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0.1    Objectives 

The objective of this research was to develop approach to control of mixing in sheeir flows eind apply it 
to control of pattern factor and thermosicoustic instabilities in military Jieroengines. A more general 
objective was to develop tools for modeling, £in£ilysis, and control design for unstesidy non-equilibrium 
flow phenomena relevant to operation of aeroengines. 

0.2    Summary of Accomplishments 

The original objective of developing methods for control of mixing releveint to pattern factor control was 
accompUshed. Methods for enhaincing mixing in jets in cross flow using flow control were developed 
and demonstrated in experiments. Control of Pattern Factor using jet in cross flow control was 
demonstrated in a rig isxperiment. This work is described in Section 2.1. 

The objective of controlling thermoacoustic instabilities via mixing control was not eiccomplished. 
The fimding was re-directed towards more promising fuel control of thermoacoustic instabilities. The 
decision was based on the fact that the fuel flow control was considered more fesisible thcin 2iir flow 
control and more likely to be transitioned to a 6.2 project on Active Screech Control (jointly funded 
by Ah- Force Research Lab and Pratt & Whitney). 

In the area of fuel control severed accomplishements are iijrorth mentioning. First, a hierairchy of 
models for control of thermoacoustic instabilities was developed. A method of control of flame front 
was demonstrated in a distributed model. Control of rotating waves eirising as results of thermoa- 
coustic instability on a einnular domeiin was demonstrated in a reduced order model. The effiect of 
combustion on the fluid dynamics was ancJyzed in a distributed and reduced order models. The results 
are presented in Section 2.2. Other accomplishments include 2malysis of impact of symmetry-breaking 
(Section 2.3) cind external noise (Section 2.4) on thermoacoustic instabilities. The study of the funda^ 
mental limitations of achievable performajice described in the next paragraph was motivated by the 
control of thermoacoustics. 

The most important theoretical accomplishment of the current research weis establishment of a 
frcimework for studying fundamental limitations of achievable performance in control of oscillations 
described by nonlinear models, including delays, and driven by broad-band noise described in Sec- 
tion 1.1. The framework is based on frequency donaain formulation of model response. While linear 
dynamic components (osciUators and delays) are easy to heindle in the frequency domain, the cheillenge 
was the treatment of static nonlinearities. This was accomplished by replacing the nonlinearities by 
their Random Input Describing Functions.  This approach was very efiective in studying limitations 



of performEince in fuel control of thermoacoustic instabilities using on-off fuel valves. The framework 
involved approximations. As a first step toweurds a fully rigorous framework for einalysis of nonlinear 
ocillations, the Spectral Balance approEich (Section 1.2) was introduced ajid demonstrated in an ex- 
ample of a nonlinear model with multiple attra^tors. Other accomplishments include introduction of 
two methods of sidaptive control of oscillations with uncertain pareimeters (Section 1.3) and anailysis 
of uncertainty propagation in complex, interconnected dynamical systems (Section 1.4). 

Finedly, a lineeir framework for control of wave phenomena on smnular domain was established. 
The flutter control problem described in Section 2.5 was used to motivate the study. 

The results of the current reseaurch are sunuucirized in 11 journal papers (5 published, 3 in print, 3 
submitted) and 20 conference papers. Three invited sessions were organized with support from current 
gremt. 

0.3    Organization of the report 

We provide extended abstract for the results that axe published and hence easily available. We provide 
more details for the results that are not avciilable, like papers that are submitted or in the case of 
ungoing research. List of references is available in the last two chapters of the report. References to 
journal papers that were written under this contract Eire referenced with letter "j" in front (pi], [j2], 
etc.). Conference papers written under this contract Eire referenced with letter "c" in front ([cl], [c2], 
etc.). 
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Chapter 1 

Control Theory for Nonlinear 
Oscillations in Military Aeroengines 

1.1    Analysis of fundmental limitations of achievable performance in 
control of oscillations in nonlinear systems 

The most importsint theoretical Jiccomplishment of the current research was establishment of a freime- 
work for studying fundamental limitations of achievable performance in control of oscillations described 
by nonlinear models, including delays, aind driven by brocid-band noise. The frjimework is based on 
frequency domain formulation of model response. While linear dyn£imic components (oscillators and 
delays) are easy to handle in the frequency domain, the challenge is the treatment of static nonhn- 
earities. This was accomplished by replacing the nonlineeirities by their Random Input Describing 
Functions. This approach wjis very effective in describing hmitations of performance in fuel control 
of thermoeicoustic instabilities using on-off fuel valves. The framework involved approximations. As 
a first step towards a fully rigorous framework for analysis of nonUnear ocillations, the Spectral Bal- 
ance approach was introduced and demonstrated on an exaimple of a nonlinear model with multiple 
attractors. 

1.1.1    Fund£iinent£d limitations of achievable performance in control of thermoa- 
coustic instabilities 

Thermoacoustic instabilities in gas turbine and rocket engines develop when acoustic waves in com- 
bustors couple with an imsteady heat release field in a positive feedback loop. Fuel control was 
demonstrated to be an effective way of reducing the level of pressure oscillation in combustors [46] [6] 
[7] [30] [23] [17] [11] [24] [45]. However, the achieved reduction of pressure oscillation between experi- 
ments ranges from 6dB to 20dB [11] [24]. Moreover, in some cases the attenutation of the oscillation 
at prim£iry frequency is Eiccompanied by excitation of the oscillation in some other frequency bcind [6] 
[7] [30] [17] [45]. This phenomenon is refered to as secondary peaks or peak splitting. 

Until recently, the question of what axe the factors that impact the achievable level of attenuation 
of pressure oscillations with active fuel control was not addressed. In particuleir, the cause of the peak 
splitting phenomenon (two peeiks in the pressure spectrum with control) observed in many combustion 
experiments [6] [7] [30] [17] [45] did not have a satisfactory explanation. One of the reasons was that 
the majority in the thermocicoustic instabihty control community believed that the thermoacoustic 
instability arises only as a stabihty loss leading to a limit cycling behavior (one peak in the pressure 
spectrum), and any control action stabilizing the equilibrium of the thermoacoustic system will result 
in quenching the oscillations (no peaks). 
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Figure 1.1: PSD of pressure signed with on/ofF control of one, two, or three hqvud fuel nozzles. The 
peak spUtting phenomenon observed in experiment reproduced in reduced order model simulation. 

Two major contributions of the UTRC combustion control team (including academic partners) 
were: 
1. A method for determining whether a given combustor should be modeled as a hmit cycling or a 
noise-driven stable system [37, 38]. 
2. Anedysis of factors that affect the aichievable level of suppression of pressvure oscillations for both 
stable ajid limit-cycUng systems [13, 12, 3, 4, 2]. 
The anedysis of the data from combustion experiments has shown that industrial combustors axe often 
described by stable, Unecur, noise-driven models. Standjird frequency domain methods were appUed 
to such models showing tltat in some conditions the transport delays and limited actuator bemdwidth 
fundamentally limit the level of achievable suppression of the pressure oscillations [3]. The origin of 
the peak-splitting was explained using stable linefir models with laxge delay in actuation due to the 
fuel trainsport process. 

Under the current contract, the frequency domain fundamental Umitation were extended to non- 
Maeax combustion models, including the hmit cycling ones [4, 2]. 

The peak-spUtting phenomenon was observed in DARPA-sponsored sector rig experiments and was 
reconstructed in a model (see Figure 1.1). Because on/off vedves were used for control, a linecu: anedysis 
was not applicable. However, a nonlinear cinalysis involving Random Input Describing Functions 
[13, 12, 2, 24, 3, 4] cdlowed an explsination of the phenomenon. It has been shown that, as in the linear 
model case, the pressvure oscillations cannot be arbitrairily suppressed due to non-minimimi phase 
effects (transport delay) and Umited actuator bandwidth. It was also shown that the effects of the 
driving disturbances and saturation nonlineeurities needs to be incorporated in the ajialysis. The sector 
rig model Wcis derived in the form of a feedback interconnection of a stable linetu: transfer function 
Goijw), and a relay nonlineeurity /(■), subject to a driving disturbcince N{juj) as 

xiM Go{ju;){N{juj)-Y{jiv)) (1.1) 

y{t) = fixit)). (1.2) 

for Go{ju)) = Gi{ju))Gc{ju!). Gi(jw) represented the serial connection of the thermoeicoustic response 
to fuel valve output dominated by a single resonant mode with a natural frequency of about 200Hz 
and a non-minimum phase transfer function representing the transport delay from the fuel injection 



location to the flame.   Gdju)) was the transfer function of a phase-shifting controller used in the 
experiment. The nonhnearity was representing the relay chjiracteristic On the on-ofF valves. 

In the Random Input Describmg Function [20] ancilysis one assumes that the input u{t) to the 
nonlinear element is of the form u{t) = B + Asm{ujt + 9) +r{t), where B, A, w aire unknown constants, 
6 isaji eirbitraxy initieil phase, and r{t) is a Gaussiein process with a stsmdjird deviation a. The output 
of the nonlineax element y{t) = f{u{t)) is approximated as 

ya{t) = NBB + NAAsm{ujt + 9)+ NRr{t), (1.3) 

where the individuatl gains (called Describing Functions of the nonlineeirity) £ire obtained by minimiza- 
tion of the veiriajice of the residual: 

NBiB, A,a) ^^E[f (uiO))]^ 

-^ So" deJZo drfiB + Asin{9) + r) exp(-^), ^l-^) 
(2jr) 2 arB 

Nn{B, A, a) = ^£;[/(«(0))r(0)] = 

T-tVr /o'^'i»/~oo drf{B + Asm{9) + r)r exp(-^), ^l'^) 
(2Tr) 2 (7^ 

NA{B, A, a) = \E[f{um sin(0)] = 
-^—/o'^d0/~^dr/(B +Asin(0) +r)sin(»)exp(-^). (l-^) 

([20], p. 371). For the no-noise emd no-bias case where r(t) = 0 and S = 0, the last formula reduces 
to the stcmdeird sinusoidal input describing function gciin. 

This framework easily allows us to study the response of the pressure output in either open or 
closed loop thermoacoustic system as £in output of a stable noise driven system (when ^4 = 0) or 
as self-excited oscillation (when A > 0) or some combination of the two. We assimie the Gaussian 
component ri{t) of the input disturbamce has Power Spectral Density $ii(jw) and write corresponding 
equations: 
1. Stable driven system 

o_ <^o(o) D. n 7^ 
''- l+NB{B,A,a)Gm ^ 

^-l+NA{B,A,a)Go[3^r' ^''^^ 

^-(^-)-'l^^.(B:ti)^o(i.)l^,^-(^-) ^''^ 
a^ = r^ /     $xx(j'^)dw- (1-10) 

2. Self-excited oscillations with driving noise 

^-l+NB{B,Aa)Gm   ' ^       ^ 

l + JV^(S,A,CT)Go(jc^)=0 (1.12) 

'^ = 2W- 
1 /""^ 

'TT J —oo 
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Figure 1.2: The amplitude of the limit cycle in the presence of the Gaussian noise 
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Figure 1.3: Describing function gains in the presence of Gaussian noise 

For relay nonlinearity, the eimpUtude of the limit cycle can be found from solving the loop equation 
(1.12) 

l + NA{A,a)GoiJu))^0. (1.15) 

In Mehta et ai, IFAC 2002, we prove that for a relay nonlineeirity: 

1. For a —>• 0, the appesirance of the Umit cycle stabilizes the loop with respect to the noise thereby 
yielding a bounded input-output response (for the Gaussian noise driver) as solution of equation 
(1.13) and 

2. for a —> CO, large noise stabilizes the loop with respect to the limit cycle thereby causing the 
hmit cycle to disappezir and the system to behave as a stable noise driven system. 

More precisely, Figure 1.2 shows that the presence of noise (cr > 0) leads to a reduction in the amplitude 
of this limit cycle and at a criticcil positive value of a = CTQ, the limit cycle disappears (A(ao) = 0 
for values of CT > ao). Figure 1.3 shows the gains Nii{(7) and NA{<^) as function of a. For the values 
of a where hmit cycle is present, NR monotonically increases between 0 and ao and decreases for 
values of CT > CTQ.  We also showed that the feedbeick interconnection of Go{j(jj) £ind NR{A{a),a) is 
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linearly stable for all cr ^ CTQ a^id the largest loop gain occurs at the critical value CTQ where the loop is 
arbitrarily close to destabilization (eigenvalues on the imaginairy axis). For values of a away from cro, 
the eigenvalues move in to the LHP thereby ensuring asymptotic stability for all a ^ OQ. 

Therefore, except for a critical a = cro, the Fourier transform of the Gaussian component of 
combustor pressure may be approximated as 

Pg{jw) = Go{ju))S{juj, A, a)ni{ju}), (1.16) 

where ri{jco) is the Fourier transform of the driving disturbance emd 

is a modified sensitivity function that depends on the magnitude of the limit cycle A and standard 
deviation a of the Gaussian component at the input of the relay nonlinear element. This result allows 
to extend the results of the standard linear fundamental limitations eineilysis presented in the papers 
[2, 3, 4] to the case of control with on-oflF eictuators. In peirticuleir, it c£in be shown that the supression 
of the pressure oscillations in the central frequency band of the natural combustor resonance (which 
requires 115(^0;, A,a)\ < 1) will leeid to aimplification of the pressure oscillations in an eidjacent frequency 
b2ind {\S(jtj,A,a)\ > 1), which leads to peak-sphtting. The norm used here is the Hoo norm. 

Analysis presented here indicates that the peaJcing phenomenon defined as excitation of oscillations 
with closed-loop control is to a large extent inevitable for combustion processes with large delay 
controlled with actuators of limited bjindwidth. 

In Teerlinck et al, 2005, we applied the nonlinear frequency-domain fraunework described above 
to explain results in active fuel control experiment in 800kW three-flameholder rig. The experiment 
involved on-off valves and severe peak-spUtting wcis observed. The optimal amount of fuel weis proposed 
to reduce the peeiking eind to provide eicceptable attenutation of oscillations. 

1.2    Spectral Balance 

A frequency-domain framework for smalysis, computations, and uncertainty propagation in nonline£ir 
systems driven by broad-band disturbcmces w£is introduced and illustrated in a simple example of 
a noidineeu: system that exhibits noise-induced transitions between two locally stable equilibria. An 
approximate and iterative spectrcil bedance (including determination of equilibria) is solved. The 
solution of the approximate spectral balemce is used to reformulate the original model using a loop 
trsuisformation so that an iterative procedure for finding the spectrum of the output converges to the 
true spectrmn of the solution. The work is presented in paper by Banaszuk and Mehta, CDC 2004. 

Mjiny industrial flows involve complex interactions of cicoustic waves, vorticity, fuel trainsport, and 
chemiced reactions. The control objective often is to create beneficied non-equilibrium dynamics with 
control. Examples include control of flow separation Eind mixing enhcincement. In this paper we intro- 
duce a frequency domain framework for anedysis cuid non-equilibrium control design for a large class of 
models of physical phenomena involving multiple oscillatory modes coupled through nonlinear terms, 
transport delay, £ind driven by broeid-bcind distiurbances. While motivated by specific problems rising 
in militairy aeroengines, the methods will be applicable to large class of distributed dynamical systems 
involving oscillatory dynamics with nonlinear cross-coupling, saturated nonlinesirities, transport delay, 
and broad-band disturbajices. 

The spectral balance framework that we propose generedizes the standard harmonic bedance and 
Gaussiain signfd balance in feedback systems [31, 20]. The framework is introduced and illustrated in an 
example of a nonlinear system that exhibits noise-induced transitions between two stable equilibria. 
The example presented is a scalar model with cubic nonlinearity after pitchfork bifurcation driven 



by a broad-band distxirbance. An approximate and iterative spectral bEilance of the const£int cind 
broad-band signals (including determination of equilibria) is solved. The solution of this approximate 
spectral bedfince is used to reformulate the original model using a loop transformation so that an 
iterative procedure for finding the spectrum of the output converges to the true spectrum. 

Consider a model of a Hghtly damped stable linear system with transfer function Go{j(^), in a 
feedback loop with a static nonlineeirity /(•), subject to a driving disturbance n{t) with the Fourier 
transform JV(jw). An uncertainty in the model is represented by an (in generjil nonUnear) operator 
A() in a feedback loop around the nominetl model The model equations are 

NOco) XOco) 

Uncertainty 

Figure 1.4: The model structure 

X{jc,) = GoiJuj)iN{jw) - A{jc^, Xijcj)) - Y{jw)) (1.18) 

y{t) = f{x{t)) (1.19) 

where, X{-) = Tx{-), Y{-) = J^y{-), and N{-) = J^n{-), are the Fourier treinsforms of the corresponding 
temporal signeils. We etssvune that nonUnecir mapping /(•) is Lipshitz on each bounded set. The 
equation (1.19) can be represented in the frequency domciin as 

Yijw) = fiXiJuj)) := TfiJ^-'XiJuj)). 

Now, the feedback system (1.18)-(1.19) can be represented as 

X{ju;) = Go{jiv){N{JLj) - fiXiJuj) - A{juj)X{juj)). 

(1.20) 

(1.21) 

Note that for the hnear case f{x) = 0, A{ju>, X{ju))) = A{ju})X{JLj) the mapping of the uncertainty 
A{ju)) to the output of the system is given by the formula 

Xijuj) = {I + Go{juj)A{joj))-'GoiJu))NiJw) (1.22) 

involving the sensitivity fimction (7 + Go(jijj)A{ju})) ^. Note that the frequency domain representa- 
tion greatly simplifies the uncertainty propagation analysis. 

1. Uncertainty propagation. The sensitivity function (/-I- Go(jw)A(jw))~^ allows to explicitly map 
the probabihty distribution of the uncertain parameters contributing to A(ju;) to the probability dis- 
tribution of the output Y{JLj). 

10 



2. The frequency domain representation greatly accelerates computation of this mapping. Note that 
only the algebraic calculations need to be performed in evaluating the formula (1.22). In contrast, 
a time domeiin counterpart of the (1.22) would require evaluation of the convolution integrals over 
long period of time. Computation of leirge Uneeir systems with significantly sepjurated time scales is 
cumbersome in time domain, as the shortest time scales detemine the time step size, while the longest 
time scales determine the total time of simulation. Moreover, in the time domadn formulation one 
needs to wjiit for transients to subside, which is an issue when deahng with lightly damped dyncimics. 
There are additional benefits of the frequency domain representation in-the case when Go(jw) contains 
time delays. 

3. Tools from the robust linear control theory Eillow to handle dynamic tmcertainty in case when 
only the bounds on the uncertain operator aie known [15]. 

AppMt from application to the uncert2iinty propagation, the frequency domjiin formulation edlows 
to study fundamental limitations of achievable control performEmce using methods of the complex 
analysis. 

The spectral balance approach retciins the advantages of the linear sensitivity function frcimework: 
explicit formulas mapping uncertainty to the output and the speed of computation. We will begin 
with the pEirticuleir case of system in Figmre 1.4 vising the fixed point formulation (1.21). To introduce 
the spectreil balance freimework we will consider the case without tmcerteiinty shown in Figure 1.5 with 

Figure 1.5: The model structure 

the corresponding fixed point formulation of the spectral baleince equation given by (1.23) 

Xiju;) = Go{M{N{juj) - f{X{juj)). (1.23) 

Note that the spectraJ baleince frcimework generalizes the standard harmonic balance (where the input 
signed n() is periodic, or when the dynamics has limit cycles) and Gaussiein signed balemce (where the 
input signal n(-) is a Gaussian broewi beind signed) in feedback systems [31, 20]. 

We assume that the dyneunics of (1.19) is globally bounded eind that there is an attractor. Eventu- 
ally we intend to introduce a spectred bedeince framework for the class of bounded power signals on ein 
infinite time interval. In this paper we restrict the attention to the space of L2 signeds on the interval 
[0,T], where T is large relative to the slowest time scale in the system. The induced operator norms 
are the Hoo norms. 

A sufficient condition for existence of a unique solution of the spectral balance equation (1.23) is 

\\Go{JLj)if{X2iJuj)) - hXi{ju;)))\\ < \\X2iJu;) - Xi(jw) (1.24) 

11 



For all Xiijw) in L2[0,T]. Note that in this case a unique solution to (1.23) exists (by applying 
the Banach Contraction Mapping Theorem [28]). Moreover, the approximate solution of the spectral 
balance equation can be obtained by successive approximations using the formula 

X.+i(jw) = Go{jio){N{juj) - /(Xi(jw)). (1.25) 

with an eirbitrary initieil condition. 
Note that if the condition (1.24) is satisfied for all Xi{juj) in a closed set B in L2[0,T] that is 

invariant for the mapping Go(jw)(i\r(jw) - /(•)), one can approach a solution of the spectral balance 

equation (1.23) in B using (1.25) with Xo(jw) G B. 

1.2.1    Loop trsmsformation 

A sufficient condition for (1.24) is the small gain condition for the feedback loop in (1.5). However, even 
if the condition (1.24) is not satisfied, which would be the case if the loop gain is large, one can attempt 
to enforce the condition (1.24) for an equivalent feedback system to (1.5) by a loop transformation. 
An example of a linear loop transformation is shown in Figure 1.6. Here H(juj) is an arbitrary stable 

/lO > 

^ 

H{j(0)  • — 1 

n^ /(■)    • 
—i—1 

NOco)      \f 
G,{jo)) - 

X 

G, {j(o)V 
HUm) i-i I 

Uneair operator, 

and 

Figure 1.6: The loop transformation to enforce loop contractivity 

Gi(jw) := (/ + fr(ju;)Go(ju;))-iGo(jw). (1.26) 

(1.27) 

(1.28) 

MXiJij)) := fiXiJuj)) - H{juj)XiJuj). 

The spectral bedance condition for the system in Figure 1.6 is 

X{jij) = Gi{juj){NiJcj) - hiXiJuj)). 

Note that a sufficient condition for the contraction condition for the transformed spectral balance 

(1.28) is ,       ^ 
\\Gi[juj){f\(X2{juj)) - h{XiiJio)m < \\X2iM - Xi{juj)\\. (1.29) 

If the nonhnear part of the loop in Figure 1.5 has a stabiUzing effect, the role of the operator Hijui) is 
to reduce the H^o gain of the nonlinear part of the loop and increase the contractivity of the Unear part 
of the loop. More precisely, the gain of the nonlinear operator f{X(ju))) is reduced by subtraction of 
a linear approximation of f{X{juj)) and the approximate Unear operator is incorporated in the linear 
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part of the modified loop. Thus, a good choice of H{ju)) is the one that minimizes ||/i(A^(jw))|| for 
X{jui) representing the solution of the spectreil balance equation (1.28). 

Of course, the minimization of ||/i(X(jw))|| requires knowledge of X{ju}) itself, which is exactly 
the solution of the spectral balance equation that we seek. Note that we are interested in the case of 
system (1.19) having non-equilibrium attraictors or subject to a laige driving disturbeuice, so that an 
approximation of nonlineeir operator /(X(jw)) by its lineeurization at {X{jw) = 0 is not suitable. 

The key idea introduced in this paper is to proceed in the following three steps: 

1. Find £in approximate solution XappriJi^) close to X{jcj). For this, the describing function tech- 
niques, both for harmonic cind random Gaussian signals, can be utilized. In fact, as we will show in 
the next section, it may be not necessziry to find an approximate solution Xapprijf^), but only few 
parameters describing such a solution, like its time average and the average power. 

2. UtiUze the knowledge of Xapprijf^) (or the pcurameters describing it) to find a linear tr2insforma- 
tion H(ju)) that minimizes (or at least reduces) ||/i(-X'appr(jw))|| = \\f{XappriJ'^))-H{juj)XappriJ(^)\\- 

3. Use H{JLj) to define the loop transformation (1.26)-(1.27). If the contraction condition (1.29) 
is satisfied on a closed set B in L2[0,T] that is invariant for the mapping GI{JLJ){N{JLL}) - /i(-)), one 
can approach a solution of the spectrjd balemce equation (1.23) in B using the iterative process defined 

by 
Xi+iijuj) - Gi{juj){N{juj) - fiiXiiJw)) (1.30) 

stcirting with an eirbitr£iry Xo{ju>) E B. 
At present it is not clear under what genercd conditions the procedure described above will result 

in finding solutions to the spectral bal£ince equations. In the next section we will show one exaimple 
of a system with nontrivial dynamics, for which that the procedure yields the desired result. 

1.2.2    Example 

Consider the equation 
x{t) + ax{t) + bx^{t) = n{t). (1.31) 

Here we assume that a < 0, 6 > 0, and the input signal n() hjis zero mean eind flat spectrum 
\N{juj)\ — (Ti for all w. In the sequel we will refer to the input signal n(-) as noise, even though we 
emphasize that in this paper we only consider the deterministic case. Note that for o = 0 the system 
(1.31) imdergoes a pitchfork bifurcation and the equihbrium x = 0 becomes imstable for all o > 0. 

Two locedly stable eqmUbria occur at a; = \/~f ^^'^ ^ — ""\/t' ^°*^ **^** ^°^ * small value of af the 
solution x{t) will be close to one of the stable equilibria. For some higher value of af the solution x{t) 
will be trsuisitioning firom a neighborhood of the one of the stable equilibria to the other, as shown in 
Figure 1.7. Note that the spectral balance equation for (1.31) is 

Xiji^) = ^-^{NU^) - fiXiJu)), (1.32) 
juj + a 

where f{x) := bx^. Note that, since a < 0, the linear operator jj^ is unstable, and the contreiction 
condition (1.24) is not satisfied. However, the nonlinear operator f{x) has a stabilizing effect, so that 
we can attempt to transform the loop to an equivalent one, for which the contraction condition is 
satisfied, eis described in Section 1.2.1. 

Let X := y JQ x{t)dt denote the time average of x{t) and let x'(t) := x{t) - x denote the deviation 

of x(t) from its average value. Let a^ := ^ JQ x'{t)^dt denote the mean power of x'{t). In what follows 
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Typical solution 

rimotraca,a=-1, b=1,noisopowor=0.99472 

Figure 1.7: Typical solution of system (1.31): noise-induced transitions between two stable equilibria 

we will compute approximate Vcilue of x and a^ by solving approximate spectral balance equations. By 
tEiking the time average of (1.33) eind using the fact that the average of (x + x'(t))^ is x^ -I- 36a^ we 
obtaiin 

x(a + Zhal + fex^) = n = 0. (1.33) 

Subtraicting (1.33) from (1.31) and re-£irranging terms yields 

i'{t) + (a + h)x'{t) + h{x'{t)) = n{t), (1.34) 

where 
h:=bal+ 36x2 (1 35) 

/i(x'(t)):=6(x'2-a2)(x'+3x). (1.36) 

To find approximate values of x and cr^ we will neglect the term /i(x, <TX, x'{t)) in (1.34) emd solve the 
equation 

x'{t) + {a + bal + 36x^)x'(<) = n(t) (1.37) 

Note that for fixed values of x and tr^ (1-37) is a linear equation that can be solved in the frequency 
domain as 

X'iju;) = ^^f",^    ,,_,. (1.38) 
^    '     jcj + a + bal + 3bx^ 

For a moment we £issume that the vcdues of x cind a"^ are such that a + bu^ + 36x'^ > 0, so that 
the transfer function ^j+a+bir^+sb-^ ^^ stable. This assumption will be verified after x and cr^ are 
ceilculated. 

Now we obtain the closure equation for a^ by integrating the absolute values of both sides of (1.38) 
over aU frequencies 

"'-hi jijj + a + bal + 36x2 
^duj. (1.39) 
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The equations (1.33) and (1.39) form aji approximate spectral balance for the system (1.31. The integral 
in (1.39) can be analytically evaluated so that we can write the following equation 

^2 

Now, solving (1.33) and (1.40) we obtain 

„2 

'^t< 46 

at> 
46 

2(a + bal + 36x2) • 

x2 = -f-3c.2 

x = 0. 

(1.40) 

(1.41) 

(1.42) 

(1.43) 

(1.44) 

(1.45) 

(1.46) 

Figure 1.8 graphically represents the solution to the approximate spectral balance equations as function 
of the input power CTJ for O = —1, 6 = 1.  The solutions for x and a^ have a natural intepretation. 

(J 
X' 

Approximate spectral balance 

1 

J\'   0.5 

0 

-0.5 

- -Q - e - a- o- -D- -Q-'-Q- T T r -1 . 

 , , , ^ 1 , , 

 1 H &-o-,Q-e-e--o--o--o--<B-&-e-&--o 1 

1               I.I                1                1               1               1 

0^                a4                 0.6                 0.8                   1                  1.2                1.4 

1 I I '„nrtO00|0 , 

 ; _;___q_ojo_o__°_f__°J'__t I ; 

0.2 a4    A 0-6 U 1.4 

•     Ab 

Figiure 1.8: Solutions to approximate spectral balance equations as function of the input power 

2 

For o't < If there axe two values of the time average x close to the no-noise equilibria that can be 
attained. The value of ax (that could be interpreted as standard deviation of x{t)) is small, so that 
the solution x{t) stays close to an equihbrium solution and does not transition to the neighborhood of 
the other equilibrium. Above the critical value of the input power CTJ = |j the solutions x{t) deviate 
from the stable equilibria far enough to transition between the neighborhoods of the both equihbria. 
Since the transitions back and forth can occur, x = 0 becomes the mean and the standard deviation 
CTx is close to the distance from the new mean x = 0 to the value where the solution x(f) spends most 
of the time: close to the no-noise equilibria of (1.31). 
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We will now use the values of x and cr^ given by (1.8) to perform a loop transformation as described 
in Section 1.2.1. More precisely, we will solve the perturbation equation (1.34) in the frequency domain 
using the fixed point formulation 

X'iju;) = 
ju) + a + h 

{NiJcj)-hiX'{jw)). (1.47) 

It can be easily verified that a 4- ft > 0 for x and a^ given by (1.46). Analytic verification of the 
contraction condition for the operator ■ _/ . ^{N(Ju}) — /i(•) is difficult. Therefore we will assmne that 
the contraction condition is satisfied and proceed with an iterative solution to (1.47) using 

X'i+i{JLj) = -: 
JLO + a + h 

{NUu})-fi{X'i{jiv)) (1.48) 

with X'o{JLj) = 0 cind verify the contreiction condition numerically. To illustrate aind verify this 
procedure, a numerical solution of (1.31) for a = —1, 6 = 1, and o'i > fj was obtained. The spectrum 
N{JLj) of the noise from the time domain simulation was saved and used in the formula (1.48). 
Figure 1.9 shows an excellent agreement of the spectrum X'{juj) from the time domain simulation 
and the spectrum X'io(jw) from the iterative procediu-e (1.48) after 10 iterations. Figure 1.10 shows 

Simulation and approximation 
after 10 iterations: spectra (fft) 

Spectra, a—1, b=1, noise power=3.9789 

25 

20   - 

15- 

10- 

; "— Time simulation 
—" Iterative Spectral Balance 

li 1           i.     . 

1 1  
 

v ̂
 

0.1 0.2 0.3 
Frequency, Hz 

0.4 0.5 

Figure 1.9: Solution to iterative spectral balance equations: spectra 

comparison of the time traces of the solutions of (1.31) obtained by the time domain simulation and 
by the iterative spectral balance and the inverse Fourier transform. Figure 1.11 shows decay of the 
power of the approximation error X'{ju) — X'i{ju)) normalized by the power of X'{JIJL}) as a function 

of iteration step i. Finally, Figure 1.12 shows the contraction rate [ixi^ (^lA-xi^-ljt^n ^s a function 
of iteration step i. This verifies the contraction at the rate of about 0.8 was indeed achieved by the 
loop transofrmation involving solution of the approximate spectral balance. 

In the cases that were examined obtaining an approximate solution of (1.31) using the formula 
(1.48) was orders of magnitude faster that the time domain simulations using Simulink. 
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Simulation and approximation 
after 10 iterations: time traces 

Time traces, a—1, b=1, noise power=3.9789 

Time simulation 
Iterative Spectral Balance 
Equilibria 

40 60 80 
Time, sec 

Figure 1.10: Solution to iterative spectral balance equations: time traces 

1.2.3    Conclusion 

A frequency-domain framework for analysis, computations, and uncertainty propagation in nonlinear 
sysfems driven by broad-band disturbances was introduced and illustrated in a simple example of a 
nonlineax system that exhibits noise-induced transitions between two stable equilibria. The spectral 
balance framework generalizes the standard harmonic and Gaussian signal balance in feedback sys- 
tems. The application example presented is a scalar model with cubic nonlinearity after pitchfork 
bifurcation driven by a broad-band distinrbance. An approximate amd iterative spectral balance (in- 
cluding determination of equilibria) is solved. The solution of the approximate spectral balance is 
used to reformulate the original model using a loop transformation so that an iterative procedinre for 
finding the spectrum of the output converges to the true spectrum of the solution. The future work 
will involve more carefuU study of the function spaces suitable for the spectral balance formulation 
and obtaining some analytic sufficient conditions for the contraction. 

1.3    Adaptive Control of Flow Phenomena in Aeroengines 

In paper by Bamaszuk et a/., Automatica 2004, we described adaptive control scheme for control of 
oscillations with unknown frequency and amplitude and its application to control of thermoacoustic 
instabilities. The original submission was supported by the previous AFOSR grant, but the subsequent 
revisions were supported by the current grant. 

In paper by Krstic and Banaszuk, Control Engineering Practice 2003, we considered the problem 
of stabilization of a class of MIMO LTI systems arising in models of various instabilities in jet engines. 
The problem was motivated by control of flutter, stall, and thermoacoustics in military engines. These 
instabilities often manifest themselves as oscillations, contaminated by noise. They are often caused 
by coupling of several resonant modes (structural, acoustic, of vortical) with time delays present in 
the physical process that couple the resonant modes. Often the control input is also subject to delay. 
Possible applications of the results in the paper include control of compressor blade flutter, rotating 
stall, and aeroacoustic instabilities (coupling of acoustic waves with vortex shedding from stator vanes). 
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Figure 1.11: Solution to iterative spectral balance equations: relative approximation error for 2^" FFT 
points 

Uncertain parameters abound in these problems: unknown or varying natviral frequencies, un- 
certain delays due to poorly imderstood physical phenomena governing these processes, uncertain 
coupling between modes of oscillation, and of course, uncertain high frequency gains and delays of 
Eictuators. In this paper we approach a class of such models using the tools of adaptive control. 

Consider the model of the form 

m + Cuyi + mivi + Cii2/i(* - ni) + Ci22/2(* - ng)   == 
h + 62^2 + ri22y2 + C22y2{t - T22) + C2iyi(* - T21)   = 

9uU2{t - Tel) + /iiixi (1.49) 

522"! {t - Tcfi) + h22X2 {1-50) 

where j/i and j/2 are temporal coefficiants of the resonant modes, xi and X2 are the disturbance inputs, 
and the parameters CijyVij:CijjTij^9ij:f^ijT'''c,i are uncertain. Such a model is common in case where 
two resonant modes with close resonant frequencies couple though a physical process that involves 
transport delays. For example, in compressor blade flutter the variables yi and 2/2 could represent 
temporal coefficients of blade displacement in a rotating frame. As blades move, they perturb the 
flow. In turn, the flow perturbations afi'ect (with some delay) the blade motion. Because the blades 
have airfoil shape and the mean flow has swirl, the flow reponse is not axisymmetric and hence can 
couple the resonant modes. The cross coupUng in the model is represented by the terms CijViit — nj) 
with i 7^ j. The terms CiiViit — TO) represent efi'ect of flow response on the i-th mode, which can be 
either stabilizing or destabilizing. 

In this paper we were interested in a particular case of strong cross-coupling of identical hghtly 
damped resonant modes represented by the equations 

iji + Vyi + Cy2{t - r)    =   9'U2{t - T) + hxi 

m + W2 - Cyi (* - T)   =  -gui (* - T) + hx2- 

(1.51) 

(1.52) 

Such an interconnection results in coupling of the modes yi and j/2- K the latter represent temporal 
coefficients of resonant standing modes, the coupled dynamics often represents travehng waves. Note 
that the models of flutter (Banaszuk et al, IFAC 2002) and thermoacoustic instabilities on annular 
domain (Banaszuk et al., CDC 2003) presented in the later sections of this report axe of a similar 
form. 

The adaptive control demonstration in such model is described in details in Krstic and Banaszuk, 
Control Engineering Practice 2003. 
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Figure 1.12: Solution to iterative spectral balance equations: contraction rate 

Uncertainty Propagation in Complex, Nonlinear Interconnected 
Dynamical Systems 

Under DARPA funding (AFOSR Contract F49620-03-C-0035) we have shown that the uncertainty 
propagation in complex, interconnected dynamical systems can be performed more efficiently by de- 
composing the network based on the hierarchy and/or the strength of coupling. The results of this 
research are summaiized in CDC 2004 papers by Varigonda et a/.and Huzmezan and Kailmar-Nagy 
presented in two invited sessions on Uncertainty Propagation. Some basic research aspects of this work 
were ajialysed in more detail under the current AFOSR contract. In paxticulcir, in Varigonda, CDC 
2004, we proposed an iterative method for static feedback systems to obtciin the probabiUty density 
of the output from that of the input. We proved the convergence of the proposed method xmder the 
assumption that the loop operator is contractive. The method was illustrated with aji example. It 
was shown, based on the results from the theory iterated random fimctions, that the method extends 
to the case when additional parametric uncertainty is present within the loop. 
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Chapter 2 

Control of Flow Phenomena in 
Military Aeroengines 

2.1    Control of Mixing in Shear Flows 

2.1.1 Control of Mixing 

Papers by Tadmor and Banaszuk, IEEE TCST 2002, Wang et al, Physics of Fluids 2003, and Noack 
et al., Physics of Fluids 2004 present the results of synergistic use of Control Theory and Dynamical 
Systems methods to create beneficial, non-equilibriiun dynsimics in low dimensional fluid models. The 
common idea is to use control to enforce a periodic behavior in fluid velocity that creates a chaotic 
cidvection field for the fuid particles. 

2.1.2 Control of Diffuser Flow Separation 

In paper by Banaszuk et al., AIAA Reno 2003, we described an application of extremum-seeking to 
adaptive flow control in a subsonic diflFuser. Specificailly, we presented results of an experimental study 
of on-line optimization of the pressiure recovery. 

Sepciration phenomena occur in many industrial and military apphcations including external flows 
such as flow past high angle of attack airfoils, and internal flows such as aggressively expanding 
difiusers. Consequently, its control for performance improvement has received widespread attention. 
Vfirious means for delaying the onset of separation have been proposed, including passive and active 
methods [19]. The use of periodic oscillations to delay/reduce the extent of separation in airfoils 
was investigated (e.g. see [50] ), demonstrating the effectiveness of unsteady blowing in controlling 
flow separation. Multi-frequency open loop forcing was shown to create and enhance interactions 
of multiple flow structures in simple free shear layeris [25] Recently, two-frequency forcing using a 
synthetic jet actuator was shown to be an effective way of increasing diffuser pressture recovery [40]. 
However, it is difflcult to predict an optimal set of parameters that include the number of frequencies, 
relative amplitude and phase difference between the forcing frequencies for enhancing performance, 
due to the lack of an analytical or modeling method. In particular, in [40] the parameters for a two- 
frequency forcing control law that optimized the pressure recovery in a two-dimensional diffuser were 
found manually. 

In this paper we present a method for automatic tuning of parameters of a multi-frequency forcing 
flow control law to optimize pressure recovery in a diffuser. The method is known in optimization 
and control theory literature as extremum seeking [5] In extremum-seeking control one adapts the 
control parameters using on-line estimation of gradients of the performance metric with respect to the 
control paramaters by introducing small probing signals on top of (typically slowly varying) control 
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parameters. The method has been widely apphed in industry [49, 1] for "model-free" optimization of 
steady-state of many industrial processes. 

Fore more details we refer to Banaszuk et al., AIAA Reno 2003. 

2.1.3    Control of Pattern Factor 

Key performance metrics for military aeroengines includes pattern factor, controlled primarily by the 
combustor stochoimetry and the degree of fuel-air mixing. In a typical non-premixed combustor, 
both fuel aind combustion air are introduced longitudinally at the dump plane, and swirl is generally 
utilized to mix the fuel and air streams together. In certain combustor designs, additional primary 
amd dilution air are introduced radially through circumferentied holes located cdong the combustor 
shell. These air-jets in cross flow not only provide the air needed to control the stochiometry, but 
also generate enhanced fuel-air mixing. Therefore the proper design cind utilization of these ciir-jets 
can provide a means toward controlUng the fuel-air mixing, and enhancing the performeince metrics. 
Increased mixedness, in pairticulcir, Ccin provide lower pattern factor. 

Control of jets in cross flow was investigated using hierarchy of models (including high fidehty 
CFD, medium, and low order models) and described in Blossey et al., lUTAM 2001. In particular, 
low order model-based analysis indicated benefits of low frequency forcing for improved mixing. In 
the current funding cycle we confirmed the model prediction in experiment. This work is descibed in 
paper by Narayanan et al, AIAA Journal 2003. 

Furthermore, the benefits of jet in cross-fiow control for pattern factor reduction were demonstrated 
in experiment by om: academic partners from Luisiana State University. The experiments were not 
funded by AFOSR. However, the UTRC personnel participation in this joint project was funded by 
the current AFOSR grant. This work is descibed in detail in Tuncer et al., ASDME 2003. Here we 
provide a summary of this work. 

The effect of a forced dilution air jet introduced through the combustor shell, on the air-fuel mixing 
in the combustion chamber has been investigated. Thermocouple based temperatmre measmrements 
have been made at a mmiber of forcing frequencies in the range of 100-llOOHz and blowing ratios in the 
range of 10-15. The open-loop integral flame response to forcing has also been sicqufred by recording 
pressiure and heat release spectra. A CH-radical imaging technique is used to provide spatisJly- and 
temporally- resolved information about the heat release behavior. The results exhibit that the mean 
temperature field inside the main reaction zone can significantly be altered as a consequence of aii jet 
modulation. The most significant effects are observed by forcing at vertical locations that Me close 
to the diunp plcine. Enheuicements in temperature of the order of 100-200 degrees C, eind reduction 
in pattern factor of the order of 10% (e.g., from 1.13 to 1.03) were observed, with the lowest pattern 
factors achieved at the lowest forcing frequency of 100 Hz. 

2.2    Modeling, Analysis, and Control of Thermoacoustic Instabilities 
in Military Engines 

In the past, we have considered reduced order models of combustion instability based on limiped 
parameter modehng as described in [43, 26]. The aim of this Section is to summarize some of the 
more recent (and ongoing) research whose piu-pose is to obtain and analyze distributed models of 
thermoacoustic instabilities in bluffbody flameholder annular combustors. These instabilities arise on 
accoimt of complicated interactions between combustion (flame and fuel) dynamics, vortex dynamics 
and acoustics (see Figine 2.1 for a schematic). Oru: strategy thus far has been to model individual 
pieces of this inter-connected system with a view of understanding them as a first step towards gaining 
imderstanding of the whole.   Before summarizing the results, we provide a brief summary of the 
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Figure 2.1: Schematic showing interconnection of combustion (flame-fuel), vortex and fuel dynamics 
in thermoacoustic problem. 

modeling cictivity. There sure two areas of modeling: Thermoacoustic models, with a view to 
understcind the dynamics of coupled system and Heat release models, with a view to understand 
the combustion and vortex dynamics (sans acoustics). For the thermoacoustic modeUng, we have three 
versions of models which cire being studied for the annular combustor problem: 

3D Lineeir model is described in the Section 2.2.1. This model is hnear and assumes that dynamics 
arising due to vorticity and flame motion axe neglected. The model allows us to isolate the role 
of fuel dynamics (shown to be equivalent to a distributed delay for distributed but fixed flame) in 
analyzing thermoacoustic instabiUties. The linearity hypothesis allows us to apply linear (fiiel) 
control methods for controlhng rotating wave combustion instabilities in 3D annulcir combustors. 
Additional details are provided in Section 2.2.1 and in the paper [32]. 

2D nonlinear model is described in the Section 2.2.2. In this model, a 3D non-vortical model of 
thermoacoustic instability is averaged in the radial direction {o obtain a 2D model for multiple 
flameholders. The nonlinearities as well as flame dynamics are retained. The non vortical model 
is summairized in [33] and is being used for uncertainty analysis and design of so-called liners 
for suppressing combustion instabilities. In Section 2.2.2, a version of this model which includes 
vorticity by formal superposition of 2D vortex dynamics is summaxized. 

Single flameholder model is the same as the above 2D nonlinear model (including vorticity emd 
flame dynajnics) but the problem is simphfied to study only a single flameholder configuration. 
The details of this model are also summarized in Section 2.2.2. 

In addition to thermoacoustic models, we have also concentrated on studying the heat release piece 
of the thermoacoustic model separately (where acoustics is neglected). There are two reasons for 
studying the heat release piece. One, the complexity of the thermoacoustic problem resides in the 
heat release submodel (where complicated interactions occur between fiame, fuel and vorticity) and 
two, fuel and flow control aimed at modifying heat release distribution with a view of controUing 
combustion instabilities can be studied effectively with these models. Instead of presenting the heat 
release submodel separately, we describe three studies that have been undertaken with the purpose of 
analyzing and controUing heat release models. In Section 2.2.3, we present a vortex model developed 
to study the physics of reacting bluffbody wake dynamics. The model as presented concentrates on 
the interaction of vorticity and flame dynamics. In the subsequent two Sections, we use reduced order 
modehng approaches to better understand the reacting flow dynamics and to model other pieces of 
the heat release model. In particular, in Section 2.2.4 we present a reduced order model study of 
flame-fuel interaction and in Section 2.2.5 a study of vorticity-flame interaction (the latter study is 
carried out to explain some of the results of Section 2.2.3). 
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2.2.1    Three dimensional linear model 

Thermoacoustic instabilities in gas turbine and rocket engines develop when acoustic waves in com- 
bustors couple with an unsteady heat release field in a positive feedback loop. We consider an annular 
combustor that includes a circumferential array of bluff body flame holders [48] [16]. Fleimeholders 
extend radially from inner to outer diameter of the annular combustor. A cut along a constant r2idius 
surface is shown in Figure 2.2. 

Puel distribution 

Figure 2.2: Blxiff body flameholder array, fuel source svirface upstream of flameholders, £ind ficime 
surface downstresim of flameholders. 

For the pmrpose of modehng, we Eissume that the fuel mass fraction defined at the fuel injection 
surfeice xo{y, z) is advected downstream to the fixed but distributed flame surfeice x = gfi{y, z) by the 
sum of the mean and aicoustic pertiurbation velocity (without diffusion). The mean fuel mass fraction 

at the fuel injection surface is F/(a;o, J/, z) = |4f^^|^, where x/ = PjUj, Xa = pJJa denote the flux 
£ind pf, Pa are the fuel and air densities and Uj, Ua are the velocities. The perturbation fuel mass 
fraction (in the presence of acoustics) is 

yfixo,y,z,t) =Yjixo,y,z) (f^ " f^^) (2.1) 

The fuel-afr mixture convects to the fixed flame surface x — gfi{y,z) and the heat release density at 
the flame surf2u;e is obtained as 

Q{x,y,Z,t)    =    Fhr{Yf{x,y,Z,t))jfiameix - 9fi{y,z)), (2.2) 

where jfiamei') is the axial heat release distribution function representing the flame thickness, and 
Fhr{-) describes local heat release as function of local fuel mass fraction. 

In order to obtain the thermoacoustic model, we define relative perturbations of pressiure and 
heat release as p{x,y,z,t) := ^^^(^^y^^] and q{x,y,z,t) := ^~^ ^^^(i',^',^f. where 7 is the ratio of specific 
heats. We also assume that the acoustic velocity perturbation is purely potential, i.e., u.'{x,y,z,t) = 
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V(f>{x,y,z,t) for some smooth scalar <l){x,y,z,i) called the velocity potential. In these co-ordinates, we 
obtain a linear distributed thermoacoustic ^odel (see [32] for details) as 

dt 
d_ 
di 
d 

p{x, y, z, t) + u{x, y, z) ■ Vp(a:, y, z, t) + A^(a;, y, z, t) = q{x, y, z, t) 

(j){x, y, z, t) + u(x, y, z) ■ V^{x, y, z, t) + a^p{x, y, z, t) = 7?(x, y, z, t) 

gj^y/(a:, y, z, t) + u(a;, y, z) ■ Vyf{x, y, z, t) + VYjix, y, z) ■ V^(x, y, z,t) = 0 

q{x,y,z,t) = Ff^^{Yf{x,y,z))'rfiame{x - 9fi{y,z))yf{x,y,z,t), 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

where driving disturbance (broad-band noise) rj{x, y, z, t) represents the effect of local turbulence. The 
fuel mass fraction boundary condition is defined on the fuel injection surface as 

yj{xo{y,z),y,z,t)      fu'^ixo{y,z),y,z,t) 

Yf{xo{y,z),y,z) 
d<f){xo{y,z),y,z,t) 

Uf{xo{y,z),y,z)       u{xo{y,z),y,z) dx 
(2.7) 

where the fuel velocity u'j{xo{y,z),y,z,t) is the control variable. The first term on the right hand side 
of (2.7) represents the effect of fuel control action and the second term represents the effect of Eicoustic 
velocity perturbation. 

The eicoustic boundary conditions axe provided on the combustor boundary surface in terms of the 
normcil velocity vi!^{x.,i) = V^(x,t) ■ n(x) (where n(x) is the normal vector to the boundary). The 
acoustic boimdary condition serves as another possible control input. We assume that the acoustic 
boxmdary conditions are described by a local admittance relation (described here in the frequency 
domain) 

C/;(x,ja;)=G'''=(x,ja;)P(x,ja;), (2.8) 

(see e.g. [39]) for x G 5, where 5 denotes the boundary siurface. 

Reduced order model for control of thermoacoustic instability on annular domains 
The fuel-air mixtiu-e is responsible for the burning at the flajme and the subsequent heat release. This 
heat release at the flame surface excites the acoustic waves in the combustor volume. The sicous- 
tic waves in turn travel upstream and perturb the transport of the fuel/air mixture. This feedback 
coupUng can lead to instability if the driving resulting from this feedback mechanism dominates the 
damping resulting from absorption of the acoustic energy at the boundary. Control over fuel rate at 
the fuel injection surface xo{y,z), control of the shear layer dynamics using flow control at the flame- 
holders, or control of the air injection at the combustor boundary can provide ways of influencing the 
process emd ehminating instability. The control could be provided at various temporal and spatial 
scales. 

Now we introduce a reduced order model (that is suitable for control design) obtained from the ther- 
moacoustic instability model presented above. The model is also suitable for optimization of the control 
architecture. In order to obtain model reduction, we expand the pressure and potential pertvurbations 
in terms of the acoustic modes {nfc(x)}fc=i,2,.. as ^(x,t) = '£kPk{t)^k{^), <?^(x,t) = Efc^fc(t)njt(x). 
and apply standard Galerkin procedmre involving integration by parts and using the admittcuice con- 
dition (2.8) (see [32] for details) to obtain a two mode model represented in the frequency domain 
as 

3^ 

$i(jw) " 0        0 -a2 0 ■ ^liJU)) ' Niijw) 
,*2(jw) 0     0 0 -a' $2(jw) + N2{jij) 
PliM Ai    0 0 0 Plij^) Qi(j'^)-Vi(jw) 
P2{JC0) 0    Az 0 0 P2(JW) Q2{JC0) - V2{jij) 

(2.9) 
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where QmiJ'^), -^mOw), and Vmiju)), denote the Fourier transforms of 

qm{t)    =    /n„(x)q(x,t)dx, (2.10) 

r]m{t)   =    /"n^(x)f7(x,t)dx, (2.11) 
J V 

Vm{t)    =    /n^(xX(x,t)dx, (2.12) 

respectively, and A^ := Y' in "r Man (^ ^^^ ^ denotes the combustor volume and boimdeuy sur- 

face respectively). The fuel velocity u'f{xo{y,z),y,z,t) at the fuel injection surface is the control 
variable. We assimoie that the control is realized using Ninj fuel injectors with i — th fuel injector pro- 
viding fuel mass flux equal Wf^i(t) with spatial distribution kf^i{y,z) (representing initial fuel spread 
in the direction perpendicular to the mean flow). Thus, we will represent the distributed velocity as 

u'j{xo{y,z),y,z,t) = I3»=i^ '=/,i(y)^)^"/,t(*)) with io/_i(f) representing the control inputs. 
The closure equations to (2.9) are given by 

VmiM = G^^{jCj)Pm ijiv) (2.13) 

Qmijcj) = Y: Gf^^iM^miJco) + f; G2-'Uu;)Wf,i{ju,). (2.14) 
fc=l i=l 

The transfer functions in the above expression have the form 

G'r^{jcv):=JsG''%^,ju,)\Ilmi^)fdyi (2.15) 

Gf^kiM = /w S^n„(5/j(y,^),y,^)i^'(i'/(y,^))VF/(y,;^)Vnfc(a;,y,z)e-^"^^^nf7r^da;dyd^.l6) 

GJi'U^) = Lo W7^S^^i9fl{y,z),y,z)F'{Yjiy,z))e-'-      -(v.)       dydz        (2.17) 

While the reduced order firequency domain model looks deceivingly simple, it is in fact a complicated 
inflnite dimensional model, as the heat release response transfer functions include a distributed delay. 

We assiune that pressmre measurements p(xi,t) = YlkPk{t)^k{^) at one or several locations Xj 
are available. We cilso assume that disturbance terms Ni{ju}), N2{ju}) axe broad band vmcorrelated 
stochastic processes. The objective of the feedback control is to reduce the gain CHoo or 7^2) from 
the distmrbance terms Ni, N2 to the pressure terms Pi, P2 to guarantee that the pressure level 
is below cicceptable level. Once the mean fuel mass fraction distribution Yf{y,z) and control fuel 
injection (represented by choice of influence functions kf^i{y,z)) are defined, linear control laws are 
straightforward to obtain. However, the real challenge is optimization of the control architecture. 
Namely, one would like to select the mean fuel mass fraction distribution Yf{y,z) and control fuel 
injection influence functions kf^i{y,z) that guarantees meeting the control objective with minimal 
amount of fuel used for control. 

2.2.2    Two dimensional nonlinear model 

Thermoacoustics models incorporating effects of distributed acoustics, flame dynamics and vorticity 
in bluffbody flameholder annular combustors have been developed. In this Section, we first describe a 
2D nonlinear model without vorticity that is intended for liner design. Details on this model can be 
found in [33], where first a 3D model is obtained and then averaging along the radial direction yields 

25 



a 2D version of the model. The linearized potential acoustics for this model axe described by 

^ + U-Vp + 7M5'r[?/]% - i/)p - Po^V|C/p • V0 

+poc''Acf>+^   '   =   (7-Ik, (2.18) 
or   Ri 

^ + U.V4>   =   -^, (2.19) 
at po 

where (^,p denote the averaged 2D acoustic potential and pressure respectively, U denotes the mean 

flow, ST is the flame speed, a function of mean local fiiel mass fraction Yj, the term ^      sirises on 
iRi 

accoimt of the radial boundary conditions Eind model the eflFect of liner (wall normal velocity), cind 
parameters po,'y,c denote fluid density, ratio of specific heats, speed of sound respectively and the 
pcirameter /x = (^ — 1).   q represents the heat release perturbation, which arises due to the flame 
dynamics modeled by G-equations describing the motion of individual flames 

dG 
-^ + [£/ + V</.] • VG + ST\VG\ = 0, (2.20) 

where the flame speed ST is determined from the solution of the fuel advection equation, written in 
2D as 

^ + {U + Vcf>)-VYf=0. (2.21) 

The boundary conditions arise due to the acoustic boundary condition at the flameholder walls 

V(t> ■ n,„|Fia,meholder Walls = ^' ,    (2-22) 

and the inlet fuel profile 

Yf = ^^ «x-. (2.23) 

where p/Uf denotes the fuel mass flux and U denotes the axial component of flow velocity. 
In [33], we present the above model for describing combustion instabilities in annuleir combustors. 

The model is being used to study robust linear design, where the control input acts through the 

boundary liner terms -4?-      in the acoustic model above. The model includes a model for meain flow 

U = Up + Ue, (2.24) 

where the potential flows Up models the inflow of reactants and U^ models the expansion velocity 
created because of burning, arises as a solution to the continuity equation 

IDp 
V.C^=--^, (2.25) 

together with appropriate boundary conditions (see [33] for details on the model). An example of the 
above model with only a single flameholder (see Figure 2.3 for schematic) is explicitly constructed cind 
presented in the report. 

Our preliminary attempt at extending the model to include vortex dynamics is to use the decom- 
position of velocity field similar to equation (2.24) above but now include a term due to vorticity 

U = Up + U, + !l„ (2.26) 

where vortical velocity arises as a solution of the vorticity equation 

-^ + {[U + V</>] ■V)uj + {V-U + A(t>)uj = — Acj + ^Vp X VP. (2.27) 
Ot He p 

Rigorous justification of the above extension is part of the ongoing research. 
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Figure 2.3: Schematic of the physical problem. 

2.2.3    FLAVOR - A vortex model for reacting flow blufibody wake dynsunics 

In our paper [36], we present a vortex model for bluff body flameholder stabilized premixed combustion. 
We consider the physical problem of non-premixed combustion stabilized by a single rectcinguleir bluff 
body flameholder of height h in a channel of height H (see Figure 2.3 for a schematic). The size of 
both the bluff body and the channel in the third dimension (z) is large so that two-dimensioncdity 
is assumed to apply. The Mach number is low and both reactants (of density /0„) and products (of 
density pb) are assumed to behave as ideal gases. The combustion time scale is much faster thaji that 
of the flow £ind the reacting field is assumed to be approximated by two flamesheets anchored at the 
two flameholder lips. 

The evolution of the flow is governed by the vorticity and continuity equations 

-^ + {u- V)w + (V • u)uj   =   -^Aw + -^Vp X Vp, 
eft He pr 

V-u   = 
I Dp 

"p'm 

(2.28) 

(2.29) 

together with the no-sUp and impermiability boundairy conditions at the flameholder walls and im- 
permiabihty boundary conditions at the channel walls. A G-equation formulation (see [27]) is used to 
describe the flame evolution as 

dG 
dt 

+ ([M + 5r(£/)n].V)G = 0, (2.30) 

where the flamesheet is described by the (unidimensional) connected locus of the points xr satisfying 
G{xj,t) = 0 cmd n is the unit normal to the flame oriented into reactants. For the premixed case 
considered here, the flame speed is modeled to be its stoichiometric value, while retaining the effects 
of curvature (using Maxkstein length). 

The Lagrangian Vortex Element Method (VEM) in the form that accommodates the presence of 
reaction in the low Mach number limit [22] is used to reproduce the unsteady flow. The Lagrangian 
implementation of the flamesheet evolution is performed using numerical techniques consistent with 
the VEM. The numerical model is validated against non-reacting experimental data for shear layers 
(results included in [14]) simulated by considering a thin bluff body with a velocity difference Eicross 
it - and traditional bluff body flows [44]. The results of this vaUdation is presented in our paper [36]. 

Results for the reacting bluff body flow indicate a shift in the solution from the Von Karman asym- 
metric shedding of coherent vortices at a characteristic frequency witnessed in the non-reacting flow, 
to a rather symmetric shedding that is not dominated by any single frequency. Figure 2.4 contrasts 
the time-series and frequency spectra, based on the v-velocity signal taken on the centerline half bluff 
body width downstream of the bluff body trailing edge, for the reacting and non-reacting cases. The 
reduction in imsteadiness (with respect to the non-reacting case) seen in the figure is consistent with 
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Figure 2.4: (a) Time series and (b) spectral plots of the non-reacting (blue) and reacting (red) v- 
velocity signal on the centerUne (y=0) at half a bluff body width downstream from trailing edge. 

the experimentally obtained spectral plots, comparing non-reacting and reacting spectra, presented in 
[47]. Analysis presented in our paper [36] indicates that this shift is mainly due to the dilatation that 
accompanies the combustion heat release while baroclinic vorticity plays a supporting but secondary 
role. The dynamics in the near field of the flameholder (4-5 bluff body thickness downstream) is dom- 
inated by the vorticity generated at the bluff body walls. The dilatation weakens this wcill generated 
vorticity as it goes through the flame cmd delays the entraimnent of some of this vorticity into the 
products region of the wake. Both effects tend to diminish the interaction of the opposite signed vor- 
ticity emerging from the boundary layers on the two horizontal bluff body walls, thereby diminishing 
the possibility of a Von Karman street. Further downstream vorticity generated by the baroclinic 
torque dominates the dynamics. The amount of the downstream barochnic vorticity is strongly de- 
pendent on the presence of wall generated vorticity. The latter excites the flame in the near field 
thereby enhancing the conditions for barochnic vorticity generation. Characteristic simulation results 
aie shown in Figiure 2.5. 

2.2.4    Reduced order modeling for Control 

Fuel control is a viable strategy for suppressing the combustion instability induced pressure oscillations. 
However, the application of fuel control to bluffbody environment with its distributed fluid dynamics, 
combustion and acoustics is yet to be done. In the foUowing subsection, we present the past research 
whose explicit aim was to apply reduced order modeling for the purpose of investigating control. 

A primary difficulty in applying fuel control to bluffbody flameholders arises due to the lack of 
suitable reduced order models that can be used for control design. In some of the past resecirch 
at UTRC, we made a simplifying assumption of neglecting the effect of vortical dynamics to obtain 
reduced order models, which we used for studying fundamental limitations on control design. The 
control was demonstrated on the full computational model. Below we provide a summary of this 
research; see [34] for details. 

We consider the physical problem described above in Section 2.2.3 and in figmre 2.3. The primary 
difference here is that while the flow is simplified (by neglecting vortex dynamics), combustion now 
is assumed to be non-prembced (^o additional equations are needed to describe the evolution of fuel). 
For the purpose of modehng and controlling combustion instability, we are primarily interested in the 
spatio-temporal distribution of the heat release response q{x, t) which is function of local flame speed 
and the flame location 

q{x, t) oc ST{xf)5{x - Xf). (2.31) 

The flame dynamics arise due to (complicated) interaction between the fluid dynamics and the 
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Figure 2.5: Flow visualization of the reacting flow with h/H=0.16, h/H=20, Re=20000, and . (a) 
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Figtire 2.6: Plot of a typical flame speed function 5r[^] '• the peak corresponds to stoichiometric 
condition where the flame burns with mciximal flame speed ^o- 

inherent kinematic flame motion. The 2D nature of the problem, boimdciry conditions £uid bluffbody 
geometry (where there axe no trcinslation symmetries) makes reduced order modehng for the purpose of 
understcinding cind controlling the reacting flow problem difiBicult. We make a simplifying assumption 
of ignoring the vortical component of the fluid dynamics in the problem, but retain the effects due 
to burning and fuel actuation. The equations of flow retain the continuity equation but the vorticity 
equation is now replaced with 

V X u = 0, (2.32) 

and for the boundary conditions, only the impermiability condition is retained (the no-sUp condition 
is dropped). The G-equation is once again used to describe the flame motion but now for the non- 
premixed case, the flame speed 

Srixf) = ST[Yf{xf)] (2.33) 

is a fimction of the local fuel mass fraction for the non-premixed situation considered here. Figure 2.6 
plots a typical ^^[y)] as a function of Yf. We reserve the square bracket notation ST[-] for the function 
to distinguish it from the flame speed ST- The local fuel mass fraction seen at the fLaxae front arises 
due to the convection of the fuel-air mixture in the duct 

DYj- 
Dt 

0. (2.34) 

An initial upstream profile 
Yf{x^Q,y,t)=Yf{y,t) (2.35) 

provides a boundary condition at the entrance of each of the half channels upstream (on either side) 
of the bluff body (see Figure 2.3). This initial distribution convects with the flow velocity (because 
of (2.34)) until it burns at the flame front. Here, we assume that the fuel distribution is such that a 
lean condition (where the fuel mass fraction Yp is less than the stoichiometric value- see Figure 2.6) 
always applies. As a result, all of the fuel is burnt at the flame and the flame provides an appropriate 
second boundary condition for (2.34). 
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Numerical model (-) and reduced order model (—) - premixed 
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Figure 2.7: Plot showing shallowing of flame angle as density ratio increases: the difierence between 
numerical model (-) and reduced order model (dashed) is less than 0.5 degrees even for large density 
ratios. 

We derive a reduced order model for the individual flame motion as 

at {5.[y/(.,t-4)]+^5^(f-2,)} 
dy 

=   0, 

(2.36) 

(2.37) 

(2.38) 

a hyperbolic initial boundary vedue problem (IBVP) - here {^iy,t),y) denote the co-ordinate of the 
flcime location. Here /i = (^ — 1), where pu is the density of the unburnt reactants and pi, is the 
density of the products. 

We also validated the reduced order model agcdnst the simulation results of a CFD niunerical 
model. The reduced order model was shown to aiccurately reproduce both the flame shapes and flame 
angles as a fimction of density ratio parameter jU for premixed flames (see Figure 2.7) and accurately 
predict the flame blowoff seen in the computational model for the non-premixed case as the fuel 
penetration into the cross-stream increases (see Figure 2.8). 

We also used the reduced order model to define and study a (fuel actuation based) control problem 
of tracking the heat released due to flame motion against a prescribed reference signed (for the full 
simulation). The problem is motivated by the problem of fuel control of combustion instabihty. In 
order to completely address the issue of control authority needed to quench pressure oscillations in 
combustor to an acceptable level, one needs to investigate the coupled acoustic-flame system model 
[32]. In the paper, however, we concentrated on controlling the distributed heat release response by 
manipulating the inlet fuel profile (see Figure 2.9 for a schematic of the control problem). A heuristic 
interpretation for considering this piece of the problem is provided in [34]. For the control problem 
described in the figure, we proposed an optimal control strategy which was then implemented on the 
computational model to track the heat released against a prescribed reference signal. Figure 2.10 
provides a comparison of the tracking signal against the heat release obtained fi:om the simulation. 
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Figure 2.8: Flame angle as fuel center ymid (defines the inlet fuel profile as Y?{y) — -f^e ?^^) 
varies: model captures the critical value of flame blow-off as well as flame angles for robust flame 
before blow-off. 

Figure 2.9: Schematic of the control problem. 
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Figure 2.10: Results of the implementing the treicking control on the numerical model. 

Analysis of the control was provided in the paper and suggested in a fundamental limitation associated 
with ON-OFF control of heat release. This limitation is suggested in Figure 2.10 as discrepancy be- 
tween the desired and the controlled heat release response. The limitation arises due to the hyperbolic 
nature of the problem which leads to solution discontinuities with ON-OFF control; complete cinalysis 
using method of characteristics is provided in [34]. 

2.2.5    Reduced order modeling for Dynamic range analysis 

The occurrence of combustion instability in augmentors using bluffbody flameholders is a function 
of the operating conditions [8]. Dynamic range analysis is important not only to map the stability 
boimdaries (where instabilities occur) eind predict post instability response (for instance, the pressure 
amphtudes) but also to identify the important physical mechanisms that lead to the instabilities as a 
function of pairameters in the problem. There are two challenges associated with meeting the objective 

1. The computational cost associated with mapping out all the different regimes of physical phe- 
nomenon is prohibitive, 

2. Even if a transition of physical phenomenon is seen in the computational model, an understand- 
ing of key physical mechanisms underlying this transition is difficult to obtaiin because of the 
distributed and nonlinear natiure of the dynamics. 

For the pmT)ose of reducing the computational burden, we are interested in model reduction approaches 
that can model the computationally expensive elements (such as vortex dynamics) in reduced order 
fashion. In the following subsection, we summairize one such approach - a Galerkin based reduced 
order modeling framework - used to understand the suppression of Von Karman vortex shedding for 
compressible reacting flows. This ongoing work is as yet unpublished, but available as a preprint [35]. 

The walse dynamics of a bluflfbody stabilized reacting flows are very different from their non- 
reacting counterpart. In particular, while a Von Karman asymmetric shedding of coherent vortices 
at a characteristic frequency is witnessed in the non-reacting flow, reacting flows exhibit a rather 
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symmetric shedding that is not dominated by any single frequency (see our recent computational 
paper [36], also the review paper [10], computational papers of [9] and [41] and experiments of [47]). 
A variety of explanations have been proposed in the literature, the majority of them pointing to 
the vorticity generated by the flame via the baroclinic mechanism as the primary reason behind 
the exhibited shift in flow behavior. For example, [10] attributes the shift to the combination of two 
possible mechanisms: (i) the dampening of the vorticity due to the increased kinematic viscosity of the 
reacted fluid and, (ii) the generation of baroclinic vorticity that is of opposite sign to the fleimeholder 
generated vorticity and tends to nullify the effects of the latter. Menon and co- workers also point 
to the baurochnic vorticity generation as the main mechanism that leads to the shift [9]. In oiu: own 
paper [36], we argue the importance of exothermic effects in suppressing the Von KEurmem shedding 
observed in cold bluffbody flow. 

In our more recent work, we use Galerkin based reduced order models for investigating the effect 
of exothermicity on reacting bluffbody flows. In particular, we are interested in explaining (within 
the reduced order models) the suppression of Von Kcirmam shedding in the presence of burning. In 
order to obtain model reduction, our approach is to reduce the order of the fluid dynamics using 
(Noack-Tadmor [21]) inspu-ed) POD based Galerkin model. To obtain the Galerkin model, we begin 
with the compressible form of vorticity equation 

d^     ,     T-,^        /„     V 1   . 1 —- + (u • V)a; + (V • u)u) = -r-Aw + -^Vp x Vp. 
at Re pr 

We make a simplifying assumption of ignoring the effect of baroclinicity, 

-V/9 X Vp = 0, 
P 

(2.39) 

(2.40) 

which is motivated by some of the results summarized in [36], where we have argued the importance 
of exothermicity (V • u > 0) in obtaining suppression. 

In [35], we show that the reduced order Galerkin model (with three POD modes) has the following 
structure 

d_ 
di 

ijJA 
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(JJ2 

- P —Swi   —8ijj2 WA 

<Jwi       a        —w Wl 

5u}2      (jJ         a ai2 

' " 7A    0       0    " \-PA 0 0 WA 

j. ■ 0     7    -Wfc + 0 -/3 0 • Wi 

0     Wc     7 0 0 -|9 W2 

(2.41) 

where (WA,'^I,W2) are the modal coefficients, the first term on the right hand side of equation (2.41) 
models the non-reacting wake flow dynamics (see [21] for their physical signiflcance) and the second 
and third terms model the effect of burning (recall // = (^ -1)). The second term models the effect of 
exothermicity captured by the compressible term (V • u)w in the vorticity equation (2.39). The third 
term models the effect of convection because of the dilatation flow (arises as a component of the term 
{u ■ V)w in the vorticity equation (2.39)) which causes the vorticity to convect differently than for a 
non-reacting flow. ^ 

In the absence of burning, the 3 mode Galerkin model reproduces the sequence of bifurcations 
from fully attached steady flow to a steady flow with symmetric recirculation regions in the wake 
to an assymetric Von Karman shedding solution (see Figure 2.11). In the reduced order model, the 
effect of the bmrning is to laminarize the flow by moving the Hopf bifurcation point corresponding to 
the appearance of Von Karman shedding solution to higher Reynolds numbers. Furthermore, beyond 
a critical value of parameter (^ w 1.4), the shedding solution dissapears for all values of Reynolds 
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Figure 2.11: Bifurcation diagram for the Galerkin model 

numbers (see Figure 2.12 for a locus of Hopf bifurcation point as a function of the two parameters - 
Reynolds number Re and /j,). The value of ^ = 1.4 is in a nice agreement with oiu: reported vjilue for 
disappearance of Von Karman shedding solution for high Reynolds ninnber flows [36]. 

2.3 Passive control of thermoacoustic instabilities by symmetry- 
breaking 

In paper by Hagen and Banaszuk, CDC 2004, we presented a thermo-acoustic model on a cylindrical, 
or annular, geometry, capable of modeling instabilities of tsingential acoustic modes. The model 
accounts for non-uniform density, damping, rotational flow, and heat-release coupling. It is shown that 
dehberately introducing spatial v^iations in some quantities has a similar eff^ect to adding damping 
to the system. The effects of these symmetry-bresiking conceptes are evaluated on the model through 
lineax analysis and the net amount of additional damping is computed. We showed how vEirious 
symmetry-breaking concepts axe robust with respect to the uncertainty in the model parameters and 
we examined propagation of uncertainty with respect to a measme of uncertainty recently defined by 
I. Mezic. 

2.4 Background noise effect on combustor stability 

Paper by Lieuwen and Banaszuk, Journal of Propulsion and Power 2004, considers the effects of back- 
ground turbulent fluctuations upon a combustor's stability boimdaries. Inherent turbulent fluctuations 
act as both additive and parametric excitation sources to acoustic waves in combustors. While ad- 
ditive noise sources exert primarily quantitative effects upon combustor oscillations, parametric noise 
soinces can exert qualitative impacts upon its dynamics; particularly of interest here is their ability 
to destabilize a system that is stable in the absence of these noise sources. The significance of these 
parametric noise sources increases with increased background noise levels and, thus, may play more of 
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Figtire 2.12: Locus of Hopf bifurcation point in Re-n plane: The Hopf point denoting the Reynolds 
number where the Von Karman vortex shedding solution begins is moved out to its inviscid limit as 
/i increases to « 1.4. 

a role in realistic, high Reynolds number systems thein experiments on simplified, lab scale combustors 
might suggest. The objective of this paper is to determine whether and/or when these effects might 
be significant. The analysis considers the effects of fluctuations in damping rate, frequency and com- 
bustion response. It is found that the effects of noisy damping and frequency upon the combustor's 
stabihty limits is relatively small, at least for the fluctuation intensities estimated here. The effects 
of a noisy combustion response, particulcirly of a fluctuating time delay between flow and heat release 
perturbations, can be quite significant, however, in some cases for turbulence intensities as low as 5- 
10%. These results suggest that deterministic stability models calibrated on low turbulence intensity, 
lab scale combustors may not adequately describe the stability limits of realistic, highly turbulent 
combustors. 

2.5    Modeling, Analysis, and Control of Flutter in Turbomachinery 

A hnecir framework for control of wave phenomena on annular domain was estabhshed. The flutter 
control problem was used to motivate the study. However, the framework applies to control of general 
wave phenomena on annular domain, such as rotating stall and thermoacoustic instabilities. 

In papers by Banaszuk et ai, IFAC 2002, CDC 2002, AIAA 2003, we described a method for 
controlling fan or compressor blades flutter in gas turbine engines and its experimental demonstration. 
The experimental implementation of active flutter control on a sub-scale fan rig consisted of ctn array 
of audio speaker-powered volumetric sources connected to the flow path equally spaced along the 
circumference axially located between an experimental fan and its exit guide vanes (stator). Blade 
arrival time detectors based on eddy current sensors placed at the leading end of the blade-tip fine 
were used to generate real-time blade deflection signals. An observer was used to reconstruct the 
flutter modes. A pole-placement controller was used to generate the speaker command signals. The 
control system was able to add significant amount of damping to three modes of flutter.  Damping 
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augmentation was an order of magnitude larger than the intrinsic aeromechanical damping of the 
modes on the operating hne of the fan. 

Blade failures due to flow induced vibrations axe a long standing, endemic problem for the turbo- 
machinery industry. Flutter and resonant stress fundamentally constrain the design and operation of 
gas turbine engines. Ensuring aeromechanical operability often requires compromises in tiurbomachine 
efiiciency, performance and cost cind can result in development delays and increased mainatinance 
costs. 

We describe a method for controlling fan and compressor balde flutter in gas tiurbine engines, as 
well £is a particular implementation of this approach demonstrated in experiments in a transsonic fan 
rig operating at 9000 RPM. The limitations in operabiUty of a turbomachine due to flutter can be 
overcome by adding damping to the dominant aeromechanical modes. 

We model the dynamics of blade rows in turbo-maichinery as similar to those of a flexible disk. 
Aeromechanical modes form travelhng waves as seen by the rotor. This means that when viewed from 
the rotating frame the peak of deflection appears to travel around the disk. The deflection of the disk 
at a given point on the flxed frame along the circumference of the blade-row caui be decomposed into 
sinusoids of frequencies separated by integer multiples of the rotor frequency. At any fixed point in 
time, the deflection of the disk can also be decomposed into sine-waves function of the angular position 
ajound the rotor. Therefore each aeromechanical mode has a characteristic shape and a characteristic 
frequency. Each of these modes can lose stabihty as operating conditions change. The objective of a 
flutter control is to enhance the region of stable operation by adding damping to the cierqmechanical 
modes. 

The preferred sensing scheme uses a proximity sensor on the casing to determine a time blade 
£irrival time. Prom the blade arrival time one can estimate the blade deflection. The blade deflection 
wiU reflect the superposition of all the aeromechaniceil modes. However, due to thefr sepauration in 
frequency, the modal content can easily be decomposed. 

The actuation approach is to place volumetric sources aft of the blade-row to modulate the back 
pressure and mass flow as a function of angular position and time resulting in unsteady loading of the 
blades. This in turn modifies the blade lift, generating the desired commanded force on the blades. By 
arranging an array of such actuators around the circumference one can create a pattern of forces on 
the blades. These patterns can form traveling waves that have the spatial shape of the eieromechanical 
modes. The experimental implementation of active flutter control on a fan rig presented in this paper 
consisted of an eirray of audio speaJcer-powered volumetric sources connected to the flow path equally 
spaced along the circumference axially located between the fan rotor blades and its exit stator guide 
vanes. 

In experiments on a fan rig a linear observer was implemented to estimate the aeromechanical 
modeJ content of the blade row. This approach required a linear model for the dynamics of interest. 
Such a model was obtained for each aeromechanical mode by running swept-sine experiments in the 
system and measuring the complex ratio between the modal forcing function and the blade deflection 
at a point in the fixed frame. Then a low order (typically second order) state-space lineax system 
was fit to the frequency response data. The observer was designed based on the aggregate of all these 
state-space blocks. An observer-based pole-placing technique was used to design a linear control law 
to add the desired amount of damping to flutter modes. The control system was able to add damping 
to three flutter modes. The damping augmentation achieved was an order of magnitude l2irger than 
the intrinsic aeromechanical damping of the flutter modes on the most stable operating condition of 
the fan. 

Experiments described in this section were conducted under internal funding. Modeling and anal- 
ysis were partially funded imder previous AFOSR grants. The publications Banaszuk et al, IFAC 
2002, CDC 2002, AIAA 2003 of the results were funded under current AFOSR grant. 
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2.5.1    Notation 

N - number of blades. 
n - index of a flutter mode, n = ..., —2, —1,0,1,2,  
—Cn - read part of the n-th flutter mode pole. 
Unr - imaginary pjirt of the n-th flutter mode pole, circular (pseudo) frequency of the n-th flutter 
mode in the rotating frame. 
w„s - imaginary part of the n-th flutter mode pole, circular frequency of the n-th flutter mode in the 
stationary frame. 
in - damping coefiicient of the n-th flutter mode, ^„ :=    . f" , • 

5n - Logarithmic decrement of the n-th flutter mode, 5„ := 2-K-^ = 2n—M 

Or - angle in the rotating frame. 
O3 - angle in the stationary frame. 
ctnritjOr) - blade deflection angle at time t at angle 9r (in the rotating frame). 
oins{t,Os) - blade deflection angle at time t at angle 9g (in the stationary fraime). 
u)r - circular rotor frequency. 
0sp - angle between the fixed reference points on the rotor emd the stator at time t 
(■)„ - n-th spacial Fomrier coefficient. 
(•) - temporal Fourier transform. 

2.5.2    Flutter models 

For an integer n (positive, zero, or negative) we model the n-th flutter mode, or n-th nodal dicimeter 
flutter mode, as a travelling wave in which all blades are oscillating harmonicaDy with a constant 
phase angle S„ := ^ relative to each other [18]. 

Let Or denote the angle measured relative to a fixed point on the rotor in the direction of the 
rotation. Assume that we have continuum of blades and there is no external forcing. We postulate 
that the n-th nodal component of the blade deflection at angle 0^ at time f is given by the formula 

a„r {t, Or) = ^nC"^"* COs(w„rf - nOr + <f>nr) (2.42) 

where —Cn and w„r are, respectively, the real and imaginary part of the n-th flutter mode pole. Note 
that Wnr is also the (pseudo) frequency of the n-th flutter mode in the rotating frame, and J4„ £md ^nr 
are the initial magnitude aind phase angle of the n-th flutter mode. The damping of the n-th flutter 
mode is usually described by one of two coefficients: the damping coefficient ^„ :=       ^"       or the 

logarithmic decrement 5n := 2ir-^ = 2-K   ,^"    . Note that: 

(1) The m-th blade is moving according to equation (2.42) with the corresponding angle Or = ^^ + 0i, 
where Oi is the position of the first blade relative to the fixed reference point on the rotor, m = 
1,2,...,AT. 
(2) For a fixed time t and n ^ 0 the blade deflection a„r{t,Or) considered as a function of the angle 
Or has a sinusoidal shape with \n\ nodes. For n = 0 and a fixed time t the deflection is the same for 
each blade. 
(3) For Cn = 0 and n ^ 0 the blade deflection Q!„r(*,^r) is a wave with a fixed sinusoidal shape 
travelling around the annulus. The speed and the direction of rotation can be obtcdned by considering 
movement in time of the angle corresponding to one of the peaks of the wave. For instance, the first 
peak is obtained by solving the equation Wnrt — nOr + ^nr = f for Or- We have 

Or = -{^nrt + KT-'^). (2.43) 
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Therefore, the speed of the wave is ^ and the direction is positive (the same as the direction of 
rotation of the rotor) for n > 0 and negative (the opposite to the rotor's rotation direction) for n < 0. 
We call the flutter modes travelling in the same direction as the rotor the forward travelling modes 
and the ones travelling in the direction opposite to the rotor's direction the backward travelling modes. 
(4) For a fixed eingle 9r, the blade deflection a„r(i,0r) considered as a function of time represents a 
response of a damped oscillator, i.e., a second order system with poles —Cn + ic-Jnr and —(J„ — iujnr- 
Note that each particular blade oscillates with frequency Unr, which is n times bigger than the fre- 
quency of the corresponding travelling wave. 

Now we express the motion of a blade due to a particular flutter mode as measiured at an arbitrary 
cingle on the stator. 

Let Wr denote the circular rotor frequency. Fix a reference point on the stator. The emgles in the 
stationary frcime will be measured relative to this point with positive direction corresponding to the 
rotor's rotation direction. Let ^^o denote the angle at which the reference point on the stator is seen 
from the reference point on the rotor at time t = 0. Then, for an arbitrary time t, a fixed emgle Og on 
the stator is related to the corresponding point on the rotor Or (measured in the rotating frsime) by 
the formula 9^ = 9s+ 9s0 — ^r^- Therefore, the deflection of the blade passing a fixed angle 9s on the 
stator at time t is given by the formula 

(Xns[t, 9s) = "nr (*, ds + ^sO " W^t) = 
Ane~^''^ cos{{w„r + ncjr)t - n9s + (l>ns) ^ ■    ■' 

where ^ns •= 4>nr — "^so is the initial phase of the n-th mode in the stationeiry frame. 
Note that for Cn = 0 and n^O the blcide deflection Onsit, 9s) in the stationary frame is a wave with 

a fixed sinusoidal shape travelling aroimd the rotor. In particular, a single blade vibration frequency 
in the stationary frame is w„s := tJnr + J^Wf. 

The velocity of the rotation of the wave can be obtained in a similar manner as in the rotating 
frame case. In particular, the velocity of the wave corresponding n-th flutter mode in the stationary 
frame is w^ + ^- Let us recall that the latter is the velocity at which a fixed point on the graph 
of the blade deflection as a function of angle (say, a peak) is travelling Moimd the eumulus at the 
stationary frame. This velocity should not be confused with an individual blade velocity due to n-th 
flutter modes, i.e., cjns, which is n times bigger. 

In the sequel we are going to use the stationary frame only. Therefore, we will often skip the 
subscript s Eind use 9 to denote the angles measured in the stationary frame. 

Since at a flxed time the flutter modes cind the corresponding forcing functions have a fixed 
sinusoidal shape, they can be represented via their spatial Fourier coefficients (SFCs). One complex 
Fourier coefficient can be used to describe a single sinusoidal travelling wave. A general travelling wave 
with n-th nodal spatial shape and a temporal frequency WQ has the form /„(t, 9) := F„(f) cos{(Jot—n9+ 
4>) = Pn(t) cos{wot + (f>) cos{n9)+F„{t) sin(wof+ <^) sin{n9). The corresponding SFC is, for n 7^ 0, equal 
to Ut) := ^J^''U{t,9)e^^^d9. One has /„(t) = i/2-F„(t)i(eJ(-ot-n9+0) + ^-j{u>ot-ne+^)^^ne^0 ^ 
h^nit) /2'^(eJ('^ot+^) + e-i[.u>ot-2ne+<f)^^^Q 

= Fn{t){cos{u)Qt + 4>)+3 sin(a;ot + (j>)). For n = 0, one has /o(t) := i/^'^/o(t,9)d9. Thus, /o(t) = 
^ Jo^"■Fb(i) cos(wot + <j>)d9 = Fo(t) cos(wot + 0) = /o(<,9), for all 9. 

To reconstruct a wave from its SFC one can use the inverse spatial Fourier tranform 

/„(i, 9) = Re{Uit)*e^^^) - i?e(/„(<)e-^"«), (2.45) 

where (■)* stands for the complex conjugation. 
Observe that for n 7^ 0: 
(1) The magnitude and phase of the complex number representing the spatial Fourier coefficient 

of the wave /„(f, 9) are the same as magnitude and phase of the wave. 
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(2) The real and imaginary part of the spatial Fourier coefficient of the wave /„(i, 6) sxe the Fourier 
series coefficients of fn{t,6), i.e., the coefficients of fn{t,9) represented as a linear combination of 
cos{nO) and sm{n6), respectively. 

Assume that the magnitude and phase of the wave /„(t, 6) are constant in time with Fn{t) := F„, for 
some nj^O. Then /„(t, 9), and hence /n(*), is a periodic function of t and one can define the temporal 

Fourier transform of the spatial Fourier coefficient of the wave fn{t,6) /„(ju;) := J^fn{t)e~^'^dt := 

X!^-F'n(*)e^'('^°*+*)e-^'^*dt :== F„(t)e^>J(a; - WQ), where S{-) stands for the delta operator. Thus, the 
travelling waves with the temporal frequency WQ can be recognized in the (temporal) frequency domain 
as "spikes" at one single frequency WQ- Spikes at positive frequencies represent the forward travelling 
waves, whereas the spikes at negative frequencies represent the backward travelling waves. 

The case n = 0 is different. As we have noticed before, the spatial Fourier coefficient /o(<) 
of the function fa{t,6) coincides with the function fo{t,6) itself. Its temporal Fourier transform is 

foiM ■■= S-^ Ut)e-i^'dt = /!^ Fo(t)i(eJ(^o*+*) + e-j('^«*+'^))e-J'^*dt 

= -^(e''^J(w—Wo) 4-e~-''''5(a;4-wo)). One observes that the temporal Fourier transform of the spatial 
Fourier coefficient of the function /o(i, ^) has two "spikes": one at WQ and the other at — WQ. 

While the flutter modes for n 7^ 0 are represented by travelling waves, they can be excited by 
forcing inputs that are either travelling waves of the form /n(*,^) ■— Fn cos(a;oi — nO + <l>) or by the 
standing waves of the form 

/„(*,e) := Fncos(wo* + 4') cos{n9). (2.46) 

This is due to the fact that a standing wave can be represented as hnear combination of two traveffing 
waves: F„ cos(wo* + 4') cos{n8) = ^Fn{cos{uiot — n9 + <f>)+ cos(wot + n6 + ^)). 

The temporal Fourier transform of the standing wave (2.46) is /„(jw) := J^^fn{t)e~^'^dt — 
/^ ^n(*)5(e^'('""*+*) + e-j("»*+^))e-J'^*dt 

= -^(e'"^(J(a;—w„) +e~^'^J(a;+w„)). Note that the latter formula is valid for EJI integers n, including 
n = 0. 

2.5.3    Flutter models with control 

We assume that we have continuum of actuators around the stator that influence flutter modes. We 
wiU control the n-th flutter mode with a control function u(i, 6) that, as a function of single, heis 
the same shape as the n-th flutter mode wave. The control magnitude and phcise will be chosen 
appropriately as functions of the measined (or reconstructed using an observer) magnitude and phase 
of the n-th flutter mode, the angle in the stationary frame, previously denoted by 9a.) Similarly, for 
the identffication purposes, one can force the n-th flutter mode with a using a wave of the with a 
constEint magnitude and phase. More precisely, assume that the control input forcing function for the 
n-th mode is a travelling wave having some temporal frequency WQ and having the same shape as the 
n-th flutter mode: 

u„(<, 9) = Un cos(wot -t- (i>nu — n9) = 
UnCOs{iJot + (l)nu)cOs{n9)+ (2.47) 
Un sin(woi + 4>nu) sia(n9), 

for some constant [/„ and </>„„. The SFC of this forcing function is u„(t) = I7„e'("''*+'^""). The 
corresponding temporal Fourier transform is Un{ju)) = f/„e''^''''J(tc; — WQ). 

We also assume that the steady-state n-th flutter mode component of the blade deflection response 
to the n-th nodal forcing of the form (2.47) is a travelling wave with the same spatial shape and 
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temporal frequency, possibly shifted in phase by some angle </>„ relative to the forcing function: 

««(*, 0) = An cos(woi -nO + 4>n) = 
A„cos{ojot + ^n)cos{n9)+ (2.48) 
An sin(woi + (f>n) sin{n9) 

for some constant An and (^„ that, for fixed J7„ eind </>„„, are functions of WQ. 

The SFC of the n-th component of the blade deflection is a„(i) = A„&'('^''*+'^"). The temporal 
Fourier transform of the SFC of the n-th component of the blade deflection is 5„(jw) = Ane''^"S{u} — 
Wo). We assume that we measure the blade displacement at finite number of locations on the stator. 
(This is going to be accomplished with eddy current sensors.) At a fixed angle 9y the measured blaxle 
dispalcement is going to be 

VnOyit) := anityOy) = 

AnCOs{L}ot-n0y + (l>n) f2 49) 
= An cos(wo< + <f>n) cos{n9y)+ V •    ; ^ 
An sin(wo* + M sm{n9y). 

The temporal Fourier transform of the output fimction is yn{j(jj) = ^{e^^'^"~"'^^^S{uj—u)o)+e~^^'l'"~'^y^d{u}+ 
wo)). 

Now we present dynamic system models for the evolution of the n-th fiutter mode subject to 
control. The description adapts an approach to model rotating stall from [42]. 

One can obtain a low order model describing the dynamics of the n-th flutter suitable for control 
pvnposes in the following three steps. 

1. Conduct an experiment to obtain the transfer function between the n-th SFC of the forcing 
function given by (2.47) and the corresponding n-th SFC of the blade deflection function given by 
(2.48). 

2. Fit a low-order transfer function to the one obtained experimentally. 
3. Obtain a state-space realization of the low-order trajisfer function obtained in step 2. 
We assume that the imcontroUed n-th flutter mode behaves like a fightly damped harmonic oscil- 

lator with individual blades moving in the stationary frame according to the formula (2.44). Thus, 
we expect the mode to have a significant response to forcing only at a narrow band of frequencies of 
interest around the mode's natural frequency w„s := Wnr + 'nc^r- The control goal is to add dcimping 
to the mode by a feedback control only at this narrow band of frequencies. Therefore, it is sufficient 
to have an approximate low order model describing the dynamics of the n-th mode at this neirrow 
frequency range. Even if the frequency response of the n-th flutter mode were that of a low pass, 
rather than a band pass filter and the actuator dynamics cannot be neglected over a wide band of 
frequencies, so that a narrow band frequency model will not be acctirate at low frequencies, the in- 
accuracy of-the model will not significantly impact control performance. The controllers will have a 
bemd pass charax;teristic, so that the unmodeUed dynamics at both low and high frequencies will not 
be destabilized. 

The transfer function between the n-th SFC's of the forcing function and the corresponding blade 
deflection response is defined by 

Gn{ju.):=i^=^^^t"^-^-\ (2.50) 
"n(jw) Un 

Both An and ^„ are, in general, functions of the frequency u. 
To obtain the transfer function Gn(iw) from a sine sweep experiment, one has to access the 

function 5„(i). To obtain an approximation to a„(<) one would have to simultaneously measme the 
blade displacement a„(t, 0) at some finite number of angles around the £innulus and use a discrete 
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approximation of the integral defining the spatial Fomier transform.   A reasonable approximation 
would require at least 2n + 1 blade displacement sensors around the annulus. 

However, even with one sensor one can measure the transfer function G„(jw) because of the 
following simple observation. Assume that we have a blade displacement sensor at some angle 6y at 
the stationciry frame. The measured output function y„e„(t) :—, an{t,9y) is given by the equation 
2.49. Asstune also that we measmre the value of the actuation function Un{t,6) at a fixed angle 0^^. 
Let «„0„(t) ~ Un{t,Ou). Note that y„9j,(t) = ^„ cos(u;oi - n^„ + ^„) and ■u„9„(i) = J7„cos(wot + 
<^nu - nOy) have relative phase shift of 4>n - <j>nu - n{6y - 0„). Hence, the measured transfer function 

between them during a sine sweep experiment is Gne^g^U'^) '■= |""y^"'. — ^e3{<t>n-^nu-n(ey-eu)) _ 

e-o<^y-^-)Gn{3^). Therefore, G„(jw) can be obtained firom Gn{ju))= ei^^y-^^^Gng^e^iJu)). 
One Ccin observe that, except for the case n = 0, £iny description of transfer functions G„(ja;) 

SiS a rational function of juj Vcdid in a wide frequency bsmd must have complex rather them real 
coefficients. To see that, note that a trcuisfer function G{juj) with reed coefficients has the property 
G{—jw) = G{ju})*, i.e., it has a Nyquist diagram symmeric with respect to the real axis. We know 
from experiments that the response of the n-th flutter mode to the forwEird or backwcurd traveffing 
forcing wave with the same temporal frequency is not symmetric. Thus, for n^O, one has G„(—jw) ^ 
Gn{j(^)*- However, we do expect the reponse to be symmetric for n = 0, so that we have Go(jw) = 
Go(—jw)*. Therefore, we expect the transfer function Go(jw) considered as a rational function of jw 
to have recil coefficients. Because of this difference between the cases n ^ 0 and n = 0, we are going 
to derive the corresponding models separately. 

A low order, n^row band model for the trcinsfer function G„(jw) between the n-th SFC of the 
forcing function given by (2.47) and the corresponding output function given by (2.49) for n 7^ 0 is a 
first order transfer function with complex coefficients 

<^n(;w) = .   ,   .f T- (2.51) 

A complex-valued state-space realization of this transfer function is 

"n(*) = (-Cn + jw„^)5„(f) + {bnR +jbnl)Un{t). (2.52) 

Note that both 5„(t) and Un{t) are complex valued functions of time. Observe also that the unforced 
response of (2.52) is a„(<) = e("~^''+^'""'')*5„(0), which agrees with postulated unforced evolution of the 
n-th flutter mode given by (2.44). 

Let us emphasize again that the simple transfer function model (2.51) and its state-space realization 
(2.52) are valid only for a narrow range of frequencies around the flutter frequency w„s. The actuator 
characteristic over that frequency range is simply represented by the magnitude and phase of the 
n-th mode of the actuator disk at the flutter frequency and incorporated into the complex number 
bnR + jbni- This approximation is reasonable, as long as the actuator frequency response does not 
change significantly over the frequency interval of interest and a feedback controller characteristic wiU 
be that of a sufficiently narrow band-pass filter. If this is not the case, the actuator dynamics should 
be incorporated in the model. 

An equivalent description to (2.51) is possible with a real-valued model of real dimension two. In 
the sequel the subscripts {■)R and (•)/ will denote the real and imaginary part of a complex number. 
One can easily check [42] that the real and imaginary part of the SFC's of blade displacement and 
forcing function satisfy the following set of two differential equations 

" anR{t) ' -Cn     -W ns OnRit) 
5nl{t) W„s       -Cn ««/(*) 

bnR    -bnl UnRit) 
bnl      b„ R Unlit) 

+ 
(2.53) 
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The corresponding transfer function desription is 

anflO'w) 
5„/(jw) 

GnrO'w)     -GniiJUj) 

"n/(jw) 

One can verify that 

GnriJU)) = 
KRU^ + Cn) - bnliOns 

(iw + Cn)2+wL 
-bnlijl^ + Cn) - &nfltJn5 

(ia; + Cn)2+a;2, 

(2.54) 

(2.55) 

(2.56) 

and 

GniJUj) = G„rU(^) + jGniiJi^). (2.57) 

Assume that a blade displacement sensor is located at some angle 6 at the stationary frame. The 
measured output function j/„e(i) := oin{t, 0) can be expressed in terms of the reed and imaginary parts 
of the SFC of an{t,6) via the inverse spatial Fourier transform (2.45) as y„e(t) = iie(o(„(t)e~^"*) = 
Re{anR{t) + ja„/(t))(cos(n0) - jsin(n0)) = cos{n9)a„R{t) + sm{n9)ani{t). Let 

Xn{t) := 
5nR{t) 

,Vn{t) := UnR{t) 
Unl{t) 

(2.58) 

An-.-- 
Wns       —C,n       '     " Kl       KR 

C'nfl := [cos(n0)sin(n^)]. 

The state ajid the output equation for the n-th nodal flutter mode Ccin be concisely written as 

(2.59) 

in(<)       =    AnXn{t) + BnVn{t) 
Vneit)     =    Cn9Xn{t). 

(2.60) 

If there is only one sensor at some fixed angle 6, we will skip the subscript 6 in the description of 
Vneit) and C„e. 

Observe that all the quantities in the equation (2.60) axe real. One can identify the parameters 
in the model using travelling wave excitation, as described in the previous section. Alternatively, one 
can exploit the skew-symmetric structvure of the matrices An and B„ and use only one of the inputs of 
Vn{t) for excitation. This amounts to forcing the system with a standing wave, rather than travelling 
wave pattern. 

Now we propose a real-valued model for control of the 0-th nodal flutter of dimension two. Assume 
that a blade displacement sensor is located at some angle 6 at the stationary frame. The measured 
output function is yoeit) := ao{t,9) = ao{t). Let 

Goijuj) :-- 
aoijdj)      aoijuj)     A = 2lJi<t'o-<f>o^ (2.61) 
So(jw)      wo(jw)      UQ' 

A simplest model for Go{j(^) with real coeffcients that exhibits a behavior of a lightly damped oscillator 

bi{ju))+bo 
IS 

Goijw) = (2.62) (J£^ + Co)2-Ha;2' 

for some real 6i, bo, Co) and UQ. The corresponding state-space description (in the observer Ccinonical 
form) is 

xo{t)    =   Aoxo{t) + Bovo{t) 
yoe{t)   =   Co0XQ{t), 

(2.63) 
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where 
vo{t):=uoit), (2.64) 

Ao:= -Co    1 
-wg   0 I-Bo := 

h 
bo 

,Coo:=[10]. (2.65) 

Let consider a finite number kj of flutter modes with nodaJ numbers ni, n2, ..., Uk.- Assume that 
as the measurement outputs we use m bleide displacement sensors located at the angles 9i, 62, ■ ■., 0m, 
respectively. We asstmie that the blade displacement ye measured at some angle 0 at the stationary 
jframe is the sum of the diplacements due to particular flutter modes: 

?/eW = EfcLi«n,(t,e). (2.66) 

We can write down the following state-space model describing the dynamics of the kj most active 
flutter modes: 

x{t)   =   Ax{t) + Bv{t) 
y{t)    =   Cx{t), (2.67) 

where x{t) := [x^^ (f)... x„^^ {t)f, 

v{t) := [unj^ {t)... Un^^ (t)]^, y{t) :- [yg^ (t)... yg^ (t)]^, A and B are block diagonal matrices containing 
An- and Bn^ blocks, respectively, and C is a matrix composed of C7„9 blocks. 

The dimension of the output variable y{t) is equal to m, which is the number of blade displacement 
sensors (e.g., eddy current sensors) used for measurement. 

One may be tempted to place many sensors to make the C matrix invertible and use a full- 
state static feedback to arbitrarily place the damping of the flutter modes. This strategy might be 
succesfull for flutter modes with the nodal nmnber rifc ^ 0 if the variations of the actuator dynamics 
with frequency can be neglected. However, note that C is never invertible if one includes the 0-th 
nodal flutter dynamics, as Coe = [1 0] for all 0, and hence C has a colmnn of zeros. Moreover, a 
strong output noise component, which includes all unmodelled sources of blade displa<;ement, such as 
periodic forcing due to rotor and blades assymetry, neglected flutter modes, rotating stall dynamics, 
an inlet distorsion, etc., would mcike reconstructing the state of the flutter modes by inverting the C 
matrix problematic. 

To circimivent the problems with direct inversion of the C matrix and the output noise, £ind at 
the same time reduce the number of blade displacement sensors, we axe going to reconstruct the state 
of the system using an observer. As we will see, in principle, just one blade displacement sensor is 
suflicient for this purpose. 

2.5.4    Model of the disturbances 

We are going to augment the state-space model (2.67) by adding some noise sources in the state and 
output equations. We assume that the system is described by the equation 

x{t)   =   Ax{t)+Bv{t)+e^{t) 
y{t)    =   Cx{t)+ey{t), (2.68) 

where ex{t) is an unknown disturbance driving the state of the system, and ey{t) is an imknown 
output disturbance. We assume that the state disturbance e^it) has a strong periodic component 
with the rotor frequency due to rotor and blades assymetry and some random fluctuations due to inlet 
distorsion that excite the kf flutter modes of interest. The output disturbance ey{t) might include all 
unmodelled somces of blade displacement such as neglected flutter modes, rotating stall dynamics, 
a strong constant component (so-called DC-component) due to sensor bias and rotor assymetry, a 
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periodic component due to differences between particulcix blades, 60Hz electric noise and its harmonics 
from electric components and possibly some other measmrement noise. 

We expect the constant and periodic components of the disturbances to be dominant. We are 
going to extend our model to incorporate these components and reconstruct them using an observer. 
We assume that the actual blade displacement yae{t) measured by a sensor located at an eingle 6 on 
the stator is given by yae{t) — ye{t) + ydc{S) + yp(wr* — 6) + ywn{t,0), where ye{t) is the sum of the 
blade displacement components due to the dynamics of the selected most active kf flutter modes of 
interests given by (2.66), ydci^) is an unknown constant bias component, yp{(jJrt — d) represents a 
steady unknown periodic motion, and yxin{t,&) is the broad bcind component of the measured output. 

Note that the forcing of the blcides due to rotor and casing assymetry will cause a different constant 
blade diplacement at a different angular location at the stationary frame, even the the magnitude of 
the angular motion of the blades is the same. Also, a constant bias signal may be different fo each 
sensor. Therefore, we do not expect to have the same constant component adc{0) at each output. 

The unknown constant component of the fc-th output yg^{t) will be modelled as the state Xkdc{t) of 
an integrator with an unknown initial condition added to the system (2.68) Xkdc{t) = ^dc^dcit), ye^it) = 
CdcXkdcit), where Adc := [0], Qc == [!]• 

Particular blades on the rotor are slightly different. Moreover, the spacing between the blades may 
vary around the rotor. Thus, if the diplacement is measured by a difference of expected (assuming 
no blade motion due to flutter) and actual time of arrival of the blade (using eddy current or optical 
senors) and the time of expected arrival is calculated assuming a uniform spacing between the blzides, 
a measurement of an angular blade displacement will have £in error. In both cases mentioned above 
this error wiU have a form of a wave travelling forward with the speed equal to the rotor frequency 
ujr- This jtistifies the choice of the form of the periodic disturbance yp{u}rt — 6). 

A constant component of yp{wrt — 9) can be incorporated into the constant disturbance adc{S)- 
Therefore, without loss of generaUty one can assume that for each fixed t the average value oiyp{u)rt—0) 
over 9 is zero. For each n > 0 one can compute the spatial Fourier coefiicient ypnit) of yp{u)rt — 9) amd 
then represent the function yp{u>rt — 9) using the inverse spatial Fourier trcinsform (in other words, 
represent yp{ii)rt — 9) as Fourier series). After truncating the series at some n = kp one obteiins the 

formula yp(wr* — ^) = Z)n=i Rs{ypn{t)e~^ ) = I]n=i cos(n&)(a„ cos{nu)rt) + 6„ sin(nwrt)) 
+ sin(n0)(a„ sin(nwrt) — bn cos(ncJr*))) for some constants On, bn, n = 1,... ,kp. Observe that for fixed 
9, the function yp{u;rt — 9) cein be treated as an output of a system of kp uncoupled oscillators with 
frequencies equal to multiples of the rotor frequency Ur- Therefore, the periodic disturbance yp{u}rt—9) 
wiU be modelled by adding states xie{t),X2e{t), ■■■,Xkj,e{t) of kp oscillators to the system (2.68). Let 

'(Vke '•= kur and 
0       -Wfce 

ifce 
Wfce 0 

,Cne = [cos{n9) sm{n9)]. (2.69) 

We assmne that the state of the oscillator Xke{t) satisfies the equation 

Xkeit) = AkeXkeit), (2.70) 

with an unknown initial condition. The function yp(wrt — 9) can be expressed as 

ypiiJrt -9)=Y, Cn9Xne{t) (2.71) 
n=l 

We assume that ?/«,„(<, 0), the unmodeled part of the output function, is a low level broad band 
noise. 

We add the disturbance states xidc{t)-i • • ■, Xmdc{i) and a;ie(i), •. ■, Xk^e{t) to the state x{t) and form 
an augmented state variable Xa{t).  We can write down the following augmented state-space model 
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describing the dynamics of the kj most active flutter modes and the efiect of disturbances on the 
output and state: 

Xa{t)     =    AaXait) + BaV{i) + eaxu{t) ,^      ■. 
Vait)     =     CaXa{t) + Cayuit), ^'     ' 

where CaxuC*) ^^'^ ^ayu{t) denote the broad-band components of the state and output disturbances 
(we skip the details of straightforward contruction of the augmented system matrices). 

Note that the system (2.72) is not controllable, as we do not assume that we have any aictuation 
authority over the part of the system that models the distiu:bances. Therefore, we can only attempt 
to place the eigenvalues of the system corresponding to the flutter modes. If the fuU state of (2.72) 
were available for measmrement, we would use a feedback law of the form v := —KaXayvrheie Ka is of 
the form Ka = [K 0] and K is chosen so that the eigenvalues of the matrix A — BK are placed in the 
desired position. This can be achieved, as it follows from the Hautus criterion that the pair {A, B) is 
controllable since the flutter modes are sepcirated in frequency. Note that the matrices A and B are 
block-diagonal. Hence, one C2in use a block diagonal feedback gciin matrix K and sepairately place the 
eingenvalues of particular flutter modes. As we noticed, the state of the flutter modes is not directly 
available. However, one can use an observer state instead of the actual state for feedback. 

2.5.5    Observer-based control of flutter 

The main reason for incorporating the unknown disturbances into the state of the system is to re- 
construct them along with the state of the flutter dynamics and filter out in this way the state of 
the flutter modes of interest. This state can be used for designing a full state feedback and achieve a 
prescribed level of deunping of the flutter modes. 

To verify if the augmented system (2.72) is observable one can use the Hautus criterion of observ- 
ability [29]. The latter says that (2.72) if and only if the matrix 

XI-Aa 
Ca 

(2.73) 

has a full colmnn rank VA G (T{Aa), where a(-) stands for the spectrum of a matrix. Note that the 
matrix Aa is block-diagoucil. Thus, its spectrum is the collection of spectra of the matrices on the 
diagonal. One can easily see that as long as the flutter frequencies do not coincide with multiples of 
the rotor frequency, the system is observable even from a single sensor. 

In the sequel we assume that the multiples of the rotor frequency axe separated from the frequencies 
of the flutter modes, so that the pair {Ca,Aa) is observable. 

An observer used to reconstruct flutter modes [29] has the form 

ia{t)     =    AaXa{t)+BaVa{t) + L{ya{t)-yait)) , . 
m       =     CaXait), ^^-^^^ 

with the observer gain matrix L chosen so that the observer error converges to zero. Let x{t) := 
Xa{t) — Xa{t) denote the error of observation. The error dynamics is given by 

Xa{t)     =     {Aa - LCa)Xa(t) - Leayu{t) + Baxuit). (2.75) 

To guarantee the convergence of the observer error to zero, the matrix L has been chosen such that the 
matrix Aa — LCa has all eigenvalues with negative real part. Since the pair {Ca, Aa) is observable, the 
eigenvailues of Aa — LCa can be assigned arbitrarily. By choosing the eigenvalues far enough from the 
imaginary axis one can make the observer error decaying arbitrarily fast. However, this requires high 
values of the entries of the observer gain matrix L.  Since the unmodelled part of the measurement 
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noise eayu{t) affects the error dynamics (2.75) through the matrix L, a high gain observer is going to 
have a significant response to the measurement noise. Therefore, one has to choose the eigenvalues of 
the matrix Aa — LCa carefully, balancing the rate of the observer error decay with the sensitivity to 
output noise. 

One can design a feedback controller for the system (2.72) in a form of a full-state feedback 
"Oait) — —KaXait), where Ka — [K 0] is chosen so that the eigenvalues of the matrix A — BK 
corresponding to the flutter modes have a prescribed level of damping [29]. Since the full state of 
(2.72) is not accessible for a direct measurement, one uses the state of the observer (2.74) in place 
of the state of (2.72) in the feedback law. i.e., Va{t) = —KaXa{t). The state equations of the system 
consisting of an interconnection of the system (2.72) and the observer (2.74) are 

±ait) = Aa 
LCa 

—BaKa 
Aa — BaKa — LCa 

Xa(f) 

Q      eaxu{t) + 
0 
L 

Gayu (t). 

+ 
(2.76) 

The Separation Principlesays that the set of eigenvalues of the overall system (2.76) is a union of the 
eigenvalues of the observer error matrix Aa — LCa and the eigenvalues of the matrix Aa — BaKa- In 
turn, the set of eigenvalues of Aa — BaKa is the union of the eigenvjJues oiA — BK and the eigenvalues 
of the modelled disturbance modes. 

2.5.6    Flutter control experiments 

Experiments with observer-based flutter control on 17"-fan test rig shown in Figure 2.13 . The rig has 

Figmre 2.13: 17" fan experimental rig 

one fan stage with sixteen blades on a rotor powered with an external air turbine and one row of exit 
guide vanes on a stator. Variable fan exit area is controlled via translating throttle plug. By reducing 
the throttle area one increases the incidence angle of the air approaching the blades and thus reduces 
damping of stall flutter modes. The control system is shown in Figure 2.14. We used two or one eddy 
current sensors to measure the blade displacement in the stationary frame and ten speakers mounted 
in cavities located around the fan casing as actuators. All control experiments reported here done at 
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Figure 2.14: Flutter control system schematics 

the rotor frequency 150 Hz (9000 RPM). Most expreriments were done at the most stable operating 
point at wide open throttle and some closer to flutter boundary. 

The goal was to demonstrate that we cam add significant arnoimt of dajnping to the lightly damped 
flutter modes. The gocil wcis achieved for the least stable fem flutter modes with noded diameters 0, 1, 
and 2. 

We identified the parameters of the real valued 2-nd order state-space models for the flutter modes 
0, 1, cind 2 from a sine sweep experiment. For nodal diameter 0 we assumed model given by equation 
(2.63). For the nodaJ diameters other than 0 we assumed model given by equation (2.60). We used 
a Matlab script that first fitted a 2-nd order transfer function (with two poles and one zero) to the 
experimentally obtained transfer fucntion from a spectral analyzer and then obtained an appropriate 
state-space realization. For nodal diameters n = 1 eind n = 2 we used forcing with a standing wave 
cosine pattern, i.e., the input Unii(*)- In this way we identified the matrices CnO (for two values of 
6), An, ajid the first column of the matrix B„. The matrix J4„ was forced to be in the (modal) form 
(2.59). The second column of Bn was obtained from the first one. 

Figures 2.15, 2.16 and 2.17 show the Bode plots from a sine-sweep experiment and the correspond- 
ing 2-nd order fits for flutter modes with nodal diameters n = 0, n = 1, and n = 2. The fits and models 
are obtained independently for each of the eddy current sensors (denoted DTI and DT2, respectively). 

Note that the 2-nd order transfer function fits to experimental data are good near the flutter 
frequency (i.e., the frequency at the resonant peak of the magnitude), but there is an increasing phase 
error away from the flutter frequency. Ass we will see, this phase mismatch represents umnodeled 
non-minvunum phase dynamics that will somewhat limit performance of the control scheme based on 
the 2-nd order model. 

Several observer-based schemes we tried in flutter control.  Some of them used both sensors and 
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Figtire 2.15: Bode plots for flutter mode n = 0. Experimental data and 2-nd order fits. 

some of them used just one sensor. Number of flutter and disturbance modes also varied. All observers 
had a constant disturbance states (denoted dc) and from one to fom: pairs of the states modelling 
periodic distiurbances at the multiples of the rotor frequency (denoted le, 2e, etc.). The available 
processor speed Umited the nvunber of observer states that could be used for control. 

Each observer was designed in the form (2.74), with the gain matrix L chosen by specifying the 
damping of the observer poles. The specified observer damping was about twice the value of the desired 
damping of the flutter mode of interest, except for the dc states, which had much higher dcimping. 
The control law was a Unear feedback from the observer state. Only the (estimated) flutter state wcis 
used for control. The feedba<;k was designed to augment the damping of the flutter mode of interest 
to the desired level without changing its frequency. 

The amount of damping added to particular flutter modes was obtained from a sine-sweep ex- 
periment. Bode plots for open and closed-loop systems were obtained. Since the 2-nd order trcinsfer 
function fits were not acurate enough (see Figures 2.15, 2.16 and 2.17 ) to get a good estimate of 
dcimping, 4-th order transfer functions were fitted instead. The 4-th order fits were very good for 0-th 
and 1-st nodal diameter flutter modes, and reasonable for the 2-nd nodal diameter flutter mode. 

The 0-th flutter mode was the least stable mode on 17-inch fan rig. At the most stable rig operating 
point the open-loop logarithmic decrement was So = 0.018. The control scheme that achieved the 
biggest damping increase used only one DT sensor and was based on model with 7 states: 2-nd order 
models of the 0-th and 1-st flutter modes, 1-st order model of the dc bias of DTI sensor, and a 2-nd 
order model of 2e signal. The closed-loop logarithmic decrement achieved was SQ = 0.21. 

Figure 2.18 shows open and closed-loop Bode plots for the plant and the 4-th order transfer function 
fits. 

Figure 2.19 shows the spectral content of the time traces of one actuator, strain gauge on a blade, 
and DTI (time difference between actual and expected blade arrival) signal.  The frequency of the 
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Figure 2.16: Bode plots for flutter mode n = 1. Experimented data and 2-nd order fits. 

0-th flutter mode (about 273 Hz) is shown by a circle. The first three multiples of the rotor firequency 
(150 Hz) are marked by crosses. Note that the actuator has a strong component at the (unmodeled) 
le frequency, but no component at the (modeled) 2e frequency, even though there is a strong 2e signal 
in the DTI signal. This illustrates the benefits of estimating the periodic disturbances at multiples 
of rotor frequency using an observer. Essentially, the periodic disturbEmce observer provides a notch 
filter in the transfer functions from blade arrival time difference to the speaker conunand. Adding 
more models of the periodic disturbances with muliples of the rotor frequency to the observer reduces 
the actuator energy waisted for response in that frequencies. 

The 1-st flutter mode was the second least stable mode on 17-inch fan rig. At most stable rig 
operating point the open-loop logarithmic decrement was Si = 0.028. The control scheme that achieved 
the biggest damping increase used both DTl and DT2 sensors and was based on model that had 8 
states: 2-nd order models of 0-th and 1-st flutter modes, dc estimates for DTI and DT2 sensors, emd 
a 2-nd order model of 2e signal. The closed-loop logarithmic decrement was 5i = .153. Figirre 2.20 
shows open and closed-loop Bode plots for the plant and the 4-th order transfer function fits. 

The 2-nd flutter mode was the third least stable mode on 17-inch fan rig. At the most stable rig 
operating point the open-loop logarithmic decrement was 5i = 0.037. We used both DTI and DT2 
sensors. The model used for observer design had 10 states: 2-nd order model of 2-nd flutter mode, 
dc estimates for DTI and DT2 sensors, and 2-nd order models of 3e, 4e, and 5e disturbance signals. 
The closed-loop logarithmic decrement was Si = .174. Figure 2.21 shows open and closed-loop Bode 
plots for the plant and the 4-th order transfer function fits. 

Figure 2.22 summarizes achieved damping augmentation. 
We tested an observer-based controllers designed at the most stable operating point at the rotor 

frequency of 9000 RPM for the throttle position very close to the stability boundary of the n = 0 
flutter mode.   Figure 11 shows the open and closed-loop Bode plots and damping estimates.   The 
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Figure 2.17: Bode plots for flutter mode n = 2. Experimental data and 2-nd order fits. 

controller worked well. This was expected, as the phsise of the frequency response of the 0-th flutter 
mode did not change much as one closed the throttle. 

At the same operating condition (close to the 0-th flutter mode stabihty boundary) we conducted 
a control off/on/off experiment. Figure ^2.24 shows 10-second time traces of one of the actuators, a 
strain gauge on a blade, and DTI signal. One can see a significant decrease in the blaide stress and 
blade tip movement due to 0-th flutter mode when the feedback loop is closed. Figure 2.25 shows the 
spectral content of these time traces when control was off and on, respectively. Note the disappearance 
of a sharp peak at 273 Hz at both the strain gauge and the blade arrival time difference signal spectra 
when control is on. 

2.5.7    Experimental results: comments on model mismatch eflFect 

The amount of damping augmentation achieved for the flutter modes with nodal diameters 0, 1, Jind 
2, was significant. A prediction based on the 2-nd order models was that even more damping could 
have been achieved simply by increasing the controller gain. However, in experiment we noticed that 
there was an upper bound on the damping augmentation. As we were increasing the gain, the plant 
frequency response for all flutter modes consistently showed a magnitude plot with two resonant peaks, 
characteristic to a 4-th order system. Indeed, the 4-th order transfer function fits (with 4 poles and 
3 zeros) to the experimental transfer functions were excellent over 40 - 50 Hz frequency band aroimd 
the resonant peak for both open-loop and closed-loop plants for all values of the controller gains that 
we tried. For each open-loop fiutter mode the four-pole pattern was similar. There were two complex 
conjugate pairs of poles with a similar frequency. One pair was located near the imaginary axis, more 
or less at the location of the poles of the second order fit. The other pair of poles was located further 
away.   Our interpretation was that the less damped pair of poles represented the flutter dynamics. 
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Figure 2.18: Open-loop and closed-loop Bode plots for flutter mode n 
4-th order fits. SQ: open-loop 0.018, closed-loop 0.21. 

0. Experimental data £ind 

while the more damped extra pair of poles, together with an acompanying pair of zeros, accoimted 
for the actuator dynamics cind all sources of delay in the loop. It is important to note that we do 
not associate any direct physicaJ mecining with the "actuator" poles and zeros. Rather than that, we 
interpret them as a narrow band bulk model of the phase mismatch between the experimental transfer 
functions cind the 2-nd order fits, with the actuator phase rolloff being the major factor in that roloff. 

As we increased the controller gain the poles moved towcirds each other, the flutter mode gaining 
stabihty and the actuator pole loosing stability. As a measure of the damping of the system we used 
the damping of the least damped pole in the 4-th order trcinsfer function fit to the experimental 
transfer function. The optimal damping was achieved as the two pairs of poles nearly met. As we 
kept increasing the gain from this optimal value, the poles started to move away from one smother, 
and one of the modes kept loosing stability. 

Figiure ?? show the experimetally obtained open-loop Eind closed-loop Bode plots for 1-st flut- 
ter mode and the corresponding 4-th order fits for 6 values of the controller gain k (with fc = 0 
corresponding to open-loop plant). The implemeted modal control was of the form 

vi{t) := UlR{t) 
uu{t) 

= kKi 
Xi.R(t) 

xu{t) (2.77) 

where xm and xu were the observer states corresponding to the 1-st flutter mode, Ki was a fixed 
feedback matrix. The optimal value for the gain k that acheieved largest damping augmentation was 
around k = 0.003. For the value of gain higher than the optimal gain the feimiliar peak-splitting 
occured. This points out to non-minimum phase effects (actuation and flow delays). 

It was important to verify that the 4-th order model would explain the root-locus behavior seen 
in the experiment. We simulated the controller based on 2-nd order model applied to the 4-th order 
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Figure 2.19: Control of 0-th nodal diameter flutter. FFT of time traces of one actuator, strain gauge, 
and DTI signal 
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Figure 2.20: Open-loop and closed-loop Bode plots for flutter mode n = 1. Experimental data Eind 
4-th order fits. Si: open-loop 0.028, closed-loop 0.153. 

model of the 1-st flutter mode (the one that showed the biggest phase mismatch between the 2-nd and 
4-th order transfer function fits to the experimental one). We plotted the corresponding root locus as 
well as the 6 flutter-actuator pairs of eigenvedues obtained from the 4-th order tremsfer function fits. 
One can see a qualitative agreement between the two root-loci. 
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Figure 2.21:   Open-loop and closed-loop Bode plots for flutter, n = 2, two eddy ciurrent sensors. 
Experimental data and 4-th order fits. S: open-loop 0.037, closed-loop 0.174. 
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Figure 2.22: Flutter damping augmentation achieved in experiments 
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Figiire 2.23: Open-loop and closed-loop Bode plots for flutter mode n = 0 close to stability boimdaxy. 
Experimental data and 4-th order fits. S: open-loop 0.007, closed-loop 0.114. 
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Figure 2.24: Control off/on/ofF experiment, 0-th nodal diameter flutter. Time traces of one actuator, 
strain gauge, and DTI signal. 
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Figure 2.25: Control off/on/off experiment, 0-th nodal diameter flutter close to flutter boundary. FFT 
of time traces of one actuator, strain gauge, and DTI signal for control off (left) and control on (right). 
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Root locus, theoretical and experimental 
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Figure 2.27: Experimental and theoretical root-locus for 4-th order plant model and controller based 
on 2-order order model. Experimental closed-loop poles for 6 values of the gain shown by circles and 
crosses. Theoretical closed-loop poles for shown by crosses. 
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Chapter 3 

Personnel Supported 

UTRC personnel: Andrzej Banaszuk, Razvan Florea, Gregory Hagen, Prashant Mehta, Mairios Sote- 
riou, Satish Narayanan, Jesper Oppelstrup, Subarrao Varigonda. 
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