
AFRL-IF-WP-TR-2004-1545

POWER AWARE SMART
SUBMUNITIONS (PASS)

Jeffrey A. Barnett
Northrop Grumman Corporation
Integrated Systems
One Hornet Way, MS-9L72/W6
El Segundo, CA 90245-2804

JUNE 2004

Final Report for 21 May 2002 – 30 June 2004

Approved for public release; distribution is unlimited.

STINFO FINAL REPORT

© 2002 Kluwer

Appendix [2], resulting from Department of the Air Force contract number
F33615-02-C-4001, is a draft of Chapter 1 in Power Aware Computing, Kluwer, 2002. The
United States has for itself and others acting on its behalf an unlimited, nonexclusive,
irrevocable, paid-up royalty-free worldwide license to use for its purposes.

INFORMATION DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334

/A ^

^_^\\\X^ Wl

'T^o v ^vP-"
"SfilUt

NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED IN
THIS DOCUMENT FOR ANY PURPOSE OTHER THAN GOVERNMENT PROCUREMENT
DOES NOT IN ANY WAY OBLIGATE THE US GOVERNMENT. THE FACT THAT THE
GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR
OTHER DATA DOES NOT LICENSE THE HOLDER OR ANY OTHER PERSON OR
CORPORATION; OR CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE,
OR SELL ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

THIS REPORT IS RELEASABLE TO THE NATIONAL TECHNICAL INFORMATION
SERVICE (NTIS). AT NTIS, IT WILL BE AVAILABLE TO THE GENERAL PUBLIC,
INCLUDING FOREIGN NATIONALS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION.

/s/ /s/
KERRY L. HILL ALFRED J. SCARPELLI
Project Engineer Team Leader
Embedded Information Systems Branch Embedded Information Systems Branch
Advanced Computing Division Advanced Computing Division

/s/
JAMES S. WILLIAMSON, Chief
Embedded Information Systems Branch
Advanced Computing Division
Information Directorate

Do not return copies of this report unless contractual obligations or notice on a specific document
requires its return.

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

June 2004 Final 5/21/2002 – 06/30/2004
5a. CONTRACT NUMBER

F33615-02-C-4001
5b. GRANT NUMBER

4. TITLE AND SUBTITLE

POWER AWARE SMART SUBMUNITIONS (PASS)

5c. PROGRAM ELEMENT NUMBER
62301E

5d. PROJECT NUMBER

M761
5e. TASK NUMBER

40

6. AUTHOR(S)

Jeffrey A. Barnett

5f. WORK UNIT NUMBER

 01
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

 REPORT NUMBER

Northrop Grumman Corporation
Integrated Systems
One Hornet Way, MS-9L72/W6
El Segundo, CA 90245-2804

DARPA/IPTO
Mr. Robert Graybill
3701 Fairfax Drive
Arlington, VA 22203-1714

04-040

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
ACRONYM(S)

AFRL/IFTA Information Directorate
Air Force Research Laboratory
Air Force Materiel Command
Wright-Patterson AFB, OH 45433-7334

11. SPONSORING/MONITORING AGENCY
REPORT NUMBER(S)

 AFRL-IF-WP-TR-2004-1545
12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

© 2002 Kluwer. Appendix [2], resulting from Department of the Air Force contract number F33615-02-C-4001, is a draft
of Chapter 1 in Power Aware Computing, Kluwer, 2002. The United States has for itself and others acting on its behalf an
unlimited, nonexclusive, irrevocable, paid-up royalty-free worldwide license to use for its purposes.

14. ABSTRACT
The Power-Aware Smart Submunitions (PASS) project is funded through the DARPA IPTO Power Aware Computing
and Communications (PACC) program. PASS has investigated the application of power-aware technology to military
systems in general and smart submunitions in particular. This final report presents a summary of that investigation as well
as several research notes included in the appendix. The research notes include a technology roadmap, description of how
applications must interact with the power-management infrastructure, and methods to manage energy versus delay
tradeoffs. Our conclusion is that application developers must determine the connections between energy management and
optimization of mission goals; technology that performs energy conservation is valuable but, by itself, is not competent to
optimally achieve mission objectives.

15. SUBJECT TERMS
Power Aware Systems, Smart Submunitions, Energy Management

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER
OF PAGES

 160
 Kerry Hill
19b. TELEPHONE NUMBER (Include Area Code)

(937) 255-6548 x3604
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39-18

Contents

1 Introduction 1

2 Background 3

3 Contractor Work Summary 7
3.1 Networking with Other Programs 7
3.2 CDRL Items . 8

3.2.1 Technology Roadmap 8
3.3 Research Investigations . 11

3.3.1 Application-Level Reasoning 11
3.3.2 Computation vs Communication 12
3.3.3 Redundancy Management 12
3.3.4 Energy and Time Management 13

4 Lessons Learned 16

A Appendix: Research Notes 17

i

roushrv
Text Box
iii

1 Introduction

The American military, during the previous century, made a radical transi-
tion from soldiers, primitive vehicles, and bullets to electronic warfare. While
soldiers and bullets still dominate our images of war, the reality is a battlefield
comprised of sophisticated platforms and a colossal support infrastructure
built from communications, sensors, and computing. These factors are force
multipliers as well as enablers for intelligent war-fighting. The electronics
revolution has reached the point where we commonly see the development of
autonomous systems that will, in part, remove the man from the battlefield.

Some of these autonomous systems must survive for long periods of time
in hostile environments to achieve their missions. Unattended sensor net-
works, space systems, and long-endurance reconnaissance aircraft are some
examples. A key component to their survival is energy management. These
systems must either live on their onboard resources or scavenge energy from
the environment. In either case, the problem is achieving maximum benefit,
as measured by mission metrics, given extant energy constraints.

The exponential explosion in computing and communication capability,
described by Moore’s Law, poses other energy management problems: heat
dissipation and packing density. As the feature size of components continues
to shrink, the energy density grows. We are now at the point where many
home computers employ liquid cooling. Some recent aircraft designs were
forced to limit the number of boxes per rack—a form-factor crisis—because
electrical increased energy consumption per component entailed vastly in-
creased heat densities.

The Northrop Grumman Corporation (NGC) Power Aware Smart Sub-
munitions (PASS) program has been funded to examine power management
problems relevant to military applications with particular emphasis on smart
submunitions. Figure 1 is a program quad chart. The work products are to
include a technology roadmap and related research investigations. PASS is
supported through the DARPA IPTO Power Aware Computing and Com-
munications (PACC) program. Phase I PACC work at NGC was sponsored
through a subcontract with USC/ISI East. The Phase II PASS program
provides funds directly to NGC through AFRL.

Section 2 discusses the problem space of military aviation and the par-
ticular missions and technologies that need sophisticated power management
technology. The contributions of the NGC PASS program are then sum-
marized in Section 3. Section 4 discusses lessons learned from PASS. The

1

1

Figure 1: PASS project quad chart.

most important are that (1) power awareness is a system-level problem and
(2) application developers are implicated in power management—the prob-
lems cannot be masked by a sophisticated API; rather, application knowledge
and value systems are the keys to mission optimizations.

Appendix A contains the technology roadmap [8] as well as the text of
several research reports generated by the PASS program.

2

2

2 Background

Flying has always been all about energy management. Common design and
performance metrics that reflect this reality include lift vs drag, wet vs dry
weight, endurance, range, fuel consumption vs altitude and pressure, etc.
The change today from the time of the Wright brothers is that electronic
systems—computation, communication, sensors, and actuators—participate
in the tradeoffs in addition to issues of loft lines, structures, and weight.
Several recent and proposed aero systems, shown in Figure 2, provide stark
examples of energy management concerns and are discussed next.

Sky Tower. The renamed AeroVironment Helios will act as a communica-
tion relay in the sky. The goal is six months endurance using electric
motors and solar energy for power. Not only must the system scav-
enge enough energy to sustain flight during the day, it must provide
resources for night time. The Helios recently set an altitude record for
its class when it just missed achieving a 100,000 ft. altitude goal.

Sensor Craft. This is an aircraft projected for the 2020 time frame with
70,000+ feet altitude, 80 hour endurance, and a sensor and compu-
tation suite that are barely imaginable today. Its skin will not only
provide lift and structural support, it will embed a large antenna farm.
Sensor Craft is the logical extension of today’s Global Hawk with more
than twice the endurance and an order of magnitude more capability.
Counting ounces and ergs is essential to the ultimate success of the
Sensor Craft vision.

Submunitions. These attack vehicles are parts of larger systems. They
are typically battery powered and their missions are to use onboard
sensors to acquire and identify targets then conduct lethal end games.
Weight increases caused by sophisticated computers and sensors trade-
off against range and endurance. The fact that these part aircraft/part
bombs are single use mitigates strategies that would provide ample but
more costly energy solutions.

Urban Flyers. The projection of increased engagements in urban environ-
ments has placed emphasis on small, agile, unmanned aircraft that can
navigate through city streets and, perhaps, even in buildings. Whether
flight is battery or petroleum powered, these vehicles must carry sophis-
ticated sensors and communications devices and some may be only the

3

3

(a) Helios long endurance high flyer.

(b) Sensor craft for the future.

(c) Army BAT submunition. (d) MARS flyer.

Figure 2: Flying vehicles with special energy needs.

4

4

size of a human fist. Energy management is a critical issue. An inter-
esting variation on the theme is the hand-sized vehicles being designed
for flight on Mars.

The military goal is always to maximize mission-performance metrics
which factor in costs to perform, costs if not performed, possibilities of col-
lateral damage, and targets of opportunity. The trade space investigated
by the PACC program, in general, and the PASS program, in particular, is
electronic power management in the service of mission goals. These trade-
offs may involve computation, communications, sensing, sensor exploitation,
control surface actuation, and even use of electric engines. In some cases, the
tradeoff is how much work to do given an energy constraint; in other cases,
the tradeoff involves how to achieve the mission objectives. Two related
examples highlight some of the issues involved:

1. A submunition has acquired a potential high-valued target but the
current resolution of its location is insufficient to guarantee a successful
attack. Resources are limited since it has taken quite a long time to
acquire this target. One possibility is to attack a closer lower-valued
target for which better location data is available onboard. This is a
direct mission-value vs resource-availability tradeoff.

2. Three choices for the same scenario when the high-valued target will be
pursued are (1) use the onboard sensor at higher resolution to resolve
location ambiguity, (2) apply more sophisticated image-enhancement
algorithms to data already onboard, or (3) use communications to share
another platform’s sensor data and fuse it with onboard data. Which
of these options can we afford? And which one is the most effective use
of our constrained energy budget? This is an example of a sensing vs
computation vs communication tradeoff in the service of mission-goal
achievement.

Resolving these technical tradeoffs not only presupposes sophisticated
mathematics and performance models (e.g., sensor resolution as a function
of energy), it also presupposes that we have models that accurately predict
mission performance in terms of the technical performance metrics. Mission
performance modeling is mostly beyond the scope of the PACC program so
the PASS program must concentrate on those metrics that measure technical
progress and intuitively support better mission accomplishment though we
cannot always say by how much.

5

5

For example, algorithms that use less energy to achieve the same precision
or voltage-scheduling technology that minimizes computation delay given a
hard energy budget are surely valuable results and in scope. However, the
steps that predict the increased percentage of target strikes per saved joule
is beyond our means.

Thus, PASS research has concentrated on technology that will better
manage and allocate constrained energy budgets. Our roadmap [8], on the
other hand, takes a broader view and speculates about how technology of
all types will come together to support more effective air vehicles for the
military in the future.

6

6

3 Contractor Work Summary

The PASS program has supported three types of activities: (1) networking
with other programs to share results, learn about key problems, and inform
others of the PACC program, (2) completing CDRL items, and (3) reserach in
core power-management problems important to avionics applications. Each
is described in a separate subsection below.

Several research notes were written in the course of our investigations.
One note [2] was published in a book on power-aware computing and two
others [3, 7] have been submitted to refereed journals for possible publication.
A fourth note [1] was published in the Morphware forum, an information
exchange media sponsored by the DARPA IPTO Polymorphous Computing
program. Appendix A includes the text of all research notes as well as the
technology roadmap.

3.1 Networking with Other Programs

The PASS program home room is located in the NGC Integrated Systems (IS)
Air Combat Systems (ACS). ACS is responsible for the design, development,
and manufacturing of many aircraft for the U.S. military. The proximity
to these programs provided an opportunity for many productive informa-
tion exchanges. In particular, we conducted informal technical interchanges
with the BAT, Smart Bombs, JSF, VTUAV, UCAR Watchkeeper, QSP, and
Falcon program components within ACS. We informed them of the PACC
program goals and ask them about their power-management concerns.

All of these programs, looking to their future needs, were concerned about
weight, form factor, and packing density of electronics. The BAT and Smart
Bombs programs have continually evaluated the tradeoff between powered
and glide flight. The issue with the latter is the lack of a generator so
batteries must provide all electric power. This in turn leads to a host of
power-management tradeoffs though it can substantially reduce the costs of
these one-use systems.

QSP and Falcon are concept design studies for future long-range hyper-
sonic bombers and have a rather novel set of energy management issues. Skin
temperatures can reach thousands of degrees Fahrenheit at the given flight
speeds. The question is how to dissipate that heat. Further, computing,
communication, and sensor systems and cockpits must be cooled. Though
PACC technologies can substantially reduce the heat generated by electronics

7

7

and, hence, the cooling load, it doesn’t address their major problems.
We have interacted with the Software Radio (JTRS) working group, one

of the major PACC Phase II activities, and attend their semiannual working
sessions held concurrently with PI meetings. We made a presentation [9]
about the special problems of power-management to aircraft at their kickoff
meeting.

3.2 CDRL Items

The PASS CDRL items include monthly financial reports, quarterly progress
reports, a technology roadmap [8], and this final report. All CDRL items have
been completed. The technology roadmap, in the form of annotated Power
Point slides, is included in Appendix A. It is further described below.

3.2.1 Technology Roadmap

A three-step process was used to develop the technology roadmap: (1) assess
ongoing engineering and scientific research, (2) determine which technologies
were likely to mature in the next decade, and (3) project how those technolo-
gies might be packaged to have maximum impact. The goal of this activity
was to take a broad look at where military aircraft technology was going; the
investigation was not confined to power management. It was evident early in
the investigation that power management was ubiquitous in the sense that
it would increase the amount of onboard electronic capabilities available to
support other technologies. So the more relevant issues were what the final
products might look like.

The assessment of ongoing research was done by examining programs
supported by DARPA, AFRL, ONR, and various national laboratories, as
well as those initiated within academia. Openly available literature, web
sites, and the informal technical interchange meetings mentioned above were
the information sources consulted.

The key technology areas identified included computer hardware, JTRS
and other communications advances, materials, human interface devices, in-
telligent systems, software development practices, sensors, miniaturization,
security methods, design tools, model-based reasoning, and (of course) power
management. The next issue was how advances in these areas might be com-
bined and what the products might look like in the future.

8

8

The following technology packages are predicted for future aircraft based
on the assessment and determination activities:

High-performance low-powered computer suites. Multi-chip mother-
boards will support multi-CPU chips and several will be packed in a
shoe-box sized box. Multiple boxes will provide redundancy, and power
dissipation will be less than 1 watt per GHz. Computing power of each
box will easily exceed 50 GHz.

Process-centric computing models. Computing will be organized as a
collection of processes, not subsystems. Individual processes will be
movable among chips, motherboards, and shoe-boxes.

Onboard internet communications. The comm architecture will mimic
the internet so that process locality, whether it be onboard or even re-
mote, is not an essential parameter. That network will support connec-
tivity with cockpits, actuators, sensors, and other systems distributed
throughout the vehicle as well as offboard assets.

Multilevel secure computing base. Joint Vision 2010 and 2020 suppose
an information-sharing structure that cannot exist without a support-
ing multilevel secure (MLS) infrastructure. Specialized process archi-
tectures will be developed to support MLS and the programmability of
JTRS will be leveraged.

Autonomy within man/machine interactions. In addition to autono-
mous vehicles, the machine side of man/machine interactions will be
very much more capable and provide primitive capabilities that rely
on autonomous facilities for their enactment. For example, a simple
request for better target ID might cause several autonomous rotorcraft
to position, sense, and fuse target information.

Reconfigurable cockpit. Pilots will introduce themselves to an aircraft us-
ing a personal “ignition key” that contains their preferences for display
arrangements and priorities as well as security keys and mission data.
In addition, the keys will provide individual pilot preferences in control
laws that effect the feel of flight.

Fusion-centric sensor suites. Today, sensors do an enormous amount of
processing before sharing data. Often data transformations are per-
formed that preclude the possibility of doing fusion at the correct level.

9

9

In the future, more raw data will be provided to the general-purpose
computing suite where fusion with other onboard sensors and offboard
information will occur ar whatever level of representation is appropriate
to current information needs.

Integrated health management. Health management will enjoy model-
based technology and be more astute. Autonomic supply chain and
ground-depot servicing support will be integrated with onboard health
management. Ultimately, sortie production rates will increase while
logistics and maintenance costs will decrease.

Formal design and requirements specifications. Methods to formally
specify system requirements, architectures, and designs will be devel-
oped and used to support autocode generation and better verification
and validation techniques.

Automatic code generation. Much of the system code will be generated
from the above formal representations. For example, some aspects
of flight-control software can be prototyped, in MATLABTM, from a
symbolic mathematical representation. It should also be possible to
autocode much of the process allocation, redundancy management, and
onboard communication-scheduling software from formal specifications.

Formal methods. There will be methods to verify formal specifications of
designs against formal statements of requirements. In addition, the
same technology base will be able to support better methods of gen-
erating system test scenarios and improve the efficiency of verification
and validation activities.

Subsystem procurement practice. In today’s practice, procured subsys-
tems are black boxes. The move to process-centric architectures and
internet-style communications should change this as well as the way
subsystems are procured. In the future, interface specifications will be
protocol designs, mutually agreed upon by contractors and subcontrac-
tors and their work products will be a set of processes and protocols
with dependencies developed during the detailed design period, rather
than before the subcontract is signed.

Smart skins. Aircraft skins will embedded new miniature electronic devices
such as sensors and antennas and MEMS devices will provide the ability

10

10

to dynamically reshape the skins to effect aero parameters and signa-
tures. Skins may also have embedded robust communication fabrics
which form onboard networks.

Form-fit packaging. The inside of an aircraft is an irregular shape and al-
most all of the packages that go there are rectangular. New light-weight
materials can be economically molded to specialized shapes (directly
from CAD specifications) to make better use of the available space and
reduce weight.

3.3 Research Investigations

This section discusses PASS research investigations in application-level rea-
soning, computation vs communication, redundancy management, and en-
ergy and time management. Each topic is addressed in a separate subsection.

3.3.1 Application-Level Reasoning

If the ultimate goal is to apply technology to enhance mission value, there
must be methodology to inform the system about the mission-value tradeoff
space. Left to their own devices, technology providers can only supply “less is
better” improvements, e.g., minimize the expected energy used to execute an
algorithm given a hard realtime deadline. However, real power-management
problems are more systemic.

Consider a submunition that has acquired a target that it expects to
strike in 45 seconds. The remaining energy store is limited so the relevant
question/optimization is the best allocation of that store among sensing,
actuators, and computation to improve the probability of a lethal strike. No
abstract technology can solve this problem without knowledge of performance
as a function of allocation and a map from performance to mission value.

Two PASS studies were devoted to this problem class. The first [1] devel-
oped an API (application program interface) with the expressiveness for ap-
plications to share knowledge with the underlying technology infrastructure
in order to jointly optimize system behavior. The key information presented
at the interface included alternative computation modes, an organized mis-
sion model, and metrics that described complexity, priorities, and costs. The
concentration was more on what information needed to be shared than how
to use that information.

11

11

The second study [2] investigated energy usage vs system performance.
Two problems were formulated and solved. The first dealt with the effect
of energy efficiency on aircraft endurance. The linkage was that (1) energy
efficiency reduces the weight of the battery or generator, (2) weight reduction
allows more fuel, and (3) extra fuel increases endurance. The second problem
investigation postulated that a sensor’s ability to reduce variance is a func-
tion of the energy that the sensor can use. The particular problem addressed
assumed a total energy budget and two sensors whose output would be fused
to further reduce variance. The goal was to find the optimal energy alloca-
tion between the two sensors to minimize residual variance. Both problems
were formulated with simplified models so that the problem spaces could be
explored analytically.

3.3.2 Computation vs Communication

Computation vs communication tradeoffs exist in military aircraft applica-
tions, unattended ground sensor nets, space, and other domains. For ex-
ample, should available data be processed locally to reduce its size before
transmitting it or should the raw data be transmitted? Since both compu-
tation and communication consume varying quantities of energy, this is an
important power management problem.

We performed a study [3] in this area that addressed a core theoretical
problem: determine the class of functions that have associated local algo-
rithms that substantially reduce bandwidth. Not all functions belong to this
class. Computation of the ordinary median, for example, does not admit
bandwidth-reducing local computations so transmitting raw data samples to
another site is as efficient as any other implementation.

We formulated a conjecture about necessary and sufficient conditions that
a distributed computation could reduce bandwidth and proved the condition
sufficient. However, necessity is still an open problem though we proved it
for the class of monotonic functions. The conjecture involves the existence of
a bicontinuous map from the function’s domain to a range that is isomorphic
to the equivalence classes induced by the function’s values.

3.3.3 Redundancy Management

Redundant process executions on separate hosts is a popular technique to
increase system robustness and reliability. However, a straightforward im-

12

12

plementation of n-way redundancy consumes n times as much energy as non-
redundant computation. We conducted an investigation to determine if it is
possible to do better than “straightforward.” Note, hard realtime deadlines
were assumed for the computations. Two techniques were investigated.

The first [4] considered how to implement a triply redundant computa-
tion to minimize expected energy expenditure. The strategy was to execute
two of the three processes relatively rapidly. If the two processes agreed on
their results, all computation ceased. If they did not agree, the third process,
executing initially at a slower rate, was sped up to complete its computations
by the deadline and vote its results. The energy consumed per computation
cycle was a function of processor speed, a controllable variable. The optimal
processor speeds and energy consumed were computed as a function of the
probability that the two-process rendezvous was unsuccessful. The relative
savings were found to vary monotonically from 1/3 to 0 as a function of fail-
ure probability—not a surprising result. The math models determined the
best execution speeds for all process segments and showed that, when the
failure probability was 1/3—a very high number—then all three processes
should execute at the same speed. When the probability is lower, stagger-
ing execution speeds was a winner by an amount dependent on the failure
probability.

The second study [5] considered how to implement duplex redundancy to
minimize expected energy consumption. The model used is that the same
process chunk was executed on two processors and results to-date compared.
If they agreed, the next chunk was executed; if they disagreed, both proces-
sors rolled back and re-executed the previous chunk, etc. The full problem
statement assumes that the probability of agreement is known and that there
is a hard realtime deadline. When there is a disagreement, the execution must
be sped up since more computation must be done before the deadline. The
expected number of rollbacks and the incurred penalties are functions of the
chunk size as well as the probability of agreement. So the problem solved
was to determine the chunk size that minimized expected energy consump-
tion and still met the deadline. The process and energy models used therein
are described in [6].

3.3.4 Energy and Time Management

Many modern computer architectures provide control knobs to regulate en-
ergy expenditure. Executing programs can change the supply voltage and

13

13

the clock frequency. When voltage is increased, the CPU can sustain higher
execution rates so the clock frequency can be increased though there is a
higher per-cycle energy cost. The class of applications investigated by PASS
typically have realtime deadlines as well as energy management needs so
these controls present an interesting opportunity. We explored a broad set
of related problems using several process and power models and various op-
timization criteria [7].

Two process models were investigated. The first, the simple probabilistic
model, provides a function p, where p(x) is the probability that process
complexity is exactly x cycles. The second model, the structural model,
posits that a process is a set of simple segments. At the end of each segment,
there is a multi-way branch to other segments. The probabilities of these
branches are given along with the complexity (cycle count) of the segments.
Conditional terminals are those segments where the sum of the outgoing
branch probabilities is less than one; if that sum is zero, the segment is a
simple terminal.

The class of power models examined was a two-parameter family. If Πmn

is a power model, then the energy expended to execute c cycles is proportional
to cvm, where v is voltage, and the time to execute c cycles is proportional
to c/vn. Aside from the fact that threshold voltage is ignored, this is a
reasonably realistic set of power models.

Two optimization problems were solved for both process and all power
models. The first asks for the voltage schedule that minimizes expected
execution time given a fixed energy budget. The second problem asks for
the voltage schedule that minimizes expected energy utilization given a hard
realtime deadline. The first optimization seems to be novel while the second
has an extensive literature. A voltage schedule is simply a specification of the
voltage to use when each cycle is executed. Another problem was formulated
and solved for the simple probabilistic model: Let Q(E, T) be a penalty
function of total energy, E, and total time, T , taken to execute a process;
Find the voltage schedule that minimizes the expected value of Q.

The most interesting result of this study was an insight that determines
when voltage level, hence, rates of energy expenditure and computation
should change and when it is optimal to remain constant. Voltage will only
change in optimal solutions of structurally modeled processes when some-
thing new is learned about future process complexity, and that can only
happen when a branch is selected at the end of a simple segment execu-
tion. Voltage will only change in optimal solutions of simple probabilistic

14

14

models when something is learned about future process complexity, and that
can only happen when executing a cycle where the probability of termina-
tion is not zero. What is learned is that the process didn’t terminate. This
information-theoretic insight is robust across all power models.

15

15

4 Lessons Learned

Our research studies provide point solutions for many energy and time man-
agement problems and these results are available to incorporate in future
systems. However, our key insight was developed through investigations and
interactions with other PACC programs:

Power-aware computing is a systemic problem that involves ap-
plication and mission expertise as well as the base technology in-
frastructure.

While less-is-better technology will certainly improve corporate enterprise
solutions and mobile computing, more is needed for military systems. Ap-
plication value systems, based on mission analysis and objectives, must be
used to determine (1) links between performance and mission metrics and
(2) choices among the set of possible mission realizations.

In other words, application knowledge must be linked with supporting
methods to manage time, energy, and other resources to optimize missions.
That linkage must occur during mission execution as well as in the software-
engineering laboratory. During the mission, the application systems must
track it own state and the mission to determine what is essential and what
is not. The resource-management layer must use this information to control
computation, communications, and sensing. However, the application must
be able to reorganize what it is doing and how it is doing it to assure success
when resources are limited.

The software-engineering laboratory must be used to measure the com-
plexities and costs of alternative computations and establish the control
knobs that are adjusted by both the application and the resource manage-
ment layers. Further, the system structure must be made overt as to mission
phases and computational modes so that the complexity information can be
properly applied and future system needs can be anticipated at runtime.

Support of this vision surely needs new technology, some of which is being
developed by the PACC program. But new development processes are needed
too. Further, there must be ways to develop large chunks of applications
with little regard for low-level details of power management. Otherwise, the
resulting code will be too brittle and too resistent to refresh and modification.
The PACC program is making progress in all of these areas, but much more
remains to be done by future research efforts.

16

16

A Appendix: Research Notes

The listed research notes comprise this appendix and follow in the enumer-
ated order.

References

[1] J. A. Barnett, Intelligent reconfigurable systems: The ubiquitous API, in
PCA Morphware Forum.

[2] J. A. Barnett, Application-level power awareness, in R. Melham and R.
Graybill (eds.), Power Aware Computing, Kluwer, 2003.

[3] J. A. Barnett, Distributed computation: A conjecture, submitted for
publication.

[4] J. A. Barnett, Energy efficient redundancy, NGC research note.

[5] J. A. Barnett, Power-aware duplex redundancy, NGC research note.

[6] J. A. Barnett, Minimum energy process execution, NGC research note.

[7] J. A. Barnett, Dynamic voltage scheduling optimizations, submitted for
publication.

[8] J. A. Barnett, Avionics for the 21st century, NGC research note.

[9] J. A. Barnett, Power-Aware challenges for unmanned air vehicles, pre-
sented to PACC Software Radio working group.

17

17

1

service
layer

details

Egg-PI (API?) interface

application

Intelligent Reconfigurable Systems: The Ubiquitous API

Jeffrey A. Barnett
jbarnett@nrtc.northrop.com

Northrop Grumman Corporation

August 2002

ABSTRACT
Modern software engineering and programming practices feature system-organization
approaches that assist development, simplify maintenance, and anticipate refresh. The
key concepts therein are abstraction layering architectures to organize system designs,
and application programming interfaces (API) to isolate application-specific code from
the supporting hardware and runtime infrastructure called middleware. From the point
of view of the software engineer, many details such as configuration, hardware status,
and time and resource management are swept under the rug. Unfortunately, some of
that detail is properly part of an application’s problem-solving domain in areas such as
realtime systems or use of exotic hardware. The conflict is reviewed and an approach—
the ubiquitous API—that addresses the inherent issues is suggested so that hygienic
software engineering technology will be available in these domains too. The idea is an
API that lives in the development laboratory as well as the execution environment. If
the recommended technology were realized, intelligent systems that could reconfigure
themselves in response to failures and resource considerations would be available.

Keywords: Software engineering, API, realtime, power-aware computing and com-
munications, polymorphic computer architectures, reconfigurable smart systems

1 Overview and Summary
A half-century of software engineering has
produced results and there is consensus about
fundamental approaches. The main point of
technical consensus is that a system ought to be
a collection of layers, where each layer offers a
well-defined, stable functional interface that supports the other layers built upon it. In fact
there is a consensus about the sort of interfaces that ought to be used for components such
as operating systems, database servers, and other middleware products. That consensus is
not about the specifics of interface functionality. Rather it is about what sorts of issues
should be exposed in a middleware layer’s interface and what should be encapsulated by
its implementation. Typically, the encapsulation hides details of hardware configuration,
device timing, algorithmic specifics, communications media, and the like.

The consensus layering solution works well for most systems. Requirement specifications
are shorter, design times are reduced, programmers are more efficient, and technology
refresh is simplified. However, there are important classes of systems that are not com-
patible with the standard solution. Realtime systems are such an exception. The issue is
that matters of timing, configuration, error recovery, and others normally encapsulated by
the middleware are legitimate application-level concerns. Since the necessary mecha-

18

2

nisms and control knobs are hidden in the lower level implementations, realtime pro-
grammers must either create a kluge or implement their own version of the middleware.
Both possibilities have negative impacts on system costs and lifecycle timelines [4].

Current hardware architecture research points to future system organization strategies that
will also need to break the standard middleware layer interfaces. The power-aware com-
puting and communications (PACC [5]) program will provide computer bases that can
regulate their energy consumption profiles in response to circumstances. When energy is
scarce, the hardware can ramp down its rate of expenditure and the software can do less
or do different e.g., adjust the mission goals. In times of plenty, system goals can be pur-
sued more aggressively. The polymorphous computer architecture (PCA [6]) program
will provide hardware bases that can change their fundamental architectures, e.g., FIFO
versus RAM or hypercube versus streaming, to optimize total system performance. Both
of these DARPA programs require that application layers cooperate with the middleware
that controls the novel hardware. Timing issues, device modes, and low-level configura-
tion details must be jointly optimized by the system as a whole. As with realtime systems,
the standard middleware layers hide the wrong information.

Some observations about where the knowledge resides to properly structure these sys-
tems are in order. Realtime system requirements and designs determine execution time-
lines, redundancy models, and error recovery strategies. The designer of a power-aware
system is the one who understands, for a given circumstance, whether it makes more
sense to communicate less or process sensor data to a lesser precision. The architect of a
large numerical code is the one who best appreciates whether a part of the system is bet-
ter served by an array model or a pipeline. In all of these cases, the key insights about
how to deal with low-level management tasks at execution time are based on knowledge
derived in the software-engineering laboratory. This conclusion suggests a solution to the
system organization problem caused by standard layering technology and assumptions. I
call that solution the ubiquitous API.

Sections 2-5 elaborate the discussion to this point and Sections 6-8 introduce the ubiqui-
tous API and review related research. An application-programming interface (API) is the
functional interface to a middleware layer. Thus, an API is a set of calls and interactions
between an application and the middleware at execution time. A ubiquitous API has a
presence in the development laboratory where vital information resides as well as the
runtime environment. Application specifications such as problem-solving modes and con-
figurations, source code, event definitions, and execution analyses are provided to a spe-
cial compiler where they are combined with resource descriptors and middleware primi-
tives. The compiler output includes an extended API and precompiled strategies to react
to dynamic events in addition to the application binaries. The runtime is now properly
equipped to respond efficiently to total system needs and provide meaningful information
exchanges between the application layers and the supporting infrastructure.

The discussion of the ubiquitous API also provides a solution for how very complicated
information, e.g., application modalities and configuration strategies, can be encoded for
the compiler. The suggested representation is a state machine where the states are con-

19

3

figurations (basically software architectures) and the state transitions are triggered by
events (application signals such as CHANGED MISSION TIME or infrastructure signals such
as BATTERY LOW). Transition specifications include information that relates components
of the “from” and “to” states so that proper system state can be maintained. State machine
representations will make both development and analysis relatively straightforward.

The ubiquitous API preserves the software-engineering concepts of layering and separa-
tion of concerns as much as is possible. However, it has methods to determine who
should be concerned—the application, the middleware, or both. When the answer is both,
it provides the tools necessary to integrate a total system cleanly even when the inter-
layer co-dependencies are quite complex. As a result, systems can intelligently reconfig-
ure themselves in response to events and resource considerations.

2 Modern Software-Engineering Approaches
Dave Parnus opined, in the early 1970’s [9], that the criterion for good software
modularization is that each module should hide a related set of implementation decisions.
His observation was based on some early versions of object-oriented (OO) languages
such as SIMULA and common sense. Computer systems could be developed that func-
tioned better, cost less, and were easier to maintain if all inter-module dependencies are
explicit and occur only at the boundaries between modules instead of relying on internal
implementation details. The reason was simple: modules could be repaired or improved
without effects on the using modules as long as the interfaces remained constant.

OO languages typically provide encapsulation and functional interfaces that specify the
types of arguments expected, values returned, and whether there are side effects or not.1
Unfortunately, early OO tools were slow, buggy, and not widely available. They were
also rather limited compared to more modern OO tools because of resource limitations
and lack of experience with the concepts. As a result, most systems built with these fa-
cilities tended to be a simple stack of software layers. Each layer provided an abstraction
(AKA a virtual machine) on which the next higher layer was implemented. For example,
an OO trip-planning system might be comprised of the three layers shown in Figure 1

1 A third feature, inheritance, probably the most interesting and powerful aspect of an OO approach, is not
germane to the present discussion so will be ignored here. The representation described in Section 7, how-
ever, could use inheritance to simplify specifications and application rehosting.

Trip-Planning Application

OS & Middleware Layer

Trip-Planning Layer
Interact with users and maintain individual traveler’s trip requirements
and itinerary.
Graph Layer
Maintain information about flight origins, destinations, and costs along
with optimal path-finding algorithms.
Storage Management Layer
Provide the primitives that allocate, deallocate, and support the reuse
of storage blocks.

Figure 1: Layered Trip-Planning Application

20

4

where the trip-planning layer is built on the graph layer, which in turn is built on the stor-
age-management layer. The operating system (OS) and associated middleware support
the whole application stack here as they do in most applications.

An interesting observation is that the advantages of OO—encapsulation to hide imple-
mentation decisions and functional interfaces—are available without OO facilities. A de-
cent design and some coding discipline will do the job nicely. In fact that is today’s most
popular architectural strategy: layered designs along with detailed interface specifica-
tions. The strategy works very well as long as the discipline is there; Good discipline of-
ten will marginalize the value of OO tools.

The bottom layer of most software systems is the OS. It provides access to hardware exe-
cution engines, resources such as file storage, and protection against accidental or mali-
cious damage by other software or agents. In the early years of the modern era, up to the
mid 1970’s, most operating systems were small collections of device drivers, resource
allocators, and a scheduler. Each machine type had a different OS and the interface be-
tween it and the applications was ad hoc. That interface often varied significantly be-
tween different models of the same computer family. As the role of the OS became more
substantial with the advent of networking, multimedia applications code, requirements for
backups, and sophisticated user interaction support, the ad hoc interfaces became an ex-
pensive nuisance.

The approach that evolved in the OS arena is similar to that used for application devel-
opment. The OS was simply viewed as a software layer with a well-defined interface
between it and the applications that it supports. This application programming interface,
or the API as it is commonly called, is now prevalent for almost all frequently used serv-
ices. API definitions now exist for families of database services, information exchange,
networks, and high-performance computer centers in addition to standard OS services.
Some API specifications, e.g., POSIX, CORBA, and SQL, are now maintained and nur-
tured by national and international standards organizations. The result of this move, along
with standardization of many popular programming languages, is an ability to develop
applications that can be hosted on a large number of different computer types and can use
services from a variety of vendors with little preplanning or reprogramming. The term
middleware is frequently used to denote operating systems as well as other infrastructure
that supports multiple applications. The cost of developing middleware has been substan-
tially reduced too. So the world is good.

3 Hidden Details
The use of a formalized API for an operating system sweeps many important implemen-
tation details under the rug. While so located, these details are removed from the applica-
tion’s purview and control. That of course is the point of a good API. Table 1 lists several
of the concerns that middleware, particularly an OS layer, encapsulates. The breadth of
those concerns is rather impressive and continues to grow. Some old timers fondly re-
member the joy of reinventing approaches to all or most of these problems for each new
system that was built. Our paymasters are much happier today because the modern ap-
proach reduces cost as well as enabling development of more capable systems.

21

5

Table 1: Details Swept Under the Rug By OS & Middleware
Detail Category Hidden Details
Processor Features How is the floating-point unit connected? What kind of caches and how

large are they? Is this a single processor or multiprocessor main board?
How wide is the pipeline? Can it be reconfigured?

Hardware Devices What devices are attached? At what rate do they operate? What are
their interrupt priorities? What are the handshake time limits? What type
of power supply is used? Can it report its status? Are printers spooled?

Configuration Which computers are local? Are files shared through a common server
or is FTP used? Where am I executing? What else is on this node? Is
the execution redundant? Where are the service providers?

Error Recovery Did that disk fail? If so, where are the files now? Is there a checkpoint
for rollback? Has any redundant execution stayed alive? Is there a
communications path from here to there? What is its timing?

Deadline Management How long (wall clock) will this computation take? How long (CPU time)
will this computation take? Which process needs to execute next? What
resources need to be dedicated? When is this process’ output needed
by another process?

Physical File System Where are my files? How are the indices calculated and stored? What
is its layout? Is another process accessing this file?

Resource Policy Is the distribution of goodies fair? What is best for the system? How
much disk usage is reasonable? Do file pages and virtual pages count
the same toward the budgets? What is the scheduling algorithm?

Service Location Where is the database? Which timeserver should we use? What is the
load on each SQL server?

Media & Protocols What is the speed of the LAN? Should the LAN or the WAN be used? Is
a link or packet connection more sensible? Am I adding to the conges-
tion? Should the back-off and retransmit policies be adjusted?

User Resources Does the same box support the user and his computations? Should the
graphics hardware accelerator be used or is the library code more effi-
cient? Should user keystrokes be given priority over background proc-
essing? Is it time to password lock the terminal?

4 Specialty Domains & Resources
This section considers questions about the sort of details that a good layer will encapsu-
late and hide from its users. The answers will be used to investigate appropriate layering
for the class of realtime embedded systems. Since proper allocations of resources, error
recovery, and dynamic configuration are first-class application concerns in this domain,
we will see that the conventional wisdom of what should be encapsulated by the API and
what is inappropriate do not apply here.

Two active DARPA programs—Power-Aware Computing and Communications and
Polymorphous Computing Architectures—also raise fundamental questions about an API
and what it can properly encapsulate. Both programs are developing computational infra-
structure that has unique potential to respond to application value systems about what is
important and, thus, how resources should be configured and allocated. As with realtime
systems, conventional methods are at odds with application needs.

Sections 5-7 discuss how one could design an API family that preserves the benefits of
modern system organization concepts while serving specialty domains and using the new
resource management approaches that will be made possible by current research.

22

6

Dirty
Details

4.1 What a Good Layer Hides
The Parnus dictum that a module ought to hide a related set of implementation decisions
has served us well for many decades. However, the discussions in Sections 4.2 and 4.3
will indicate that the following emphasis is necessary:

A module ought to hide a related set of implementation decisions that are not of
proper interest to the modules that will use it.

Consider an application that requires a particular process to have priority execution
privileges when not all can be served in a timely manner. A scheduling layer where the

users cannot communicate priorities is inadequate. Even if the embedded
scheduling algorithm can make guarantees, e.g., maximum or fair use of the CPU,
the abstraction is a bad one. The application would need to make frequent use of

synchronization primitives to exchange status information and
generate its own priority implementation. In other

words, the application would need to reinvent
priority-scheduling technology. Experience has
shown this move often will lead to unexpected
problems [2].

The general principle is that if a layer is responsible for a
functional or performance requirement then either (1) that layer must satisfy it on its own
or (2) lower layers must provide, at their interfaces, adequate guarantees to entail that the
requirement can be satisfied. In other words, not everything can be swept under the rug
and what must be exposed depends on the specific application.

4.2 Realtime Embedded Systems
Realtime embedded systems are becoming more prevalent in the modern world. They not
only perform traditional roles in environment control, avionics, and manufacturing; to-
day, these systems populate appliances, home computers, and portable entertainment de-
vices [7]. However, this discussion will consider only a single traditional realtime appli-
cations area, avionics. The avionics domain requirements and features pretty much sub-
sume those of other examples. The reason for the investigation is to understand which
issues are first-class application development and maintenance considerations. From this
discussion, we will be better able to decide what details can be properly encapsulated by
middleware. That decision has two important entailments: (1) whether COTS products
can play a meaningful role in the domain and (2) how these systems can be layered.

Table 2 summarizes some of the concerns that are part of avionics applications but are
typically dealt with by the middleware in the non-realtime world. The way to best appre-
ciate the significance of this table is to compare it to Table 1. The conclusion is straight-
forward: virtually every issue swept under the rug in the layering of ordinary applications
is a first-class application concern for realtime systems.

Many details that are resolved at runtime by standard middleware layers are, in fact, re-
solved at design and development time in the realtime arena. This means that realtime

23

7

system designs and code are replete with the sort of detail that many decades of software
engineering have attempted to take out of the hands of application programmers. As a
result, realtime systems remain as some of the most costly ones in the modern world. The
cost and man-time per line of code/module are higher than in any other domain [4].

Table 2: Avionics Realtime Application-Level Concerns
Area Description
Redundancy Specific redundancy strategy, e.g., n-way voting or hot backup, is part

of system design/requirements on a subsystem-by-subsystem basis.
Error Detection Error detection is a substantial application activity and will involve data

semantics as well as obligation failures. Code incorporates self-
diagnostics (BIT) and continuation methods from self or other errors.

Error Recovery Recovery is often by preplanned reconfiguration or by reinitializing
subsystems. Alternate computation paths are used during recovery.

Resource Management All critical tasks are guaranteed adequate resources. Thus, exact con-
sumption must be known preflight. This includes pre-allocation of the
electric power budgets, CPU cycles, RAM, and bandwidth.

Coordination Computation pipelines originating at devices, passing through sub-
systems, and terminating in device controllers or output actions are a
frequently occurring paradigm.

Timing Both ends of the pipeline may have precise, periodic timing require-
ments. Therefore, processes and communications must be co-
scheduled to meet these requirements.

Device Management Specific devices must be connected to specific computers because
timing and error recovery mechanisms assume this knowledge.

4.3 New Computation Bases
Several current research programs are innovating new ways to organize computer and
communication resources in order to provide more useful problem-solving power. Two of
these programs are discussed in this section—Power Aware Computing and Communi-
cation and Polymorphous Computing Architectures. Both are sponsored by DARPA and
both will stress the decision about what details can be swept under the middleware rug
and which ones cannot.

4.3.1 Power Aware Computing and Communications (PACC)
The PACC program [5] is based on two premises: (1) equal results from less energy in-
vestment is always a good thing and (2) applications can achieve more functionality if
they adapt their behavior to resource availability. The hardware that is being developed
provides dynamic power versus performance adjustments, e.g., the issue-width of a pipe-
line, methods to turn off unused units and quickly revitalize them when needed, voltage
adjustments, and adaptations to observed computational patterns. In addition, specialized
middleware components including compilers, schedulers, and libraries are being devel-
oped to support integrated power-aware applications [8].

These technologies can, indeed, produce equal results for less energy investment. How-
ever, they do not fully support intelligent applications, those that understand what is more
and what is less important, so that mission-specific energy utilization tradeoffs can be
made. Consider a smart submunition, e.g., the BAT [10], without a motor or generator,
powered by a battery with limited capacity. A nominal mission is, say, three minutes

24

8

counting from the moment that the submunition is dispensed. The battery must be used to
power an IR and an acoustic sensor, computers, and flight actuators until the submunition
makes a precision strike on its target.2

Aggressive energy consumption provides many benefits: (1) more frequent sensor scans,
(2) utilization of better fusion algorithms and trajectory computations, and (3) more exact
flight controls. If the submunition acquires a target that is very close, say one minute
away, these benefits are available because there is more energy per unit of remaining
mission time. On the other hand, if the target is distant, energy must be husbanded. In this
example, the sensor management strategy, choice of computational algorithms, and flight
control laws must vary depending on the situation; and the application is the sole judge of
what the impact of a situation should be [1].

Only the application can switch algorithms and only the lower system levels can control
the hardware base and measure things like remaining battery energy. In other words, the
application and the supporting infrastructure must cooperate in configuring the system for
optimal achievement of the total mission. This is simply not possible if all the energy
controls (or even knowledge of the existence of these controls) are encapsulated in the
middleware and the middleware doesn’t understand the application’s value system. (Is it
better to sacrifice sensor scan rate, in this situation, or guidance precision?) Thus, the in-
telligent use of power-aware technology depends on restructuring the system layers and
the API’s that glue them together. It is interesting to note that the most stressful applica-
tions of PACC technology will surely be in the realtime arena.

4.3.2 Polymorphous Computing Architectures (PCA)
Different sorts of large computations can benefit from fundamentally different types of
hardware architectures. In the past, developers of massive computations studied the
available hardware then attempted to tune their code to that hardware [13]. This has never
been a particularly effective way to develop systems and the PCA program [6] is looking
to provide better paradigms. The essential idea is that application developers assume an
appropriate, perhaps optimal, architecture is available and the hardware will make the
necessary adjustments, e.g., configure itself as a hyper-cube for one application and as a
stream machine for another. In fact, given that reconfiguration is fast enough, morphs are
possible even in the middle of a single application. The pain in developing large numeric
codes will clearly decrease if PCA is successful.

The researchers are developing many interesting approaches to morphing: adjustable
memory width, whether it is a cache, RAM, or FIFO, key size, and number of ports; re-
organizable communications mechanisms and flexible CPU cores that can be configured
as pipelines, in loosely coupled configurations, or in various asymmetric patterns; etc.
The possibilities are quite expansive and the idea is rather fascinating. However, there are
fundamental questions of how to use this technology: How does an application developer

2 Many current submunitions use thermal batteries so that there is a fixed amount of energy available per
unit time. Energy that is not used is wasted and requirements above that fixed amount cannot be satisfied.
For this example, assume the use of more normal battery technology. Future designs of smart submunitions
may include engines and generators raising different sets of issues for power-aware implementations.

25

9

determine what is an optimal architecture? How is this information communicated to the
middleware that is responsible for the configuration? How is dynamic control exercised
while a computation changes modes? Is it the application’s responsibility or is it the mid-
dleware that must make optimization decisions? What is optimized if more than one ap-
plication shares a morphing configuration? Are the competing applications responsible to
work and play well with one another? Does security restrict resource-sharing policies?

Reference to Table 1 shows, as it does for PACC applications, that standard system lay-
ering is inappropriate for PCA. Details about processor features, hardware devices, con-
figurations, resource policies, and media and LAN protocols are a proper interest of the
application programmer as well as the layers comprising the middleware. Once again, the
wrong details have been swept under the rug.

5 Who Knows What and When Did They Know It?
Realtime systems place stringent and exacting requirements on configuration, timing, and
resource allocation policies. Power-aware systems must dynamically reason about which
behaviors, including alternative algorithms, are worth the investment of resources and
which are not. Developers of computations that execute on polymorphous hardware must
be keenly aware of the interactions of their algorithms with hardware architectures. The
common thread in these examples is that application programmers must consider the sort
of low-level details that are usually encapsulated by middleware and removed from ap-
plication-level control. In other words, the API is too narrow and too ill-informed for the
middleware to properly support the system types cited here.

The individuals who best understand an application’s value system,
requirements, and its preferred inter-layer interactions are its de-
signers and programmers. Configuration, timing, and architecture

decisions are made and anticipated when the requirements are
documented and the software design is elaborated. In many instances, these early
lifecycle activities determine which hardware and middleware will be purchased.

It is an illusion that requirements and software design are general-purpose
products. In the specialty domains discussed herein, the whole development

activity is an exercise in integrated optimization. Even the dynamic needs of a power-
aware system must be anticipated and the supporting infrastructure—application level
and other—must be provided in the software-engineering laboratory.

Another issue is how a system develops a response to changes. What specifically does a
realtime system do when the B bus fails? Does a power-aware application sacrifice sen-
sor rate or communications to increase mission time when its target moves away from it?
Is it worthwhile to morph the hardware to better service this relatively short computation
vignette? My guess is that developing proper answers to these questions involves serious
computation, simulation, and testing in addition to designer intuition. In other words,
neither appropriate answers nor devising methods to implement them is possible at run-
time. Of course that is the only available option if all interactions between the application
and supporting infrastructure must take place at runtime through a standard API. There is
a better approach and that is the topic of Sections 6-7.

26

10

6 The Ubiquitous API
Much of what we have learned from the previous sections of this document is summa-
rized Figure 2. This section attempts to elucidate the resulting insights by proposing a
novel system development and execution architecture; the next section provides technical
details about the descriptor abstractions that are necessary. The approach entailed by the

argument in the figure is straightforward; the system layers must interact in the software-
engineering laboratory at development time. A traditional API is good for communicat-
ing a few numerical parameters and strings, e.g., file handles and path names. That
mechanism, however, is singularly ill-suited for the transmission of more complicated
data such as structural information, e.g., systems configurations, preferred dynamic re-
sponse to events, e.g., power-management strategies as responses to mission timeline
changes, and the like. The traditional API is also ill-equipped to carry on dialogues be-
tween the application layers and the middleware to do mutual problem solving for the
good of the system. Both can make valuable contributions. The application knows best
what is important and what it can do differently [1]. The middleware knows best how to
implement changes and tune the system resources and configuration.

The solution that I envision has two parts: (1) an extended development environment
where the application exposes its structure and built-in assumptions and (2) an execution
environment where the knowledge gained at development time is put to good use. Figure
3 shows the development environment where the application and its descriptors are com-
bined with middleware how-to knowledge and resource characterizations by a special

Premise & Practice
Using good organizational techniques
such as OO approaches, layering
abstractions, and a general-purpose API
can reduce cost, decrease development
time, and produce systems that perform
better.

Counterexamples
While these ideas are certainly laudable
in general, they fail miserably in specialty
domains such as realtime systems and
when aggressive resource management
technologies such as PACC and PCA
are used.

Explanation
The reasons for the shortfall of our expectations are that
many details swept under the rug by the organizational
techniques are really first-class concerns of the application
specialist as well as the middleware providers.

Insight
Thus, many of the important principles for specific
systems are in the heads of their designers and
programmers, and that knowledge is mostly available
in the software engineering laboratory, not in the
execution-time environment.

Figure 2: Summary of the argument in Sections 2-5

27

11

compiler. The output of the process is used to build a runtime environment optimized for
the application.

The application obviously provides the source code. That code will probably be laced
with calls on generic API primitives as well as pragmas that provide hints and clues about
structure, performance, and assumptions. Other information that must be provided by the
application concerns the range of computations that can/will be performed. That infor-
mation comes in two forms: (1) modalities that describe individual problem-solving ep-
ochs such as preflight checkout, attack mode, or large matrix inversion and (2) configu-
ration descriptions that declare active subsets of the software, and coordination methods,
to support the various modes.

The set of modes will vary substantially from application to application and will also re-
flect design-time assumptions such as whether power management is in play, the hard-
ware is morphable, or error management and real-time deadlines are domain concerns.
The application must also declare the sort of events that are detectable by itself or the
middleware that could trigger mode or configuration changes. The executing system must
have methods to exchange information about occurrences of these events in order to in-
duce cooperative reconfigurations.

Finally, performance and resource consumption estimates are necessary in order to man-
age the system. If one doesn’t know the energy consumption statistics of two different,
alternative configurations, how can a choice between them be made in order to conserve
energy? Similar performance information is needed to manage realtime systems when
there are resource problems due to component failures and/or work overload as it is
needed to make intelligent choices about whether or when to morph the hardware base.
There is clearly a need for simulation and benchmark facilities (not shown in the figure)
in the software-engineering laboratory. It is also possible to capture some of the neces-
sary data during system execution and provide feedback to the development tools.

The compiler shown in the figure is actually a collection of analysis and generation tools
that are responsible for accumulating and communicating sufficient information to the
runtime environment to manage application executions. The middleware layers contribute
part of the compiler input. If hardware resources are to be managed, then descriptors of
their configuration and the available control knobs are needed, as are special library

APPLICATION INPUT
Source Code

System Modalities
Configurations

Critical Event Defs
Execution Analysis

MIDDLEWARE INPUT
Resource Descriptors

Sub API Primitives
Device-Specific Cliches

COMPILER

OUTPUT FOR RUNTIME
Binaries

Precompiled Solutions
Extended API

Figure 3: Application, middleware knowledge,
and artifacts jointly produce runtime products

for a smart application.

28

12

Application Code
Extended API
Middleware

Drivers Strategies
Hardware & Resources

Application System
The Ubiquitous API

Supporting Infrastructure

functions and macros, to support device-specific computation cliches such as streaming,
array-processing, or low-energy mode. In addition, libraries of subprimitives and their
descriptors are needed in order to build (compile) an appropriate API for this application.

The output of the compiler is more than the binaries produced from the source code. It
must include an extended API that provides for bi-directional exchange of event triggers,
mode switch notifications, detected anomalies, and parameters that measure mission life-
time, energy availability, performance estimates, and more. The compiler before runtime
determines the nature and extent of this extended interface. In addition, the compiler will
develop sets of predetermined solutions, perhaps in the form of scripts that guide rapid
reconfigurations of the hardware and software in response to events. These solutions may
be parameterized. Consider an energy-saving mode where two adjustments are necessary:
The first is the instantiation of a more frugal algorithm and the second is reducing CPU
speed to save energy. The CPU speed selection will depend on (1) the deadline for the
computation, (2) the remaining battery resources, (3) projected needs of future computa-
tions, and (4) the settings that this CPU can implement. All of this information and more,
e.g., the availability of another execution site and the cost to move there, could be used to
parameterize a configuration change or decide it is not worthwhile.

As is readily apparent, a great deal of an API and its implementation are determined in
the development environment. In fact many of the interactions that would otherwise be
needed at runtime are now handled up front. Since the API would reside in both the de-
velopment and the execution environments, I will call this approach the ubiquitous API.
Its manifestation in the development environment is the compiler.

The execution system is a simple layered product as shown
by the inset. The application sits on top of the extended API
used to convey information between the application and the
middleware as well as providing the normal types of
command structures. The middleware interprets the cache of
precompiled strategies to determine its reaction to API calls
and events. The drivers are used to command the hardware and resources as well as
detect low-level events. Events from these sources also cause the middleware to consult
the precompiled strategies to determine its reaction and inform the application. The
magic in this approach is not only how well the system can serve application’s require-
ments, it’s also in how efficient it can be. Typically, efficiency is a product of investment.
Here, a large part of that payment is made at development time where it is affordable in-
stead of at execution time where finding solutions would compete for the same resources
that are being managed.

Consider the inset figure as a composite view of the
technology for both the development and the runtime
environments. It is a simple three-layer view of a total
system. The application is built on the ubiquitous API that in turn is built on top of the
supporting infrastructure consisting of hardware resources and standard middleware
components such as an operating system. Clearly the supporting infrastructure will con-

29

13

tinue to evolve as long as better hardware, resources, and middleware become available.
Thus, technology refresh of the implementation of the bottom half or the diagram (in-
cludes the implementation of the API) will continue whether or not the interface supplied
by the ubiquitous API is modified or not. The fact that applications do not necessarily
need to be modified is an advantage of the layering.

7 System Models
The issue to be discussed in this section is the nature of the interface language provided
by the ubiquitous API. The realization of a ubiquitous API may seem a straightforward
proposition, but the devil is in the details. The application has many very important, very
complicated things to say, particularly to the compiler. The complexity of representing
system modalities and configurations could very well damn the whole concept. There-
fore, I will present a specific idea of how that complexity might be managed to justify a
claim that the whole approach is realistic in practice as well as in theory.

The general idea is to represent a system’s architecture as a state machine. A good way to
imagine a state machine is as a directed graph where the nodes are the states and labeled
directed edges indicate possible state transitions (Figure 4). An edge label describes when
that state transition is permitted. In the model used here, the state machine is non-
deterministic. That means, exactly, that the transition conditions of more than one edge
leading away from a single node might be satisfied simultaneously. Since an actual exe-
cution of the machine will always be in a single state, this entails that some agent not in
the graph must determine which transition is actually taken when there are choices.

The nodes or states in this representation are configurations that show software organiza-
tion including process structure, branching, dataflow and control dependencies, and, in
general, the sort of information that is typically expressed in an architecture description

language (ADL). Nodes will also be annotated with the execution analyses gathered in
the software development environment. These annotations may be parameterized, e.g.,
execution times as functions of CPU speed or morphed organization. The annotations

Figure 4: Application description graph: nodes are configurations; directed edges
are labeled with transition predicates & maps; same-color nodes comprise a mode.

Global System Parameters

Annotations

Annotations

Annotations

Annotations

p(…) + map

p(…
) + m

ap

p(…) + map

p(…) + map

p(…) + map

30

14

may also include assumptions such as deadline periodicity, the morphed organization, or
energy availability. Note that the compiler as well as the application developers and
simulation can contribute to these annotations.

The edge labels in this representation are predicates on events and a small number of
global system parameters. The occurrence of an event is signaled either by the application
using a specific API call provided for this purpose or by the hardware and resources
layer. Examples of application signals are ATTACK MODE or TIMELINE CHANGE and an ex-
ample of a resource signal is CACHE HITS BELOW THRESHOLD or PROCESS x FAILED. The
ubiquitous API is responsible for checking the conditions on transitions out of the current
state and choosing one of them if appropriate. If a transition is taken, the ongoing com-
putation is reorganized using the descriptions of the FROM and TO states and the precom-
piled solutions provided by the compiler.3 The global system parameters such as RE-
MAINING MISSION TIME and the like are used to determine if transitions are possible and to
aid in selecting one. Dynamic transition selection and management is a primary responsi-
bility of the ubiquitous API and the basis for its decisions and behaviors is the knowledge
accumulated at compile time.

Another part of a transition specification is a map between architecture components in the
FROM and TO states. Consider a morph that moves a set of processes from a mesh to a
streaming configuration (e.g., the change represented by the two leftmost nodes in Figure
4). Since the same processes can appear in both worlds and must therefore retain signifi-
cant portions of their states, there must be a method to specify the intended correspon-
dence. Further, there must be a way to specify the intended stream order, i.e., which pro-
cess streams its output to which other one. Without the knowledge supplied by maps,
such reorganizations would not be possible. It is the responsibility of the compiler to in-
clude cost estimates and other descriptive parameters for competing alternative transi-
tions. Cost estimates, when there are choices, will be the determining factors in most
cases and the map will help make these estimates.

The logical question at this point in the description of the interface language is “What is a
mode vis-à-vis the suggested representation?” The natural answer is that a mode is a col-
lection of alternative states. Each of the states is an alternative method to accomplish a
similar but not necessarily identical goal. Consider a SEEK TARGET mode as an example
with two alternative states distinguished by their energy-consumption patterns. The one
chosen will depend on BATTERY LEVEL and projected MISSION LIFETIME. The general goal
of both is to find a suitable target. However, the specific goal of one state may be to find
a high-valued target while the other would accept a secondary target if it were closer.
Note that more than target-match thresholds could be different, the computational meth-
ods may be quite different in the two states also.

Since the states that comprise a mode are alternatives and will likely share portions of the
predicates on the edges leading to them, a mode can be formalized by the following tac-
tic. First determine the common condition that distinguishes a mode from other modes

3 A state can have an output edge that loops back to it. This trick makes it possible to consider the other
exiting edges as optional transitions. Thus, a new-state transition would only occur if it were more optimal.

31

15

and define it as a mode predicate; second, require that exactly one mode predicate be part
of the total predicate on each edge; third require that all edges leading to the same node
use the same mode predicate. In other words, modes just label a partition of the states of
our state machine.

This section has described the ubiquitous API and the interface language between it and
the application as if all possible complications were simultaneously in play. Examples
were selected to emphasize realtime features, power awareness, and morphing. The future
will likely see systems that need all of this and more so that generality is a necessary
feature of the approach. A prototype of a ubiquitous API could be developed that serves
fewer masters and still provides reasonable feedback on the merits of the ideas. The dan-
ger is that too narrow of a focus will invite the sort of hack-and-slash results where there
is no genuine possibility of generalization, even in the domain of chosen focus.

8 Related Research
The astute reader may wonder why a new language is needed rather than use an existing
architecture definition language (ADL). The reason is that no existing ADL can do all
that is needed here even though most provide interesting capabilities that are not alto-
gether necessary for our purposes. However, several ADL tools, e.g., ACME [12] or CSL
[3], could be adapted as our state definition language (SDL). The key to a good repre-
sentation for the ubiquitous API interface is its ability to represent alternative configura-
tions of the same mode. The emphasis of the ADL community is to represent alternative
views—different abstraction—of the same configuration. The conclusion of this article is
that the systems of interest will reorganize in response to dynamic events. Therefore, its
designers must provide for reorganizations as a first-class application concern. The ADL
world is built on a different assumption—the standard layering assumption—which we
have seen won’t work particularly well in the domains of interest herein.

It should be noted that the PACC and PCA communities are both keenly aware of the
need for new system-building paradigms. Sponsored research includes specialty compil-
ers, offline as well as online smart schedulers, simulation and analysis tools, and configu-
ration managers to assist design-space exploration. PCA activities include the Morphware
Forum [11] where participants are inventing architectural taxonomies and an API to in-
telligently support morphable systems. In addition versions of UNIX and LINUX are of-
fered, by many sources, to address some concerns of realtime systems. Even the ADA
programming language was designed to afford more application controls to those systems
that needed to show compliance to rigid resource allocation requirements.

One can view the proposed ubiquitous API either as a novel approach or as an attempt to
tie up loose ends. It is the latter because relevant bits and pieces of technology are avail-
able as a tech base. The novelty is its view of a strongly connected interface that extends
from the software development laboratory to the execution-time environment. Informa-
tion exchange between the application layers and the supporting infrastructure will occur
where the information resides and offline resources that are readily available will be used
to improve the efficiency and performance of the system before runtime. In this way, we
will have the proper tools and engineering paradigms to develop cost-effective systems

32

16

that can adapt and reorganize themselves to provide best functionality. Thus, the resulting
systems will exhibit the precious property of self-awareness so that they can adapt their
behavior and methods appropriately. Self-awareness is the result of explicit representa-
tions of possible configurations, and reasons for choosing one of them over another.
None of the individual tech base components can make this claim.

9 References
[1] J. A. Barnett, “Application level power awareness,” in R. Melham and R. Graybill

(Eds.) Power-Aware Computing, Kluwer, 2002. Examples of application-specific
energy optimizations at design time and runtime.

[2] J. A. Barnett and A.S. Cooperband “Priority is a limited property,” Operating
Systems Review 17(3) 1983. Documents surprising behavior of standard sema-
phore implementations when priorities are supported.

[3] J. A. Barnett, “Module Linkage and Communication in Large Systems,” in D. R.
Reddy (Ed.) Speech Recognition: Invited Papers of the IEEE Symposium, Aca-
demic Press (1975). Discusses, CSL, a language to describe system architectures
through data connectivity (software pipes) and control regimes to coordinate sys-
tem executions.

[4] B. Bohem, et al, Software Cost Estimates with COCOMO II, Prentice Hall, 2000.
Chapter 2 provides data on extraordinary costs for realtime software, systems that
do considerable multiple resource scheduling, deal with device timings, or exer-
cise distributed control.

[5] DARPA IPTO, “Power Aware Computing and Communications Project Home
Page,” http://www.darpa.mil/ipto/research/pacc/index.html. The goals, objectives,
and progress of the PACC program.

[6] DARPA IPTO, “Polymorphous Computing Architectures Project Home Page,”
http://www.darpa.mil/ipto/research/pca/index.html. The goals, objectives, and
progress of the PCA program.

[7] DARPA IPTO, “Ubiquitous Computing Project Home Page,”
http://www.darpa.mil/ipto/research/uc/index.html. The goal, objectives, and prog-
ress of the UC program.

[8] R. Melham and R. Graybill (Eds.), Power-Aware Computing, Kluwer 2002. A
conpendium of articles that deal with many aspects of power-aware hardware,
software, middleware, and applications.

[9] D. Parnus, “On the criteria to be used in decomposing systems into modules,"
CACM 15(12), December 1972. The article that introduced the concept of infor-
mation hiding to the world.

[10] J. Pike, “ATACMS Block II, Brilliant Anti-Armor Technology (BAT),”
http://www.globalsecurity.org/military/systems/munitions/atacms-bat.htm 2001.
A brief description of the BAT submunition and the ATACAMS supersonic dis-
pense system.

[11] M. Richards, Georgia Tech Research Institute, “The Morphware Forum,”
http://www.morphware.org/. The forum hosts the collaborative efforts of PCA re-
searchers to design efficient, reusable application-to-infrastructure interfaces for
morphable hardware.

33

http://www.darpa.mil/ipto/research/pacc/index.html
http://www.darpa.mil/ipto/research/pca/index.html
http://www.darpa.mil/ipto/research/uc/index.html
http://www.globalsecurity.org/military/systems/munitions/atacms-bat.htm
http://www.morphware.org/

17

[12] School of Computer Science, Carnegie Mellon University, “The ACME archi-
tectural Description Language,” http://www-2.cs.cmu.edu/~acme. ACME is an
unusual ADL in the sense that it is “semantic free.” It provides tools and lan-
guages to represent architectures—objects and connections—but the user provides
the specific interpretations of entities.

[13] E. F. Van de Velde, Concurrent Scientific Computing, Number 16 in Texts in Ap-
plied Mathematics, Springer-Verlag, 1994.

Acknowledgements
This effort is sponsored by Defense Advanced Research Projects Agency (DARPA)
through the Air Force Research Laboratory, USAF, under agreement number F33615-02-
C-4001. The opinions expressed are those of the author and do not necessarily reflect the
opinions or conclusions of any other individual or agency.

34

http://www-2.cs.cmu.edu/~acme

35

Chapter

APPLICATION-LEVEL POWER AWARENESS

Northrop Grumman Corporation

Automation Sciences Laboratory

jbarnett@nrtc.northrop.com

Optimizing resource allocation to best meet system goals is the essence of good
It is the unifying principal in the design of resource-constrained

and even military forces,
designed systems accomplish tasks using minimal resources. They also dynam-
ically adapt their methods and goals to best use available resources,
evident in artificial systems as it is in natural systems. Below, two examples-one
a design time problem and the other a dynamic allocation problem-are developed
to elucidate the sort of engineering that must be applied to resource management.
The first example is a design tradeoff between the efficient use of electric power
and the performance of an aircraft. The second example is dynamic allocation
of a limited energy budget between cooperating sensors to maximize the quality
of the combined measurement.

Power aware design, dynamic energy management

Introduction

adaptations
optimally use available resources. The form factors of birds and fish, for exam-
ple, are both optimized for efficient motion. Since drag, density, and buoyancy
in the air and in water are are quite different,
observe that design optimizations are specific to environments.

optimization.

of great need, minimal margins

their processes of sunlight.

36

reproductive

indeed developed energy-aware systems that in both design and behavior exhibit

Our petroleum resources
produce enough electricity to meet all of our demands all of the time,
were the only drivers, conservation remedies, new energy sources,
engineering progress would hold the problems in check.

However technology, particularly the modern computer, promises new types
of systems for applications that will operate in severely energy-constrained en-

Extended duration space exploration is one well-known example,
deployment

comprising
sufficient power,

support sensing, computing, and communications. Elements, in addition, may

tions with the environment. Energy management and optimization clearly will
be of overriding importance in the design will the need to
dynamically adapt their behavior by considering the urgency
available resources.

of power-aware applications
is aircraft design where energy conservation contributes to overall performance

tion 1 develops the mathematical relationship linking power efficiency to perfor-
That relationship is used to examine tradeoffs in terms of two different

joint measurements

decision-making in the management of resources,

development
new technology. it is too provide examples

can reason about and construct application-specific systems that will operate in
energy-constrained environments.

Design-Time Optimization for Aircraft

The value of power awareness and energy reduction technologies are deter-
mined by the specifics of an application domain and the milieu in which its sys-
tems will operate. Intelligent power management is one of the key technology

37

Application-Level Power Awareness

deployment space probes,
of miniature battery-powered sensors, and the Land Warrior.

(endurance)
That relation is used to model the value of efficient design

as measured by increased endurance: Sometimes it is very valuable and some-
The point of this exercise is not to solve aircraft problems per se.

it is to introduce the sort of domain-specific that is necessary
to make design-time tradeoffs for an application.

Considerations

Weight is the enemy of air vehicle performance. Heaviness directly decreases
maneuverability, handling, range, and endurance, where endurance is maximum

Since savings in the use of electrical energy will reduce the weight of
the generator, or both, power awareness will increase the missions

reduction is that the weight budget for the fuel used to power the air vehicle can
be increased when the battery or generator weight is decreased.

Reducing electric power consumption also decreases heat production,
fore, more equipment can be packed into the same or smaller form factor,
decreasing size increases maneuverability, range, and endurance, we have an ad-
ditional argument for power awareness. Further, obvious benefits accrue when
power-aware avionics can compensate for unusual situations such as generator

This example makes the point that power awareness is more than energy

actually available.
consumption aircraft per-

considerations along with their impacts on operational costs. Power awareness

of AeroVironment Corporation,
flight powered by scavenging solar energy. Other extreme examples
munitions that either have no propulsion system or only use propulsion in burst

engine-powered
be supplied by batteries to support sensors, computation, communications, and

wanted heat, consume precious and add weight.
The standard relation approximating the endurance achievable by an aircraft

The following discussion extends that relation to include the effects of electric
power utilization efficiency, hence battery weight.

38

relation is used to analyze the effects of power efficiency on endurance for two
example aircraft.

Endurance is a Function of Weight and

The relation between endurance and an air vehicle's weight and the amount
of fuel it carries is derived here. A reasonable first-order approximation is used
to simplify the mathematics: instantaneous fuel consumption rate is linearly re-
lated to total vehicle weight for a constant velocity and altitude. The next section

weight, hence, its relation to endurance. See Raymer (1992) for justification of
the assumptions made here as well as derivations of more detailed relafionships
when other variables are considered.

/ (t) be the amount of fuel remaining at flight time t and let /o
be the amount of fuel loaded on an aircraft that weights Wd dry (fuel weight is

The assumption is that the amount of fuel, measured by weight, necessary
per second of flight time per unit of aircraft weight is a constant.

-c{Wd + f)

df/dt and c 0 is the fuel consumption constant. The solution to
simple ode, subject to the constraint that / (0)

is the initial weight of the aircraft at t
The endurance, E, is defined to be the maximum flight time. Clearly, f{E)

0 is the condition to find that unique value of E.

'Wo'

explanation, unexpected

many land as well as airborne vehicles.
approximation

Endurance is a Function of Energy Conservation

In order to extend the above derivation to account for a battery
to account for the efficiency with which that battery is used, a few details must
be added to our simple model. structural weight of the aircraft

be the weight of its battery.

39

Application-Level Power Awareness

discussion—battery

battery and /? as the battery weight needed for one unit of mission time.

the battery, though the analyses are practically identical in either case.

where the first equation assumes that there is just enough battery to last for the
whole mission. other words, split between and battery

simultaneously,
between fuel and battery that makes these equations non-symmetric;

such reduction
Substituting the formulas into (1.1) yields

Wo
Ws + I3E

of efficient energy utilization can be measured in terms of endurance enhance-
A quick inspection shows that an elementary expression isn't available.

However, it is straightforward to express /? as a function of E:

— Ws exp{cE)
Eexp{cE)

Clearly, the value of E must be positive and is bounded from above by the case
L and, hence,

log(T^.)

1.2 and the bounds on E are used below to numerically generate and
pairs for some examples.

Aircraft Examples Analysis
Two simple examples of vehicles designed for quite different mission profiles
analyzed in this called Explorer, simple unmanned

sensor craft that uses a generator to support most applications. It flies missions
of a few hours duration and its battery is primarily for power during emergencies,
e.g., for flight recorders or engine restarts after flame outs. The second example.

Fuel is only used in burst mode to regain altitude so as to increase

40

Parameters defining two aircraft examples.

target seek time. Its mission times are of the order of a few minutes,
the relevant parameters hypothetical

log{Wo/Ws)/c is the maximum endurance from (1.3).
/3 pairs have been generated using and are displayed in Fig-

clearly increases power utiliza-
as measured by There is no way to tell, at this point in the

13 relation for the /3 relation for the
Explorer example. Missile example.

development whether power-saving
worthwhile or not. We need to know the current /3, the merit of a AE measured
as an increased fraction of successful missions, and the cost of developing and

that determination.

Probability of mission
cess as a function of endurance. as a function of the desired increment.

41

Application-Level Power Awareness

tradeoff curves: = p{E) is the probability of a successful mission if endurance
C{AE,E)

enhancement given the current value of E. Design tradeoffs are then formed in
terms of this and other relevant information.

The Explorer example posits that batteries are not the main source of electric

the generator and battery are a significant fraction vehicle weight.
power-awareness,

generator weight cannot increase endurance by more than a few minutes.
The Missile example is completely different. Battery weight is a significant

significant fraction
can only increase endurance by a few minutes but a few minutes, compared to

whether or not missions are successful.

Design-Time Optimization

The results and examples developed above are meant to show how considera-
tions of power utilization can impact overall system performance. In particular,

conservation,
dynamically

much more difficult problem and is even more of an applicafion-dependent issue
than is straightforward energy minimization.

of interesting management
For example, a projected time to target impact maximize the

probability of a successful strike. The problem is how best to use the remaining
battery energy during the known flight time. Should sensor resource allocations
be increased or should communications and computation be used to receive and
fuse an ally's sensor data with onboard information? The answer depends on the
resources available as well as the relative quality and costs of the two solutions.
In other words, real power awareness depends on the ability to make dynamic,
situation-dependent application-dependent
design-time
first step toward realization of fully power-aware systems.

Dynamic Energy Allocation Cooperating

The problem considered in this section is how to split a limited energy budget
whose measurements objective is

to minimize the variance of that joint measurement. A simple fusion model is

42

defined, measurement variance is related to energy expenditures, and a criterion
for an optimal An extended example of a dynamic
cation problem and its solution is presented in three parts: (1) a specific model
of sensor variance as a function of energy allocation is introduced,
timality problem for two described by that particular model is
and (3) a numerical example is used to illustrate an optimal policy and the sort
of decision-making that it engenders. This note is meant as an example of how
one might formulate and solve dynamic energy management problems and not
as a definitive practical result.

Sensor Measurements

independent, the joint estimate m is taken to be

Wimi + • • • + Wntrin

Wi-\ \-Wn

of the joint estimate is

statistically

The function, , f „), has the following intuitive properties:

Less is better:

v{vi,...Vn)

As good as it gets: a corollary of progress.

No pain, no gain:

Unit independence:

(1967) provides some justification for the formulas assumed here
an introduction of fusion using

Note, fusion formulas such as (1.4) and (1.5) are more complicated if the sensor
statistically or if multiple

as is often the case.

Energy Allocation Determines Sensor Performance

Modern sensors offer many controls that trade energy for performance.
measurement,

quency of measurement, and even spectrum choices for hyperspectral sensors.

43

Application-Level Power Awareness

Some passive
are processed, the higher the

quahty is grossly summarized by the resulting variance
of the measurement. Specific issues such as precision, are assumed to be
sufficiently captured by the variance estimate.

represent the variance expected when
ment using energy Such a function should satisfy these criteria:

More is better:

No free lunch:

For example, an angle measurement is always in the interval
The way to analyze the assume that the variance of the a priori

and to combine it with f i,... to get the combined variance,

simplified by ignoring the presence of a priori estimates.

Minimizing Variance Through Energy Allocation

independent

variance is minimized. Assume that e^ 0 is used for the measurement made

Simply use Lagrangian multipliers as follows;

Necessary minimization criteria follow from dv/dei

1^2
+ ••• +

V,

1X2

44

Since A does not depend on i, the entire right hand side is
independent of i.

Standard dynamic programming techniques
to develop optimal allocations when there are more than two sensors.

Applying

section develops an example of variance minimization through energy

resource investment is addressed in the following Both problems
of dynamic management,

parameterized
the two-sensor minimization problem

analyzed for particular sensor instances.

A Parameterized Sensor Model. The form of Vi assumed in the
optimization example developed in the rest of this

where a^, bi obviously possess the properties required above
for variance functions. For future reference, note that

The parameters a^ and bi have the following interpretations in this formulation:
aj is the limit of the sensor's operation, i.e., a^ Vi (oo), and bi is the difference

performance, i.e.,

independent
sensors whose behavior is defined by and a total energy budget of e.

e be allocated to the first sensor and X2
Then from (1.7)

45

Application-Level Power Awareness

Now use criterion (1.6) to find the optimal allocation as follows;

+ 6i/xi)2

The solutions to this linear equation for the optimal xl

aiVh + (12 Vh

aw/h^e + 61^62 - h2\/h\

aiVh + a2\/bi

nonnegative, nonnegative.
Thus, there are two validity constraints entailed by (1.9a)

If the first constraint is the optimal allocation is xl

first case the resultant minimum fused variance,
second the minimum variance is

calculated by substituting

aia^e + 0162 + 02^1

026 + 62 - \/bib2

aia2e + 0162 + 02^1

aie + bi - \/bib2

are substituted into and simplified to calculate the resultant
minimum total variance as

aia2e + a\h2 + ^2^1

(ai + a2)e + (V&i - ^62)2 '

46

Formulas for optimal energy allocations and resulting variances.

a2\/h\e + &2\/&i — 6i\/&2

aittie + aib2 + a^hi

026 + 62 — \/hib2
a 11/626 + 61 A/62 — b2\/bi

ai\/b2 + a2\/bi
aia2e + 0162 + 0261

aie + 61 — \Jb\b2
01026 + 0162 + 0261

(ai+a2)e+(y6i -1/62)2

Table 1.2 summarizes these results for the optimal allocation policy: x\ (e) is the
allocation of total energy, to the first sensor and v\{e)

the second sensor. v{v\{e),v\{e)) is the minimized variance
of the fused measures given total energy budget e.

Applying the Results. This section develops a simple numerical

function of energy curves exhibit some interesting behaviors. Formulas for the

depicted in Figure

split between

4 but there is a role reversal when e 4 where x\ (e)

improve visualization. The first sensor gives better results (has a lower variance)
when a relatively small amount of energy is available but its limiting behavior

coincides with v\ From then on it is lower. The contribution
lower variance

47

Application-Level Power Awareness

e
e + 2

3

0
2e-

3

4 + 8/e
4e + 32

e + 2

oo
3e + 24
e-1

4 + 8/e
12e + 96
7e + 2

Optimal allocation and resulting variances for the example where ai

Optimal resource allocation for the example.

Optimal variances for the example.

48

contribution finally dominates when e
deliberately

The purpose
that even simple models can lead to complex or unexpected behavior and (2) to

straightforward
approximate the actual optimal policy to be applied dynamically.

Related Problems

of dynamic management
related problems. For example, the problem may be to develop an estimate that
is good enough, i.e., to use the least energy to achieve a specific variance,
problem can be solved using formulas such as those in Table 1.2. The necessary
minimum energy, found from the inverse straightforward

appropriate
are then calculated as the values of x\(e*) and a;|(e*).

a more realistic analyst would need to account for the
statistically independent,

additional tradeoffs, with measurement
descriptions it might be more economical
to use communications to obtain an ally's measurement and fuse it than to use
some or all of the local sensors.

Kirubarajan,
related to those discussed above. Since some sensors can be time multiplexed
amongst several applications, more applications can be serviced if the fraction
of the sensor resources needed for each is reduced. They use a combination of
filtering (fusion) and modelling. The models, formed from filter output param-

predict target behavior between sensor measurements,
predict the variance increase as time of model use increases. That information is
used dynamically to minimize the product of measurement duration and update
rate for each application while maintaining track quality. Such techniques could

benchmark facility to compare algorithms of this

important as time goes by. It is an area that will pose many interesting science
and engineering challenges in the future.

Afterword

understanding

49

principals to form laws about the universe in the large and interactions
atomic particles in the explain life, showing how
organisms scavenge energy from the environment and store it for their own use

functioning is all about energy management. Deep-space exploration and large
unattended miniature sensor networks are two examples mentioned above.

power awareness
and operational principal, not just another support technology.

surprise the reader to know that Sigmund Freud proposed an energy
minimization principal, as part of a cognitive economy model, to partially ex-

processes through a minimization of a quantity called psychical energy.
particularly

current topic:

"/ may perhaps comparison between psychical
and a business enterprise. So long as the turnover in the business is very

the important thing is that outlay in general shall be kept low and
administrative
with the absolute height of expenditure. when the business has ex-

the importance of the administrative cost diminishes;
amount of expenditure longer significant provided

turnover and profits
and indeed positively detrimental,

administration of business. Nevertheless,
wrong to assume that when expenditure was absolutely great there would
be no room left for the tendency to economy."

Acknowledgments

(DARPA) through the Air Force Research Laboratory, USAF, under agreement
number F30602-00-1 -0511. The opinions expressed are those of the author and
do not necessarily reflect the opinions or conclusions of any other individual or

References
W. D. Blair, G. A. Watson, T. Kirubarajan, and Y. Bar-Shalom, Benchmark for

radar allocation and tracking in ECM, IEEE Transactions on Aerospace and
Electronic Systems,

W. W. Davis, Cargo Aircraft, Pitman Publishing,

50

Unconscious,
Strachey, translator, Norton Library,

Kirubarajan, Bar-Shalom, Management
and tracking IEEE Transactions on Aerospace
Electronic Systems,

array radars, IEEE Transactions on Aerospace and Electronic Systems, 34 (3)

R. M. du Plessis, Poor Man's Explanation ofKalman Filtering or How I Stopped
International,

1967. (Reprinted by Taygeta Scientific Incorporated, 1996; can be purchased
at http: //www. taygeta. com.)

Conceptual Approach,
S. Przemieniecki, AIAA Press,

Distributable Computations: A Conjecture

Jeffrey A. Barnett∗

Northrop Grumman Corporation

Contact Information

Address: 5215 Sepulveda 1A

Culver City, CA 90230

E-mail: jbb@notatt.com

Phone: (310) 390–0353 (eves)

(310) 332–8930 (days)

∗This effort is sponsored by Defense Advanced Research Projects Agency (DARPA)

through the Air Force Research Laboratory, USAF, under agreement number F33615-02-

C-4001.

1

51

Abstract

Distributing computations is desirable both to shorten the time nec-

essary to get an answer and to reduce the bandwidth necessary to

communicate distributed data. This note is about the latter moti-

vation. A model of bandwidth-reducing distributed computation is

developed and a conjecture about the necessary and sufficient condi-

tions that a function evaluation can be so distributed is formed. The

condition is used to construct a simple distributability test for the

class of monotonic functions and that test is shown to be valid. The

status of the conjecture for other classes of functions is unknown.

Keywords: Distributed computing models, bandwidth reduction computa-

tion, distributed functions.

2

52

1 Summary

Distributed computing architectures are often developed to reduce the time

necessary to perform calculations. In recent times for example, computer

owners world wide have donated networked resources to the search for large

Mersenne primes. That effort has substantially increased the rate of finding

these primes. Other examples are large numeric codes applied to complex

problems ranging from weather prediction to structural analysis, biological

simulation, and computational fluid dynamics.

Another motivation for distributing a computation is that the input data

is distributed. Often, a tradeoff exists between local data-reduction com-

putations and the use of additional bandwidth to ship the raw data. An

unattended ground sensor network limited by battery and scavenged energy

resources is an example. Is it more energy efficient to process sensor data

locally and transmit only features to a central fusion site or should the sen-

sor data be transmitted? Other examples include relatively straightforward

statistical calculations on large distributed data sets or accumulating votes

where communications are the major costs.

This note investigates the question of which function evaluations provide

local-computation versus communication-bandwidth tradeoffs. Not all do

as will be shown by examples. A conjecture about necessary and sufficient

conditions that the computation of a function can be distributed to reduce

bandwidth is stated below. That conjecture concerns equivalence classes

induced by a partition of a function’s domain. The elements, x1 and x2, are

in the same class if f(x1, y) = f(x2, y) for all y, where x1, x2, and y are

tuples of data. The conjecture is formed in terms of the “dimensionality” of

3

53

a surface that intersects each equivalence class induced by the partition.

The next section presents a simple example, the computation of the mean

and variance of a sample split between two sites, to motivate the formal defi-

nition of distributable computation introduced in Section 3. Section 4 makes

a conjecture, that if true, would provide an alternative characterization of

distributable functions. Section 5 then casts the conjecture in terms of the

domain partition and a set of representatives for elements of the partition. In

addition, it is noted why proving the conjecture might be difficult. Finally,

Section 6 examines the class of monotonic functions where the conjecture is

true and, therefore, a straightforward method to check whether a computa-

tion is distributable or not is available.

2 An Example

An example is used to motivate the definition of distributed computation

introduced below. The computation to be distributed is (A, V), where A is

the average and V is the variance of the numbers s1, . . . , sn:

A =
n∑

i=1

si/n V =
n∑

i=1

(si − A)2/n.

These results can easily be computed from the two quantities α and β, where

α =
n∑

i=1

si β =
n∑

i=1

s2
i ,

by the formulas A = α/n and V = β/n − A2. Assume that the numbers

s1, . . . , sk are resident at one site while sk+1, . . . , sn are resident at another.

One possibility is to transmit the k-tuple, (s1, . . . , sk), to the second site

where A and V will be computed. However, there is a more economical

4

54

possibility shown in Figure 1. Calculate αk and βk at the first site (cpu1)

(s1, . . . , sk)

- CPU1

?

(αk, βk)
(sk+1, . . . , sn)

- CPU2
-(A, V)

CPU1

αk =
k∑

i=1

si βk =
k∑

i=1

s2
i

CPU2

α = αk +
n∑

i=k+1

si β = βk +
n∑

i=k+1

s2
i

A = α/n V = β/n− A2

Figure 1: Distributed computation of average and variance of s1, . . . , sn.

and transmit only these two quantities to the second site (cpu2) where α and

β, then A and V are computed. In this example, the bandwidth is reduced

by a factor of 1− 2/k which can be considerable if k is large. Achieving this

sort of reduction is the motivation for the distributed computation model

described next.

3 Model of Distributed Computation

The following definition, as depicted in Figure 2, is meant to capture the idea

of distributing a computation to reduce bandwidth.

Definition 1 f : X×Y → T is Z-distributable in X if there is a continuous

onto d : X → Z and a continuous c : Z × Y → T , such that c(d(x), y) =

f(x, y) for all x ∈ X and y ∈ Y .

The distributed portion of the computation is d and the central site where

the evaluation of f is completed is represented by c.

5

55

Original Computation Distributed Computation

X

Y

Tf

X

Y

T

Zd

c

Figure 2: Computation f(x, y) is Z-distributed as c(d(x), y).

The definition entails that f be continuous because it is a composition of

continuous functions and that Z be connected when X is connected because d

is continuous. (Connectivity of X is assumed below.) Continuity of functions

is required for two reasons. The first is that computation of discontinuous

functions is rare and somewhat ill-defined because computation entails trun-

cation and, hence, approximations. The second is that communications of

data by a discontinuous function—say by a reduction operation from <n to

< that interlaces decimal digits—is not germane to actual computations and

finite bandwidth resources.

The cases of interest are those where X ⊂ <n, Z ⊂ <u, and u < n.

Of course there is always a Z such that f is Z-distributable if u = n. The

integer u is taken to measure the bandwidth and, hence, the efficiency of the

distribution strategy using c and d to distribute the computation of f . A

sharper definition is suggested though it isn’t used below.

Definition 2 The function f : X × Y → T is exactly Z-distributable in X,

6

56

where Z ⊂ <u, if it is Z-distributable and there is no v < u and Z ′ ⊂ <v

such that it is Z ′-distributable.

Consider the example from the previous section in terms of the first definition:

Let X = <k, Y = <n−k, T = < × <+, where <+ is the nonnegative reals,

and Z = < × <+; then d(s1, . . . , sk) → (αk, βk) and c((αk, βk), sk+1, . . . , sn)

are the computations shown in Figure 1.

The median is an example of a function that is difficult to distribute to

advantage. It is defined as med(x1, . . . , x2n+1) = xjn+1 , where j1, . . . , j2n+1 is

a permutation of 1, . . . , 2n + 1, such that xji
≤ xji+1

. Consider a potential

distributed computation,

med(x1, . . . , x2n+1) = c(d(x1, . . . , xn+1), xn+2, . . . , x2n+1),

where d : <n+1 → <v. The question is, how small can v be? The claim is

that v ≥ n + 1 because xn+2, . . . , x2n+1 can be chosen such that any one

of x1, . . . , xn+1 is the median. Since no continuous d can exactly encode

independent x1, . . . , xn+1 in less than n + 1 real numbers, the claim follows.

Assume the 2n+1 numbers are split between two sites, 0 < m < 2n+1 at

one site and 2n+1−m at the other, and it is desired to compute the median

using the least possible communications. It can be shown, using an argument

similar to the above, that at least b = min(m, 2n + 1−m) numbers must be

transmitted. The minimum is achieved by sending all b of the numbers from

the site with the smallest collection to the other site where the median will be

computed. If the median is to be calculated at the smaller site, b+1 numbers

must be transmitted. A similar analysis is available when the cardinality of

the data set is even.

7

57

4 A Conjecture

A theorem and conjecture about Z-distributable functions are formed in

terms of a partition induced on X by f . Let f : X × Y → T and define

Fx = {q ∈ X | ∀y ∈ Y : 〈f(q, y) = f(x, y)〉}
F = {Fx | x ∈ X}.

Thus, F is a partition of X and the elements of an Fx ∈ F are indistinguish-

able from x vis-á-vis f .

Theorem 3 If f : X×Y → T , r : X → W is continuous onto, where W ⊂ X

and r(x) ∈ Fx, and p : W → Z is bicontinuous 1-to-1 onto, then f is Z-

distributable in X.

Proof Let d(x) = p(r(x)) and c(z, y) = f(p−1(z), y). Then f(x, y) =

c(d(x), y) because the conditions guarantee that p−1 is well defined and con-

tinuous. 2

Conjecture 4 If f is Z-distributable, then there is a W ⊂ X, a continuous

onto r : X → W , where r(x) ∈ Fx, and a bicontinuous 1-to-1 onto p : W →
Z.

Figure 3 shows the relations among the sets and functions used to distribute

f in the theorem and the conjecture. The key condition is that Z and W

are topologically equivalent. The conjecture if true, together with the the-

orem, would provide an alternative, equivalent definition of Z-distributable

functions.

It is straightforward to find W , r, and p that satisfy the conjecture for

the computation of the mean and variance as described in Sections 2 and 3.

8

58

X

Y

T
ZW

c

p

r

d

Figure 3: The conjecture is that Z-distribution by c(d(x), y) entails a homo-

morphism p of Z and W , and r : X → W where r(x) ∈ Fx.

Let s = (s1, . . . , sk) and t = (t1, . . . , tk). Then, using the formulas shown in

Figure 1, t ∈ Fs if and only if
∑

ti =
∑

si and
∑

t2i =
∑

s2
i . Let

W = {(a− δ, a, . . . , a, a + δ) | a ∈ < ∧ δ ∈ <+}

and define p : W → Z as p(w) = p(a − δ, a, . . . , a, a + δ) → (a, δ). Clearly,

p is bicontinuous and 1-to-1 onto Z = < × <+ as required. It remains

to find a continuous r : X → W , onto, where r(x) ∈ Fx. Simply define

r(x1, . . . , xk) = (a− δ, a, . . . , a, a+ δ), where a = α/k, δ =
√

(kβ − α2)/(2k),

α =
∑

xi, and β =
∑

x2
i . That r(x) ∈ Fx is easily verified by substitution.

5 Discussion

In the theorem and conjecture, W ⊂ X has a special significance—it provides

a set of representatives for a partition of X that refines F . Let

Wx = {a ∈ X | r(a) = r(x)}
W = {Wx | x ∈ X}

9

59

W clearly is a partition of X and it refines F because

∀x, a ∈ X : 〈Wx ⊂ Fa ∨Wx ∩ Fa = ∅〉.

Essentially, p−1 maps Z into X such that its image, W , hits each element of

W once (and, hence each element of F at least once) and r maps each x ∈ X

to a point in W that is also in Fx. The conjecture is that this is always

possible if f is Z-distributable. In other words, if f is Z-distributable, the

conjecture postulates a contraction, r, of X to a homomorphic image, W of

Z, that preserves the partitioning induced on X by f , i.e., r(x) ∈ Fx.

In some cases it is possible to construct the W , r, and p, required by the

conjecture from the d used to distribute f . If there is a 1-to-1 bicontinuous

q : Z → X such that d(q(z)) = z, this is certainly the case: simply define

W = q(Z), p(w) = q−1(w), and r(x) = q(d(x)). Unfortunately, such a q

does not in general exist for a given d (see Figure 4) so this is not a fruitful

s
h(s)

¢®

f(x1, x2, y) = yh(x1) is <-distribut-

able by f(x1, x2, y) = c(d(x1, x2), y)

where d(x1, x2) = h(x1) and c(z, y) =

zy. However, there is no 1-to-1 contin-

uous q such that d(q(z)) = z because

h does not have a continuous inverse

over its entire range. However, if f

is distributed by d(x1, x2) = x1 and

c(z, y) = yh(z), simply define q(z) =

(z, k), k a constant, and the conjecture

is seen to hold for this case.

Figure 4: A problem with straightforward verification of the conjecture.

avenue to seek a general proof of the conjecture. However for some classes

of functions, it is easy to show that the required q can be constructed from

10

60

any given d used to distribute the computation. An example is presented in

the next section.

6 Distributing Monotonic Functions

Let f : X × Y → < be Z-distributable, where X = Sn, S ⊂ < is an interval,

and Z ⊂ <. If f(s1, . . . , sn, y) is strictly monotonic in each si, the q described

in the previous section can be constructed as follows. Define W as the main

diagonal of the hypercube, X, i.e.,

W = {(s, . . . , s︸ ︷︷ ︸
n

) | s ∈ S}.

Let dW be the function d restricted to W . It will be shown that (1) dW is

1-to-1 into Z and (2) dW is onto Z. Hence, d−1
W exists and is our q and, there-

fore, the conjecture will be established for this restricted class of monotonic

functions. Consider

c(d(s, . . . , s), y) = f(s, . . . , s, y).

Since the right hand side is strictly monotonic in s, dW must be strictly

monotonic in s too and, hence, is 1-to-1 with a well-defined inverse from

dW (W) to W . To show that dW is onto Z, I will prove that for an arbitrary

x ∈ X, there is a w ∈ W such that d(x) = d(w). Assume that f and dW

are increasing functions. If either or both are decreasing, virtually identical

demonstrations are available.

Let x = (s1, . . . , sn) be an arbitrary x ∈ X. If x ∈ W , there is nothing

to show, so assume that x 6∈ W , i.e, not all of the si are equal, and define

m = min si and M = max si. Thus, there is at least one si 6= m and one

11

61

si 6= M so

f(m, . . . , m, y) < f(x, y) < f(M, . . . , M, y),

for all y ∈ Y , because of the strict monotonicity assumption. Therefore, if

d(m, . . . ,m) ≤ d(x) ≤ d(M, . . . , M), the intermediate value theorem guaran-

tees the existence of a m ≤ β ≤ M such that d(x) = d(β, . . . , β) and clearly

(β, . . . , β) ∈ W .

The remaining cases are d(x) < d(m, . . . , m) and d(M, . . . ,M) < d(x).

Assume the latter—the demonstration for the first case is virtually identical.

Define gi(t) = (1− t)m + tsi and g(t) = (g1(t), . . . , gn(t)). Note that g(0) =

(m, . . . ,m), g(1) = x, and g is continuous. Note also that f(g(t), y) is strictly

increasing in t. Since d(g(0)) < d(M, . . . , M) < d(x) = d(g(1)), there must

exist 0 < v < 1 such that d(g(v)) = d(M, . . . , M) by the intermediate value

theorem. This in turn implies that f(M, . . . , M, y) = f(g(v), y) < f(x, y).

But this is a contradiction. Therefore, dW is onto Z. The following theorem

sums up this result.

Theorem 5 The function f : X × Y → <, where X = Sn, S ⊂ < is an

interval, W is the main diagonal of X, and f is strongly monotonic in X, is

Z-distributable, Z ⊂ <, if and only if there is a continuous onto r : X → W ,

such that r(x) ∈ Fx.

In other words, f is Z-distributable, Z ⊂ <, if and only if there is a

continuous ρ = ρ(x1, . . . , xn) such that f(x1, . . . , xn, y) = f(ρ, . . . , ρ, y) for

all y ∈ Y . This observation often provides a simple method to determine the

distributability of a monotonic function. First consider a negative example:

f(x1, x2, y1, y2) = x1y1 + x2y2

12

62

defined for positive yi. The idea is to find a ρ = ρ(x1, x2) such that

f(x1, x2, y1, y2) = f(ρ, ρ, y1, y2).

But ρ = (x1y1 + x2y2)/(y1 + y2) which necessarily depends on y1 and y2.

Therefore, this function cannot be Z-distributed, Z ⊂ <.

The same method provides a demonstration that the generalized means [1]

are <+-distributable. These means are defined for each v ∈ < as

hv(x1, . . . , xn) = lim
z→v

(
n∑

i=1

xz
i

/
n

)1/z

,

where the xi are positive. The limit operation is necessary for v = 0, +∞,

and −∞ which correspond, respectively, to the geometric mean, maximum,

and minimum. Consider distributing hv where x1, . . . , xm, m < n, are the

remote elements. To show that hv is <+-distributable in these variables, it

is only necessary to find a ρ = ρ(x1, . . . , xm) such that

hv(x1, . . . , xn) = hv(ρ, . . . , ρ, xm+1, . . . , xn)

lim
z→v

(
n∑

i=1

xz
i

/
n

)1/z

= lim
z→v

((
m∑

i=1

ρz +
n∑

i=m+1

xz
i

) /
n

)1/z

.

Clearly there is a solution,

ρ = lim
z→v

(
m∑

i=1

xz
i

/
m

)1/z

,

that is a continuous function of x1, . . . , xm.

References

[1] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge at

the University Press, 1959.

13

63

Bibliography

Mr. Barnett studied undergraduate mathematics at Indiana University and

UCLA and did his graduate work in Computer Science at the University

of California, Irvine. He is currently a Principal Engineer at the Northrop

Grumman Corporation, Automation Sciences Laboratory. His research in-

terests include artificial intelligence, systems, and mathematics related to

computation theory.

14

64

ENERGY EFFICIENT REDUNDANCY

JEFFREY A. BARNETT

1. Summary

This note presents an alternative and simplified1 formulation of a
problem introduced by Dan Mosse and Rami Melham. The objective
is to implement a triply redundant computation while minimizing en-
ergy expenditure. The strategy is to execute two of the three identical
processes relatively rapidly. If the two processes agree on their results,
all computation ceases. If they do not agree, the third process, execut-
ing at a slower rate, is sped up to complete its results by the deadline.
The optimization result is shown to have the following form:

t1 = f(p) · t2 c1 = g(p) · c,
where p is the probability that processes 1 and 2 disagree, t2 is the hard
realtime deadline, t1 ≤ t2 is the rendezvous time for processes 1 and 2,
c is the number of cycles executed by each of the three processes, and
c1 ≤ c is the number of cycles process 3 executes by t1. Interestingly,
f(1/3) = g(1/3) = 1 which means that full symmetric redundancy is
as efficient as any seemingly more clever scheme when p ≥ 1/3.

Section 2 presents the math models, Section 3 does the optimization,
and Section 4 analyzes the results.

2. Resource and Redundancy Models

Energy/Time Model:

• t = c/v, where t is the time to compute c cycles at voltage
setting v.

• e = cv, where e is the energy expenditure to compute c cycles
at voltage setting v.

• No energy is expended when no computation is being done.

Redundancy and Application Models:

• Three identical processes that each execute c cycles.
• Computation starts at time 0.

1Read as less realistic.
1

65

2 JEFFREY A. BARNETT

• Error-free results, if available, must be provided by time t2, the
hard deadline.

• Processes 1 and 2 will finish all c cycles by time t1 ≤ t2.
• At time t1, process 3 will have completed execution of 0 ≤ c1 ≤ c

cycles.
• If processes 1 and 2 produce the same result at time t1, that

result is used and all processing halts.
• If process 1 and 2 disagree, they halt but process 3 executes

its remaining c− c1 cycles in the period between t1 and t2. Its
results are combined/voted with the other results to determine
the system’s solution.

• Processes 1 and 2 fail to agree with probability p.

Figure 1 shows the time of execution of the three processes and the
cycles executed in each period.

0 t1 t2

process 1
c

process 2
c

process 3
c1 c− c1

Figure 1. Time lines and cycles executed by periods.

3. Optimization

Since t = c/v, v = c/t is the voltage setting necessary to execute
c cycles in time t. Since e = cv, e = c2/t is the energy expenditure
necessary to execute c cycles in time t. Hence,

e1 =
c2

t1
e2 =

c2

t1
e31 =

c2
1

t1
e32 =

(c− c1)
2

t2 − t1
,

where e1 is the energy expenditure of process 1, e2 is the energy ex-
penditure of process 2, e31 is the energy expenditure of process 3 up to
time t1, and e32 is the energy expenditure of process 3 between times
t1 and t2. Since the latter expense is only incurred, with probability p,
if processes 1 and 2 disagree, the expected total energy expenditure is

E = e1 + e2 + e31 + p · e32

= 2
c2

t1
+

c2
1

t1
+ p

(c− c1)
2

t2 − t1
.

66

ENERGY EFFICIENT REDUNDANCY 3

The variables that control E are t1 and c1; c, t2, and p are con-
stants. Thus, the straightforward approach to finding the t1 and c1

that minimize E is to simultaneously solve the equations dE/dt1 = 0
and dE/dc1 = 0. These equations are, after some rearrangement,

p
(c− c1)

2

(t2 − t1)2
= 2

c2

t21
+

c2
1

t21
p

c− c1

t2 − t1
=

c1

t1
.

The simultaneous solutions are

t1 =

√
2pq − 2q

pq − 2q2
× t2 c1 =

√
2p

q
× c,

where q = 1 − p. Note that t1 = t2 and c1 = c when p = 1/3. The
expected energy utilization is

E =

(
2
√

q +
√

2p
)

(p− 2q)
√

2p− 2
√

q
× c2

t2

=

(
2
√

q +
√

2p
)2

2
× c2

t2

4. Analysis

Figure 2 shows t1 and c1 as a function of p when nominally c =
1 and t2 = 1. The figure also shows E/3 as a function of p. Its

Figure 2. Plots of t1 and c1 versus p.

67

4 JEFFREY A. BARNETT

value monotonically increases from 2/3 to 1 as p goes from 0 to 1/3.
Therefore, at most a 33% savings in energy is available when error-free
hardware replaces the worst possible. Probably the most interesting
thing to note is that the value of t1 is always a sizable fraction of t2.
When p = 0, c1 = 0, i.e., process 3 never executes. As p nears 1/3 the
parameters make the execution of process 3 more and more like the
other processes since there is a fair probability that its results will be
needed.

68

POWER AWARE DUPLEX REDUNDANCY

JEFFREY A. BARNETT

This note addresses a problem posed and solved by Zhu, et al, in
“Analysis of an Energy Efficient Optimized TMR.” The problem is
how to chunk a process that will be executed in a duplex redundancy
scheme where a portion of the process—a chunk—executes then com-
pares progress with a companion executing on another host. If the pro-
cesses agree on results to date, execution proceeds to the next chunk;
otherwise, both processes rollback and reexecute the chunk, etc.

The question answered herein is how big should the chunks be in a
minimum expected energy implementation where there is a hard real-
time deadline. The model used is from Barnett’s “Minimum Energy
Process Execution.”

For the nonce, assume the process is broken into n chunks, each
of unit complexity. (Later, I’ll deal with the issues that chunk size
depends on the overhead for bookkeeping and rollback.) Call the last
chunk ‘1’ and the first chunk ‘n’. In Barnett’s model, the expected
energy for each process is E = s2/t, where t is the remaining time
to deadline and s is a calculated parameter associated with chunk n.
Our goal is to minimize s, hence expected energy, by choice of an
appropriate n which will determine the chunk size.

First consider chunk 1, the last chunk executed, assumed of unit
complexity. The s parameter associated with it is defined by

s1 = 1 +
√

p s1

where p is the error probability, i.e., with probability p, the chunk must
be reexecuted; with probability q = 1 − p, there is a transition to the
0-complexity terminal state. Thus,

s1 =
1

1−√p

=
1 +

√
p

1− p

=
1 +

√
p

q
.(1)

1

69

2 JEFFREY A. BARNETT

For n > i ≥ 1, the formula for si+1, by similar reasoning is

si+1 = 1 +
√

ps2
i+1 + qs2

i(2)

and, therefore,

si+1 =
1 +

√
p + q2s2

i

q
.(3)

This form has resisted closed-form solution but it is easy to show that

(4)
n

q
≤ sn ≤

n(1 +
√

p)

q

from (1), (2), and (3) by induction. Since p is very small in practice,
the bounds are fairly tight and, therefore, the approximation

s = sn ≈ n/q

is used below. It is now time to return to the chunk size question.
Assume that the total process comprises c cycles and that it is evenly

divided into n chunks so that there are c/n process cycles in each chunk.
In addition assume that z cycles are necessary to save or rollback state
for each chunk execution. Therefore, the total chunk complexity is
z + c/n cycles and

s ≈ n

q
(z +

c

n
)

≈ nz + c

q
(5)

for the whole process because the value of s scales linearly when the
complexity of all chunks are multiplied by a constant. We assume that
the probability of a failure while executing k cycles is p = 1−exp(−λk)
so the probability of no failure for a chunk is

q = e−λ(z+ c
n

).

Therefore, from (5) the quantity to minimize is

s ≈ nz + c

e−λ(z+ c
n

)

by choosing n. Treating n as a real variable and solving ds/dn = 0
yields

(6)
c

n
=

2

λ +
√

λ2 + 4λ/z

as the optimal complexity size of chunks, in cycles, to minimize ex-
pected energy utilization. This result is independent of c and t.

70

POWER AWARE DUPLEX REDUNDANCY 3

The bounds on expected energy E = s2/t for each of the duplex
processes are computed from (4), (5), and (6) as

c2(2 + λz +
√

λ2z2 + 4λz)2

4q2t
≤ E

≤ c2(2 + λz +
√

λ2z2 + 4λz)2

4q2t
(1 +

√
1− q)2,

where

q = exp
(
−λ

(
z +

c

n

))

= exp

(
−λ

(
z +

2

λ +
√

λ2 + 4λ/z

))

= exp

−λz − 2

1 +
√

1 + 4
λz

 .

which isn’t very informative.

notes

Zhu measures failure as a function of time; failure is measured as a
function of cycles herein. I’m not sure which is a better model but the
analysis was simplified in this note by the latter assumption. Zhu deals
with the issues raised when not all voltages (execution speeds) are se-
lectable; I do not. Further, Zhu uses a more sophisticated power model.
The remaining work is to see if the quick and dirty approach used in
this note concurs on the selection of chunk size. That comparison has
not been performed. For small values of λ, Eq. (6) is approximated by

c

n
≈

√
z

λ

so, for example, if z = 103 and λ = 10−9 (a rather pessimistic value),
the best chunk size is approximately 106 cycles. If m = λ−1 is sub-
stituted, the approximate optimal chunk size is

√
mz. And this is

essentially proportional to the geometric mean of rollback complexity
and the mean time between failures (MTBF).

71

MINIMUM ENERGY PROCESS EXECUTION

JEFFREY A. BARNETT

1. The Problem and Summary

A process that will execute on a single computer is given. The ob-
jective is to voltage schedule its subtasks so that process execution
finishes before a hard deadline while minimizing the expected energy
expenditure. The CPU voltage can be set for the execution of each
subtask to tradeoff execution speed against energy.

The process is represented by a directed acyclic graph with a unique
start node that is called a conditional subtask graph. Nodes represent
subtasks and each node is annotated with the complexity of the subtask
measured in CPU cycles. Directed edges connect a node to its possible
execution successors. An edge is labelled with the probability that the
subtask at the head of the edge will be selected for execution after the
subtask at its tail. Exactly one task will be selected so this is a model
of conditional execution of a single sequential (as opposed to a parallel)
process. If a node has no successors, it is called a terminal. Exactly
one terminal will be executed and it is required that its execution not
exceed the hard deadline.

An algorithm to optimally voltage schedule a conditional subtask
graph is developed. The algorithm processes the graph before execution
and can be run offline. The time complexity is linear in the size of
the graph. The time complexity at runtime to determine the optimal
voltage for a subtask execution is O(1).

If a transition probability is misestimated, the algorithm will auto-
matically recover and schedule the remaining execution of the process
optimally given the current state. Optimality recovery will also occur
if subtask complexity estimates are inaccurate as long as an underesti-
mate does not cause the deadline to be exceeded.

Section 2 describes the power model used throughout this note and
discusses its fidelity. The mathematics in Section 3 determine the op-
timal voltage-scheduling policy for a conditional subtask graph. For-
mulas for the expected energy utilization for process continuations,
starting at any subtask in the graph, are developed along with the

1

72

Jeffrey A Barnett

2 JEFFREY A. BARNETT

proper voltage setting for the subtask. Section 4 discusses the inter-
pretation of a conditional subtask graph including conditional terminal
nodes, nodes with multiple predecessors, and loops. Section 5 presents
pseudo codes that implement the main algorithm and the API routine
that adjusts voltage at the beginning of each subtask execution.

2. The Power Model

A simple first-order model is used to estimate the relations among
task complexity, computation speed measured by delay, energy con-
sumption, and voltage setting. The main assumptions are

• t = c/v, where t is the time necessary to execute c cycles at
voltage setting v. Therefore, v = c/t is the voltage setting
necessary to execute c cycles in time t.

• e = cv, where e is the energy expenditure necessary to execute
c cycles at voltage setting v. Therefore, e = c2/t is the energy
necessary to execute c cycles in time t.

• The units of v and e are selected so that constants of propor-
tionality can be omitted from the above.

This model has several sources of inaccuracies:

• It is assumed that all possible voltage settings are usable.
• It is assumed that the above relations hold even at low voltage

settings where leakage current is a dominate effect.

Another assumption is that

• There is no energy overhead or delay associated with changing
the voltage.

This source of inaccuracy can be partially mediated by increasing the
estimates of the subtask complexities to include the expected overhead.

A final assumption is made, based on many published results for a
variety of power models:

• The energy minimization strategy to execute a task of known
fixed complexity in a given amount of time is to use the constant
voltage setting that causes execution to exactly meet the given
deadline, i.e., v = c/t, where c is the known complexity and t
is the known deadline.

3. Mathematical Development

Assume that a node of complexity c is about to be executed and
the time remaining until the hard deadline is t. Assume that the node
has n successors with the transition probabilities p1, . . . pn. It will be
shown that the optimal policy executes this subtask in time t1 ≤ t,

73

MINIMUM ENERGY PROCESS EXECUTION 3

where t1 = ct/s. Hence the proper voltage setting is v = c/t1 = s/t.
The expected total energy expenditure for executing this subtask and
the remainder of the process is E = s2/t. It remains to define s and
prove this claim by induction.

The s in the above is defined to be s = c + (
∑

pis
2
i)

1/2, where this
and all other summations in this note run through the set of all direct
successor nodes and si is the quantity, s, for the ith successor node. If
the node is a terminal, s = c because there are no successors and the
vacuous summation evaluates to zero. The quantity s is well defined
since the graph has been assumed to be acyclic.

The induction proceeds in two steps: First, it is shown that the
values of E and t1 are optimal for terminal nodes. Second it is shown
that the results are optimal for a nonterminal node given that it is
optimal for its successor nodes.

Assume that a terminal node is to be executed so s = c. Thus,
t1 = ct/s = t and E = s2/t1 = c2/t in agreement with the optimal
just-in-time, constant-voltage energy minimizing policy to execute a
node with known complexity in a fixed time period.

If the node is nonterminal, then time t1 is found by which to finish the
execution of the node. The remaining period, t− t1, is used to execute
the rest of the process. If t1 were known, the energy expenditure at
this node would be c2/t1. If the ith successor were selected to execute
next, its expected energy consumption would be s2

i /(t − t1) by the
inductive assumption. Therefore, since the ith successor is selected
with probability pi, the expected value of E, as a function of t1, is

(1) E =
c2

t1
+ p1

s2
1

t− t1
+ · · ·+ pn

s2
n

t− t1

The t1 that minimizes E is found by solving dE/dt1 = 0 for t1:

c2

t21
=

∑
pis

2
i

(t− t1)2

ct = (c +
√ ∑

pis2
i)t1

t1 = ct/s

which was to be proved. It remains to show that E = s2/t. That fact
follows by substituting the optimal value of t1 in (1). ¤

4. Tricks of the Trade

This section discusses three topics: conditional terminal nodes, the
fact that a given node can be the successor of multiple nodes, and
modelling loops.

74

4 JEFFREY A. BARNETT

Consider a nonterminal node with n successors and transition prob-
abilities p1, . . . pn where z =

∑
pi and z < 1. Such a node is called a

conditional terminal. The interpretation is that executing the node ter-
minates the process with probability 1− z. A careful inspection of the
mathematics in the previous section shows that the results are equiv-
alent to a formulation where an extra edge with transition probability
1 − z points to a terminal node with c = 0. Hence, the mathematics
correctly deal with this case and interpretation. N.B., If a terminal
node is executed by the process, its final cycle will coincide with the
deadline. If a conditional terminal is the final subtask, the process will
complete execution before the deadline.

The second issue is that a node may have multiple predecessors. In
such cases, blind recursive evaluation of s for the start node could take
time exponential in the size of the graph. The algorithm presented
in the next section does much better, its time complexity is linear in
graph size whether the graph is a tree or not.

The third issue is the representation of loops with conditional exits.
Given the assumption of a hard deadline one can reasonably assume
that there is a known finite iteration limit. The way to represent this
case is to unroll the loop and consider each iteration as a separate
subtask. Each subtasks except the final one has two successors:

• The subtask representing the next iteration of the loop.
• The subtask that follows loop termination.

Of course, transition probabilities must be estimated for both branches.

5. The Algorithm

This section develops an efficient algorithm to voltage schedule a
conditional subtask graph. The algorithm may be used offline. It
calculates and stores the value of s for each node. An API function is
called by each subtask at the beginning of its execution. The value of s
calculated by the algorithm is passed as a parameter. The current time
t and the deadline d are global variables. The API implementation is

procedure API set voltage (s number)
if t ≥ d then error(“deadline missed”);
voltage ← s/(d− t);

end API set voltage

The error clause is only reached if a subtask complexity has been un-
derestimated and its execution exceeds the deadline.

This simple algorithm works because the execution model is Markov-
ian in the sense that the optimal strategy only depends on the subtask
to execute next, its successors, and the remaining time budget, not how

75

MINIMUM ENERGY PROCESS EXECUTION 5

we got here. Even if there were prior estimation errors, the continuation
strategy is optimal from this point forward.

The calls to this API could most conveniently be generated by a
power-aware compiler where the algorithm described below would re-
side. Of course the programmer or a statistics-gathering tool must
estimate the transition probabilities.1

The following algorithm calculates s for all nodes in the conditional
subtask graph. Each node has fields that store c and a list of edges to
the successors of the node. A third field, s, is initially set to a negative
number by the graph builder. The s field has two uses:

• As a marker—when the value is negative the node has not been
processed.

• To store s—when its value is nonnegative, it contains the correct
value of s for the node.

The use of this field as a mark bit is what keeps the time complexity
of the algorithm proportional to graph size even if some nodes have
multiple predecessors. The successors of a node are only chased on
the first visit to the node. Each edge structure stores its transition
probability and the node at its head.

number function comp s (node node)
if node.s < 0 then {

declare x number ;
x ← 0;
for edge in node.edges {

x ← x + edge.prob× comp s(edge.head)2};
node.s ← node.c +

√
x };

return node.s;
end comp s

This algorithm is invoked by evaluating comp s(start), where start is
the unique start node of the conditional subtask graph. When it is
complete, every reachable node contains its correct s value. These are
the values that will be passed to the calls on API set voltage at the
beginning of each subtask execution.

1The old fortran frequency statement may have a new life!

76

Dynamic Voltage Scheduling Optimizations

Jeffrey A. Barnett

Abstract

Energy versus delay tradeoff are explored for systems that must manage energy

expenditure as well as computation deadlines. The focus is execution of a single process

on a single processor. Two probabilistic process models are considered along with a

family of power dissipation models. The first process model assumes that process

complexity is exactly c cycles with probability p(c). The second model considers the

detailed branching and loop structure of the code. Probabilities are attached at branch

points. The power models assume that energy dissipation per cycle is proportional to

vm and that execution time for a cycle is proportional to v−n, where v is supply

voltage. The energy versus delay tradeoff is implemented using dynamic voltage and

clock adjustments. The problems solved include (1) minimize expected execution time

given a hard energy budget and (2) minimize expected energy expenditure given a hard

deadline. The problem of minimimizing the expected value of Q(E, T), where Q is a

penalty function and E and T are, respectively, total energy and total time, is also

solved using the first process model. Analysis determines theoretical conditions where

it may be profitable to switch voltage or modify an a priori voltage schedule.

Keywords: Energy-aware systems, energy management, time management, dynamic volt-

age scheduling, agile voltage scheduling, power management points.

Acknowledgements: This effort is sponsored by Defense Advanced Research Projects

Agency (DARPA) through the Air Force Research Laboratory, USAF, under agreement

number F33615-02-C-4001.

1

77

1 Background, Summary, and Contributions

1.1 Background

Resource management has always been a primary focus area within computer science. Virtu-

ally all pragmatic models of computation contain a layer—the operating system—dedicated

to it. The resources managed typically include the CPU, memory, secondary storage, and

device access. Object controllers and other systems that interact with their environments

have special resource-management constraints that are called hard (or soft) realtime require-

ments. Properties of, and algorithms for realtime systems and resource management are

among the most studied in computer science.

Energy is a relatively recent addition to the list of resources that must be managed. This

is driven, in part, by increased computation capabilities and miniaturization that entail heat

density and dissipation problems [36]. Thus, energy management problems exist for large

systems such as servers [28, 35, 36] as well as portable devices [11, 27, 28, 35]. Another driver

is economics: energy costs money.

There are other classes of systems that must be radical more power aware. Two examples

are space systems [40] and unattended, distributed sensor networks [45]. The Sky Tower

aircraft with an endurance goal of six months using electric engines [2] is a third example.

These systems use batteries as buffers but must scavenge energy from the environment to

achieve long endurance. Solar panels are one potential energy source; vibration, chemical,

and ambient heat are other possibilities. Energy availability is not constant so optional

activities must be scheduled for times of plenty, e.g., when solar panels are illuminated, and

all but the most urgent needs must be deferred at other times.

Several approaches to energy management are currently being pursued. Many researchers

are investigating hardware improvements that will reduce energy consumption with minimal

or no impact on runtime performance. Examples include use of two different supply volt-

ages within the same chip [18], use of two identical processors where each has a different

supply voltage [43], dynamical control of L2 cache line size [23], distribution within a super

scalar chip design [47], use of FPGA devices [31], and design of bus structures that use less

energy [26]. These approaches promise “automatic” savings because the hardware is more

energy efficient. Several studies [23, 29, 47] propose metrics to measure the ultimate success

of these investigations. Proposed minimization objectives have the form ET α, where E is

2

78

the energy used by a test computation, T is its execution time, and α is a constant.

Another approach—the one investigated herein—provides controls used by the applica-

tion and/or the operating system to effect an energy versus performance tradeoff at runtime.

This possibility is interesting because many, if not most, energy-constrained systems also

have temporal constraints [3, 30]. The available controls are the supply voltage and the clock

frequency. When the voltage is increased, the clock frequency can be increased. However,

the energy cost per unit of computation will also increase. Several commercially available

processors provide voltage/clock controls: Intel Xscale [19], Transmeta Crusoe [42], AMD

K6-2+[1], and the IBM StrongArm [21] are some examples. The Advanced Configuration

and Power Management (ACPI) specification provides standard interfaces for low-power

states and energy and thermal controls as well as plug-and-play hardware protocols [20].

Generally, researchers following the program pursued herein concentrate on minimimiz-

ing energy consumption given hard or soft temporal constraints [3, 11, 15, 27, 28, 30, 35, 36,

39, 43, 46]. Of these, only Cao [11] and Qiu and Pedram [36] note that the dual problem—

minimize expected execution time given an energy budget—is also significant. Both formu-

lations are addressed below.

1.2 Summary

Section 2 introduces the power models and the process models used for algorithm develop-

ment and analysis. The power models specify relations between supply voltage levels and

processor speed and rate of energy consumption. The process models encode probabilistic

knowledge about process complexity measures in cycles. Two process models are examined:

The simple probabilistic model provides the function p, where p(x) is the probability that

process complexity is exactly x cycles. A structural process model provides a flow graph of

the process. The associated metrics are the complexities of the simple segments (the graph

nodes) and the probabilities of branching from one segment to another one.

Section 3 formulates a set of optimization problems and solves them analytically using a

specific simple power model, then Section 4 provides the optimal solutions for the same opti-

mizations using arbitrary power models. Two optimizations—find the voltage schedule that

minimizes expected execution time given a not-to-exceed energy budget and find the voltage

schedule that minimizes expected energy consumption given a not-to-exceed deadline—are

solved for both the simple probabilistic and structural power models. A third optimization—

3

79

find the voltage schedule that minimizes the expected value of Q(E, T), where E is total

energy expenditure, T is total computation time, and Q is a general penalty function—is

solved for the simple probabilistic process model.

Section 5 discusses methods for gathering process metrics—the probabilities and com-

plexity estimates that comprise process models—and how to insert that information in appli-

cation systems. The probabilities are available from general application knowledge, domain

models, and feedback from system executions. The complexity measures, on the other hand,

are generated from machine models, cycle-level simulators, and compiler analyses.

Section 6 analyzes the optimality results. Optimal strategies are compared to strategies

that predict average-case behavior. The optimal strategies always behave as though future

complexity will be worse than average. Other analyses discuss the value of using updated

complexity information promptly and the robustness of the optimal algorithms to parameter

estimation errors. Finally, it is shown that voltage levels in optimal strategies can only

change at points where something new is learned about future complexity of the process. At

all other points, voltage remains constant.

1.3 Contributions

The focus of this article is how best to use voltage and clock controls to effect application-

driven energy versus delay tradeoffs. The investigation assumes a single process or a de-

pendent set of tasks executing on a single processor. This restriction is imposed for two

reasons: The first is that many energy-constrained systems are organized this way [39]. The

second reason is that exact, basic optimization methods are needed as the building blocks

for schedulers that handle multiple processes executing on multiple processors.

Several results developed below appear to be novel. The first is the solution of optimiza-

tion problems where energy is the constrained resource and expected execution time is to

be minimized. The second is the formulation and solution to minimizing the expected value

of the general penalty function Q(E, T), where E is energy consumption and T is execution

time. The third contribution is the development of optimal techniques to schedule processes

from their structural models. Perhaps the most significant result is an analysis that deter-

mines when an optimal voltage schedule will change voltage and hence computation speed

and energy consumption rate, and when these parameters will remain constant: voltage level

will only change in an optimal schedule when something new is learned about the future

4

80

complexity of the process.

2 Process and Power Models

Section 2.1 introduces the power models and Section 2.2 introduces the process models used

for the optimizations performed in Sections 3 and 4.

2.1 Power Models

Many modern computers permit voltage and clock frequency to be modified by the executing

program. Some examples are the Intel Xscale [19], the Transmeta Crusoe [42], the AMD K6-

2+ [34], and the IBM StrongArm [37]. Increased voltage permits increased clock frequencies

to be used. The penalty for faster computations is increased energy consumption per unit of

computation. That unit is the cycle. Cycles are used to measure execution progress rather

than instructions because cycles are reasonably similar to one another in terms of energy

dissipation and execution time while instructions are not [27, 30, 39, 46].

The general models for the energy expenditure and time to execute c cycles, respectively,

are e = αcvm
dd and t = βcvdd/(vdd− vT)n+1, where vdd is supply voltage (the variable) and vT

is threshold voltage [9, 13, 38]. The constants vT , α, β, m, and n depend on the architec-

ture. Martin [29] discusses “smooth circuits” where vT scales with vdd so that t = β′c/vn
dd

would represent execution time, and many authors [15, 27, 35, 39, 43], while acknowledg-

ing the effects of vT , ignore it either in optimizations, examples, or testing. Manzak and

Chakrabarti [28] note that when vdd > 3vT , only a 0.1% error is introduced if vT = 0 is

assumed, i.e., the voltage schedule developed ignoring vT uses only 0.1% more energy than

an optimal schedule. For these reasons, the power model can be simplified to e = αcvm and

t = βc/vn, where v = vdd. A further notational simplification follows if the units of e and t

are chosen to entail e = cvm and t = c/vn.

Two limitations on speed adjustments should be noted: (1) voltage and clock levels are

discrete and (2) minimum and maximum levels are imposed by the hardware. For example,

the Transmeta Crusoe [42] provides as many as two clock frequencies for a single voltage

level and 36 combinations. However, Gutnik and Chandrakasan [16] and Namgoang et

al [33] discuss architectures where continuous speed adjustments are possible and Melham

et al [30] note that systems which are able to operate on a (more or less) continuous voltage

5

81

spectrum are rapidly becoming a reality thanks to advances in power supply engineering and

CPU design. Chandrakasan et al [12] shows that a few voltage/speed levels are sufficient to

achieve almost the same energy savings as infinite levels.

The development below follows Lorch and Smith [27] and Shin et al [39] by assuming

that voltage can vary continuously. However, many studies [15, 30, 46] do deal with issues

of discrete and limited settings and their work should be consulted when these effects are

important in particular applications. Techniques to deal with limitations on minimum and

maximum voltage settings are discussed elsewhere [3, 46].

It should also be noted that changing processor speed through voltage and/or clock

adjustments may exact time and energy penalties [10, 19, 34, 37, 42, 46]. Lorch and Smith [27]

assume that changing voltage incurs little or no overhead and Aydin et al [3] suggest, as will

be assumed here, that these penalties simply be added to the complexity estimates of process

segments and otherwise be ignored during optimization.

The power models appearing in the optimizations developed below are denoted by Πmn.

Using the Πmn model, the energy to execute c cycles at constant voltage v is e = cvm and

the execution time is t = c/vn. Some optimizations will assume that voltage is agile, i.e.,

voltage can vary continuously. In such cases,

e =

∫ c

0

v(x)m dx t =

∫ c

0

v(x)−ndx,

where v(x) is the voltage used when cycle x is executed. The Π21 model is the one most

often used [3, 15, 28, 35, 43, 46]. Lorch and Smith [27] also do basic analysis with Π21

but note that formulas developed using Π11 better fit simulation results. Shin et al [39]

also develop optimizations using Π21 but evaluate an example architecture with a Π2(.7)

model. All optimizations blow are initially performed with the Π11 model in order to simplify

derivations. Section 4 re-presents the results using general Πmn models.

Melham et al [30] proves, for a variety of models, that the lowest energy utilization to

execute a fixed number of cycles when there is a hard deadline is achieved by the constant

voltage solution that uses all of the available time. Isihara and Yasuura [22] note the same

result and BÃlazewicz et al [6] note that when the rate of consumption of some resource is

a convex function of CPU speed, an ideal schedule will run each task at a constant speed.

A corollary is used below: the least time to execute a fixed number of cycles when there

is a hard energy constraint is achieved by the constant voltage solution that uses all of the

6

82

available energy.

2.2 Process Models

The unit presented for scheduling is the process. Two types of process models are defined

below. The first is the simple probabilistic model where all that is known about a process

is that its complexity is x with probability p(x). The second is the structural model where

the branching behavior and probabilities of the branches are specified. The second model

is clearly more informed than the first one—a simple probabilistic model can be derived

from structural information though there is an information loss—so better optimizations are

possible.

2.2.1 The Simple Probabilistic Process Model

The simple probabilistic process model is specified by a nonnegative function, p, where p(x)

is the probability that execution will terminate after exactly x cycles. Two assumptions are

made: (1) p(x) = 0 if x ≤ 0 and (2) there exists a finite c such that p(x) = 0 if x > c. In

the notation used below, c will always denote the smallest value for which
∫ c

0
p(x) dx = 1.

The function P (x) =
∫ x−
0

p(y) dy is the probability that process complexity is less than

x and z(x) =
∫ c

x
p(y) dy is the probability that the complexity is at least x. Thus, z(x) =

1 − P (x). A simple probabilistic process model will often be specified by P rather than p.

Though the information content is equivalent, the former is often more straightforward to

elicit and represent.

Both [15] and [27] introduce simple probabilistic models and find voltage schedules that

minimize expected energy consumption given a not-to-exceed deadline. The latter uses their

results to improve performance of an existing dispatch schedule where the deadlines are

already defined.

2.2.2 The Structural Process Model

The structural model of a process provides details of its branching. A process is represented

by a 4-tuple, (σ, S, cx, p), where S is a set of code segments, cx(s) is the complexity measured

in cycles of each s ∈ S, and σ is the initial segment (entry point) of the process. Branch

probabilities are represented by p, where p(s1, s2) is the probability that execution of s2 will

7

83

immediately follow execution of s1. Let p(s) =
∑

r∈S p(s, r), then clearly p(s) ≤ 1 is required

for all s ∈ S. If p(s) < 1, then 1 − p(s) is the probability that an execution of s will be

process terminal. Define θ(s) to be the set of all r ∈ S such that p(s, r) > 0.

A directed graph can used to represent a structural process model. The s ∈ S are the

nodes of the graph and there is a directed edge from each s ∈ S to the members of θ(s).

The nodes are labeled by cx(s) and the arc from s to r ∈ θ(s) is labeled with p(s, r). For the

nonce, assume that process graphs are acyclic. Methods that deal with graph cycles will be

discussed in Section 3.3 where loops are analyzed.

Many investigators use flow-graph technology to represent processes that will be voltage

scheduled to minimize energy consumption given computational deadlines. The simplest

case is a graph where the edges represent simple order dependencies [43]. Both [30] and [39]

use graph models where probabilities annotated branches and worst- and average-case com-

plexities are calculated for the continuations starting at each node. Zhu et al [46] present

a generalize of an AND/OR model [14] where AND nodes represent parallel dispatch, OR

nodes, where synchronization is forced, represent conditional branching, and probabilities

annotate these branches. Worst- and average-case complexity statistics are used to improve

voltage schedules within an innovative slack-stealing scheme.

2.2.3 Process Model Comparison

Consider a process with three segments. The first segment, with cx = 15, is executed then

there is a branch to one of two final segments: one with cx = 10 and the other with cx = 20.

Figure 1(a) shows the structural model of this process with the assumption that both branch

15

¸
.5

U
.5

10

20

(a) Structural model.

0.0

0.5 ·························

1.0 ···································
P (x)

0 x 25 35

(b) Simple process model.

Figure 1: The structural and simple models for the same process.

probabilities are 0.5. Figure 1(b) shows P (x) for the simple probabilistic model of the same

8

84

process. In the simple model p(25) = .5, p(35) = .5, and all other p-values are zero. The

relevant observation is that the structural model is more informed: total process complexity

is known in the structural model at cycle 15 when the branch is selected. The simple

model only provides new complexity information at cycle 25 where the process either halts

or continues for 10 more cycles. As will be shown below, the delay in knowledge capture

increases the expected energy and time measures that we are trying to minimize.

3 Optimizations

Optimized voltage schedules are derived using simple probabilistic and structural process

models assuming the Π11 power model. The optimization results are repeated with the

general Πmn model in Section 4. Table 1 summarizes the optimizations performed in this

Table 1: Section 3 optimization summary.

Section Model Budget Minimize

3.1.1 Simple E Ex(T)

3.1.2 Simple T Ex(E)

3.1.4 Simple — Ex(Q(E, T))

3.2.1 Structural E Ex(T)

3.2.2 Structural T Ex(E)

section, where Ex(·) is the expected value operator, E is energy expenditure, and T is

computation time. Sections 3.1.3 and 3.1.5 provide optimization examples, Section 3.2.3

describes algorithms to implement optimizations with structural models, and Section 3.3

discusses the modeling and handling of loops, particularly when the number of iterations is

not bounded at compile time.

3.1 Simple Probabilistic Model Optimizations

3.1.1 Hard Energy Bound

The problem is to find the agile voltage schedule that minimizes the expected execution

time of a process given its simple probabilistic model, p, and a not-to-exceed energy budget

E. The expected execution time is
∫ c

0
z(x)/v(x) dx because z(x) is the probability that the

9

85

process will still be executing at cycle x and v(x)−1 measures the time to execute that cycle.

The energy constrain is E =
∫ c

0
v(x) dx. This problem is solved using a Lagrangian multiplier

and variational methods [8]. The objective has the form,

∫ c

0

z(x)

v(x)
dx + λ

[
E −

∫ c

0

v(x) dx

]
,

where λ is the Lagrangian multiplier. Substitute v(x) + βg(x) for v(x), differentiate with

respect to β, let β = 0, and set the result to zero:

−
∫ c

0

g(x)z(x)

v(x)2
dx− λ

∫ c

0

g(x) dx = 0

∫ c

0

g(x)

[
z(x)

v(x)2
+ λ

]
dx = 0.

Since g(x) can be an arbitrary function, λ + z(x)/v(x)2 = 0 is necessary. Therefore, v(x) =

kz(x)1/2 for some constant k. From E =
∫ c

0
v(x) dx, it follows that k = E/I, where I =

∫ c

0
z(x)1/2 dx. Thus, a summary of the minimization result is

v(x) =
E

I
z(x)1/2 Ex(T) =

I2

E
Ex(E) =

E

I

∫ c

0

z(x)3/2 dx, (1)

where Ex(T) =
∫ c

0
z(x)/v(x) dx is the expected process execution time as noted above and

Ex(E) =
∫ c

0
z(x)v(x) dx is expected energy utilization. Note that Ex(E) ≤ E because

0 ≤ z(x) ≤ 1.

3.1.2 Hard Time Bound

The problem is to find the agile voltage schedule that minimizes the expected energy utiliza-

tion of a process given its simple probabilistic model, p, and a not-to-exceed time budget T .

The method to solve this problem is identical to the one used in Section 3.1.1. The summary

of this minimization is

v(x) =
I

Tz(x)1/2
Ex(T) =

T

I

∫ c

0

z(x)3/2 dx Ex(E) =
I2

T
. (2)

This result, for different power models, also appears in [15] and [27].

3.1.3 Examples for Hard Energy and Time Bounds

Let p(x) = π
2c

sin(π
c
x) when 0 ≤ x ≤ c and p(x) = 0 elsewhere be a simple probabilistic model.

In the first problem, E is a hard energy bound and in the second, T is a hard time bound.

10

86

Table 2: Optimal solution for hard energy and time bounds.

Budget v(x) Ex(E) Ex(T)

E
πE cos

(π

2c
x
)

2c

2

3
E

4c2

π2E

T
2c

πT cos
(π

2c
x
) 4c2

π2T

2

3
T

Table 2 presents the optimal agile voltage solutions and expected resource consumptions for

both problems. It is interesting to note that voltage is a decreasing function when energy

is constrained and an increasing function when time is constrained. This will always be the

case as an examination of (1) and (2) will reveal. The rising effect was previously noted [27]

and led to an approach named Processor Acceleration to Conserve Energy (PACE).

3.1.4 General Penalty Function

The problem is to find the agile voltage schedule that minimizes the expected value of

Q(E, T), where Q is a penalty function and E and T are, respectively, total energy con-

sumption and total execution time, given a simple probabilistic model, p. The objective to

minimize is, thus,

Ex(Q(E, T)) =

∫ c

0

p(x)Q(E(x), T (x)) dx,

where E(x) =
∫ x

0
v(y) dy and T (x) =

∫ x

0
v(y)−1 dy. This problem is tackled by variational

methods [8] starting with the substitution v(x)+βg(x) for v(x), differentiating with respect

to β, letting β = 0, and equating the result to zero:
∫ c

0

p(x)

[
Q1

∫ x

0

g(y) dy −Q2

∫ x

0

g(y)

v(y)2
dx

]
dx = 0,

where Q1 = ∂Q/∂E and Q2 = ∂Q/∂T . Change the integration order to produce the

equivalent ∫ c

0

g(x) dx

∫ c

x

p(y)

[
Q1 − Q2

v(x)2

]
dy = 0.

Therefore, minimizing/stationary voltage schedules must satisfy

v(x)2 =

∫ c

x
p(y)Q2 dy∫ c

x
p(y)Q1 dy

(3)

11

87

since g can be arbitrarily chosen.

Integral equations such as (3) are notoriously difficult to solve. However, some cases are

straightforward. For example, there is often a constant v that satisfies (3) if Q2/Q1 = f(T/E)

for a suitably well-behaved f and Π11 is assumed. Let v be a constant, then

f(T/E) = f

(∫ x

0
v dy∫ x

0
v−1 dy

)

= f(v2),

which is a constant. Therefore, Q2/Q1 = f(v2) and, from (3),

v2 =

∫ c

x
p(y)f(v2)Q1 dy∫ c

x
p(y)Q1 dy

= f(v2).

So the solutions of v2 = f(v2), i.e., the square root of the fixed points of f , if any,

are stationary solutions of (3). These conditions are met whenever Q(E, T) = g(ET) or

Q(E, T) = g(αEr + βT r) as simple computations will show.

3.1.5 General Penalty Function Example

Let p(x) = c−1 when 0 ≤ x ≤ c and let p(x) = 0 elsewhere. Then p is a simple probabilistic

process model. Let the penalty function Q have the form Q(E, T) = E + 3
2
c2(1 − e−2T) so

that Q1 = 1 and Q2 = 3c2e−2T . Therefore, a stationary solution must satisfy

v(x)2 =

∫ c

x
p(y)Q2 dy∫ c

x
p(y)Q1 dy

=

∫ c

x
3ce−2T dy∫ c

x
1
c
dy

=
3c2

∫ c

x
e−2T dy

c− x
.

The above is satisfied by v(x) = c−x, where T (y) = log c
c−y

, as can be verified by substitution.

3.2 Structural Process Model Optimizations

3.2.1 Hard Energy Bound

The problem is to find a voltage schedule that minimizes expected execution time given

the structural process model, (σ, S, cx, p), and a not-to-exceed energy budget E. Define the

12

88

quantity

I(s) = cx(s) +

√ ∑

r∈θ(S)

p(s, r)I(r)2 (4)

for each s ∈ S. Note that I(s) = cx(s) when s is a terminal segment because θ(s) = ∅ and,

hence, the summation is vacuous.

It is shown here that the optimal voltage, v(s), to execute segment s and the expected

execution time for s and the remainder of the process are

v(s) =
e

I(s)
Ex(t(s)) =

I(s)2

e
, (5)

where e is the remaining energy budget when s is executed. Thus, the minimum expected

execution time for the whole process, while honoring the energy budget, is I(σ)2/E.

The first thing to note is that each terminal segment, s, will execute with a constant

voltage because the number of cycles cx(s) and the energy budget allocation are fixed. (See

Section 2.1.) From e = cx(s)v, it follows that v = e/cx(s) = e/I(s) and from t = cx(s)/v it

follows that t = I(s)2/e; both in agreement with (5). This completes the base step for an

induction to verify (5).

Now consider a segment s where (5) describes the optimal policy for all r ∈ θ(s). Let e

be the remaining budget energy budget. Some of that budget, e1, will be devoted to s and

the remainder, e− e1, will be used for the rest of the process execution. Thus, the expected

time to execute s plus the remainder of the process is

Ex(t(s)) =
cx(s)

2

e1

+
∑

r∈θ(s)

p(s, r) Ex(t(r))

=
cx(s)

2

e1

+
∑

r∈θ(s)

p(s, r)
I(r)2

e− e1

=
cx(s)

2

e1

+
(I(s)− cx(s))

2

e− e1

(6)

using the inductive assumption and a constant-voltage solution for s. The minimizing value of

e1 is found by solving d Ex(t(s))
d e1

= 0 for e1. The result is e1 = cx(s)e/I(s). Since e1 = cx(s)v(s),

it follows that v(s) = e/I(s) in agreement with (5). Now substitute the optimizing value of

e1 into (6) and simplify to show that Ex(t(s)) = I(s)2/e and complete the induction.

3.2.2 Hard Time Bound

The problem is to find a voltage schedule that minimizes expected energy utilization given

the structural process model, (σ, S, cx, p), and a not-to-exceed time budget T . The method

13

89

to solve this problem is identical to the one used in Section 3.2.1. The results of this

optimization are

v(s) =
I(s)

t
Ex(e(s)) =

I(s)2

t
, (7)

where I(s) is defined by (4) and t is the remaining time budget when s is executed. The

expected energy utilization for the entire process is I(σ)2/T .

3.2.3 Algorithms for Structural Models

The optimal policies developed for the structural process model are straightforward to im-

plement. Voltage is set when each s ∈ S begins execution as a function of I(s) and the

remainder of the budgeted resource; how control arrives at s is not relevant. Figure 2 shows

API routines that are called at the beginning of the execution of s with the parameter I(s).

procedure set voltage (I)

if e ≤ 0 then error ;

voltage← e/I;

end set voltage

(a) Energy management API.

procedure set voltage (I)

if t ≤ 0 then error ;

voltage← I/t;

end set voltage

(b) Time management API.

Figure 2: APIs to support structural process model execution.

The API shown in Figure 2(a) is used when energy is budgeted and e is the remaining energy

budget. Figure 2(b) shows the API when time is the constraint and t measures remaining

time. The error checks account for possible prior effects of parameter misestimations.

In order to use the optimal policy, I(s) for each s ∈ S must be available at runtime.

These values can be calculate offline and inserted, along with the API calls, by a power-

aware compiler. The total execution time to calculate all I(s) values is proportional to the

size of the graph used to represent the structural model of the process as an examination of

Figure 3 will show. The recursive algorithm is called with σ, the initial segment, and when

it completes, s.I is set for each s ∈ S. The mark fields s.mark are initially false; they are

used so that s.I is calculated exactly once for each s ∈ S.

14

90

function I(s segment)

declare a number ;

if ¬s.mark then {
s.mark← true;

a← 0;

for r ∈ θ(s) {
a← a + prob(s, r) ∗ I(r)2 };

s.I← cx(s) +
√
a };

return s.I;

end I

Figure 3: Algorithm to calculate I(s) for each s ∈ S.

3.3 Loops

Loop constructs are a fundamental control structure that must be accounted for by any

serious process modeling technique. The possibility of variable numbers of iterations is one

of the major contributors to nondeterminacy in process complexity. The simple probabilistic

model captures and organizes this information when p is estimated. That model is certainly

the easiest and most natural one to use when there are many loops with variable iteration

counts or elaborate control structures composed of ill-nested forms. Since many systems that

interact with the environment have such characteristics, their architects will often choose the

simple probabilistic model.

The structural process model also provides mechanisms to account for loops. If, for

example, the iteration count is fixed, the loop is simply unrolled. If only the maximum

count is known, the loop is still unrolled with appropriate probabilities attached to the

continuation and exit branches of each iteration.

The case where the iteration limit is unknown in advance or is difficult to calculate is

more problematic. Consider the canonical loop structure shown in Figure 4 where segment

h is the head of the loop and segment b is the body. The header enters the body with

probability p and segment r, the loop exit, with probability q = 1 − p. Two equations

immediately follow from (4):

I(h) = cx(h) +
√

pI(b)2 + qI(r)2

15

91

h

ª R
r b

¾
q p

1

Figure 4: Simple loop structure.

I(b) = cx(b) + I(h).

The simultaneous solutions for I(h) and I(b), with the assumption that p is independent of

iteration count, are

I(h) =
cx(h) + pcx(b) +

√
p(cx(h) + cx(b))2 + q2I(r)2

q

I(b) =
cx(h) + cx(b) +

√
p(cx(h) + cx(b))2 + q2I(r)2

q
.

The same technique—expand (4) for each node in the loop plexus then simultaneously solve

for the I values—can be used to calculate metrics for more complicated cases including

multiple and/or nested loops. The I values will be passed to the API (Section 3.2.3) to

control voltage settings. Later iterations will see less of the budgeted resource remaining so

the processor speed will rise or fall, appropriately, as execution continues.

Shin et al [39] require that the maximum iteration counts be known at compile time.

When a loop exits before that count is reached, the worst-case expectation for the remain-

ing process complexity is reduced. Zhu et al [46] propose a more sophisticated method of

dealing with loops. The loop is unrolled but, depending on inter-iteration dependencies, the

individual iterations can be represented as either serial or parallel tasks or some combina-

tion thereof. Probabilities are used to specify the likelihoods of actually executing each task

cluster. Neither approach deals with the case where the bound on the number of iterations

is a priori unknown.

4 Optimizations with General Power Models

The optimizations presented in Section 3 were all developed using the Π11 power models.

Below, the results of these optimizations using the general Πmn power model described in

Section 2.1 are provided. The generalized results are grouped by the process model that is

used: first the optimizations for the simple probabilistic model then those for the structural

16

92

model. The techniques to derive these more general results are virtually identical to those

assuming Π11 so they are not repeated.

4.1 Simple Probabilistic Model and Πmn

The simple probabilistic process model posits the existence of a function p, where p(x) is

the probability that process complexity is exactly x cycles. The Πmn power model states

that E(x) =
∫ x

0
v(y)m dy and T (x) =

∫ x

0
v(y)−n dy, where E(x) is the total energy consumed

executing cycles 0 . . . x, T (x) is the total time to execute these cycles, and v(y) is the voltage

used to execute cycle y.

The optimization of Section 3.1.1 finds the function, v(x), that achieves the least expected

execution time given a not-to-exceed energy budget E using Π11. The results of that opti-

mization are captured in (1). When the Πmn power model is used instead, the corresponding

results are

v(x) = z(x)
1

m+n

[
E

Φ(m)

] 1
m

Ex(T) =
Φ(m)

m+n
m

E
n
m

Ex(E) =
Φ(2m + n)

Φ(m)
E, (1’)

where

Φ(r) =

∫ c

0

z(x)
r

m+n dx.

Note that Φ(r) is a non-increasing function of r.

The minimization of Section 3.1.2 is similar except that there is a not-to-exceed time

budget, T , and the objective is to minimize expected energy consumption. The results of

the optimization, corresponding to (2), using the Πmn power model are

v(x) =
1

z(x)
1

m+n

[
Φ(n)

T

] 1
n

Ex(E) =
Φ(n)

m+n
n

T
m
n

Ex(T) =
Φ(m + 2n)

Φ(n)
T, (2’)

where Φ is as defined above.

The optimization of Section 3.1.4 seeks to minimize the expected value of the penalty

function Q(E, T). The condition for a stationary solution, corresponding to (3), using the

Πmn power model, is

v(x)m+n =
n

∫ c

0
p(y)Q2(y) dy

m
∫ c

0
p(y)Q1(y) dy

. (3’)

Energy delay metrics of the form Q(E, T) = EαT β, often used to measure architecture

efficiency [23, 29, 47], are anomalous when used as an application metric. When one checks for

17

93

a constant voltage stationary solution using the above formula, v terms cancel and mα = nβ

is the residual. When the equality is true, any constant voltage produces the same expected

value of Q; when the equality is false, either the maximum or minimum possible voltage will

minimize Q.

4.2 Structural Process Model and Πmn

Section 3.2 developed optimizations given a (σ, S, cx, p) structural process model using the

Π11 power model. This section presents the results of those optimizations when an arbitrary

Πmn power model is used instead.

Section 3.2.1 finds the optimal voltage to use for each s ∈ S and the expected execution

time when there is a not-to-exceed energy budget. The results analogous to (5) when the

Πmn power model is used are

v(s) =

[
e

I(s)

] 1
m

Ex(t(s)) =
I(s)

m+n
m

e
n
m

(5’)

where e is the energy remaining when s is executed and

I(s) = cx(s) +
(∑

r∈θ(s)

p(s, r)I(r)
m+n

m

) m
m+n

. (8)

Section 3.2.2 finds the optimal voltage to use for each s ∈ S and the expected energy

utilization when there is a not-to-exceed time budget. The results analogous to (7) when

the Πmn power is used are

v(s) =

[
I(s)

t

] 1
n

Ex(e(s)) =
I(s)

m+n
n

t
m
n

(7’)

where t is the time remaining when s is executed and

I(s) = cx(s) +
(∑

r∈θ(s)

p(s, r)I(r)
m+n

n

) n
m+n

.

Note that forms such as (
∑

αix
r
i)

1/r are known as general weighted (or Hölder) means and

are increasing functions of r [17].

5 Metric Estimates and Deployment

Implementing the optimizations developed above requires metrics about the hardware plat-

form to determine the proper power model to use and metrics about the application to model

18

94

it and compute an optimal voltage schedule. Hardware performance metrics and tradeoffs

are typically documented by chip venders and can be supplemented with simulation and

testing.

Information about applications is more specific and must be developed on a case-by-case

basis. Pouwelse and Langendoen [35] argues that voltage scaling can only be effective when

applications cooperate and Barnett [4] describes how applications form energy-related trade-

offs to measure and enhance system performance. Sources of applications metrics include

developer intuition and domain knowledge, simulation, profiling, and feedback from the ex-

ecuting systems. Section 6 discusses the impact of errors in estimating these metrics. The

remainder of this section briefly discusses methods to collect application-specific information

and embed it in a system.

The most straightforward way to predict the execution time of a task is to gather ex-

ecution times of previous instances of the same task [24]. For example, [46] assumes that

probabilities and complexities not known a priori are determined by profiling. Lorch and

Smith [27] discuss and analysis sophisticated methods to gather probabilities for the simple

process model. The tradeoffs of using recent versus long term statistics are explored along

with how best to model the data collected, i.e., for what sort of distribution—normal, Pareto,

etc.—should the parameters be estimated. It is argued that the goal of data collection and

deployment is primarily to optimize system performance, not necessarily to capture the best

representation of the distribution. The fact that the probabilities may not be stationary and

could change over time as well as the difficulties of estimating meta-distributions are also

noted. Barnett [5] discusses the value and costs of using meta-distributions at compile and

runtime in a general problem-solving context.

Once the application metrics have been gathered and the proper power model selected,

there remains the problem of inserting power management points in the application. De-

signing, developing, and maintaining realtime code or any code that directly interacts with

hardware devices are expensive error-prone activities [7]. Thus, approaches that shield the

majority of the developers from the details of power and time management are needed to

reduce costs and implement more robust power-aware systems. There are many approaches

to technology insertion.

Some methods do optimizations and insertion offline [44] or place the entire burden

for power management, online, in the operating system [15] or the scheduler [27]. Other

19

95

approaches rely on power-aware compilers [25, 32, 39] which certainly seems best when

feasible. Many compilers already use hardware models to count cycles and are aware, through

dataflow analysis, of when future branch decisions are actually determined. This enables use

of information about future process complexity as early as possible. Section 6.2 estimates

the value of using such information promptly and the cost if there is a delay. It should also

be possible to form power-aware versions of programming languages where pragmas can be

used to specify crucial application characteristics such as branch probabilities and sources

of energy and time budgets.

Assuming the power management mechanism is not buried beneath the application, the

developers must still decide how often and where power management points appear in code,

e.g, as calls on a power management API. (See Section 3.2.3.) The simplest approach is

to adjust voltage at the release of each code segment or task [3, 15, 28, 39, 43, 46]. Lorch

and Smith [27] discusses methods to break a task into chunks—each initiated by a separate

power management point—using the simple probability model function, p, to guide the

segmentation. It is noted that breaking tasks into ten segments, each scheduled at a constant

voltage, is sufficient to get within 1.2% of an optimal energy solution where agile voltage

control is assumed. Whatever strategy is used to place power management points in code,

automated or semiautomated tools should be considered to easy the burden on application

developers.

6 Analysis of Results

The formulas derived for optimal voltage scheduling are analyzed in this section. Section 6.1

compares the behavior of optimal schedules with schedules derived by considering average-

case behavior. Section 6.2 analyzes the benefits of using information about future complexity

promptly. Section 6.3 analyzes the impact on optimal performance when model parameters

are misestimated. Finally, Section 6.4 develops theoretical criteria for when voltages change

in an optimal schedule and when they should remain constant.

6.1 Estimates are Conservative

Figure 5(a) and 5(b) show, respectively, a simple probabilistic model represented by P (x) =
∫ x

0
p(y) dy and a structural model for the same process. That process consists of the segments

20

96

P (x) =
∫ x

0
p(y) dy

0 30 80 180 200–cycles–
0

.51

.877 I
.901

1.0
I

(a) Simple probabilistic model

30
s1

-.49 50
s2

100
s3

-.25 20
s4

-.81

(b) Structural model.

s1 s2 s3 s4 max Ex

A(si) 68.734 79.050 116.200 20.000

v(si) 1.455 0.713 0.178 0.144

∆E 43.646 35.644 17.822 2.887 100.000 63.582

∆T 20.620 70.137 561.098 138.543 790.398 137.469

I(si) 106.300 109.000 118.000 20.000

v(si) 0.941 0.659 0.329 0.296

∆E 28.222 32.926 32.926 5.927 100.000 48.977

∆T 31.890 75.929 303.714 67.492 479.025 112.997

(c) Metrics for average case and optimal strategies with E = 100.

Figure 5: Comparison of average case and optimal strategies.

s1, . . . , s4. Each is executed in turn and the process may terminate after any of the segments.

Optimal scheduling is compared, using this process example, with the intuitive idea of using

average-case estimates of the remaining computation to set voltage levels [30, 46]. For

simplicity, the Π11 model is assumed.

The average expected complexity of the process starting at si is A(si) = cx(si) +

p(si, si+1)A(si+1), where A(s4) = cx(s4). If the problem were to reduce expected execu-

tion time within a total energy budget, E, the voltage used at si would be v(si) = ei/A(si),

where ei is the energy remaining just before si is executed and e1 = E. The optimal strategy

is v(si) = ei/I(si), where I(si) = cx(si) + p(si, si+1)
1/2I(si+1) and I(s4) = cx(s4). (This

is just (4) specialized to the example process.) Since A(si) < I(si) except for the trivial

cases where p = 1 or p = 0, the voltage selected by the average-case strategy at si will be

greater given the same ei. However, the energy budget remaining if si+1 is executed will be

less. Thus one may be motivated to describe the optimal strategy as conservative in that

it reserves more energy for future contingent executions. Note that (1) these observations

21

97

follow from (8) so are valid for all power models and (2) A(si) < I(si) remains valid for

more complicated structural models too.

Figure 5(c) shows metrics associated with the execution of each si as well as the ex-

pected total execution time and energy expenditure. The rows labeled ∆E and ∆T report,

respectively, the energy used to execute si and the time it takes. The maximum energy used

by both strategies is E = 100 when all segments execute. However, the expected energy

expenditure is 23.0% less if the optimal strategy is used. When delays are compared, the

optimal strategy reduces the maximum execution time by 39.4% and the expected execution

time by 17.8%.

6.2 Promptness is a Virtue

It was noted in Section 2.2.3 that the structural model often provides more information than

a simple probabilistic model for the same process. The reason stated was that information

about future behavior would be available sooner so that more informed voltage scheduling

decisions could be made. An example is used to illustrate the value of prompt information

deployment.

Consider a process whose initial segment complexity is 2a with a second segment of

complexity ra executed with probability p. The expected time to execute this process,

assuming the Π11 model, is I2/E, where I = 2a +
√

p ra and E is the total energy budget.

What is the effect if the decision to execute the second segment or terminate were known

after a cycles? In this case, a more informed model would posit an initial segment of

complexity a with a branch to one of two final segments: one segment, with complexity

a + ra, would be executed with probability p and the second, with complexity a, would be

executed with probability q = 1 − p. Here, the expected process execution time is J2/E,

where J = a +
√

p(a + ra)2 + qa2. It is easy to show that J < I unless p = 0, p = 1, or

r = 0. The question is what fraction of the expected execution time does early information

availability and use save? The fraction of time saved is simply

I2/E − J2/E

I2/E
= 1−

(
1 +

√
p(1 + r)2 + q

2 +
√

p r

)2

.

Figure 6 shows this fraction for several values of p as a function of r. The maximum potential

savings increase as p becomes smaller, however, the r where the maximum occurs becomes

22

98

5%

10%

15%

20%

25%

30%

0 1 2 3 4 5 6 7r =
p = .9
p = .7

p = .5

p = .3

p = .2

p = .1

p = .04
p = .02

p = .01
Y

Figure 6: Fraction of execution time saved by prompt information use.

larger. The reason is that extra energy is committed to the second a-cycle segment, but in

the rare case where the segment of complexity ra is executed, the penalty is rather large.

Similar findings following when the general Πmn model is used and when time rather than

energy is budgeted. The minimization process is accelerated when new information is used

promptly. While it may be difficult to manually optimize code to use information as soon as

possible, it is the sort of task that could be performed by a power-aware compiler through

dataflow and branch analysis.

6.3 Robustness of Results

Estimates of various probabilities and execution complexity are based on approximate models

and limited testing so might not be exact. (See Section 5.) Further, the Πmn power models

ignore threshold voltage, variable states of caches and pipelines, and environmental influences

all of which effect the energy vs time tradeoff. This section investigates some of these

sources of inaccuracies and their impacts on claims of optimality for the voltage scheduling

techniques developed above. While these techniques will be shown to be robust, one must

always be cautious when applying theory to practical cases that are not exactly modeled.

The Π11 model will be used to simplify the analyses but note that the form of the results

and qualitative assertions carry over to the general case.

23

99

6.3.1 Simple Distribution Estimation Errors

Assume that p(x) is an accurate simple probabilistic model and a fixed energy budget E is

given. Then from (1), we know that Ex(T) = I2/E and Ex(E) = E
∫ c

0
z(x)2/3dx/I. The issue

to be investigated here is the effect on Ex(T) and Ex(E) if some p1 6= p were used, instead of

p, to determine the voltage schedule. That voltage schedule would be v1(x) = Ez1(x)1/2/I1,

where z1(x) = 1 − ∫ x

0
p1(y) dy and I1 =

∫ c

0
z1(x)1/2dx. Therefore, the expected resource

utilizations are

Ex(E1) =

∫ c

0

z(x)v1(x) dx Ex(T1) =

∫ c

0

z(x)/v1(x) dx

=
E

I1

∫ c

0

z(x)z1(x)1/2 =
I1

E

∫ c

0

z(x)

z1(x)1/2
dx

and the measures we seek are

Er(E) =
Ex(E1)− Ex(E)

Ex(E)
Er(T) =

Ex(T1)− Ex(T)

Ex(T)
,

which are the fractions of expected additional energy and time consumed if p1 is used in-

stead of the true density function p. Of course these measures can be large if p and p1 are

substantially different.

If p and p1 are reasonably alike, e.g., if it is assumed that (1) I = I1, (2) |z1(x)1/2 −
z(x)1/2| < δ, and (3) z(x)1/2/z1(x)1/2 < 1+ ε, then bounds on Er(E) and Er(T) are straight-

forward to calculate: namely,

Er(E) <
δ Ex(c)∫ c

0
z(x)3/2dx

Er(T) <
δ(1 + ε)c

I
,

where Ex(c) =
∫ c

0
z(x) dx is the expected process complexity. Both bounds are reasonable

small if ε and δ are small and p does not have an extremely long, low-valued tail. It is inter-

esting to compare this conclusion with the discussion in Section 6.2 of worst case behavior

exhibited in Figure 6.

6.3.2 Structural Model Errors

Executions based on the structural process model are robust in that they optimally recover

from estimation errors. That robustness is serendipity form the API algorithm shown in

Figure 2. Even if earlier execution has been based on misestimated cx and p values, the

optimal continuation is to execute segment s with voltage e/I(s) or I(s)/t, when I(s) is

24

100

correctly estimated, because e, respectively t, is the actual remaining resource. If, however,

e, respectively t, were projected by offline analysis, the prior errors and divergence from

optimality would be exacerbated.

The remainder of this section considers the effect when a set of branch probabilities

are misestimated and the objective is to minimize expected execution time given an energy

budget. The Π11 power model will be assumed for simplicity, but note that similar results

are available for the general Πmn model and the problem where time is the constraint.

Consider the situation just before segment s is executed with remaining energy e. The

total expected remaining execution time, from (5), is Ex(T) = I(s)2/e, where I(s) = cx(s)+ψ

and ψ =
√ ∑

x∈θ(s) p(s, x)I(x)2. Assume that the p(s, x) are misestimated so that I1(s) =

cx(s) + ψ1 is believed instead of the true value. Thus, s will be executed with voltage

v1 = e/I1(s) and consume energy e1 = ecx(s)/I1(s) leaving energy e2 = e − e1 = eψ1/I1(s)

for the remaining execution. Executing s will take time t1 = cx(s)/v1 = cx(s)I1(s)/e.

Since the I(x), where x ∈ θ(s), are assumed correct—only the p values are suspect—the

actual expected remaining execution time is t2 = ψ2/e2 = I1(s)ψ
2/(eψ1). Therefore, the

actual expected total execution time with the false assumption is

Ex(T1) = t1 + t2

=
(cx(s)ψ1 + ψ2)(cx(s) + ψ1)

ψ1e
.

The relative loss from the false assumption is defined to be

Er(T) =
Ex(T1)− Ex(T)

Ex(T)
.

Now define α and β such that ψ = αcx(s) and ψ1 = βcx(s) and substitute in the above to

show that

Er(T) =
(α− β)2

β(1 + α)2
.

The objective is to analyze Er(T) in terms of the estimation error. Define r = α/β and

rewrite the above as

Er(T) =
β(r − 1)2

(1 + rβ)2
.

If |r − 1| < ε, for some ε > 0,

Er(T) <
βε2

(1 + rβ)2
≤ ε2

4r
,

where the second inequality follows because the maximum value of β/(1 + rβ)2 occurs when

β = r−1. Thus, if ε is small so is Er(T).

25

101

6.4 When Can/Should Voltage Change?

A simple an important theoretical result follows immediately from the developments in Sec-

tion 4.1. Voltage should only change in an optimal voltage schedule when executing in a

region where the probability of termination is nonzero. Table 3 summarizes the voltage

Table 3: Summary of agile voltage scheduling results.

min Ex(T) Ex(E) Ex(Q(E, T))

v(x) = z(x)
1

m+n

[
E

Φ(m)

] 1
m 1

z(x)
1

m+n

[
Φ(n)

T

] 1
n

[
n

∫ c

0
p(y)Q2(y) dy

m
∫ c

0
p(y)Q1(y) dy

] 1
m+n

computations for simple probabilistic models where agile voltages—those that can change

anywhere—are considered. Assume that p(x) = 0 when x1 ≤ x ≤ x2. Then z(a) = z(b) for

any x1 ≤ a, b ≤ x2 because z(x) = 1 − ∫ x

0
p(y) dy. Therefore, the result is immediate when

the objective is to minimize Ex(E) or Ex(T). It is also immediate when the objective is

to minimize Ex(Q) because
∫ c

a
p(y)Qidy =

∫ c

b
p(y)Qidy when p, a, and b have the assumed

properties. Another way to summarize this fact is that voltage will remain constant unless

something new is learned; what can be learned during the execution of cycle x is that the

process did or did not terminate at cycle x. Such a discrimination is only possible when

p(x) 6= 0.

Similar observations follow when optimal voltage schedules are derived using a structural

process model. Voltage never changes during the execution of a segment. However, when new

information becomes available about process complexity by choosing a branch, the voltage

level might change. So the general conclusion, using either model, is that voltage can only

change in an optimal schedule when something new is learned about the future complexity

of the process.

26

102

References

[1] Advanced Micro Devices Corporation, http://www.amd.com, March 2004.

[2] AeroVironment Corporation, http://www.aerovironment.com, March 2004.

[3] H. Aydin, R. Melhem, D. Mossé, P. Mej́ıa-Alvarez, Determining optimal processor

speeds for periodic real-time tasks with different power characteristics, Euromicro Con-

ference on Real-Time Systems, pp. 225–232, 2001.

[4] J. Barnett, Application-level power awareness, In R. Graybill and R. Melhem (Eds.),

Power Aware Computing, pp. 227-242, Kluwer, 2002.

[5] J. Barnett, How much is control knowledge worth? A primitive example, Artificial

Intelligence, 22(1), pp. 77–89, 1984.

[6] K. BÃlażewicz, E. Ecker, E. Pesch, G. Schmidt, and J. We.glarz, Scheduling Computer

and Manufacturing Processes, Springer-Verlag, Berlin, Germany, pp. 346–350, 1996.

[7] B. Bohem, E. Horowitz, R. Madachy, D. Reifer, B. Clark, B. Steece, A. Brown, S.

Chulain, C. Abts, Software Cost Estimates with COCOMO II, Prentice Hall, 2000.

[8] R. Buck, Advanced Calculus, McGraw Hill, 1956.

[9] T. Burd and R. Brodersen, Energy efficient CMOS microprocessor design, HICSS Con-

ference, pp. 288–297, 1995.

[10] T. Burd, T. Pering, A. Statakos, and R. Brodersen, A dynamic voltage scaled micro-

processor systems, IEEE Journal of Solid-State Circuits, 35(11), pp. 1571–1580, 2000.

[11] G. Cao, Proactive power-aware cache management for mobile computing, IEEE Trans-

actions on Computers, 51(6), pp. 608–621, 2002.

[12] A. Chandrakasan, V. Gutnik, and T. Xanthopoulos, Data driven signal processing: An

approach for energy efficient computing, ISLPED, 1996.

[13] A. Chandrakasan, S. Sheng, and R. Brodersen, Low-power CMOS digital design, IEEE

Journal of Solid-State Circuits, 27(4), pp. 473–484, 1992.

27

103

[14] D. Gillies and W. Liu, Scheduling tasks with AND/OR precedence constraints, SIAM

Journal of Computing, 24(4), pp. 797–810, 1995.

[15] F. Gruian, Hard real-time scheduling for low-energy using stochastic data and DVS

processors, ISLPED, 2001.

[16] V. Gutnik and A. Chandrakasan, An efficient controller for variable supply voltage low

power processing, Symposium on VLSI Circuits pp. 158–159, 1996.

[17] G. Hardy, J. Littlewood, and G. Pólya, Inequalities, Cambridge University Press, 1988.

[18] M. Igarashi, K. Usami, K. Nogami, F. Minami, Y. Kawasaki, T. Aoki, M. Takano,

C. Mizuno, T. Ishikawa, M. Kanazawa, S. Sonoda, M. Ichida, and N. Hatanaka, A

low-power design method using multiple supply voltages, ISLPED, 1997.

[19] Intel Corporation, http://developer.intel.com/design/intelxscale, March 2004.

[20] Intel, Microsoft, and Toshiba, Advanced Configuration and Power Management Inter-

face (ACPI) Specification, http://www.acpi.info, March 2004.

[21] International Business Machines, http://www.ibm.com, March 2004.

[22] T. Isihara and H. Yasuura, Voltage scheduling problems for dynamically variable voltage

processors, ISLPED, pp. 197–202, 1998.

[23] J. Jalminger and P. Stenström, Improvement of energy-efficiency in off-chip caches by

selective prefetching, Microprocessors and Microsystems 26(3), pp. 107–121, 2002.

[24] P. Kumar and M. Srivastava, Predictive strategies for low-power RTOS scheduling,

IEEE International Conference on Computer Design: VLSI in Computers and Proces-

sors, Austin, TX, 2000.

[25] S. Lee, and T. Sakurai, Run-time voltage hopping for low-power real-time systems, 37th

Design Automation Conference, pp. 806–809, 2000.

[26] D. Li, P. Chou, and N. Bagherzadeh, Topology selection for energy minimization in

embedded networks, Asia South-Pacific Design Automation Conference (ASPDAC),

pp. 693–696, 2003.

28

104

[27] J. Lorch and A. Smith, Improving dynamic voltage scaling algorithms with PACE, ACM

Sigmetrics, 2001.

[28] A. Manzak and C. Chakrabarti, Variable voltage task scheduling algorithms for mini-

mizing energy, ISLPED, pp. 279–282, 2001.

[29] A. Martin, M. Nyström, and P. Pénzes, Et2: A metric for time and energy efficiency

of computation, In R. Graybill and R. Melhem (Eds.), Power Aware Computing, pp.

293–315, Kluwer, 2002.

[30] R. Melhem, N. AbouGhazaleh, and D. Mossé, Power management points in power-aware

real-time systems, In R. Graybill and R. Melhem (Eds.), Power Aware Computing, pp.

127–152, Kluwer, 2002.

[31] S. Mohanty, J. Ou, and V. Prasanna, An estimation and simulation framework for en-

ergy efficient design using platform FPGAs, IEEE Symposium on Field-Programmable

Custom Computing Machines, April 2003.

[32] D. Mossé, H. Aydin, B. Childers, and R. Melham, Compiler-assisted dynamic power-

aware scheduling for realtime applications, Workshop on Compilers and Operating Sys-

tems for Low Power, October 2000.

[33] W. Namgoang, M. Yu, and T. Meg, A high efficiency variable-voltage CMOS dynamic

DC-DC switching regulator, IEEE International Solid-State Circuits Conference, pp.

380–391, 1997.

[34] P. Pillai and K. Shin, Real-time dynamic voltage scheduling for low-power embedded

operating systems, ACM Symposium on Operating Systems Principles, 2001.

[35] J. Pouwelse, K. Langendoen, H. Sips, Energy priority scheduling for variable voltage

processors, ISLPED, pp. 28–33, 2001.

[36] Q. Qiu and M. Pedram, Dynamic power management based on continuous-time markov

decision processes, Design Automation Conference 36, pp. 555–561, 1999.

[37] V. Raghunathan, P. Spanos, and M. Srivastava, Adaptive power-fidelity in energy aware

wireless embedded systems, IEEE Real-Time Systems Symposium, 2000.

29

105

[38] T. Sakurai and A. Newton, Alpha-power law MOS-FET models and its applications to

CMOS inverter delay and other formulas, IEEE Journal of Solid-State Circuits, 25(2),

pp. 584–594, 1990.

[39] D. Shin, J. Kim, and S. Lee, Intra-task voltage scheduling for low-energy hard real-time

applications, IEEE Design and Test of Computers, 18(2), pp. 20–30, March-April 2001.

[40] P. Shriver, M. Gokhale, S. Briles, D. Kang, M. Cai, K. McCabe, S. Crago, and J. Suh,

A power-aware, satellite-based parallel signal processing scheme, In R. Graybill and R.

Melhem (Eds.), Power Aware Computing, pp. 243-259, Kluwer, 2002.

[41] K. Suzuki, S. Mita, T. Fujita, F. Yamane, F. Sano, A. Chiba, Y. Watanabe, K. Matsuda,

T. Maeda, and T. Kuroda, 300MIPS/W RISC core processor with variable voltage

supply-voltage scheme in variable threshold-voltage CMOS, Proceedings of the ICC,

pp. 587–590, 1997.

[42] Transmeta Corporation, http://www.transmeta.com, March 2004.

[43] P. Yang, C. Wong, P. Marchal, F. Catthoor, D. Desmet, D. Verkest, and R. Lauwereins,

Energy-aware runtime scheduling for embedded-multiprocessor SOCs, IEEE Design &

Test of Computers, 18(5), pp. 46–58, 2001.

[44] F. Yao, A. Demers, and S. Shenker, A scheduling model for reduced CPU energy, IEEE

Annual Symposium on Foundations of Computer Science, pp. 374–382, 1995.

[45] W. Ye, J. Heidemann, and D. Estrin, An energy-efficient MAC protocol for wireless

sensor networks, IEEE Computer and Communications Societies (INFOCOM), 2002.

[46] D. Zhu, D. Mossé, and R. Melhem, Power aware scheduling for AND/OR graphs in real-

time systems, IEEE Transactions on Parallel and Distributed Systems, (to appear).

[47] V. Zyuban, P. Kogge, Inherently lower-power high-performance superscalar architec-

tures, IEEE Transactions on Computers, 50(3), pp. 268–285, 2001.

30

106

1

1

AVIONICS FOR THE 21ST CENTURY

Jeff Barnett
jbarnett@nrtc.northrop.com

Northrop Grumman Corporation
Integrated Systems

The information in this briefing was gathered by observing the development of
designs for future concept aircraft, consulting the open literature, and reviewing the
directions supported by major sources of research funding. The briefing is composed
of four parts:
•The first set of slides are about how new technology changes possibilities and
requirements and thus presents new opportunities to do things better.
•The second set of slides discusses technology packages that leverage the new
potential: computing and local communications architecture, more autonomy and
pilot support, improved procurement practices for software subsystems, sensor
packaging, reconfigurable cockpits, and smart skins are examined.
•The third set of slides presents engineering challenges, a list of what must be done
in particular areas to mature technology, developed in research laboratories or
available as COTS, for military applications.
•The fourth set of slides discusses flexible software architectures needed to leverage
new hardware capabilities and power. Process (not processor) centric concepts are
the theme as are end-to-end communications schemes.
While many of the concepts introduced herein are specific to manned aircraft, most
will equally well support unmanned aircraft and other smart weapons systems.

107

2

2

SOME OF THE PIECES

MLS, JTRS, CBIS, Variable Q-of-S, Dynamic/Reactive Communications

Integrated Health Management

Reconfigurable
Cockpit

High Degree
Autonomy

New Media
Fusion-Centric

Sensors

Smart SkinsLight-Weight Form
Fit Packages
Everywhere

Ground Maintenance
•Integrated Tools
•Logical Supply Chain
•Prognostic-Based

CnI, Ground Control Station

Flexible tasking & resource
allocation for multi-national
expeditionary warfare.

Strategies for autonomy,
dynamic coalitions.

S/SEE - Subsystem Procurement

•Protocols, not ICD
•Process-centric design
•Tool support to time-
 critical computing
•V&V, accreditation that fits
•Requirement -> Code tools

Intelligent
Software

High-Performance Low-
Power Computing

Even though this presentation is titled “Avionics for the 21st Century,” it will
address technology that appears in command and control enclaves, ground control
stations, maintenance depots, and software engineering environments as well as
onboard aircraft. The two outer contours show that revolutions in communications
and integrated health management will support all of these domains. The individual
labels identify some of the technology packages and approaches discussed herein. In
that sense, this is a summary of what follows. The presentation and discussion is
about technology, what will be available in the next decade, and how it might be
packaged to advantage. A significant omission is a discussion of mission
enhancement potential. Of course that is the purpose and goal of supporting a new
technology base. However, I believe that the mission benefits will be obvious
because the systems will work better, be more robust, and enable new degrees of
autonomous behaviors. I also believe that the resulting systems will cost less over
their lifecycles. Some of the technology discussed herein will support other domains
too. For example, JTRS (software radio) will support ground-mobile troops as well
as aircraft. The form factor, available power, and total capabilities will vary but the
advantages of flexibility and interoperability will be there. Similarly, low-power,
high-performance computing will serve many areas and enable new capabilities and
missions.

108

3

3

NEW GROUND RULES FOR 2010

■ Technology changes everything (eventually)
■ Dumb avionics is no longer an option
■ Network-centric multinational expeditionary warfare
■ Sea change in standards (n.b. communications)
■ DoD wants COTS
■ Avionics is 30-60% of lifecycle costs

We have an opportunity to reconsider what avionics
is as well as the model of its interaction with the pilot,
command staff, and other battlefield components.

We are all aware of the profound ways that technology advancements have changed
civilian, commercial, and government expectations, practices, and procedures. The
desire of the military for systems that perform smarter, cost less, and are easier to
use is well founded. It is estimated that avionics and software will represent 30-60%
of lifecycle costs and it is clear that these areas need attention. The future will see
the development of network-centric warfare supported by new standards for the
architecture of military systems and the possibility to incorporate COTS products to
control costs, simplify technology refresh, and avoid contractor lock-in.

This talk is about the opportunity represented by all of this new technology and how
we might be able to reap its promises. The goals are to provide better ways to
support pilots, virtual pilots, command staffs, and friendly warfighting assets while
still controlling costs.

109

4

4

WHAT’S NEW FOR 2010 AVIONICS?

■ Communications
◗JTRS (software radio) for all comm, GPS, and IFFN with

reconfigurable antennas
◗Global information grid including profound reachback
◗Thz+ LAN, fiber or copper � Thz+ WAN

■ New media sensors and countermeasures
■ Smart skins — embedded sensors, shapers, nets
■ Human interface technologies
■ Smart software — resilient, flexible organizations
■ Low power, high performance computer cores

Some of the technologies relevant for avionics of new aircraft are listed on this
slide. Software radios and reconfigurable antennas will provide the flexible
communications structures needed for network-centric warfare. New sensor
organizations will also leverage available high-powered computation devices to
provide more flexibility, e.g., hyper-spectral analysis, and better awareness through
filtering and fusion as well as newer media such as lasers. Micro-actuators and
sensors will allow future aircraft skins to be shaped to control air flow, act as
antennas, and cooperate intelligently with health management. Human interface
technology, common in homes, offices, and laboratories, will find its way onto
aircraft to better support pilots and into ground stations to better support control
functions. New and better software technology will support development of new
more resilient, more flexible avionics suites that provide more autonomous
capabilities. Finally, high performance computing at very low energy costs will
dramatically increase computer packing densities. That, in turn, will make it
possible to put the requisite capabilities onboard future aircraft. This is necessary
enabling technology for new modes of manned flight and it is even more important
for autonomous vehicles where computation is the only local substitute for
intelligence.

110

5

5

SMART SYSTEMS

■ The right information at the right time used
correctly for the right purpose

■ Flexible, robust organizations that are resilient to
component failure, battle damage, and errors

■ Systems trusted by owners — natural autonomy
■ Missions understood and executed in context of

the entire battlefield
■ Same infrastructure supports missions other

than war

In short, the new technology possibilities will make future aircraft smarter. New
communications mechanisms and enhanced bandwidth will get the right information
to the right place in time to benefit from it. Systems will be more resilient, more
capable, and do the right thing more often. Shear increases in computation power
will provide new ways to implement redundancy, enhance safety, and perform
missions better. Smarter systems will be trusted by their owners to do the right thing
at the right time. With that trust, pilot workload will decrease. The goal is “natural
autonomy,” functions that are performed by the automation while the human feels in
full control. Thus, the goal here is interleaved problem-solving paradigms that
produce the correct responses without challenging the authority of the pilot or
vehicle control station. When these mechanisms are in place, the information and
tools to fully integrate individual systems into the full context of the battlefield will
be in place too.

111

6

6

SOME NAMES & NUMBERS TODAY

■ Computer core: 3.5 watts per Ghz, Power PC
■ Memory: 3GB L3 cache for servers
■ Memory: PC100 non-volatile; cold to FTB 10 µ-sec
■ Displays: paste-on active coatings
■ Displays: 2-D & 3-D without goggles
■ LAN: Ghz copper home network
■ LAN: no loss, preemptable channels (IEEE)
■ WAN: Thz military & commercial backbones
■ Device: pinhead-sized MEM technology — sensors

& actuators — in the substrate or skin

The data on this slide is a sample of the technology capabilities available in the
COTS world today. The numbers and claims speak for themselves. It is interesting
to note that most of this information is available from sources such as PC Magazine.
It also must be noted that a technology is not necessarily ready for aircraft
deployment just because it is COTS. Much work remains to be done before it can be
incorporated on a military aircraft. The point is simply that the suggestions in the
rest of this briefing are not pending scientific breakthroughs though significant
engineering surely remains to be done.

112

7

7

AN EMBARRASSMENT OF RICHES

■ The technology pipeline is full — so full that
choices must be made

■ Avionics must still be safe, survivable, reliable,
and predictable
We have a logical design that attempts to make those choices
while being conservative. It is currently being annotated with
metrics. What we have done (are doing) will change as the
future comes into sharper focus. (Status)

Systems integrators, such as NGC, must understand these
choices in order to provide effective leadership. (Mantra)

The technology is there to do things different and do things better. Even with the
normal 10-15 year lag of military technology behind the commercial world, a
revolution in avionics is overdo. In the following slides, coherent ways that the
various technologies could be packaged to support that revolution are described.
There are many approaches that might be viable but it is important to have a
strawman to act as a baseline and that is what is provided herein.

System integrators such as Northrop Grumman must understand these new
possibilities in order to provide effective leadership for new system development
programs. As we will see later, the new technologies even imply differences in the
way that subsystems are procured. In particular, the design and contracting of
Operational Flight Programs (OFP) will likely need to change in order to realize the
potential of more flexible avionics with less costly technology refresh episodes.

113

8

8

NEW CONCEPTS PACKAGING

The next group of slides attempt to picture what
future avionics will look like. The intent is to group
technology in a way that helps imagine the eventual
products, the way they will be deployed, and how
they are viewed by their users.

The next set of slides portray technology packaged into useful-sized capability
chunks. Though specific new technologies can be fitted or retrofitted, one at a time,
we will have a better idea of what the future might look like if we consider
integrated improvements that can have large impacts on system capabilities. The
particular packages examined are: organization of onboard computation and
communications facilities, provision of autonomy, OFP architecture and
procurement practices, sensor packaging, reconfigurable cockpits, and smart skins.
Not all of these concepts will be matured by 2010, e.g., smart skins need more
science before they become common. However, the other capabilities only await
bold requirements and the desire to see them in the air. Base technologies are
already part and parcel of the everyday world outside of the military.

114

9

9

COMPUTATIONAL VOCABULARY

■ Program — The software as written; a lexical entity
■ Process — An instance of an executing program
■ Processor — An entity that hosts process

executions
■ Protocol — Rules that organize inter-process

interactions & use of communication infrastructure
■ OFP — A collection of programs, processes, and

processors separately contracted; ICD is interface

This slide introduces and briefly defines a few terms that describe computation
elements. These terms are used throughout the remainder of this briefing. In
common parlance, some of them are used interchangeably and that leads to
confusion. Different terms are used to describe a program as written and as an
executing entity. A process is the name of the latter concept. The term, OFP -
Operational Flight Program - is more a contractual term than it is a technical term.
Its closest technical equivalent is “software subsystem”. However, traditional
avionics usually makes the OFP the fundamental architectural unit and this cause
problems, particularly with technology refresh.

115

10

10

LOGICAL HARDWARE LAYERING

Multi-layered software and hardware
is resilient to errors and provides the
capacity necessary for smart avionics.

Shoe Box Shoe Box

Shoe Box Shoe Box

Computation Suite

LAN

Sensors, Effectors, Displays, Misc.

MUX

MUXMUX

MUX

MUXMUX

MUX Network

COMM & OS Kernel

ProcessProcess ••••••
IPC

A Computer

S-Kernel, Video, & COMM

PROCESSORPROCESSOR ••••••
S-LAN

A “ShoeBox”

Device Connects

CPU Core

MUX Node

A/D D/A

The hardware layering strategy is portrayed. A set of multiplexors or MUX boxes
are located throughout the aircraft and all sensors, effectors, displays, and
miscellaneous devices are connected to at least one of them. Each MUX is
connected to several others to form a robust data transport mechanism with the main
computation suite which consists of several “shoeboxes” interconnected by high-
speed fiber. The suite is cooled but the MUX network will operate in uncontrolled
areas. Each shoebox contains 5-20 high-speed processors and significant amounts of
memory. (Think of a commercial server with multiple CPU chips on a
motherboard.) Shoeboxes provide high-speed buses for local communications and
software to control the ensemble. Each processor hosts multiple processes. To effect
error recovery or balance loads, processes can be restarted on the same computer,
moved to another computer in the same box, or even relocated to another box. The
set of networks - MUX network, suite LAN, and shoebox LAN - will be capable of
dynamic routing which will also add to the robustness of the total solution. In our
current design, we expect to have available several times more computation and
communication bandwidth than are strictly needed. Those extra resources are traded
for reliability and flexibility in system organization. Since hardware capability (via
Moore’s law) is growing exponentially while avionics requirements are not, our
approach should scale into the future, particularly if OTS components can be used.

116

11

11

CONCEPTUAL WIRING DIAGRAM

Cooled
Cockpit
Area

Sensor

Multiplexor

Shoebox

Actuator Computation Suite

MUX Network

Devices

This slide is a simple plan form cartoon. It shows the shoebox components located
in the cockpit area where environment control such as cooling is readily available.
The MUX network is scattered throughout the aircraft and has a presence in the
cockpit area too. The layouts of the shoebox components will need to respect
robustness-against-physical-damage restrictions and the MUX components locations
will be determined by available space and a desire to put them close to what they
connect.

117

12

12

SECURE FLEXIBLE COMMUNICATION

■ Protocol view within avionics and
JTRS can be different

■ Battlefield-determined needs
rather than preplanned point-to-
point streams

■ MLS (multilevel secure) avionics
augments MLS infrastructure

JTRS (Joint Tactical Radio
System) aka software radio
revolutionizes battlefield
communications.

Network-centric multi-
national expeditionary
warfighting depends on
MLS communications
and dynamic need-based
responsiveness. MLS
avionics and CBIS on the
ground tied together by
JTRS is the solution of
the future.

Legacy New
JTRS

CBIS

Network-centric expeditionary warfare as envisioned for the future isn’t possible
without a revolution in the way we communicate. The impediments are of two sorts:
technical mechanisms and security issues. This and the next slide discuss these
issues. The software radio initiative (JTRS) provides enabling technology for more
flexible use of available bandwidth including dynamic allocation and routing. New
solutions will be available for legacy as well as those systems built with JTRS in
mind. The CBIS (Content-Based Information Security) project at Mitre et al will
provide flexible secure infrastructure for console-based systems in command
centers and other places. It is also possible with current technology to create
multilevel secure avionics suites to complete the picture and we are working hard to
make this a reality. Current approaches plan message traffic, allocate
communications resources, and establish mission timelines preflight. In the future it
will be necessary to support dynamically formed coalitions with the necessary
resources at battle time. Since sensor systems as well as shooters will operate
opportunistically, there will need to be mechanisms that can determine who needs
what data when it is available; the idea of preplanned message traffic would defeat
the whole concept. However, none of this will be a reality unless there are flexible
dynamic mechanisms in place to provide the requisite security guarantees and
flexible communications that provide best use of the available bandwidth.

118

13

13

AN INTERNET ARCHITECTURE

■ An internet is an aggregation of many networks
■ Logically, that describes our avionics architecture

◗ Each shoebox is a network
◗ Each MUX and the devices it connects is a network
◗ And the offboard assets are other networks

Shoebox MUX Offboard

Shoebox MUX Offboard

An internet is an aggregation of other networks. That is a fair description of our
avionics architecture. Each shoebox is a network comprised of its processors and the
processes that they host. Each MUX and the devices that it connects is also a logical
network. The fact that some components are on more than one net does not break
the metaphor - such components are said to be “multi-homed.” The offboard assets,
including other warfighting systems and reachback sites, are also organized as
networks that are connected to ownship. This conceptual structure offers many
advantages to future avionics designers, implementers, and users: It provides a
uniform access paradigm to all resources whatever their physical location, enables
the use of OTS technology, and exactly fits the model of the Global Information
Grid of Joint Vision 2010 and 2020. To fully enjoy the potential of an internet
architecture, many security issues must be addressed. These issues are discussed
later in the briefing. It also should be noted that the network interconnections are not
and need not be uniform. The shoebox net will probably be a bus structure on a
motherboard and the computation suite LAN will be fiber. The MUX net and MUX
connections to devices will likely use various sorts of copper cabling at various
bandwidths. Connections to offboard assets will use SATCOM, Link 16, etc., either
directly or to tunnel connections between onboard and offboard sites. Any future
design in this area must factor the huge impact that can be expected from the
emergence of software radios (JTRS).

119

14

14

NATURAL AUTONOMY

Fly-By-Wire
Controls Fly-By-Wire is an example of a natural

autonomy technology. The software
makes most of the decisions but the user
is not aware of the intrusion. The right
things just seem to happen. Autonomy
in the future will come in packages.

■ The future will see more examples of natural
autonomy to support the pilot

■ Mission planning, targeting, avoidance tactics, fuel
management, stealth management, communication
with other warfighting entities are candidates

Smart weapons systems are desired and needed. However, it is believed by many
informed individuals that the most exacting missions (not necessarily the most
dangerous) need the judgement of a pilot and, thus, autonomous vehicles are not
always appropriate. The question is how to use advanced technology to support the
pilot. One of the best examples, fly-by-wire, has been around for a long time. The
pilot flies the airplane, decides where it will go, and what it will do. However,
automatic mechanisms make decisions about the same things. In fact the automation
makes hundreds or thousands of decisions for every one made by the pilot. It is
interesting to note that many younger military pilots have never flown a hard-
controlled aircraft and are not particularly aware that things might be done
differently. The solution not only works, its necessary to achieve the full joint
capability of man and machine through symbiosis. We call this approach “natural
autonomy.” It is clear that natural fusion of capabilities are needed in many other
areas. Modern warfare is predicated on communications infrastructure and
complicated plans being executed by separate assets. There is too much to know and
far too much information to incorporate for an unaided pilot to make use of his
system to best advantage. Natural autonomy is the way to properly support the pilot
with automation.

120

15

15

NATURAL AUTONOMY PACKAGE:
UCAR

1 Shooter selects and aims at target
UCAR team gathers & transmits imagery

2 Shooter selects munition
UCAR team readies stores

3 Shooter shoots
UCAR team launches munition and guides to target

1

2

3

Shooter - Apache backseater or ground
soldier - uses a known interface. Less
training, nearly appropriate weapons
release doctrine in place, simplifies all
operational aspects.

All-electronic rifle packaging
achieves natural interface

Natural autonomy is
technology package
where user need not
be constantly aware
of autonomous
aspects of system.

This slide portrays an extreme example of the natural autonomy concept. A single
soldier uses an all-electronic rifle to control the activities of several UCARs
(Unmanned Combat Armed Rotorcraft). The image in the rifle scope is formed in
realtime from sensors onboard UCARs. As the scope moves, so must the UCARs to
maintain the correct imagery. When a munition is selected by a button on the rifle
(step 2), UCARs with that weapon must move to firing position and ready that
weapon for lunch. In step 3 the trigger is pulled and the UCARs release the weapon.
In steps 2 and 3, sensor UCARs must initiate target tracking and in step 3 guidance
must be provided. At the end of step 3, the sensor UCARs must provide battle-
damage assessment images to the soldier through the rifle scope. There are many
under-the-cover autonomous actions that the UCAR fleet must perform: allocating
vehicles to the various tasks for one or more rifle holders, checking doctrine as well
as a clear-line-to-target before firing, coordinating flight, performing vehicle health
management diagnostics, and much more. The point is that packaging such as
suggested by this example greatly simplifies the soldiers job; he concentrates on war
fighting while the technology looks after itself. It should be noted that technology
refresh is also simplified. In most cases, the users are not involved and when they
are it is to learn about a new capability. I make no claim whether or not this
technology will be available in the next decade or so. I present it as an example of
where technology, properly integrated with its human users, can go.

121

16

16

FUTURE OFP CONCEPTS

Requirements

Other Software
Organizations

Interface
Tools

Infrastructure
Description

Software
Organization

Coll
ab

ora
tiv

e

Prot
oco

l D
esi

gn

V&V Evidence

Documentation

Protocol
Specifications

Process
Structure

OFP Code

ICD replaced by collaborative
protocol development.

Timing
REQs
satisfied
by best
design.

Process & processor
allocation are
technical, not
contractual issues.

Today’s avionics systems are comprised of separate subsystems called OFPs.
Requirements are allocated and interfaces designed very early in the lifecycle.
Usually legally separable organizations - different companies or divisions in the
same company - are contracted to build an OFP to spec. In many instances OFPs are
allocated distinct processors. This arrangement is a root causes of extreme
development costs and resilience of avionics against technology refresh. Note
however that this is a logical outcome of not enough computer resources and
inadequate buses such as the 1553A. We can do better in the future.

The modern approach is a process-, not processor-centric architecture with the use
of end-to-end protocols to glue the system together. The interface will be the
product of best technical design rather than an early response to lack of adequate
resources. The organizations involved will co-design their system interfaces and
design decisions and dependencies will be exposed and confined to those who
actual have a stake. In the current mode, it is almost impossible to predict how a
change in one part of a system will effect others. In the model proposed here, the
shared part of a design is a process architecture and protocol specification. This also
permits the runtime system to decide where to best execute processes, how to
provide adequate communications, and how to implement general reliability and
error recovery methods including the deployment of redundancy.

122

17

17

SENSOR PACKAGING

■ More types: IR, radar, laser, EM, visual, hyper-
spectral, acoustics

■ More onboard processing & fusion: share with
networked assets for coherent ownship situation

■ Software sensors by analogy to software radio:
◗Current - sharable multiplexed radars, hyperspectral IR
◗Less in the black boxes: more use of common processors
◗ Interest queuing & fusion at deeper representation levels

AuthorityAuthorityAuthorityAuthority
RelinquishedRelinquishedRelinquishedRelinquished

FusionFusionFusionFusion
CentralCentralCentralCentral

One of the best ways to spend the large increment in computation power is by doing
better sensor processing. Network-centric approaches will provide many more
information sources to be fused with data generated on board. Extra power can be
used to fuse sensor data at a lower level, e.g., data now turned in to tracks within a
sensor can be directly fused with data from other sources. It will also be possible to
use richer map data and fuse sensor information provided by other dynamic
information-gathering assets. Further, by analogy to software radios, we can
construct software sensors. (The computers in sensors will be more powerful too.)
The software dynamically loaded in a sensor morphs it to the best configuration for
the current situation. Maintenance and technology refresh is simplified if more of
the filtering and fusion activities can be moved to the central computer suite (the
shoeboxes) where adequate computer power in addition to more information is
available. The inherent risk is a potential lack of incentive and cooperation from the
niche contractors who make sensors. The reward is a revolution in the information
product produced for situation awareness, sensor cueing, and response formation.

123

18

18

RECONFIGURABLE COCKPIT

Instruments
Situation AwarenessPilot Station

Wrap Around Display
2 & 3-D Images

Pilot re-keys aircraft with an Id-Card. Provides security
codes, cockpit layout preferences, tailored responses to
situation awareness, even limited adaptation of flight
controls where safe. Tailoring done in simulation and
training as well as during flight.

2/3-D displays configured
cooperatively by pilot and
software.

Personnel
ID Card

Another place to invest enhanced resources is in a reconfigurable cockpit. LED
coatings allow arbitrary surfaces to be displays, so large contiguous areas are
possible. The display will show instruments and gauges in addition to situation
awareness and other common formats. Pilots can arrange the displays to their tastes
and request specific configurations in response to specific events. It is even possible
to tune the “feel of flight” to individual pilot preferences via the use of customized
control laws. In our model, pilots carry electronically-readable personnel ID cards
that contain their accumulated preferences. A single aircraft can present itself
differently to different crews and different planes will behave the same for the same
crew. Advances in display technology will permit limited 3D images without
goggles. Gaze tracking apparatus are probably going to be part of future human
interfaces and will provide unprecedented amounts of digestible information to the
pilot. The technology to implement this vision of a reconfigurable cockpit is at
hand. The next step is the human factors engineering necessary to make it a reality.

On a technical note, we expect graphics cards to be located with the displays, not
the shoeboxes. The protocol will exploit an interface such as Open GL or DirectX.
This scheme will drastically cut down the amount of communications that must be
provided by the MUX net and simplify technology refresh of the shoeboxes and the
displays by co-locating technologies that are likely to be changed together.

124

19

19

SMART SKINS IN THE FUTURE

■ Tune EM & acoustic resonance
■ Temperature, stress, & EM sensors
■ Composite fiber network
■ Skin is antenna
■ Control air flow
■ Genetically engineered materials

Most possibilities not realistic
for 2010 but embedded sensors
might be. Improved health
management via prognostics
and envelop control.

Outer Shell

Inner Shell
Sensor, effector, strut

Today probably limited to pasties
on inner skin. Could still be a help.

Advances in material sciences, micro-miniature device technologies, and fabrication
methods portend a dramatic change in the functionality of aircraft skins. Some of
the possibilities include shaping to influence aerodynamic properties, built-in
antennas and sensors, control of EM and acoustic signatures, embedded robust ship-
wide communications media, and enhanced stress and temperature sensors for
prognostics and diagnostics. While these prospects are exciting, most will not be
ready for prime time in the next five to ten years. However, designers of new
aircraft should revisit these opportunities frequently. These emerging technologies
will provide new ways to increase performance and lethality while reducing form
factor, weight, and costs. They should also easy the nightmarish problem of spotting
so many pieces of odd-shaped equipment throughout the aircraft.

125

20

20

ENGINEERING CHALLENGES

The following slides discuss technology areas
where engineering must be done in the near
future to leverage scientific breakthroughs and
even COTS products. The mere fact that a
capability exists does not mean we can put it
onboard a military air vehicle.

The previous slides have tried to present a picture of what future avionics might
look like. The following slides identify work that is necessary to make that potential
future a reality. In most cases the future portrayed only relies on COTS products,
specialty products already available from specific sources, and published research
results. In other words, the science contribution is in place. The engineering
contribution, in many cases, is still pending. The necessary engineering is that which
prepares technology for incorporation in military systems. The following slides
summarize what must be done and provide baseline metrics and identify a few
qualitative criteria that may be idiosyncratic to aircraft deployment.

126

21

21

SHOEBOX MODULES

CPUS 5-20 Cores
Compute Power 50-200 Giga Instructions/Sec Total
RAM 10-300 Gbytes
ROM 500 Mbyte Non Volitile
Power Draw 100-200 Watts
Temperature 45-110 F
SLAN Multiway THz +
Connections 3 Fiber LAN, 3 MuxNet
Modes Tolerate/Isolate Core/LAN Failures

Robustness Core+SLAN Net is 2-Edge Connected &
2-Node Connected

SHOE BOX SPECS

Find compromise MIL-STD that commercial suppliers
can embrace. Need to increase volume in order to make it
worthwhile for chip makers to keep DoD near leading
edge of Moore’s Law curve. Power PC & X86 chipsets.

The shoeboxes are the center of the avionics’ computing capability. Each will
resemble a multi-CPU server with the difference that it must be robust against
physical damage. In particular, individual CPUs should be able to fail without
compromising other components. The only direct connections to a shoebox are three
high-speed fiber shoebox-to-shoebox connectors and three MUX net connectors.
The net connections must be “multi ported” to the CPUs so that a single CPU failure
does not delete a network connection. The shoebox must also have enough
nonvolatile memory to boot the complete system and store data for system restarts
and offline analysis. The total computing capability of each box should be in the 50
to 200 GHz range provided by 5 to 20 CPU cores and the total power dissipation
should be no more than a few watts per GHz. It is reasonable to expect shoeboxes to
run in controlled environments so extreme temperatures are not an issue.

127

22

22

MUX NETWORK

CPU 2 Cores
Speed 1-2 GHz Total
RAM .25-1 Gbyte Toal
ROM 50 Mbyte Non Volitile
Communications 4 MuxNet, 20-40 Data, 2 Video
Modes Tolerate/Isolate Core Failures
Temperature ?-250 F
Power Draw 50-100 Watts
Issue 1 Determine 2/3 Wire Data Standard
Issue 2 Data Network in High Heat

MuxBox Specs

The MUX boxes and their connecting network will need to operate in sections of
the aircraft where the environment is basically uncontrolled. Therefore, they must
be robust to extreme temperatures and the like. Most of the connections to a MUX
should be 2 or 3 wires with the latter able to supply moderate power to small
devices such as temperature sensors. Each box should be able to connect 20-30
devices and the MUX should provide switchable A/D and D/A services to its
clients. The MUX network must be compatible with the one used by the shoeboxes
so that (1) the MUX network can provide alternative routing and (2) end-to-end
protocols can be used. These features will provide system robustness in the face of
MUX, MUX net, shoebox, and LAN failures. They will also greatly simplify
implementation of avionics application code.

128

23

23

MULTILEVEL SECURE SYSTEMS

■ In-theater COMM as well as profound
reachback capabilities demands MLS

■ MLS must be designed in - it is not an
after-market add on

■ Ramifications for software, hardware,
systems, system-of-systems, and the
operating policies and procedures

■ Lack of MLS is number one threat to
the success of network-centric warfare

A challenge, not just a pretty picture Something must and will be done by
somebody to plug this vulnerability.
The only questions are who and when.

The emperor isn’t wearing any clothes. We are constructing weapons systems for
the network-centric world of the future yet few if any systems are certified for
multilevel secure operations. How then are the various communications channels,
rated anywhere from unclassified to top secret with tickets, going to connect to the
same vehicle? The current solution is to operate system high and pass all
information that must be downgraded through the pilot. In the network-centric
future, this will subject pilots to unbearable workloads and automation will be
precluded from assisting them. Multilevel security is a reasonably well-understood
technology and it is possible to address these problems. The technology must be
matured and fielded in a form that is usable for the many weapons systems that need
it. Typical solutions use encapsulation and encryption in addition to policies and
procedures that restrict the activities of automation and humans. The availability of
copious computation will help address the technical issues: the use of a large
number of CPUs will allow encapsulation by careful selection and control of
execution sites and the large amount of computation power will permit small on-
chip separate CPU cores to host encryption software. Many problems remain but it
is time that the multilevel security problem be addressed.

129

24

24

HUMAN INTERFACE SPECS

Coatings Tolerant to G Forces, Field
Refresh/Replace

Brightness Ratio 400-500 : 1
Isolation Isolated Panel Failures

Electronics 2 Video Cards Per Panel,
Feed from Mux Net

Power 45 Watts/Panel
Appearance Seamless
Interface Open GL (?)
Geometry Curved
View 2- & 3-D No Goggles
Goggles Track Eye Focus
Safety Shatter Proof

DISPLAY TECHNOLOGY

The technology components to build reconfigurable cockpits already exist in the
commercial world but that technology must transition to the military world to satisfy
our needs. Some particular problems with display panels include ability to withstand
G forces, shatter proofing, and fault and failure isolation. We have assumed that the
equivalent of video cards are co-located with the displays, not the computers. This
assumption reduces bandwidth between the displays and the computation suite and
simplifies technology refresh. Some decisions must also be made as to how 3D
imagery will be provided. One possibility is to use panel construction techniques
which do not require special goggles. However, the full use of this strategy needs
eye focus tracking in order to provide look-around-the-corner capability. In
addition, a significant amount of human factors analysis is needed to decide how to
best use the new possibilities that are now available.

130

25

25

SMART SKINS

Embedded Sensors Stress, Temperature, EM
Interface Mux Net Data Lines
Communications Vehicle Net (?)
Countermeasures DIRCM Pop Outs, etc.
Antennas Embedded
Effectors Embedded MEMs Shapers

SKIN TECHNOLOGIES

A Wish List, Not Requirements

Smart skins technologies are probably not mature enough today to assure their
existence or make specific plans for their use in the near-term future. Scientific
breakthroughs, as noted previously, are still needed. The list on this slide represents
some of the capabilities and problems that must be addressed for the first
capabilities that will be matured in this area. Futuristic capabilities such as airflow
shaping are mentioned also. One problem that needs immediate attention is the
tradeoff between countermeasures and stealth. Countermeasures such as a DIRCM
or a chaff dispenser need to “pop out” into the air stream in order to be deployed.
Provisions for pop outs reduce stealth. Some research and new ideas are needed in
this area.

131

26

26

SOFTWARE ENGINEERING

Interprocess & Data Dependencies
Explicit Timing Assumptions
Tolerable Slop Rates

Protocols Specification Language (Ap-to-Ap)
Code Sources Mat Lab Models -> Flyable Code
Timing Delta t from Time Stamp, Not a Constant
Documentation Source Auto Generation from Code & Spec
Standards Compatible V&V, Accreditation, Certification
Control Compatible Configuration Control
Process Compatible Process Tailoring

SOFTWARE TECHNOLOGIES

Program Language Extensions

More concepts and details in following section

Software is the biggest cost factor in avionics and avionics is projected as the largest
single cost element in the aircraft lifecycle. Better ways are needed to design,
implement, document, maintain, and upgrade avionics software. The suggestions
made herein include process-centric architectures, end-to-end protocols, more
flexible time management, and better coding tools. In today’s production model,
avionics programs are implemented three times: in the design, in the detailed
specifications, and in the code. The engineers in the first two phases actual go
through a type of coding exercise to debug their specs and then document the
results. The process is reminisent of an old math joke: the mathematician guesses a
theorem with a stroke of insight. By the time its published, the form is bottom-up
deductive reasoning with no trace left of the insight. The documentation passed
from requirements to the detail specifiers and from them to the programmers
recapitulates this loss of insight. The use of tools that go from mathematical
specifications to code is one way to remove the middleman and capture more design
intent. Further, the use of programming languages where forms capture intent as
well as procedural specifications would help a lot. In addition, there are ways to
simultaneously generate documentation and code. All of these ideas have been
around for a long time and a few military programs are starting to use them.
However, it behooves us to promote better tools and methods. In addition, we must
rethink our processes, procedures, and configuration control methods so that they
are appropriate to the new way of doing things.

132

27

27

FLEXIBILITY STARTS WITH DESIGN

Application Program Interface Must Exist In Both Worlds

Software Engineering Environment
! Multiple configuration specifications
! Goal-based specifications
! Special compilers – code, chips
! Analytic/functional simulators
! Accreditation support

Dynamic Resource Management
! Process/processor allocation
! Message routing
! Power Management
! Mission mode selection
! Coalition participation

Decision support
is developed here

Decision making
happens here

The power and flexibility planned for future avionics will need new methods to
support design and development. Dynamic process/processor allocations, power
management, and message routing in addition to flexible mission management,
coalition participation, and more autonomous software will stress the de facto
methods used today. It is too complicated to have each subsystem factor these
considerations as well as the demands of realtime computations. The software
engineering environment of the future will need to incorporate new tools and
languages to support sensible implementation, benchmarking, and accreditation
strategies. Another problem is how to communicate the knowledge gained in the
SEE to the runtime system where it is used. The application program interface
shown in the figure is a representation of a mechanism to do that. The design,
coding, and analysis tools in the SEE must automatically provide information that is
either compiled into or delivered to the runtime system where it is used to improve
the performance of the system and ensure that proper behavior results. There are
several current research and development efforts that support this model, e.g., the
Morphware Forum within the DARPA IPTO PCA program. It is difficult enough to
incorporate a single new paradigm, e.g., natural autonomy or power management,
into a realtime system. Since the proposal is many new paradigms, careful thought is
necessary since the problem is orders of magnitude more difficult. Both software
and hardware engineers have made great strides in the last decade to develop tools
that support the rapid development of complex systems. For our vision of the future
to succeed, that progress must continue.

133

28

28

HEALTH MANAGEMENT

Health management - gathering data, diagnostics, and
prognostics - involves all subsystems of the aircraft and
has a parallel ground component. The objectives are to
fly better, fly safer, and reduce costs. Massive amounts
of software are necessary in addition to special devices.

Offboard
Sensors

Offboard
Database

Offboard
Analysis

Offboard
ReactionPlanSystem

State

Onboard
Sensors

Onboard
Cache

Onboard
Analysis

Onboard
ReactionPlanSystem

State

Models Modes
Allocation

Repair
Supply
Refresh

The goal of health management is to prevent failures as well as recover from
failures during flight. The objectives are to fly better, fly safer, and reduce lifecycle
costs. Virtually every subsystem and every component can fail or be compromised
by physical assault. Onboard diagnostic systems must detect the failures and provide
alternative resources that preserve flight. Prognostic systems must analyze usage
data and predict potential failures so that they can be prevented. Onboard
prognostics can change mission plans. This slide shows a normative health
management system. That system consists of sensors to detect failures and capture
usage data, components to accumulate data and determine state, and components
that select alternative solutions or implement repair strategies. The ground system
parallels the onboard system. Both are comprised of massive amounts of software:
data management facilities, model-based reasoners, and capabilities to interact with
the flight and ground crews. Much of the software is hidden within OFPs so the true
size of the resources devoted to health management is not always appreciated.
Future avionics implementations must improve performance and control costs
through better technology. The architecture promoted herein will benefit that cause
because it enables the rational development of a distributed health management
paradigm where more information can be shared, better decisions can be made, and
the impact of technology refresh activities can be better analyzed. More research is
needed in the development of sensor devices to support health management and to
build better models of the effects of usage on health.

134

29

29

GIFT WRAPPING

Goal: reduce total weight by
500-1000 lbs & form factor
by 2 using new materials.

Lightweight Composite Rack

Lightweight composite rack with three shelves to mount
three HF/VHF/UHF SATCOM type transceivers

Bottom of unit will be used for AC to DC Power Supply.
shelf area will be used for either a wired or wireles
system

Three middle shelves will be used for the transceiver eq
with space available for a SATOM/Line-of-Site RF Amplifi

Space for portable computer for system control

Self contained system will allow cabling to be wrapp
contained within the rack close out panels.

Lightweight composite rack without equipment is less t
pounds

System can be operated from AC or DC power sources
worldwide applications, vehicle installations, aircraft installations or use

Racks can be configured for different form factors to fit particular installa
Please contact McDowell Research for specific requirements

■ Composites and many other light
weight, strong materials available

■ Current racks, packaging, extremely
heavy and bulky.

A commercial
example today

only 25 lbs.

The inside of an aircraft is a rather exotic volume with a strange shape. It’s what’s
left over after aerodynamics, propulsion, and structures have had their say. Spotting
avionics gear has a tradition of placing square pegs (rectangular boxes) in round
holes. It is possible to invent manufacturing techniques that can produce lightweight
packaging that will actually fit the available spaces. With the vast reduction in the
size of electronics components, future mil spec boxes are going to be rather empty.
If an assault on form factor is mounted, I believe that the volume consumed by
avionics could be reduced by a factor of two. Whether that path is pursued or not, it
should be possible to achieve significant weight reductions by simply constructing
racks and boxes out of lighter materials. The inset picture in the slide shows a
composite rack that weighs less than 25 lbs. and holds three SATCOM receivers.
With some attention to manufacturing methodology, particularly automated ways to
go from CAD databases directly to product build instructions, there should be a
cost-effective path to significant savings in form factor and weight.

135

30

30

ACTION ITEMS

■ Understand the opportunity
■ New integration strategies
■ Coherent picture of future
■ Plans for that future

■ Evaluate scientific progress
■ Assess engineering needed
■ Establish engineering agenda
■ Move industry into the future

Contractor Items Government Items

There is an opportunity and lots to do. The aerospace industry
must position itself to profit from the future. DARPA should be
encouraged to invest in this vision and we should do everything
possible to leverage the available technology to build better,
more cost-effective weapons systems.

The previous slides describe several engineering challenges that will enable better,
more cost-effective avionics systems in future aircraft. Some of the necessary
engineering will happen through momentum. But not all of it. We suggested that
experts in various domains extend the list started here and do a more thorough job
of filling in the requirements. Further, it needs to be shown, in detail, that these
requirements support our future avionics vision. The next step is to inform DARPA
and the joint services of the need to transition research that they have sponsored into
future weapons systems. The basic science is in place and it is time to figure out
how to best exploit the results.

136

31

31

SOFTWARE ISSUES

The next group of slides discuss various software
issues. Software is the Achilles heel of avionics - In
the long run it costs more than the hardware, it is the
chief source of vulnerabilities and errors, and it is
the most complex component of a modern aircraft.

The next set of slides amplify some of the major issues that impact the design,
development, maintenance, and upgrade of software. The topics are timing issues,
local (onboard) communications, determining and tracking system-wide data
dependencies, qualitative guarantees of safety and liveness (the latter are technical
terms that describe features of process executions), and vehicle-wide health
management. The major stress on the timing and scheduling of avionics code is the
flight control loop. The specific requirements that result from this source are
discussed.

137

32

32

RIGID TIME-HANDLING DISASTER

■ Complexity of avionics is driven by size, lack of
resources, and timing issues.

■ Insufficient resources cause the most problems.
■ Resulting time-management strategy includes:

◗Time constants that are compiled into the code
◗Redundancy voting schemes must compare data from the

same epoch
◗Careful hand coding of complicated mathematics
◗Complete offline scheduling of computation/communications
◗ ICD that compresses low-level timing and storage issues with

high-level dataflow and data type specifications.
Better Methods are Sorely Needed

Exacting timing requirements coupled with lack of adequate computing and
communications resources has lead to a style of system development where code is
difficult to write and validate. The style typically used makes it hard to determine
which implementation decisions are requirements driven and which ones are not. It
is also difficult to determine dependencies within the system. Therefore, when it
comes time to change things a sizable resource investment is needed to determine
what all will be impacted. Several devices in the system have specific timing
requirements, e.g., control surface actuators, the display refresh logic, and small
sensors whose output must be latched within a narrow time window. However, most
avionics software is written as if it had exacting timing even if it doesn’t touch these
devices and isn’t on a critical path between them. This is done so that the timing of
adjacent executions of time-critical components can be guaranteed. Lack of
resources has made this brittle scheme necessary. In addition to exacting offline
scheduling of process executions, communications is scheduled in the same manner:
timeslot reservations are made at design time for buses and permeate the entire
design. Thus a change to a processing requirement must deal with the impact on the
execution schedule of the processor where the change will be implemented and the
communications timing of everything on the buses used for input/output to that
processor must be revalidated. In addition, the interface control documentation
(ICD) must reflect all of these changes. Better software technology can have a major
impact on the situation.

138

33

33

AVIONICS’ CRITICAL TIME CYCLE

Flight-critical cycle must be analyzed and its performance guaranteed
within closely specified tolerances, both absolute and statistical. If this
loop can be realized using new software development and deployment
technology, then everything else will fall into place.

20 MSec Max Transport Delay

Mux
Net

Mux
Net

FCC

FCC

FCC

FCC

Sensor

Sensor
Actuator

Actuator

Engine

Sync
Point

10 MSec Cycle
Voting

Pilot Input

GPS

This slide depicts the time-critical flight-control loop. Much of the detail has been
omitted. The sensors measure attitude, acceleration, etc., and pass that data to the
flight control computers in the main computation suite where the data is filtered and
fused with GPS data and commands from the pilot or auto pilot. The solutions
generated by the redundant FCC computers are compared and voted upon. The
selected solutions are then forwarded to the actuators and the engine controller.
Data transport to and from the main computation suite is via the MUX net. The
commands given to the actuators should be based on data that is not more than
20MSec old. Further, new commands should arrive at actuators every 10MSec to
effect a 100Hz control rate. This means that the sensors as a group, the control
computers as a group, and the actuators must cycle every 10Msec. The major
synchronization point shown in the figure must be precisely controlled in the order
of 1MSec. We can then do a requirements allocation of the maximum processing
time allowed to each component set shown in the diagram including the MUX net in
order to stay within the 20MSec staleness requirement. Something that isn’t often
realized is that no harm would be done if there is an occasional mistiming at the
actuators. For example, if data was unduly delayed as much as once or twice a
second no loss of control would be evident. The point is that, strong statistical
guarantees would be good enough in many cases. The acid test for the software
avionics organization proposed in this briefing is whether it can adequately handle
the loop shown here.

139

34

34

BETTER TIME MANAGEMENT

■ Resource availability is growing faster than
avionics complexity

■ Even flight-critical code can tolerate occasional
timing violations on the input side

■ So
◗More use of filters to combine data; use models to predict

next output when necessary
◗Use data time stamps rather than constant δt
◗Generate code from math (E.G., MATLAB), not Jovial or C
◗Timing requirements applied dynamically

The resulting system is less costly, easier to design, maintain, and
mature, and much more robust.

There are many ways to meet the timing requirements imposed by the flight control
loop discussed on the previous slide. However, it would help to learn what those
requirements actually are. In the past, resource limitations led to the preplanned
periodic cycle of the entire avionics suite and a corollary of that approach: If you
miss a deadline once, you will miss it again and again. The fact that a deadline
occasionally could be missed without harm was, thus, irrelevant. Since the premises
are no longer true, neither is the conclusion. As noted previously, we can trade
copious resources to construct a better, more flexible system where implicit timing
dependencies are weaker. This fact will reduce the costs - time and money -
necessary to design, build, maintain, and refresh avionics systems. This slide lists a
few of the techniques that can contribute to such an approach. Note, they all
consume additional resources. One issue not discussed here is the need to rethink
requirements that must be placed on flight controls and how we validate, verify, and
accredit future systems. New methods are needed. We point out that this proposal is
not the most radical one under current consideration. For, example, DoD labs are
sponsoring research in the use of dynamically adapting neural-net flight controllers.

140

35

35

MODERN COMMUNICATIONS

■ End-to-end & multicast services
in face of process relocation

■ Different connections need
different Quality of Service (QoS)

■ Different stacks may be built on
same media and single stack
may use multiple media

■ Stack levels may be compressed

Application
Presentation

Session
Transport
Network

Data Link
Physical

Application
Presentation

Session
Transport
Network

Data Link
Physical

Protocol Stack
Architecture

Avionics issue is the selection/design of sufficient stack architectures to
delivery necessary range of QoS guarantees. Much of the necessary aircraft
accreditation and certification strategy will flow from arguments about the
communications structure and its implementation.

A protocol is a set of rules that govern a potential communication or dialogue.
Higher level protocols are built on others, e.g., a FAX protocol is built on the phone
protocol with its rules of dialing, information exchange, and termination without
knowing how the phone system works. Modern communications are built out of
protocol stacks as shown on the slide. Note that a single layer can support multiple
high-level protocols, e.g., the phone supports data terminal and voice in addition to
FAX. Further, a single protocol can be supported by different stacks, e.g., a FAX
can be transmitted using the Internet. The point of these remarks is that different
protocols can coexist using shared mechanisms. This fact is important to avionics
because different protocols typically offer different qualities of service and different
guarantees. In most current avionics solutions a single protocol built on the 1553A
is used for all communications. In future systems, interprocess communications will
be designated on a case-by-case bases and the necessary quality of service and
guarantees will dictate the choices. Flight controls will surly make a different
selection than weather-data distribution. The current solution is called host-to-host
(or processor-to-processor) connectivity. It is the host’s responsibility to distribute
the data to the correct applications. In the approach we propose, end-to-end
(application-to-application) methods will be used. The advantages are the ability to
relocate processes for load balancing and error recovery and a much sharper map of
applications dependencies. Thus, the resulting system will be more robust and
technology refresh will be simplified and less costly.

141

36

36

DEPENDENCY MANAGEMENT

■ Dependency management is key to sane maintenance and
technology refresh.

■ Provides answers to the questions
◗ If I change X will Y be effected?
◗ Who should I consulted before making the proposed change?

Route
Planning

(x,y,z)

■ Does RP depend on GPS or INS? Can’t tell by variable names.
◗ Might be using GPS, INS solution, raw data from another source, or some

fused version.
■ Requirements tell us what SHOULD be the case but protocol will

tell us what is today’s truth.
■ Provides another source of configuration control information.

INS (x,y,z)

GPS (x,y,z)
?

Understanding data dependencies is the key to understanding a large software
system. That knowledge allows us to judge whether the system components have the
right information at the right time as well as the potential impact of modifying data
sources. Such judgements in today’s systems are difficult for two reasons: The first
is that multiple logical messages are combined to save scarce communications
resources and the ICD does not distinguish utilization below the OFP level. The
second reason is there is little distinction between an OFP acting as a store-and-
forward device for a message and using its contents. The end-to-end protocol
techniques and fast networks advocated herein will address both of these issues.
Message protocol specification exactly identify the producers and consumers of all
data items. Transport, routing, and delivery mechanisms as well as multiplexing and
demultiplexing strategies are private concerns of lower level protocols and do not,
in any way, effect the logical dependencies of the system. Therefore, what is
documented is the truth about the executing system. In fact, the equivalent of an
ICD can be auto-generated from protocol descriptions rather than vice versa. The
improvements in system analysis tool capabilities and system understanding that
will result therefrom should provide substantial reductions in cost and time
throughout the entire avionics lifecycle.

142

37

37

QUALITATIVE SYSTEM ATTRIBUTES

■ Timing qualities besides promptness are needed:
◗Safety properties: deadlock, mutual exclusion, termination
◗Liveness properties: fairness, message receipt, message

send, eventual service
■ Tools can check these properties from abstract

dependency models
■ Lifecycle strategies using them are needed

Process 1
 Holds Resource A
Needs Resource B

Process 1
 Holds Resource B
Needs Resource A

A

B

Classic Deadly Embrace

High-Priority
Process Holds

Resource A

A Low-Priority
Process Needs

Resource A

Classic Starvation

Systems such as avionics that provide for multiple simultaneous execution of
dependent processes are difficult to analyze. Critical timing dependencies are an
example previously discussed. Other potential problems are divided into two
categories: safety and liveness. Safety concerns the prevention of unrecoverable
computational states such as deadlock, two or more processes entering a critical
region together, e.g., to update the same data simultaneously, or a process entering a
non-terminating loop. Liveness concerns all processes receiving a reasonable share
of services and the system, as a whole, making progress towards its computational
goals. Guaranteeing these properties is difficulty because they depend on global
system composition and the rules governing its behavior while designs are centered
on local interactions. Many tools exist to model concurrent systems and analyze
specific properties. There is also a large research and COTS community to support
and improve the tools. It is recommended that future avionics systems use these
products for both initial design and technology refresh activities. It is important that
their use be codified in the policies and procedures that control the software
lifecycle.

143

1

Power-Aware Challenges for
Unmanned Air Vehicles

Jeffrey A. Barnett & Rich Ramroth
Northrop Grumman Corporation

For the
Software Radio Group

June 20, 2002

144

2

Power-Aware Challenges for
Unmanned Air Vehicles

! Air design and operations are always a tradeoff in the
(FORCE x ENERGY x PERFORMANCE x COST) space

! Integrated solutions are needed - attacking a single point is
like pushing on one side of a marshmallow - interactions will
be discussed below

! Tradeoff space is too complex for precise mathematical
models - heavy reliance on simulation

! Application value system is King; less isn’t always better

145

3

The Size of Things

Features Min Values Max Values
Weight ounces tons
Wing Span inches 200+ ft
Endurance seconds days
Power Source (solar) battery generator
Propulsion none engine
Communications none multi network
Sensors none gps, self, outside
Controller remote pilot autonomous
Socialization loner swarm
Life Time seconds multi mission
Cost $x00.00 $x0,000,000

146

4

Key Technology Areas

! Computational Challenges

! Communications Challenges

! (Non-Reflexive) Sensor Challenges

! Flight Controls Challenges

Technology

147

5

Computation Challenges

! Mission Planning and the Virtual Pilot

! Prognostics and Diagnostics: If use slack time, no chance to
enter low-power modes; use of internal sensors and BIT

! Redundancy Management: N-way redundancy means N+

times the energy expenditure

! Scheduling: Computation gaps enable low power; slow
computation uses less power; how many CPUs?

Primary interest to
Software Radio Group

148

6

Communications Challenges

! Economical Listening: listening mode usually
 is as expensive as receiving mode

! Message Encoding: encryption/compression
are not commutative; both defeat economical listening

! Distance: cost is related to sender/receiver distance so path
planning should be considered

! Good of the Group Vs Individual Payoff
" Two for One: savings through multiplexing and/or message routing

must be considered. Broadcasting tradeoffs?
" Silence is Golden: when is it better to communicate and when is it

better to say nothing? Error rate Vs Power.

More Than Cute Protocols Are Needed

Primary interest to
Software Radio Group

149

7

Sensor Challenges

! Choices: which sensor to use;
" use an ownship sensor
" communication to borrow another’s data
" tease more info by computation

! Aiming: gimbal the sensor VS fly a different heading

! Internals: sensor boxes comprise vast computation arrays

! Power: variance reduction is function of resource investment,
both rate and pulse strength

! Image Processing: computational investment before filtering
and fusion

! Filtering and Fusion: incremental value of better algorithm

Primary interest to
Software Radio Group

150

8

Flight Management Challenges

! Flight Controls: actuators use electric power; tradeoff
between power and maneuver pace

! Reflexive Sensing: sensing ownship’s status is part of
feedback and control mechanism; adds local communication
and computation costs

! Multiple Vehicles: coordination consumes communications
resources and shake-and-bake control consumes energy

Primary interest to
Software Radio Group

151

	Power-Aware Smart Submunitions
	Introduction
	Background
	Contractor Work Summary
	Lessons Learned
	Appendix
	Intelligent Reconfigurable Systems: The Ubiquitous API
	Application-Level Power Awareness
	Distributable Computations: A Conjecture
	Energy Efficient Redundancy
	Power Aware Duplex Redundancy
	Minimum Energy Process Execution
	Dynamic Voltage Scheduling Optimizations
	Avionics for the 21st Century
	Power-Aware Challenges for Unmanned Air Vehicles

