-

ceptible. For instance, entities that are beyond visual range are not perceptible by Soar.

22 The Soar decision cycle has variously been described as a 2-cycle (elaborate-decide) process (Laird
and Rosenbloom, 1994; Lehman, Laird, and Rosenbloom, 1998), a 3-cycle (recognize-decide-act)
process (Lewis, 2000), and even a 5-phase (input-proposal-decision-application-output) process (Laird
et al., 1999). Hill’s 4-stage description appears to provide sufficient details while capturing the
iterative nature of the process.

II-95

Also, in a manner very much like ACT-P/M (described in Section II.A), Chong and Laird

(1997) supplemented Soar with EPIC to enhance its perceptualmotor models.

The default version of Soar does not constrain the number of percepts that can be

put into WM. For aviation applications of Soar, this has had the consequence of over-

loading the virtual pilot with perceptual processing requirements and periodically losing

control of his aircraft (Hill, 1999). Thus, to the extent that the attention mechanism limits

information, it has had a practical and a theoretical value to the model. In this aviation

version of Soar, attention provides two functions: focusing perception on a subset of per-

ceptible objects by instantiating a zoom lens metaphor and grouping objects so that per-

ception is based on collections as opposed to individual entities. Attention is controlled

by a top-down process, where focusing and grouping are driven by task goals, and by a

bottom-up process, where attention is captured by external stimuli.

SA for the same aviation application is viewed as an elaboration on the attention

mechanism (Zhang and Hill, 2000a; 2000b). The primary mechanisms for SA are tem-

plates, which are hierarchical representations that can be used to match against the cur-

rent situation. The templates are used to control attentional focus (i.e., the extent of

zoom) required by the current situation. The templates are also used to control the pilots’

search. The outcomes of the search processes are used to confirm or deny hypotheses that

the virtual pilot has about the situation.

All LTM (procedural, declarative, episodic) is stored as production rules.

(Approximately 1,400 rules are used in TacAir-Soar.) Productions are used not so much

to model rule-based behavior, but to provide a form of content addressable memory, with

the conditions’ component of productions providing associative pathways to contents

contained in the production action. LTM is accessed in parallel such that all relevant

information is retrieved before Soar’s decision cycle is completed. Productions can be

added to LTM through learning (i.e., chunking), but no procedures exist for deleting pro-

ductions from LTM.

WM provides a store of elements that represent the current situation. This mech-

anism provides the nexus of information processing in Soar because it integrates inputs

from the external world, from information in the actions of productions (i.e., the contents

of LTM), and from results of Soar’s internal decision processes. WM is short-term in the

sense that it contains information related to the present situation, but it is not limited in

capacity or time. The WM elements are a set of interrelated objects, where objects are

II-96

attribute-value pairs. Objects are interrelated by sharing attributes and values with other

objects.

Soar posits a third type of memory, preference memory, which stores suggestions

or imperatives about current operators (Laird, Congdon, and Coulter, 1999). Preferences

are encoded according to a fixed semantics. This mechanism was developed to support

the decision stage in Soar information processing. Rosenbloom et al. (1991) view prefer-

ence memory as a special type or subset of WM.

Decision-making is explicitly modeled in Soar. The model represents deliberative

and reactive decision-making. Deliberative processes are required when the virtual

performer does not have sufficient knowledge to execute a task and must form new sub-

goals to attain the requisite knowledge. Reactive decisions, in contrast, are those that do

not require the formation of new subgoals and are based exclusively on knowledge of the

current situation.

Soar models two types of planning methods corresponding to weak and strong

approaches to problem solving. The weak planning method (i.e., generalizable to a range

of situations) is the look-ahead search process that Soar employs when forming subgoals

because of an impasse. The strong planning method, in contrast, is specific to military

planning techniques. For example, Hill et al., (1998) described a planning routine for the

virtual commander of attack helicopter battalions in the STOW-97 Advanced Concept

Technology Demonstration (ACTD).23 This particular planning agent organized company

plans according to a hierarchical graph structure and performed three key activities:

1. Plan generation. The virtual company commander takes a battalion opera-
tions order (composed by a human role player), decomposes it into primitive
tasks, and generates additional tasks designed to satisfy the preconditions
stated in the battalion order.

2. Plan execution. Using the completed plan and the current world description
as input, execution operators control the initiation and termination of com-
pany tasks.

3 . Replanning. The planning agent monitors plan execution and triggers
replanning when it recognizes an unexpected event. The plan can be repaired
by either extending the existing plan in terms of new constraints or tasks or
by retracting parts of the plan.

23 The STOW-97 ACTD was designed to evaluate advanced distributed simulation (ADS) technology by
linking a large number of simulated entities during a single, coordinated exercise.

II-97

All learning occurs through chunking, which is the acquisition of productions that

occur during the process of impasse resolution and subgoaling. Chunk acquisition models

task performance as evolving from the controlled, deliberative processing using weak

methods to the automated processing using strong methods based on direct access to

LTM.

Preliminary work has addressed the incorporation of emotional behaviors into

Soar (Jones, Henninger, and Chown, 2002). This effort grafts a connectionist framework

onto the symbolic Soar architecture. The connectionist framework is organized into three

levels. At the lowest level are sources of confusion and clarity that arise from SA. These

give rise to sensations of pain and pleasure that represent an interpretation of stimuli as

either a threat or enhancement to survival. Pain and pleasure, in turn, give rise to arousal,

which acts as the interface between the connectionist emotional system and the symbolic

cognitive systems.

Whereas Soar was designed as a model of individual intelligence, systems such as

TacAir-Soar comprise multiple interacting agents that emulate social systems. Laird,

Jones, and Nielsen (1994) noted that in military organizations, such as those represented

in TacAir Soar, coordination is highly constrained by specific tactics and doctrine and

that communication is limited and proceduralized. Assuming these constraints, they

incorporated into Soar some rules that reflected doctrine and tactics that govern real-time

coordination in rotary-wing attack missions. Although they were able to simulate some

aspects of coordination, the system was not able to cope with unexpected events, such as

the loss of a key team member. Recognizing the essential inflexibility of such procedural-

ized coordination, Soar developers devised an explicit model of team goals and plans that

are shared among team members. The resulting model, called a Shell for TEAMwork

(STEAM), represents an integration of team with individual knowledge (Tambe, 1996).

STEAM has been used to model coordination among team members in rotary-wing com-

panies and has more recently been used as the underlying method for improving team-

work in the Information Science Institute Synthetic (ISIS) team24 entered in RoboCup

’97, an international competition to test multiagent systems using soccer as a simulation

test bed (Tambe et al., 1999).

24 Milind Tambe, Jafar Adibi, Yaser Al-Onaizan, Ali Erdem, Gal A. Kaminka, Stacy Marsella, Ion
Muslea, Marcelo Tallis. A team from the Information Science Institute (ISI) at the University of
Southern California (USC). ISI is involved in a broad spectrum of information processing research and
in the development of advanced computer and communication technologies.

II-98

4. Applications

One of the explicit goals of the Soar research program is that the model be pushed

to demonstrate its ability to represent a variety of intelligent behaviors (e.g., Rosenbloom

et al., 1991). Initial applications for Soar (like those in ACT-R) were in toy tasks (e.g.,

puzzles and games such as Tower of Hanoi and Cryptarithmetic) that capture specific

aspects of cognition. Applications then spread to more practical domains, such as knowl-

edge-intensive problems in medical diagnosis (Neomycin-Soar) and software design

(Designer-Soar). It also tackled learning in complex expert systems (R1-Soar).

Unlike ACT-R, Soar has not been used much to model academic learning and per-

formance. Exceptions are models of mathematical skills and knowledge underlying sub-

traction (Rosenbloom et al., 1991) and concept acquisition (Miller and Laird, 1996).

Also, Lewis (1993) developed a model of NL(natural language) comprehension (NL-

Soar) to address some classic problems in psycholinguistics. Finally, the NL-Soar model

has been used to as a practical Soar implementation for modeling communications in air-

to-air combat tactics (Lehman, VanDyke, and Rubinoff, 1995) and in management of

NASA tests (Nelson, Lehman, and John, 1994).

Some of the more extensive and complex examples of Soar models have been

implemented in the context of military tasks. The previously described Soar/IFOR project

developed HBR models to control fixed- and rotary-wing aircraft in realistic combat

situations. The technology developed in Soar/IFOR has since been transitioned to Air

Force demonstrations of advance distributed training (Roadrunner ’98 and Coyote ’98)

and to the Navy’s Battle Force Tactical Trainer (BFTT).

5. Technical Considerations

a. Input and Input Aids

User input includes a specification of operators that are relevant to task perform-

ance. Users may wish to specify all details of task performance if the model is intended to

emulate expert performance. Jones et al. (1999) used this approach in TacAir Soar for

STOW-97, which allowed them to disable Soar’s learning capability thereby increasing

overall system performance. On the other hand, users may elect to emulate learning and

provide Soar only the operators that describe top-level goals and fundamental operators

(i.e., the primitives) that apply to task performance.

II-99

Input is aided by Visual Soar, a development environment written in Java. Visual

Soar comprises three key components:

1. Operator window. Operator window graphically displays the hierarchy of
operators in the model under development and allows users to add operators,
delete operators, and modify operator names.

2. Rule editor. Rule editor displays all system rules and permits full text
editing of all fields in rules and provides syntactic and semantic checks.

3. Data map. Data map provides access to items in WM, given firing of spe-
cific rules, and lets users set value types and ranges of variables in items.

b. Model Output and Analysis Tools

Model output is the result of changes to WM caused by production firings. How-

ever, not every change to WM results in an external reaction. The only changes that

results in an external reaction are those changes that affect output-link structures, which

provide connections to a top-level state. The output link then causes some external event,

such as some action in a simulator or the storage of data in a computer file, to occur.

No specific analysis tools currently exist for Soar. However, the interface could

be used to output data files that could be analyzed by standard statistical packages.

c. Computer Language and Interfaces

The Soar software has undergone 8 major revisions in its 20 years of develop-

ment. It was originally implemented in LISP but has since (as of Version 6) been ported

to C. One version of Soar7 (7.3) and three versions of Soar8 (8.2, 8.3, and 8.4) are cur-

rently supported by the Artificial Intelligence Laboratory at the University of Michigan.

Most of the versions are available for implementation on all major PC operating systems:

Microsoft Windows, Apple Macintosh4, and UNIX. All versions can be downloaded

from the University of Michigan Web site at http://ai.eecs.umich.edu/soar/software.html.

These downloads are free.

Soar7 was the first version to implement Tcl/Tk as the interface for the model. Tcl

(Tool Command Language) is an open-source scripting language, and Tk is a toolkit for

creating graphical user interfaces. John Ousterhout created these two bundled utilities as

freeware. Links and instructions to the appropriate version of Tcl/Tk are provided on the

download pages for versions of Soar that are currently supported.

II-100

Version 8.4 of Soar is particularly notable because it no longer includes any inter-

face code in the Soar kernel, thereby making a clear distinction between the kernel and

interface. Soar8.4 also includes a C-level API. The API has interfacing functions similar

to Tcl but provides increased capability to embed Soar in other C-based software

applications.

6. Evaluation

To the extent that Soar has provided creditable models of performance in multiple

complex simulations, it represents the state-of-the-art in HBR. Furthermore, its relatively

simple architecture fits an impressive range of task domains. Whereas one might argue

that ACT-R is more popular among academic users, Soar is more prevalent in actual

operational applications.

Although Soar developers are enthusiastic supporter of the model, they are also

mindful of its limitations. In his comparison of Soar and ACT-R, Young (1999) pointed

out the following shortcomings:

• Soar does not provide precise quantitative predictions of performance time
and error rates in the way that ACT-R does.

• The Soar modeler is encouraged to use only the basic set of operators and to
avoid inventing any new capabilities. Soar developers have been accused of
“listening to the model”—that is, avoid thinking how people perform a task
and instead considering how Soar would do it.

• The simplicity of Soar leaves too much to the modeler’s discre-
tion—particularly when the task is far afield from Soar’s original milieu (i.e.,
problem solving). Two Soar modelers could build two quite different but
equally plausible models of the same process. In these instances, Soar may
be, in fact, relatively unconstrained.

III-1

III. SUMMARY AND CONCLUSIONS

Table III-1 compares the HBR models with regard to the cognitive and behavioral

functions they simulate. The table entries describe the outcome of dichotomous yes/no

judgments of whether each model is capable of emulating the function in question. This

presentation differs in style and intent from summary tables in the two previous reviews

(Pew and Mavor, 1998; Ritter, Shadbolt, et al., 2002), where entries were short textual

passages describing model capability with regard to the function. Given the present for-

mat, a few words of caution are appropriate in interpreting Table III-1:

• Reducing the description to yes/no judgments does not convey the quality and
extent to which the model actually models a particular function. The reader
should regard the entries as suggestive and consult the appropriate part of Sec-
tion II for a more detailed description of model capabilities.

• To earn a “yes” judgment, the documentation and other literature associated with
the model had to describe the model’s capabilities specifically for that particular
function. No inferences were made about the model’s potential capabilities to
emulate the function with modification. Model adherents may reasonably argue
that the model can demonstrate additional functions with appropriate
modifications.

• Judgments were based on the published documents that are provided in the refer-
ence section. Although our review of the literature was extensive, it was not com-
pletely exhaustive. References that were not unearthed may contain evidence for
additional model capabilities.

• Despite appearances, Table III-1 does not represent a “scorecard” with which to
rate the merits of HBR models. The fact that one model emulates 5 functions and
another emulates 10 functions does not reflect their relative worth to model users.
The match of model functions to the simulation requirement is what should matter
to the user.

These cautionary statements notwithstanding, Table III-1 suggests some generali-

zations that one can make about the current state of the art in human behavior modeling:

• Decision-making is a universal function of all models. However, some of the
models emulate only a reactive type of decision-making—that is, one that
can be described by if-then type rules. This is not surprising in light of the

III-2

Table III-1. Summary of Cognitive and Behavioral Functions
Represented in HBR Models Reviewed in the Present Study

Cognitive Function Required

Acronym/
Abbreviation

P
er

ce
p

ti
o

n

P
sy

ch
o

m
o

to
r

P
er

fo
rm

an
ce

A
tt

en
ti

o
n

S
it

u
at

io
n

A
w

ar
en

es
s

(S
A

)

S
h

o
rt

-t
er

m
M

em
o

ry
 (

S
T

M
)

L
o

n
g

-t
er

m
M

em
o

ry
 (

L
T

M
)

L
ea

rn
in

g

D
ec

is
io

n
-

M
ak

in
g

P
ro

b
le

m
S

o
lv

in
g

C
o

g
n

it
iv

e
W

o
rk

lo
ad

E
m

o
ti

o
n

al
B

eh
av

io
r

S
o

ci
al

 B
eh

av
io

r

ACT X X X X X X X X

ART X X X X X X

APEX X X X X

Brahms X X X X X

CogAff X X X X X X

COGNET X X X X X X X X

CCT X X X X X

COGENT X X X X

CAPS X X X X X

C-I Theory X X X X

DCOG X X X X X X

EPIC X X X X X

HOS X X X X X

MIDAS X X X X X X X X

Micro SAINT X X X X X

OMAR X X X X X

PSI X X X X X X X X X

SAMPLE X X X X X X

Soar X X X X X X X X X X X

Note for Table III-1: An “X” entry indicates that the function is emulated by the model.

fact that most of the HBR models can be classified as “rule-based.” Even the
few non-rule-based connectionist models (e.g., ART, CAPS, C-I) have the
capability to emulate this basic form of decision-making.

• All the models have the capability to represent either STM or LTM. Again,
most of the models are derived from the tradition of human information
processing, which employs the tools and metaphors of computer science.
Memory storage is a central concept to both disciplines.

III-3

• The “front-end” of cognition (perception and attention) is well represented in
most models. Similarly, the ultimate output from cognition (psychomotor
action) is modeled, at least to a minimal degree, in most models. The atten-
tion to inputs and outputs may also be a reflection of the information-
processing tradition in human behavioral modeling.

• In contrast, learning and problem-solving functions are represented in rela-
tively few models. Taken together with the apparent ability of models to
emulate the “front-end” of cognition, this suggests the following: Whereas
most HBR models may be good at reacting to expected situations (i.e., situa-
tions for which they are programmed), they may not be so good at adapting
to novel situations.

• The capability to emulate SA is explicitly represented in only 4 of the 18
models. However, this deficiency may be more apparent than real. Given the
capability of most models to emulate perception and attention, it may be the
case that they can also represent SA functions. What is needed is an unambi-
guous and explicit definition of SA for HBR models.

• Very few of the models have the capability to simulate emotional or social
behaviors. Recent publications and presentations suggest that these may be
“growth areas” for current and future HBR models. Although not reviewed in
this document, a related growth area is the representation of personality or
dispositional factors in HBR models.

To go beyond simply describing the models to recommending models for particu-

lar applications requires an additional step: specifying the link between these cogni-

tive/behavioral functions and human simulation roles that HBR models potentially fill in

military simulations. Enumerating all the possible roles that an HBR model might emu-

late would be difficult, but Table III-2 lists five representative roles: equipment operators,

maintenance technicians, warfighters, small teams and crews, and commanders and

staffs. The table specifies the cognitive/behavioral functions that each of those roles

require. Although the table is highly speculative, two inferences can be drawn:

1. Only more sophisticated models (e.g., ACT-R, Soar) are appropriate for
higher echelon roles, but less sophisticated models (HOS, COGNET, EPIC)
may be sufficient for lower echelon. Although the more complex models also
fit the lower echelon roles, the less complex models have the advantage of
being less computationally intensive, which is an important consideration in
M&S.

2. None of the models fully satisfy all requirements, particularly those roles
requiring complex interactions among entities. It is also probable that the

III-4

Table III-2. Summary of Cognitive and Behavioral Functions Required by Roles T hat HBR
Models Could Assume in Military Simulations

Required Cognitive/Behavioral Functions

Military Role

P
er

ce
p

ti
o

n

P
sy

ch
o

m
o

to
r

P
er

fo
rm

an
ce

A
tt

en
ti

o
n

S
it

u
at

io
n

A
w

ar
en

es
s

(S
A

)

S
h

o
rt

-t
er

m
M

em
o

ry
 (

S
T

M
)

L
o

n
g

-t
er

m
M

em
o

ry
 (

L
T

M
)

L
ea

rn
in

g

D
ec

is
io

n
-

M
ak

in
g

P
ro

b
le

m
S

o
lv

in
g

C
o

g
n

it
iv

e
W

o
rk

lo
ad

E
m

o
ti

o
n

al
B

eh
av

io
r

S
o

ci
al

 B
eh

av
io

r

Equipment
Operators

X X X X X X X

Maintenance
Technicians

X X X X X X X

Warfighters X X X X X X X X X X

Small Teams and
Crews

X X X X X X X X X X X

Commanders and
Staffs

X X X X X X X X X X X X

Note for Table III-2: An “X” entry specifies the cognitive/behavioral functions that each of
those roles require.

table identifies all cognitive/behavioral functions that are required. The point
is that HBR models have plenty of conceptual problems to address in future
versions.

In conclusion, the field of HBR modeling appears even riper for application to

military simulations than it seemed in previous reviews (Pew and Mavor, 1998; Ritter,

Shadbolt, et al., 2002), because of the proliferation of HBR models and of the impressive

demonstrations of these models interacting with military and military-like simulations.

However, the potential HBR user must consider some of the serious impediments to such

applications.

Foremost among these impediments is the level of expertise required to interface

an HBR with a military simulation. This expertise includes the conceptual understanding

of the HBR model as a valid representation of cognition and behavior, the technical

knowledge required to control inputs to and outputs from the military simulation in ques-

tion, and the computer science expertise required to understand and make appropriate

modifications to code in the HBR model and in the military simulation. To state this more

III-5

plainly, none of the models is remotely close to providing “plug and play” interoper-

ability with a military simulation. For HBR models to have an impact on military simula-

tion and training, the fundamental issue of the interoperability of HBR models and

simulations must be addressed.

Ref-1

REFERENCES

Abrett, G., Burstein, M., and Deutsch, S. (1989). An environment for building goal-
directed, knowledge-based simulations (BBN Technical Report 7062). Cambridge,
MA: BBN Corporation.

Acquisti, A., Clancey, W.J., van Hoof, R., Scott, M., and Sierhuis, M. (2001, December).
Brahms tutorial (Technical Memorandum TM01-0002, Version 0.9.9.4 RFC). Mof-
fett Field, CA: NASA Ames Research Center. Retrieved September 25, 2002, from
AgentiSolutions Web site:
http://www.agentisolutions.com/documentation/tutorial/Brahms_Tutorial.pdf.

Agha, G.A. (1986). Actors: A model of concurrent computation in distributed systems.
MIT Press, Cambridge, MA, 1986.

Anderson, J.R. (1976). Language, memory, and thought. Hillsdale, NJ: Lawrence Erl-
baum Associates.

Anderson, J.R. (1983). The architecture of cognition. Cambridge, MA: Harvard Univer-
sity Press.

Anderson, J.R. (1990). The adaptive character of thought. Hillsdale, NJ: Lawrence Erl-
baum Associates.

Anderson, J.R. (1993). Rules of the mind. Hillsdale, NJ: Lawrence Erlbaum Associates.

Anderson, J.R., and Bower, G.H. (1973). Human associative memory. Washington, DC:
V.H. Winston and Sons.

Anderson, J.R., and Lebiere, C. (1999). The atomic components of thought. Mahwah, NJ:
Lawrence Erlbaum Associates.

Anderson, J.R., Bothell, D., Byrne, M.D., and Lebiere, C. (2002, September). An inte-
grated theory of the mind. [Manuscript submitted for publication]. Retrieved March
25, 2003, from ACT-R Web site:
http://act-r.psy.cmu.edu/papers/403/IntegratedTheory.pdf.

Aptima, Inc. (2001). Compute-generated forces for team training [Web page]. Retrieved
May 20, 2002, from Aptima Web site:
http://www.aptima.com/Projects/Computer_Generated_Forces.html.

Atkinson, R.C., and Shiffrin, R.M. (1968). Human memory: A proposed system and its
control processes. In K.W. Spence and J.T. Spence (Eds.), The psychology of learning
and motivation. New York: Academic Press.

Ref-2

Aykroyd, P., Harper, K.A., Middleton, V., and Hennon, C.G. (2002). Cognitive modeling
of individual combatant and small unit decision-making within the Integrated Unite
Simulation System. In Proceedings of the 11th Conference on Computer Generated
Forces and Behavior Representation. Orlando, FL: Simulation Interoperability Stan-
dards Organization.

Baron, S., Muralidharan, R., Lancrafty, R., and Zacharias, G. (1980). PROCRU: A model
for analyzing crew procedures in approach to landing (BBN Technical Report
No. 4374). Cambridge, MA: Bolt, Beranek, and Newman, Inc.

Bartl, C., and Dörner, D. (1998). Comparing the behaviour of PSI with human behaviour
in the BioLab game (Memorandum Number 32). Bamberg, Germany: Universität
Bamberg: Lehrstuhl Psychologie II.

Blackmon, M.H., Polson, P.G., Kitajima, M., and Lewis, C. (2002). Cognitive walk-
through for the web. In Proceedings of CHI 2002, ACM Conference on Human Fac-
tors in Computing Systems, CHI Letters, 4(1), 463–470.

Bovair, S., and Kieras, D.E. (1984). A guide to propositional analysis for research on
technical prose. In B.K. Britton and J.B. Black (Eds.), Understanding expository text
(pp. 315–362). Hillsdale, NJ: Lawrence Erlbaum Associates.

Bovair, S., Kieras, D.E., and Polson, P.G. (1990). The acquisition and performance of
text-editing skill: A cognitive complexity analysis. Human Computer Interaction, 5,
1–48.

Bradshaw, J.M., Sierhuis, M., Gawdiak, Y., Jeffers, R., Suri, N., and Greaves, M. (2001).
Adjustable autonomy and teamwork for the personal satellite assistant. In Bernhard
Nebel (Ed.), Proceedings of the Seventeenth International Joint Conference on Artifi-
cial Intelligence (IJCAI 2001). San Francisco, CA: Morgan Kaufman.

Bratman, M.E. (1987). Intentions, plans, and practical reason. Cambridge, MA: Harvard
University Press.

Brown, M.J., Jr. (2000). Tools for human performance modeling and simulation in sup-
port of command and control analysis. In Proceedings of the 5th International Com-
mand and Control Research and Technology Symposium. Canberra, Australia.

Byrne, M.D. (1994). Integrating, not debating, situated action and computational models:
Taking the environment seriously. In A. Ram and K. Eiselt (Eds.), Proceedings of the
Sixteenth Annual Conference of the Cognitive Science Society (pp. 118–123).
Hillsdale, NJ: Lawrence Erlbaum Associates.

Byrne, M.D. (2002). Cognitive architectures. In J.A. Jacko and A. Sears (Eds.), Hand-
book of human-computer interaction. Mahwah, NJ: Lawrence Erlbaum Associates.

Card, S.K., Moran, T.P., and Newell, A. (1983). The psychology of human-computer
interaction. Hillsdale, NJ: Lawrence Erlbaum Associates.

Carley, K., and Wendt, K. (1991). Electronic mail and scientific communication. Knowl-
edge: Creation, Diffusion, Utilization, 12, 406–440.

Ref-3

Carpenter, G.A., and Grossberg, S. (1987a). A massively parallel architecture for a self-
organizing neural pattern recognition machine. Computer Vision, Graphics, and
Image Processing, 37, 54–115.

Carpenter, G.A., and Grossberg, S. (1987b). ART2: Self-organizing of stable category
recognition codes for analog input patterns. Applied Optics, 26, 4919–4930.

Carpenter, G.A., and Grossberg, S. (1987c). ART3: Hierarchical search using chemical
transmitters in self-organizing pattern recognition architectures. Neural Networks, 3,
129–152.

Carpenter, G.A., Grossberg, S., and Reynolds, J.H. (1991). ARTMAP: Supervised real-
time learning and classification of nonstationary data by a self-organizing neural net-
work. Neural Networks, 4, 565–588.

Chong, R.S., and Laird, J.E. (1997). Identifying dual-task executive process knowledge
using EPIC-Soar. In Proceedings of the Nineteenth Annual Conference of the Cogni-
tive Science Society (pp. 107–112). Hillsdale, NJ: Lawrence Erlbaum Associates.

Clancey, W.J. (1993). Situated action: A neurophysiological interpretation (response to
Vera and Simon). Cognitive Science, 17, 87–107.

Clancey, W.J. (1997). Situated cognition: On human knowledge and computer represen-
tations. Cambridge: Cambridge University Press.

Clancey, W.J. (2002). Simulating activities: Relating motives, deliberation, and attentive
coordination. Cognitive Systems Research, 3, 471–499.

Clancey, W.J., and Malin, J. (2002, January). Brahms-CONFIG: Integrated simulation of
habitat work practices and systems. Paper presented at the Second Biennial Space
Human Factors Workshop, Center for Advanced Space Studies, Houston, TX.

Clancey, W.J., Sachs, P., Sierhuis, M., and van Hoof, R. (1998). Brahms: Simulating
practice for work systems design. International Journal of Human-Computer Studies,
49, 831–865.

Computer-Human Interaction Laboratory (CHIL) (2002, May). [ACT-R/PM Web page.]
Retrieved March 25, 2003, from CHIL Rice University Web site:
http://chil.rice.edu/byrne/RPM/project.html.

Cooper, R. (1995). Towards an object-oriented language for cognitive modeling. In J.D.
Moore and J.F. Lehman (Eds.), Proceedings of the Seventeenth Annual Conference of
the Cognitive Science Society (pp. 556–561). Hillsdale, NJ: Lawrence Erlbaum
Associates.

Cooper, R., and Fox, J. (1997). Learning to make decisions under uncertainty: The con-
tributions of qualitative reasoning. In M.G. Shafto and P. Langley (Eds.), Pro-
ceedings of the Nineteenth Annual Conference of the Cognitive Science Society
(pp. 125–130). Mahwah, NJ: Lawrence Erlbaum Associates.

Ref-4

Cooper, R., Yule, P., and Sutton, D. (1998). COGENT: An environment for the develop-
ment of cognitive models. In U. Schmid, J.F. Krems, and F. Wysotzki (Eds.), A cog-
nitive science approach to reasoning, learning, and discovery (pp. 55–82). Lengerich,
Germany: Pabst Science Publishers.

Corker, K.M. (2001). Software [Web Page]. Retrieved May 2, 2002 from HAIL Web site:
http://www.engr.sjsu.edu/hfe/hail/software.htm.

Corker, K.M., and Smith, B.R. (1993). An architecture and model for cognitive engi-
neering simulation analysis: Application to advanced aviation automation. In Pro-
ceedings of the AIAA Computing in Aerospace 9 Conference. Santa Monica, CA:
American Institute of Aeronautics and Astronautics.

Cramer, N. (1998). Distributed-OMAR: Reconfiguring a LISP system as a hybrid
LISP/(Java) component. Paper presented at the LISP Users Group Meeting. Berkeley,
CA: Association of LISP Users.

Deutsch, S. (1997). Multi-agent human performance modeling in OMAR. In M. Smith,
G. Slavendy, and R. Koubek (Eds.), Design of computing systems: Social and ergo-
nomic considerations (pp. 79–82). Amsterdam: Elsevier.

Deutsch, S. (1998). Multi-disciplinary foundations for multiple-task human performance
modeling in OMAR. Paper presented at the Twentieth Annual Meeting of the Cogni-
tive Science Society. Madison, WI: Cognitive Science Society.

Deutsch, S. (2002). D-OMAR: Distributed Operator Model Architecture [Web page].
Retrieved May 17, 2002, from BBN Technologies Web site:
http://omar.bbn.com/index.html.

Deutsch, S., and Adams, M.J. (1995). The operator-model architecture and its psycho-
logical framework. Paper presented at the 6th IFAC Symposium on Man-Machine
Systems. Cambridge, MA: Massachusetts Institute of Technology.

Deutsch, S.E., Adams, M.J., Abrett, G.A., Cramer, N.L., and Feehrer, C.E. (1993).
Operator model architecture: Software functional specification. (AI/I-IR-TP-1993-
0027) Wright-Patterson AFB, OH: Armstrong Laboratory, Logistics Research
Division.

Deutsch, S., and Benyo, B. (2001). The D-OMAR simulation environment for the AMBR
experiments. In Proceedings of the 10th Conference on Computer Generated Forces
and Behavioral Representation. Orlando, FL: Simulation Interoperability Standards
Organization.

Deutsch, S.E., MacMillian, J., and Cramer, N.L. (1993). Operator Model Architecture
(OMAR) demonstration final report (AL/HR-TR-1996-0161). Wright-Patterson AFB,
OH: Armstrong Laboratory, Logistics Research Division.

Deutsch, S., MacMillan, J., Cramer, N., and Chopra, S. (1997). Operator Model Archi-
tecture (OMAR) support (BBN Technical Report 8179). Cambridge, MA: Bolt, Bera-
nek, and Newman.

Ref-5

Diller, D., and Tenney, Y. (2002). Experiment design and comparison of human and
model data. In K.A. Gluck and R.W. Pew (Chairs), The AMBR model comparison
project: Round III—Modeling category learning. In W.D. Gray and C. Shunn (Eds.),
Proceedings of the Twenty-Fourth Annual Conference of the Cognitive Science Soci-
ety (p. 21). Mahwah, NJ: Lawrence Erlbaum Associates.

Dörner, D., and Hille, K. (1995). Artificial souls: Motivated and emotional robots. In
Proceedings of the International Conference on Systems, Man, and Cybernetics (Vol-
ume 4, pp. 3828–3832). Piscataway, NJ: IEEE.

Eggleston, R.G., Young, M.J., and McCreight, K.L. (2000). Distributed cognition: A new
type of human performance model. In M. Freed (Ed.), Simulating human agents:
Papers from the 2000 AAAI Fall Symposium (Technical Report FS-00-03) (pp. 8–14).
Menlo Park, CA: AAAI Press.

Eggleston, R.G., Young, M.J., and McCreight, K.L. (2001). Modeling human work
through distributed cognition. In Proceedings of the 10th Conference on Computer
Generated Forces and Behavioral Representation. Orlando, FL: Simulation Interop-
erability Standards Organization.

Emery, F.E., and Trist, E.L. (1960). Socio-technical systems. In C.W. Churchman and
M. Verhuilst (Eds.), Management sciences: Models and techniques (Vol. 2). London:
Pergamon.

Emmerson, P., and Nibbelke, R. (2000). iGEN™ [Software Review]. Ergonomics in
Design, Summer, 29–31.

Endsley, M.R. (1988). Design and evaluation for situation awareness enhancement. In
Proceedings of the 32nd Annual Meeting of the Human Factors Society (pp. 97–101).
Santa Monica, CA: Human Factors Society.

Ericsson, K.A., and Kintsch, W. (1995). Long-term working memory. Psychological
Review, 102, 211–245.

Firby, R. J. (1989). Adaptive execution in complex dynamic worlds. Unpublished doctoral
dissertation, Yale University, New Haven, CT.

Freed, M.A. (1998). Simulating human performance in complex, dynamic environments.
Unpublished doctoral dissertation, Northwestern University, Evanston, IL.

Freed, M., and Remington, R. (2000). GOMS, GOMS+, and PDL. In Working Notes of
the AAAI Fall Symposium on Simulating Human Agents. Falmouth, MA.

Freed, M., Dahlman, E., Dalal, M., and Harris, R. (2002). Apex reference manual for
Apex version 2.2. Moffett Field, CA: NASA ARC.

Freeman, B. (2002). D-OMAR: OmarL User/Programmer Manual (Version 4.0). [On-
line document]. Retrieved May 20, 2002, from BBN Technologies OMAR Web site:
http://omar.bbn.com/manual/index.html.

Freeman, J.T., Pharmer, J.A., Lorenzen, C., Santoro, T.P., and Kieras, D. (2002, June).
Complementary methods of modeling team performance. Paper presented at the 2002
Command and Control Research and Technology Symposium. Monterey, CA.

Ref-6

Glenn, F.A., and Doane, S.M. (1981). A human operator simulator model of the NASA
terminally configured vehicle (TCV). (Contract No. NAS1-15983) Washington, DC:
NASA.

Glenn, F., Schwartz, S., and Ross, L. (1992). Development of a Human Operator Simu-
lator Version V (HOS-V): Design and implementation (Research Note 92-PERI-
POX). Alexandria, VA: U.S. Army Research Institute for the Behavioral and Social
Sciences.

Gluck, K.A., and Pew, R.W. (Chairs) (2002). The AMBR model comparison project:
Round III—Modeling category learning. In W.D. Gray and C. Shunn (Eds.), Pro-
ceedings of the Twenty-Fourth Annual Conference of the Cognitive Science Society
(p. 21). Mahwah, NJ: Lawrence Erlbaum Associates.

Goel, V., Pullara, S.D., and Grafman, J. (2001). A computational model of frontal lobe
dysfunction: Working memory and the Tower of Hanoi task. Cognitive Science, 25,
287–313.

Gong, R., and Kieras, D. (1994). A validation of the GOMS model methodology in the
development of a specialized, commercial software application. In Proceedings of
CHI94 (pp. 351–357). New York: Association of Computing Machinery.

Gore, B.F., and Corker, K.M., (1999). System interaction in free flight: A modeling tool
cross-comparison (SAE Technical Paper 1999-01-1897). Warrendale, PA: The Soci-
ety of Automotive Engineers.

Green, P. (1999). Navigation system data entry: Estimation of task times (UMTRI 99-17).
Ann Arbor, MI: The University of Michigan Transportation Research Institute.

Grossberg, S. (1976a). Adaptive pattern classification and universal recoding, I: Parallel
development and coding of neural feature detectors. Biological Cybernetics, 23,
121–134.

Grossberg, S. (1976b). Adaptive pattern classification and universal recoding, II: Feed-
back, expectation, olfaction, and illusions. Biological Cybernetics, 23, 187–202.

Grossberg, S. (1995). The attentive brain. American Scientist, 83, 438–449.

Grossberg, S. (1999). The link between brain learning, attention, and consciousness.
Consciousness and Cognition, 8, 1–44.

Grossberg, S. (2000). Linking mind to brain: The mathematics of biological intelligence.
Notices of the American Mathematical Society, 47, 1361–1372.

Grossberg, S., and Gutowski, W.E. (1987). Neural dynamics of decision-making under
risk: Affective balance and cognitive-emotional interactions. Psychological Review,
94, 300–318.

Hanson, M.L., Harper, K.A., Endsley, M., and Rezsonya, L. (2002). Developing cogni-
tively congruent HBR models via SAMPLE: A case study in airline operations mod-
eling. In Proceedings of the 11th Conference on Computer Generated Forces and
Behavioral Representation. Orlando, FL: Simulation Interoperability Standards
Organization.

Ref-7

Hanson, M.L., Sullivan, O., and Harper, K.A. (2001). On-line situation assessment for
unmanned air vehicles. In I. Russell and J. Kolen (Eds.), Proceedings of the Four-
teenth International FLAIRS Conference. Menlo Park, CA: AAAI Press

Harper, K.A., Ho, S.S., Zacharias, G.L., and Raibert, M. (2000). Intelligent hostile urban
threat agents for MOUT operations. In Proceedings of the 9th Conference on Com-
puter Generated Forces and Behavioral Representation. Orlando, FL: Simulation
Interoperability Standards Organization.

Harper, K.A., Mulgund, S.S., Zacharias, G.L., and Kuchar, J.K. (1998). Agent-based per-
formance assessment tool for general aviation operations under free flight. In AIAA
Guidance, Navigation, and Control Conference (Vol. 1, pp. 1–10). Boston, MA:
American Institute of Aeronautics and Astronautics, Inc.

Harper, K.A., Ton, N., Jacobs, K., Hess, J., and Zacharias, G.L. (2001). Graphical agent
development environment for human behavior representation. In Proceedings of the
10th Conference on Computer Generated Forces and Behavioral Representation.
Orlando, FL: Simulation Interoperability Standards Organization.

Harper, K.A., and Zacharias, G.L. (2002). Modeling attention allocation and multitasking
in computational human behavior representations. In Proceedings of the 11th Confer-
ence on Computer Generated Forces and Behavioral Representation. Orlando, FL:
Simulation Interoperability Standards Organization.

Harris, R., Iavecchia, H.P., and Dick, A.O. (1989). The Human Operator Simulator
(HOS-IV). In G.R. McMillan, D. Beevis, E. Salas, M.H. Strub, R. Sutton, and L Van
Breda (Eds.), applications of human performance models to system design (pp.
275–280). New York: Plenum.

Hart, S.G., Dahn, D., Atencio, A., and Dalal, K.M. (2001). Evaluation and application of
MIDAS v2.0 (SAE Technical Paper 2001-01-2648). Warrendale, PA: The Society of
Automotive Engineers.

Hegarty, M. (2001, May). Capacity limits in mechanical reasoning. Paper presented at
the Fifteenth International Workshop on Qualitative Reasoning, San Antonio, TX.

Hicinbotham, J.H. (2001). Maintaining situation awareness in synthetic team members.
In Proceedings of the 10th Conference on Computer Generated Forces and Behav-
ioral Representation. Orlando, FL: Simulation Interoperability Standards
Organization.

Hill, R.W., Jr. (1999). Modeling perceptual attention in virtual humans. In Proceedings of
the 8th Conference on Computer Generated Forces and Behavioral Representation.
Orlando, FL: Simulation Interoperability Standards Organization.

Hill, R., Chen, J., Gratch, J., Rosenbloom, P. and Tambe, M. (1998). Soar-RWA: Plan-
ning, teamwork, and intelligent behavior for synthetic rotary-wing aircraft. In Pro-
ceedings of the 7th Conference on Computer Generated Forces and Behavioral
Representation. Orland, FL: Simulation Interoperability Standards Organization.

Ref-8

John, B.E., and Kieras, D.E. (1996). The GOMS family of user interface analysis tech-
niques: Comparison and contrast. ACM Transactions on Computer-Human Interac-
tion, 3, 320–351.

John, B., Vera, A., Matessa, M., Freed, M., and Remington, R. (2002). Automating CPM-
GOMS. CHI Letters, 4, 147–154.

Jones, R.M., Henninger, A.E., and Chown, E. (2002). Interfacing emotional behavior
moderators with intelligent synthetic forces. In Proceedings of the 11th Conference
on Computer Generated Forces and Behavioral Representation. Orlando, FL: Simu-
lation Interoperability Standards Organization.

Jones. R.M., Laird, J.E., Nielsen, P.E., Coulter, K.J., Kenny, P., and Koss, F.V. (1999).
Automated intelligent pilots for combat flight simulation. AI Magazine, 20, 27–41.

Just, M.A., and Carpenter, P.A. (1992). A capacity theory of comprehension: Individual
differences in working memory. Psychological Review, 99, 122–149.

Just, M.A., Carpenter, P.A., Keller, T.A., Eddy, W.F., and Thulborn, K.R. (1996). Brain
activation modulated by sentence comprehension. Science, 274, 114–116.

Just, M.A., Carpenter, P.A., and Varma, S. (1999). Computational modeling of high-level
cognition and brain function. Human Brain Mapping, 8, 128–136.

Kieras, D.E. (1994). A guide to GOMS task analysis. Unpublished manuscript, University
of Michigan.

Kieras, D.E. (1996). A guide to GOMS model usability evaluation using GOMSL [On-line
publication]. Retrieved August 27, 2002, from the University of Michigan’s Electrical
Engineering and Computer Science Department Web site:
http://www.eecs.umich.edu/people/kieras/GOMS/GOMSL_Guide.pdf.

Kieras, D.E. (1999). A guide to GOMS model usability evaluation using GOMSL and
GLEAN3 [On-line publication]. Retrieved August 27, 2002, from the University of
Michigan’s Electrical Engineering and Computer Science Department Web site:
http://www.eecs.umich.edu/people/kieras/GOMS/GOMSL_Guide.pdf.

Kieras, D.E., and Meyer, D.E. (1995). An overview of the EPIC architecture for cogni-
tion and performance with application to human-computer interaction (EPIC Report
No. 5). Ann Arbor, MI: The University of Michigan.

Kieras, D.E., and Meyer, D.E. (1998, May). The EPIC architecture: Principles of opera-
tion [On-line document]. Retrieved April 1, 2003, from the University of Michigan’s
EPIC Web site:
http://www.eecs.umich.edu/~kieras/epic.html.

Kieras, D.E., and Polson, P.G. (1985). An approach to the formal analysis of user com-
plexity. International Journal of Man-Machine Studies, 22, 365–394.

Kieras, D.E., Wood, S.D., Abotel, K., and Hornof, A. (1995). GLEAN: A computer-
based tool for rapid GOMS model usability evaluation of user interface designs. In
Proceedings of the Symposium on User Interface Software and Technology (UIST 95)
(pp. 91–100). New York: Association of Computing Machinery.

Ref-9

Kintsch, W. (1988). The role of knowledge in discourse comprehension: A construction-
integration model. Psychological Review, 95, 163–182.

Kintsch, W. (1998) Comprehension: A paradigm for cognition. New York: Cambridge
University Press.

Kintsch, W. (2002). Predication. Cognitive Science, 25, 173–202.

Kintsch, W., and van Dijk, T.A. (1978). Toward a model of text comprehension and pro-
duction. Psychological Review, 85, 363–394.

Kintsch, W., and Vipond, D. (1978). Reading comprehension and readability in educa-
tional practice and psychological theory. In L.G. Nillson (Ed.), Memory: Processes
and problems. Hillsdale, NJ: Lawrence Erlbaum Associates.

Kintsch, W., Patel, V.L., and Ericsson, K.A. (1999). The role of long-term working
memory in text comprehension. Psychologia, 42, 186–198.

Kitajima, M., and Polson, P.G. (1995). A comprehension-based model of correct per-
formance and errors in skilled, display-based, human-computer interaction. Interna-
tional Journal of Human-Computer Studies, 43, 65–99.

Kitajima, M., and Polson, P.G. (1997). A comprehension-based model of exploration.
Human-Compute Interaction, 12, 345–389.

Kitajima, M., and Polson, P.G. (1998). Knowledge required for understanding task-
oriented instructions. In J. Tanaka (Ed.), Proceedings of the Third Asian Pacific
Computer-Human Interaction Conference (APCHI ’98) (pp. 19–24). Los Alamitos,
CA: IEEE Computer Society.

Kitajima, M., Blackmon, M.H., and Polson, P.G. (2000). A comprehension-based model
of web navigation and its application to web usability analysis. In S. McDonald,
Y. Waern, and G. Cockton (Eds.), People and Computers XIV-Usability or Else!
[Proceedings of HCI 2000] (pp. 357–373). Heidelberg, Germany: Springer-Verlag.

Kitajima, M., Soto, R., and Polson, P.G. (1998). LICAI+: A comprehension-based model
of the recall of action sequences. In F.E. Ritter and R.M. Young (Eds.), Proceedings
of the 2nd European Conference on Cognitive Modeling (pp. 82–89). Thrumpton,
Nottingham: Nottingham University Press.

Klein, G.A. (1989). Recognition-primed decisions. In W. Rouse (Ed.), Advances in man-
machine systems research, Volume 5 (pp. 47-92). Greenwich, CT: JAI Press.

Kleinman, D., Baron, S., and Levison, W. (1971). A control theoretic approach to
manned-vehicle systems. IEEE Transactions on Automatic Control, No. 61, 824–832.

Krafft, M.F. (2002, October). Adaptive resonance theory. Retrieved March 5, 2003, from
the University of Zurich, Department of Information Technology Web site:
http://www.ifi.unizh.ch/staff/krafft/papers/2001/wayfinding/html/node97.html.

Laird, J.E., and Newell, A. (1983). A universal weak method: Summary of results. In
Proceedings of the Eighth International Joint Conference on Artificial Intelligence
(pp. 771–773). Los Altos, CA: Kaufman.

Ref-10

Laird, J.E., and Rosenbloom, P.S. (1994). The evolution of the Soar cognitive architec-
ture (Technical Report CSE-TR-219-49). Ann Arbor, MI: Department of Electrical
Engineering and Computer Science, University of Michigan.

Laird, J.E., Congdon, C.B., and Coulter, K.J. (1999). The Soar user’s manual: Ver-
sion 8.2. Retrieved June 4, 2000, from a University of Michigan Web site:
http://ai.eecs.umich.edu/soar/docs/manuals/soar8manual.pdf.

Laird, J.E., Jones, R.M., and Nielsen, P.E. (1994). Coordinated behavior of computer
generated forces in TacAir-Soar. In Proceedings of the 4th Conference on Computer
Generated Forces and Behavioral Representation. Orlando, FL: Simulation Interop-
erability Standards Organization.

Landauer, T.K. (1998). Learning and representing verbal meaning: The latent semantic
analysis theory. Current Directions in Psychological Science, 7, 161–164.

Landauer, T.K., and Dumais, S.T. (1997). A solution to Plato’s Problem: The latent
semantic analysis theory of acquisition, induction, and representation of knowledge.
Psychological Review, 104, 211–240.

Landauer, T.K., Foltz, P.W., and Laham, D. (1998). An introduction to latent semantic
analysis. Discourse Processes, 25, 259–284.

Landauer, T.K., Laham, D., Rehder, R., and Schreiner, M.E. (1997). How well can pas-
sage meaning be derived without using word order? A comparison of Latent Semantic
Analysis and humans. In M.G. Shafto and P. Langley (Eds.), Proceedings of the 19th

Annual Meeting of the Cognitive Science Society (pp. 412–417). Mahwah, NJ: Law-
rence Erlbaum Associates.

Laughery, K.R., Jr., and Corker, K. (1997). Computer modeling and simulation. In
G. Salvendy (Ed.), Handbook of human factors and ergonomics (2nd ed.)
(pp. 1375–1408). New York: John Wiley & Sons.

LaVine, N., Kehlet, R., O’Connor, M.J., and Jones, D.L. (1999). Transferring ownership
of ModSAF behavioral attributes. In Proceedings of the Spring Simulation Interop-
erability Workshop. Orlando, FL: Simulation Interoperability Standards Organization.

Lebiere, C. (2002). Introduction to ACT-R 5.0 [tutorial]. Presented at Twenty-Fourth
Annual Conference of the Cognitive Science Society, Fairfax, VA.

Le Mentec, J-C., Glenn, F., Zachary, W., Eilbert, J. (1999). Representing human sensory
and motor action behavior in a cognitive modeling architecture. In Proceedings of the
8th Conference on Computer Generated Forces and Behavioral Representation.
Orlando, FL: Simulation Interoperability Standards Organization.

Lehman, J.F., VanDyke, J., and Rubinoff, R. (1995). Natural language processing for
IFORs: Comprehension and generation in the air combat domain. In Proceedings of
the Fifth Conference on Computer Generated Forces and Behavioral Representation.
Orlando, FL: Simulation Interoperability Standards Organization.

Leont’ev, A.N. (1979). The problem of activity in psychology. In J.V. Wertsch (Ed.), The
concept of activity in Soviet psychology (pp. 37–71). Armonk, NY: M.E. Sharpe.

Ref-11

Lewis, R.L. (1993). An architecturally based theory of human sentence comprehension.
Unpublished doctoral dissertation, Carnegie Mellon University, Pittsburgh, PA.

Lewis, R.L. (2001). Cognitive theory, Soar. In N.J. Smelser and P.B. Baltes (Eds.), Inter-
national encyclopedia of the social and behavioral sciences. Amsterdam: Pergamon
(Elsevier Science).

Linden, L.A. (1995). The ART Gallery documentation (V 1.0) [HTML document].
Retrieved March 26, 2003, from Boston University, Department of Cognitive and
Neural Sciences and the Center for Adaptive Systems Web site:
http://cns-web.bu.edu/pub/laliden/WWW/nnet_doc.html.

Linden, L. (n.d.). The ART Gallery: A neural network simulation package. Retrieved
March 21, 2003, from the Boston University, Department of Cognitive and Neural
Sciences Web site:
http://cns-web.bu.edu/pub/laliden/WWW/nnet.html.

MacMillan, J., Deutsch, S.E., and Young, M.J. (1997). A comparison of alternatives for
automated decision support in a multi-tasking environment. In Proceedings for the
41st Annual Meeting of the Human Factors and Ergonomics Society. Santa Monica,
CA: Human Factors Society.

McCulloch, W.S., and Pitts, W. (1943). A logical calculus of ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5, 115–133.

Meyer, D.E., and Kieras, D.E. (1997a). A computational theory of executive cognitive
processes and multiple-task performance: Part 1. Basic mechanisms. Psychological
Review, 104, 3–65.

Meyer, D.E., and Kieras, D.E. (1997b). A computational theory of executive cognitive
processes and multiple-task performance: Part 2. Accounts of psychological refrac-
tory-period phenomena. Psychological Review, 104, 749–791.

Miller, C.S., and Laird, J.E. (1996). Accounting for graded performance within a discrete
search framework. Cognitive Science, 20, 499–537.

Mross, E.F., and Roberts, J.O. (1992). The construction-integration model: A program
and manual (Publication No. 92-14). Bolder, CO: Institute of Cognitive Science, Uni-
versity of Colorado.

Mulgund, S.S., Harper, K.A., Zacharias, G.L., and Menke, T.E. (2000). SAMPLE: Situa-
tion Awareness Model for Pilot-in-the-Loop Evaluation. In Proceedings of the 9th
Conference on Computer Generated Forces and Behavioral Representation. Orlando,
FL: Simulation Interoperability Standards Organization.

Neisser, U. (1967). Cognitive psychology. Englewood Cliffs, NJ: Prentice-Hall.

Neisser, U. (1976). Cognition and reality: Principles and implications of cognitive psy-
chology. San Francisco, CA: W.H. Freeman and Company.

Nelson, G., Lehman, J.F., and John, B. (1994). Integrating cognitive capabilities in a real-
time task. In Proceedings of the Sixteenth Annual Conference of the Cognitive Sci-
ence Society (pp. 658–663). Hillsdale, NJ: Lawrence Erlbaum Associates.

Ref-12

Newell, A. (1973). You can’t play 20 questions with nature and win: Projective com-
ments on the papers of this symposium. In W.G. Chase (Ed.), Visual information
processing (pp. 283–310). New York: Academic Press.

Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University
Press.

Newell, A., and Simon, H.A. (1972). Human problem solving. Englewood Cliffs, NJ:
Prentice-Hall.

Newell, A., and Simon, H.A. (1956). The logic theory machine: A complex information-
processing system. IRE Transactions in Information Theory, IT-2, 61–79.

Newell, A., Shaw, J.C., and Simon, H.A. (1957). Empirical explorations of the logic the-
ory machine: A case study in heuristics. In Proceedings of the 1957 Western Joint
Computer Conference (pp. 218–230). Also reprinted in E.A. Feigenbaum and
J. Feldman (Eds.), Computers and thought (pp. 109–133). New York: McGraw-Hill,
1963.

Newell, A., Shaw, J.C., and Simon, H.A. (1958). Elements of a theory of human problem
solving. Psychological Review, 65, 151–166.

Pew, R.W., and Mavor, A.S. (Eds.) (1998). Modeling human and organizational behav-
ior: Applications to military simulations. Washington, DC: National Academy Press.

Polson, P.G., Muncher, E., and Engelbeck, G. (1986). A test of common elements theory
of transfer. In M. Mantei and P. Orbeton (Eds.), Proceedings of the CHI ’86 Con-
ference on Human Factors in Computing (pp. 78–83). New York: Association of
Computing Machinery.

Porto, V.W., Fogel, D.B., and Fogel, L.J. (1998). Generating novel tactics through evolu-
tionary computation. SIGART Bulletin, Fall, 8–14.

Pritsker, A.B., Wortman, D.B., Seum, C., Chubb, G., and Seifert, D.J. (1974). SAINT:
Systems Analysis of an Integrated Network of Tasks (Aerospace Medical Research
Laboratory, Technical Report AMRL-TR-73-126). Dayton, OH: Wright-Patterson Air
Force Base.

Rao, A.S., and Georgeff, M.P. (1995). BDI agents: From theory to practice. In Pro-
ceedings of the First International Conference on Multi-Agent Systems (ICMAS-95)
(pp. 312–319). Menlo Park, CA: American Association for Artificial Intelligence.

Rasmussen, J. (1983). Skills, rules, and knowledge: Signals, signs and symbols, and other
distinctions in human performance models. IEEE Transactions On Systems, Man, and
Cybernetics, SMC-13, 257–266.

Ritter, F.E., Baxter, G.D., Avaramides, M., and Wood, A.B. (2002). Soar: Frequently
asked questions list [Web page]. Retrieved May 29, 2002, from the Pennsylvania
State University’s Soar Web site:
 http://ritter.ist.psu.edu/soar-faq/soar-faq.html.

Ref-13

Ritter, F.E., Shadbolt, N R., Elliman, D., Young, R., Gobet, F., and Baxter, G.D. (2002).
Techniques for modeling human and organizational behaviour in synthetic environ-
ments: A supplementary review. Wright-Patterson Air Force Base, OH: Human Sys-
tems Information Analysis Center.

Rosenbloom, P.S. (1994). A brief history of the Soar Project. Downloaded May 30, 2002,
from Soar Web site at Carnegie Mellon University:
http://www-2.cs.cmu.edu/afs/cs/project/soar/public/www/brief-history.html.

Rosenbloom, P.S., Laird, J.E., Newell, A., and McCarl, R. (1991). A preliminary analysis
of the Soar architecture as a basis for general intelligence. Artificial Intelligence, 47,
289–325.

Ryder, J.M., Weiland, M.Z., Szczepkowski, M.A., and Zachary, W.W. (1998). Cognitive
engineering of a new telephone operator workstation using COGNET. International
Journal of Industrial Ergonomics, 22, 417–429.

Ryder, J.M., and Zachary, W. (1991). Experimental validation of the attention switching
component of the COGNET framework. In Proceedings of the 35th Annual Meeting
of the Human Factors Society (pp. 72–76). Santa Monica, CA: Human Factors
Society.

Salvucci, D.D., Boer, E.R., and Liu, A. (2001). Toward an integrated model of driver
behavior in a cognitive architecture. Transportation Research Record, 1779, 9–16.

Seamster, T.L., Redding, R.E., Cannon, J.R., Ryder, J.M., and Purcell, J.A. (1993). Cog-
nitive task analysis of expertise in air traffic control. International Journal of Aviation
Psychology, 3, 257–283.

Siegel, A.I., and Wolf, J.J. (1962). A model for digital simulation of two-operator man-
machine systems. Ergonomics, 5, 557–572.

Siegel, A.I., and Wolf, J.J. (1969). Man-machine simulation models. New York: John
Wiley.

Sierhuis, M. (1996). Selective ethnographic analysis: Qualitative modeling for work
place ethnography. Paper presented at the Annual Meeting of the American Associa-
tion of Anthropology, San Francisco, CA. Retrieved September 27, 2002, from
AgentiSolution Web site:
http://www.agentisolutions.com/documentation/papers/Aaa.pdf.

Sierhuis, M., and Clancey, W.J. (1997). Knowledge, practice, activities, and people. In
B.R. Gaines and R. Uthurusamy (Eds.), Artificial intelligence in knowledge manage-
ment: Papers from the 1997 AAI Spring Symposium (Technical Report SS-97-01)
(pp. 142–148). Menlo Park, CA: American Association for Artificial Intelligence.

Sierhuis, M., Clancey, W.J., Sims, M.H. (2002). Multiagent modeling and simulation in
human-robot mission operations work system design. In Proceedings of the Hawaii
International Conference on System Sciences [CD/ROM] (10 pages). Computer Soci-
ety Press. Los Alamitos, CA: IEEE Computer Society Press.

Ref-14

Sierhuis, M., Clancey, W.J., and van Hoof, R. (1999). BRAHMS: A multiagent program-
ming language for simulating work practice. Retrieved September 25, 2002, from
AgentiSolutions Web site:
http://www.agentisolutions.com/documentation/papers/BrahmsWorkingPaper.pdf.

Sierhuis, M., Clancey, W.J., van Hoof, R., and de Hoog, R. (2000). Modeling and simu-
lating human activity. In M. Freed (Ed.), Simulating human agents: Papers from the
2000 Fall Symposium (Technical Report FS-00-03) (pp. 100–109). Menlo Park, CA:
American Association for Artificial Intelligence.

Sloman, A. (2001). Varieties of affect and the CogAff architectural scheme. From the
Symposium on Emotion, Cognition, and Affective Computing, Society for the Study of
Artificial Intelligence and Simulation of Behaviour (AISB). Brighton, England: Uni-
versity of Sussex.

Sloman, A. (2002, February). The cognition and affect project. Exploring architectures
for intelligent agents (whether natural or artificial). Retrieved February 13, 2003
from University of Birmingham School of Computer Science Web site:
http://www.cs.bham.ac.uk/~axs/cogaff.html.

Sloman, A. (2003). How many separately evolved emotional beasties live within us? In
R. Trappl, P. Petta, and S. Payr, (Eds.), Emotions in humans and artifacts. Cam-
bridge, MA: The MIT Press.

Sloman, A., and Croucher, M. (1981). Why robots will have emotions. In Proceedings on
the 7th International Joint Conference on Artificial Intelligence (pp. 197–202). Van-
couver, BC.

Smith, B.R., and Tyler, S.W. (1997). The design and application of MIDAS: A construc-
tive simulation for human-system analysis. Presented at the 2nd Simulation Technol-
ogy & Training (SIMTECT) Conference. Canberra, Australia.

Strohschneider, S. (2002). Automobiles, ind-col, and psychic systems: An essay on the
functional perspective in cross-cultural psychology. In W.J. Lonner, D.L. Dinnel,
S.A. Hayes, and D.N., Sattler (Eds.), OnLine readings in psychology and culture.
Bellingham, WA: Western Washington University, Department of Psychology.
Retrieved October 7, 2002, from Center for Cross-Cultural Research Web site:
http://www.wwu.edu/~culture.

Suchman, L.A. (1987). Plans and situated actions: The problem of human-machine com-
munication. Cambridge: Cambridge University Press.

Tambe, M. (1996). Teamwork in real-world, dynamic environments. In Proceedings of
the First International Conference on Multi-Agent Systems. Menlo Park, CA: Ameri-
can Association for Artificial Intelligence.

Tambe, M., Adibi, J., Al-Onaizan, Y., Erdem, A., Kaminka, G.A., Marsella, S.C., and
Muslea, I. (1999). Building agent teams using an explicit teamwork model and
learning. Artificial Intelligence, 110, 215–239.

Ref-15

Tenney, Y.J., and Spector, S.L. (2001). Comparisons of HBR models with human-in-the-
loop performance in a simplified air traffic control simulation with and without HLA
protocols: Task simulation, human data, and results. In Proceedings of the 10th Con-
ference on Computer Generated Forces and Behavioral Representation. Orlando, FL:
Simulation Interoperability Standards Organization.

Thibadeau, R., Just, M.A., and Carpenter, P.A. (1982). A model of the time course and
content of reading. Cognitive Science, 6, 157–203.

Turner, A., and Greene, E. (1977). The construction and use of a propositional text base
(Technical Report No. 63). Boulder, CO: Institute for the Study of Intellectual
Behavior, University of Colorado.

Tyler, S.W., Neukom, C., Logan, M., and Shively, J. (1998). The MIDAS human per-
formance module. In Proceedings of the Human Factors and Ergonomics Society
42nd Annual Meeting (pp. 320–324). Santa Monica, CA: Human Factors and Ergo-
nomics Society.

Warwick, W., McIlwaine, S., Hutton, R., and McDermott, P. (2001). Developing com-
putational models of recognition-primed decision-making. In Proceedings of the 10th
Conference on Computer Generated Forces and Behavioral Representation. Orlando,
FL: Simulation Interoperability Standards Organization.

Wherry, R.J. (1976). The Human Operator Simulator – HOS. In T.B. Sheridan and
G. Johannsen (Eds.), Monitoring behavior and supervisory control (pp. 283–293).
New York, NY: Plenum Press.

Young, R.M. (1999). Brief introduction to ACT-R for Soarers: Soar and ACT-R still
have much to learn from each other. Paper presented at 19th Soar Workshop. Ann
Arbor, MI: University of Michigan.

Yule, P., and Cooper, R. (2000, August). The COGENT tutorial. Presented at the 22nd
Annual Conference of the Cognitive Science Society. Philadelphia, PA.

Zacharias, G., and Baron, S. (1982). A proposed crew-centered analysis methodology for
fighter/attack missions (BBN Technical Report 4866). Cambridge, MA: Bolt, Bera-
nek, and Newman, Inc.

Zacharias, G., Baron, S., and Muralidharan, R. (1981). A supervisory control model of
the AAA crew. In Proceedings of the 17th Conference on Manual Control, Los
Angeles, CA.

Zacharias, G.L., Miao, A.X., Illgen, C., Yara, J.M., and Siouris, G. (1996). SAMPLE:
Situation Awareness Model for Pilot-in-the-Loop Evaluation. In Proceedings of the
First Annual Symposium on Situational Awareness in the Tactical Air Environment.
Naval Air Warfare Center: Patuxent River, MD.

Zacharias, G.L., Miao, A.X., Kalkan, A., and Kao, S-P. (1994). Operator-based metric for
nuclear operations automation assessment. In Transactions of the Twenty-Second
Water Reactor Safety Information Meeting (NUREG/CP-0140, Vol. 1, pp. 181–205).
Washington, DC: U.S. Nuclear Regulatory Commission.

Ref-16

Zachary, W.W., and Le Mentec, J-C. (2000). Modeling and simulating cooperation and
teamwork. In Proceedings of the Advanced Simulation Technologies Conference
(ATSC 2000). San Diego, CA: The Society for Computer Simulation International.

Zachary, W., Campbell, G.E., Laughery, K.R., Glenn, F., and Cannon-Bowers, J.A.
(2001). The application of human modeling technology to the design, evaluation, and
operation of complex systems. In E. Salas (Ed.), Advances in human performance and
cognitive engineering research, Volume 1 (pp. 199–247). New York: JAI Press.

Zachary, W., Cannon-Bowers, J., Bilazarian, P., Drecker, D., Lardieri, P., and Burns, J.
(1999). The Advanced Embedded Training System (AETS): An intelligent embedded
tutoring system for tactical team training. Journal of Artificial Intelligence in Educa-
tion, 10, 257–277.

Zachary, W.W., Le Mentec, J-C., and Schremmer, S. (1996). GINA: A workbench for
constructing cognitive agents. In the Proceedings of the Human Factors and Ergo-
nomics Society 40th Annual Meeting (p. 864). Santa Monica, CA: Human Factors
Society.

Zachary, W.W., Ryder, J.M., and Hicinbotham, J.H. (1998). Cognitive task analysis and
modeling of decision-making in complex environments. In J. Cannon-Bowers and
E. Salas (Eds.), Decision-making under stress: Implications for training and simula-
tion. Washington, DC: American Psychological Association.

Zachary, W., Ryder, J., and Le Mentec, J-C. (2002). Applied modeling of human compe-
tence and performance with COGNET and COGNET-P. Unpublished manuscript.

Zachary, W., Ryder, J., Zubritzky, M., and Ross, L. (1990). Application and validation of
COGNET model of human-computer interaction in naval air ASW (Technical Report
900430.8704). Spring House, PA: CHI Systems.

Zachary, W., Santarelli, T., Ryder, J., Stokes, J., and Scolaro, D. (2001). Developing a
multi-tasking cognitive agent using the COGNET/iGEN integrative architecture. In
Proceedings of the 10th Conference on Computer Generated Forces and Behavioral
Representation. Orlando, FL: Simulation Interoperability Standards Organization.

Zhang, W., and Hill, R.W., Jr. (2000a). A template-based and pattern-driven approach to
situation awareness and assessment in virtual humans. In Proceedings of the Fourth
International Conference on Autonomous Agents. New York: Association for Com-
puting Machinery (ACM), Special Interest Group for Artificial Intelligence
(SIGART).

Zhang, W., and Hill, R.W., Jr. (2000b). Situation awareness and assessment—An inte-
grated approach and applications. In Proceedings of the 9th Conference on Computer
Generated Forces and Behavioral Representation. Orlando, FL: Simulation Interop-
erability Standards Organization.

Zubritsky, M., and Zachary, W. (1989). Constructing and applying cognitive models to
mission management problems in air anti-submarine warfare. In Proceedings of the
33rd Annual Meeting of the Human Factors Society (pp. 129–134). Santa Monica,
CA: Human Factors Society.

GL-1

GLOSSARY

HBR Models Acronyms/Abbreviations:25

ACT Atomic Components of Thought

AETS Advanced Embedded Training System

APEX Architecture for Procedure Execution

ART Adaptive Resonance Theory

Brahms Business Redesign Agent-Based Holistic Modeling System

CAPS Concurrent Activation-Based Production System

CCT Cognitive Complexity Theory

C-I Theory Construction-Integration Theory

CogAff Cognition and Affect Project

COGENT Cognitive Objects within a Graphical EnviroNmentT

COGNET Cognition as a Network of Tasks

DCOG Distributed Cognition

EPIC Executive Process/Interactive Control

HOS Human Operator Simulator

Micro SAINT Micro Systems Analysis of Integrated Network of Tasks

MIDAS Man-machine Integrated Design and Analysis System

OMAR Operator Model Architecture

PSI See Footnote 18 on page II-79

SAMPLE Situation Awareness Model for Pilot-in-the-Loop
Evaluation

Soar State, Operator, And Result

25 The acronyms/abbreviations listed on page GL-1 are those of the 19 models discussed in this
document.

GL-2

2-D two-dimensional

3-D three-dimensional

A3I Army Aircrew/Aircraft Integration

ACL Allegro Common LISP

ACM Association for Computing Machinery

ACTD Advanced Concept Technology Demonstration

AD REM Abstract Design Rendering Executable Models

ADS Abstraction-Decomposition Space
advanced distributed simulation

AFB Air Force Base

AFRL Air Force Research Laboratory

AI artificial intelligence

AIAA American Institute of Aeronautics and Astronautics

AISB Artificial Intelligence and Simulation of Behaviour

ALSEP Apollo Lunar Surface Experiments Package

AMBR Agent-based Modeling and Behavior Representation

AMRL Aerospace Medical Research Laboratory

ANN Artificial Neural Net

ANSI American National Standards Institute

AOEM Air Operations Enterprise Model

APCHI Asian Pacific Computer-Human Interaction Conference

API application programming interface

ARC Ames Research Center

ASTC Advanced Simulation Technologies Conference

ASW anti-submarine warfare

ATC air traffic control

AWACS Airborne Warning and Control System

BATON Blackboard Architecture for Task-Oriented Networks

BBN Bolt, Beranek, and Newman Inc.

BDI Belief-Desire-Intention

BFTT Battle Force Tactical Trainer

C2 command and control

GL-3

CAD computer-aided design

CART Combat Automation Requirements Testbed

CC CAPS or 3CAPS Concurrent, Capacity-Constrained Activation-Based
Production System

CCBI Center for Cognitive Brain Imaging

CCSIL Command and Control Simulation Interface Language

CEL COGNET Executable Language

CFOR Command Forces

CGR COGNET Graphical Representation

CHIL Computer-Human Interaction Laboratory

CLIM Common LISP Interface Manager

CLIPS C Language Integrated Production System

CMN Card-Moran-Newell

CMU Carnegie Mellon University

CoABS Control of Agent-Based Systems

CoLiDeS Comprehension-based Linked model of Deliberate Search

CPM Cognitive-Perceptual-Motor

CRA Charles River Analytics, Inc.

CSIM Crew/System Integration Model

CTA cognitive task analysis

DARPA Defense Advanced Projects Agency

DDD Distributed Dynamic Decision-making

DERA Defence Evaluation and Research Agency

DIS Distributed Interactive Simulation

DMSO Defense Modeling and Simulation Office

DoD Department of Defense

D-OMAR Distributed Operator Model Architecture

DOS Disk Operating System

EC Evolutionary Computation

FLAIRS Florida AI Research Society

FLEX Flavors Expert

FMARS Flashline Mars Arctic Research Station

GL-4

fMRI functional magnetic resonance imaging

FORTRAN Formula Translation/Translator

FTP file transfer protocol

GDTA Goal-Directed Task Analysis

GINA Generator of Interface Agents

GLEAN GOMS Language Evaluation and Analysis

GOMS Goals, Operators, Methods, and Selection rules

GOMSL GOMS Language

GPS General Problem Solver

GRADE Graphical Agent Development Environment

GUI graphic user interface

HAIL Human Automation Integration Laboratory

HAM Human Associative Memory

HBR human behavior representation

HCI human-computer interaction

HLA High-Level Architecture

HODAC Human Operator Data Analyzer/Collator

I/O input/output

IADS Integrated Air Defense System

ICMAS International Conference on Multi-Agent Systems

ICS Institute of Cognitive Science

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

IFAC International Federation of Automatic Control

IFOR Intelligent Forces

IJCAI International Joint Conference on Artificial Intelligence

IMPRINT Improved Performance Research Integration Tool

IPME Integrated Performance Modeling Environment

IRL Institute for Research on Learning

ISI Information Science Institute

ISIS Information Science Institute Synthetic

ISL Integral Solutions Limited

GL-5

IUSS Integrated Unit Simulation System

KB Agent Knowledge-Based Agent

LICAI LInked model of Comprehension-based Action planning
and Instruction

LISP LISt Processing

LSA Latent Semantic Analysis

LT Logic Theorist

LTM long-term memory

LTWM long-term working memory

M&S modeling and simulation

MA&D Micro Analysis and Design

MCL Macintosh Common LISP

MHP Model Human Processor

MIL-AASPEM Man-in-the-Loop Air-to-Air System Performance
Evaluation Model

MIL-STD Military Standard

MIT Massachusetts Institute of Technology

ML Markup Language

ModSAF modular semi automated forces

MOPP Mission Oriented Protection Posture

MRT Multiple Resource Theory

MS Microsoft

NASA National Aeronautics and Space Administration

NGOMSL Natural GOMS Language

NL natural language

NRC National Research Council

NT New Technology (Microsoft Windows operating system)

OCM Optimal Control Model

ONR Office of Naval Research

OPL Operator Procedure Language

OS operating system

OTS off-the-shelf

GL-6

PARC Palo Alto Research Center

PC personal computer

PDL Procedure Definition Language

PEO STRI Program Executive Office for Simulation, Training, and
Instrumentation

PET positron emission tomography

PI Principal Investigator

PPS Parsimonius Production System

PROCRU Procedure-Oriented Crew Model

PSA Personal Satellite Assistant

R&D research and development

RAP Reactive Action Package

RL resolution level

RPD Recognition-Primed Decision-making

RTI Run-Time Interface

SAE Society of Automotive Engineers

SAINT Systems Analysis of Integrated Network of Tasks

S-CAPS situated CAPS

SCORE Simulation Core

SDK Software Development Kit

SFL Simple Frame Language

SIGART Special Interest Group for Artificial Intelligence

SIGCHI Special Interest Group on Computer-Human Interaction

SIMTECT Simulation Technology and Training

SL selection threshold

SMC Systems, Man, and Cybernetics Society

SME subject matter expert

STEAM Shell for TEAMwork

STM short-term memory

STOW-97 Synthetic Theater of War-1997

STOW-E synthetic Theater of War-Europe

GL-7

STRICOM U. S. Army’s Simulation, Training, and Instrumentation
Command

TCP/IP Transmission Control Protocol/Internet Protocol

TCV terminally configured vehicle

TEX Task Experimenter

TM Technical Memorandum

TR Technical Report

UAV unmanned aerial vehicle

UIST User Interface Software and Technology

UMTRI University of Michigan Transportation Research Institute

USC University of Southern California

VTOL vertical take-off and landing

WM working memory

XML eXtensible Markup Language

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR
FORM TO THE ABOVE ADDRESS.
1. REPORT DATE

August 2003
2. REPORT TYPE

Final
3. DATES COVERED (From–To)

February 2002–June 2003
5a. CONTRACT NUMBER

DAS W01 98 C 0067/DAS W01 02 0012
5b. GRANT NUMBER

4. TITLE AND SUBTITLE

A Review of Computer-Based Human Behavior Representations
and Their Relation to Military Simulations

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER
AK-2-2190

6. AUTHOR(S)

John E. Morrison

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Defense Analyses
4850 Mark Center Drive
Alexandria, VA 22311-1882

8. PERFORMING ORGANIZATION REPORT
NUMBER

IDA Paper P-3845

10. SPONSOR/MONITOR’S ACRONYM(S)9. SPONSORING/MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

DMSO
1901 N. Beauregard Street
Suite 500
Alexandria, VA 22311-1705

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited. (18 August 2004)

13. SUPPLEMENTARY NOTES

14. ABSTRACT
One of the goals of the Defense Modeling and Simulation Office (DMSO) has been to promote the development and assessment of

computational human behavior representations (HBRs) that potentially provide synthetic forces—both Red and Blue—for live, virtual, and
constructive military simulations. This paper reviews the domain of HBRs that could be integrated with military simulations. The intent is to
provide the modeling and simulation (M&S) community an understanding of specific HBR models and to identify specific interoperability
problems. The study identified 19 different HBRs that have at least some applicability to military simulations. Analyses of these models
suggested the following generalizations concerning the current state of the art in human behavior modeling: (1) Decision-making is a
universal function of all models; (2) All models can represent some form of memory storage and retrieval functions; (3) Both the “front-
end” of cognition (perception and attention) and cognitive output (psychomotor action) are represented in most models; (4) Because most
models do not include learning functions, they may not react appropriately to novel situations; (5) The capability to emulate situation
awareness (SA) is explicitly represented in only a few models; and (6) Very few of the models have the capability to simulate emotional or
social behaviors.

15. SUBJECT TERMS

cognitive model, human behavior representation (HBR), modeling, simulation, training

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Col. Michael L. Finnern

a. REPORT
Uncl.

b. ABSTRACT
Uncl.

c. THIS PAGE
Uncl.

17. LIMITATION
OF ABSTRACT

SAR

18. NUMBER
OF PAGES

152 19b. TELEPHONE NUMBER (include area code)
(703)998-0660

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

