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PREFACE 

Due to budget limits, the service lives of many Army weapon systems 
are being extended. There is a widespread belief that the resulting 
increases in fleet ages are—or will be—creating readiness and cost 
problems. The Army has therefore launched a program to rebuild 
and selectively upgrade fielded systems, many of which currently ex- 
ceed fleet age targets. This program is known as recapitalization 
(RECAP). 

However, initial recapitalization plans combined with investments in 
new equipment have strained the Army budget, and complete 
RECAP of current aged fleets has been found unaffordable. Thus, the 
Office of the Deputy Chief of Staff, G-8 (Programs), the Office of the 
Deputy Chief of Staff, G-3 (Operations and Plans), the Office of the 
Deputy Chief of Staff, G-4 (Logistics), the Office of the Assistant Sec- 
retary of the Army for Acquisition, Logistics, and Technology 
(OASA[ALT]), and the Army Materiel Command (AMC) have been ex- 
amining which systems (both type and portion of the fleet) should be 
recapitalized and deflning what that renewal process should involve 
(the extent of work for each "overhaul"). Accordingly, OASA(ALT) is 
sponsoring RAND Arroyo Center research on how equipment age 
affects readiness and resource requirements, to aid analyses in 
support of RECAP decisions. 

This report describes one component of this study: an assessment of 
the relationship between tank age and the mission-critical failure 
rate for the Ml Abrams tank. Findings should be of interest to re- 
source planners, logistics analysts, and weapon system analysts. 
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SUMMARY 

Without a significant effort to increase resources devoted to 
recapitalization of weapon systems, the force structure will not 
only continue to age but, perhaps more significantly, become 
operationally and technologically obsolete. 

Quadrennial Defense Review Report, 2001, p. 47 

Aging equipment has become a key concern of Army leaders striving 
to maintain high operational readiness. Army leaders anticipate that 
equipment age will pose a continually increasing challenge over the 
lengthy period in which current equipment is expected to remain in 
the Army's fleet, anticipated until about 2030 in some cases, as it de- 
velops and fully fields its next generation of forces termed the future 
force. In response, the Army has initiated a recapitalization (RECAP) 
program to rebuild and/or upgrade selected systems, such that com- 
bat capabilities are maintained and maintenance costs are kept af- 
fordable. ^ To date, the Army plans to rebuild or upgrade 17 sys- 
tems—including the Ml Abrams, M2 Bradley Fighting Vehicle, M88 
Recovery Vehicle, and other systems that are expected to remain in 
the inventory for the next 15 to 20 years (Brownlee and Keane, 2002; 
Army Recapitalization Management, 2003). These modernization 
plans continue to evolve, however. To help determine the scale of 

^Rebuilding consists of efforts to restore a system to like-new condition. Upgrading is 
adding components (or replacing old components with new ones) that increase a 
system's warfighting capability (Gourley, 2001). 
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RECAP required to maintain the desired level of operational readi- 
ness capability, and to facilitate RECAP program design, statistical 
analyses of the relationship between age and Army equipment fail- 
ures are needed. 

This report describes a RAND Arroyo Center study, sponsored by the 
Office of the Assistant Secretary of the Army for Acquisition, Logis- 
tics, and Technology (OASA[ALT]), on the impact of age on the Ml 
Abrams mission-critical failure rate. The Ml Abrams is of particular 
interest because it is often considered the centerpiece of the Army's 
heavy ground forces, because it has a high average fleet age that will 
continue to advance, and because it is scheduled to remain a key 
part of the force for as many as 30 more years. Consequently, it has 
been one of the key systems being targeted by the RECAP program. 

RESEARCH QUESTIONS 

The four research questions in this study are as follows: 

1. What is the relationship between age and the Ml Abrams 
mission-critical failure rate?^ 

2. How is the Ml failure rate related to other factors, such as usage 
and location-specific factors? 

3. If there is a significant relationship between age and the Ml 
Abrams mission-critical failure rate, which of the various Ml 
subsystems and individual parts generate this relationship, and 
to what degree do they do so? 

4. How can statistical models of such relationships inform RECAP 
decisions and planning? 

Subsequent studies will address the same questions for other critical 
Army ground systems. 

^A mission-critical failure is defined in this study as one that makes an item not 
mission capable, as indicated by the item's technical manual and subsequently 
reported by its owning unit. Mission-critical failures are also called deadlining events. 
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STUDY DESIGN 

To address the research questions, we conducted two "substudies" at 
the individual tank level of analysis. In substudy 1 (the Tank Study) 
we assessed the impact of age, location, and usage on individual tank 
failures. In substudy 2 (the Subsystem Study) we assessed the impact 
of tank age, location, and usage on tank subsystem failures. Sub- 
systems included actual subsystems, such as fire control, as well as 
part technology groups, such as basic hardware. As an additional 
segment of the Subsystem Study, we assessed the impact of tank age, 
location, and usage on tank part failures, where parts (subsystem 
components such as transmissions and pumps) were placed into 
price categories ranging from low to very high. The samples for the 
two substudies included 1,567 tanks and 1,480 tanks, respectively,^ 
which includes the tanks in the Army's six active heavy divisions dis- 
tributed across what we categorized as six different geographic areas: 
Germany, Georgia, Korea, Kansas, Colorado, and Texas. 

The age, location, usage, and failure data came from Army mainte- 
nance database extracts from April 1999 through January 2001.* Our 
primary analytical techniques included imputation of missing data 
and negative binomial regression. It should be noted that data on the 
maintenance history of each tank prior to the beginning of the study 
period were not available. Hence, only the ages of the tanks them- 
selves, and not their components, were known. 

RESULTS 

The study provides preliminary support for the hypothesis that age is 
a significant predictor of Ml failures, as are usage and location. The 
models suggest that Ml age has a positive log-linear effect that is 
consistent with a 5 ± 2 percent increase in tank failures per year of 
age. For a given location, usage, and time period, this equates to a 14- 

^The sample in the Subsystem Study included fewer tanks because we lacked 
complete data on 4th Infantry Division M1A2 subsystem failures. 

^Failure data came from Standard Army Maintenance System-2 (SAMS-2) ahoOli and 
aho02i files archived in the Integrated Logistics Analysis Program (ILAP), and age, 
location, and usage data come from The Army Maintenance Management System 
(TAMMS) Equipment Database (TEDB). Unit price data for tank parts came from 
Federal Logistics (FedLog) database extracts for January 2003. 
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year-old tank having about double the expected failures of a new 
tank. This conclusion only applies to the first 14 years of a tank's life, 
since most tanks in the study were 14 years old or younger at the 
time of the study, (Only two tanks in the dataset were 15 years old.) 
The conclusion may or may not hold beyond that point; this can be 
determined as the Army's tank fleet continues to age. In the mean- 
time, it is risky to assume that this compound annual growth rate in 
failures applies beyond the age range of our dataset. 

Usage appears to have a log-quadratic effect on the mean failures of 
tanks; this implies that as tank usage during a year increases, the 
expected failures increase, but the rate of increase continually slows 
as usage increases (in the range of peacetime, home-station usage). 
Again, this conclusion is only valid within the range of the data—up 
to approximately 3,000 kilometers in peacetime operations. At some 
point the usage effect may become linear, with each one-kilometer 
increase in usage producing the same increase in expected failures. 

The magnitude and shape of the observed effects—particularly the 
relationship between age and failures—differ across tank sub- 
systems. The electrical, hardware, hydraulic, and main gun sub- 
systems experienced larger absolute failure rate increases due to 
aging than the chassis, power train, and fire control subsystems. The 
chassis, hardware, hydraulic, and main gun subsystems experienced 
the greatest relative increases due to aging. Because the electrical 
subsystem had a high initial (age-0) failure rate, the relative increase 
in its failure rate was low, despite a high absolute increase. Because 
the chassis subsystem had a low initial failure rate, the relative in- 
crease in its failure rate was high, despite a low absolute increase. 
Also, for some subsystems the effect of age diminished or disap- 
peared after tanks reached a certain age, which is probably an indi- 
cation that the age was beyond the normal wear point for the sub- 
system's components. The point at which failures no longer increase 
with age for a subsystem (or part) or actually start to decrease reflects 
that point at which the peak wearout age region has been passed and 
sufficient fleet renewal for the subsystem (or part) has occurred to 
reduce the effective age of the fleet with respect to that subsystem (or 
part). 

For the fire control subsystem, our data suggest an aging effect but 
also a possible effect with respect to tank variant. (Fully isolating 
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these two effects was not possible, since age and tank variant are 
confounded.) MlA2s, which are younger than MlAls, have different 
types of fire control components than MlAls—in particular, digital 
electronic line replaceable units (LRUs), rather than analog LRUs. 
The data suggest that the like-new failure rate of M1A2 fire control 
components is higher than that of fire control components in rela- 
tively young M lAl s. 

Supplementary analyses of subsystem part failures and the unit 
prices of those parts provided additional information about the 
drivers of aging effects. Specifically, aging effects tended to be 
stronger for low-priced parts than for high-priced parts. 

Although not a focus of this study, the effect of location is notewor- 
thy. Some locations had significantly more tank failures than did 
others, after controlling for usage and age. This could be due to dif- 
ferent maintenance practices, climate, terrain, training plans, and 
failure-reporting practices. 

IMPLICATIONS 

Consistent with private industry fleet management principles. Army 
leaders have long believed that older tanks have higher failure rates 
than newer ones, which increases maintenance demands and 
stresses operational readiness. However, supporting statistical evi- 
dence has been lacking. This study provides such evidence, demon- 
strating that increasing age, after accounting for usage and location 
effects, tends to raise Ml failure rates (given the current Army main- 
tenance regime). Although the study is cross-sectional (incorporating 
one year of data from tanks), its findings—and the results of sensitiv- 
ity analyses involving additional data and tests—provide initial 
quantitative support for several conclusions. Specifically, it is rea- 
sonable to conclude that, without modernization, time (or age) will 
pose a threat to operational readiness and increase the demand on 
resources. 

Another important finding is that age is harder on some subsystems 
than on others. Moreover, within subsystems, age has different ef- 
fects on different components. Knowledge of these patterns may 
help RECAP planners determine which subsystems and components 
should be rebuilt and which should receive higher priority in such ef- 
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forts. Further, the study indicates which subsystems and compo- 
nents are likely to drive the failure rate of new tanks—specifically, fire 
control, electrical, and power train; whether new or old, these com- 
ponents constitute reliability "problems." This information suggests 
where upgrade initiatives such as engineering redesign might have 
the biggest impact. 

Further exploration of the source of age effects on the Abrams failure 
rate yields valuable insights into the aging problem. Much of the age 
effect tends to result from what are, in the Abrams, relatively low- 
cost components, so the age effect on operations and maintenance 
cost (the budget account used to pay for spare parts) is likely to be 
less than its effect on readiness and workload. These components are 
typically simple parts that have dominant failure modes associated 
with wear-and-tear. The expensive parts, in contrast, tend to be more 
complex, with many different failure modes. Increased component 
failures increase the maintenance workload burden. Since Army 
maintainers are not paid according to the amount of maintenance 
they perform and do not receive overtime, this does not affect the 
Army's cost structure. Rather, it can affect maintainer quality of life 
when the workload necessary to maintain operational readiness 
increases substantially. 

Additionally, there are potential implications for force structure and 
future operational readiness. Once tank age reaches a certain point, 
the maintenance system may no longer be able to supply a satisfac- 
tory level of operational readiness—even with workarounds such as 
controlled exchange, necessitating replacement or substantial re- 
build or acceptance of lower readiness possibly combined with in- 
creased maintenance capacity. There is some indication that a por- 
tion of the active Army's tank fleet has already reached this point, 
causing isolated MlAl operational readiness problems. For example. 
Fort Riley units, with the oldest tanks in the Army's active inventory, 
are the only active units that consistently struggle to meet the Army's 
operational readiness rate goal for tanks.^ At the Army's National 
Training Center (NTC), tank battalions employing relatively old 
MlAls (both NTC-owned and from home stations) averaged just 74 

^From 1999 to 2001, Fort Riley MlAl operational readiness averaged 88.05 percent, 
wliile the active force MlAl average was 90.75 percent, based on monthly readiness 
reports extracted from the Logistics Information Database. 
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percent operational readiness over the course of rotational training 
events from fiscal years 1999 through 2001; 4 of the 22 battalions for 
which data are available achieved less than 70 percent, a figure often 
considered the breakpoint for combat effectiveness.^ This contrasts 
with an average of 83 percent for battalions with relatively new 
MlA2s. Repair time for the two groups was similar, with a difference 
in failure rates accounting for the difference in operational readiness 
rate. Thus, for the Abrams fleet, age most likely produces gradual 
workload increases, possibly resulting in decreasing soldier quality of 
life and declining operational readiness, and it generates a buildup of 
deferred financial cost that emerges in the form of programs such as 
RECAP. 

^The NTC metrics are based on manually collected data provided by NTC observer- 
controllers (OC) to one of the authors. Each day, OCs collocated with tank platoons 
report the operational readiness status and failure information to the Forward Support 
Battalion Support Operations Officer OC, who records the information. 
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Chapter One 

INTRODUCTION 

Equipment reliability has become a high priority of managers in both 
the private and public sectors. The term has multiple definitions, but 
the most widespread one is the probability of performing an in- 
tended function, for a given interval, under prescribed conditions 
(HilHer and Lieberman, 1986; Omdahl, 1988; Stevenson, 1993; Morris 
et al., 1995). Consequences of poor reliability, manifested as high 
failure rates, can range from minor inconvenience to catastrophe. 
They include financial costs, essential function or mission-capability 
losses, and safety consequences. In the Armed Forces, where weapon 
systems are technology-intensive and used under life-threatening 
conditions, equipment failure can have particularly severe penalties 
(Alexander, 1988). Many believe that the age of equipment con- 
tributes to failures (Gansler, 1999; United States General Accounting 
Office, 2001), and with budget constraints forcing longer equipment 
life cycles, Army officials suspect that aging systems are impairing 
readiness and increasing financial costs. However, the effects of age 
on Army equipment have not been quantified and are therefore 
poorly understood. Accordingly, this study begins an investigation, 
conducted by RAND Arroyo Center, to assess the impact of age on 
weapon system failure rates and the resulting consequences. The 
focal weapon systems are U.S. Army ground equipment. 

Interest in the age-reliability relationship has grown steadily over the 
past century. Prior to World War II, the simplicity of equipment 
made repairs straightforward and inexpensive (Moubray, 1997). 
Historical records suggest that, in addition, the military did not keep 
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vehicles for long periods.' As a result, reliability and the effects of age 
received little attention. With the exception of a few material fatigue 
studies (e.g., Weibull, 1939), approaches to the subject were "largely 
intuitive, subjective, and qualitative" (Blischke and Murthy, 
2000:19) .During World War II, however, the labor shortage combined 
with productivity demands led to more dependence on complex 
technology and systems (Burrill and Ledolter, 1999; Moubray, 1997). 
Overall weapon-system-level reliability suffered, leading to higher 
weapon system failure rates; consequently, keeping military systems 
operational began to consume resources at a higher rate and raised 
concerns about cost (Barringer, 1998:4). Additionally, downtime be- 
came a significant issue. Prompted by these diificulties. Army, Navy, 
and Air Force officials appointed committees to address reliability. 
To coordinate the efforts of these committees, the Department of 
Defense (DoD) established the Advisory Group on Reliability of 
Electronic Equipment (AGREE) in 1952 (Kapur and Lamberson, 
1977), The AGREE report in 1957 led the DoD to establish standards 
for such activities as reliability testing, program management, and 
prediction, and the field of reliability engineering emerged (Kales, 
1997; O'Connor, 1998). 

In the first decade following the AGREE report, empirical papers and 
texts (e.g.. Gosling, 1962; Krohn, 1969; Machol, Tanner, and Alexan- 
der, 1965) advanced the notion that age-failure relationships were 
best described by one of the two curves in Figure 1.1. The first curve 
displays a constant or slowly increasing failure probability, followed 
by a wear-out region with a rapidly increasing failure probability. The 
second is commonly known as the "bathtub curve," which depicts a 
"burn-in" or infant mortality period, a constant failure probability, 
and then a wear-out region (Moubray, 1997; Nowlan and Heap, 
1978:46), 

Preventive or scheduled maintenance programs were, for many 
years, designed with one of those two conditional probability curves 

^Interview with Timothy Ramey, July 2001. Ramey's research suggests that the retire- 
ment age of Air Force aircraft has increased steadily between 1932 and 1995. He 
cautions that some of the early data may be missing. But as he also points out, "Even 
allowing for the possibility that records prior to 1946 may be missing, the trend in 
design service lives is clear; the Air Force has been operating its oldest designs for 
roughly 6 months longer each year." 
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Figure 1.1—Hazard Functions with Pronounced Wear-out Regions 

(or hazard functions) in mind (Harrington, 2000). Such programs 
would take equipment out of service for maintenance at regular in- 
tervals or for overhaul, even if it did not show signs of wear 
(Robinson, Anderson, and Meiers, 2003). 

In the late 1960s, an analysis of United Airlines failure data chal- 
lenged the notion that most equipment could be characterized by 
the curves in Figure 1.1, with their pronounced wear-out regions. 
Analysts found that the majority of aircraft parts had hazard func- 
tions represented by the curves in Figure 1.2 (Moubray, 1997; 
Nowlan and Heap, 1978:46). This was especially true for complex 
items, those subject to many types or modes of failure (Nowlan and 
Heap, 1978:37). Unless they had a dominant failure mode, complex 
items generally were found to lack wear-out characteristics (p. 48) .^ 

^A dominant failure mode is one that accounts for a large percentage of an item's 
failures (Nowlan and Heap, 1978:38). Like most simple items, complex items with 
dominant failure modes do tend to reach a point at which their failure probability 
increases rapidly with age. Most complex items, however, experience widely 
distributed failure modes; thus, they often do not reach a wear-out region. Many types 
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Figure 1.2—^Hazard Functions Without Pronounced Wear-out Regions 

These results first appeared only in civil aviation reports, but a 
decade later they reached a broader audience via a seminal publica- 
tion by Nowlan and Heap (1978). 

The United Airlines findings led to the development of Reliability- 
Centered Maintenance (RCM), the idea that a maintenance regime 
should be based on the specific failure characteristics (e.g., patterns, 
causes, modes, criticality, detectability) associated with a system/ 
component under review (Moubray, 1997; Nowlan and Heap, 1978; 
Robinson, Anderson, and Meiers, 2003).^ Recognizing that a variety 

of "overstress" conditions, other than those related to wear, can cause failures at 
random points in an item's life. Alternatively, the various failure modes could experi- 
ence different wear-out regions, none of which is dominant. Thus, the hazard rate 
curve for complex items often reflects the convolution of many different hazard rate 
curves for different types of failure modes. 

^Formally defined, Reliability-Centered Maintenance is "a process used to determine 
the maintenance requirements of any physical asset in its operating context" 
(Moubray, 1997:7). The RCM process involves answering a series of questions about 
an item (Moubray, 1997): What are the item's purpose and performance standards? 
How does it fail? What causes its failures? What are the failure effects? What is the 
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of failure patterns and causes are possible, researchers in the 1980s 
and 1990s continued to analyze empirical data to estimate the haz- 
ard functions of different systems and components (e.g., Mudholkar, 
1995). Commercial and military organizations encouraged and sup- 
ported such efforts. For example, the U.S. Army Materiel Systems 
Analysis Activity (AMSAA) recommended a methodology, including 
field data collection, for developing a replacement strategy for Army 
Tactical Wheeled Vehicles (Streilein, 1984). 

Still, much more can be done. Political and economic changes over 
the past decade have heightened the need for more refined models of 
equipment age and failure rates—particularly in the U.S. Army. With 
less funding for procurement, military services are using weapon sys- 
tems for more years than originally intended (Kitfield, 1997). General 
Paul Kern (2001:5) recently noted that 

the average age of critical systems such as the Abrams tank, AH-64 
Apache, UH-60 BLACK HAWK, CH-47 Chinook, and Bradley 
Infantry Fighting Vehicle will exceed their 20-year expected service 
lives by 2010. The potential exists for the Army to move into the 
second decade of this century with a significant portion of its forces 
incapable of meeting a world-class threat. 

As General Kern's statement indicates. Army leaders intuitively be- 
lieve that age eventually impairs the functioning of equipment, 
harming readiness or requiring substantially more resources to 
maintain readiness. Hence, they have embarked on a program of re- 
capitalization (RECAP), which "involves rebuilding and selectively 
upgrading currently fielded systems to ensure they are operationally 
ready, 'zero-time/zero-mile' systems" (Orsini and Harrold, 2001:2). 
The Army is currently deciding which systems should be rebuilt (i.e., 
restored to like-new condition) and which should be upgraded (i.e., 
given new capabilities) based on the age, cost to maintain, fleet 
readiness, and importance of equipment. 

Some evidence of stresses on the ability to maintain desired opera- 
tional readiness (OR) is already present. Fort Riley's two heavy 

significance of the failures? How can its failures be prevented or predicted? Wfiat 
actions can be taken if prevention and prediction are not possible? RCM is designed to 
help items achieve maximum reliability at minimum cost. 
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brigades, which have the oldest tanks in the active Army, are the only 
two brigades that consistently have trouble meeting the Army's 90 
percent peacetime OR goal for tanks.* More significantly, some units 
with the older MlAls struggle to maintain even 70 percent OR during 
high-intensity training events at the National Training Center (NTC). 
During fiscal years 1999 to 2001, tank battalions vdth MlAls aver- 
aged just 74 percent OR, versus 83 percent for those with newer 
MlA2s. (Average downtimes per failure were similar, with M1A2 
times slightly longer,) Even with the relatively robust supply support 
infrastructure at NTC, four of 22 MlAl-equipped battalions failed to 
achieve a 70 percent average, with a low of 63 percent. The primary 
reason for the difference in the OR rates was a difference in failure 
rates: About 12.4 percent of available MlAl tanks failed each day, 
versus 7.6 percent of MlA2s.5 

Additional quantitative evidence, however, is needed to characterize 
age-failure relationships for systems under consideration for rebuild 
or upgrade. Further knowledge about system failure patterns would 
facilitate and improve RECAP decisions—providing better justifica- 
tion for funding, where merited. The present study aims to provide 
such information by addressing the following research questions: 

1, What is the relationship between age and the Ml Abrams 
mission-critical failure rate?^ 

2, How is the Ml failure rate related to other factors, such as usage 
and location-specific factors? 

3, If there is a significant relationship between age and the Ml 
Abrams mission-critical failure rate, which of the various Ml 

*From 1999 to 2001, Fort Riley operational readiness averaged 88,05 percent, while the 
active force average wras 90.75 percent, based on monthly readiness reports extracted 
from the Logistics Information Database, 

^The NTC metrics are based on manually collected data provided by NTC observer- 
controllers (OC) to one of the authors. Each day, tank platoon OCs collocated with the 
platoons report the OR status and failure Information to the Forward Support Battal- 
ion Support Operations officer OC, who records the information, 

®A mission-critical failure is defined in this study as one that makes an item not 
mission capable, as indicated by the Item's technical manual and subsequently 
reported by its owning unit. Mission-critical failures are also called deadlining events. 
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subsystems and individual parts generate this relationship, and 
to what degree do they do so? 

4.   How can statistical models of such relationships inform RECAP 
decisions and planning? 

Our analysis focused initially on the Ml Abrams, for several reasons. 
First, it is one of the key systems in Army equipment readiness re- 
porting. Second, it plays a central role in armored combat, often 
being considered the centerpiece of the Army's heavy ground forces. 
Third, the already-aging Ml fleet is projected to continue serving the 
Army for quite some time—perhaps 30 years or more (Konvwnski and 
Wilson, 2000). Ml maintenance is expensive, in terms of both parts 
cost and maintenance personnel cost. Fourth, the availability of Ml 
data prompted us to begin with the Abrams. Subsequent studies will 
focus on other critical Army ground systems that cover a broad range 
of technologies, complexity, and missions. *" 

As mentioned earher, the consequences of equipment failure tend to 
fall into three categories: financial costs, function/mission losses, 
and safety. This research focuses on mission-critical failures, not cost 
or safety. It does, however, provide insights with regard to the finan- 
cial cost implications, and it lays some of the groundwork 
(conceptual and data preparation) for related cost and safety studies. 

In Chapter Two we describe the study methodology. Chapter Three 
then summarizes our findings, and Chapter Four discusses implica- 
tions of those findings. 

^The currently planned analyses are limited to ground systems because the requisite 
data for the methods applied in this study are not widely available for aviation and 
missile systems. 



Chapter Two 

METHODOLOGY 

DATA SOURCES 

Data for this study came from several sources. Tank type, year-of- 
manufacture, odometer readings, and site information—i.e., the 
tank's division, location, battalion, and company—were from a 
database called TEDB. TEDB refers to the TAMMS Equipment 
Database. (TAMMS is The Army Maintenance Management Sys- 
tem.) ^ Missing year-of-manufacture data was supplemented by 
fielding dates reported by selected units. Tank failure records came 
from the Equipment Downtime Analyzer (EDA) (Peltz et al., 2002),^ 
which incorporates data from the Standard Army Maintenance 
System-2 (SAMS-2) daily deadline reports (026 prints). Data on tank 
part prices came from the Federal Logistics (FedLog) database. 

SAMPLE CHARACTERISTICS 

The study sample included tanks from the Army's six active divisions 
categorized into six locations defined by geographic regions. After 
data refinement (see the subsection "Data Refinement Techniques" 
below), our sample size was 1,567. Approximately 1,162 tanks were 
MlAl variants, and 405 were newer M1A2 variants. Table 2.1 shows 
the number and types of tanks by location. 

^The Logistics Support Agency (LOGSA) extracted and forwarded the TEDB informa- 
tion we needed. 

^Tlie EDA is a new information system decision support tool, developed by RAND 
Arroyo Center and now implemented by the Army in the Global Combat Support 
System-Army, that facilitates the diagnosis of equipment downtime. 
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Table 2,1 

Number of M1 Tanks in Sample by Location and Division 

Location 
Code Location Division(s) 

Number of 
MlAl Tanks 

Number of 
M1A2 Tanks 

1 Fort Hood, TX 1st Cavalry (ICAV) 
4th Infantry (4ID) 

184 405 

2 Fort Carson, CO 4ID 58 — 

3 Korea 2nd Infantry (2ID) 141 — 

4 Europe 1st Infantry (IID) 
1st Armor (IAD) 

355 — 

5 FortRiley.KS IID 
IAD 

175 

6 GA 3rd Infantry (3ID) 249 — 

NOTE; 3ID is stationed at Fort Stewart and Fort Benning, both of which are in Georgia. 

^EDA data collection began in April 1999 for the 1st Cavalry Division, October 1999 for 
the 4th Infantry (Mechanized) Division, November 1999 for the 3rd Infantry 
(Mechanized) Division, February 2000 for the 1st Armor Division and 1st Infantry 
(Mechanized) Division, and April 2000 for the 2nd Infantry (Mechanized) Division. 
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For some tanks, the first year of data—hereafter referred to as the 
study period—began in 1999, and for others it began in 2000. We took 
the study period into account when computing tank age (see the 
subsection "Tank Study Variables" below). 

Figures 2.2 through 2.4 show the distribution of age by location. Fig- 
ure 2.5 shows the distribution of accumulated usage by location. 
Accumulated usage was the number of kilometers traveled by a tank 
during its study period. As Figure 2.5 indicates, usage varied greatly 
among locations. 

In summary, tanks had many months of data, spanned a range of 
ages, and came from multiple settings with distinct usage patterns. 
However, the ages of MlAls and MlA2s did not overlap, preventing 
the isolation of tank variant effects from other effects. 

MEASURES 

Two "substudies," each at the individual tank level of analysis, 
comprised the overall study: 

1. an assessment of factors affecting M1 failures, and 

2. an assessment of factors affecting Ml subsystem failures. 

In substudy 1, hereafter called the Tank Study, we assessed the im- 
pact of age, location, and usage on individual tank failures. In sub- 
study 2, hereafter called the Subsystem Study, we assessed the impact 
of tank age, location, and usage on tank subsystem failures. Below we 
describe the key variables in these substudies. 

TANK STUDY VARIABLES 

System Failures 

In the Tank Study, the outcome variable was a tank's total number of 
mission-critical failures during the study period. Repair records 
showed each date on which the tank became inoperable. A simple 
count of those dates yielded the number of deadlining failures. 
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Age 

Tank age was, in most cases, computed using year of manufacture 
(Y0M).4 Because YOM data were not available in the TEDB for 
MlA2s in the 1st Cavalry and 4th Infantry divisions, we used fielding 
dates instead. The formula for tank age is shown below: 

Age = study year - YOM or fielding date, 

where the study year was either 1999 or 2000, depending on the tank. 
Because we defined age in terms of YOM of the entire tank, the age 
variable does not necessarily reflect the age of tank components. 
Many tank components may have been replaced or refurbished 
during a tank's lifetime. However, data on the replacement history or 
ages of individual tanks' components are not available. Thus, any age 

^All M1A2 tanks were younger than MlAl tanks, so tank type was confounded with 
age. The correlation between tank type and age was r = .90 (p < .0001). Such a high 
correlation precluded controlling for tanlc type in our analyses. 
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effects we observe are those that appear despite the component 
renewal histories of the tanks over their entire service lives prior to 
the study period. 

We mean-centered the age variable to reduce multicollinearity 
problems that occur when first-order and higher-order terms (e.g., 
age and age-squared) are included in the same regression (Aiken and 
West, 1991). This step involved transforming the age variable by 
subtracting the mean tank age. 

In addition to serving as a predictor in our models, the age data pro- 
vided a bit of guidance in the selection of other model variables. 
Originally, we planned to include initial odometer reading, i.e., the 
first reading during a tank's study period, as a predictor that would 
serve as another type of "age" indicator.^ However, plots of initial 
odometer readings versus age revealed a data-quality issue: Possibly 
due to odometer resets, the expected relationship between initial 
odometer reading and age was not apparent. Figures 2.6 and 2.7 
illustrate this data problem, which was a greater issue for MlAls than 
MlA2s. The patterns in the graphs are consistent with a situation in 
which, as time progresses, more and more tanks have reset odome- 
ters from maintenance actions. The percentiles on the graph indicate 
the percentage of tanks by age with an odometer reading less than or 
equal to the point on the y-axis. Up to 12 years of age. Figure 2.6 
shows a fairly linear year-to-year increase at the 90th and 95th per- 
centiles of usage. The 75th percentile time series is fairly linear until 
age 9, the 50th to age 8 or 9, the 25th to 8, and the 10th to 7. This sug- 
gests that by age 13, most tanks have had their odometers reset at 
least once, 75 percent have their odometers reset by age 10, between 
25 and 50 percent by age 9, and so forth. 

This problem prevented us from including initial odometer reading 
in the model. Still, changes in odometer readings served a purpose in 
our study: They allowed us to compute tank usage during the study 
period. 

^If the first reading was greater than 50,000 km, we checked subsequent monthly 
readings until we found a valid one to use as the initial value. The Army funds tank 
usage at 800 miles (1,290 km) per year. At 14 years of age (the maximum age in the 
study), this implies an accumulated usage of 11,200 miles (18,065 km). Readings 
exceeding 50,000 km were therefore considered infeasible. 
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Accumulated Usage During the Study Period 

For each tank, accumulated usage was the total distance traveled by 
the tank during its study period. Through a data-filtering technique 
(and imputation techniques that will be described later), we were 
able to derive accumulated usage (in kilometers) from monthly 
odometer readings^ despite reset odometers and data-quality prob- 
lems with odometer readings. When a tank's odometer reading from 
month n + 1 was smaller than its odometer reading from month n, 
we deleted the month n + 1 reading and treated it as a missing data 
point. Similarly, when the month n + 1 reading exceeded the month 
n reading by more than 1,000 km, we deleted the month n + 1 read- 
ing. Upon completing this filtering process, we computed monthly 
usage as follows: 

Usage during month n - odometer reading for month n + 1 

- odometer reading for month n. 

To get a tank's accumulated usage during the study, we summed its 
monthly usage values. Just as we transformed the age variable, we 
transformed the accumulated usage variable via mean centering. 

Updays 

This variable captured the total number of days a tank was available 
to fail—i.e., those study period days in which it was "up" or opera- 
tive. 

Updays = number of days in tank's study period 

- number of days tank was down during study period. 

Tanks that are down most of the time may have low failure counts 
simply because they have less opportunity to fail. Thus, it was impor- 
tant to control for this factor. 

^Army units report odometer readings as of the 15th of each month. 
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Location 

To control for the combined effects of different environmental con- 
ditions, training schedules, maintenance practices, and command 
policies, we included location as a predictor. (Data were not available 
to enable the isolation of each of these factors.) As Table 2.1 indi- 
cates, there were six possible locations; hence, we used five dummy 
variables to capture the location of each tank in the sample. 

SUBSYSTEM STUDY VARIABLES 

Subsystem Study variables were identical to Tank Study variables ex- 
cept that the key outcome was subsystem failures, rather than system 
failures. In a secondary analysis delving further into subsystem fail- 
ures, the outcome variable was part failures, where parts were sub- 
system components classified into price categories. 

Subsystem failures. Based on the parts ordered for repair, each Ml 
system failure was classified into two tiers of categories: (1) hull, tur- 
ret, or either, and (2) chassis, power train, fire control, main gun, 
electrical, hardware, hydraulics, and miscellaneous.^ Categories in 
the second tier are subsets of categories in the first tier. Specifically, 
chassis and power train are types of hull failures; fire control and 
main gun are types of turret failures; and electrical, hardware, hy- 
draulics, and miscellaneous can be either hull or turret failures. If the 
parts ordered for a repair fell into multiple subsystem categories for a 
given tier, then the system failure counted as more than one subsys- 
tem failure. For example, suppose a repair required two turret parts: 
a fire control part and a main gun part. In that case, we counted the 
repair as a turret failure at the first tier and as fire control and main 
gun failures at the second tier. 

For each tank, we computed the total number of failures in each cat- 
egory during the study period. This process yielded 11 subsystem 

^Tliis set of categories was based on Federal Supply Class (FSC) codes associated with 
parts ordered for the repairs. The FSC consists of the first four digits of a part's 
National Stock Number (NSN). FSCs were mapped to the listed categories, and 
maintenance personnel in the 1st Cavalry and 4th Infantry divisions reviewed the 
mappings. Originally there was one additional second-tier category, communications, 
but we found no part orders in that category during the study period. 
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failure variables. Our analyses focused on 9 of these, excluding fail- 
ures labeled "miscellaneous" or "either." 

Part failures. We also classified Ml part orders into four price cate- 
gories. Low-priced parts were those having a unit price of $100 or 
less; medium-priced parts were those having a unit price greater 
than $100 but less than or equal to $1,000; high-priced parts were 
those having a unit price greater than $1,000 but less than or equal to 
$10,000; and very-high-priced parts were those having a unit price 
above $10,000. 

For each tank, we computed the total number of part failures in each 
price category during the study period. This process yielded four part 
failure variables. 

DATA REFINEMENT TECHNIQUES 

Due to data-quality issues, multiple refinement techniques were 
necessary. A previous section mentioned several data-filtering pro- 
cesses that discarded faulty odometer readings. In this section we 
describe additional techniques employed. 

Exclusion of Observations 

Tanks that were down (inoperative) during most of their study period 
were problematic for our analyses. Such extended downtime signifi- 
cantly reduced the tanks' usage and failure opportunities, potentially 
distorting our findings. Our final sample of 1,567 tanks therefore ex- 
cluded 26 tanks that were down for more than 50 percent of their 
study period. Many of these were probably serving as the tank 
equivalents of "hangar queens," with their parts used to provide 
parts for other tanks. 

Imputation 

Imputation of usage data. Many tanks in the sample were missing 
some monthly usage data.^ About 42 percent of the tanks lacked us- 

^It is important to clarify our interpretation of missing usage data. Recall that some 
tanks had 12 months of usage data while others had fewer. A tank with less than 12 
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age data for at least one month during their study period. On aver- 
age, tanks were missing 2.2 months of usage data. Such gaps dimin- 
ished the accuracy of the accumulated usage measure. Thus, we used 
imputation, a technique that compensates for missing data by as- 
signing values that "fill in the blanks." 

Our primary imputation approach was mean substitution. This 
common technique entails using an auxiliary variable to divide a 
sample into a set of classes, and "assigning the class mean... to all 
nonrespondents in each class" (Brick and Kalton, 1996:228) .^ In the 
present study, the auxiliary variable was the tank's company.i" When 
a tank was missing usage data from a particular month, we gave it the 
company mean for that month—i.e,, the average usage of other tanks 
in the same company. 

AB imputed mean should, ideally, come from a group of tanks with 
similar usage patterns. Anticipating that usage among tanks would 
be most consistent within a platoon, we initially considered using 
platoon means rather than company means for imputation. How- 
ever, we ultimately rejected the use of platoon means because(l) 
platoon information was incomplete'^ and (2) nested Analysis of 
Variance (ANOVA) suggested that, in general, tanks in the same 
company tend to have similar usage. (Given the lack of complete pla- 

months of usage data was not necessarily missing any information. The tank may 
simply have been brand new—or may have been replaced. For a tank to have one 
month of missing usage data, the following had to occur: The tank's serial number, 
NSN, and unit identifier code (UIC) appeared in two consecutive monthly odometer 
data files (e.g., March 2000 and April 2000), but one of tliose odometer readings was 
absent or discarded as being unreasonable (e.g., had an extra digit due to a typograph- 
ical error). Hence, the tank was missing one month of usage information (March 16 
through April 15). 

^'Although widely utilized, mean substitution does not preserve the distribution of the 
variable on which it is performed. 

l^Tank companies have 14 tanks: 4 tanks in each of 3 platoons and 2 headquarters 
section tanks. 

^^The second digit of a tank's bumper number identifies its platoon (or if it is in the 
headquarters section). Because bumper numbers came from SAMS-2 repair records, 
only tanks that failed had platoon identifiers. The TEDB database only identifies tanks 
down to the company level. 
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toon information, the ANOVA found tiie company to be a better dis- 
criminator than either the platoon or battalion.) 12 

Occasionally, an entire company of tanks was missing data for a par- 
ticular month. When this occurred, mean substitution was not pos- 
sible, so we took an alternative route. Specifically, we subtracted the 
tank's minimum odometer reading from its maximum odometer 
reading during the study. If this figure was less than 2,000 km, it 
became the tank's accumulated usage.^^ For example, if a tank had 
an initial odometer reading of 10,000 km in September 1999 and a 
final odometer reading of 10,800 km in August 2000, its accumulated 
usage was 800 km. 

Imputation of age data. Originally, before data refinement, there 
were 1,636 tanks in our sample. Of those, 83 lacked age data. To re- 
duce the amount of missing age data, we used deductive imputation, 
the process of deducing the value of a variable based on the values of 
other variables. As Brick and Kalton (1996:226) note. 

Deductive imputation is applicable when a missing response can be 
deduced from responses to other items. For example, a person 
under 16 years may be imputed to be single and a university teacher 
may be imputed to have a college degree. Deductive imputation is 
often considered to be editing rather than imputation. 

Because tank serial numbers were assigned in order of production, 
we were able to deduce the YOM of some tanks from their serial 
numbers. When a tank's serial number fell in the middle of a se- 
quence, we inferred its YOM from that of other tanks in the se- 

'^^We ran 21 nested ANOVAs, one for each month between May 1999 and January 
2001. Tank usage during a particular month was the dependent variable, and the 
independent variables were the platoon, company, and battalion corresponding to 
each tank. We used nested ANOVA because platoon was nested within company, and 
company was nested within battalion. In each ANOVA the company variable was 
significant at p < .0001. 

^^Tanks rarely travel more than 2,000 km per year. Indeed, of the 1,214 tanks in our 
sample that did not require the second type of usage imputation, only 11 had an 
accumulated usage exceeding 2,000 km. 

Ordinarily, odometer resets might affect the validity of this second type of imputation; 
the 2,000 km filter minimizes the impact of such resets, however. 
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quence. Once we followed this procedure, the number of tanks with 
missing age data fell to 69—hence the final sample size of 1,567. 

ANALYSES 

Because of the nature of the dependent variable in the Tank and 
Subsystem Studies, our primary analytical technique was negative 
binomial regression; however, we used additional techniques in our 
sensitivity analyses. Conducting multiple analyses allowed us to elicit 
different insights and helped ensure the validity of results. Below we 
describe these analyses in detail. 

Tank Study Analysis 

The Tank Study's outcome measure. System Failures, was a count 
variable. Typically, such data follow a Poisson distribution, in which 
the variance across all observations equals the mean of those obser- 
vations. In some datasets, however, the variance is greater than the 
mean. This feature, called overdispersion, suggests that a negative 
binomial distribution is more applicable. Appendix A provides gen- 
eral descriptions of each distribution. 

Before determining which distribution applied to the failure data in 
this study, we had to consider whether tanks' mean failures changed 
during the study. Typically, longitudinal failure data exhibit non- 
constant means; however, within a one-year period (the timeframe 
of our study), any change in the failure mean is likely to be minimal. 
We therefore assumed each tank's failure rate did not significantly 
vary during its study period. Essentially we are conducting a cross- 
sectional examination of the data instead of a longitudinal one. In 
effect, this breaks the time series into discrete periods within which 
the change in the failure rate is low. Comparing the one-year periods 
at different points in tank life cycles enabled us to examine how the 
failure rate changes over time. 

Next, we began to fit a distribution to the failure data. When the de- 
gree of overdispersion is small, the choice between the Poisson and 
negative binomial distributions may not be clear-cut. Such was the 
case in this study: The Ml failure data were only slightly overdis- 
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persed. Appendix B illustrates and provides a detailed discussion of 
the nature of that overdispersion. 

Given the slight overdispersion, our primary analysis was negative 
binomial regression, but we ran a Poisson regression as a sensitivity 
analysis. Both regressions treated the natural log of mean failures as 
a function of the predictor variables.^^ That is, we appHed a "log 
link," specifying a full quadratic model in the following manner: 

In^ = j8o + A-^i + • • ■ + l^pXp + Ai-^i + • • • + Pppxl + PuXiX2 

''     ^ Pip^i^p "I     ^ Pp-i^p-i^p' 

where JJ. is the mean of Y, system failures during the study period, 
and p is the number of explanatory variables. (For simplification, 
higher-order terms were left out of the equation above.) However, in 
one case we assumed that Fhad a negative binomial distribution, 
and in the other case we assumed that Yhad a Poisson distribution. 

The technique of backward elimination helped us select terms to 
serve as predictors in the model. We began with a model that in- 
cluded higher-order and interaction terms; then, in a step-by-step 
process, we removed those terms that failed to satisfy our criterion 
for remaining in the model.i^ Likelihood ratio tests^^ were utilized 
throughout this process. For the Tank Study, the full model was as 
follows: 

'^^It is possible to treat other transformations of ^, rather than the natural log, as 
functions of the predictor variables in Poisson and negative binomial regressions. 
Howrever, McCuUagh and Nelder (1989) have noted that using the natural log of the 
mean leads to Poisson regression models with desirable statistical properties. The 
natural log is also commonly used in negative binomial regressions. 

^^In the backward elimination process we began with a cubic model and then reduced 
it, to the extent possible. The decision to limit the order of terms was based on 
preliminary data exploration and the need to preserve model interpretability. 

^^As described by Maddala (1988:84), the likelihood ratio test requires computing 
-2ln(l), where X = [max L(9) of restricted model / max L(6) of unrestricted model], and 
L(6) is the likelihood function. (The restricted model has fewer terms than the 
unrestricted model. For example, if one is comparing a model with a cubic term to a 
model without that term, the latter is the restricted model.) The statistic -2\n(X) is 
treated as a x^ with k degrees of freedom, where k is the number of restrictions in the 
model. 
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In (mean tank failures during study period) = 

Po + InCupdays) + ^, (location 2) + ft (location 3) + ^(location 4) + 

^4 (location 5) + ft(location 6) + ft(usage) + ^(usage^) + ft(usage^) + 

A(age) + Ao(age2) + Ai(age^) + ftaCusage x age) + 

A3(usagex age^) + ^J4(usage2x age) 

Note that In(updays) is an offset variable, so it is assigned a coeffi- 
cient of 1. Also, age and usage are mean-centered in this equation. 

To supplement the regressions and facilitate interpretation, we 
plotted predicted mean failures by age and by usage. When generat- 
ing plots of predicted mean failures by age, we assigned updays a 
value of 180, and we assigned the usage variable a value of 375 km, 
the approximate median tank usage during 180 days. Then, for each 
location, we substituted a set of age values into the regression equa- 
tion to get predicted mean failures, i^ The set of age values was kept 
within the actual age range at each location. For example, because all 
tanks at Location 6 were between six and nine years old, for that lo- 
cation we plotted the predicted mean failures corresponding to ages 
six through nine only. 

To generate plots of predicted mean failures by usage, we set the age 
variable equal to the approximate median at each location, and we 
assigned updays a value of 180, We then substituted a range of usage 
values into the regression equation to get predicted mean failures. 

Diagnostic plots assessed the goodness of fit of the Tank Study 
model, and a cross-validation procedure (Appendix C) assessed the 
model's predictive performance. 

Subsystem Study Analysis 

Like the Tank Study, the Subsystem Study relied on negative bino- 
mial regressions. For each subsystem, the full model was as follows: 

'^As the regression equation shows, this method first yielded the natural log of 
predicted mean failures (since the dependent variable in the regression equation is 
ln(mean failures)), which we then converted to predicted mean failures. 
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ln(mean subsystem failures during study period) = 

Po + In(updays) + j3i (location 2) + /JjClocation 3) + /Jgdocation 4) + 

^4(Iocation 5) + j3s(location 6) + jSgCusage) + j87(usage^) + j88(usage^) + 

/JgCage) +;8io(age2) + ^ii(age^) + AzCusagex age) + 

/3i3(usage x age^) + /3i4(usage2x age) 

Recall that, in addition to nine subsystem failure variables, we had 
four part failure variables (low-, medium-, high-, and very-high- 
priced part failures during the study period) that constituted depen- 
dent variables in our Subsystem Study. In each of these 13 regres- 
sions, the full model was, except for the dependent variable, identical 
to the full model for the Tank Study. Once again, we used backward 
elimination to find the most appropriate model for each subsystem 
or part group. This procedure allowed different subsystems and part 
groups to have distinct regression models.i^ We supplemented the 
regressions with plots of predicted mean subsystem or part failures 
by age and by usage. 

^^For example, depending on their respective likelihood ratio tests, one subsystem 
might warrant a quadratic age term, while another subsystem might not. 



Chapter Three 

RESULTS 

TANK STUDY RESULTS 

Negative binomial regression results for the Tank Study appear in 
Table 3.1. Parameter estimates (regression coefficients) appear in the 
column labeled "P," and corresponding standard errors appear in the 
column labeled "s.e." The "t" column contains Wald t-statistics. 

Both tank age and tank usage were found to have statistically signifi- 
cant effects: Age had a log-linear relationship with mean failures, and 
usage had a log-quadratic relationship with mean failures. We de- 
scribe these effects as "log-linear" and "log-quadratic," rather than 
simply "linear" and "quadratic," because the regression coefficients 
reflect the impact of predictors on the natural log of mean failures. 

Plots of the observed effects facilitate interpretation. Figures 3.1 
through 3.3 illustrate how age and usage were related to predicted 
mean failures. Figure 3.1 shows that predicted mean failures increase 
with age at a compound annual growth rate of about 5 percent (with 
± 2 percent at 95 percent confidence). Figure 3.2 shows 95 percent 
confidence bars for the Location 1 age-failure curve; the bars widen 
at the tail of the curve, as the sample contained fewer tanks at the 
end of the age range. This widening means that predictions based on 
earlier portions of the curve are likely to be more accurate than pre- 
dictions based on the tail region. Figure 3.3 confirms that predicted 
mean failures increase with usage (kilometers driven is a good pre- 
dictor of failures); also, it suggests that as usage increases, failures 
increase at a decreasing rate, which is indicated by the concave form 
of the curves. 

27 
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Table 3.1 

Negative Binomial Regression of Tank Failures on Age, Usage, 
and Location Variables (N = 1,567) 

Tank Failures 

Predictor Variables P s.e. t 

Age .04848000 .00915600 5.30*** 

Accumulated usage .00062840 .00006174 10.18*** 

(Accumulated usage)^ -.00000046 .00000008 -5.35*** 

Location 2 -.38010000 .13090000 -2.90** 

Location 3 -.14110000 .09628000 -1.47 

Location 4 -.49200000 .08355000 -5.89*** 

Location 5 -.27890000 .10840000 -2.57* 

Location 6 -.01741000 .07029000 -0.24 

Null dewance: 1,893.6 on 1,566 degrees of free( 
Residual deviance: 1,753.0 on 1,558 degrees of 
Dispersion parameter: 5.1833. 

iom. 
"reedom. 

NOTE: Continuous predictor variables were mean-centered. Also, In(updays) was 
treated as an offset variable in the regression; this treatment is equivalent to making 
InCupdays) a predictor variable with P=l. 
*p < .05. 
**p<.01. 
***p<.001. 

Although not the focus of this study, it is noteworthy that some loca- 
tions, controlling for age and usage, had more Ml failures than oth- 
ers. The different intercepts of the curves in Figure 3,1 capture dis- 
tinctions among locations. Also note that the intercepts in Figure 3.3 
are greater than zero, meaning that kilometers driven explains only a 
portion of a tank's failures. Consistent with the fact that significant 
numbers of failures were recorded during months with zero usage, 
the model indicates that failures are likely to occur (or at least be 
recorded) during periods of nonuse. Because the only usage-based 
explanatory variable available was kilometers driven, it is likely that 
the positive intercepts also stem from other tank activities, such as 
firing rounds or idling (e.g., running the tank engine while the tank is 
not moving in a defensive position). Such "hidden" explanatory vari- 
ables can generate failures but no increase in kilometers, (These 
variables are termed hidden because they were not available for the 
study,) 
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Figure 3,3—^Predicted Mean Failures (over 180 days) by Tank Usage 

Diagnostic plots—including plots of deviance residuals versus usage, 
age, and fitted values (natural log of predicted mean failures), a nor- 
mal probability plot, and a Cook's distance plot—suggest that the 
data in this study satisfy the model assumptions. The model has a 
slight tendency to overestimate failures, but the amount of overesti- 
mation is negligible. 

Appendix C displays the results of a cross-validation procedure, 
which suggests the model is likely to yield valid predictions with 
other, similar datasets, 

SUBSYSTEM STUDY RESULTS 

The backward elimination procedure yielded different negative bi- 
nomial regression models for different subsystems. Table 3,2 sum- 
marizes age and usage effects on all subsystems. Checkmarks indi- 
cate all terms that appeared in the final model. For example, the Hull 
had log-quadratic age and usage effects on failures. Although only 
Age^, Usage, and Usage^ had significant effects, we have also checked 
the Age column because that term appears in the final model. 
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Table 3.2 

Summary of Subsystem Age and Usage Effects (Terms in Final Model) 

Age Age2 Age3 Usage Usage^ 
Agex 
Usage 

Age^x 
Usage 

Agex 
Usage^ 

Hull / / / / 

Turret / / / / 

Chassis / / / / / / / 

Electrical / / / / / 

Fire control / / /* / / / 

Hardware / / / / / / 

Power train / / / / 

Hydraulic / / 

Gun / / / 
*As will be discussed later, it is possible that the cubic effect seen for fire control could 
be an artifact of combining MlAl and M1A2 data, given that the two variants have 
distinct fire control components with different failure rate characteristics. 

Tables 3.3 through 3.11 present regression results corresponding to 
each subsystem.! xable 3.3 shows the log-quadratic age and usage 
effects on hull failures. Table 3.4 indicates that age had a positive, 
log-linear effect and usage had a log-quadratic effect on turret fail- 
ures. There was also a significant interaction effect of age and usage 
on turret failures. 

Table 3.5 shows that age and usage each had log-quadratic effects on 
chassis failures, and they had interaction effects as well. In the case 
of electrical failures, age had a log-cubic effect and usage had a log- 
quadratic effect (Table 3.6). 

^The Cook's distances for each subsystem were small in magnitude, indicating that 
none of the tanks in the dataset imparted excessive influence on estimation of the 
subsystem model coefficients. Thus, early-life tanks possibly experiencing "break-in" 
or "infantile failure" phenomena are not inducing distortions in the estimated models. 
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In the case of fire control failures, age had a log-cubic effect, while 
usage had a log-quadratic effect (Table 3,7). Age and usage also had 
an interaction effect on fire control failures. As we will discuss later 
(see the subsection "Interpretation of Subsystem Results"), results 
for the fire control subsystem are more likely to be confounded by 
differences in tank type, which we could not include as a control 
variable in this study, than are results for other subsystems. 

Age and usage had separate log-quadratic effects as well as interac- 
tion effects on hardware failures (Table 3,8). Similarly, both had log- 
quadratic effects on power train failures (Table 3,9), Age and usage 
had positive log-linear effects on hydraulic failures (Table 3.10). In 
the case of gun failures, age had a positive log-linear effect while 
usage had a log-quadratic effect (Table 3.11), 

Table 3.3 

Negative Binomial Regression of Hull Failures on Age, Usage, 
and Location Variables (N = 1,480) 

Hull Failures 

Predictor Variables P s.e. t 

Age .01358000 .02524000 0.54 

(Age)2 -.01428000 .00488300 -2.92** 

Accumulated usage .00055160 .00010300 5.35*** 

(Accumulated usage)^ -.00000027 .00000011 -2.40* 

Location 2 .12370000 .18550000 0.67 

Location 3 -.27710000 .14970000 -1.85t 

Location 4 -.64990000 .13200000 -4.92*** 

Location 5 .10440000 .21390000 0.49 

Location 6 -.14950000 .11950000 -1.25 

Null deviance: 1,61L3 on 1 
Residual deviance: 1,504.4 
Dispersion parameter: 8.6( 

,479 degrees of freedom, 
on 1,470 degrees of freedom. 
)32. 

NOTE: Continuous predictor variables were mean-centered. Also, In(updays) was 
treated as an offset variable in the regression; this treatment is equivalent to making 
InCupdays) a predictor variable with ^ = 1. 
tp < .10. 
*p < .05. 
**p<.01. 
***p<.001. 
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Table 3.4 

Negative Binomial Regression of Turret Failures on Age, Usage, 
and Location Variables (N = 1,480) 

Turret Failures 

Predictor Variables P s.e. t 

Age .04762000 .01670000 2.85** 

Accumulated usage .00059670 .00011820 5.05*** 

(Accumulated usage)^ -.00000063 .00000017 -3.76*** 

Age X Accumulated usage .00007645 .00002951 2.59** 

Location 2 -.61180000 .02393000 -2.56* 

Location 3 -.69870000 .18840000 -3.71*** 

Location 4 -.80350000 .15400000 -5.22*** 

Location 5 -.42950000 .19080000 -2.25* 

Location 6 -.29700000 .12540000 -2.37* 

Null deviance: 1,418.0 on 1 
Residual deviance: 1,364.0 
Dispersion parameter: 3.4( 

,479 degrees of free 
on 1,470 degrees of 
554. 

dom. 
freedom. 

NOTE: Continuous predictor variables were mean-centered. Also, In(updays) wras 
treated as an offset variable in the regression; this treatment is equivalent to making 
In(updays) a predictor variable ^mth j5=\. 
*p < .05. 
**p<.01. 
***p<.001. 
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Table 3.5 

Negative Binomial Regression of Chassis Failures on Age, Usage, 
and Location Variables (N = 1,480) 

Chassis Failures 

Predictor Variables P s.e. t 

Age .05929000 .05027000 1.18 

(Age)2 -.03487000 .00998500 -3.49*** 

Accumulated usage .00090160 .00026780 3.37"* 

(Accumulated usage)^ -.00000064 .00000030 -2.13* 

Age X Accumulated usage .00003235 .00007145 0.45 

(Age)^ X Accumulated usage -.00003759 .00001657 -2.27* 

Age X (Accumulated usage)^ -.00000024 .00000011 -2.30* 

Location 2 -.53860000 .03967000 -1.36 

Location 3 -1.24300000 .33590000 -3.70*** 

Location 4 -1.07600000 .24860000 ^.33*** 

Location 5 .10360000 .38520000 0.27 

Location 6 -.38690000 .21710000 -1.78t 

Null deviance: 933.51 on 1,479 
Residual deviance: 849.72 on 1 
Dispersion parameter: 6.1212. 

degrees of freedor 
467 degrees of fre 

n. 
edom. 

NOTE: Continuous predictor variables were mean-centered. Also, ln(updays) was 
treated as an offset variable in the regression; this treatment is equivalent to making 
In(updays) a predictor variable with ^ = 1. 
tp<.10. 
*p<.05. 
**p<m. 
***p < .001. 
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Table 3.6 

Negative Binomial Regression of Electrical Failures on Age, Usage, 
and Location Variables (N = 1,480) 

Electrical Failures 

Predictor Variables P s.e. t 

Age -.00230100 .03887000 -0.06 

(Age)2 .02078000 .00083020 2.50* 

{Age)3 .00379300 .00121000 3.14** 

Accumulated usage .00033780 .00014250 2.37* 

(Accumulated usage) ^ -.00000069 .00000020 -3.37*** 

Location 2 -.80680000 .29530000 -2.73t 

Location 3 -.39890000 .20510000 -1.95** 

Location 4 -.80330000 .17810000 -4.51*** 

Location 5 -1.03400000 .32370000 -3.19** 

Location 6 -.46150000 .17030000 -2.71** 

Null deviance: 1,281.3 on 1 
Residual deviance: 1,227.1 
Dispersion parameter: 2.6; 

,479 degrees of free 
on 1,469 degrees ol 
>1. 

dom. 
freedom. 

NOTE: Continuous predictor variables wrere mean-centered. Also, In(updays) v^as 
treated as an offset variable in the regression; this treatment is equivalent to making 
In(updays) a predictor variable with jS = 1. 
tp<.10. 
*p < .05. 
**p<.01. 
***p < .001. 
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Table 3.7 

Negative Binomial Regression of Fire Control Failures on Age, Usage, 
and Location Variables (N = 1,480) 

Fire Control Failures 

Predictor Variables P s.e. t             1 
Age -.089440000 .05316000 -1.68t 

CAge)2 .03304000 .01120000 2.95" 

(Age)3 .00495300 .00161000 3.08** 

Accumulated usage .0007997 .00020730 3.86*** 

(Accumulated usage)^ -.00000101 .00000028 -3.54"* 

Age X Accumulated usage .00012000 .00004521 2.66** 

Location 2 -.17680000 .36940000 -0.48 

Location 3 -.23640000 .30110000 -0.79 

Location 4 -.89800000 .28070000 -3.20*** 

Location 5 -.76310000 .46680000 -1.64 

Location 6 -.55500000 .24520000 -2.26* 

Null deviance: 1,016.81 on 1 
Residual deviance: 916.06 or 
Dispersion parameter: 2.302 

479 degrees of free 
11,468 degrees of ft 

dom. 
eedom. 

NOTE: Continuous predictor variables were mean-centered. Also, In(updays) was 
treated as an offset variable in the regression; this treatment is equivalent to making 
In(updays) a predictor variable with P=l. 
ip < .10. 
*p < .05 
**p<.01 
***p < .001 
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Table 3.8 

Negative Binomial Regression of Hardware Failures on Age, Usage, 
and Location Variables (N = 1,480) 

Hardware Failures 

Predictor Variables ^ s.e. t 

Age .11020000 .03332000 3.31*** 

(Age)2 -.01773000 .00727700 -2.44* 

Accumulated usage .00069010 .00017430 3.96*** 

(Accumulated usage)^ -.00000041 .00000019 -2.09** 

Age X Accumulated usage -.00002486 .00004556 -0.06 

(Age) 2 X Accumulated usage -.00002350 .00001141 -2.06* 

Location 2 -.85450000 .30720000 -2.78** 

Location 3 -.54990000 .20530000 -2.68** 

Location 4 -.63510000 .16650000 -3.81*** 

Location 5 -.12170000 .27230000 -0.45 

Location 6 .18490000 .16160000 1.14 

Null deviance: 1,398.4 on 1,4? 
Residual deviance: 1,260.3 on 
Dispersion parameter: 4.3714 

9 degrees offreedc 
1,468 degrees of fr 

m. 
eedom. 

NOTE: Continuous predictor 
treated as an offset variable in 
In(updays) a predictor variable 
*p<.05. 
**p<.01. 
***p<.001. 

variables were mean-centered. Also, In(updays) was 
the regression; this treatment is equivalent to making 
with/3=l. 
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Table 3.9 

Negative Binomial Regression of Power Train Failures on Age, Usage, 
and Ixjcation Variables (N = 1,480) 

Power Train Failures 

Predictor Variables fi s.e. t               1 
Age .02112000 .02753000 0.77 

(Age)2 -.01113000 .00530700 -2.10* 

Accumulated usage .00051920 .00012100 4.63"* 

(Accumulated usage)^ -.00000028 .00000012 -2.31* 

Location 2 .28180000 .01953000 1.44 

Location 3 -.11970000 .15810000 -0.76 

Ijjcation 4 -.61030000 .14420000 -4.23*** 

Location 5 .01399000 .23480000 0.06 

Location 6 -.14170000 .13210000 -1.07 

Null deviance: 1,528.9 on 1,479 degrees of freedom. 
Residual deviance: 1,445.1 on 1,470 degrees of freedom. 
Dispersion parameter: 9.84. 

NOTE: Continuous predictor variables v^ere mean-centered. Also, InCupdays) was 
treated as an offset variable in the regression; this treatment is equivalent to making 
InCupdays) a predictor variable with ^ = 1. 
*p<.05. 
**p<.01. 
***p < .001. 



Results    39 

Table 3.10 

Negative Binomial Regression of Hydraulic Failures on Age, Usage, 
and Location Variables (N = 1,480) 

Hydraulic Failures 

Predictor Variables P s.e. t 

Age .14040000 .02028000 6.92*** 

Accumulated usage .00048190 .00009638 5.00*** 

Location 2 -1.05900000 .28000000 -3.79*** 

Location 3 -.42770000 .18860000 -2.27* 

Location 4 -.65970000 .15320000 -4.31*** 

Location 5 -.59500000 .19830000 -3.00** 

Location 6 .05966000 .12910000 0.46 

Null deviance: 1,351.9 on 1 
Residual deviance: 1,274.0 
Dispersion parameter: U.C 

,479 degrees of freee 
on 1.472 degrees of 
)931. 

lorn, 
freedom. 

NOTE: Continuous predictor variables were mean-centered. Also, In(updays) was 
treated as an offset variable in the regression; this treatment is equivalent to making 
In(updays) a predictor variable with j8 = 1. 
*p < .05. 
**p<.01. 
***p<.001. 
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Table 3.11 

Negative Binomial Regression of Gun Failures on Age, Usage, 
and Location Variables (N = 1,480) 

Gun Failures 

Predictor Variables fi s.e. t 

Age .17880000 .02744000 6.52*" 

Accumulated usage .00068350 .00016620 4.11*** 

(Accumulated usage)^ -.00000059 .00000024 -2.51* 

Location 2 -.93860000 .33910000 -2.77** 

Location 3 -.99870000 .28440000 -3.51*** 

Location 4 -.59860000 .19680000 -3.04** 

Location 5 -.92620000 .26680000 -3.47*** 

Location 6 .32090000 .16280000 1.97* 

Null deviance: 1,039.82 on 1,479 degrees of fret 
Residual deviance: 961.84 on 1,471 degrees of 1 
Dispersion parameter: 1.6232. 

;dom. 
reedom. 

NOTE: Continuous predictor variables were mean-centered. Also, In(updays) was 
treated as an offset variable in the regression; this treatment is equivalent to making 
In(updays) a predictor variable with ^ = 1. 
*p<.05. 
**p<.01. 
***p<.001. 

Interpretation of Subsystem Results 

Figure 3,4 displays predicted mean failures versus age for all second- 
tier subsystems at Location 1, When interpreting the figure, it is 
helpful to consider both the absolute and relative change in subsys- 
tem failures with age. In particular, the absolute change represents 
the opportunity for improving the failure rate that might be possible 
for tanks of various ages by systematically replacing selected compo- 
nents with new ones. The difference between the peak failure rate 
and the age-0 (new tank) failure rate captures the absolute change in 
failures with age. (For such examinations we have elected to use the 
first 12 years of data because we have less confidence in the shapes of 
the curves' right tails, which are based on fewer data points.) The 
ratio of the peak rate to the age-0 rate captures the relative change— 
i.e., how much the subsystem degraded relative to its condition at 0 
years of age. For example, chassis has a failure peak of 0.177, which 
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Usage=375 km RAND MR1789-3.4 

Figure 3.4—Predicted Mean Failures of Second-Tier Subsystems by Age 
(Location 1,180 days) 

occurs at 9 years of age. Its failure minimum is about 0.023, which 
occurs at 0 years of age. The difference between the peak and 0-age 
rates is 0.177-0.023, or 0.154. The ratio is 0.177/0.023, or 7.70. By 
illustrating such absolute and relative changes in failures. Figure 3.4 
facilitates comparison of age-failure relationships across subsystems. 
The graph also shows which subsystems drive the failure rate of new 
tanks—specifically, fire control, electrical, and power train—and 
provides information about the contribution of each subsystem to 
the overall failure rate; this information suggests where engineering 
redesign might have the biggest impact. 

The preceding regression tables and corresponding plots demon- 
strate that age is a stronger failure predictor for some subsystems 
than for others. The electrical, hardware, hydraulic, and main gun 
subsystems experienced the greatest absolute failure rate increases 
due to aging. While the model shows a steep increase at the tail for 
fire control, we have less confidence in this portion of the curve be- 
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cause of the limited data discussed earlier. Further study as tanks 
continue to age will be necessary to determine if there really is a 
steep increase at about the 14-year point. (The shape of the curve will 
also be discussed further in the section "Sensitivity Analysis Results" 
below.) 

The chassis, hardware, hydraulic, and main gun subsystems experi- 
enced the greatest relative increases due to aging. Because the elec- 
trical subsystem had a high initial (age-0) failure rate, the relative 
increase in its failure rate was low, despite a high absolute increase. 
Because the chassis subsystem had a low initial failure rate, the rela- 
tive increase in its failure rate was high, despite a low absolute in- 
crease. The chassis' low initial failure rate mutes the overall impact of 
the relative increase in its failure rate. 

Although the power train subsystem had a high initial failure rate, it 
had low absolute and relative failure rate increases due to aging. 
Even this relatively high initial failure rate, though, may be under- 
stated as a result of part-ordering practices. Because of the way many 
units manage tank engines, they often do not order engines against 
non-mission-capable (NMC) work orders; the work order appears on 
the deadline report without any part orders placed against it. Since 
failures are classified based on the parts ordered against NMC work 
orders, power train failures (specifically, those associated with en- 
gine replacements) are probably undercounted in this analysis. This 
is likely to be the case for tanks of all ages. 

The effect of age on fire control failures may, in part, reflect differ- 
ences between the MlAl and M1A2 tanks. Although we could not 
control for tank variant in our regressions (due to its high correlation 
with age), we were able to run separate MlAl and M1A2 analyses. 
These subsample analyses suggest that the fire control curve repre- 
sents a convolution of two distinct failure patterns. The data suggest 
that age generally increases both M1A2 and MlAl failures; however, 
the data also suggest that the digital fire control system of like-new 
M1A2S has a higher failure rate than the analog fire control system of 
like-new MlAls. Because the MlA2s in our sample were all younger 
than the MlAls, the MlA2s influenced the first part of the combined 
fire control curve, while the MlAls influenced the second part. An 
explanation for the cubic shape of the combined curve is that the 
curve starts high to account for M1A2 fire control failures and then 
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Figure 3.5—Predicted Mean Fire Control Failures by Age for the MlAls, 
MlA2s, and Combination of MlAls and MlA2s (Location 1,180 days) 

turns down to account for the lower fire control failure rate in young 
MlAls before turning back up to account for the aging effect.^ Figure 
3.5 displays the M1A2, MlAl, and combined fire control curves. 

Note that even though age had a log-linear effect on tank failures, it 
had higher-order effects on some subsystem failures. A quadratic or 
cubic age effect means that the relationship between age and the 
change in failure rate (i.e., the slope of the age-failure curve) changes 
over time. A sharp increase in the number of components reaching 
their wear-out regions, and the subsequent renewal (i.e., replace- 
ment) of those components, may explain such changes. Once items 
begin to fail, renewal begins. For a component exhibiting a visible 
wear pattern, as a significant portion of the fleet experiences a failure 

^VWiile the data do suggest a cubic model for MlA2s (which could help explain the 
cubic shape of the combined curve), confidence in the shape of the M1A2 curve is lovif 
because of the limited M1A2 age range. 
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of the component and has the component replaced, the wear pattern 
begins anew^. If the entire fleet were to experience a failure for a given 
component in a short period of time, the fleet failure rate would 
quickly increase during this wear-out region and then drop signifi- 
cantly. The wider the wear-out region, the more the age of a given 
component will be distributed across a fleet. In this case the fleet 
failure rate for the component may gradually increase and at some 
point begin a gradual decrease. Ultimately, with renewal, a compo- 
nent's age distribution may become uniform across a "cohort" of 
tanks—say one particular year of manufacture. At this point, the fail- 
ure rate with respect to that component will then stay the same as 
the cohort continues to age. As more and more parts reach this point 
through renewal for a cohort of tanks, the aging effect should tail off.^ 

It is possible for a subsystem to experience several such wear- 
out/renewal cycles; cubic age-failure curves (for the electrical and 
fire control subsystems) may reflect this pattern.'' The steepness of 
these curves' tail regions must be interpreted with caution, though, 
as they are based on fewer data points than other portions of the 
curves. In practice, most fleets will not remain in the total Army fleet 
for a lengthy enough period to see many or even multiple wear- 
out/renewal cycles. Thus, when the age-failure curve for a subsystem 
shows a plateau—or even a decrease—in the failure rate, it is proba- 
bly an indication that sufficient fleet renewal for the subsystem has 
occurred to limit any further increase in the fleet failure rate. The 
renewal phenomenon should also be seen at the tank level. The 
model results suggest that at the tank level, it does not occur within 
the first 14 years of tank age, the range of our data. 

Figure 3.6 displays predicted mean failures versus usage for all 
second-tier subsystems at Location 1. 

^For many complex parts, the Army actually uses rebuilt parts for which there is 
uncertainty about whether they are "like-new." This could affect the relationship we 
see between failures and age, as it would contribute to higher failure rates of tanks 
having such replacement parts and would lessen the benefit of renewal. 

''The electrical subsystem curve could reflect several sequential renewal cycles, vrith 
the sparse data at the tail region exaggerating the effect. Alternatively, the curve could 
reflect two separate wear-out regions corresponding to different sets of electrical 
components. 
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Figure 3.6—Predicted Mean Failures of Second-tier Subsystems by Usage 
(Location 1,180 days) 

Some subtle differences in usage effects across subsystems were seen 
as well. Usage had log-linear effects in some cases but log-quadratic 
effects in others. In the former cases, it is likely that usage—more 
specifically, kilometers traveled—was the primary explanatory vari- 
able; thus the linear effect. In contrast, the quadratic effects may re- 
flect not only kilometers traveled, but also other, unmeasured types 
of usage. For example, the observed effect of usage on electrical fail- 
ures is most likely being influenced by rounds fired, idling of the tank 
engine, operation of electrical systems while the engine is not run- 
ning, or perhaps the frequency (rather than the absolute amount of 
usage) or cycles of usage. AAHiile firing rounds and idling place little or 
no demand on the chassis, they place demands on the electrical sub- 
system. Had we been able to control for these alternative usage 
types, we might have observed that kilometers traveled had a log- 
linear effect (or perhaps no effect!), rather than a log-quadratic 
effect.5 Furthermore, we might have seen a second failure distribu- 
tion based on rounds fired and a third based on idle time. 

^To the extent that there is correlation among the usage types, kilometers driven may 
simply be serving as a proxy for other usage types when it explains failures for 



46    The Effects of Equipment Age on Mission-Critical Failure Rates 

It is noteworthy that, as in the Tank Study, location was a significant 
predictor in the Subsystem Study. In each subsystem plot of pre- 
dicted mean failures versus age (see Appendix D for separate subsys- 
tem plots), the multiple intercepts reflect the effects of different 
locations. 

When we group part orders by subsystem and plot deadlining part 
orders by age (Figure 3,7), the plot suggests multiple shifts in aging 
effects for some subsystems, consistent with the nonlinearity seen in 
earlier subsystem curves. We see these shifts even without control- 
ling for location or absolute usage, which affect the failure rate.^ 
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Figure 3,7—Total Parts Demand (during Study Period) 
per Subsystem by Age 

components or subsystems that are generally not associated with movement. Hence 
the apparent log-quadratic effect of kilometers driven might disappear if other usage 
types could be included in the models. 

%otal part orders for a given subsystem and age group v^ere divided by total 
kilometers traveled (during the study period) by tanks in the corresponding age group. 
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Rebuild Versus Upgrade Candidates 

Simple plots of deadlining part orders for the various subsystems 
may point out which components within subsystems should be 
rebuilt, upgraded, or left unchanged. As an example, we constructed 
a plot of deadlining part orders (per million kilometers of usage) ver- 
sus Ml age for a sample of parts. The plot (Figure 3.8) shows that 
orders for some parts clearly increased with age; such parts are good 
candidates for the rebuild portion of the Abrams RECAP program. In 
other words, simply replacing these components in old tanks is likely 
to improve the overall failure rate for some period of time. In con- 
trast, parts with relatively high-order levels regardless of tank age, 
which are readiness drivers, or expensive parts with moderate failure 
levels regardless of tank age, which are cost drivers, are good upgrade 
candidates. By "upgrade" we mean an engineering or repair-process 
redesign that reduces the failure rate of a "new" part.^ Still other 
parts require neither rebuild nor upgrade; demand for them was very 
low, making age effects, if any, less important. 
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Figure 3.8—Parts Demand per Part Type by Age 

'^In this context a new part is either brand new or rebuilt. 
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The Link Between Age-Failure Relationships and Part Prices 

Another portion of our subsystem analysis entailed four regressions 
of low-priced, medium-priced, high-priced, and very-high-priced 
part orders (i,e,, orders for parts within subsystems) on predictor 
variables. Tables 3.12 through 3.15 display the results of those re- 
gressions (with the backward elimination procedure), and Figure 3,9 
displays corresponding part failure versus age curves. As the results 
indicate, the age-failure relationship is generally strongest for lower- 
priced parts, which tend to be simpler parts with wear-related domi- 
nant failure modes. Parts in the two middle-price categories appear 
to have a moderate age-failure relationship, and the most expensive 
parts have little or no age-failure relationship. 

Table 3.12 

Negative Binomial Regression of Low-Priced Part Failures on Age, 
Usage, and Location Variables (N = 1,480) 

Low-Priced Part Failures 

Predictor Variables P s.e. t 

Age .22156 .02777 7.98*** 

Location 2 -1.37102 .37547 -3.65*** 

Location 3 -.55070 .26179 -2.10* 

Location 4 -.60451 .22055 -2.74** 

Location 5 -.85547 .29972 -2.85"          1 
Location 6 .22408 .19642 1.14             1 
Null deviance: 1,180.8 on 1,479 degrees of freedom. 
Residual deviance: l.lOLl on 1,473 degrees of freedom. 
Dispersion parameter: 0.2008.                                                                                           | 

NOTE: Continuous predictor variables w^ere mean-centered. Also, ln{updays) was 
treated as an offset variable in the regression; this treatment is equivalent to making 
In(updays) a predictor variable with ^ = 1. 
*p<.05. 
**p<.01. 
***p < .001. 
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Table 3.13 

Negative Binomial Regression of Medium-Priced Part Failures on Age, 
Usage, and Location Variables (N = 1,480) 

Medium-Priced Part Failures 

Predictor Variables j8 s.e. t 

Age .041921 .041886 1.00 

(Age)2 .006583 .008657 0.76 

(Age)3 .003669 .001361 2.70** 

Location 2 -.431849 .284764 -1.52 

Location 3 -.324781 .208311 -1.56 

Location 4 -.533127 .175348 -3.04** 

Location 5 -.677012 .322640 -2.10* 

Location 6 .140302 .169610 0.83 

Null deviance: 1,343.2 on 1,479 degrees of freedom. 
Residual deviance: 1,265.8 on 1,471 degrees of freedom. 
Dispersion parameter: 0.4245. 

NOTE: Continuous predictor variables were mean-centered. Also, In(updays) w?as 
treated as an offset variable in the regression; this treatment is equivalent to making 
In(updays) a predictor variable with j8= 1. 
*p < .05. 
**p<.01. 
***p<.001. 
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Table 3.14 

Negative Binomial Regression of High-Priced Part Failures on Age, 
Usage, and Location Variables (N = 1,480) 

HI gh-Priced Part Failures 

Predictor Variables P s.e. t 

Age -.00202500 .04096000 -.049 

(Age)2 .00168900 .00767600 0.22 

(Age)3 .00442900 .00129700 3.42*** 

Accumulated usage .00035430 .00012230 2.90" 

(Accumulated usage)^ -.00000038 .00000015 -2.59** 

Agex 

Accumulated usage 

-.00008233 .00003531 2.33* 

Location 2 -.51030000 .25520000 -2.00* 

Location 3 -.63170000 .18740000 -3.37*** 

Location 4 -1.07900000 .16180000 ^.67*** 

Location 5 -.69900000 .28460000 -2.46* 

Location 6 -.44350000 .16120000 -2.75** 

Null deviance: 1,475.2 on 1 
Residual deviance: 1,361.7 
Dispersion parameter: 0.6( 

,479 degrees of fireet 
on 1,468 degrees of 
»15. 

iom. 
freedom. 

NOTE: Continuous predictor variables were mean-centered. Also, In(updays) was 
treated as an offset variable in the regression; this treatment is equivalent to making 
In(updays) a predictor variable with ^= 1. 
*p<.05. 
**p<.01. 
***p<.001. 
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Table 3.15 

Negative Binomial Regression of Very-High-Priced Part Failures on Age, 
Usage, and Location Variables (N = 1,480) 

Very-High-Priced Part Failures 

Predictor Variables P s.e. t 

Age -.16800000 .04562000 -3.68*** 

(Age)2 .00418000 .00941800 0.44 

(Age)3 .00426600 .00144900 2.95** 

Accumulated usage .00041950 .00014580 2.88** 

(Accumulated usage) ^ -.00000045 .00000019 -2.76** 

Age X Accumulated usage .00013180 .00003732 3.53*** 

Location 2 .87930000 .28150000 3.12** 

Location 3 .38620000 .21180000 1.82t 

Location 4 -.71610000 .20340000 -3.52*** 

Location 5 -.23910000 .35810000 -0.67 

Location 6 -.81430000 .19170000 -4.25*** 

Null deviance: 1,314.0 on 1,479 degrees of freedom. 
Residual deviance: 1,173.4 on 1,468 degrees of freedom. 
Dispersion parameter: 0.5837. 

NOTE: Continuous predictor variables were mean-centered. Also, In(updays) was 
treated as an offset variable in the regression; this treatment is equivalent to making 
In(updays) a predictor variable with /3 = 1. 
tp<.10. 
*p < .05. 
**p<.01. 
***p < .001. 
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Figure 3,9—Predicted Mean Part Failures Versus Tank Age 
(Location 1,180 days) 

SENSITIVITY ANALYSIS RESULTS 

Alternative Imputation Approach 

Our first sensitivity analysis involved an alternative approacii to cop- 
ing with missing usage data. As described earlier, our primary impu- 
tation approach was mean substitution. Wliile mean substitution 
(also known as mean imputation) is widely utilized, other more 
sophisticated imputation techniques are also available. Thus, we 
examined how the use of multiple imputation, rather than mean 
imputation, affected our findings. 

We began the process by replacing each missing monthly usage 
reading via random draws from the same population used in the 
mean substitution method. In other words, when a tank was missing 
a usage reading for a particular month, we assigned it a reading that 
was randomly drawn from those tanks in its company that had 
complete data for that month. We did 10 such random draws, creat- 
ing 10 datasets. 
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Next, for each of the datasets, we ran a negative binomial regression 
of failures on our predictor variables using the backward elimination 
technique described in the "Tank Study Analysis" subsection above. 
We then used the 10 regression results—specifically, the significance 
of their coefficients—as a guideline for proposing a final model 
structure (i.e., which terms should be included in the final model).^ 
Finally, we employed three techniques (Schafer, 1997) to draw upon 
results of the 10 regressions and test the proposed final model 
against the fuU cubic model.^ All three techniques supported the 
proposed final model. 

The overall Ml model yielded by multiple imputation had the same 
structure as the model yielded by mean imputation. The subsystem 
models yielded by multiple imputation had the same structure as the 
mean imputation models in all but three cases: hull, power train, and 
hydrauhc. The hull and power train multiple imputation models 
each had two additional terms: a cubic age term and an age x usage 
interaction term. The hydraulic multiple imputation model had four 
additional terms: a quadratic usage term, a quadratic age term, an 
age X usage interaction term, and an age-squared x usage interaction 
term. To facilitate comparison of multiple imputation and mean im- 
putation results for those subsystems, we fit the multiple imputation 
model structure to the mean imputation dataset. Tables 3.16 through 
3.18 showthe results of those regressions. Figures 3.10 and 3.11 show 
the corresponding failure versus age and failure versus usage curves 
at Location 1 for the second-tier (power train and hydraulic) subsys- 

^This step involved a judgment call. For example, if most of the 10 regressions had a 
particular coefficient that was significant, then our proposed final model included that 
term. On the other hand, if very few or none had that significant term, we excluded it 
from the final model. Note that this step focused on identifying those terms (e.g., age, 
activity, age x activity) that should be included in the proposed model, «of what their 
coefficients should be. 

^The first technique (Li, Raghunathan, and Rubin, 1991) combined covariance 
matrices and point estimates of coefficients from the 10 regressions and used those 
combined values to compute a Wald statistic for variables (terms) in the model. The 
second technique (Li, Meng, Raghunathan, and Rubin, 1991) combined Wald statistics 
from the 10 regressions to compute an F-test statistic for terms in the model. The third 
technique (Meng and Rubin, 1992) combined likelihood-ratio statistics from the 10 
regressions. For each technique, an F-test based on the corresponding test statistic 
(Wald, combined Wald, or likelihood ratio) determined which variables could be 
removed from the model, allowing comparison of a full model to a proposed reduced 
model. 
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terns, and how they compare to those resulting from mean imputa- 
tion. (The hull curves were very similar to the power train curves, as 
one might expect given that the power train is a key hull component.) 

Table 3.16 

Negative Binomial Regression of Hull Failures on Age, Usage, and 
Location Variables (N = 1,480), with Multiple Imputation Approach 

Hull Failures 

Predictor Variables P s.e. t 

Age .14040000 .03461000 -1.04 

(Age)2 -.00779900 .00646900 -1.21 

(Age)3 .00221500 .00110100 2.01* 

Accumulated usage .00051380 .00010790 4.76*" 

(Accumulated usage)^ -.00000025 .00000011 -2.31* 

Age X Accumulated usage .00005284 .00002894 1.83t 

Location 2 .07919000 .19870000 0.40 

Location 3 -.23960000 .16110000 -1.49 

Location 4 -.62930000 .14380000 -4.38*** 

Location 5 -.02531000 .24290000 -0.10 

Location 6 -.19790000 .01282000 -1.54 

Null deviance: 1,614.7 on 1,47 
Residual deviance: 1,501.7 on 
Dispersion parameter: 8.8973 

a degrees of freedo 
1,472 degrees of fre 

m. 
edom. 

NOTE: Continuous predictor variables were mean-centered. Also, InCupdays) was 
treated as an offset variable in the regression; this treatment is equivalent to making 
In(updays) a predictor variable with ^ = 1. 
tp<.10. 
*p < .05. 
**p<M. 
***p<.00l. 
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Table 3.17 

Negative Binomial Regression of Power Train Failures on Age, Usage, and 
Location Variables (N = 1,480), with Multiple Imputation Approach 

Power Train Failures 

Predictor Variables P s.e. t 

Age -.02761000 .03791000 -0.73 

(Age)2 -.00415000 .00709000 -0.59 

(Age)3 .00223100 .00120200 1.86t 

Accumulated usage .00047910 .00011790 4.06*" 

(Accumulated usage)^ -.00000027 .00000012 -2.22* 

Age X Accumulated usage .00004407 .00003159 1.40 

Location 2 .25240000 .20980000 1.20 

Location 3 -.07361000 .17120000 -0.43 

Location 4 -.57880000 .15760000 -3.67*** 

Location 5 -.12980000 .26840000 -0.48 

Location 6 -.17890000 .14220000 -1.26 

Null deviance: 1,530.8 on 1,479 degrees of freedom. 
Residual deviance: 1,442.6 on 1,468 degrees of freedom. 
Dispersion parameter: 10.0994. 

NOTE: Continuous predictor variables were mean-centered. Also, In(updays) was 
treated as an offset variable in the regression; this treatment is equivalent to making 
In(updays) a predictor variable with ^3 = 1. 
tp<.10. 
*p < .05. 
**p<.01. 
***p < .001. 
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Table 3.18 

Negative Binomial Regression of Hydraulic Failures on Age, Usage, and 
Location Variables (N = 1,480), with Multiple Imputation Approach 

Hydraulic Failures 

Predictor Variables P s.e. t 

Age .11370000 .03398000 3.35*** 

(Age)2 -.00948500 .00726200 -1.31 

Accumulated usage .00079800 .00018930 4.22***      1 
(Accumulated usage)^ -.00000040 .00000020 -2,05*         1 
Age X Accumulated usage .00001789 .00004630 -0.39 

(Age)^ X Accumulated usage -.00002018 .00001134 -1.78t 

Location 2 -.93830000 .31050000 -3.02** 

Location 3 -.53590000 .20600000 -2.60** 

Location 4 -.71040000 .16860000 _42i*« 

Location 5 -.45840000 .28570000 -1.61 

Location 6 -.09955000 .16860000 -0.59 

Null deviance: 1,368.0 on 1,479 degrees of freedom. 
Residual deviance: 1,280.0 on 1,468 degrees of freedom. 
Dispersion parameter: 17.2907. 

NOTE: Continuous predictor variables were mean-centered. Also, In(updays) was 
treated as an offset variable in the regression; this treatment is equivalent to making 
InCupdays) a predictor variable with ^= 1. 
tp<.10. 
*p<.05. 
**p<.01. 
***p<.001. 
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As Figures 3,10 and 3,11 indicate, the hydraulic subsystem curves 
yielded by mean imputation and multiple imputation had consider- 
able overlap. The power train models were more distinct, however; 
multiple imputation yielded a power train age-failure curve that is 
perhaps more plausible, without a sharp downturn in its tail region. 
In general, the similarity of Ml system and subsystem models result- 
ing from multiple imputation and mean imputation suggests that 
mean imputation does not distort results significantly and may be a 
more practical, less cumbersome approach when one is analyzing 
data on a large number of systems. Nevertheless, these power train 
findings point to the importance of further analyses in some cases— 
in particular, when unexpected patterns appear. 

It is also important to compare the confidence intervals associated 
with the multiple imputation and mean imputation models, as mul- 
tiple imputation tends to capture true variability of estimates more 
accurately than mean imputation. For this step, we used Rubin's 
(1987) method for combining estimates from the 10 regressions 
based on the multiple imputation datasets.i" Figure 3,12 shows con- 
fidence interval widths for multiple imputation estimates and mean 
imputation estimates for the overall Ml model. The small difference 
between the two curves suggests that there was little difference in 
confidence intervals resulting from the two techniques; this finding 
farther suggests that mean imputation was sufficient for this study. 

Additional Control Variable for Odometer Resets 

We also considered the possibility that reset odometers from major 
maintenance events or even overhauls affected our findings. As a 
check, we added a control variable called "reset" to the negative 
binomial regressions in both the Tank Study and Subsystem Study to 
see if the low-odometer tanks differed from the higher-odometer 
tanks of a given age. In other words, do the low readings represent 
something other than simple resets? The value of this dummy 
variable was "Y" if a tank had at least one odometer reading that fell 

'"Rubin's (1987) method entailed (a) averaging the 10 sets of estimated mean failures 
to get overall estimates of mean failures versus age, and (b) combining within-dataset 
and between-dataset estimation variability to obtain confidence intervals for mean 
failures. 



Results    59 

RAND MRt789-3.12 

—■— Multiple imputation 
—A— Mean imputation 

0    1    2    3    4    5    6    7    8    9   10 11   12 13 14 15 

Age (years) 
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below the 25th percentile for its age group, according to the 
distribution shown in Figure 2.6; otherwise the value was "N." The 
variable did not have a significant impact on failures, and the 
backward elimination regression procedure yielded the same final 
model as that shown in Table 3.1. As cleaner overhaul and tank 
maintenance histories (including every part of replacement) become 
more available, more sophisticated tests of the impact of major 
maintenance events will be possible. Such tests may determine with 
greater certainty the degree to which maintenance events help 
account for the higher-order age effects we found. 

Alternative Regression Techniques in the Tank Study 

For our third sensitivity analysis, we performed the Tank Study and 
Subsystem Study analyses using Poisson regression, rather than 
negative binomial regressions. While the parameter estimates gen- 
erated by the two techniques were virtually identical, the Poisson 
regressions yielded larger residual deviances. This discrepancy sug- 
gests that the negative binomial regressions addressed overdisper- 
sion in the data. 



60    The Effects of Equipment Age on Mission-Critical Failure Rates 

To further assess the robustness of our final Tank Study model, we 
performed ordinary least squares (OLS) regression on the data. When 
a Poisson-distributed variable (such as the number of failures per 
day) is measured for a long-enough period (i.e., a large number of 
days), the square root of that variable is approximately normal with 
constant variance." Thus, we used the square root of tank failures as 
the dependent variable in the OLS regression. Stepwise OLS regres- 
sion yielded a final model with the same structure and significant 
terms as our final negative binomial regression model. The standard 
error of the OLS regression was .68. Since OLS standard errors greater 
than .5 are consistent with overdispersion, this provides further sup- 
port for our use of the negative binomial model. 

Alternative Regression Techniques in tlie Subsystem Study 

Another sensitivity analysis addressed the subsystem age effects 
shown in Figure 3.4. Several of the age-failure curves had downturns 
(power train and chassis) or sharp upturns (electrical and fire con- 
trol) in their tail regions. Those end regions were based on relatively 
few data points, as only a small percentage of tanks in our sample 
exceeded 12 years of age. Consequently, the curves may have less 
validity for older tanks. Moreover, there is litde theoretical rationale 
for the tails of the curves. Although it is reasonable to expect a slight, 
temporary reversal in the aging effect (due to renewal as parts are 
replaced), it is unlikely that increasing age will reduce tank failures 
for a lengthy period of time and do so at an increasing rate, as the 
quadratic curves suggest. Much of the quadratic curve is quite plau- 
sible, but the tail region advances the unlikely notion that very old 
tanks will have no failures at all. 12 Similarly, it is unlikely that failures 
rise as sharply as depicted in the tails of the cubic curves. In other 
words, the overall curves fit well, but the end regions are character- 

i^Let 1,-represent the number of failures per day. Suppose X; ~ PoissonCn,- * kj), where 
«(is the number of updays for tank i and X, is the number of failures in n,- updays. 
(That is. A',- has a Poisson distribution with mean »,• * A,-.) Then, when n,- is large, 
2*CJf,)"^ is approximately normally distributed with mean = 2 *{«; * If)"^ and variance 
= 1. Thus, (X,)"2 is approximately normally distributed with mean = («,- * 1,)"^ and 
variance = 1/4, 

'^The shape at the ends of the quadratic curves may have been distorted by the late 
appearance of the peak failure rate {relative to the total age range), since a dispropor- 
tionately small number of tanks were available to fit the change in the trend. 
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ized by more uncertainty. For example, a cubic model may be neces- 
sary to produce a second inflection point toward the high end of the 
age range, but the cubic term could then cause an unreasonably 
sharp escalation in predicted mean failures at the curve's tail. 

Thus, we fit several other models to the power train, chassis, electri- 
cal, and fire control data to further explore the data and models. 
First, we applied generalized additive models (GAM), using the R 
statistical software package (Ihaka and Gentleman, 1996) ^^ and as- 
suming a negative binomial failure distribution with the log link 
function. GAM utilizes penalized regression splines with smoothing 
parameters chosen by generalized cross-validation (Gu, 2002). The 
penalized likelihood approach balances the overall fit of the model 
with its complexity. We began with the following full model: 

ln(Mean Failures) = bo + ;f7i (Location) + Si (Accumulated Usage) 

+ S2(Age) + 53 (Accumulated Usage x Age) 

+ offset(log(Updays)) 

The s() functions represent thin plate regression spHnes. To hmit 
overfitting, each spline function was restricted to a maximum basis 
dimension of 4, corresponding to 3 degrees of freedom. This con- 
strains the model degrees of freedom to be at most that of a full cubic 
model in the continuous covariates. 

An approximate %^ test (at the 5 percent level) was conducted to 
measure the statistical significance of the bivariate spline. When this 
test indicated it was appropriate to do so, we based predictions on 
the following additive reduced model: 

ln(Mean Failures) = i'o + foi (Location) + 5i (Accumulated Usage) 

+ 52 (Age) + offset(log(Updays)) 

GAM models, described more generally in Appendix A, serve as a 
useful check on the final parametric models because of their non- 

'^^R is a computing language and run-time environment designed for statistical 
computation and graphics (Hornik, 2003). It is an implementation of the S language 
(Becker, Chambers, and Wilks, 1988), which was developed at Bell Laboratories. 
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parametric properties: specific parametric models in the continuous 
covariates are avoided in favor of a data-adaptive approach to model- 
ing that prevents overfitting—both by penalizing more complex 
models and by limiting the richness of the spline family from which 
function estimates are obtained. 

Figure 3.13 shows the age-failure curves that resulted from the fitted 
GAM model. For the power train and chassis subsystems, the GAM 
generally yielded curves with more plausible tail regions than the 
parametric models. For the power train, the aging effect tapered off, 
rather than fully reversing itself. For the chassis, the GAM model sug- 
gested a second inflection point with a local minimum beyond 14 
years of age. In both cases, the results are more consistent with the 
earlier theoretical discussion of renewal and aging. The GAM curve 
for the fire control subsystem had a more plausible tail region as well, 
with an upturn that was not as sharp as that of the parametric curve. 
For the electrical subsystem, however, the GAM curves and para- 
metric curves were similar. 

Although the GAM yielded more reasonable curves—from a 
theoretical standpoint—^for the power train, chassis, and fire control 
subsystems, confidence bands for those curves were farther apart at 
the curves' tails, indicating that predictions are less accurate in that 
vicinity. Figures 3.14 through 3,16 display confidence bands for the 
GAM curves. 

Figures 3,17 through 3.19 extrapolate the GAM curves and confi- 
dence bands beyond 15 years (the maximum age of tanks in our 
dataset); consistent with our previous discussion, the considerable 
distance between confidence bands illustrates the risks of such 
extrapolation. Thus, we cannot draw definitive conclusions about the 
curves' tail regions until more data on older tanks are available. 
These curves demonstrate that extrapolating beyond the range of the 
data is probably meaningless. 

Nevertheless, since it is possible that GAM curves offer a more accu- 
rate depiction of power train, chassis, and fire control age-failure 
relationships (at least within the age range of tanks in our dataset), 
we conclude this section with an alternative version of Figure 3,4. In 
Figure 3,20, parametric curves have been replaced with GAM curves 
for those three subsystems. 
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Although using the GAM curves caused the zero-to-peak differences 
and ratios to change, the changes were modest. As before, the zero- 
to-peak differences and ratios indicate that electrical, hardware, hy- 
draulic, and main gun subsystems experienced the greatest absolute 
failure increases due to aging, and the chassis, hardware, hydraulic, 
and main gun subsystems experienced the greatest relative increases 
due to aging. 



Chapter Four 

IMPLICATIONS 

Studies of failure characteristics have become widespread, reflecting 
efforts to improve design reliability and to better tailor preventive 
maintenance and scheduled service/overhaul programs to specific 
systems. Such assessments of the rate and nature of failures are 
especially important to the U.S. Army. The Army wants to ensure that 
it can sustain the warfighting capability of its current forces until 
they are fully replaced by the future force sometime between 2025 
and 2030. Hence, this Ml Abrams study is one of a series investigat- 
ing patterns and causes of Army equipment failures. 

Our analysis of cross-sectional data provides preliminary support for 
the hypothesis that older tanks have higher failure rates than newer 
ones. Although longitudinal analyses offer a more rigorous test, these 
results suggest that mission-critical failures increase at a compound 
annual rate of 5 ± 2 percent during the first 14 years of life. This rate 
of increase means that a 14-year-old tank will have approximately 
double the expected number of failures of a brand new tank, for a 
given location, usage, and time period. (Additional data on older 
tanks are needed to draw conclusions about the failure rates of tanks 
beyond 14 years of age.) This result supports the notion that rebuilds 
of the Ml Abrams will improve readiness, if targeted at those 
components responsible for the age effect on reliability. 

The analysis also showed that, after accounting for age, different 
Army locations had dramatically different failure rates during the 
study period. Additional study to understand the source of the differ- 
ences could reveal further opportunity to reduce failure rates. 
Finally, the analysis suggested that, for a given age and location, 

69 
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higher usage corresponded to a lower failure rate (that is, failures per 
kilometer). This may simply be an artifact of peacetime usage pat- 
terns characterized by low and sporadic usage. 

Exploring the source of Abrams age effects yields valuable insights 
into the aging problem. Much of the mission-critical failure age effect 
appears to be produced by lower-cost "wear-and-tear" type compo- 
nents, so the resulting effect on operation and maintenance cost (the 
budget account used to pay for spare parts) may be minimal. How- 
ever, the associated workload necessary to maintain operational 
readiness can increase substantially. This has no direct financial 
impact, because it does not affect maintainer pay, but it does have 
implications for quality of life, force structure needs, and future 
operational readiness. Once tank age reaches a certain point, the 
maintenance system may no longer be able to provide for a satisfac- 
tory level of operational readiness, even through the use of 
"workarounds" such as controlled exchange, given the number of 
maintainers in a unit. Such a condition necessitates replacement or 
substantial rebuild to maintain an acceptable level of operational 
readiness or the acceptance of lower operational readiness. As the 
Fort Riley and NTC data suggest, there is some indication that a por- 
tion of the active Army's tank fleet has already reached this point, 
leading to isolated MlAl operational readiness problems. Thus, for 
the Abrams fleet, increasing fleet age most likely generates gradual 
workload increases, which result in quality-of-life issues, declining 
operational readiness, and a buildup of deferred financial cost that 
emerges in the form of programs such as RECAP. 

While increasing age could also potentially lead to manpower—and 
thus maintenance—cost increases, other factors seem to prevent this 
today. Army maintenance manpower is based on annual mainte- 
nance man-hours required by a system. For a variety of reasons 
beyond the scope of this report, these data are infrequently and 
poorly updated. Thus, aging generally has no effect on manpower. 
However, if frequent studies accurately captured increases in work- 
load, the Army's force structure process would automatically 
increase the maintainer requirement. Note, however, that personnel 
requirements are not always "resourced" or made part of the actual 
force structure. With budget and personnel constraints, increases in 
maintenance requirements would have to be traded off against other 
resource requirements to become part of the force structure. 
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Subsystem and part-level analyses offer insight for designing recapi- 
talization programs to produce the greatest benefit. The age-failure 
relationship was stronger for some Ml subsystems. These distinc- 
tions suggest that certain subsystems (chassis, electrical, hardware, 
hydraulic, and main gun) are, in general, better candidates for 
rebuild efforts based on equipment age. These findings may also be 
instructive in the design of overhaul regimes or "phased" recapital- 
ization schemes. Using this information to identify the wear-out pat- 
terns and regions more precisely for different types of components 
will help determine the most beneficial point, balancing cost and 
readiness, for scheduled component replacement (or suggest that no 
point is beneficial, if the wear-out region is too broad for economical 
scheduled replacement). The age-failure relationships by subsystem 
also revealed which subsystems (fire control, electrical, and power 
train) generally drive the failure rate of new tanks; this information 
suggests where engineering redesign might have the biggest impact. 

In addition to the age and usage effects described above, it is of 
interest that tank location predicted failures. That is, some locations 
had more tank failures than did others. This finding could reflect 
distinct maintenance practices or personnel skill sets, the different 
operating environments, different reporting practices, different 
training regimes, or a combination of all these factors. 

In summary, this report provides preliminary evidence that increas- 
ing age is likely to contribute to failure rate problems for the Ml 
Abrams series of tanks, and it shows that usage and location are 
influential as well. We have also highlighted how age and usage 
effects differ among Ml subsystems. Moreover, we have shown how 
an analysis of part orders can identify components that should be 
replaced in a rebuild program and those that would be good candi- 
dates for upgrade initiatives. These findings suggest that the Abrams 
RECAP program could have substantial benefit, and they offer 
insights that could potentially be used to enhance the program's 
value. We are currently assessing the robustness of these findings via 
additional tests, including regressions with longitudinal data. 

Further extensions of the current study are also possible. For exam- 
ple, comparisons of maintenance practices, personnel skill sets, ter- 
rain, climate, and training practices across locations may help 
explain the location effects observed in this study. Moreover, they 
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may highlight opportunities for beneficial procedural, technological, 
and training changes at certain posts. 



Appendix A 

GENERAL DESCRIPTIONS OF STATISTICS USED 

Two discrete distributions that are used to describe count data are 
the Poisson distribution and the negative binomial distribution. The 
first two portions of this appendix briefly describe the nature of each 
distribution. These descriptions were drawn from Hillier and 
Lieberman (1986) and from SAS Institute Incorporated (1999). 

The final portion of this appendix describes the Generalized Additive 
Model (GAM), a technique used in our sensitivity analysis. The GAM 
description was largely based on Xiang (2001). 

POISSON DISTRIBUTION 

Suppose the distribution of Y, the number of occurrences of an event 
(e.g., equipment failures), is Poisson. Then the probability that Y= a 
may be obtained from the following formula: 

P(F = a)-^^ 

where n is the mean number of events, or EiY). Both the mean and 
the variance of the Poisson distribution are equal to fi. Let n, be the 
mean number of events for tank i: 

l^i = Ci exp (^0 + ^iXi + • • •+ySpXp + A ixf + • • • + Pppxl + i^ipXiXp 
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where c, is the exposure time for tank i—that is, the number of days 
in the study period of tank i. 

NEGATIVE BINOMIAL DISTRIBUTION 

When data follow a negative binomial distribution (also known as the 
Pascal distribution), the probability that F= a is as follows: 

aXTillk) il + kn. a+llk 

where r() is the gamma function, fc is a dispersion parameter, and /i 
is the mean number of events. While the mean of the negative 
binomial distribution is fi, the variance is ^ + kfi^. 

GENERALIZED ADDITIVE MODEL 

The GAM is an extension of the traditional linear regression model. 
In its most basic form, the GAM defines the expected value of Y as 
follows: 

ECF) = M = /CXi,...,Xp) = So+5iCXi)+...+Sp(Xp), 

where Si(Xj), i= l,...,p are smooth functions estimated nonparametri- 
cally. For example, Xi may be the predictor variable age, and S| may 
be a spline smoother. 

Some GAMs have a more complex expected value of Y. Specifically, 
they have a link function, such as the natural log, defining the rela- 
tionship between p. and f{X^,...,Xp). Thus, when using a GAM, one 
does not have to assume that the dependent variable is normally dis- 
tributed. If the GAM is applied to a dependent variable having a Pois- 
son distribution, then one can set up the model so that 

lnC^) = /(Xi,...,Xp) = So+Si(Xj)-i-...+Sp(Xp). 

As in the Poisson and negative binomial regressions described previ- 
ously, ^ incorporates a factor that accounts for tank exposure time. 
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The shape of a GAM curve can help determine whether a parametric 
model should include a cubic or other higher-order term. 

Recent implementations of the R statistical software (Ihaka and Gen- 
tleman, 1996) allow GAM models to include nonparametric two- 
factor interaction terms as well. Thus, the above GAM model can be 
modified as follows: 

ln(/i) = /(Xi,...,Xp) = So+Si(Xi) + ...-t-5p(Xp)+5i2(XiX2) 

+... + Sp_ip[Xp_i,Xp). 

Parametric terms can also be added to this model specification. 

For more detailed descriptions of the GAM approach, see Hastie and 
Tibshirani (1990) and Wood (2003). The latter paper details the use of 
parametric terms and nonparametric interaction terms in GAM 
models. 



Appendix B 

DISTRIBUTION OF FAILURE DATA 

This appendix elaborates on the overdispersion that was character- 
istic of the data in this study. 

To get a better understanding of the underlying failure distribution, 
we examined failures at the battalion level. Over the course of one 
year, the tanks in a battalion represent a very homogeneous set. They 
are typically about the same age, go through about the same training, 
have similar usage, operate on similar terrain, and are supported by 
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Figure B.l—Illustration of Failure Data Overdispersion 
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the same maintenance system and command structure. Looking at 
the battalion level therefore allowed us to see the failure distribution 
after accounting for the nonrandom factors that produce failure rate 
variation. (It is precisely the effects of these nonrandom factors that 
we were trying to isolate in this study.) Thus, examining failures by 
tank in one battalion over the course of a year enabled us to examine 
the underlying distribution of the tank failure process. 

As Figures B,2 through B,7 indicate, every Armor battalion in the 
Army but two (i.e., 28 out of 30 battalions) closely matched a Poisson 
distribution. 1 The figures display each battalion's actual failure dis- 
tribution (the "actual" curve), the type of Ml in the battalion, the 
mean failures per tank in the battalion, and a Poisson distribution 
applied using the actual mean number of failures per tank (the 
"expected" curve). The horizontal axis in each figure is the number of 
failures per tank, and the vertical axis is the number of tanks in the 
battalion experiencing those failures in one year. For example, a 
graph would be read as "6 tanks in battalion X had 3 failures over one 
year." When we excluded partial-year tanks, which were only in bat- 
talions for a few months, statistical tests showed no significant dif- 
ference (p = .05) between the actual and the expected (Poisson distri- 
bution-based) failure curves of 28 battalions.^ 

It is academically interesting to note that the oft-cited Poisson distri- 
bution assumption held very well when the failure data were ex- 
tracted from nonrandom failure-affecting factors. We only saw 
overdispersion when we combined all battalion data and included 
partial-year tanks. The primary source of that overdispersion was the 
partial-year tanks. Many tanks were replaced due to new equipment 
fielding, for depot overhaul, for other severe maintenance problems, 
or, in some cases, because units were reorganizing from 58- to 44- 
tank battalions. Many of these tanks had zero or low failures because 
of a shorter amount of time present in the dataset. 

'A X^ test showed that the failure distributions of two battalions in Europe {Figure B.7) 
were significantly different from the Poisson distribution. 

^Plots in the second row of Figure B.6 correspond to the same two battalions as those 
in the first row; plots in the second row, however, excluded partial-year tanks (i.e., 
tanks with only a few months of data). With partial-year tanks removed, the two 
battalions' failure distributions were indistinguishable from Poisson distributions. 
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Appendix C 

CROSS-VALIDATION OF TANK STUDY MODEL 

We used a leave-one-out cross-validation approach (Burt and Barber, 
1996; Geisser, 1975; Stone, 1974) to assess the predictive accuracy of 
the Tank Study model. Considered "[one] of the most important" 
cross-validation techniques (Racine, 1997:169), the leave-one-out 
approach entails removing one observation at a time from a dataset. 
The removed observation becomes a single-element "test set" and 
the remaining observations become the "training set."i A model is fit 
to the training set and the result is used to predict the dependent 
variable value associated with the test set observation. The removed 
observation is then returned to the dataset, and another observation 
then becomes the test set. This process is repeated until all observa- 
tions have been removed and returned to the dataset. At that point, 
the predicted and observed dependent variable values allow calcula- 
tion of the model's prediction error. 

A standard measure of model prediction error is the predicted resid- 
ual sum of squares (PRESS) statistic (Neter, Wasserman, and Kutner, 
1989:450; Weisberg, 1985:217), defined as 

PRESS = Xef 

^As Neter, Wasserman, and Kutner (1989:466) point out, "By far the preferred method 
to validate a regression model is through the collection of new data. Often, however, 
this is neither practical nor feasible. A reasonable alternative when the dataset is large 
enough is to split the data into two sets." The training set is used to estimate the 
model, and the test set is used to evaluate the predictive ability of the model. 
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where e, is the difference between (a) the observed outcome for ob- 
servation i and (b) the outcome predicted from a regression model 
calibrated on the set of observations that excluded i. The total num- 
ber of observations in the full dataset is n. In comparisons of models, 
the preferred model is the one with the smallest PRESS statistic. 

Table C.l lists the models that our cross-validation study compared 
to the final model and the PRESS statistic associated with each. Note 
that our final model, with its PRESS of 4,019.33 for 1,567 observa- 
tions, performed better than models containing either fewer or more 
terms. Thus, the cross-validation study supports selection of our 
model based on its predictive accuracy. 
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Tabled 

PRESS Statistics for Models in Cross-Validation Study 

Model Equation PRESS 

Final Tank 

Study Model 
In (mean tank failures during study period) = 
Po + In(updays) + ftflocation 2) +/J2(location 3) + 
/Jaflocation 4) +^4(location 5) +j35(location 6) +/3g(usage) + 
j37(usage2) + ^glage) 

4,019.33 

Full Cubic 

Model 
In (mean tank failures during study period) = 
Po + In(updays) + ft(location 2) + ySgdocation 3) + 
/Jgdocadon 4) +/34 (location 5) + jBjdocation 6) +^g(usage) + 
^7(usage2) + ^8(usage^) + ^(age) +/3io(age2) + fti(age3) + 

/3i2(usage x age) + /3i3(usage x age^) + j8i4(usage2 x age) 

4,050.45 

Cubic Model, 
without 
Interactions 

In (mean tank failures during study period) = 
PQ + In(updays) + ^(location 2) +j32(location 3) + 

/33 (location 4) +/34(location5) +j35(location6) +^g(usage) + 
j87(usage2) + ^8(usage3) + ^(age) +^io(age2) + Pui&ge^) 

4,030.28 

Full 
Quadratic 
Model 

In (mean tank failures during study period) = 
Po + In(updays) + /Jj (location 2) +/32(location 3) + 

^gOocation 4) +/34 (location 5) +/35(location 6) +;S6(usage) + 
/37(usage2) + pgiage)-^ Pgiage^) + Pioiusage x age) 

4,034.47 

Quadratic 
Model, 
without 
Interactions 

In (mean tank failures during study period) = 
jSg + In(updays) +/3i (location 2) +)32 (location 3) + 
)83(location 4) +/34 (location 5) +j35(location 6) +^g(usage) + 
jSyCusage^) + j38(age) +;8g(age2) 

4,023.00 

Linear Model In (mean tank failures during study period) = 
PQ + In(updays) + ft (location 2) +j82(location 3) + 
^3(location4) +j34 (location 5) +J85 (location 6) +j86(usage) + 
iSrCage) 

4,136.32 

Linear Model 
in Usage only 

In (mean tank failures during study period) = 
JSQ + In(updays) + ft (location 2) + j32(location 3) + 

ySgdocation 4) +^4docation5) +J85 (location 6) +j36(usage) 

4,173.33 

Location 
Model 

In (mean tank failures during study period) = 
PQ + In(updays) + ftdocation 2) +/32(location 3) + 
/J3docation 4) +^84 (location 5) +/35(location 6) 

4,239.45 

Intercept 
Model 

In (mean tank failures during study period) = 
PQ + In(updays) 

4,248.56 



Appendix D 

PLOTS OF SUBSYSTEMS' PREDICTED MEAN FAILURES 
BYAGE AND USAGE 

The following plots display predicted mean failures versus tank age 
and usage for the first-tier subsystems (hull and turret) and second- 
tier subsystems of the Ml Abrams. Within the hull, second-tier sub- 
systems are the chassis and power train. Within the turret, second- 
tier subsystems include the gun and fire control. The remaining 
second-tier subsystems (electrical, hardware, and hydraulic) can be 
classified as either hull or turret components. For the hull, chassis, 
power train, and fire control subsystems, the age-failure curves are 
those resulting from fitted GAM models, rather than log-quadratic 
models. Sensitivity analyses suggested that the GAM curves were 
more plausible for those subsystems. 
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HULL FIRST- AND SECOND-TIER SUBSYSTEM PLOTS 
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TURRET FIRST- AND SECOND-TIER SUBSYSTEM PLOTS 
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PLOTS FOR OTHER SECOND-TIER SUBSYSTEMS WITHIN EITHER 
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