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CONTROL OF MIXING IN SHEAR FLOWS
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Andrzej Banaszuk
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411 Silver Lane,
East Hartford, CT 06108,
tel. 860 610 7381, banasza@utrc.utc.com

0.1 Objectives

The objective of this research was to develop approach to control of mixing in shear flows and apply it
to control of pattern factor and thermoacoustic instabilities in military aeroengines. A more general
objective was to develop tools for modeling, analysis, and control design for unsteady non-equilibrium
flow phenomena relevant to operation of aeroengines.

0.2 Summary of Accomplishments

The original objective of developing methods for control of mixing relevant to pattern factor control was
accomplished. Methods for enhancing mixing in jets in cross flow using flow control were developed
and demonstrated in experiments. Control of Pattern Factor using jet in cross flow control was
demonstrated in a rig experiment. This work is described in Section 2.1.

The objective of controlling thermoacoustic instabilities via mixing control was not accomplished.
The funding was re-directed towards more promising fuel control of thermoacoustic instabilities. The
decision was based on the fact that the fuel flow control was considered more feasible than air flow
control and more likely to be transitioned to a 6.2 project on Active Screech Control (jointly funded
by Air Force Research Lab and Pratt & Whitney).

In the area of fuel control several accomplishements are worth mentioning. First, a hierarchy of
models for control of thermoacoustic instabilities was developed. A method of control of flame front
was demonstrated in a distributed model. Control of rotating waves arising as results of thermoa-
coustic instability on a annular domain was demonstrated in a reduced order model. The effect of
combustion on the fluid dynamics was analyzed in a distributed and reduced order models. The results
are presented in Section 2.2. Other accomplishments include analysis of impact of symmetry-breaking
(Section 2.3) and external noise (Section 2.4) on thermoacoustic instabilities. The study of the funda-
mental limitations of achievable performance described in the next paragraph was motivated by the
control of thermoacoustics.

The most important theoretical accomplishment of the current research was establishment of a
framework for studying fundamental limitations of achievable performance in control of oscillations
described by nonlinear models, including delays, and driven by broad-band noise described in Sec-
tion 1.1. The framework is based on frequency domain formulation of model response. While linear
dynamic components (oscillators and delays) are easy to handle in the frequency domain, the challenge
was the treatment of static nonlinearities. This was accomplished by replacing the nonlinearities by
their Random Input Describing Functions. This approach was very effective in studying limitations



of performance in fuel control of thermoacoustic instabilities using on-off fuel valves. The framework
involved approzimations. As a first step towards a fully rigorous framework for analysis of nonlinear
ocillations, the Spectral Balance approach (Section 1.2) was introduced and demonstrated in an ex-
ample of a nonlinear model with multiple attractors. Other accomplishments include introduction of
two methods of adaptive control of oscillations with uncertain parameters (Section 1.3) and analysis
of uncertainty propagation in complex, interconnected dynamical systems (Section 1.4).

Finally, a linear framework for control of wave phenomena on annular domain was established.
The flutter control problem described in Section 2.5 was used to motivate the study.

The results of the current research are summarized in 11 journal papers (5 published, 3 in print, 3
submitted) and 20 conference papers. Three invited sessions were organized with support from current
grant.

0.3 Organization of the report

We provide extended abstract for the results that are published and hence easily available. We provide
more details for the results that are not available, like papers that are submitted or in the case of
ungoing research. List of references is available in the last two chapters of the report. References to
journal papers that were written under this contract are referenced with letter “j” in front ([j1)], [;2],
etc.). Conference papers written under this contract are referenced with letter “c” in front ([c1], [c2],
etc.).
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Chapter 1

Control Theory for Nonlinear
Oscillations in Military Aeroengines

1.1 Analysis of fundmental limitations of achievable performance in
control of oscillations in nonlinear systems

The most important theoretical accomplishment of the current research was establishment of a frame-
work for studying fundamental limitations of achievable performance in control of oscillations described
by nonlinear models, including delays, and driven by broad-band noise. The framework is based on
frequency domain formulation of model response. While linear dynamic components (oscillators and
delays) are easy to handle in the frequency domain, the challenge is the treatment of static nonlin-
earities. This was accomplished by replacing the nonlinearities by their Random Input Describing
Functions. This approach was very effective in describing limitations of performance in fuel control
of thermoacoustic instabilities using on-off fuel valves. The framework involved approzimations. As
a first step towards a fully rigorous framework for analysis of nonlinear ocillations, the Spectral Bal-
ance approach was introduced and demonstrated on an example of a nonlinear model with multiple
attractors.

1.1.1 Fundamental limitations of achievable performance in control of thermoa-
coustic instabilities

Thermoacoustic instabilities in gas turbine and rocket engines develop when acoustic waves in com-
bustors couple with an unsteady heat release field in a positive feedback loop. Fuel control was
demonstrated to be an effective way of reducing the level of pressure oscillation in combustors [46] [6]
(7] {30] [23] [17] [11] [24] [45]). However, the achieved reduction of pressure oscillation between experi-
ments ranges from 6dB to 20dB [11] [24]. Moreover, in some cases the attenutation of the oscillation
at primary frequency is accompanied by excitation of the oscillation in some other frequency band [6]
[7] [30] [17] [45]). This phenomenon is refered to as secondary peaks or peak splitting.

Until recently, the question of what are the factors that impact the achievable level of attenuation
of pressure oscillations with active fuel control was not addressed. In particular, the cause of the peak
splitting phenomenon (two peaks in the pressure spectrum with control) observed in many combustion
experiments [6] [7] [30] [17] [45] did not have a satisfactory explanation. One of the reasons was that
the majority in the thermoacoustic instability control community believed that the thermoacoustic
instability arises only as a stability loss leading to a limit cycling behavior (one peak in the pressure
spectrum), and any control action stabilizing the equilibrium of the thermoacoustic system will result
in quenching the oscillations (no peaks).
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Figure 1.1: PSD of pressure signal with on/off control of one, two, or three liquid fuel nozzles. The
peak splitting phenomenon observed in experiment reproduced in reduced order model simulation.

Two major contributions of the UTRC combustion control team (including academic partners)
were:

1. A method for determining whether a given combustor should be modeled as a limit cycling or a
noise-driven stable system [37, 38].

2. Analysis of factors that affect the achievable level of suppression of pressure oscillations for both
stable and limit-cycling systems [13, 12, 3, 4, 2].

The analysis of the data from combustion experiments has shown that industrial combustors are often
described by stable, linear, noise-driven models. Standard frequency domain methods were applied
to such models showing that in some conditions the transport delays and limited actuator bandwidth
fundamentally limit the level of achievable suppression of the pressure oscillations [3]. The origin of
the peak-splitting was explained using stable linear models with large delay in actuation due to the
fuel transport process.

Under the current contract, the frequency domain fundamental limitation were extended to non-
linear combustion models, including the limit cycling ones [4, 2].

The peak-splitting phenomenon was observed in DARPA-sponsored sector rig experiments and was
reconstructed in a model (see Figure 1.1). Because on/off valves were used for control, a linear analysis
was not applicable. However, a nonlinear analysis involving Random Input Describing Functions
(13, 12, 2, 24, 3, 4] allowed an explanation of the phenomenon. It has been shown that, as in the linear
model case, the pressure oscillations cannot be arbitrarily suppressed due to non-minimum phase
effects (transport delay) and limited actuator bandwidth. It was also shown that the effects of the
driving disturbances and saturation nonlinearities needs to be incorporated in the analysis. The sector
rig model was derived in the form of a feedback interconnection of a stable linear transfer function
Go(jw), and a relay nonlinearity f(-), subject to a driving disturbance N(jw) as

X (jw) = Go(jw)(N(jw) — Y (jw)) (L1)
y(t) = f(=(t)). (1.2)

for Go(jw) = G1(jw)G¢(jw). G1(jw) represented the serial connection of the thermoacoustic response
to fuel valve output dominated by a single resonant mode with a natural frequency of about 200Hz
and a non-minimum phase transfer function representing the transport delay from the fuel injection



location to the flame. G.(jw) was the transfer function of a phase-shifting controller used in the
experiment. The nonlinearity was representing the relay characteristic on the on-off valves.

In the Random Input Describing Function [20] analysis one assumes that the input u(t) to the
nonlinear element is of the form u(t) = B+ Asin(wt+6) +r(t), where B, A, w are unknown constants,
0 is an arbitrary initial phase, and r(t) is a Gaussian process with a standard deviation o. The output
of the nonlinear element y(¢) = f(u(t)) is approximated as

Ya(t) = NgB + NaAsin(wt + ) + Ngr(t), (1.3)

where the individual gains (called Describing Functions of the nonlinearity) are obtained by minimiza-
tion of the variance of the residual:
Np(B, A, 0) BElf (u(0)] =
— L [Emag [ drf( B + Asin(6) + ) exp(— ), (1.4)
(2x)ZoB

NR(B A,0) = LE[f(u(0)r(0)] =

(2,"),23 3 021r dé f drf( B + Asin(6) + r)r exp( ) (1.5)
Na(B,A,0) = %E[f(u(O)) sin(6)] = 2
(2”)2 — 027r dd % drf(B + Asin(6) + r) sin(f) exp(—5-7)- (1.6)

([20], p. 371). For the no-noise and no-bias case where r(t) = 0 and B = 0, the last formula reduces
to the standard sinusoidal input describing function gain.

This framework easily allows us to study the response of the pressure output in either open or
closed loop thermoacoustic system as an output of a stable noise driven system (when A = 0) or
as self-excited oscillation (when A > 0) or some combination of the two. We assume the Gaussian
component r;(t) of the input dlsturba.nce has Power Spectral Density ®;;(jw) and write corresponding
equations:

1. Stable driven system

_ Go(0)
B = T3 W58, 4,600 (-7
Go(jw)
A= - 1.8
T Na(B, 4,0)Cai0) (8
: Go(jw) 28..(
= b, 1.
QII(J“’) l1+NR(B, A,O’)GO(]UJ)I . ks (]UJ) ( 9)
- _1_/°° B 5 (jw)doo. (1.10)
27 J_o
2. Self-excited oscillations with driving noise
Go(0)
= 1.11
1+NB(B,AaU)GO(O) ( )
1+ Na(B, A, 0)Go(jw) =0 (1.12)
. Go(jw) 28. (i
- 5 1.13
®io) = | BG40 (113)
o0
o= o [ @ualiv)ds, (1.14)
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Figure 1.2: The amplitude of the limit cycle in the presence of the Gaussian noise
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Figure 1.3: Describing function gains in the presence of Gaussian noise

For relay nonlinearity, the amplitude of the limit cycle can be found from solving the loop equation
(1.12)

1+ N4(A,0)Go(jw) =0. (1.15)
In Mehta et al., IFAC 2002, we prove that for a relay nonlinearity:

1. For o — 0, the appearance of the limit cycle stabilizes the loop with respect to the noise thereby
yielding a bounded input-output response (for the Gaussian noise driver) as solution of equation
(1.13) and

2. for 0 — oo, large noise stabilizes the loop with respect to the limit cycle thereby causing the
limit cycle to disappear and the system to behave as a stable noise driven system.

More precisely, Figure 1.2 shows that the presence of noise (o > 0) leads to a reduction in the amplitude
of this limit cycle and at a critical positive value of o = oy, the limit cycle disappears (A(ap) = 0
for values of o > 0¢). Figure 1.3 shows the gains Nr(o) and Na(o) as function of o. For the values
of o where limit cycle is present, Ng monotonically increases between 0 and oy and decreases for
values of 0 > gp. We also showed that the feedback interconnection of Gy(jw) and Ngr(A(0),0) is

8



linearly stable for all o # g and the largest loop gain occurs at the critical value op where the loop is
arbitrarily close to destabilization (eigenvalues on the imaginary axis). For values of o away from oy,
the eigenvalues move in to the LHP thereby ensuring asymptotic stability for all & # ap.

Therefore, except for a critical ¢ = o9, the Fourier transform of the Gaussian component of
combustor pressure may be approximated as

pg(jw) = GO(jw)S(jw) Aa U)ni (jw), (116)
where r;(jw) is the Fourier transform of the driving disturbance and

1
1 + Go(jw)Nr(0, 4,0)Gc(jw)

S(jw, A,0) = (1.17)
is a modified sensitivity function that depends on the magnitude of the limit cycle A and standard
deviation o of the Gaussian component at the input of the relay nonlinear element. This result allows
to extend the results of the standard linear fundamental limitations analysis presented in the papers
[2, 3, 4] to the case of control with on-off actuators. In particular, it can be shown that the supression
of the pressure oscillations in the central frequency band of the natural combustor resonance (which
requires |S(jw, A, 0)| < 1) will lead to amplification of the pressure oscillations in an adjacent frequency
band (|S(jw, A, 0)| > 1), which leads to peak-splitting. The norm used here is the Hy norm.

Analysis presented here indicates that the peaking phenomenon defined as excitation of oscillations
with closed-loop control is to a large extent inevitable for combustion processes with large delay
controlled with actuators of limited bandwidth.

In Teerlinck et al., 2005, we applied the nonlinear frequency-domain framework described above
to explain results in active fuel control experiment in 800kW three-flameholder rig. The experiment
involved on-off valves and severe peak-splitting was observed. The optimal amount of fuel was proposed
to reduce the peaking and to provide acceptable attenutation of oscillations.

1.2 Spectral Balance

A frequency-domain framework for analysis, computations, and uncertainty propagation in nonlinear
systems driven by broad-band disturbances was introduced and illustrated in a simple example of
a nonlinear system that exhibits noise-induced transitions between two locally stable equilibria. An
approximate and iterative spectral balance (including determination of equilibria) is solved. The
solution of the approximate spectral balance is used to reformulate the original model using a loop
transformation so that an iterative procedure for finding the spectrum of the output converges to the
true spectrum of the solution. The work is presented in paper by Banaszuk and Mehta, CDC 2004.

Many industrial flows involve complex interactions of acoustic waves, vorticity, fuel transport, and
chemical reactions. The control objective often is to create beneficial non-equilibrium dynamics with
control. Examples include control of flow separation and mixing enhancement. In this paper we intro-
duce a frequency domain framework for analysis and non-equilibrium control design for a large class of
models of physical phenomena involving multiple oscillatory modes coupled through nonlinear terms,
transport delay, and driven by broad-band disturbances. While motivated by specific problems arising
in military aeroengines, the methods will be applicable to large class of distributed dynamical systems
involving oscillatory dynamics with nonlinear cross-coupling, saturated nonlinearities, transport delay,
and broad-band disturbances.

The spectral balance framework that we propose generalizes the standard harmonic balance and
Gaussian signal balance in feedback systems [31, 20]. The framework is introduced and illustrated in an
example of a nonlinear system that exhibits noise-induced transitions between two stable equilibria.
The example presented is a scalar model with cubic nonlinearity after pitchfork bifurcation driven

9



by a broad-band disturbance. An approximate and iterative spectral balance of the constant and
broad-band signals (including determination of equilibria) is solved. The solution of this approximate
spectral balance is used to reformulate the original model using a loop transformation so that an
iterative procedure for finding the spectrum of the output converges to the true spectrum.

Consider a model of a lightly damped stable linear system with transfer function Gy(jw), in a
feedback loop with a static nonlinearity f(-), subject to a driving disturbance n(t) with the Fourier
transform N(jw). An uncertainty in the model is represented by an (in general nonlinear) operator
A(-) in a feedback loop around the nominal model The model equations are

.............................................

Nominal Model

N(’a)) G,(jw)

Uncertainty

Aja, X(ja)Y

Figure 1.4: The model structure

X(jw) = Go(jw)(N(jw) — A(jw, X (jw)) = Y (jw)) (1.18)

y(t) = f(z(t)) (1.19)

where, X(-) = Fz(-), Y(-) = Fy(-), and N(-) = Fn(-), are the Fourier transforms of the corresponding
temporal signals. We assume that nonlinear mapping f(-) is Lipshitz on each bounded set. The
equation (1.19) can be represented in the frequency domain as

Y (jw) = f(X(jw) = Ff(F ' X(juw)). (1.20)
Now, the feedback system (1.18)-(1.19) can be represented as
X (jw) = Go(jw)(N(jw) — F(X (jw) — A(jw) X (jw)). (1.21)

Note that for the linear case f(z) = 0, A(jw, X (jw)) = A(jw)X (jw) the mapping of the uncertainty
A(jw) to the output of the system is given by the formula

X (jw) = (I + Go(jw)A(jw)) "' Go(jw) N (jw). (1.22)

involving the sensitivity function (I + Go(jw)A(jw))~!. Note that the frequency domain representa-
tion greatly simplifies the uncertainty propagation analysis.

1. Uncertainty propagation. The sensitivity function (I + Go(jw)A(jw))~! allows to explicitly map
the probability distribution of the uncertain parameters contributing to A(jw) to the probability dis-
tribution of the output Y (jw).

10



2. The frequency domain representation greatly accelerates computation of this mapping. Note that
only the algebraic calculations need to be performed in evaluating the formula (1.22). In contrast,
a time domain counterpart of the (1.22) would require evaluation of the convolution integrals over
long period of time. Computation of large linear systems with significantly separated time scales is
cumbersome in time domain, as the shortest time scales detemine the time step size, while the longest
time scales determine the total time of simulation. Moreover, in the time domain formulation one
needs to wait for transients to subside, which is an issue when dealing with lightly damped dynamics.
There are additional benefits of the frequency domain representation in-the case when Go(jw) contains
time delays.

3. Tools from the robust linear control theory allow to handle dynamic uncertainty in case when
only the bounds on the uncertain operator are known [15].

Appart from application to the uncertainty propagation, the frequency domain formulation allows
to study fundamental limitations of achievable control performance using methods of the complex
analysis.

The spectral balance approach retains the advantages of the linear sensitivity function framework:
explicit formulas mapping uncertainty to the output and the speed of computation. We will begin
with the particular case of system in Figure 1.4 using the fixed point formulation (1.21). To introduce
the spectral balance framework we will consider the case without uncertainty shown in Figure 1.5 with

JO)
N g G, (jo) [ X(0)

+

Figure 1.5: The model structure

the corresponding fixed point formulation of the spectral balance equation given by (1.23)

X (jw) = Go(jw)(N (jw) — f(X(jw))- (1.23)

Note that the spectral balance framework generalizes the standard harmonic balance (where the input
signal n(-) is periodic, or when the dynamics has limit cycles) and Gaussian signal balance (where the
input signal n(-) is a Gaussian broad band signal) in feedback systems [31, 20}.

We assume that the dynamics of (1.19) is globally bounded and that there is an attractor. Eventu-
ally we intend to introduce a spectral balance framework for the class of bounded power signals on an
infinite time interval. In this paper we restrict the attention to the space of L; signals on the interval
[0, T), where T is large relative to the slowest time scale in the system. The induced operator norms
are the Hy, norms. ‘

A sufficient condition for existence of a unigue solution of the spectral balance equation (1.23) is

1Go(iw)(f (X2 (jw)) — F(X1 (Gl < | X2(jw) — Xy (jw)ll- (1.24)

11



For all X;(jw) in L2[0,T]. Note that in this case a unique solution to (1.23) exists (by applying
the Banach Contraction Mapping Theorem [28]). Moreover, the approximate solution of the spectral
balance equation can be obtained by successive approximations using the formula

Xi41(jw) = Go(jw)(N(jw) — f(Xi(jw)). (1.25)

with an arbitrary initial condition.

Note that if the condition (1.24) is satisfied for all X;(jw) in a closed set B in L,[0,T]) that is
invariant for the mapping Go(jw)(N (jw) — F(-)), one can approach a solution of the spectral balance
equation (1.23) in B using (1.25) with X, (jw) € B.

1.2.1 Loop transformation

A sufficient condition for (1.24) is the small gain condition for the feedback loop in (1.5). However, even
if the condition (1.24) is not satisfied, which would be the case if the loop gain is large, one can attempt
to enforce the condition (1.24) for an equivalent feedback system to (1.5) by a loop transformation.
An example of a linear loop transformation is shown in Figure 1.6. Here H(jw) is an arbitrary stable

70 - NHG®) H\'

J | X(o)

G, (jw)

Figure 1.6: The loop transformation to enforce loop contractivity

linear operator,

Gr(jw) := (I + H(jw)Go(jw)) ™ Goljuw). (1.26)
and
AX(w)) := f(X(jw)) — H(jw)X (jw)- (1.27)
The spectral balance condition for the system in Figure 1.6 is
X (jw) = C1(jw)(V (jw) — fi(X (jw)). (1.28)

Note that a sufficient condition for the contraction condition for the transformed spectral balance
(1.28) is ‘

161 (jw)(f1(Xa(jw)) — Ai(X1 (G < IX2(jw) = X1 (Gw)]l- (1.29)
If the nonlinear part of the loop in Figure 1.5 has a stabilizing effect, the role of the operator H(jw) is
to reduce the Ho, gain of the nonlinear part of the loop and increase the contractivity of the linear part
of the loop. More precisely, the gain of the nonlinear operator f(X(jw)) is reduced by subtraction of
a linear approximation of f(X(jw)) and the approximate linear operator is incorporated in the linear

12



part of the modified loop. Thus, a good choice of H(jw) is the one that minimizes || fi(X(fw))]| for
X (jw) representing the solution of the spectral balance equation (1.28).

Of course, the minimization of ||f,(X (jw))|| requires knowledge of X (jw) itself, which is exactly
the solution of the spectral balance equation that we seek. Note that we are interested in the case of
system (1.19) having non-equilibrium attractors or subject to a large driving disturbance, so that an
approximation of nonlinear operator f(X (jw)) by its linearization at (X (jw) = 0 is not suitable.

The key idea introduced in this paper is to proceed in the following three steps:

1. Find an approzimate solution Xgpp,(jw) close to X (jw). For this, the describing function tech-
niques, both for harmonic and random Gaussian signals, can be utilized. In fact, as we will show in
the next section, it may be not necessary to find an approximate solution Xgppr(jw), but only few
parameters describing such a solution, like its time average and the average power.

2. Utilize the knowledge of X,ppr(jw) (or the parameters describing it) to find a linear transforma-
tion H(jw) that minimizes (or at least reduces) || f1(Xappr (Jw))|| = || (Xappr (jw)) — H(jw) Xappr (Jw)||-

3. Use H(jw) to define the loop transformation (1.26)-(1.27). If the contraction condition (1.29)
is satisfied on a closed set B in L,[0,T] that is invariant for the mapping G;(jw)(N (jw) — fi(-)), one
can approach a solution of the spectral balance equation (1.23) in B using the iterative process defined
by

Xi+1(jw) = G1(jw)(N(jw) — fi(Xi(jw)) (1.30)

starting with an arbitrary X;(jw) € B.

At present it is not clear under what general conditions the procedure described above will result
in finding solutions to the spectral balance equations. In the next section we will show one example
of a system with nontrivial dynamics, for which that the procedure yields the desired result.

1.2.2 Example

Consider the equation
i(t) + ax(t) + bz3(t) = n(t). (1.31)

Here we assume that a < 0, b > 0, and the input signal n(-) has zero mean and flat spectrum
|N(jw)| = o; for all w. In the sequel we will refer to the input signal n(-) as noise, even though we
emphasize that in this paper we only consider the deterministic case. Note that for a = 0 the system
(1.31) undergoes a pitchfork bifurcation and the equilibrium z = 0 becomes unstable for all a > 0.

Two locally stable equilibria occur at z = {/—% and z = —/—¢. Note that for a small value of o? the

solution (t) will be close to one of the stable equilibria. For some higher value of o7 the solution (t)
will be transitioning from a neighborhood of the one of the stable equilibria to the other, as shown in
Figure 1.7. Note that the spectral balance equation for (1.31) is :

X (jw) (N (jw) — F(X(jw)), (1.32)

=jw+a

where f(z) := bz®. Note that, since a < 0, the linear operator 7 w1+ - is unstable, and the contraction
condition (1.24) is not satisfied. However, the nonlinear operator f(z) has a stabilizing effect, so that
we can attempt to transform the loop to an equivalent one, for which the contraction condition is
satisfied, as described in Section 1.2.1.

Let  := % fér z(t)dt denote the time average of z(t) and let z'(t) := z(t) — Z denote the deviation
of z(t) from its average value. Let 02 := 7 fOT z'(t)2dt denote the mean power of z'(t). In what follows
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Typical solution

Time trace, a=-1, b=1, noise power=0.99472
i ! i

Figure 1.7: Typical solution of system (1.31): noise-induced transitions between two stable equilibria

we will compute approzimate value of  and o2 by solving approzimate spectral balance equations. By
taking the time average of (1.33) and using the fact that the average of (z + z'(t))3 is Z° + 3bo2 we
obtain

Z(a + 3bo? + b3%) = =0. (1.33)

Subtracting (1.33) from (1.31) and re-arranging terms yields

'(t) + (a + h)2'(t) + f1(z'(2)) = n(t), (1.34)

where
h := bo? + 3bz* (1.35)
A ®) = bz — o2)(z' + 3z). (1.36)

To find approximate values of Z and o2 we will neglect the term h(Z, oz, z'(t)) in (1.34) and solve the
equation )

z'(t) + (a + bo> + 3bz2)z'(t) = n(t). (1.37)
Note that for fixed values of Z and o2 (1.37) is a linear equation that can be solved in the frequency
domain as

: N(jw)
! —_
Xw) = jw + a + bo2 + 3bz2° (1.38)

For a moment we assume that the values of Z and o2 are such that a + bo2 + 322 > 0, so that
the transfer function m us stable. This assumption will be verified after # and o2 are
calculated.

Now we obtain the closure equation for o2 by integrating the absolute values of both sides of (1.38)
over all frequencies

o2 = L / 2 % Pdu. (1.39)
T 2mJoo jw+ a+ bo? + 3bz?
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The equations (1.33) and (1.39) form an approzimate spectral balance for the system (1.31. The integral
in (1.39) can be analytically evaluated so that we can write the following equation

2

2 _ 03 ' , 4
7%= 2(a + bo2 + 3b32) (1.40)
Now, solving (1.33) and (1.40) we obtain

2
<P | (L4
o2 =ld1—\/1- %) (1.42)
3 =-%-302 (1.43)

2
ﬁ>%¢ A A (1.44)
o2 = W1 +y/1+20), (1.45)
z=0. (1.46)

Figure 1.8 graphically represents the solution to the approximate spectral balance equations as function
of the input power o; for a = —1, b = 1. The solutions for Z and o2 have a natural intepretation.

Approximate spectral balance

ifee-erom o gy Tt 1o | e e "
' ' ' ' ' ' '
x ' ' ' .
[ R Rt EEE R EE Y e e b LR P
' ' . , y
. ' '
! . '
of------ e 0 -510-0-0-0 00 -6 -0-0-0-0--==
h |
i | I )
\ ' ' ' '
S S -
\ } ' ' .
' ' ' V
' 1

N o0 0 00 : .
0 02 04 06 [ 1 12 1.4

Figure 1.8: Solutions to approximate spectral balance equations as function of the input power

For 0; < ‘;—; there are two values of the time average Z close to the no-noise equilibria that can be
attained. The value of o, (that could beinterpreted as standard deviation of z(t)) is small, so that
the solution z(t) stays close to an equilibrium solution and does not transition to the neighborhood of
the other equilibrium. Above the critical value of the input power o; = -‘f;% the solutions z(t) deviate
from the stable equilibria far enough to transition between the neighborhoods of the both equilibria.
Since the transitions back and forth can occur, T = 0 becomes the mean and the standard deviation
o is close to the distance from the new mean Z = 0 to the value where the solution z(t) spends most
of the time: close to the no-noise equilibria of (1.31).
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‘We will now use the values of % and o2 given by (1.8) to perform a loop transformation as described
in Section 1.2.1. More precisely, we will solve the perturbation equation (1.34) in the frequency domain
using the fixed point formulation :

1 o
X' (jw) = ——————(N(jw) — fL(X'(jw)). 1.47
(1) = 2 ey W) = A ) (147)
It can be easily verified that a +h >0 for  and o2 given by (1.46). Analytic verification of the
contraction condition for the operator J—J_'—_lm(N (jw) - f1(-) is difficult. Therefore we will assume that
the contraction condition is satisfied and proceed with an iterative solution to (1.47) using

X'i1(jw) = (N(jw) — 1(Xi(jw)) (1.48)

jwt+a+h
with X’g(jw) = 0 and verify the contraction condition numerically. To illustrate and verify this
procedure, a numerical solution of (1.31) for a = -1, b=1, and o; > % was obtained. The spectrum
N(jw) of the noise from the time domain simulation was saved and used in the formula (1.48).
Figure 1.9 shows an excellent agreement of the spectrum X'(jw) from the time domain simulation
and the spectrum X'19(jw) from the iterative procedure (1.48) after 10 iterations. Figure 1.10 shows

Simulation and approximation
after 10 iterations: spectra (fft)

Spectra, a=-1, b=1, noise power=3.9789

=== Time simuiation

P == lterative Spectral Balance

|
1
)
'
i
+
'
1
[
1
1
+
'
'
1
[l
|
+
)
1

Figure 1.9: Solution to iterative spectral balance equations: spectra

comparison of the time traces of the solutions of (1.31) obtained by the time domain simulation and
by the iterative spectral balance and the inverse Fourier transform. Figure 1.11 shows decay of the
power of the approximation error X’(jw) — X’;(jw) normalized by the power of X’(jw) as a function
of iteration step . Finally, Figure 1.12 shows the contraction rate ”f&‘f? 1(1’(‘;’333();‘,* zJ(ﬂ;I)IH as a function
of iteration step ¢. This verifies the contraction at the rate of about 0.8 was indeed achieved by the
loop transofrmation involving solution of the approximate spectral balance.

In the cases that were examined obtaining an approximate solution of (1.31) using the formula

(1.48) was orders of magnitude faster that the time domain simulations using Simulink.
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Simulation and approximation
after 10 iterations: time traces

Time haces a=-1, b=1, noise power's 9789
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Figure 1.10: Solution to iterative spectral balance equations: time traces
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1.2.3 Conclusion

A frequency-domain framework for analysis, computations, and uncertainty propagation in nonlinear
systems driven by broad-band disturbances was introduced and illustrated in a simple example of a
nonlinear system that exhibits noise-induced transitions between two stable equilibria. The spectral
balance framework generalizes the standard harmonic and Gaussian signal balance in feedback sys-
tems. The application example presented is a scalar model with cubic nonlinearity after pitchfork
bifurcation driven by a broad-band disturbance. An approximate and iterative spectral balance (in-
cluding determination of equilibria) is solved. The solution of the approximate spectral balance is
used to reformulate the original model using a loop transformation so that an iterative procedure for
finding the spectrum of the output converges to the true spectrum of the solution. The future work
will involve more carefull study of the function spaces suitable for the spectral balance formulation
and obtaining some analytic sufficient conditions for the contraction. '

1.3 Adaptive Control of Flow Phenomena in Aeroengines

In paper by Banaszuk et al., Automatica 2004, we described adaptive control scheme for control of
oscillations with unknown frequency and amplitude and its application to control of thermoacoustic
instabilities. The original submission was supported by the previous AFOSR grant, but the subsequent
revisions were supported by the current grant.

In paper by Krstic and Banaszuk, Control Engineering Practice 2003, we considered the problem
of stabilization of a class of MIMO LTI systems arising in models of various instabilities in jet engines.
The problem was motivated by control of flutter, stall, and thermoacoustics in military engines. These
instabilities often manifest themselves as oscillations, contaminated by noise. They are often caused
by coupling of several resonant modes (structural, acoustic, of vortical) with time delays present in
the physical process that couple the resonant modes. Often the control input is also subject to delay.
Possible applications of the results in the paper include control of compressor blade flutter, rotating
stall, and aeroacoustic instabilities (coupling of acoustic waves with vortex shedding from stator vanes).
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Relative error of approximation, a=-1, b=1, noise power=3.9789
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Figure 1.11: Solution to iterative spectral balance equations: relative approximation error for 2! FFT
points

Uncertain parameters abound in these problems: unknown or varying natural frequencies, un-
certain delays due to poorly understood physical phenomena governing these processes, uncertain
coupling between modes of oscillation, and of course, uncertain high frequency gains and delays of
actuators. In this paper we approach a class of such models using the tools of adaptive control.

Consider the model of the form :

B+ ud v+ (t — ) + G2t —1i2) = gude(t —7.1) + huxa (1.49)
fo + €272 + M2y + ooyt — 22) + Carmn(t — 721) = @221 (E — 7¢2) + ha2xe (1.50)

where y; and y; are temporal coefficiants of the resonant modes, x; and x3 are the disturbance inputs,
and the parameters &;5,m;j, Cij, Tij» 9ij, hij, Te;i are uncertain. Such a model is common in case where
two resonant modes with close resonant frequencies couple though a physical process that involves
transport delays. For example, in ¢ompressor blade flutter the variables y; and y, could represent
temporal coefficients of blade displacement in a rotating frame. As blades move, they perturb the
flow. In turn, the flow perturbations affect (with some delay) the blade motion. Because the blades
have airfoil shape and the mean flow has swirl, the flow reponse is not axisymmetric and hence can
couple the resonant modes. The cross coupling in the model is represented by the terms (;;yi(t — 7ij)
with ¢ # j. The terms (;yi(t — 74;) represent effect of flow response on the i-th mode, which can be
either stabilizing or destabilizing. '

In this paper we were interested in a particular case of strong cross-coupling of identical lightly
damped resonant modes represented by the equations '

Gi+m+Cyp(t—-1) = gt —7)+hx (1.51)
Jo+my2—Cypi(t—7) = —gui(t —7)+ hxe. (1.52)

Such an interconnection results in coupling of the modes y; and y,. If the latter represent temporal
coeflicients of resonant standing modes, the coupled dynamics often represents traveling waves. Note
that the models of flutter (Banaszuk et al., IFAC 2002) and thermoacoustic instabilities on annular
domain (Banaszuk et al., CDC 2003) presented in the later sections of this report are of a similar
form.

The adaptive control demonstration in such model is described in details in Krstic and Banaszuk,
Control Engineering Practice 2003.
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Figure 1.12: Solution to iterative spectral balance equations: contraction rate

1.4 Uncertainty Propagation in Complex, Nonlinear Interconnected
Dynamical Systems

Under DARPA funding (AFOSR Contract F49620-03-C-0035) we have shown that the uncertainty
propagation in complex, interconnected dynamical systems can be performed more efficiently by de-
composing the network based on the hierarchy and/or the strength of coupling. The results of this
research are summarized in CDC 2004 papers by Varigonda et al.and Huzmezan and Kalmar-Nagy
presented in two invited sessions on Uncertainty Propagation. Some basic research aspects of this work
were analysed in more detail under the current AFOSR contract. In particular, in Varigonda, CDC
2004, we proposed an iterative method for static feedback systems to obtain the probability density
of the output from that of the input. We proved the convergence of the proposed method under the
assumption that the loop operator is contractive. The method was illustrated with an example. It
was shown, based on the results from the theory iterated random functions, that the method extends
to the case when additional parametric uncertainty is present within the loop.




Chapter 2

Control of Flow Phenomena in
Military Aeroengines

2.1 Control of Mixing in Shear Flows
2.1.1 Control of Mixing

_Papers by Tadmor and Banaszuk, IEEE TCST 2002, Wang et al., Physics of Fluids 2003, and Noack

et al., Physics of Fluids 2004 present the results of synergistic use of Control Theory and Dynamical
Systems methods to create beneficial, non-equilibrium dynamics in low dimensional fluid models. The
common idea is to use control to enforce a periodic behavior in fluid velocity that creates a chaotic
advection field for the fuid particles.

2.1.2 Control of Diffuser Flow Separation

In paper by Banaszuk et al., AIAA Reno 2003, we described an application of extremum-seeking to
adaptive flow control in a subsonic diffuser. Specifically, we presented results of an experimental study
of on-line optimization of the pressure recovery.

Separation phenomena occur in many industrial and military applications including external flows
such as flow past high angle of attack airfoils, and internal flows such as aggressively expanding
diffusers. Consequently, its control for performance improvement has received widespread attention.
Various means for delaying the onset of separation have been proposed, including passive and active
methods [19]. The use of periodic oscillations to delay/reduce the extent of separation in airfoils
was investigated (e.g. see [50] ), demonstrating the effectiveness of unsteady blowing in controlling
flow separation. Multi-frequency open loop forcing was shown to create and enhance interactions
of multiple flow structures in simple free shear layers [25] Recently, two-frequency forcing using a
synthetic jet actuator was shown to be an effective way of increasing diffuser pressure recovery [40].
However, it is difficult to predict an optimal set of parameters that include the number of frequencies,
relative amplitude and phase difference between the forcing frequencies for enhancing performance,
due to the lack of an analytical or modeling method. In particular, in [40] the parameters for a two-
frequency forcing control law that optimized the pressure recovery in a two-dimensional diffuser were
found manually.

In this paper we present a method for automatic tuning of parameters of a multi-frequency forcing
flow control law to optimize pressure recovery in a diffuser. The method is known in optimization
and control theory literature as eztremum seeking [5] In extremum-seeking control one adapts the
control parameters using on-line estimation of gradients of the performance metric with respect to the
control paramaters by introducing small probing signals on top of (typically slowly varying) control
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parameters. The method has been widely applied in industry [49, 1] for "model-free” optimization of
steady-state of many industrial processes.
Fore more details we refer to Banaszuk et al., ATAA Reno 2003.

2.1.3 Control of Pattern Factorl

Key performance metrics for military aeroengines includes pattern-factor, controlled primarily by the
combustor stochoimetry and the degree of fuel-air mixing. In a typical non-premixed combustor,
both fuel and combustion air are introduced longitudinally at the dump plane, and swirl is generally
utilized to mix the fuel and air streams together. In certain combustor designs, additional primary
and dilution air are introduced radially through circumferential holes located along the combustor
shell. These air-jets in cross flow not only provide the air needed to control the stochiometry, but
also generate enhanced fuel-air mixing. Therefore the proper design and utilization of these air-jets
can provide a means toward controlling the fuel-air mixing, and enhancing the performance metrics.
Increased mixedness, in particular, can provide lower pattern factor.
. Control of jets in cross flow was investigated using hierarchy of models (including high fidelity
CFD, medium, and low order models) and described in Blossey et al., [UTAM 2001. In particular,
low order model-based analysis indicated benefits of low frequency forcmg for improved mixing. In
the current funding cycle we confirmed the model prediction in experiment. This work is descibed in
paper by Narayanan et al., ATAA Journal 2003.

Furthermore, the benefits of jet in cross-flow control for pattern factor reduction were demonstrated
in experiment by our academic partners from Luisiana State University. The experiments were not
funded by AFOSR. However, the UTRC personnel participation in this joint project was funded by
the current AFOSR grant. This work is descibed in detail in Tuncer et al., ASDME 2003. Here we
provide a summary of this work.

The effect of a forced dilution air jet introduced through the combustor shell, on the air-fuel mixing
in the combustion chamber has been investigated. Thermocouple based temperature measurements
have been made at a number of forcing frequencies in the range of 100-1100Hz and blowing ratios in the
range of 10-15. The open-loop integral flame response to forcing has also been acquired by recording
pressure and heat release spectra. A CH-radical imaging technique is used to provide spatially- and
temporally- resolved information about the heat release behavior. The results exhibit that the mean
temperature field inside the main reaction zone can significantly be altered as a consequence of air jet
modulation. The most significant effects are observed by forcing at vertical locations that are close
to the dump plane. Enhancements in temperature of the order of 100-200 degrees C, and reduction
in pattern factor of the order of 10% (e.g., from 1.13 to 1.03) were observed, with the lowest pattern
factors achieved at the lowest forcing frequency of 100 Hz.

2.2 Modeling, Analysis, and Control of Thermoacoustic Instabilities
in Military Engines

In the past, we have considered reduced order models of combustion instability based on lumped
parameter modeling as described in [43, 26]. The aim of this Section is to summarize some of the
more recent (and ongoing) research whose purpose is to obtain and analyze distributed models of
thermoacoustic instabilities in bluffbody flameholder annular combustors. These instabilities arise on
account of complicated interactions between combustion (flame and fuel) dynamics, vortex dynamics
and acoustics (see Figure 2.1 for a schematic). Our strategy thus far has been to model individual
pieces of this inter-connected system with a view of understanding them as a first step towards gaining
understanding of the whole. Before summarizing the results, we provide a brief summary of the
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Figure 2.1: Schematic showing interconnection of combustion (flame-fuel), vortex and fuel dynamics
in thermoacoustic problem.

modeling activity. There are two areas of modeling: Thermoacoustic models, with a view to
understand the dynamics of coupled system and Heat release models, with a view to understand
the combustion and vortex dynamics (sans acoustics). For the thermoacoustic modeling, we have three
versions of models which are being studied for the annular combustor problem:

3D Linear model is described in the Section 2.2.1. This model is linear and assumes that dynamics
arising due to vorticity and flame motion are neglected. The model allows us to isolate the role
of fuel dynamics (shown to be equivalent to a distributed delay for distributed but fixed flame) in
analyzing thermoacoustic instabilities. The linearity hypothesis allows us to apply linear (fuel)
control methods for controlling rotating wave combustion instabilities in 3D annular combustors.
Additional details are provided in Section 2.2.1 and in the paper [32].

-2D nonlinear model is described in the Section 2.2.2. In this model, a 3D non-vortical model of
thermoacoustic instability is averaged in the radial direction {o obtain a 2D model for multiple
flameholders. The nonlinearities as well as flame dynamics are retained. The non vortical model
is summarized in [33] and is being used for uncertainty analysis and design of so-called liners
for suppressing combustion instabilities. In Section 2.2.2, a version of this model which includes
vorticity by formal superposition of 2D vortex dynamics is summarized.

Single flameholder model is the same as the above 2D nonlinear model (including vorticity and
flame dynamics) but the problem is simplified to study only a single flameholder configuration.
The details of this model are also summarized in Section 2.2.2.

In addition to thermoacoustic models, we have also concentrated on studying the heat release piece
of the thermoacoustic model separately (where acoustics is neglected). There are two reasons for
studying the heat release piece. One, the complexity of the thermoacoustic problem resides in the
heat release submodel (where complicated interactions occur between flame, fuel and vorticity) and
two, fuel and flow control aimed at modifying heat release distribution with a view of controlling
combustion instabilities can be studied effectively with these models. Instead of presenting the heat
release submodel separately, we describe three studies that have been undertaken with the purpose of
analyzing and controlling heat release models. In Section 2.2.3, we present a vortex model developed
to study the physics of reacting bluffbody wake dynamics. The model as presented concentrates on
the interaction of vorticity and flame dynamics. In the subsequent two Sections, we use reduced order
modeling approaches to better understand the reacting flow dynamics and to model other pieces of
the heat release model. In particular, in Section 2.2.4 we present a reduced order model study of
flame-fuel interaction and in Section 2.2.5 a study of vorticity-flame interaction (the latter study is
carried out to explain some of the results of Section 2.2.3).




2.2.1 Three dimensional linear mo;iel

Thermoacoustic instabilities in gas turbine and rocket engines develop when acoustic waves in com-
bustors couple with an unsteady heat release field in a positive feedback loop. We consider an annular
combustor that includes a circumferential array of bluff body flame holders [48] [16]. Flameholders
extend radially from inner to outer diameter of the annular combustor. A cut along a constant radius
surface is shown in Figure 2.2.

MEAN
FLLOW

/\/L/\/\_//\\\_/’\—

Fuel distribution

Figure 2.2: Bluff body flameholder array, fuel source surface upstream of flameholders, and flame
surface downstream of flameholders.

For the purpose of modeling, we assume that the fuel mass fraction defined at the fuel injection
surface zo(y, 2) is advected downstream to the fixed but distributed flame surface z = gf(y, z) by the
sum of the mean and acoustic perturbation velocity (without diffusion). The mean fuel mass fraction

at the fuel injection surface is Y f(zo,y, 2) = —Lg%’z’—z%, where x5 = p;Us, Xa = paU, denote the flux

and py, p, are the fuel and air densities and 0 7, U, are the velocities. The perturbation fuel mass
fraction (in the presence of acoustics) is

- Xi(mo:2t) ¥ (zo,2,t v
Y5(z0,y,2,t) =Y (20,9, 2) (—7%@'@—; — LT ) (2.1)
‘The fuel-air mixture convects to the fixed flame surface z = ggi(y, ) and the heat release density at
the flame surface is obtained as

Q(I, Y, 2, t) = Fhr(Yf(za Y, 2, t))'Yflame (:1: - g5l (y: z))’ (2'2)

where Yfiame(-) is the axial heat release distribution function representing the flame thickness, and
Fj,.(+) describes local heat release as function of local fuel mass fraction.
In order to obtain the thermoacoustic model, we deﬁne relative perturbations of pressure and

heat release as §(z,y, z,t) := %—?ﬁ’—;;—? and §(z,y, z,t) = qp 3;’1;’? where 7 is the ratio of specific

heats. We also assume that the acoustic velocity perturbatlon is purely potential, i.e., u'(z,y, 2,t) =

23




Vé(z,y, z,t) for some smooth scalar é(z,y, 2,t) called the velocity potential. In these co-ordinates, we
obtain a linear distributed thermoacoustic ﬂnodel (see [32] for details) as

aﬁ(iﬂ, Y, Z,t) + ﬁ(.’l),y, z) . Vﬁ(m,y, zat) + A¢($, Y, 2, t) = lj(ﬂ?, Y, Z,t) (23)
a -

E(p(w,yazv t) +ﬁ(:1:,y, z) . V¢($,y, Zat) + a2p(z’ Y, Z,t) = n(m,y: z)t) (24)
o -

b—t—yf(x,y’ z, t) +ﬁ(m’ Y, z) : Vyf(x,y,Z, t) + VYf(a:,y,z) : _V¢(x, yaz’t) =0 (25)

q(xa Y, 2, t) = Flllr (?f (:l:, Y, z))')'flame(x = g1 (yv Z))yf (337 Y, %, t)a (26)

where driving disturbance ('broad-band noise) n(z, y, z,t) represents the effect of local turbulence. The
fuel mass fraction boundary condition is defined on the fuel injection surface as

yf(z:o(y,z),y,z,t) — (ulf(x()(%z)yyvzvt) . 1 a¢(z0(y)z))y,z t)) (2 7)
?f(Z(] (y1 z)) Y, Z) ﬁf(zo (ya z)y Y, Z) ﬁ(.'l,‘() (y7 Z), Y, z) Oz b .

where the fuel velocity u}(zg(y, 2),y,2,t) is the control variable. The first term on the right hand side
of (2.7) represents the effect of fuel control action and the second term represents the effect of acoustic
velocity perturbation. :

The acoustic boundary conditions are provided on the combustor boundary surface in terms of the
normal velocity uj,(x,t) = V¢(x,t) - A(x) (where 7i(x) is the normal vector to the boundary). The
acoustic boundary condition serves as another possible control input. We assume that the acoustic
boundary conditions are described by a local admittance relation (described here in the frequency
domain) ~

Uy (%, jw) = G*(x, jw)P(x, jw), A (2.8)

(see e.g. [39]) for x € S, where S denotes the boundary surface.

Reduced order model for control of thermoacoustic instability on annular domains

The fuel-air mixture is responsible for the burning at the flame and the subsequent heat release. This
heat release at the flame surface excites the acoustic waves in the combustor volume. The acous-
tic waves in turn travel upstream and perturb the transport of the fuel/air mixture. This feedback
coupling can lead to instability if the driving resulting from this feedback mechanism dominates the
damping resulting from absorption of the acoustic energy at the boundary. Control over fuel rate at
the fuel injection surface z4(y, 2), control of the shear layer dynamics using flow control at the flame-
bholders, or control of the air injection at the combustor boundary can provide ways of influencing the
process and eliminating instability. The control could be provided at various temporal and spatial
scales.

Now we introduce a reduced order model (that is suitable for control design) obtained from the ther-
moacoustic instability model presented above. The model is also suitable for optimization of the control
architecture. In order to obtain model reduction, we expand the pressure and potential perturbations
in terms of the acoustic modes {IIx(x)}x=12,.. as H(x,t) = 2 pe(t)Ix(x), ¢(x,t) = T dr(t) Mk (x).
and apply standard Galerkin procedure involving integration by parts and using the admittance con-
dition (2.8) (see [32] for details) to obtain a two mode model represented in the frequency domain

as
®4 (jw) 0 0 —-a2 0 ?,(jw) Ny (jw)
i ®(jw) | _| 0O 0 O —a? &, (jw) No(jw) (2.9)
lpGe) [T|{xa 0 0 0 || A Qu(w) - Vi(Gw) |’ ‘
Py(jw) 10 Xx 0 0 Py(jw) Q2(jw) — Va(jw)




where Qp,(jw), N (jw), and Vi, (jw), denote the Fourier transforms of

m®) = [ I,(d0 t)dx, (2.10)
nm(t) = /v 0, (x)7i(x, )dx, (2.11)
vnlt) = [ Talc)uiy G, t)ax, (212)

m d
respectively, and A, := —r———f IEIH (Sl)l 3 = (V and S denotes the combustor volume and boundary sur-
face respectively). The fuel velocity u}(zo(y,2),y,2,t) at the fuel injection surface is the control
variable. We assume that the control is realized using Nj,; fuel injectors with i — th fuel injector pro-
viding fuel mass flux equal wy ;(t) with spatial distribution k¢ ;(y,2) (representing initial fuel spread
in the direction perpendicular to the mean flow). Thus, we will represent the distributed velocity as
uf(zo(y, 2), 9, 2,t) = N"" ky.i(y, )'wf,(t), with wy;(t) representing the control inputs.
The closure equa.tlons to (2.9) are given by

Vin(jw) = G172 (jw) P (ju) (2.13)
Ntng

m(jw) = Z GM(jw) B (jw) + 3 Gef?(ju)Wii(jw). (219
=1

The transfer functions in the a.bove expression have the form
Gri(jw) = [s G*(x, jw) Il (x) [Pdx (2.15)
f ¥,2)—2
G?;'Lzlg( fW W m(gfl(yv z),y, )F,(Yf(y, ))VYf(ya z)VIIk(:c,y, wlyx dzdy@ 16)

951(¥,2)~=zg(¥,2)

2 - =
Gt (jw) = fpy i) T (g01(y, 2), 1, ) F (V (9, 2))e ™ @9 dydz  (2.17)

While the reduced order frequency domain model looks deceivingly simple, it is in fact a complicated
infinite dimensional model, as the heat release response transfer functions include a distributed delay.

We assume that pressure measurements p(x;, %) = i pr(t)ILx(x;) at one or several locations x;
are available. We also assume that disturbance terms N;(jw), N2(jw) are broad band uncorrelated
stochastic processes. The objective of the feedback control is to reduce the gain (Ho or Hsz) from
the disturbance terms Np, Ny to the pressure terms Py, P to guarantee that the pressure level
is below acceptable level. Once the mean fuel mass fraction distribution Y ;(y,z) and control fuel
injection (represented by choice of influence functions kji(y,z)) are defined, linear control laws are
straightforward to obtain. However, the real challenge is optimization of the control architecture.
Namely, one would like to select the mean fuel mass fraction distribution Y ;(y, z) and control fuel

injection influence functions k;;(y,2) that guarantees meeting the control objective with minimal
amount of fuel used for control.

2.2.2 Two dimensional nonlinear model

Thermoacoustics models incorporating effects of distributed acoustics, flame dynamics and vorticity
in bluffbody flameholder annular combustors have been developed. In this Section, we first describe a
2D nonlinear model without vorticity that is intended for liner design. Details on this model can be
found in [33], where first a 3D model is obtained and then averaging along the radial direction yields




a 2D version of the model. The linearized potential acoustics for this model are described by

0, — 1
5? +U - Vp +yuSt[Yylé(z — Z5)p - P0-2-V|Q|2 Vo
a¢a R2 ’
+poc®Ad + o = (y-1)g, (2.18)
R
0¢ P
Z4+U-Vp = - 2.19
a = ¢ Po (219)

where ¢, p denote the averaged 2D acoustic potential and pressure respectively, U denotes the mean

_ R
flow, St is the flame speed, a function of mean local fuel mass fraction Yy, the term %?rg * arises on

account of the radial boundary conditions and model the effect of liner (wall normal velocity), and
parameters po,7,c denote fluid density, ratio of specific heats, speed of sound respectively and the

parameter p = (% —1). q represents the heat release perturbation, which arises due to the flame
~dynamics modeled by G-equations describing the motion of individual flames

% -+ V4l VC + Srive =, : (2.20)
where the flame speed St is determined from the solution of the fuel advection equation, written in
2D as

Y,
%t—f + (U + V) - VY; = 0. (2.21)

The boundary conditions arise due to the acoustic boundary condition at the flameholder walls

Vé - fiw|Flameholder Walls = 05 o (222)
and the inlet fuel profile
Y9 = 1 S
(oo + &)U + §2)
where psUy denotes the fuel mass flux and U denotes the axial component of flow velocity.
In [33], we present the above model for describing combustion instabilities in annular combustors.
The model is being used to study robust linear design, where the control input acts through the

R
boundary liner terms %% R2 in the acoustic model above. The model includes a model for mean flow
1

" (2.23)

U=U,+L., (2:24)

where the potential flows U, models the inflow of reactants and U, models the expansion velocity
created because of burning, arises as a solution to the continuity equation
. 1Dp
V.U, = ~ 5Dt (2.25)

together with appropriate boundary conditions (see [33] for details on the model). An example of the
above model with only a single flameholder (see Figure 2.3 for schematic) is explicitly constructed and
presented in the report.

Our preliminary attempt at extending the model to include vortex dynamics is to use the decom-
position of velocity field similar to equation (2.24) above but now include a term due to vorticity

U=U,+U.+U,, (2.26)
where vortical velocity arises as a solution of the vorticity equation
1 1
aa—L: +([U+Ve] - Vw+ (V- -U+ Adjw = EAw + ?Vp x VP. (2.27)

Rigorous justification of the above extension is part of the ongoing research.
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Figure 2.3: Schematic of the physical problem.

2.2.3 FLAVOR - A vortex model for reacting flow bluffbody wake dynamics

In our paper [36], we present a vortex model for bluff body flameholder stabilized premixed combustion.
We consider the physical problem of non-premixed combustion stabilized by a single rectangular bluff
body flameholder of height h in a channel of height H (see Figure 2.3 for a schematic). The size of
both the bluff body and the channel in the third dimension (z) is large so that two-dimensionality
is assumed to apply. The Mach number is low and both reactants (of density p,) and products (of
density p;) are assumed to behave as ideal gases. The combustion time scale is much faster than that
of the flow and the reacting field is assumed to be approximated by two flamesheets anchored at the
two flameholder lips. . , :
The evolution of the flow is governed by the vorticity and continuity equations

ow 1 1
2 T Ve+ (Vg = ZAw+ FVp x Vp, (2:28)
. 1Dp
Vou = D (2.29)

together with the no-slip and impermiability boundary conditions at the flameholder walls and im-
permiability boundary conditions at the channel walls. A G-equation formulation (see [27]) is used to
describe the flame evolution as

oG .

5 T (e + Sr(z)n]. V)G =0, (2.30)
where the flamesheet is described by the (unidimensional) connected locus of the points z 7 satisfying
G(zs,t) = 0 and 71 is the unit normal to the flame oriented into reactants. For the premixed case
considered here, the flame speed is modeled to be its stoichiometric value, while retaining the effects
of curvature (using Markstein length).

The Lagrangian Vortex Element Method (VEM) in the form that accommodates the presence of
reaction in the low Mach number limit [22] is used to reproduce the unsteady flow. The Lagrangian
implementation of the flamesheet evolution is performed using numerical techniques consistent with
the VEM. The numerical model is validated against non-reacting experimental data for shear layers
(results included in [14]) simulated by considering a thin bluff body with a velocity difference across
it - and traditional bluff body flows [44]. The results of this validation is presented in our paper [36].

Results for the reacting bluff body flow indicate a shift in the solution from the Von Karman asym-
metric shedding of coherent vortices at a characteristic frequency witnessed in the non-reacting flow,
to a rather symmetric shedding that is not dominated by any single frequency. Figure 2.4 contrasts
the time-series and frequency spectra, based on the v-velocity signal taken on the centerline half bluff .
body width downstream of the bluff body trailing edge, for the reacting and non-reacting cases. The
reduction in unsteadiness (with respect to the non-reacting case) seen in the figure is consistent with
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Figure 2.4: (a) Time series and (b) spectral plbts of the non-reacting (blue) and reacting (red) v-
velocity signal on the centerline (y=0) at half a bluff body width downstream from trailing edge.

the experimentally obtained spectral plots, comparing non-reacting and reacting spectra, presented in
[47]. Analysis presented in our paper [36] indicates that this shift is mainly due to the dilatation that
accompanies the combustion heat release while baroclinic vorticity plays a supporting but secondary
role. The dynamics in the near field of the flameholder (4-5 bluff body thickness downstream) is dom-
inated by the vorticity generated at the bluff body walls. The dilatation weakens this wall generated
vorticity as it goes through the flame and delays the entrainment of some of this vorticity into the
products region of the wake. Both effects tend to diminish the interaction of the opposite signed vor-
ticity emerging from the boundary layers on the two horizontal bluff body walls, thereby diminishing
the possibility of a Von Karman street. Further downstream vorticity generated by the baroclinic
torque dominates the dynamics. The amount of the downstream baroclinic vorticity is strongly de-
pendent on the presence of wall generated vorticity. The latter excites the flame in the near field
thereby enhancing the conditions for baroclinic vorticity generation. Characteristic simulation results
are shown in Figure 2.5.

2.2.4 Reduced order modeling for Control

Fuel control is a viable strategy for suppressing the combustion instability induced pressure oscillations.
However, the application of fuel control to bluffbody environment with its distributed fluid dynamics,
combustion and acoustics is yet to be done. In the following subsection, we present the past research
whose explicit aim was to apply reduced order modeling for the purpose of investigating control.

A primary difficulty in applying fuel control to bluffbody flameholders arises due to the lack of
suitable reduced order models that can be used for control design. In some of the past research
at UTRC, we made a simplifying assumption of neglecting the effect of vortical dynamics to obtain
reduced order models, which we used for studying fundamental limitations on control design. The
control was demonstrated on the full computational model. Below we provide a summary of this
research; see [34] for details.

We consider the physical problem described above in Section 2.2.3 and in figure 2.3. The primary
difference here is that while the flow is simplified (by neglecting vortex dynamics), combustion now
is assumed to be non-premixed (5o additional equations are needed to describe the evolution of fuel).
For the purpose of modeling and controlling combustion instability, we are primarily interested in the
spatio-temporal distribution of the heat release response g(z,t) which is function of local flame speed
and the flame location

a(z,1) o Sr(z)d(z - 7). (231)

The flame dynamics arise due to (complicated) interaction between the fluid dynamics and the
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Figure 2.5: Flow visualization of the reacting flow with h/H=0.16, h/H=20, Re=20000, and . (a)
Instantaneous flame location (lines), center of vortex elements (black/white points denoting -/+ signed
vorticity) together with the mean streamwise velocity field (shades). (b). Mean flame location (lines)

together with mean vorticity (shades) - the color axis range for vorticity plot is chopped to better view
the weaker baroclinic vorticity.
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Figure 2.6: Plot of a typical flame speed function S7[Y}] : the peak corresponds to stoichiometric
condition where the flame burns with maximal flame speed Sp.

inherent kinematic flame motion. The 2D nature of the problem, boundary conditions and bluffbody
geometry (where there are no translation symmetries) makes reduced order modeling for the purpose of
understanding and controlling the reacting flow problem difficult. We make a simplifying assumption
of ignoring the vortical component of the fluid dynamics in the problem, but retain the effects due
to burning and fuel actuation. The equations of flow reta.ln the contmulty equation but the vorticity
equation is now replaced with

Vxu=0, (2.32)

and for the boundary conditions, only the impermiability condition is retained {the no-slip condition
is dropped). The G-equation is once again used to describe the flame motion but now for the non-
premixed case, the flame speed

Sr(z;) = SrlYy(z)] (2.33)

is a function of the local fuel mass fraction for the non-premixed situation considered here. Figure 2.6
plots a typical S7[Yy] as a function of Y;. We reserve the square bracket notation St for the function
to distinguish it from the flame speed S7. The local fuel mass fraction seen at the flame front arises
due to the convection of the fuel-air mixture in the duct

DY} ,
o = 0. (2.34)
" An initial upstream profile
Yi(z =0,y,t) = Y} (1) (2.35)

provides a boundary condition at the entrance of each of the half channels upstream (on either side)
of the bluff body (see Figure 2.3). This initial distribution convects with the flow velocity (because
of (2.34)) until it burns at the flame front. Here, we assume that the fuel distribution is such that a
lean condition (where the fuel mass fraction Yz is less than the stoichiometric value- see Figure 2.6)
always applies. As a result, all of the fuel is burnt at the flame and the flame provides an appropriate
second boundary condition for (2.34).




6Numerical model (-) and reduced order model (--) - premixed

i
H

Figure 2.7: Plot showing shallowing of flame angle as density ratio increases: the difference between
numerical model (-) and reduced order model (dashed) is less than 0.5 degrees even for large density
ratios. _ ' :

‘We derive a reduced order model for the individual ﬂame motion as

7] 7]

3+ {sr[Pwe-D]+ LspF -} 5 = vo+ Lste (236)
=0 = 0, (237)
Ewi=0) = &, (2.39)

a hyperbolic initial boundary value problem (IBVP) - here (£(y,t),y) denote the co-ordinate of the
flame location. Here y = (%f — 1), where p,, is the density of the unburnt reactants and p, is the
density of the products. ‘

We also validated the reduced order model against the simulation results of a CFD numerical
model. The reduced order model was shown to accurately reproduce both the flame shapes and flame
angles as a function of density ratio parameter p for premixed flames (see Figure 2.7) and accurately
predict the flame blowoff seen in the computational model for the non-premixed case as the fuel
penetration into the cross-stream increases (see Figure 2.8).

We also used the reduced order model to define and study a (fuel actuation based) control problem
of tracking the heat released due to flame motion against a prescribed reference signal (for the full
simulation). The problem is motivated by the problem of fuel control of combustion instability. In
order to completely address the issue of control authority needed to quench pressure oscillations in
combustor to an acceptable level, one needs to investigate the coupled acoustic-flame system model
[32]. In the paper, however, we concentrated on controlling the distributed heat release response by
manipulating the inlet fuel profile (see Figure 2.9 for a schematic of the control problem). A heuristic
interpretation for considering this piece of the problem is provided in [34]. For the control problem
described in the figure, we proposed an optimal control strategy which was then implemented on the
computational model to track the heat released against a prescribed reference signal. Figure 2.10
provides a comparison of the tracking signal against the heat release obtained from the simulation.
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Figure 2.9: Schematic of the control problem.
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Figure 2.10: Results of the implementing the tracking control on the numerical model.

Analysis of the control was provided in the paper and suggested in a fundamental limitation associated
with ON-OFF control of heat release. This limitation is suggested in Figure 2.10 as discrepancy be-
tween the desired and the controlled heat release response. The limitation arises due to the hyperbolic
nature of the problem which leads to solution discontinuities with ON-OFF control; complete analysis
using method of characteristics is provided in [34].

2.2.5 Reduced order modeling for Dynamic range analysis

The occurrence of combustion instability in augmentors using bluffbody flameholders is a function
of the operating conditions [8]. Dynamic range analysis is important not only to map the stability
boundaries (where instabilities occur) and predict post instability response (for instance, the pressure
amplitudes) but also to identify the important physical mechanisms that lead to the instabilities as a
function of parameters in the problem. There are two challenges associated with meeting the objective

1. The computational cost associated with mapping out all the different regimes of physical phe-
nomenon is prohibitive,

2. Even if a transition of physical phenomenon is seen in the computational model, an understand-

ing of key physical mechanisms underlying this transition is difficult to obtain because of the
distributed and nonlinear nature of the dynamics.

For the purpose of reducing the computational burden, we are interested in model reduction approaches
that can model the computationally expensive elements (such as vortex dynamics) in reduced order
fashion. In the following subsection, we summarize one such approach - a Galerkin based reduced
order modeling framework - used to understand the suppression of Von Karman vortex shedding for
compressible reacting flows. This ongoing work is as yet unpublished, but available as a preprint [35].

The wake dynamics of a bluffbody stabilized reacting flows are very different from their non-
reacting counterpart. In particular, while a Von Karman asymmetric shedding of coherent vortices
at a characteristic frequency is witnessed in the mon-reacting flow, reacting flows exhibit a rather

33




symmetric shedding that is not dominated by any single frequency (see our recent computational
paper [36], also the review paper [10], computational papers of [9] and [41] and experiments of [47]).
A variety of explanations have been proposed in the literature, the majority of them pointing to
the vorticity generated by the flame via the baroclinic mechanism as the primary reason behind
the exhibited shift in flow behavior. For example, [10] attributes the shift to the combination of two
possible mechanisms: (i) the dampening of the vorticity due to the increased kinematic viscosity of the
reacted fluid and, (ii) the generation of baroclinic vorticity that is of opposite sign to the flameholder
generated vorticity and tends to nullify the effects of the latter. Menon and co- workers also point
to the baroclinic vorticity generation as the main mechanism that leads to the shift [9]. In our own
paper [36], we argue the importance of exothermic effects in suppressing the Von Karman shedding
observed in cold bluffbody flow. ,

In our more recent work, we use Galerkin based reduced order models for investigating the effect
of exothermicity on reacting bluffbody flows. In particular, we are interested in explaining (within
the reduced order models) the suppression of Von Karman shedding in the presence of burning. In
order to obtain model reduction, our approach is to reduce the order of the fluid dynamics using
(Noack-Tadmor [21]) inspired) POD based Galerkin model. To obtain the Galerkin model, we begin
with the compressible form of vorticity equation

Ow

‘ 1
: .—a?+(y-V)w+(V-y)w—EAw+

1
P

We make a simplifying assumption of ignoring the effect of baroclinicity,

VpxVp. (2.39)

%Vp X Vp =0, (2.40)

which is motivated by some of the results summarized in [36], where we have argued the importance
of exothermicity (V - u > 0) in obtaining suppression.

In [35], we show that the reduced order Galerkin model (with three POD modes) has the following
structure

d | wa —p —bw; —bwy WA
7| @ = dwy a —w wi
wo dws w o wo
a 0 0 —Ba 0 O wA
+p 0 v —uwp |+ 0 -8 0 w |, (2.41)
0 we v 0 0 - Wy

where (wa,w;,ws) are the modal coefficients, the first term on the right hand side of equation {2.41)
models the non-reacting wake flow dynamics (see [21] for their physical significance) and the second
and third terms model the effect of burning (recall . = (% —1)). The second term models the effect of
exothermicity captured by the compressible term (V - u)w in the vorticity equation (2.39). The third
term models the effect of convection because of the dilatation flow (arises as a component of the term
(v V)w in the vorticity equation (2.39)) which causes the vorticity to convect differently than for a
non-reacting flow. 7

In the absence of burning, the 3 mode Galerkin model reproduces the sequence of bifurcations
from fully attached steady flow to a steady flow with symmetric recirculation regions in the wake
to an assymetric Von Karman shedding solution (see Figure 2.11). In the reduced order model, the
effect of the burning is to laminarize the flow by moving the Hopf bifurcation point corresponding to
the appearance of Von Karman shedding solution to higher Reynolds numbers. Furthermore, beyond
a critical value of parameter (4 ~ 1.4), the shedding solution dissapears for all values of Reynolds
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Figure 2.11: Bifurcation diagram for the Galerkin model

numbers (see Figure 2.12 for a locus of Hopf bifurcation point as a function of the two parameters -
Reynolds number Re and p). The value of 4 = 1.4 is in a nice agreement with our reported value for
disappearance of Von Karman shedding solution for high Reynolds number flows [36].

2.3 Passive control of thermoacoustic instabilities by symmetry-
breaking

In paper by Hagen and Banaszuk, CDC 2004, we presented a thermo-acoustic model on a cylindrical,
or annular, geometry, capable of modeling instabilities of tangential acoustic modes. The model
accounts for non-uniform density, damping, rotational flow, and heat-release coupling. It is shown that
deliberately introducing spatial variations in some quantities has a similar effect to adding damping
to the system. The effects of these symmetry-breaking conceptes are evaluated on the model through
linear analysis and the net amount of additional damping is computed. We showed how various
symmetry-breaking concepts are robust with respect to the uncertainty in the model parameters and

we examined propagation of uncertainty with respect to a measure of uncertainty recently defined by
1. Mezic.

2.4 Background noise effect on combustor stability

Paper by Lieuwen and Banaszuk, Journal of Propulsion and Power 2004, considers the effects of back-
ground turbulent fluctuations upon a combustor’s stability boundaries. Inherent turbulent fluctuations
act as both additive and parametric excitation sources to acoustic waves in combustors. While ad-
ditive noise sources exert primarily quantitative effects upon combustor oscillations, parametric noise
sources can exert qualitative impacts upon its dynamics; particularly of interest here is their ability
to destabilize a system that is stable in the absence of these noise sources. The significance of these
parametric noise sources increases with increased background noise levels and, thus, may play more of
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Figure 2.12: Locus of Hopf bifurcation point in Re-u plane: The Hopf point denoting the Reynolds
number where the Von Karman vortex shedding solution begins is moved out to its inviscid limit as
4 increases to = 1.4.
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a role in realistic, high Reynolds number systems than experiments on simplified, lab scale combustors
might suggest. The objective of this paper is to determine whether and/or when these effects might
be significant. The analysis considers the effects of fluctuations in damping rate, frequency and com-
bustion response. It is found that the effects of noisy damping and frequency upon the combustor’s
stability limits is relatively small, at least for the fluctuation intensities estimated here. The effects
of a noisy combustion response, particularly of a fluctuating time delay between flow and heat release
perturbations, can be quite significant, however, in some cases for turbulence intensities as low as 5-
10%. These results suggest that deterministic stability models calibrated on low turbulence intensity,

lab scale combustors may not adequately describe the stability limits of realistic, highly turbulent
combustors. '

2.5 Modeling, Analysis, and Control of Flutter in Turbomachinery

A linear framework for control of wave phenomena on annular domain was established. The flutter
control problem was used to motivate the study. However, the framework applies to control of general
wave phenomena on annular domain, such as rotating stall and thermoacoustic instabilities.

In papers by Banaszuk et al., IFAC 2002, CDC 2002, AIAA 2003, we described a method for
controlling fan or compressor blades flutter in gas turbine engines and its experimental demonstration.
The experimental implementation of active flutter control on a sub-scale fan rig consisted of an array
of audio speaker-powered volumetric sources connected to the flow path equally spaced along the
circumference axially located between an experimental fan and its exit guide vanes (stator). Blade
arrival time detectors based on eddy current sensors placed at the leading end of the blade-tip line
were used to generate real-time blade deflection signals. An observer was used to reconstruct the
flutter modes. A pole-placement controller was used to generate the speaker command signals. The
control system was able to add significant amount of damping to three modes of flutter. Damping
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augmentation was an order of magnitude larger than the intrinsic aeromechanical damping of the
modes on the operating line of the fan.

Blade failures due to flow induced vibrations are a long standing, endemic problem for the turbo-
machinery industry. Flutter and resonant stress fundamentally constrain the design and operatxon of
gas turbine engines. Ensuring aeromechanical operability often requires compromises in turbomachine
efficiency, performance and cost and can result in development delays and increased mainatinance
costs. '

We describe a method for controlhng fan and compressor balde flutter in gas turbine engines, as
well as a particular implementation of this approach demonstrated in experiments in a transsonic fan
rig operating at 9000 RPM. The limitations in operability of a turbomachine due to flutter can be
overcome by adding damping to the dominant aeromechanical modes.

We model the dynamics of blade rows in turbo-machinery as similar to those of a flexible disk.
Aeromechanical modes form travelling waves as seen by the rotor. This means that when viewed from
the rotating frame the peak of deflection appears to travel around the disk. The deflection of the disk
at a given point on the fixed frame along the circumference of the blade-row can be decomposed into -
sinusoids of frequencies separated by integer multiples of the rotor frequency. At any fixed point in
time, the deflection of the disk can also be decomposed into sine-waves function of the angular position
- around the rotor. Therefore each aeromechanical mode has a characteristic shape and a characteristic
frequency. Each of these modes can lose stability as operating conditions change. The objective of a
flutter control is to enhance the region of stable operation by adding damping to the aeromechanical
modes.

The preferred sensing scheme uses a proximity sensor on the casing to determine a time blade
arrival time. From the blade arrival time one can estimate the blade deflection. The blade deflection
will reflect the superposition of all the aeromechanical modes. However, due to their separation in
frequency, the modal content can easily be decomposed.

The actuation approach is to place volumetric sources aft of the blade-row to modulate the back
pressure and mass flow as a function of angular position and time resulting in unsteady loading of the
blades. This in turn modifies the blade lift, generating the desired commanded force on the blades. By
arranging an array of such actuators around the circumference one can create a pattern of forces on
the blades. These patterns can form traveling waves that have the spatial shape of the aeromechanical
modes. The experimental implementation of active flutter control on a fan rig presented in this paper
consisted of an array of audio speaker-powered volumetric sources connected to the flow path equally
spaced along the circumference axially located between the fan rotor blades and its exit stator guide
vanes. , '

In experiments on a fan rig a linear observer was implemented to estimate the aeromechanical
modal content of the blade row. This approach required a linear model for the dynamics of interest.
Such a model was obtained for each aeromechanical mode by running swept-sine experiments in the
system and measuring the complex ratio between the modal forcing function and the blade deflection
at a point in the fixed frame. Then a low order (typically second order) state-space linear system
was fit to the frequency response data. The observer was designed based on the aggregate of all these
state-space blocks. An observer-based pole-placing technique was used to design a linear control law
to add the desired amount of damping to flutter modes. The control system was able to add damping
to three flutter modes. The damping augmentation achieved was an order of magnitude larger than
the intrinsic aeromechanical damping of the flutter modes on the most stable operating condition of
the fan. '

Experiments described in this section were conducted under internal funding. Modeling and anal-
ysis were partially funded under previous AFOSR grants. The publications Banaszuk et al., IFAC
2002, CDC 2002, ATAA 2003 of the results were funded under current AFOSR grant.




2.5.1 Notation

N - number of blades.

n - index of a flutter mode, n=...,-2,-1,0,1,2,....

—(n - real part of the n-th flutter mode pole.

wny - imaginary part of the n-th flutter mode pole, circular (pseudo) frequency of the n-th flutter
mode in the rotating frame.

wps - imaginary part of the n-th flutter mode pole, circular frequency of the n-th flutter mode in the
stationary frame.

&n - damping coefficient of the n-th flutter mode, &, := ——m—ng?
0y, - Logarithmic decrement of the n-th flutter mode, 4, := 21r—<— = 2#—\/{?
0, - angle in the rotating frame.
0, - angle in the stationary frame. : )
anr(t, ;) - blade deflection angle at time t at angle 8, (in the rotating frame).
a,,,., (t,05) - blade deflection angle at time t at angle 6, (in the stationary frame).
- circular rotor frequency.

- angle between the fixed reference points on the rotor and the stator at time ¢t = 0.
), - n-th spacial Fourier coefficient.
) - temporal Fourier transform.
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2.5.2 Flutter models

For an integer n (positive, zero, or negative) we model the n-th flutter mode, or n-th nodal diameter
flutter mode, as a travelling wave in which all blades are oscillating harmonically with a constant
phase angle 6, 2—1’5’1 relative to each other [18]. »

Let 6, denote the angle measured relative to a fixed point on the rotor in the direction of the
rotation. Assume that we have continuum of blades and there is no external forcing. We postulate

that the n-th nodal component of the blade deflection at angle 8, at time ¢ is given by the formula
Qnr(t,0,) = Ape "t cos(wn,t — nb, + Onr) (2.42)

where —(;, and wy,;, are, respectively, the real and imaginary part of the n-th flutter mode pole. Note
that wy, is also the (pseudo) frequency of the n-th flutter mode in the rotating frame, and A,, and ¢,,
are the initial magnitude and phase angle of the n-th flutter mode. The damping of the n-th flutter
mode is usually described by one of two coefficients: the damping coefficient £, := —=52— or the

3+wi,
logarithmic decrement &, := 21r—§— = 2'fr\/—§_=£2 Note that:
(1) The m-th blade is moving according to equation (2.42) with the corresponding angle 8, = 22 + ¢,

where 0; is the position of the first blade relative to the fixed reference point on the rotor, m =
1,2,...,N.

(2) For a fixed time ¢ and n # 0 the blade deflection o, (t,6,) considered as a function of the angle
0, has a sinusoidal shape with |n| nodes. For n = 0 and a fixed time ¢ the deflection is the same for
each blade.

(3) For ¢, = 0 and n # O the blade deflection s (t,6,) is a wave with a fixed sinusoidal shape
travelling around the annulus. The speed and the direction of rotation can be obtained by considering
movement in time of the angle corresponding to one of the peaks of the wave. For instance, the first
peak is obtained by solving the equation wy,,t — n8y + ¢pr = % for 8,. We have

1

9:,- = ;(wmt + ¢nr - (243)

2)
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Therefore, the speed of the wave is g’l-g-r and the direction is positive (the same as the direction of
rotation of the rotor) for n > 0 and negative (the opposite to the rotor’s rotation direction) for n < 0.
We call the flutter modes travelling in the same direction as the rotor the forward travelling modes
and the ones travelling in the direction opposite to the rotor’s direction the backward travelling modes.
(4) For a fixed angle 6,, the blade deflection ap,(t,8,) considered as a function of time represents a
response of a damped oscillator, i.e., a second order system with poles —(, + iwy, and —(p, — Gwpy.
Note that each particular blade oscillates with frequency wy,, which is n times bigger than the fre-
quency of the corresponding travelling wave.

Now we express the motion of a blade due to a particular flutter mode as measured at an arbitrary
angle on the stator.

Let w, denote the circular rotor frequency. Fix a reference point on the stator. The angles in the
stationary frame will be measured relative to this point with positive direction corresponding to the
rotor’s rotation direction. Let 650 denote the angle at which the reference point on the stator is seen
from the reference point on the rotor at time ¢ = 0. Then, for an arbitrary time t, a fixed angle 6, on
the stator is related to the corresponding point on the rotor 6, (measured in the rotating frame) by
the formula 8, = 8 + 850 — wyt. Therefore, the deflection of the blade pa.ssmg a fixed angle 0, on the
stator at time £ is given by the formula

Ons(t,0s) = anr (8,05 + 050 — wrt) =

Ape %t cos((wnr + nwy )t — nbs + ¢n;) (2.44)

where ¢ps := @nr — nbsp is the initial phase of the n-th mode in the stationary frame.

Note that for ¢, = 0 and n # 0 the blade deflection oy4(t, 8;) in the stationary frame is a wave with
a fixed sinusoidal shape travelling around the rotor. In particular, a single blade vibration frequency
in the stationary frame is wyp; := Wy, + nwy. ,

The velocity of the rotation of the wave can be obtained in a similar manner as in the rotating
frame case. In particular, the velocity of the wave corresponding n-th flutter mode in the stationary
frame is wy + “22. Let us recall that the latter is the velocity at which a fixed point on the graph
of the blade deﬂectlon as a function of angle (say, a peak) is travelling around the annulus at the
stationary frame. This velocity should not be confused with an individual blade velocity due to n-th
flutter modes, i.e., wys, which is n times bigger.

In the sequel we are going to use the stationary frame only. Therefore, we will often skip the
subscript s and use # to denote the angles measured in the stationary frame.

Since at a fixed time the flutter modes and the corresponding forcing functions have a fixed
sinusoidal shape, they can be represented via their spatial Fourier coefficients (SFCs). One complex
Fourier coefficient can be used to describe a single sinusoidal travelling wave. A general travelling wave
with n-th nodal spatial shape and a temporal frequency wp has the form Fn(t,0) := F,(t) cos(wot—nd+
@) = Fo(t) cos(wot+¢) cos(n) + Fy,(t) sin(wot + @) sm(n9) The correspondmg SFC is, for n # 0, equal
to Fa() = L [37 fa(t,6)e7d9. One has fo(t) = L 27 Fp(t)1 (eflwot—n0+9) +e—1(w0f—"9+¢>)e1"9d9 =

L Fa(t) f2"(ea(wot+¢) + eI (wot—2n0+4)) 4o
=F, (t)(cos(wot+ ¢) + jsin(wot + ¢)). For n = 0, one has fo(t) := & [2" fo(t,6)dd. Thus, fi(t) =
= 27 Fo(t) cos(wot + ¢)d6 = Fy(t) cos(wot + ¢) = fo(t,8), for all 6.
To reconstruct a wave from its SFC one can use the inverse spatial Fourier tranform

f(t,6) = Re(f(t)*e’™) = Re(fn(H)e ™), . (2.45)

where (-)* stands for the complex conjugation.

Observe that for n # 0:

(1) The magnitude and phase of the complex number representing the spatial Fourier coefficient
of the wave f,,(t,6) are the same as magnitude and phase of the wave.
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(2) The real and imaginary part of the spatial Fourier coefficient of the wave f,, (¢, ) are the Fourier
series coefficients of fn(t,6), i.e., the coefficients of f,(t,0) represented as a linear combination of
cos(n#) and sin(n8), respectively.

Assume that the magnitude and phase of the wave fy,(t, 0) are constant in time with F,, (t) := F,,, for
some n # 0. Then f,,(t,0), and hence f,(t), is a periodic function of ¢ and one can define the temporal

Fourier transform of the spatial Fourier coefficient of the wave fy.(t,0) f,(jw) = [ Fa(t)e dwtdt .=
S22 Fa(t)efwottdle=iutdt .= F, (1)e7%8(w — wp), where §(-) stands for the delta operator. Thus, the
travelling waves with the temporal frequency wy can be recognized in the (temporal) frequency domain
as “spikes” at one single frequency wq. Spikes at positive frequencies represent the forward travelling
waves, whereas the spikes at negative frequencies represent the backward travelling waves.

The case n = 0 is different. As we have noticed before, the spatial Fourier coefficient fo(t)
of the function fy(t,8) coincides with the function fo(t,6) itself. Its temporal Fourier transform is
Foliw) = 52, Fo(le "t = [%5, Fo(t)}(eHot+e) + e-ilot+9))e~sotgy
= ﬂ"zﬂ(e-7 96(w—wp) +e %5 (w+wp)). One observes that the temporal Fourier transform of the spatial
Fourier coefficient of the function fy(t,6) has two “spikes”: one at wy and the other at —wy.

While the flutter modes for n # 0 are represented by travelling waves, they can be excited by
forcing inputs that are either travelling waves of the form fy,(¢,0) := F, cos(wot — n8 + ¢) or by the
standing waves of the form

In(t,6) := F, cos(wot + ¢) cos(nd). (2.46)

This is due to the fact that a standing wave can be represented as linear combination of two travelling
waves: Fy, cos(wot + ¢) cos(nf) = 1 F,(cos(wot — né + @) + cos(wot + nb + ¢)).

The temporal Fourier transform of the standing wave (2.46) is f,(jw) := f_‘f"wﬁl(t)e_j“’tdt =
> F, (t)%(ej(wnt+¢) + e~i(wat+d))e—dwtgy
= B(e/%6(w—wy) +e77%5(w+wy)). Note that the latter formula is valid for all integers n, including
n=0. '

2.5.3 Flutter models with control

We assume that we have continuum of actuators around the stator that influence flutter modes. We
will control the n-th flutter mode with a control function u(t,8) that, as a function of angle, has
the same shape as the n-th flutter mode wave. The control magnitude and phase will be chosen
appropriately as functions of the measured (or reconstructed using an observer) magnitude and phase
of the n-th flutter mode. the angle in the stationary frame, previously denoted by 6,.) Similarly, for
the identification purposes, one can force the n-th flutter mode with a using a wave of the with a
constant magnitude and phase. More precisely, assume that the control input forcing function for the
n-th mode is a travelling wave having some temporal frequency wy and having the same shape as the
n-th flutter mode: '

un(t,0) = Uy cos(wot + @y — nb) =

Un cos(wot + ¢ny) cos(nd)+ _ (2.47)

Up, sin(wot + ¢ny) sin(nd),

for some constant U, and ¢n,. The SFC of this forcing function is %, (t) = U,ei(wotténs) The
corresponding temporal Fourier transform is %, (jw) = Upe#%m§(w — wy).

We also assume that the steady-state n-th flutter mode component of the blade deflection response
to the n-th nodal forcing of the form (2.47) is a travelling wave with the same spatial shape and




temporal frequency, possibly shifted in phase by some angle ¢, relative to the forcing function:

an(t,0) = A, cos(wot — nf + ¢,) =
Ay, cos(wot + ¢p) cos(nd)+ (2.48)
Ay sin(wot + ¢y,) sin(nd)

for some constant A, and ¢, that, for fixed U, and ¢p,,, are functions of wy.
The SFC of the n-th component of the blade deflection is &n(t) = A,e/(“ot+#2), The temporal

‘Fourier transform of the SFC of the n-th component of the blade deflection is &y (jw) = Ane®"8(w —
wp). We assume that we measure the blade displacement at finite number of locations on the stator.
(This is going to be accomplished with eddy current sensors.) At a fixed angle 0, the measured blade
dispalcement is going to be

Yno, (t) :== an(t, ey) =

Ay, cos(wot — nby + ¢n)

= Ay cos(wot + ¢n) cos(nby)+

A, sin(wot + @y,) sin(nby).

(2.49) .

The temporal Fourier transform of the output function is §i» (jw) = 42 (e7($n~04) §(w—wp)+e~7(én—18) § (4
wp)).- '

. Now we present dynamic system models for the evolution of the n-th flutter mode subject to
control. The description adapts an approach to model rotating stall from [42].

One can obtain a low order model describing the dynamics of the n-th flutter suitable for control
purposes in the following three steps.

1. Conduct an experiment to obtain the transfer function between the n-th SFC of the forcing
function given by (2.47) and the corresponding n-th SFC of the blade deflection function given by
(2.48). ' ,

2. Fit a low-order transfer function to the one obtained experimentally.

3. Obtain a state-space realization of the low-order transfer function obtained in step 2.

We assume that the uncontrolled n-th flutter mode behaves like a lightly damped harmonic oscil-
lator with individual blades moving in the stationary frame according to the formula (2.44). Thus,
we expect the mode to have a significant response to forcing only at a narrow band of frequencies of
interest around the mode’s natural frequency wy; := Wy, + nw,. The control goal is to add damping
to the mode by a feedback control only at this narrow band of frequencigs. Therefore, it is sufficient
to have an approximate low order model describing the dynamics of the n-th mode at this narrow
frequency range. Even if the frequency response of the n-th flutter mode were that of a low pass,
rather than a band pass filter and the actuator dynamics cannot be neglected over a wide band of
frequencies, so that a narrow band frequency model will not be accurate at low frequencies, the in-
accuracy of the model will not significantly impact control performance. The controllers will have a
‘band pass characteristic, so that the unmodelled dynamics at both low and high frequencies will not
be destabilized. '

The transfer function between the n-th SFC’s of the forcing function and the corresponding blade
deflection response is defined by

ﬁn(jw) Un

2 .. A" .
Go(ji) = n(J0) _ An i(gn—tm). (2.50)

Both A, and ¢, are, in general, functions of the frequency w.

To obtain the transfer function G,(jw) from a sine sweep experiment, one has to access the
function a&y(t). To obtain an approximation to &y, (t) one would have to simultaneously measure the
blade displacement a,(t,0) at some finite number of angles around the annulus and use a discrete
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approximation of the integral defining the spatial Fourier transform. A reasonable a.pproxlmatlon
would require at least 2n + 1 blade displacement sensors around the annulus.

However, even with one sensor one can measure the transfer function G,(jw) because of the
following simple observation. Assume that we have a blade displacement sensor at some angle 6, at
the stationary frame. The measured output function yng, (t) := an(t,6,) is given by the equation
2.49. Assume also that we measure the value of the actuation function uy,(t,6) at a fixed angle 6,.
Let ung, (t) := un(t,04). Note that yng, (t) = A, cos(wot — nby + ¢,) and ung, () = Uy, cos(wot +
$nu — n8y) have relative phase shift of ¢, — ¢y, — n(fy — 6,). Hence, the measured transfer function
between them during a sine sweep experiment is Gno,0, (jw) = %L((Z—Z)S = —Jej(¢"“¢"“‘"(9r0“)) =

e I™0y=0) G, (jw). Therefore, G (jw) can be obtained from Gy, (jw) = s~ 9“)G 6,8, (jw).

One can observe that, except for the case n = 0, any description of transfer functions Gp(jw)
as a rational function of jw valid in a wide frequency band must have complez rather than real
coefficients. To see that, note that a transfer function G(jw) with real coefficients has the property
G(—jw) = G(jw)*, i.e., it has a Nyquist diagram symmeric with respect to the real axis. We know
from experiments that the response of the n-th flutter mode to the forward or backward travelling
forcing wave with the same temporal frequency is not symmetric. Thus, for n # 0, one has Gy, (—jw) #
Gn(jw)*. However, we do expect the reponse to be symmetric for n = 0, so that we have Gy(jw) =
Go(—jw)*. Therefore, we expect the transfer function Go(jw) considered as a rational function of jw
to have real coefficients. Because of this difference between the cases n # 0 and n = 0, we are going
to derive the corresponding models separately. :

A low order, narrow band model for the transfer function G, (jw) between the n-th SFC of the
forcing function given by (2.47) and the corresponding output function gwen by (2.49) forn#0isa
first order transfer function with complez coefficients

bnR + .7 an
Cn + J(w =~ wns)
A complex-valued state-space realization of this transfer function is

@n(t) = (—Cn + jwns)an (t) + (bnr + 5bnr)iin (2). (2.52)

Note that both &, (t) and %, (t) are complez valued functions of time. Observe also that the unforced
response of (2.52) is &y (t) = e(~¢n+iwnsltg, (0), which agrees with postulated unforced evolution of the
n-th flutter mode given by (2.44). '

Let us emphasize again that the simple transfer function model (2.51) and its state-space realization
(2.52) are valid only for a narrow range of frequencies around the flutter frequency wy,. The actuator -
characteristic over that frequency range is simply represented by the magnitude and phase of the
n-th mode of the actuator disk at the flutter frequency and incorporated into the complex number
bnr + jbar. This approximation is reasonable, as long as the actuator frequency response does not
change significantly over the frequency interval of interest and a feedback controller characteristic will
be that of a sufficiently narrow band-pass filter. If this is not the case, the actuator dynamics should
be incorporated in the model. : »

An equivalent description to (2.51) is possible with a real-valued model of real dimension two. In
the sequel the subscripts (-)g and (-); will denote the real and imaginary part of a complex number.
One can easily check [42] that the real and imaginary part of the SFC’s of blade displacement and
forcing function satisfy the following set of two differential equations

anR(t) _Cn —Wns &nR(t) +
an1(t) wns  —Cn anr(t)
bnR '_an :| [ﬁnR(t)

an bnR iZnI (t)

Gn(jw) = (2.51)

(2.53)
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The corresponding transfer function desription is

3nR(jw) _ Gnr(jw) ~Ghi(jw) @nR(jw)
[ Gnr(j) ] - [ Gui(j)  Grrl(jw) ] [ it () ] ' (2.54)
One can verify that ( ) —b
LN brr(jw + (n) — bnwns
Gnr(]w) - (]w + Cn)z +wgs (255)
. LN "‘bnl(jw + (n) — byRWns
G,m'(](.t)) - (jw + (n)g +w?"s (256)
and
Gn(jw) = Gpr(jw) + jGri(jw). } (2.57)

Assume that a blade displacement sensor is located at some angle 0 at the stationary frame. The
measured output function y,g(t) := ay(t,0) can be expressed in terms of the real and imaginary parts
of the SFC of ay(t,0) via the inverse spatial Fourier transform (2.45) as y,4(t) = Re(an(t)e ™) =
Re(anr(t) + jani(t))(cos(nd) — j sin(nd)) = cos(nf)anr(t) + sin(nd)anr(t). Let '

o) = | Sonl) ] O ] C (258)
A = —Cn  —Wns B. := [ bnr  —bnr ]
e Wns "'Cn e bpr  bpr ’ (259)

Chrg := [cos(n8) sin(nb)).

The state and the output equation for the n-th nodal flutter mode can be concisely written as

Zn(t) = Anpza(t) + Bpupn(t)
Yno(t) = Chozn(t).

If there is only one sensor at some fixed angle 6, we will skip the subscript @ in the description of
yn()(t) and CnB-

Observe that all the quantities in the equation (2.60) are real. One can identify the parameters
in the model using travelling wave excitation, as described in the previous section. Alternatively, one
can exploit the skew-symmetric structure of the matrices A, and B, and use only one of the inputs of
vn(t) for excitation. This amounts to forcing the system with a standing wave, rather than travelling
wave pattern.

Now we propose a real-valued model for control of the 0-th nodal flutter of dimension two. Assume
that a blade displacement sensor is located at some angle 6 at the stationary frame. The measured
output function is yp(t) := ap(t,8) = &(t). Let

(2.60)

: do(jw) _ 60(iw) _ Ao j(s-dou)
= = = L = ——l\$oPou) 2.
Golg) Ho(w) Go(jw) Up (261

A simplest model for Go(jw) with real coeffcients that exhibits a behavior of a lightly damped oscillator
is
: b1(jw) +bo
G ==Y = 2.62
O(Jw) (jw F C0)2 +w(2)7 ( )
for some real by, bg, (o, and wy. The corresponding state-space description (in the observer canonical
form) is
zo(t) = A_gxo(t) + Byvg (t)

yoo(t) = Coamo(t), (2.63)
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where

vo(t) := uo(%), (2.64)
=] G 1 = b — v
Ag = [ . ,Bg == Bo ,Cop :=[10]. (2.65)
Let consider a finite number &y of flutter modes with nodal numbers ny, ny, ..., ng ;- Assume that

as the measurement outputs we use m blade displacement sensors located at the angles 8y, 6, .. ., 6,,,
respectively. We assume that the blade displacement yy measuréd at some angle 6 at the stationary
frame is the sum of the diplacements due to particular flutter modes:

vo(t) = T4, any (t,9). (2.66)

We can write down the following state-space model describing the dynamics of the k; most active
flutter modes: () = Az(t)+ Bo(t) ’
z(t) = t) + Bu(t
2.67
ut) = Ca(), - e

where z(t) := [z5,(2) ... 25, ; @17,

v(t) 1= [un, (t)-.. Uny, 1T, y(t) := [ys,(t) - - . Yo, (t)]T, A and B are block diagonal matrices containing
Ap; and By, blocks, respectively, and C is a matrix composed of Cpg blocks.

The dimension of the output variable y(t) is equal to m, which is the number of blade displacement
sensors (e.g., eddy current sensors) used for measurement.

One may be tempted to place many sensors to make the C matrix invertible and use a full-
state static feedback to arbitrarily place the damping of the flutter modes. This strategy might be
succesfull for flutter modes with the nodal number 7y # 0 if the variations of the actuator dynamics
with frequency can be neglected. However, note that C is never invertible if one includes the 0-th
nodal flutter dynamics, as Cpp = [1 0] for all 8, and hence C has a column of zeros. Moreover, a
strong output noise component, which includes all unmodelled sources of blade displacement, such as
periodic forcing due to rotor and blades assymetry, neglected flutter modes, rotating stall dynamics,
an inlet distorsion, etc., would make reconstructing the state of the flutter modes by inverting the C
matrix problematic.

To circumvent the problems with direct inversion of the C' matrix and the output noise, and at
the same time reduce the number of blade displacement sensors, we are going to reconstruct the state
of the system using an observer. As we will see, in principle, just one blade displacement sensor is
sufficient for this purpose.

2.5.4 Model of the disturbances

We are going to augment the state-spéce model (2.67) by adding some noise sources in the state and
output equations. We assume that the system is described by the equation

B(t) = Az(t) + Bo(t) + e (t)
y(t) = Cu(t) +ey(t), (2.68)

where e;(t) is an unknown disturbance driving the state of the system, and ey(t) is an unknown
output disturbance. We assume that the state disturbance e;(t) has a strong periodic component
with the rotor frequency due to rotor and blades assymetry and some random fluctuations due to inlet
distorsion that excite the k; flutter modes of interest. The output disturbance e, (t) might include all
unmodelled sources of blade displacement such as neglected flutter modes, rotating stall dynamics,
a strong constant component (so-called DC-component) due to sensor bias and rotor assymetry, a
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periodic component due to differences between particular blades, 60H z electric noise and its harmonics
from electric components and possibly some other measurement noise.

We expect the constant and periodic components of the disturbances to be dominant. We are
going to extend our model to incorporate these components and reconstruct them using an observer.
We assume that the actual blade displacement y49(¢) measured by a sensor located at an angle 8 on
the stator is given by y,5(t) = ya(t) + yac(0) + yp(wrt — ) + yuwn(t,8), where yp(t) is the sum of the
blade displacement components due to the dynamics of the selected most active k; flutter modes of
interests given by (2.66), y4.(9) is an unknown constant bias component, yp(w,t — 6) represents a
steady unknown periodic motion, and ¥, (t,8) is the broad band component of the measured output.

Note that the forcing of the blades due to6 rotor and casing assymetry will cause a different constant
blade diplacement at a different angular location at the stationary frame, even the the magnitude of
the angular motion of the blades is the same. Also, a constant bias signal may be different fo each
sensor. Therefore, we do not expect to have the same constant component ag.(8) at each output.

The unknown constant component of the k-th output yg, (t) will be modelled as the state zxq.(t) of
an integrator with an unknown initial condition added to the system (2.68) &xq4c(t) = Agczac(t), o, (t) =
CacTrac(t), where Ay, == [0], Cyc = [1]

Particular blades on the rotor are slightly different. Moreover, the spacing between the blades may
vary around the rotor. Thus, if the diplacement is measured by a difference of expected (assuming
no blade motion due to flutter) and actual time of arrival of the blade (using eddy current or optical
senors) and the time of expected arrival is calculated assuming a uniform spacing between the blades,
a measurement of an angular blade displacement will have an error. In both cases mentioned above
this error will have a form of a wave travelling forward with the speed equal to the rotor frequency
wy. This justifies the choice of the form of the periodic disturbance y,(wyt — 6).

A constant component of y,(wyt — 6) can be incorporated into the constant disturbance cgc(6).
Therefore, without loss of generality one can assume that for each fixed ¢ the average value of y,(w,t—0)
over 8 is zero. For each n > 0 one can compute the spatial Fourier coefficient 3, (t) of y,(w,t —60) and
then represent the function y,(w,t — @) using the inverse spatial Fourier transform (in other words,
represent y,(wrt — @) as Fourier series). After truncating the series at some n = k, one obtains the
formula, y,(wyt — 0) = Y% | Re(fpn(t)e=) = S5 | cos(nf)(an cos(nwyt) + by sin(nwyt))

+ sin(nf)(ax, sin(nw,t) — b, cos(nwyt)), for some constants an, bp, n =1,...,kp. Observe that for fixed
6, the function y,(w,t — 6) can be treated as an output of a system of k, uncoupled oscillators with
frequencies equal to multiples of the rotor frequency w,. Therefore, the periodic disturbance yp(w,t—8)

will be modelled by adding states z1,(t), x2¢(t), ..., Tk,e(t) of kp oscillators to the system (2.68). Let
Wke = kw, and :

Age = [ 0 _zke ] , Cno = [cos(n@) sin(nb)]. (2.69)

Wke

We assume that the state of the oscillator zy,(t) satisfies the equation

fi'ke(t) = Alclexke(t): v (270)

with an unknown initial condition. The function yp(w,t — 6) can be expressed as

kp
yp(wrt - 9) = Z Cnexne(t) (2.71)
n=1

We assume that y,,(t,8), the unmodeled part of the output function, is a low level broad band
noise.

We add the disturbance states z14c(t), - - . , Tmac(t) and z1¢(t), . . . , Zx,e(t) to the state z(t) and form
an augmented state variable z,(t). We can write down the following augmented state-space model
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describing the dynamics of the k; most active flutter modes and the effect of disturbances on the

output and state: :
Zq(t) = Aaza(t) + Bav(t) + eazult)
ya(t) = Cama(t) + €ayu (t):

where e,z4(t) and egyy () denote the broad-band components of the state and output disturbances
(we skip the details of straightforward contruction of the augmented system matrices).

Note that the system (2.72) is not controllable, as we do not assume that we have any actuation
authority over the part of the system that models the disturbances. Therefore, we can only attempt
to place the eigenvalues of the system corresponding to the flutter modes. If the full state of (2.72)
were available for measurement, we would use a feedback law of the form v := —K,z,, where K is of
the form K, = [K 0] and K is chosen so that the eigenvalues of the matrix A — BK are placed in the
desired position. This can be achieved, as it follows from the Hautus criterion that the pair (4, B) is
controllable since the flutter modes are separated in frequency. Note that the matrices A and B are
block-diagonal. Hence, one can use a block diagonal feedback gain matrix K and separately place the
eingenvalues of particular flutter modes. As we noticed, the state of the flutter modes is not directly
available. However, one can use an observer state instead of the actual state for feedback.

(2.72)

2.5.5 Observer-based control of fAutter

The main reason for incorporating the unknown disturbances into the state of the system is to re-
construct them along with the state of the flutter dynamics and filter out in this way the state of
the flutter modes of interest. This state can be used for designing a full state feedback and achieve a
prescribed level of damping of the flutter modes.

To verify if the augmented system (2.72) is observable one can use the Hautus criterion of observ-
ability [29]. The latter says that (2.72) if and only if the matrix

Al - A, |
10 arm

has a full column rank VA € o(A,), where o(-) stands for the spectrum of a matrix. Note that the
matrix A, is block-diagonal. Thus, its spectrum is the collection of spectra of the matrices on the
diagonal. One can easily see that as long as the flutter frequencies do not coincide with multiples of
the rotor frequency, the system is observable even from a single sensor. .

In the sequel we assume that the multiples of the rotor frequency are separated from the frequencies
of the flutter modes, so that the pair (C,, 4,) is observable.

An observer used to reconstruct flutter modes [29] has the form

Zo(t) = Agda(t) + Bova(t) + L(wa(t) — a(t))

g(t) = Caialt), (2.74)

with the observer gain matrix L chosen so that the observer error converges to zero. Let #(t) :=
Z4(t) — £4(t) denote the error of observation. The error dynamics is given by

Zo(t) = (Aa— LCu)Ea(t) — Leayu(t) + eazult). (2.75)

To guarantee the convergence of the observer error to zero, the matrix L has been chosen such that the
matrix Az — LC, has all eigenvalues with negative real part. Since the pair (C,, 4,) is observable, the
eigenvalues of A, — LC, can be assigned arbitrarily. By choosing the eigenvalues far enough from the
imaginary axis one can make the observer error decaying arbitrarily fast. However, this requires high
values of the entries of the observer gain matrix L. Since the unmodelled part of the measurement
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noise eqyy(t) affects the error dynamics (2.75) through the matrix L, a high gain observer is going to
have a significant response to the measurement noise. Therefore, one has to choose the eigenvalues of
the matrix A, — LC, carefully, balancing the rate of the observer error decay with the sensitivity to
output noise. .

One can design a feedback controller for the system (2.72) in a form of a full-state feedback
va(t) = =K,%,(t), where K, = [K 0] is chosen so that the eigenvalues of the matrix A — BK
corresponding to the flutter modes have a prescribed level of damping [29]. Since the full state of
(2.72) is not accessible for a direct measurement, one uses the state of the observer (2.74) in place
of the state of (2.72) in the feedback law. i.e., v,(t) = —K,%,(t). The state equations of the system
consisting of an interconnection of the system (2.72) and the observer (2.74) are

q(t) ] _[ A, -B.K, Hxa(t)] N
$a(t) | 7 | LC: Aa— BoKo—LC, || 24(2)

é ] Caza(t) + [ g } eayult).

The Separation Principle says that the set of eigenvalues of the overall system (2.76) is a union of the
eigenvalues of the observer error matrix A, — LC, and the eigenvalues of the matrix A, — B,K,. In
turn, the set of eigenvalues of A, — B, K, is the union of the eigenvalues of A— BK and the eigenvalues
of the modelled disturbance modes. '

(2.76)

2.5.6 Flutter control experiments

Experiments with observer-based flutter control on 17”-fan test rig shown in Figure 2.13 . The rig has

Figure 2.13: 17" fan experimental rig

one fan stage with sixteen blades on a rotor powered with an external air turbine and one row of exit
guide vanes on a stator. Variable fan exit area is controlled via translating throttle plug. By reducing
the throttle area one increases the incidence angle of the air approaching the blades and thus reduces
damping of stall flutter modes. The control system is shown in Figure 2.14. We used two or one eddy
current sensors to measure the blade displacement in the stationary frame and ten speakers mounted
in cavities located around the fan casing as actuators. All control experiments reported here done at
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Figure 2.14: Flutter control system schematics

the rotor frequency 150 Hz (9000 RPM). Most expreriments were done at the most stable operating
point at wide open throttle and some closer to flutter boundary.

The goal was to demonstrate that we can add significant amount of dampmg to the lightly da.mped
flutter modes. The goal was achieved for the least stable fan flutter modes with nodal diameters 0, 1,
and 2.

We identified the parameters of the real valued 2-nd order state-space models for the flutter modes
0, 1, and 2 from a sine sweep experiment. For nodal diameter 0 we assumed model given by equation
(2.63). For the nodal diameters other than 0 we assumed model given by equation (2.60). We used
a Matlab script that first fitted a 2-nd order transfer function (with two poles and one zero) to the
experimentally obtained transfer fucntion from a spectral analyzer and then obtained an appropriate
state-space realization. For nodal diameters n = 1 and n = 2 we used forcing with a standing wave
. cosine. pattern, i.e., the input @, R( )- In this way we identified the matrices Cpg (for two values of
6), An, and the ﬁrst column of the matrix B,,. The matrix A, was forced to be in the (modal) form
(2.59). The second column of B, was obtained from the first one.

Figures 2.15, 2.16 and 2.17 show the Bode plots from a sine-sweep experiment and the correspond-
ing 2-nd order fits for flutter modes with nodal diameters n = 0, n = 1, and n = 2. The fits and models
are obtained independently for each of the eddy current sensors (denoted DT'1 and DT'2, respectively).

Note that the 2-nd order transfer function fits to experimental data are good near the flutter
frequency (i.e., the frequency at the resonant peak of the magnitude), but there is an increasing phase
error away from the flutter frequency. Ass we will see, this phase mismatch represents unmodeled
non-minumum phase dynamics that will somewhat limit performance of the control scheme based on
the 2-nd order model.

Several observer-based schemes we tried in flutter control. Some of them used both sensors and

48




DT1/source DT2/source

03 oah . o A e
. ozs|
0.2 0.2 e OOV S SR
0.15 0.45F
0.1 04b i
0.05 : : : 0.05} - e AR RN
260 265 270 275 280 260 265 270 275 280
phase . phase

-50

-100

260 265 270 275 280 260 265 270 275 280

Figure 2.15: Bode plots for flutter mode n = 0. Experimental data and 2-nd order fits.

some of them used just one sensor. Number of flutter and disturbance modes also varied. All observers
had a constant disturbance states (denoted dc) and from one to four pairs of the states modelling
periodic disturbances at the multiples of the rotor frequency (denoted le, 2e, etc.). The available
processor speed limited the number of observer states that could be used for control.

Each observer was designed in the form (2.74), with the gain matrix L chosen by specifying the
damping of the observer poles. The specified observer damping was about twice the value of the desired
damping of the flutter mode of interest, except for the dc states, which had much higher damping.
The control law was a linear feedback from the observer state. Only the (estimated) flutter state was
used for control. The feedback was designed to augment the damping of the flutter mode of interest
to the desired level without changing its fréquency.

The amount of damping added to particular flutter modes was obtained from a sine-sweep ex-
periment. Bode plots for open and closed-loop systems were obtained. Since the 2-nd order transfer
function fits were not acurate enough (see Figures 2.15, 2.16 and 2.17 ) to get a good estimate of
damping, 4-th order transfer functions were fitted instead. The 4-th order fits were very good for 0-th
and 1-st nodal diameter flutter modes, and reasonable for the 2-nd nodal diameter flutter mode.

The 0-th flutter mode was the least stable mode on 17-inch fan rig. At the most stable rig operating
point the open-loop logarithmic decrement was o = 0.018. The control scheme that achieved the
biggest damping increase used only one DT sensor and was based on model with 7 states: 2-nd order
models of the 0-th and 1-st flutter modes, 1-st order model of the d¢ bias of DT'1 sensor, and a 2-nd
order model of 2e signal. The closed-loop logarithmic decrement achieved was dp = 0.21.

Figure 2.18 shows open and closed-loop Bode plots for the plant and the 4-th order transfer function
fits. ‘

Figure 2.19 shows the spectral content of the time traces of one actuator, strain gauge on a blade,
and DT1 (time difference between actual and expected blade arrival) signal. The frequency of the
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Figure 2.16: Bode plots for flutter mode n = 1. Experimental data and 2-nd order fits.

0-th flutter mode (about 273 Hz) is shown by a circle. The first three multiples of the rotor frequency
(150 Hz) are marked by crosses. Note that the actuator has a strong component at the (unmodeled)
le frequency, but no component at the (modeled) 2e frequency, even though there is a strong 2e signal
in the DT'1 signal. This illustrates the benefits of estimating the periodic disturbances at multiples
of rotor frequency using an observer. Essentially, the periodic disturbance observer provides a notch
filter in the transfer functions from blade arrival time difference to the speaker command. Adding
more models of the periodic disturbances with muliples of the rotor frequency to the observer reduces
the actuator energy waisted for response in that frequencies.

The 1-st flutter mode was the second least stable mode on 17-inch fan rig. At most stable rig
operating point the open-loop logarithmic decrement was §; = 0.028. The control scheme that achieved
the biggest damping increase used both DT'1 and DT?2 sensors and was based on model that had 8
states: 2-nd order models of 0-th and 1-st flutter modes, dc estimates for DT'1 and DT?2 sensors, and
a 2-nd order model of 2e signal. The closed-loop logarithmic decrement was §; = .153. Figure 2.20
shows open and closed-loop Bode plots for the plant and the 4-th order transfer function fits.

The 2-nd flutter mode was the third least stable mode on 17-inch fan rig. At the most stable rig
operating point the open-loop logarithmic decrement was 6; = 0.037. We used both DT1 and DT?2
sensors. The model used for observer design had 10 states: 2-nd order model of 2-nd flutter mode,
dc estimates for DT'1 and DT?2 sensors, and 2-nd order models of 3e, 4e, and 5e disturbance signals.
The closed-loop logarithmic decrement was d; = .174. Figure 2.21 shows open and closed-loop Bode
plots for the plant and the 4-th order transfer function fits.

Figure 2.22 summarizes achieved damping augmentation.

We tested an observer-based controllers designed at the most stable operating point at the rotor
frequency of 9000 RPM for the throttle position very close to the stability boundary of the n = 0
flutter mode. Figure 11 shows the open and closed-loop Bode plots and damping estimates. The
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Figure 2.17: Bode plots for flutter mode n = 2. Experimental data and 2-nd order fits.

controller worked well. This was expected, as the phase of the frequency response of the 0-th flutter
mode did not change much as one closed the throttle. ‘

At the same operating condition (close to the O-th flutter mode stability boundary) we conducted
a control off/on/off experiment. Figure'2.24 shows 10-second time traces of one of the actuators, a
strain gauge on a blade, and DT1 signal. One can see a significant decrease in the blade stress and
blade tip movement due to 0-th flutter mode when the feedback loop is closed. Figure 2.25 shows the
spectral content of these time traces when control was off and on, respectively. Note the disappearance

of a sharp peak at 273 Hz at both the strain gauge and the blade arrival time difference signal spectra
when control is on.

2.5.7 Experimental results: comments on model mismatch effect

The amount of damping augmentation achieved for the flutter modes with nodal diameters 0, 1, and
2, was significant. A prediction based on the 2-nd order models was that even more damping could
have been achieved simply by increasing the controller gain. However, in experiment we noticed that
there was an upper bound on the damping augmentation. As we were increasing the gain, the plant
frequency response for all flutter modes consistently showed a magnitude plot with two resonant peaks,
characteristic to a 4-th order system. Indeed, the 4-th order transfer function fits (with 4 poles and
3 zeros) to the experimental transfer functions were excellent over 40 — 50 Hz frequency band around
the resonant peak for both open-loop and closed-loop plants for all values of the controller gains that
we tried. For each open-loop flutter mode the four-pole pattern was similar. There were two complex
conjugate pairs of poles with a similar frequency. One pair was located near the imaginary axis, more
or less at the location of the poles of the second order fit. The other pair of poles was located further
away. Our interpretation was that the less damped pair of poles represented the flutter dynamics,
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Figure 2.18: Open-loop and closed-loop Bode plots for flutter mode n = 0. Experimental data and
4-th order fits. dp: open-loop 0.018, closed-loop 0.21.

while the more damped extra pair of poles, together with an acompanying pair of zeros, accounted
for the actuator dynamics and all sources of delay in the loop. It is important to note that we do
not associate any direct physical meaning with the ”actuator” poles and zeros. Rather than that, we
interpret them as a narrow band bulk model of the phase mismatch between the experimental transfer
functions and the 2-nd order fits, with the actuator phase rolloff being the major factor in that roloff.

As we increased the controller gain the poles moved towards each other, the flutter mode gaining
stability and the actuator pole loosing stability. As a measure of the damping of the system we used
the damping of the least damped pole in the 4-th order transfer function fit to the experimental
transfer function. The optimal damping was achieved as the two pairs of poles nearly met. As we
kept increasing the gain from this optimal value, the poles started to move away from one another,
and one of the modes kept loosing stability.

Figure 77 show the experimetally obtained open-loop and closed-loop Bode plots for 1-st flut-
ter mode and the corresponding 4-th order fits for 6 values of the controller gain k (with k = 0
corresponding to open-loop plant). The implemeted modal control was of the form

u1r(t) Z1r(t)
t):=| - =kKi| ", 2.77
v1(t) [ t1s(t) ] 1 [ #11(8) ( )
where 15 and £11 were the observer states corresponding to the 1-st flutter mode, K; was a fixed
feedback matrix. The optimal value for the gain k that acheieved largest damping augmentation was
around k = 0.003. For the value of gain higher than the optimal gain the familiar peak-splitting
occured. This points out to non-minimum phase effects (actuation and flow delays).

It was important to verify that the 4-th order model would explain the root-locus behavior seen
in the experiment. We simulated the controller based on 2-nd order model applied to the 4-th order
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Figure 2.20: Open-loop and closed-loop Bode plots for flutter mode n = 1. Experimental data and
4-th order fits. §;: open-loop 0.028, closed-loop 0.153.

‘model of the 1-st flutter mode (the one that showed the biggest phase mismatch between the 2-nd and
4-th order transfer function fits to the experimental one). We plotted the corresponding root locus as
well as the 6 flutter-actuator pairs of eigenvalues obtained from the 4-th order transfer function fits.
One can see a qualitative agreement between the two root-loci.
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