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Abstract

This paper addresses complexity and coupling issues
in cooperative decision and control of distributed au-
tonomous UAV teams. In particular, the recent results
obtained by the inhouse research team are presented.
Hierarchical decomposition is implemented where team
vehicles are allocated to subteams using set partition
theory. Results are presented for single assignment
and multiple assignment using network flow and auc-
tion algorithms. Simulation results are presented for
wide area search munitions where complexity and cou-
pling are incrementally addressed in the decision sys-
tem, yielding radically improved team performance.

1 Introduction

In the operations research and weapon target assign-
ment literature, fast and efficient static linear alloca-
tion algorithms are available for hundreds, even thou-
sands of vehicles (n) and tasks (m). These are globally
optimal algorithms and require that the complete cost
matrix be centrally available. The auction algorithm,
discussed in a later section, is a distributed form of
these static linear algorithms. Sheer size is one form of
complexity.

However, coupling induced complexity, and not nec-
essarily size, dominates the wide area search munition
problem: The problems addressed to date are of modest
size, n ≤ 8, but there are m = 4 tasks (search, classifi-
cation, attack, verification) per target and an arbitrary
number of targets (< 10 to date). The vehicles each
have a default task of performing cooperative search,
which introduces extensive coupling in their search tra-
jectories. When an object is detected it needs to be
classified. Once a target is attacked, the vehicle is de-
stroyed. After attack, the target is viewed by another
vehicle to ensure it has been destroyed. The tasks must
be correctly ordered and sequenced in the shortest time
due to severe fuel constraints.

To address this complexity, a hierarchical decomposi-
tion is used [1]. Figure 1 illustrates a general architec-
ture for cooperative control and task apportionment
among multiple vehicles.

Sub-teams collapse the complexity of the overall team
optimization problem so that only those vehicles that
have benefit in servicing the objects are considered.
The partitioning uses a limited horizon minimum
weight spanning tree [2]. The smaller single or mul-
tiple assignment problem can then be addressed.

Multiple assignment removes much of the myopic
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penalties of single assignment. A longer planning hori-
zon is essential for good performance in highly coupled
systems. Iterative network flow [4], binary linear pro-
gramming, and auction [5] are addressed in the paper
as algorithms for multiple task assignment.

The paper is organized as follows: decomposition into
sub-teams is addressed in §2; §3 addresses multiple as-
signment; §4 presents simulation results; and §5 the
conclusions.

2 Sub-Teams

A set of UAVs can be clustered into a team if they
service the same target, or a set of targets are close to
one another. A finer assignment of which UAV should
be assigned to which task may be made by considering
the maneuvering constraints of the UAVs.

Suppose Si is an ordered subset of tasks {Γi1 , . . . ,Γipi},
then we refer to Si in the context of UAV Vj performing
the tasks in Si in the order in which they appear in Si.
The first and last tasks performed by Vj are Γi1 and
Γipi respectively. One can associate a cost with Vj
performing tasks in Si. A feasible partition of tasks is
an allocation of disjoint subset of tasks for each of the
UAVs to perform, so that every task is performed by
some UAV and all timing (coordination) constraints on
the tasks are met. The problem of resource allocation
may be posed as finding the minimum cost partition
of the set of tasks, where P is any feasible partition of
tasks.

2.1 Graph Approach
This approach combines the ideas of iterative resource
allocation with those from graph theory.

The resource allocation is performed in two stages:

• In the first stage, a classical assignment is per-
formed to allocate resources to m1 tasks that
must be serviced/performed as soon as possible.
To proceed with the classical assignment, targets
requiring multiple services are replicated an ap-
propriate number of times and treated as distinct
targets that are collocated. For the purpose of
replication, classification followed by attack will
be considered a composite task requiring only one
vehicle and will be treated as a terminal task. To
avoid distinguishing between the replica and the
original target, we refer to the replica by it’s task.
The procedure is as follows:

1. Suppose there are m1 tasks to be serviced
and n UAVs with (n ≥ m), where binary
linear programming solves the classical as-
signment problem:

min
n

i=1

m1

j=1

Tijxij , where

n

i=1

xij = 1,

m1

j=1

xij ≤ 1,

2. There is inefficiency in this assignment,
since, of the m1 tasks, only m2 are termi-
nal. This implies that more than one task
of the set ofm1−m2 tasks can be assigned to
a UAV resulting in a faster servicing of the
tasks. This leads to multiple assignment.

3. We are concerned with multiple verifica-
tion assignments for a UAV that results
in smaller total service time. Timing con-
straints do not appear at this stage, since
UAVs that are not assigned in the first stage
arrive necessarily later at a target than their
counterparts in the first stage.

• In the second stage, some inefficiency in resource
allocation is weeded out using graph theory.

2.2 Graph Construction
Let Di be the distance traveled by a UAV to arrive
at the i th of the m − m1 targets under the classical
assignment.

To specify a graph, one provides the set of nodes or ver-
tices and the set of edges/arcs connecting the nodes.
The targets (or verification tasks) are nodes of the
graph.

We first construct a fully connected symmetric graph
in such a way that the weight of an edge/arc connecting
Γi and Γj is the Euclidean distance, dij , between the
nodes. We then construct a benefit graph as follows:
The benefit bij is the weight of an arc/edge connecting
nodes Γi and Γj and is defined to be Dj − dij . The
benefit, bij represents the saving in distance traveled
in having a UAV that visits Γi also visit Γj . Clearly,
it will be beneficial to have a UAV that visits Γi also
visit Γj only if bij > 0. Clearly, the benefit graph is
asymmetric, since Di may not necessarily be equal to
Dj , although dij = dji.

The problem of sub-teaming can be thought of as par-
titioning the directed benefit graph into subgraphs so
that: 1) every node is covered by one and only one
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subgraph; 2) no two edges of a subgraph either start
from the same node or end in the same node; and 3)
the sum of the benefits of all edges in all subgraphs is
maximum.

2.3 Preliminary Results
We used a minimum weight spanning tree in [2] to solve
this problem. This algorithm decomposes the graph
into isolated nodes and/or directed unary subgraphs
where no two edges in the subgraphs share the same
in-node or out-node.

The results are shown in Figure 2 which indicates how
the verification tasks are partitioned and allocated to
different UAVs. In the plots, the numbers in black
indicate the index of the UAV and its location is given
by its coordinates in the plot. The numbers in blue
indicate the index of the target requiring verification
and its location is specified by the coordinates in the
plot. There is a line starting from a UAV and joining
different targets. UAVs that are not connected to any
targets are released for search operations.

3 Multiple Assignment

The three criteria to which the chosen assignment
should conform are: 1) no task should be assigned to
more than one UAV; 2) no task should be assigned un-
less any prerequisite tasks are also assigned; and 3) the
estimated time at which a task is accomplished should
not be before the estimated time of the immediately
prerequisite task. Also, attacking a target is a terminal
task. The assignment meeting all of these criteria with
the minimum cost (or maximum benefit) is desired. So-
lutions using enumeration, BLP, relative benefit, and
iterative network flow are discussed below.

3.1 Enumeration
A simplified problem may be solved with an exhaustive
search. The distribution of feasible assignments and
their values was calculated using a representative ob-
jective function. For each combination of two to three
targets with two to four UAVs, the optimal assignment
had a value about three times the mean value of fea-
sible assignments. The distributions were qualitatively
normal with a standard deviation approximately equal
to the mean. As this would suggest, many feasible as-
signments had negative value. Figure 3 shows the dis-
tribution of values for a three-target, three-vehicle sce-
nario, and the statistics for similar distributions with
two targets. These findings demonstrate two ways in
which the problem is difficult. First, the number of fea-
sible assignments is drastically smaller than the num-

ber of possible assignments. Second, most feasible as-
signments have far less value than the optimum, so a
random search over feasible assignments is not likely to
find a near-optimal solution with a small sample size.

3.2 Binary Linear Programming
In [3] a Generalized Assignment Program framework
was used to assign multiple identical UAVs to targets.
A Binary Linear Programming (BLP) framework can
encode all of the same information in a much smaller
problem which is faster to set up and to solve. The
general form of a BLP is as follows:

Optimize A· x
Subject to (1) xj ∈ {0, 1} ∀ j

(2) (F · x)i ≤ di ∀ i
(3) (Feq · x)i = deqi ∀ i

The optimal solution to the Binary Linear Program-
ming problem will optimize the objective function
among all feasible assignments in which no UAV is as-
signed more than the predetermined number of tasks.
There are general solvers for BLPs, but a specialized
solver is needed. The problem does not scale as effi-
ciently as the Generalized Assignment Problem. The
number of columns each scale with the product of the
number of UAVs and the number of possible tours,
though with a smaller coefficient. The number of
constraints scales only with the number of tasks or
the number of UAVs. A formulation with tours of
three tasks would have more variables than a formu-
lation with tours of two tasks, but the same number
of constraints. As before, some possible tours could be
heuristically eliminated in the formulation stage.

3.3 Graph Methods
An intermediate approach, between single assignment
and exhaustive search, is to start with the single as-
signment result and look for nearby assignments with
relatively better objective values. When the objective
function is Euclidean distance, the marginal benefit of
one UAV assuming the duties of another UAV in ad-
dition to its own has a simple form. If Target i is
separated from Target j by a distance dij , and the cost
associated with servicing Target j by single assignment
is Dj , the benefit of the UAV assigned to Target i sub-
sequently servicing Target j is Dj − dij . A matrix of
benefits can be readily constructed according to

bij :=
0, if i = j
Dj − dij , otherwise.

Any of several algorithms can operate on this matrix.
One method investigated uses an auction mechanism to
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make the temporary assignment resulting in Dj , uses
another auction to produce a permutation of targets,
evaluates the cost for each UAV to service each of the
resulting loops, then uses one more auction to assign
UAVs to these loops. Another method uses a greedy
algorithm. At each stage, Target j, is designated to be
serviced by the UAV servicing Target i. The ordered
pair of targets chosen at each stage maximizes bij over
all ordered pairs of targets satisfying the conditions.
The process is repeated until the maximum such bij
is negative, or no such bij exists. The assignment by
either of these algorithms could be used directly, or as
a guide to partitioning targets into groups for service
by sub-teams.

Good results were produced by an algorithm that does
not preserve the order of targets when one UAV as-
sumes the assignment of another, but chooses the or-
der in a myopic manner as in Section 3.4. The ordered
pair of UAVs maximizing the marginal benefit is chosen
at each stage until the benefit is negative or only one
UAV is assigned. This heuristic allows for general ob-
jective functions of a UAV assigned to a set of targets.
Furthermore, inclusion of dummy UAVs will allow the
assignment algorithm to leave some targets unserviced,
if the benefits do not outweigh the cost.

3.4 Iterative Network Flow
Tours can be compiled by an iteration of the linear
transshipment algorithm [3]. At each stage, UAVs have
a planned position and heading for the end of their as-
signed tour of multiple tasks. The transshipment algo-
rithm makes a temporary assignment of these UAVs to
subsequent tasks. Of these temporary assignments, the
one with the earliest estimated time is fixed, and the
planned UAV position and target state are updated.
The process repeats until all target tasks are fully as-
signed. Fixing the earliest estimated time at each stage
discourages, but does not prevent, non-feasible assign-
ments. The authors also implemented the iterative al-
gorithm as an auction, then addressed the issue of con-
flicting task order. One method is to associate a large
cost with any potential assignment which would create
a conflict. The other method is to adjust the cost of
a potential assignment to include loitering, so that the
dependent task occurs at the earliest admissible time.
The implementation of the latter adjustment currently
addresses only the order of the completion of the tasks.

4 Simulation Results

The authors have developed a MatLab Simulink based
multi-UAV simulation of a wide area search munition

scenario with a hierarchical distributed decision and
control system as depicted in Figure 1. The vehicles
cooperatively search for and destroy high value targets.
The vehicles low maneuverability and endurance are
critical constraints.

The scenario, shown in Figure 4, has 8 vehicles fol-
lowing a preset serpentine search pattern. Figure 4 is
a snapshot 98sec into the scenario where the vehicles
path and footprint are color-coded. There are 3 high
value rectangular targets in the search space that have
an arbitrary orientation on the ground. When these po-
tential targets pass completely through the footprint,
the object is declared detected. The object cannot be
attacked until it has been classified, with sufficiently
high confidence. The probability of classification is a
function of the aspect angle at which it is viewed. Ad-
ditional views by the same, or other vehicles, may be
necessary. These views are then combined statistically.
More details of the cooperative classification are cov-
ered in [6].

Figure 4 uses the decision and control structure of Fig-
ure 1 where there all the vehicles and objects are al-
ways assigned to one sub-team. The sub-team agent
here solves a static binary assignment problem using
a network flow analogy [4]. The n vehicle by m task
matrix includes the costs for every surviving vehicle to
perform a task that transitions each object to the next
state (detect, classify, attack, verify). The vehicle agent
calculates these costs by generating minimum time tra-
jectories that satisfy kinematic constraints with speci-
fied terminal position and heading.

Figure 4 shows the typical consequences of a single step
look ahead decision and control system. Following their
pre-specified waypoints, vehicles 1,2 detect targets 1-3.
Vehicles 5-7 are assigned to classify targets 1-3 respec-
tively. These vehicles have the lowest cost (time) to
view the objects at aspect angles that have the high-
est probability of classifying the objects. Once classi-
fied, the classifying vehicles are assigned to attack the
target. The 3 “racetracks” are a consequence of the
single assignment binary optimization and the policy
of returning the vehicles to the point of search depar-
ture. The optimization is triggered only when an object
changes state or a task is completed. The near circular
trajectory of vehicle 1 is an example of a vehicle being
reassigned and not completing a task. This “myopic”
optimization uses 6 vehicles to service 3 targets.

Iteration 2 of the design process is shown in Figure 5
where the full 3 level decision hierarchy in Figure 1 is
used. Here, the team agent allocates resources to an
attack sub-team or a search sub-team. Initially, all the
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vehicles are assigned to the search subteam. As more
objects are detected, vehicles are allocated to the at-
tack sub-team for a maximum of 4 vehicles, which is
the minimum needed to attack and verify 3 high value
targets. Which vehicles are assigned is based on time
to target. The graph based set partition with flyable
trajectories yielded vehicles 4-8 as “closest”. At the
sub-team level, the binary network flow assignment al-
gorithm is sequentially applied as resources are allo-
cated to the sub-team. Now, a maximum of 4 vehicles
are considered for each task, yielding a more tractable
problem. Vehicle 8 does the verification for all 3 tar-
gets.

Iteration 3 of the design uses multiple assignments to
remove the trajectory inefficiency, but at an apprecia-
ble increase in complexity. Here, the generalized as-
signment, graph based, and the iterative network, all
with tours of maximum length 3, have been used. The
iterative network assignment is by far the most compu-
tationally efficient, but though not guaranteed to yield
the optimal, the results have been very good. Figure 6
shows the 3 task planning horizon for the same 4 vehi-
cle attack sub-team. Now, vehicle 8 has been assigned
a 3 task verification tour. The coupling of target tasks
with search tasks is also seen in this scenario.

5 Conclusions

The primary attack upon coupling-induced complex-
ity is hierarchical decomposition. This yields a subop-
timal solution, but the optimal solution can only be
found by direct enumeration, which is computationally
prohibitive. The graph partition technique with fly-
able trajectories is promising for determining sub-team
composition.

The solution of the binary linear program for the sin-
gle assignment problem is the starting point for much
of what has been done. Network flow solvers, auction
implementations, and binary linear programming al-
gorithms all yield the optimal solution for the binary
linear single assignment problem. All are fast, but the
auction mechanism is more readily implemented in a
distributed fashion.

Multiple assignment extends the planning horizon and
yields significant improvements in performance and ro-
bustness. The iterative network flow optimization al-
gorithm is a short planning horizon heuristic that has
been found to work well in practice. Robustness and
feasibility are issues, and the algorithm could occasion-
ally give poor performance. Task order can be enforced

in the generalized assignment problem, the graph par-
tition, and binary linear programming, but timing is
problematic. Auction algorithms may be devised as
well, but share the same issues. However, all these al-
gorithms are more computationally intensive.
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