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Abstract 
 
 
In the Secure Overlay Services (SOS) project, we investigated the use of overlay network 
technologies as a means for defeating denial of service (DoS) attacks. Through a use of overlay 
tunneling, routing via consistent hashing, and filtering at a very small number of routers, we 
reduce the probability of successful attacks while only increasing the end-to-end latency of 
communications using SOS by a factor of 2 to 3. 
 
Contrary to most other work in network denial of service, our system provides a means for 
ensuring the existence of an un-congested end-to-end communications channel between clients 
and servers in an IP network. SOS does not require changes in existing protocols or 
infrastructures, and can be deployed in an incremental fashion without collaboration from 
Internet Service Providers (ISPs). Furthermore, SOS need not be used, and thus need not affect 
the performance or other characteristics of communications, when no denial of service is taking 
place in the network. 
 
Our conclusions are that incrementally deployed, overlay-based mechanisms can be very 
effective in mitigating the impact of denial of service attacks in certain environments, without 
requiring infrastructure or protocol changes. 
 
The project web page may be found at 
  http://nsl.cs.columbia.edu/projects/sos/ 
 
This work is also currently supported by Cisco and Intel Corp. 
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Summary 
 
We examined the use of overlay networking in conjunction with distributed access control as a 
mechanism against denial of service (DoS) attacks. In particular, we examine the application of 
these technologies in allowing undisrupted communication between two peers in the Internet in 
the face of large distributed denial of service (DDoS) attacks. By design, we avoided changes to 
protocols and infrastructure (such as routers), and required only minimal cooperation from 
Internet Service Providers (ISPs). Our goal was to allow the deployment of a solution to the 
DDoS system that did not depend on large scale adoption by ISPs, and did not require placement 
of equipment inside the Internet core. 
 
We initially examined the case of well known peers that share some authentication material. In 
that scenario, the portion of the network immediately surrounding attack targets  is protected by 
high-performance routers that aggressively filter and block all incoming connections from hosts 
that are not approved, as shown in Figure 1. These routers are “deep” enough in the network 
(typically in an ISP's Point of Presence), that the attack traffic does not adversely impact 
innocuous traffic. The identities of the small set of nodes that are approved at any particular time 
is kept secret so that attackers cannot try to impersonate them to pass through the filter. These 
nodes are picked from a set of nodes that are distributed throughout the wide area network. This 
superset forms a secure overlay: any transmissions that wish to traverse the overlay must first be 
validated at any of the entry points of the overlay. This was initially done by requiring users to 
authenticate to the overlay, as they would to a firewall. In subsequent work, we showed how to 
relax this restriction through the use of Graphic Turing Tests, that differentiate between humans 
and automated processes (e.g., DDoS zombies). Once inside the overlay, the traffic is tunneled 
securely to one of the approved (and secret from attackers) locations that can then forward the 
validated traffic through the filtering routers to the target. 
 
Thus, there are two main principles behind our design.  The first principle is the elimination of 
communication pinch-points, which constitute attractive DoS targets, via a combination of 
filtering and overlay routing to obscure the identities of the sites whose traffic is permitted to 
pass through the filter. The second is the ability to recover from random or induced failures 
within the forwarding infrastructure or the secure overlay nodes. 
 
We demonstrated the efficacy of our approach through a series of simulations and experiments 
on the real Internet, using the PlanetLab testbed to measure the performance impact of our 
system on regular communications. We find that our approach can increase the end-to-end 
latency of a communication flow by a factor of 3, while shielding it from the effects of the DDoS 
attack. We are continuing research on SOS, in particular seeking to strengthen it against more 
sophisticated attackers. 
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Introduction 
 
The Internet is increasingly being used for different kinds of services and interactions with, and 
between humans. Such an environment provides a rich set of targets for motivated attackers. This 
has been demonstrated by the large number of vulnerabilities and exploits against web servers, 
browsers, and applications. Traditional security considerations revolve around protecting the 
network connection's confidentiality and integrity, protecting the server from break-in, and 
protecting the client's private information from unintended disclosure. To that end, several 
protocols and mechanisms have been developed, addressing these issues individually. However, 
one area that has long been neglected is that of service availability in the presence of denial of 
service (DoS) attacks, and their distributed variants (DDoS). 
 
In the SOS architecture we address the problem of securing communication in today's existing IP 
infrastructure from DoS attacks, where the communication is between a pre-determined location 
and a set of well-known users, located anywhere in the wide-area network, who have 
authorization to communicate with that location. We initially focus our efforts on protecting a 
site that stores information that is difficult to replicate due to security concerns or due to its 
dynamic nature. An example is a database that maintains timely or confidential information such 
as building structure reports, intelligence, assignment updates, or strategic information. We 
assume that there is a pre-determined set of clients scattered throughout the network who require 
(and should have) access to this information, from anywhere in the network. 
 
Contrary to the other approaches, which are reactive, our approach is proactive. In a nutshell, the 
portion of the network immediately surrounding the target (location to be protected) aggressively 
filters and blocks all incoming packets whose source addresses are not “approved”.  The small 
set of source addresses (potentially as small as 2-3 addresses) that are “approved” at any 
particular time is kept secret so that attackers cannot use them to pass through the filter. These 
addresses are picked from among those within a distributed set of nodes throughout the wide 
area network that form a secure overlay: any transmissions that wish to traverse the overlay must 
first be validated at entry points of the overlay.  Once inside the overlay, the traffic is tunneled 
securely for several hops along the overlay to the “approved” (and secret from attackers) 
locations, which can then forward the validated traffic through the filtering routers to the target. 
The two main principles behind our design are: (1) elimination of communication pinch-points, 
which constitute attractive DoS targets, via a combination of filtering and overlay routing to 
obscure the identities of the sites whose traffic is permitted to pass through the filter, and (2) the 
ability to recover from random or induced failures within the forwarding infrastructure or within 
the secure overlay nodes. 
 
We discuss how to design the overlay such that it is secure with high probability, given that 
attackers have a large but finite set of resources to perform the attacks. The attackers can also 
know the IP addresses of the nodes that participate in the overlay and of the target that is to be 
protected, as well as the details of the operation of protocols used to perform the forwarding. 
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However, we assume that (a) the attacker does not have unobstructed access to the network core, 
and (b) the attacker cannot severely disrupt large arts of the backbone. 
 
Our architecture leverages heavily off of previous work on IP security, IP router filtering 
capabilities, and novel approaches to routing in overlays and peer-to-peer (P2P) networks.  To 
the extent possible, we strive to use existing systems and protocols, rather than invent our own. 
Our resulting system is in some ways similar to the Onion Routing architecture used for 
anonymous communications. 
 
We perform a preliminary stochastic analysis using simple networking models to evaluate the 
likelihood that an attacker is able to prevent communications to a particular target.  We determine  
this likelihood as a function of the aggregate bandwidth obtained by an attacker through the 
exploitation of compromised systems.  Our analysis includes an examination of the capabilities of 
static attackers who focus all their attack resources on a fixed set of nodes, as well as attackers who 
adjust their attacks to “chase after” the repairs that the SOS system implements when it detects an 
attack.  We show that even attackers that are able to launch massive attacks are very unlikely to 
prevent successful communication.  For instance, attackers that are able to launch attacks upon  
50% of the nodes in the overlay have roughly one chance in one thousand of stopping a given 
communication from a client that accesses the overlay through a small subset of overlay nodes. 
We use our prototype implementation with PlanetLab, a distributed infrastructure for 
experimentation on overlay networks, to measure the increase in end-to-end latency. We 
determine that using SOS increases the latency by a factor of 2 to 3, which we consider 
acceptable in comparison to the latency or lack of communication when the when a debilitating 
DDoS attack is successfully launched.  Furthermore, we experimentally determine that the 
overlay can heal itself within 10 seconds of being targeted by such an attack. 
 

Methods, Assumptions, and Procedures 
 
The goal of the SOS architecture is to allow communication between a confirmed user and a 
target.  By confirmed, we mean that the target has given prior permission to this user. Typically, 
this means that the user's packets must be authenticated and authorized by the SOS infrastructure 
before traffic is allowed to flow between the user through the overlay to the target. While we 
focus on the communication to a single target, the architecture is easily extended to 
simultaneously protect unicast communications destined to different targets. Both peers can use 
the SOS infrastructure to protect bidirectional communications; this is particularly important for 
“static” sites (e.g., two branches of the same company). For mobile clients the reverse direction's 
traffic (from the target site to the client) can be sent directly over the Internet, or it can also use 
the SOS infrastructure. 
 
SOS is a network overlay, composed of nodes that communicate with one another atop the 
underlying network substrate.  Often, nodes will perform routing functionality to deliver 
messages (packets) from one node in the overlay to another. We assume that the set of nodes 
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that participate in the overlay is known to the public and hence also to any attacker.  In effect, 
no node's identity is kept hidden.  However, certain roles that an overlay node may assume in 
the process of delivering traffic are kept secret from the public.  Keeping participation 
information of certain nodes hidden from the public could be a means of providing additional 
security, but is not required. 
 
Attackers in the network are interested in preventing traffic from reaching the target.  These 
attackers have the ability to launch DoS attacks from a variety of points around the wide area 
network that we call compromised locations.  The number and bandwidth capabilities of these 
compromised locations determine the intensity with which the attacker can bombard a node 
with packets, to effectively shut down that node's ability to receive legitimate traffic.  Without 
an SOS, knowledge of the target's IP address is all that is needed in order for a moderately-
provisioned attacker to saturate the target site.  We assume attackers are smart enough to 
exploit features of the architecture that are made publicly available, such as the set of nodes 
that form the overlay.  In this paper, we do not specifically consider how to protect the 
architecture against attackers who can infiltrate the security mechanism that distinguishes 
legitimate traffic from (illegitimate) attack traffic: we assume that communications between 
overlay nodes remain secure so that an attacker cannot send illegitimate communications, 
masking them as legitimate. In addition, it is conceivable that more intelligent attackers could 
monitor communications between nodes in the overlay and, based on observed traffic statistics, 
determine additional information about the current configuration.  Protecting SOS from such 
attackers is beyond the scope of this work. 
 

 

    Figure 1: SOS Architecture 
 
Figure 1 gives a high-level overview of the SOS architecture that protects a target node or site so 
that it only receives legitimate transmissions.  In the discussion that follows, we first give a brief  
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overview of the design process, and then develop the architecture piece by piece.  The reader can 
refer back to the figure during the discussion. 
 
Design Rationale 
 
Fundamentally, the goal of the SOS infrastructure is to distinguish between authorized and 
unauthorized (or, more generally, unverified) traffic. The former is allowed to reach the 
destination, while the latter is dropped or is rate-limited. Thus, at a very basic level, we need the 
functionality of a firewall “deep” enough within the network so that the access link to the target 
is not congested. This imaginary firewall would perform access control by using protocols such 
as IPsec. 
 
However, traditional firewalls themselves are susceptible to DoS attacks. One way to address 
this problem is to replicate the firewall functionality. To avoid the effects of a DoS attack against 
the firewall connectivity, we need to distribute these instances of the firewall across the network. 
In effect, we are “farming out” the expensive processing (such as cryptographic protocol 
handling) to a large number of nodes. However, firewalls depend on topological restrictions in 
the network to enforce access control policy. Since our distributed firewall has performed the 
access control step, it would seem obvious that all we need around the target is a router that is 
configured to only let through traffic forwarded to it by one of the firewalls. 
 
However, a security system cannot depend on the identity of these firewalls to remain secret. 
Thus, an attacker can launch a DoS attack with spoofed traffic purporting to originate from one 
of these firewalls. Notice that, given a sufficiently large group of such firewalls, we can select a 
very small number of these as the designated authorized forwarding stations: only traffic 
forwarded from these will be allowed through the filtering router, and we change this set 
periodically. 
 
Architecture Overview 
 
The forwarding of a packet within the SOS architecture, depicted in Figure 1, proceeds through 
five stages: 
 

1. A source point that is the origin of the traffic forwards a packet to a special overlay 
node called a SOAP (Secure Overlay Access Point) that receives and verifies that the 
source point has a legitimate communication for the target. 

 
2.  The SOAP routes the packet to a special node in the SOS architecture that is easily 

reached, called the beacon. 
 

3. The beacon forwards the packet to a “secret” node, called the secret servlet, whose 
identity is known to only a small subset of participants in the SOS architecture. 



 

 6

4. The secret servlet forwards the packet to the target. 
 

5. The filter around the target stops all traffic from reaching the target except for traffic 
that is forwarded from a point whose IP address is the secret servlet. 

 
In the following discussion, we motivate why the SOS architecture requires the series of steps 
described above. 
 
Protecting the Target: Filtering 
 
In the current Internet, knowledge of the target's network identifier (IP address) allows an 
attacker to bombard the target location with packets that originate from compromised locations 
throughout the Internet.  To prevent these attacks, a filter can be constructed that drops 
illegitimate packets at some point in the network, such that the illegitimate traffic does not 
overwhelm routing and processing resources at or near the target.  We assume that the 
filter can be constructed so that attackers do not have access to routers inside the filtered region 
(i.e., they cannot observe which source addresses can proceed through the filter). Past history 
indicates that it is significantly more difficult for an attacker to completely take over a router or 
link in the middle of an ISP's network than to attack an end-host; intuitively, this is what we 
would expect, given the limited set of services offered by a router (compared to, e.g., a web 
server or a desktop computer). 
 
We assume that filtering is done at a set of high-powered routers such that (1) these routers can 
handle high loads of traffic, making them difficult to attack, and (2) possibly there are several, 
disjoint paths leading to the target, each of which is filtered independently. This way, if one of 
these paths is brought down, filtered traffic can still traverse the others and ultimately reach the 
target.  Essentially, we assume that the filter can be constructed locally around the target to 
prevent a bombardment of illegitimate traffic, while at the same time allowing legitimate, filtered 
traffic to successfully reach the target. Such filters need to be established at the ISP's Point of 
Presence (POP) routers that attach to the ISP backbone. 
 
Reaching Well-filtered Target 
 
Under the filtering mechanism described previously, legitimate users can reach the target by 
setting the filter around the target to permit only those IP addresses that contain legitimate users.  
This straightforward approach has two major shortcomings. First, whenever a legitimate user 
moves, changes IP address, or ceases to be legitimate, the filter surrounding the target must be 
modified. Second, the filter does not protect the target from traffic sent by an illegitimate user 
that resides at the same address as a legitimate user, or (more importantly) from an illegitimate 
user that has knowledge about the location of a legitimate user and spoofs the source address of 
its own transmissions to be that of the legitimate user. 
 
A first step in our solution is to have the target select a subset of nodes that participate in the 
SOS overlay to act as forwarding proxies.  The filter only allows packets whose source 
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address matches the address of some overlay node.  Since that node is a willing overlay 
participant, it is allowed to perform more complex verification procedures than simple address 
filtering and use more sophisticated (and expensive) techniques to verify whether or not a packet 
sent to it originated from a legitimate user of a particular target. 
 
The filtering function that is applied to a packet or flow can have various levels of complexity. It 
is, however, sufficient to filter on the source address: the router only needs to let through packets 
from one of the few forwarding proxies. All other traffic can be dropped, or rate-limited. 
Because of the small number of such filter rules and their simple nature (source IP address 
filtering), router performance will not be impaired, even if we do not utilize specialized 
hardware. 
 
This architecture prevents attackers with knowledge of legitimate users' IP addresses from 
attacking the target.  However, an attacker with knowledge of the IP address of the proxy can 
still launch two forms of attacks: an attacker can breach the filter and attack the target by 
spoofing the source address of the proxy, or attack the proxy itself.  This would prevent 
legitimate traffic from even reaching the proxy, cutting off communication through the overlay 
to the target. 
 
Our solution to this form of attack is to hide the identities of he proxies. If attackers do not know 
the identity of a proxy, they cannot mount either form of attack mentioned above unless they 
successfully guess a proxy's identity.  We refer to these “hidden” proxies as secret servlets. 
 
Reaching a Secret Servlet 
 
To activate a secret servlet, the target sends a message to the overlay node that it chooses to be a 
secret servlet, informing that node of its task.  Hence, if a packet reaches a secret servlet and is 
subsequently verified as coming from a legitimate user, the secret servlet can then forward the 
packet through the filter to the target.  The challenge at this point is constructing a routing 
mechanism that will route to a secret servlet while utilizing a minimal amount of information 
about its identity. 
 
Here we take advantage of the dynamic nature and the high level of connectivity that exists when 
routing atop a network overlay.  The connectivity graph of a network overlay consists of nodes 
which are the devices (e.g., end-systems) that participate in the overlay, and edges which 
represent IP paths that connect pairs of nodes in the overlay.  Unlike the underlying network 
substrate whose physical requirements limit the pairs of nodes that can directly connect to one 
another, network overlays have no such limits, such that an overlay edge is permissible between 
any pair of overlay nodes.  This added flexibility and increased number of possible routes can be 
used to complicate the job of an attacker by making it more difficult to determine the path taken 
within the overlay to a secret servlet.  In addition, since a path exists between every pair of 
nodes, it is easy to recover from a breach in communication that is the result of an attack that 
shuts down a subset of overlay nodes.  The recovery involves having the overlay route around 
these nodes. The underlying assumption is that network core links cannot easily be shut down. 
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There exists a straightforward but costly solution to reaching a secret servlet without revealing 
the servlet's ID to the nodes that wish to reach it: have each overlay node that receives a packet 
randomly choose the next hop on the overlay to which it forwards a packet. Eventually, the 
packet will arrive at a secret servlet that can then deliver it to the target. 
 
Connecting to the Overlay 
 
Legitimate users need not reside at nodes that participate in SOS.  Hence, SOS must support a 
mechanism that allows legitimate traffic to access the overlay.  For this purpose, we define a 
Secure Overlay Access Point (SOAP).  A SOAP is a node that will receive packets that 
has not yet been verified as legitimate, and perform this verification. This verification can be 
performed using off-the-shelf authentication protocols such as IPsec or TLS. Allowing a large 
number of overlay nodes to act as SOAPs increases the bandwidth resources that an attacker 
must obtain to prevent legitimate traffic from accessing the overlay. Effectively, SOS becomes a 
large distributed firewall that discriminates between “good” (authorized) traffic from “bad” 
(unauthorized) traffic. By using a large number of topologically-distributed firewall instances, 
we increase the amount of resources (bandwidth) an attacker has to spend to deny connectivity to 
legitimate clients. Note that if an attacker manages to acquire a legitimate user's authorization 
material, he can use multiple SOAPs to mount a DDoS attack from inside the overlay. In that 
case, the secret servlet or the beacon can use a pushback-like mechanism to ask the SOAPs to 
revoke the user's authorization. 
 
Having a large number of SOAPs increases the robustness of the architecture to attacks, but 
complicates the job of distributing the security information that is used to determine the 
legitimacy of a transmission toward the target.  One can imagine several ways in which 
SOAPs can be chosen.  For instance, different users (IP address origins) can be mapped to 
different subsets of SOAPs. Given the relatively small number of nodes that SOS requires, a list 
of all SOS nodes may be publicized and used by all clients. We plan to investigate SOAP 
selection in future work. 
 
Routing through the Overlay 
 
Having each overlay participant select the next node at random is sufficient to eventually reach a 
secret servlet. However, it is rather inefficient, with the expected number of intermediate overlay 
nodes contacted being O(n/N) where N is the number of nodes in the overlay and n is the number 
of secret servlets for a particular target. Here, we discuss an alternative routing strategy in which, 
with only one additional node knowing the identity of the secret servlet, the route from a SOAP 
to the secret servlet has an expected path length that is O(log N). We use Chord, which can be 
viewed as a routing service that can be implemented atop the existing IP network fabric, i.e., as a 
network overlay. Consistent hashing is used to map an arbitrary identifier to a unique destination 
node that is an active member of the overlay. 
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In Chord, each node is assigned a numerical identifier (ID) via a hash function in the range [0, 
2m] for some pre-determined value of m.  The nodes in the overlay are ordered by these 
identifiers. The ordering is cyclic (i.e., wraps around) and can be viewed conceptually as a circle, 
where the next node in the ordering is the next node along the circle in the clockwise direction.  
Each overlay node maintains a table that stores the identities of m other overlay nodes.  The i-th 
entry in the table is the node whose identifier x equals or, in relation to all other nodes in the 
overlay, most immediately follows x + 2i-1 mod 2m.  When overlay node x receives a packet 
destined for ID y, it forwards the packet to the overlay node in its table whose ID precedes y by 
the smallest amount.  As an example, for m=5 and when node 7 receives a packet whose 
destination is the identifier 20, the packet will route from 7 to 16 to 17, When the packet reaches 
node 17, the next node in the overlay is 22, and hence node 17 knows that 22 is responsible for 
identifier 20.  Chord routes packets around the overlay “circle”, progressively getting closer to 
the desired node, visiting O(m) nodes. Typically, the hash functions used to map nodes to 
identifiers do not attempt to map two geographically close nodes to nearby identifiers.  Hence, 
often two nodes with consecutive identifiers are geographically distant from one another within 
the network. 
 
The Chord service is robust to changes in overlay membership, and each node's list is adjusted to 
account for nodes leaving and joining the overlay such that the above stated properties continue 
to hold. Membership in the SOS overlay is “closed” --- the clients and the targets are not 
considered part of the overlay, and can only interact with it through a well-defined interface that 
requires strong authentication and authorization. 
 
SOS uses the IP address of the target as the identifier to which the hash function is applied. Thus, 
Chord can direct traffic from any node in the overlay to the node that the identifier is mapped to, 
by applying the hash function to the target's IP address.  This node, to which Chord delivers the 
packet, is not the target, nor is it necessarily the secret servlet.  It is simply a unique node that 
will be eventually reached, regardless of the entry point.  This node is called the beacon, since it 
is to this node that packets destined for the target are first guided.  Thus, Chord provides a 
robust and reliable, while relatively unpredictable for an adversary, means of routing packets 
from an overlay access point to one of several beacons. 
 
Finally, the secret servlet uses Chord to periodically inform the beacon of the secret servlet's 
identity. Should the servlet for a target change, the beacon will find out as soon as the new 
servlet sends an advertisement. If the old beacon for a target drops out of the overlay, Chord will 
route the advertisements to a node closest to the hash of the target's identifier. Such a node will 
know that it is the new beacon because Chord will not be able to further forward the 
advertisement. By providing only the beacon with the identity of the secret servlet, traffic can be 
delivered from any firewall to the target by traveling across the overlay to the beacon, then from 
the beacon to the secret servlet, and finally from the secret servlet, through the filtering router, to 
the target. This allows the overlay to scale for arbitrarily large numbers of overlay nodes and 
target sites. Unfortunately, this also increases the communication latency, since traffic to the 
 
 



 

 10

target must be redirected several times across the Internet. If the overlay only serves a small 
number of target sites, traditional routing protocols or RON-like routing may be sufficient. 
 

Summary of Architecture 
 
Before continuing on, we review the operational structure of SOS.  A site (target) installs a filter 
in its immediate vicinity and then selects a number of SOS nodes to act as secret servlets; that 
is, nodes that are allowed to forward traffic through the filter to that site. Routers at the perimeter 
of the site are instructed to only allow traffic from these servlets to reach the internal of the site's 
network. These routers are powerful enough to filter on incoming traffic using a small number of 
rules without adversely affecting their performance. 
 
When an SOS node is asked to act as a secret servlet for a site (and after verifying the 
authenticity of the request), it will compute the key k for each of a number of well-known 
consistent hash functions, based on the target site's network address. Each of these keys will 
identify a number of overlay nodes that will act as beacons for that target. 
 
Having identified the beacons, the servlets or the target will contact and notify the beacons of the 
servlets' identities.  Beacons verify the validity of the received information and store that 
information which is necessary to forward traffic for that target to the servlet. 
 
A source that wants to communicate with the target contacts a secure overlay access point 
(SOAP). After authenticating and authorizing the request, the SOAP securely routes all traffic 
from the source to the target via one of the beacons. The SOAP (and all subsequent hops on the 
overlay) can route the packet to an appropriate beacon in a distributed fashion using Chord, by 
applying the appropriate hash function(s) to the target's address to identify the next hop on the 
overlay.  Finally, the beacon routes the packet to a secret servlet that then routes it (through the 
filtering router) to the target. 
 
This scheme is robust against DoS attacks because if an access point is attacked, the confirmed 
source point can simply choose an alternate access point to enter the overlay. If a node within the 
overlay is attacked, the node simply exits the overlay and the Chord service self-heals, providing 
new paths over the re-formed overlay to (potentially new sets of) beacons. Furthermore, no node 
is more important or sensitive than others --- even beacons can be attacked and are allowed to 
fail. Finally, if a secret servlet's identity is discovered and the servlet is targeted as an attack 
point, or attacks arrive at the target with the source IP address of some secret servlet, the target 
can choose an alternate set of secret servlets. 
 
Redundancy 
 
Having a single SOAP, beacon, or secret servlet weakens the SOS architecture, in that a 
successful attack on any one of these nodes can prevent legitimate traffic from reaching the 
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target.  Fortunately, each component is easily replicated within the architecture. 
Furthermore, an attack upon any of these components, once realized, is easily repaired. 
 
Specifically, SOAP functionality is easily replicated.  Any overlay node can act as a SOAP as 
long as it has the ability to check the legitimacy of a packet transmissions.  If a SOAP is 
attacked, it can exit the overlay. A legitimate user attempting access need only contact another 
SOAP. 
 
Furthermore, the target can choose multiple nodes as secret servlets and set the filter to allow 
packets from only these nodes to pass through the filter.  If a secret servlet is attacked, or its 
identity breached such that attack traffic with a secret servlet's source IP address can proceed 
through the filter, the target can remove the servlet whose identity is compromised from its set of 
servlets and modify its filter appropriately.  A secret servlet under attack can also remove itself 
from the overlay until the attack terminates. 
 
Finally, multiple nodes can act as beacons for a target by applying several hash functions (or 
several iterations of the same hash function) over the target identifier.  In addition, if a beacon 
node is attacked, the node can remove itself from the overlay, and the Chord routing mechanism 
will heal itself such that a new node will act as a beacon for that hash function. If the former 
beacon cannot communicate the secret servlet information to the new beacon, then the new 
beacon must wait for the secret servlet to contact it again (as part of a keep-alive protocol) with 
its identity. 
 
We note that when there are multiple beacons and secret servlets, every beacon should know the 
identity of at least one secret servlet so that the packets that each beacon receives can be  
forwarded onward to a secret servlet.  Thus, each hash function is used by at least one secret 
servlet. 
 
A last word on redundancy: since the secret servlets use tunneling to reach the target, it is 
possible to use the backup links of a multi-homed site to carry SOS-routed traffic (effectively 
using tunneling as a source-routing mechanism). Thus, all attack traffic will use the BGP-
advertised best route to the target, while traffic from the SOS infrastructure will use the unused 
available capacity of the target site. 

Results and Discussion 
 
In order to quantify the overhead associated with use of SOS, we created a simple topology 
running on the local network (100 Mbit fully-switched Ethernet). For our local-area network 
overlay, we used 10 commodity PCs running Linux Redhat 7.3.  We measured the time-to-
completion of https requests. That is, we measured the elapsed time starting when the browser 
initiates the TCP connection to the destination or the first proxy, to the time all data from the 
remote web server have been received. We ran this test by contacting 3 different SSL-enabled 
sites: login.yahoo.com, www.verisign.com, and the Columbia course bulletin board web 
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service (at https://www1.columbia.edu/sec/bboard).  For each of these sites, we measured the 
time-to-completion for a different number of overlay nodes between the browser and the 
target (remote web server). 
 
The browser was located on a separate ISP The reason for this configuration was to introduce 
some latency in the first-hop connection (from the browser to the SOAP), thus simulating (albeit 
using a real network) an environment where the browsers have slower access links to the SOAPs, 
relative to the links connecting the overlay nodes themselves (which may be co-located with core 
routers).  By placing all the overlay nodes in the same location, we effectively measure the 
aggregate overhead of the SOS nodes in the optimal (from a performance point of view) case. 
 

 

Table 1: SOS on the local network 
 
Table 1 shows the results for the case of 0 (browser contacts remote server directly), 1, 4, 7, and 
10 overlay nodes. The times reported are in seconds, and are averaged over several HTTPS GET 
requests of the same page, which was not locally cached. For each GET request, a new TCP 
connection was initiated by the browser. The row labeled "Columbia BB (2nd)" shows the time-
to- completion of an HTTPS GET request that uses an already established connection through 
the overlay to the web server, using the HTTP 1.1 protocol. 
 
 
As the figure shows, SOS increases the end-to-end latency between the browser and the server 
by a factor of 2 to 3. These results are consistent with our simulations of using SOS in an ISP 
topology, where the latency between the different overlay nodes would be small, as discussed in 
Section 3. The increase in latency can be primarily attributed to the network-stack processing 
overhead and proxy processing at each hop. It may be possible to use TCP splicing or similar 
techniques to reduce connection handling overhead, since SOS performs routing on a per-request 
basis.  Furthermore, there is an SSL-processing overhead for the interoverlay communications. A 
minor additional cryptographic overhead, relative to the direct access case, is the certificate 
validation that the SOAPs have to perform, to determine the client's authority to use the overlay, 
and the SSL connection between the proxy running on the user's machine and the SOAP. 
Such overheads are typically dominated by the end-to-end communication overheads. Use of 
cryptographic accelerators can further improve performance in that area.  One further  
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optimization is to maintain persistent SSL connections between the overlay nodes.  However,  
this will make the task of the communication module harder, as it will have to parse HTTP 
requests and responses arriving over the same connection in order to make routing decisions. 
 

      

 Table 2: SOS on PlanetLab 
 
Table 2 shows the same experiment using PlanetLab, a wide-area overlay network testbed. The 
PlanetLab nodes are distributed in academic institutions across the country, and are connected 
over the Internet. We deployed our SOS proxies on PlanetLab and ran the exact same tests. 
Naturally, the direct-contact case remains the same. We see that the time-to-completion in this 
scenario increases by a factor of 2 to 10, depending on the number of nodes in the overlay. In 
each case, the increase in latency over the local-Ethernet configuration can be directly attributed 
to the delay in the links between the SOS nodes. While the PlanetLab configuration allowed 
us to conduct a much more realistic performance evaluation, it also represents a worst-case 
deployment scenario for SOS: typically, we would expect SOS to be offered as a service by 
an ISP, with the (majority of) SOS nodes located near the core of the network. Using PlanetLab, 
the nodes are distributed in (admittedly well-connected) end-sites. We would expect that a more 
commercial-oriented deployment of SOS would result in a corresponding decrease in the inter-
overlay delay. On the other hand, it is easier to envision end-site deployment of SOS, since it 
does not require any participation from the ISPs. 
 
 
Finally, while the additional overhead imposed by SOS can be significant, we have to consider 
the alternative: no web service while a DoS attack against the server is occurring. While an 
increase in end-to-end latency by a factor of 5 (or even 10, in the worst case) is considerable, we 
believe it is more than acceptable in certain environments and in the presence of a determined 
attack. 
 
Table 3 shows the results when a shortcut implementation (whereby the full Chord overlay is 
only traversed when determining the location of the secret servlet, with the actual traffic being 
directly routed from the SOAP to the secret servlet) was tested on the PlanetLab testbed. This 
variant provides significant performance improvements, particularly on subsequent requests for 
the same site, because of the caching. To simulate the effects of an attack on individual nodes in 
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the overlay, we simply brought down specific nodes. The system healed itself within 10 seconds. 
 

 

 

 Table 3: SOS with shortcut routing 
 

Conclusions 
 
The Secure Overlay Services (SOS) architecture allows legitimate users to access a remote site in 
the presence of a denial of service attack. The architecture uses a combination of Graphic Turing 
Tests, cryptographic protocols for data origin and principal authentication, packet filtering, 
overlay networks, and consistent hashing to provide service to both known (a prior) and casual 
(e.g., web-browsing) users. Our analysis and experiments demonstrate the effectiveness of the 
architecture to provide service when under attack, while imposing a modest performance penalty 
to communication flows that traverse it. 
 
More information on the architecture, experiments, and prototype implementation may be found 
(along with a list of publications) at http://nsl.cs.columbia.edu/projects/sos/ 
 
 
 

Recommendations 
 
We believe that we have demonstrated that overlay-based mechanisms are an effective 
mechanism for providing service in the presence of distributed denial of service attacks. Their 
advantages are the ease of deployment (since they require no changes to infrastructure or 
protocols, and may be deployed without the cooperation of ISPs) and small impact on 
performance. 
 
We recommend that DARPA promote further research in this area, and pursue a deployment of a 
SOS-like overlay network in the DoD environment to gain further insights on the use of the 
system with realistic workloads, and as a safeguard against DoS attacks. 
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List of Symbols, Abbreviations, and Acronyms 
 
SOS:  Secure Overlay Services 
DoS:  Denial of Service 
DDoS: Distributed Denial of Service  
ISP:  Internet Service Provider 
SOAP: Secure Overlay Access Point 
P2P:  Peer-to-Peer (network) 
IP:  Internet Protocol  
POP:  Point of Presence 
TLS:  Transport Layer Security 
SSL:  Secure Socket Layer 
BGP:  Border Gateway Protocol 
IPsec:  IP Security 
TCP:  Transmission Control Protocol 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


