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AFIT/GAE/ENY/04-J09 

Abstract 
 
 
 Lattice grid fins have been studied for missile tail control for several years.  A 

lattice grid fin can be described as an unconventional missile control surface comprised 

of an outer frame supported by an inner lattice grid of lifting surfaces.  This 

unconventional fin design offers favorable lift characteristics at high angle of attack as 

well as almost zero hinge moments allowing the use of small and light actuators.  In 

addition, they promise good storability for potential tube-launched and internal carriage 

dispenser-launched applications.  The drawback for the lattice grid fins is the high drag 

and potentially poor radar cross section performance produced by this unconventional 

control surface configuration. 

 Current research at the United State Air Force’s Aeroballistic Research Facility 

(ARF) at Eglin Air Force Base in Florida has indicated there is a critical transonic Mach 

number where normal shock waves are believed to be present within some of the grid 

cells.  At this particular Mach number, there is a dynamic instability with severe 

variations of the pitch moment coefficient.  A computational fluid dynamics (CFD) study 

was conducted to investigate these findings and elucidate the flowfield in the grid fin 

region.  The missile model was numerically modeled in Gridgen and computational tests 

were run in Fluent.  Finally, another fin configuration was developed that produced less 

drag and similar dynamic stability than the other lattice grid fin configurations tested.
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AERODYNAMIC ANALYSIS OF LATTICE GRID FINS IN 
TRANSONIC FLOW 

I: Introduction 
 

Lattice Grid Fins 
 

Lattice grid fins are a relatively new aeromechanic technology for missile tail 

control.  A lattice grid fin is an unconventional missile control surface with an outer 

frame supported by an internal lattice grid of lifting surfaces.  A recent example of the 

use of lattice grid technology is with the Massive Ordnance Air Blast (MOAB) weapon 

shown in Figure 1.  Dynetics has been developing lattice- or grid-fin technology during 

the last decade.  The fins were designed for a wide range of air- and surface-launched 

weapons and can endure speeds up to Mach 4-5. The fins could also help slow fast-

moving weapons to speeds at which they can launch submunitions. (1) 

            

Figure 1: Massive Ordnance Air Blast (MOAB) Missile 
 

Figure 2 details multiple types of lattice grid fins.  The design of these grid fins 

allow an effective aerodynamic control device stowed along with the body of a missile 

without increasing the overall dimensions.  Therefore, the fin promises good storability 

for potential tube-launched and internal carriage dispenser-launched applications.  The 
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internal grid structure, which forms a webbing for a tail fin, provides a high strength to 

weight ratio compared to planar fins that can be quite large.  This, in turn, allows for the 

fins to have advantages of a low hinge moment and higher control effectiveness at a 

supersonic Mach number as well as at a low subsonic Mach number.(2) Therefore, the 

use of small and light actuators can be used for the lattice grid fin missile.  Another major 

attractiveness of the lattice grid fin is that it does not stall at high angle of attacks such as 

a conventional fin does. 

 

        Figure 2: Example Lattice Grid Fins (3) 
 

The major disadvantage of lattice grid fins is the increased axial force (drag) 

compared to conventional fins.  This is a major issue that will be studied and alleviated in 

this paper.  Another disadvantage of a lattice grid fin is its potentially high radar cross 

section (RCS) caused by the “resonance of a lattice dimension with the radar 

wavelength.” (2)   
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Figure 3 compares the characteristics of two typical fin types (all movable surface 

and movable flap) with a lattice grid fin.  Except for radar cross section, a lattice grid fin 

works very well with supersonic missiles.  One can see that the lattice grid fin out-

performed the two other fins in control effectiveness and hinge moment, but did worse in 

drag and RCS. 

 

Figure 3: Characteristics of Different Missile Tail Types (2) 

 

Previous Wind-Tunnel Research 
 
 Lattice grid fins are unconventional tail fins that have been studied over the past 

decade.  Most of this research has been done in the fully subsonic or supersonic range, 

and not in the transonic realm. 

 Early tests (around 1993) include those done by U.S. Army Aviation and Missile 

Command (AMCON), formally know as the U.S. Army Missile Command, in order to 
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compare results to conventional planar fins at a Mach range of 0.5 to 3.5.  After studying 

two basic lattice types, they concluded that grid fin hinge moments were extremely small, 

and the normal force and root-bending moments are comparable to planar fins of similar 

size.  But, as expected, the axial forces or drag characteristics are greater than planar fins 

with comparable normal forces or lift characteristics. (4) 

 At the same facility, AMCON tested the leading edge profiles (flat, convex, and 

concave) with respect to the freestream direction.  Their main results indicated the effects 

of the curvature on grid fin aerodynamic characteristics are negligible.   They also tested 

the sweep of the grin fin with respect to the missile.  They found that the grid fin sweep 

causes a sharp increase in drag and a decrease in lift causing static stability to decrease. 

(5) 

 AMCON next tested the effect of frame cross-sectional shape as well as web 

thickness on drag and other forces.  Their test results yielded significant changes in drag 

characteristics at all Mach numbers tested, but that normal force (lift) and hinge moment 

characteristics showed small changes. (6) 

 Another group conducting wind tunnel tests was the Defence Research and 

Development Canada (DRDC) at Valcartier, formally known as the Defence Research 

Establishment Valcartier in Canada.  The focus of their investigation was the comparison 

of lattice grid fin and conventional planar fin control surfaces.  The fins were tested over 

a Mach range of 0.5 to 3.0.  The results demonstrated an increased drag or axial force, 

reduced lift or normal force, and a reduction in static stability for the grid fins over the 

conventional planar fins.  This is similar to results shown by the AMCON. (7) 
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Previous Computational Modeling 
 
 The U.S. Army Research Laboratory (ARL) conducted a research study using 

computational fluid dynamics (CFD) analysis of grid fins for maneuvering missiles.  The 

calculations were made at a Mach number of 2.5, and performed at several angles of 

attack.  They had three test cases: no fins, planar fins, and grid fins.  When performing a 

viscous solution, the lift or normal force results were 11 % off the experimental test data.  

While, the drag was only 6.5% off from experimental test data.  When the inviscid case 

was run, the forces were within 18% of wind tunnel data. (8) 

 Viscous calculations were continued by ARL to extend to aerodynamics of lattice 

grid fin missiles in the supersonic flow regime.  This time results were obtained at Mach 

2 and 3 at a range of angles of attack from -15 to 15 degrees.  The results yielded good 

agreement among the lift or normal force and drag or axial force coefficients (around 8% 

error), but only reasonable results for pitching moment (16-27% error).  At these Mach 

numbers, they experienced the same flowfield as with experimental tests. (9) 

 The ARL then extended their research to a CFD investigation of canard-

controlled missiles with planar and lattice grid fins.  CFD runs were made at Mach 1.5 

and Mach 3 at various angles of attack from -15 to 15 degrees.  The results were very 

similar to previous wind tunnel tests.  They did conclude from this study that the grid tail 

fins improved the roll effectiveness of the canards at low supersonic speeds. (10) 

 Since the lattice grid fin was examined at supersonic speeds, the next test by the 

ARL was to examine how subsonic flow affects the canard-controlled missile with planar 

and lattice grid fins.  Computations were done at a Mach number of 0.6 at various angles 

of attack from -15 to 15 degrees.  These results were validated by comparison of 
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aerodynamic coefficients from previous wind tunnel experiments.  These simulations will 

help ARL with further design of missile tail and control surfaces. (11) 

 DRDC-Valcartier in Canada also performed a comprehensive CFD investigation 

to see if lattice grid fins are efficient control surface devices.  They studied the 

aerodynamic effects of a fairing ramp at the base of the grid fin as well as various 

thicknesses of grid fin webs of the panels.  They found out that the fairing actually could 

increase the performance of the lattice grid fin by reducing the vertical flow at the base of 

the grid fin.  Also, they believed that the increased thickness of the grid fin panels caused 

an increase of bow shocks in front of the grid fin; therefore adversely impacting 

performance. (12)  This bow shock can be shown in the ARF shadowgraph shown below 

in Figure 4. 

 

Figure 4: GTCM at Mach 1.03 at ARF (13) 

Current Research Objectives 
 
 Ballistic range tests of a lattice grid fin missile have been conducted at the U.S. 

Air Force Aeroballistics Research Facility (ARF) located at Eglin Air Force Base in 
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Florida.  They have documented sub-scale ballistic range flight tests of generic missile 

configurations with lattice grid fins at Mach numbers of 0.39 to 1.60  This data indicates 

that there is a critical transonic Mach number where normal shock waves occur in some 

or all of the grid cells with resulting choked flow.  At this critical Mach number, there are 

dynamic instabilities with severe variations in pitching moment. 

 To help address the issues of instability and examine the grid fin flowfield, a 

numerical model was produced very similar to the model tested at the ARF and a CFD 

analysis was done.  This investigation helped elucidate flowfield development and 

associated phenomena as seen in the ARF ballistic range flight tests.  The CFD study was 

conducted at the Air Force Institute of Technology (AFIT) at Wright-Patterson Air Force 

Base in Ohio.  Tests concentrated on the transonic regime; the location where lattice grid 

fin choking occurs during experimental tests.  The effects of changing the angle of attack, 

as well as some of the static stability effects due to pitch were investigated and reported. 

 To further investigate lattice grid fins and attempt to alleviate drag forces, a CFD 

study was done on different lattice grid configurations.  The overall dimensions of the fin 

stayed the same, but the internal webbing geometry was changed.  The flowfields of these 

configurations were investigated with the static stability effects due to pitch as well as 

axial and normal forces; and are compared to the original lattice grid fin configuration 

tested at the ARF. 

Chapter Summary 
 
 Lattice grid fins have been studied for multiple years, and this research 

investigated the usefulness of lattice grid fins as an effective control surface for missiles.  

The next chapter (Chapter 2) will discuss the experimental research done at the ARF at 
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Eglin Air Force Base and 1-D choking theory.  Chapter 3 will discuss the numerical 

modeling stages of the sub-scale model used for these lattice grid fin tests.  After the 

modeling, the discussion of the results and an elucidation of the flowfield will be done 

from CFD runs.  Figures 5 and 6 are two shadowgraphs that illustrate the flowfield 

discussed in the results section.  Lastly, Chapter 5 will give a brief conclusion as well as 

suggestions for future CFD research for lattice grid fins. 

 
Figure 5: GTCM at Mach 0.86 at ARF (13) 

  
Figure 6: GTCM at Mach 1.62 at ARF (13) 



 9

 II: Background and Theory 
 

Free-Flight Testing of Missiles with Lattice Grid Fins 
 
 Previous tests with lattice grid fins (dimensions in Table 1) have been conducted 

at the USAF Aeroballistic Research Facility (ARF), Air Force Research Laboratory, 

Munitions Directorate, Eglin Air Force Base, Florida.   

“The ARF is an enclosed, concrete structure used to examine the ballistics of various 

free-flight projectiles.  The length of the instrumented range was 207 meters with a 3.66 

meter square cross section for the first 69 meters and a 4.88 meter square cross section 

for the remaining length.  The range has 131 locations available as instrumental sites; 50 

of which currently house fully instrumented orthogonal shadowgraph stations.” (13)   
 
 

Table 1: Model Physical Properties (13) 

Configuration Basic Research Model GTCM Grid Fins GTCM Planar Fins 
Diameter, mm 25.4 25.4 25.4 
Length, mm 254.0 406.4 406.4 
Mass, g 379.4 654.3 646.0 
Ix, g cm2 324.0 504.0 501.0 
Iy, g cm2 20,396.0 91,264.0 89,246.0 
CG, mm from Nose 133.5 193.6 191.8 

 

Besides the shadowgraph stations, the facility contains one direct shadowgraph 

station for the flow field visualization.    

“This station is located up-range of the instrumented section.  The range has the 

temperature controlled to 22  + degree C as well as the relative humidity to less than 

55%.  A chronograph system provides the times for the projectile at each station.  Taking 

together the time, spatial position, and orientation of the model taken from the orthogonal 

photographs provide the basic trajectory data from which their aerodynamic coefficients 

are extracted.” (13) 
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 The first tests done by ARF using three geometries: US Air Force Basic Research 

Model with grid fins (Figure 7), Generic Tail Control Model (GTCM) with grid fins 

(Figure 8), and GTCM Model with planar fins (Figure 9).  Table 1 gives the physical 

properties for the model configurations. 

 

Figure 7: USAF Basic Research Model (13) 

 

Figure 8: GTCM Model with Grid Fins (13) 

 

Figure 9: GTCM Model with Planar Fins (13) 
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 The US Air Force Research Model was used because of previous research with 

this type of fin.  The GTCM model with grid fin was used “in an effort to bring together 

different research activities on grid fins.” (13) Lastly, the GTCM Model with planar fins 

was tested to compare with the lattice grid fin models.  The lattice grid fin models were 

made using an electrical discharge machining (EDM) process.  For the grid fin webs, the 

required thickness was 0.125 mm.  However, the thickness of the webbing varied from 

0.125 mm to 0.175 mm. (14)   

 

Figure 10: GTCM Shadowgraph-Mach 0.879 (14) 
 
 In observing only the GTCM model with grid fins, the highly complicated flow 

can be observed in various shadowgraphs.  The shadowgraph in Figure 10 demonstrates 

the shocklets produced at Mach numbers below Mach 1.  However, the flow structure for 

speeds above Mach 1 can be seen in Figure 11. (14)  Shock 1 is the stand-off shock and 

attaches to the nose at Mach 1.17.  Shock 2 is a very weak shock that occurs from the 

transition from nose to body.  Shock 3 is formed in the front of the lattice grid fin.  Shock 

4 (a,b, and c) are formed by the flow through and around the fins at different Mach 

numbers.  Lastly, shock 5 is a shock from the recompression of the flow behind the 

missile’s base.  
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Figure 11: Flow around Missile with Mach Number Greater than 1 (13) 
 
 For the aerodynamic coefficients, all coefficients and derivatives have a reference 

length of the model diameter (d) and the reference area is the cross sectional area of the 

model (A=π/4*d2).  The following figures will show the difference between the planar 

and lattice grid fins.  The planar fin data is mostly shown with a trend-line determined via 

the PRODAS (15) program, an aerodynamic prediction code. Because the planar data fit 

on the trend line, fewer shots were needed for comparison purposes. 

 The zero yaw axial force coefficient (CXo) versus Mach number can be seen in 

Figure 12.  The filled in symbols represent multiple shots at a given mach number.  A 

trend-line was set for the lattice grid fin model, and the PRODAS trend line was used in 

the planar case.  As expected, there is an increase of drag for the lattice grid models 

versus the planar model.  The estimates came to a 100% increase in the subsonic regime 

as well as a 67% increase in the supersonic regime.  
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Figure 12: Axial Force Coefficient: Planar vs. Grid Fin (14) 
 

The pitching moment coefficient (Cmα) versus Mach number can be seen in Figure 

13.  The trend of the grid fin data is very similar to that of the planar fin data.  But, there 

was a constant decrease of stability for this type of configuration.  It is interesting to note 

the discontinuity that occurs at Mach 0.77.  This Mach number was tested many times 

and the discontinuity is not attributed to measurement error.  There is also a loss of static 

stability margin at Mach numbers from 1.2 to 1.6. 
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Figure 13: Pitching Moment Coefficient: Planar vs. Grid Fin(14) 
 
 The next sets of tests that were taken at the ARF involved different lattice grid fin 

geometries.  They first used the baseline fin model used in previous tests.  Next, they had 

a ‘thin’ fin model which had a web thickness at 0.004d compared to 0.007d for the 

baseline model.  Finally, a ‘coarse’ fin model was produced with an elimination of some 

of the webbing.  Figure 14 shows the comparison among the three types of lattice grid 

fins tested. 
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Figure 14: Lattice Grid Fins Tested at ARF (16) 

 

 When calculating the results, the reference length is from the model diameter (d) 

and the reference area is the cross section area of the model (A= π/4*d2).  The zero yaw 

drag coefficient (CXo) versus Mach number flight data can be seen for all the 

aerodynamic coefficients and derivatives in Figure 15. The drag data indicates a 

reduction in drag of 16% for the ‘thin’ fin lattice grid and a 22% reduction for the 

‘coarse’ fin lattice grid.  The authors believed this to be true because drag is ‘directly 

related to the thickness of the webs and the number of webs present.” (16)  
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Figure 15: ARF Lattice Grid Fin Axial Force Coefficients(16) 
 

 Figure 16 contains the pitching coefficient derivative (Cmα) ARF data as a 

function of Mach number.  As seen before, there is a discontinuity at a certain transonic 

Mach number.  But, this time it occurred near Mach 0.8, not 0.77 as before with the 

baseline model. 

From these experiments, the authors concluded that choking occurs in the lattice 

grid fins at a critical transonic Mach number for any of the grid fin configurations.  This 

choking causes some temporary instability of the missile flight dynamics, even though 

the Mach range of this instability seems to be quite small. 
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Figure 16: ARF Lattice Grid Fin Pitching Moment Coefficient Derivative (16) 

 

Choking Theory 
 
 When determining the choking qualities that are seen with the lattice grid fin 

configurations, one can see similarities with subsonic inlets.  Subsonic inlets have been 

studied for many years and have documented occurrences of choking phenomenon for 

them.  Figure 17 shows a typical streamline pattern for a subsonic inlet.  Because the 

capture area difference is so large, some of the flow is deflected and accelerated as it 

flows over the inlet lip; this phenomenon is called ‘spill over’. (17)  This high velocity 

and accompanying low pressure effects the boundary layer in two ways: boundary 

separation or partially supersonic flow could occur. (18)  These local supersonic regions 

usually develop shocks, and the shock-wall interaction causes boundary layer separation.  

This boundary layer separation needs to be avoided because the presence of the 

separation causes excessive external drag on the body. 
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Figure 17: Subsonic Inlet Streamline Pattern(18) 
 
 This can be related to a lattice grid fin with a relatively short chord length when 

compared to an inlet.  Similarly to a subsonic inlet, the lattice grids in the fin act like 

capture areas where each cell is like an inlet and the flow is spilled over the exterior of 

the lattice grid fin.  Figure 18 shows the transition the flow field experiences when going 

transonic and then supersonic.  It can be noted numerous reflection of the slightly greater 

than normal oblique shocks in a grid cell occurs at low supersonic Mach numbers which 

significantly increases drag.  But, the oblique shock angle increases and pressure jumps 

decreases in strength as the Mach number is increased and this shock does not reflect in a 

grid cell.  This led Fleeman to conclude that “lattice [grid] fins have their best application 

at low subsonic and high supersonic Mach number, where they have low drag and high 

control effectiveness.” (2) 
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Figure 18: Transonic and Supersonic Lattice Grid Fin Flowfield Streamline and 
Shock Pattern (2) 

Numerical Theory 
 
 The theory for inlets and internal flow can be extended to the lattice grid fins 

because of the similar flow qualities that are occurring.  For analytical calculations, it is 

easy to use the quasi-one-dimensional nozzle theory with choked flow to predict a critical 

transonic Mach number where choked flow may occur.  This compressible flow theory 

relationship is as follows (19): 
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 This equation can be easily applied to a lattice grid fin geometry by considering 

the area ratio to be the ratio between the nominal area in the control volume upstream of 

a cell of the lattice grid fin and the open area around the cell.  Once this area ratio is 

determined, the critical Mach number for each lattice grid fin geometry can be evaluated.  



 20

A correlation then can be made with the observed critical Mach numbers in the ballistic 

tests. 

 The nominal area for the control volume was assumed to be the width of the open 

area of the square lattice grid cell plus one span of the thickness of the webbing as shown 

in Figure 19.  Note that in 1-D ‘area’ is essentially a single dimension and that the area is 

always assumed to be a squared term for unit depth. 

 

 

Figure 19: Cell Area Dimensions for 1-D Theory 
 
The open area is simply the open area in the square lattice grid fin cell.  In terms of the 

equation given for the lattice grid control parameter above, the area ratio is defined as 

follows: 
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 The following table (Table 2) shows the analytical estimates and experimentally 

observed data for critical transonic Mach numbers and choked flow.  As one can see, the 

difference between the analytical and experimental data was less than 3%.    This should 
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give confidence in making predictions of critical transonic Mach number for other lattice 

grid fin geometries. 

 

Table 2: Critical Transonic Mach Numbers for Lattice Grid Fin Cell Choking 

Configuration d t *AA MCritical MCritical (Test) % Off 

Baseline 0.1109 0.007 1.13 0.7487 0.77 -2.8 
Thin 0.1139 0.004 1.071 0.8077 0.8 1.0 
Coarse 0.2288 0.007 1.062 0.8196 0.8 2.45 

 

Chapter Summary 
 
 Extensive experimental research has been done at the USAF ARF on lattice grid 

fins by analyzing the stability conditions as well as the drag data with different lattice 

grid fin geometries.  The issue of choking has been observed at certain critical transonic 

Mach numbers.  This can also be estimated by using 1-D compressible flow theory with 

the area ratio determining a critical transonic Mach number.  A computational fluid 

dynamics (CFD) model has been made in order to investigate the location of this critical 

transonic Mach number and the lattice grid fin flowfield as well predicting drag, static 

stability, and choking for other lattice grid fin configurations.     
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III: Numerical Modeling 

Gridgen 
 
 In order to produce the meshes for computational modeling, the software program 

called Gridgen was used.  Figure 20 shows an example of a numerical mesh done 

commercially using Gridgen.  

 “Gridgen is a complete meshing toolkit used to generate three-dimensional (3D) grids 

for complex geometries in a production environment, often where CFD is mission 

critical. The software's origins are in the demanding U.S. aerospace industry, where 

Gridgen continues to earn its reputation for usability and high quality grids, both of 

which are vital for reliable simulations. Today Gridgen is used worldwide in aerospace, 

automotive, power generation, chemical process and other industries for which CFD is an 

integral part of the design process.  The meshes that are generated by Gridgen are of 

highest quality that leads to more accurate and faster solutions.” (20)  

 

 

 

Figure 20: Apache Model Using Gridgen (20) 
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Missile Modeling 
 
 When producing a numerical model for comparison to the experimental tests done 

at Eglin AFB, the missile body had to be replicated as close as possible.  The dimensions 

were given by the ARF for the missile geometry in inches. With the help of Lt Col 

Montgomery Hughson at the Air Force Institute of Technology, this model was 

duplicated in Gridgen with the same dimensions.  Figures 21 and 22 compare the two 

models.  Note that the roll pin of the ARF model was not duplicated in the numerical 

model. 

 

 

Figure 21: Missile Dimensions at ARF (14) 
 
 

 

 

Figure 22: Missile Generated in Gridgen 
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 After building the numerical model of the missile tested at the ARF, the next step 

is to produce a mesh on the missile body.  The mesh chosen for this study was 

unstructured because the initial computational study was going to be in the inviscid 

realm.  The body then was split up into three sections: nose, body, and tail.  An 

independent mesh was generated for each section because of their geometric differences 

and to allow for the ease of extracting aerodynamic coefficient data for each entity.  The 

number of mesh cells was chosen that produced the best results and had a fast run time.  

After doing a grid convergence study (in Appendix A), the number of cells for each 

section (as well as the fins) fit both of the characteristics listed above. 

 
Figure 23: Grid Generated on the Nose of the Missile 

 
The nose section contained the most amount of axial curvature compared to the 

other two sections.  Also, it was known that a shock will be located at the tip as well as at 

the transition to the body of the missile for supersonic freestream Mach numbers.  With 

this in mind, a total of 30 points were allocated for this 3 inch section.  Therefore, this 

gave a nominal grid spacing of 0.1 inches.  The cross section area of the nose located at 

the base contained 60 points.  This gave a nominal grid spacing of 0.05 inches.  Figure 23 

shows the unstructured grid on the nose of the missile. 
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 The missile body section was modeled next with the same cross-section spacing 

of 60 points.  The body extended to the 13 inch mark from the nose.  The rest of the body 

was contained in the tail section.  Axially, the missile body contained 60 points with a 

spacing of 0.2.  This spacing is increased from the nose spacing because the flowfield 

changes smoothly along the body of the missile.  Figure 24 below shows the unstructured 

grid located on the body.  

 

Figure 24: Grid Generated on the Body of the Missile 
 
 
 The tail section required different modeling techniques and more points than the 

body and the nose because of the importance of the aerodynamic data needed at this 

section of the missile.  The last 4.5 inches contained 30 points axially giving a spacing of 

0.15.  This spacing is greater than the nose, but only occurs at the greatest distance from 

the fins.  At the location of the fin and missile connection, there is a distance of 0.1179 

inches.  Here, 15 points were allocated for this very short distance for a spacing ratio of 

0.00786.  This is necessary in order to obtain data for the fin and body interaction.  Figure 

25 of the tail section shows how the cells from the fin increase in size as one travels away 

from the fin. 
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Figure 25: Grid Generated on the Tail of the Missile 
 

Baseline Lattice Grid Fin  
 
 The baseline lattice grid fin was the first type of fin tested by ARF.  Therefore, it 

was the first type of lattice fin modeled for computational fluid dynamic solution.  Once 

again, the dimensions (shown in Figure 26) came from ARF and were replicated in 

Gridgen which is shown in Figure 27.   

 

 

 

 

 

 
h (height)    0.333D 
s (span)    0.75D 
c (chord)    0.1179D 
d (vane spacing)   0.1109D (open area = d2) 
t (thickness)    0.005D 

(D=1 inch) 

 
Figure 26: Baseline Geometry 
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Figure 27: Baseline Lattice Grid Fin 
 

 The original baseline model used in testing had a range of thicknesses for the 

webbing (0.0047D to 0.0069D) compared to the desired value of 0.007D.  Therefore, it 

was convenient for numerical modeling to use 0.005D as the thickness of the webbing.  

Even with this decrease of thickness, there was a slight issue with the production of the 

numerical model; the webbing would not fit exactly in the outer shell.  This was caused 

by the inconsistent production of the sub-scale model for the ARF.  With this in mind, the 

numerical model was produced to best accuracy possible.  Except for the thickness of the 

webbing, all the other dimensions were kept the same. 

 The next step was to produce a mesh for the baseline lattice grid fin.   Because 

this study requires extensive information of the flowfield in and around the lattice grid 

fin, an extremely small mesh was made.  A total of 15 points were placed along the chord 
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of each webbing plate which made a spacing of 0.0222 inches.  The faces of the lattice 

grid fins had 60 points which produced a spacing of 0.0125 inches.   

Coarse Lattice Grid Fin  
 

The coarse lattice grid fin was the first type of fin investigated by ARF as a 

solution to the choking problem.  This was the next numerical model made for CFD 

analysis.  Just like before, the dimensions came from ARF as shown in Figure 28 and 

were replicated in Gridgen as shown in Figure 29.   

 

 

 

 

 

 

 

 

 

h (height)    0.333D 
s (span)    0.75D 
c (chord)    0.1179D 
d (vane spacing)   0.2288D (open area = d2) 
t (thickness)    0.005D 

(D=1 inch) 
 

Figure 28: Coarse Lattice Grid Fin Geometry 
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Figure 29: Coarse Lattice Grid Fin 
 

The coarse model, just like the baseline model, used in the experimental tests had 

a range of thicknesses for the webbing (0.0047D to 0.0069D) compared to the desired 

value of 0.007D.  This was caused by the inconsistent production of the sub-scale model 

for the ARF.  Therefore, it was once again convenient to use 0.005D as the thickness of 

the webbing.  With this in mind, this numerical model was also produced to best accuracy 

possible.  Except for the thickness of the webbing, all the outer dimensions were kept the 

same. 

The next step was to produce a mesh for the coarse lattice grid fin.   Just as with 

the baseline model, there was a requirement to have extensive information of the flow 

field in and around the lattice grid fin and an extremely small mesh was made.  A total of 

15 points were placed along the chord of each webbing plate which made a spacing of 

0.0222 inches.  The faces of the lattice grid fins had 60 points which produced a spacing 

of 0.0125 inches.  This is the same spacing as in the baseline model. 
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AFIT Lattice Grid Fin 
 

The Department of Aeronautics and Astronautics and this author have proposed 

lattice grid tail fin geometry called the AFIT Coarse Lattice Grid geometry with 

dimensions shown in Figure 30 to alleviate the choking problem.  It was tested and 

compared to numerical tests of the other two types of lattice grid fins tested at ARF. 

 

 

h (height)   0.333D 
s (span)   0.75D 
c (chord)   0.1179D 
d (vane spacing)  0.2288D (open area = d2) 
t (thickness)   0.005D 

(D=1 inch) 

 
Figure 30: AFIT Coarse Lattice Grid Fin Geometry 

 

          It is believed that the AFIT design would be better than the previous lattice grid 

fins because this layout doubles the area of the cells in the main body of the fin while 

retaining a similar shape.  This in turn would provide a smaller ‘solidity’ ratio.  As 

described by Hoerner (21), the solidity ratio (σ) is defined as the ‘ratio of the projected 

area, Ssolid, to the total area, Stotal’ and that the loss of flow momentum ‘through a 
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pervious or porous material is a function of shape and solidity ratio of the elements or 

ribs.’  This theory can be used directly with the analysis of drag characteristics for grid-

like devices.  The solidity ratio for the tested sub-scale models as well as the AFIT coarse 

design are shown in Table 3.   

 

Table 3: Solidity Ratios for Sub-Scale Lattice Grid Fins 

 
Configuration Total

Solid
S

S=σ  

Baseline 0.1722 ~ 0.2 
Thin 0.0984 ~ 0.1 
Coarse 0.0999 ~ 0.1 
AFIT Coarse 0.0901 

 

It is interesting to note that the solidity ratio for the thin and coarse configurations 

have the same solidity ratio; this could explain why the critical transonic Mach number 

was the same for those cases in the ARF tests. (16)  Because of the decrease in the 

solidity ratio for the AFIT coarse design by nearly 40% from the baseline model, it is 

reasonable to conclude that the critical transonic Mach number will be increased.  Table 4 

shows the calculation made from the area ratio Mach relation stated earlier.  It shows that 

the critical transonic Mach number would be increased from previously tested lattice grid 

fins.  The estimated error was made based on trends from earlier results with the baseline 

and coarse fins. 

Table 4: Critical Transonic Mach Number for AFIT Coarse Fin 

Configuration d t *AA MCritical MCritical (Test) % Off 

AFIT Coarse 0.2288 0.005 1.044 0.846 ~0.82 ~3 
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The AFIT coarse model shown in Figure 31 will be modeled the same as the other 

two lattice grid fins.  Therefore, it was convenient to use 0.005D as the thickness of the 

webbing for this model just like before.  The major difference will be the different 

webbing configuration as well as the elimination of the webbing near the base of the fin.   

 

Figure 31: AFIT Coarse Lattice Grid Fin 
 

The next step was to produce a mesh for the AFIT coarse lattice grid fin.   An 

extremely small mesh was made in order to capture the important flow information 

needed on and around the fin.  Just like the other two fins modeled, 15 points were placed 

along the chord of each webbing plate which made a spacing of 0.0222 inches.  The faces 

of the lattice grid fins had 60 points which produced a spacing of 0.0125 inches.  This is 

the same spacing as in the baseline model. 

Farfield 
 
 The last stage of numerical modeling was to produce an outer boundary (Farfield 

condition) for the extent of the numerical domain which would contain the aerodynamic 
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flow.  It must be located far enough away to completely contain all shocks and other 

discontinuities or the solution would not be as accurate.  When completing the grid 

convergence study, another finding was an appropriate boundary of the domain.  The 

chosen distance ahead of the missile was 11D with the height above and below the 

missile being 11D as well.  This allowed for the containment of the shock at the nose as 

well as the shock at the transition to the body.  At the rear of the missile, 20D was 

decided upon in order to capture the flow from the lattice grid fin and the rear of the 

missile.  The outer boundary was modeled with a smaller amount of points because it was 

not crucial to have detailed information at the uniform flow boundary.  A 2D cross 

section can be seen in Figure 32.  The total amount of cells of missile, tail, and farfield 

came to around 140,000 cells. 

 

Figure 32: Complete Numerical Model 

 



 34

 

Chapter Summary  
 
  Gridgen was the computer software used to generate the meshes for the sub-scale 

missile numerical model.  The missile body was modeled first to exact specifications with 

the mesh being sectioned into nose, body, and tail.  Next, the baseline fin was modeled as 

close to possible with the experimental model used at ARF.  An extremely tight mesh 

was generated in order to obtain important information from this section of the CFD 

analysis.  The coarse fin designed at ARF was modeled next and the same type of mesh 

was made as the baseline model.  Lastly, the AFIT coarse fin was designed, modeled, and 

meshed in the AFIT ENY department.  
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IV: Numerical Results and Analysis 
 
 

Fluent 
 
 In order to produce solutions for the numerical models, Fluent was the software 

program of choice.   

“Fluent is the world leading CFD code for a wide range of flow modeling applications. 

With its long-standing reputation of being user-friendly, Fluent makes it easy for new 

users to come up to productive speed. Its unique capabilities in an unstructured, finite 

volume based solver are near-ideal in parallel performance. To ensure that Fluent is ready 

to deploy right out-of-the-box, they put the program through a comprehensive program of 

industrial-strength testing.” (22)   

 

Because of the availability of Fluent at AFIT and the relatively small amount of time to 

complete this thesis for naval students, this commercial program was used instead of 

generating a unique CFD code for this situation.  The Department of Aeronautics and 

Astronautics has a 16-node, 32-processor Beowulf cluster for high performance 

computing and this platform was used along with Fluent run in parallel for the CFD 

study.  Complete details of Fluent can be found at their website in Reference 22. 

 A basic setup was used for all cases.  Fluent was set to use a coupled and implicit 

solver as well as ignoring viscous calculations for these initial design runs.  The ARF 

temperature was maintained at a steady level during the experimental tests (71 oF) and 

therefore was duplicated in the numerical runs.  The density during the numerical runs 

was set from the density provided in the baseline runs at ARF at nominally 1.2 kg/m3.  

These initial data allowed for a matching between the experimental tests and numerical 

runs as initial and boundary conditions.  
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Baseline Drag 
 
 As stated earlier, it is very important to obtain the axial or drag force produced by 

the lattice grid fin.  Even though the model was run with no viscous effects, correction 

factors were used to account for viscous drag and trends can be seen in the results of the 

inviscid numerical runs. 

 In order to account for viscous effects on the missile body, Fleeman developed a 

formula for the skin friction drag: (2) 
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In this equation, l is the length of the missile, d is the diameter of the missile, M is the 

Mach number, and q is the dynamic pressure.  The assumptions made when producing 

this equation was the body area can be approximated by the wetted area of a cylinder, the 

variation in the freestream speed of sound and viscosity with altitude is very small, and 

that there is a turbulent boundary layer.   

 Another approximation that was used to approximate the drag produced by the 

lattice grid fin was the laminar flat-plate boundary layer theory as stated in White (23): 
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Figure 33: Laminar Flat-plate Boundary-layer Theory Cell (23) 
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In this equation, ρ is density, µ is viscosity, U is the freestream velocity, L and a 

are the dimensions for the box shown in Figure 33.  For the grid cell L equals c, chord 

length, and a equals the width of the cell.  Each square cell has four surfaces and each 

triangular cell has three surfaces which experience a shear force that can be approximated 

using laminar boundary-layer theory.  These cells are very similar to the lattice grid fin 

cells, therefore this would be a good approximation to viscous drag on the fin.  The lattice 

grid fin laminar boundary-layer equation for CD was applied to every interior cell as well 

as to the outer surfaces of the fin.  These viscous drag corrections were applied to the 

inviscid drag results.  Appendices B, C, and D contain the raw data from the runs done in 

Fluent for the baseline, coarse, and AFIT lattice grid fins and contain the drag coefficient 

data. 

Figure 34 shows the axial force of the numerical runs with the baseline lattice grid 

fin connected to the missile.  Compare this to the experimental data from ARF shown in 

Figure 35. 

 

Figure 34: Numerical Drag 
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Figure 35: ARF Experimental Drag (13) 
   

 Figure 34 of the viscous corrected numerical drag calculations from the inviscid 

runs are very comparable to the data produced for the experimental tests done at ARF 

shown in Figure 35.  It is very important to point out the impact that the skin friction 

calculation and cell fin correction had on the axial force.  For example, at Mach=0.7, the 

numerical run yielded a coefficient of drag of 0.5783, the body skin friction 

approximation came to 0.1139, and the cell correction produced a coefficient of drag of 

0.0067.  The total coefficient of drag came to 0.6987.  From the ARF experimental drag 

in Figure 35, one can see the drag coefficient is around 0.7.  This numerical test point, as 

well as the others, produced results that were well within 10% of the experimental 

findings.   

The trend lines for both the numerical calculations and the experimental tests 

showed good agreement.  Even though the numerical results were inviscid, this is not 
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unexpected because pressure drag is a higher percentage of the total drag than friction 

drag, especially when you transition into the supersonic flow regime.  The difference 

with the results occurs in that the numerical data is much more of a linear increase with 

the Mach number than the experimental cases.  This could be due to the fact that more 

test data points were concentrated around this transonic Mach range during the 

experiment at ARF and the numerical results miss the transonic drag rise.   

Baseline Moment Coefficient 
 
 In order to produce a pitching moment vs. Mach number comparison with 

experimental results, numerical runs were made at an individual Mach number and angle 

of attack.  This was done multiple times to produce adequate results.  Figure 36 shows the 

Mach moment lines for multiple cases.   

 

Figure 36: Numerical Moment Coefficients-ARF Geometry  
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Figure 37 is not the Mach moment lines for the missile at ARF, but another lattice 

grid fin missile with a different size missile and lattice grid fin configuration produced by 

the DRDC-Valcartier in Canada.  This figure provides an example of trend lines seen in 

missiles with lattice grid fins at transonic Mach numbers. 

 
 

 

Figure 37: Experimental Moment Coefficients- DRDC Missile (7) 
 
 As the Mach number is increased, the slope of the pitching moment coefficient 

decreased as shown Figure 37.  This also occurred in the numerical results in Figure 36.   

The only exception is at low Mach numbers, where the normal force starts decreasing as 

well.  This describes the Mach 0.70 numerical case and the Mach 0.50 for the 

experimental case.  With this in mind, the trends of both curves are the same at angles of 

attack between -5 and 5 degrees.  This allowed for continuation for plotting of the slope 

of the pitching moment vs. Mach number. 
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Baseline Pitching Moment Derivative 
 
 When calculating the pitching moment derivative for each case, a linear 

approximation between -5 and 5 degrees was used.  This was appropriate in that the data 

is somewhat linear in this range.  Upon approaching 8 degrees, the pitching moment 

coefficient levels off and is no longer linear.  Figure 38 shows the numerical pitching 

moment derivative and Figure 39 shows the ARF experimental results. 

 

Figure 38: Numerical Pitching Moment Derivatives 

 

Figure 39: ARF Experimental Pitching Moment Derivatives (13) 
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 Unlike the axial force calculations and the moment coefficient, the trend for the 

pitching moment derivative is not as accurate for the given Mach number.  The reason for 

this could be due to the inviscid calculations used for the numerical model.  A correction 

factor had to be used in order for the axial force or drag calculations to be comparatively 

accurate with the experimental results.  There was no correction factor for the pitching 

moment derivative.  It seems though that there is an offset of the numerical data collected 

from experimental results.  If the numerical data is offset by a Mach number 0.2, then the 

data is much more accurate than before.  Therefore, the Mach range tested numerically in 

the invicsid flow regime appears to be above the experimentally observed critical 

transonic Mach number for choked flow. 

Baseline Flowfield 
 
 An important investigation that was made at ARF was the complex flowfield 

which the lattice grid fins made during the experimental tests.  The numerical runs in 

Fluent were also made to support the grid fin flowfieds produced.  Figure 40 shows Mach 

contours and streamlines for one of the tests. 

    

                         Mach Contour                                                         Streamlines 
 

Figure 40: Numerical Mach Contours/Streamlines M=0.7 
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 This missile flowfield shown in Figure 40 is typical for flows at or below Mach 1.  

There is little happening on the body of the missile and there is an expected disturbance 

or impeded flow around the fin area.  The conductors of the experimental tests described 

this disturbance as locally transonic flow occurring in the fin region due to the narrowing 

within the grid cell flow area.  The numerical runs support this theory based on the 

similarity between drag data for the experimental and numerical tests.  Figure 41 

demonstrates the flowfield located in the fins at Mach 0.7.  It is interesting to point out 

that the streamlines in Figure 40 show that the flow coming off the front of the missile 

bypasses the bottom section of the fin creating a stagnated flow region.  This can be seen 

better in Figure 41 with the top fin Mach contours. 

         

                  Top Fin-Side View           Top Fin-Top View 

Figure 41: Mach Contours of Baseline Fin M=0.7 AOA=0 deg 
 
              As is seen in Figure 41, the top fin has somewhat of a uniform flowfield through 

most cells of the fin.  One can see introduction of oblique shocklets at the leading edge of 

the cells even at this low Mach number of 0.7.  Once again, this is expected since the fin 

is acting like a subsonic inlet nozzle as stated before.  The bottom cell section, however, 
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does not experience these oblique shocks based up on the flow moving higher on the 

lattice grid fin.  At the base of the fin, there is a stagnation region which increases drag. 

At an angle of attack of -5 degrees, the lattice grid fin flowfield changes.  Figures 

42 describe the flowfield mach contours that occur.  The streamlines in Figure 43 

demonstrates that the flow travels around the top of the missile.  This causes the obliques 

shocklets to be more symmetrical on the top and even stronger on the top lattice for the 

bottom fin.  This is shown in Figure 44.  

 

Figure 42: Numerical Mach Contours M=0.7 AOA=-5 deg 
 
 

 
Figure 43: Numerical Streamlines M=0.7 AOA=-5 deg 
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Top Fin 

     

Bottom Fin 

     

                                                              Side Fin    

Figure 44: Mach Contours of Baseline Fin M=0.7 AOA=-5 deg 
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The interior cells at -5 deg have a very similar flow field to that at 0 deg.  The 

major difference is the formation of the shock at the farthest extend of the bottom fin.  

This is typical based on an expansion wave forming based on the change of angle of 

attack of the missile with accelerate the flow and then requires a shock to slow it down.  

As seen in the streamlines of Figure 43 and the side fin Mach contours, the flow is 

traveling over the top of the bottom fin.  This again causes the disturbance at the bottom 

of the missile.  

 A totally different type of flowfield occurs when the Mach number increases over 

one.  Figure 45 is a shadowgraph from the ARF experiment which shows the complex 

shock system at this Mach number.  The Mach contours and streamlines from the 

numerical runs is seen in Figure 46. 

 

Figure 45: ARF Experimental Test M=1.17 
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Figure 46: Baseline Mach Contours/Streamlines M=1.19 
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  As documented in the ARF experimental tests results and the numerical runs, 

there are 5 types of shocks that occur when Mach number is greater than 1.  Both the 

experimental and numerical tests produce the same types of shock waves.  The first shock 

is the stand-off shock located at the nose of the missile.  The next shock is weaker and 

occurs at the transition of the nose and body of the missile.  Another shock occurs in front 

of the fins, the shock moves toward the fins as the Mach number is increased.  A shock 

also forms from the interaction of the flow traveling through the lattice grid fins and is 

shown in the following Figure 47.  The last shock occurs at the rear of the missile by the 

recompression of the flow behind the model’s base.  The details of the shock dealing with 

the fin are seen in Figure 47.  The formation of the bubble (shock 4c) forms at a Mach 

number greater than one.  Also, the formations of shocks at the front of the lattices 

become even more defined.  The flow with the 5 shocks determined by the numerical 

runs are very similar to those documented at ARF in Figure 11. 

 

    

                  Top Fin-Side View             Top Fin-Top View 

Figure 47: Mach Contours of Baseline Fin M=1.19 AOA=0 deg 
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 The Mach contours of the top fin in Figure 47 depict the bubble shock 4c as seen 

earlier in ARF experiments in Figure 45.  One can also notice that the oblique shocks in 

the cells are stronger with the increase of Mach number.  But, the bottom cell region of 

the top fin does not show the presence of oblique shocks.  Once again, this occurs with 

the flow traveling over the nose and bypassing the bottom cell of the fin as seen in the 

streamlines of Figure 46.  Note also the oblique shocks generated by the outer frame of 

the fins interacting between the four fins shown in Figure 47.  It seems at higher Mach 

numbers that they intersect, causing a stronger shock. 

 

 

Figure 48: Baseline Mach Contours M-1.19 AOA=-5 deg 
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Figure 49: Baseline Streamlines M=1.19 AOA=-5 deg 
 

When looking at the Mach contours of the missile in Figure 48 with an angle of 

attack of -5 degrees, it seems that there is little difference in the flow compared to the 0 

degree angle of attack.  But the streamlines in Figure 49 shows the movement of particles 

over and around the top of the missile.  Figure 50 depicts a formation of a shock caused 

by the compression of the flow at the furthest extent of the bottom fin.  Because of the 

increase of the Mach number, it is a stronger shock.  It is interesting however that the 

shocks formed on the front lattices seem to be symmetrical on the top and bottom of the 

top fin (side view).  This is not seen in the cell of the fin with the zero angle of attack.  

This might be caused by the flow traveling over the body and not into the bottom section 

of the fin.  It seems this would cause the middle cells to choke before the bottom cell. 
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Top Fin 

      

Bottom Fin 

     

Side Fin 

Figure 50: Mach Contours of Baseline Fin M=1.190 AOA=-5 deg 
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Coarse Drag 
 

Figure 51 shows the axial or drag force of the numerical runs with the baseline 

lattice grid fin connected to the missile and Figure 52 shows the experimental data from 

ARF. 

 

Figure 51: Numerical Coarse Drag 

 

Figure 52: Experimental Coarse Drag (16) 
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  The data in Figure 51 of the corrected numerical drag calculations are, once 

again, quite comparable to the data produced for the experimental tests done at ARF 

shown in Figure 52.  The skin friction force approximation was added to the coarse grid 

fin data.  This produced results that compared to within 10% of the experimental 

findings.  Just like the baseline lattice grid fin geometry, the trend lines for both the 

numerical calculations and the experimental tests were nearly the same for the coarse fin 

geometry.   

Coarse Moment Lines 
 
 In order to produce a pitching moment vs. Mach number plot from the 

computational tests for comparison with experimental results, numerical runs had to be 

made at an individual Mach number and angle.  Once again, this was done multiple times 

to produce adequate results.  Figure 53 shows the Mach moment lines for multiple cases 

which is similar to what was done in the baseline geometry case. 

 

Figure 53: Numerical Coarse Moment Coefficients 
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 It is shown again that as the Mach number is increased, the slope of the pitching 

moment coefficient decreased.  This also occurred in the numerical results very similar to 

the baseline lattice grid fin.   At low Mach numbers, the pitching moment decreased.  

This describes why the Mach 0.7 numerical case and the Mach 1.045 almost falls on top 

of each other.  The trends of the curves between -5 and 5 degrees appear linear and 

therefore, were used in the approximation of the slopes.   

Coarse Pitching Moment Derivative 
 
 Once again, when calculating the pitching moment derivative for each case, a 

linear approximation between -5 and 5 degrees was used.  This was appropriate in that 

the data is somewhat linear in this range and was the basis for the pitching moment 

coefficients in previous research of lattice grid fins.  Figure 54 shows the numerical 

pitching moment coefficients and Figure 55 shows the ARF experimental results. 

 

Figure 54: Numerical Coarse Pitching Moment Derivatives 
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Figure 55: ARF Experimental Comparison of Pitching Moment Derivatives (16) 
 
 Unlike the axial force calculations and the moment coefficient, the trend for the 

pitching moment derivative is not as accurate for the given Mach number which is 

expected based on what was seen with the baseline grid fin comparisons.  Once again, the 

reason for this may be due to the inviscid calculation used for the numerical model with 

no correction factor.  There was no viscous correction factor for the pitching moment 

derivative.  It seems though that there is an offset of the numerical data collected from 

experimental results just like before.  If the numerical data is offset by a Mach number 

0.2, then the data is much more accurate than before.  Therefore, the Mach range tested 

numerically appears to be above the experimentally observed critical transonic Mach 

number for choked flow.  Both the baseline and coarse numerical data support the theory 

that there is a shift in the inviscid results from the viscous experimental data. 
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Coarse Flowfield 
 
 There were no documented flowfield pictures involving the coarse lattice grid fin 

configuration.  Therefore, Figures 56 and 57 are from numerical run calculations. 

 

Figure 56: Coarse Fin Mach Contours M=0.7 AOA=0 deg 

 

Figure 57: Coarse Fin Streamlines M=0.7 AOA=0 deg 
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                   Top Fin-Side View          Top Fin-Top View 

Figure 58: Coarse Model Top Fin M=0.7 AOA=0 deg 
 

As expected, the overall flowfield from the coarse lattice grid fin configuration is 

similar to that of the baseline model.  At Mach 0.7 (shown in Figure 58), there is the 

beginning of the formations of shocks at the front or leading edge of the lattices which 

was expected since they occurred in the experimental and numerical tests for the baseline 

model.  The bottom cell of the top fin still had weaker oblique shocks than in the cells 

above.  The streamlines in Figure 60 shows a similar flow to that of the baseline model in 

that flow from the nose travels above the bottom cell of each fin.  When dealing at an 

angle of attack of -5 degrees, the Mach contours of the flowfield (Figure 59) is also 

similar to that of the baseline model at that angle of attack.  The Mach contours of the fin 

described in Figure 61 show the movement of the flow as well as the equal oblique 

shocks on top and bottom of the lattices.  The major difference however, is the formation 

of the shock at the farthest extent of the bottom fin. 
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Figure 59: Coarse Fin Mach Contours M=0.7 AOA=-5 deg 

 

 
Figure 60: Coarse Fin Streamlines M=0.7 AOA=-5 deg 
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Top Fin 

 

  
 

Bottom Fin 
 

   
Side Fin 

Figure 61: Coarse Fin Contours M=0.7 AOA=-5 deg 
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 At higher Mach numbers (such as M=1.190), the shocks are much stronger and 

affect more of the flow within the cells.  The same types and number of shocks occur as 

in the higher Mach baseline model results as shown in Figure 62.  The streamlines in 

Figure 63 describe the same flowfield with the particles traveling in and around the fin as 

well as flow not traveling in the bottom cell of the fin.  This causes the absence of the 

shocks located in the bottom cells, as well as stronger shocks in the upper cells.  Figure 

64 shows this phenomena and the interaction of the shocks from the fins. 

 

 

Figure 62: Coarse Fin Mach Contours M=1.190 AOA=0 deg 
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Figure 63: Coarse Fin Streamlines M=1.190 AOA=0 deg 

 
 
 

    
                          Top Fin          Side Fin  

Figure 64: Coarse Model Top Fin Mach Contours M=1.190 AOA=0 deg 
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In agreement with the baseline model, the coarse model flowfield was different at 

a different angle of attack as shown with the Mach contours in Figure 65 and streamlines 

in Figure 66.  The bottom fin had stronger shocks than that of the top fin as well as the 

presence of shock after the expansion at the lattice furthest from the missile shown in 

Figure 67.   

 
Figure 65: Coarse Fin Mach Contours M=1.190 AOA=-5 deg 

  
 

 
Figure 66: Coarse Fin Streamlines M=1.190 AOA=-5 deg
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Top Fin 

   

Bottom Fin 

   

Side Fin 

Figure 67: Coarse Model Mach Contours M=1.190 AOA=-5 deg 
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AFIT Drag 
 
 Because the design of the AFIT lattice grid fin is an original idea, there has been 

no experimental data for this configuration.  Therefore, it is convenient to compare the 

results with that of the baseline model and the coarse model.  The baseline, coarse, and 

AFIT drag calculations include the skin friction correction as explained before.  This will 

help guide experimental results to be compared to which is shown in Figure 68.  

 

 

Figure 68: Numerical AFIT Drag 

 
 When examining the results from the numerical lattice grid fin models, the AFIT 

lattice grid fin approximation produced less drag than the other two configurations.  The 

trend line for the AFIT configuration had the same characteristics as the others tested.  It 
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is also shown that the baseline lattice grid fin configuration had the highest coefficient of 

drag based on the increased amount of webbing than the coarse and AFIT configurations.  

This was supported by the solidity ratio calculation by Hoerner which theorized that the 

drag would be greatest with the baseline configuration and least with the AFIT fin 

configuration.  Therefore, it is optimal to use the AFIT lattice grid fin to limit the drag on 

the missile. 

AFIT Moment Lines 
 
 Numerical runs had to be made at an individual Mach number and angle to 

produce the pitching moment vs. Mach data.  Figure 69 shows the Mach moment 

coefficient lines for multiple cases. 

 

Figure 69: Numerical AFIT Moment Coefficients 



 66

 The numerical AFIT moment derivatives were calculated by the slope of the 

numerical AFIT moment coefficients.  The trends of the curves between -5 and 5 degrees 

appear linear and therefore, were used in the approximation of the slopes.  It is shown 

again that as the Mach number is increased, the slope of the pitching moment coefficient 

decreased.  This also occurred in the numerical results for the baseline and coarse lattice 

grid fins. 

AFIT Pitching Moment Derivative 
 
 Figure 70 shows the numerical pitching moment derivatives of the AFIT, coarse, 

and baseline lattice grid fin configurations. 

 

Figure 70: Numerical AFIT Moment Derivatives 
 
 The numerical results of the AFIT lattice grid fin seem to be consistent to 

hypothesis in that the static stability should be similar to that of the baseline and coarse 
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models.  For this Mach number range, the AFIT trend line has the same temporary 

increase of moment derivative.  This occurs close to that of the coarse grid fin 

configuration; this is expected in that the AFIT model configuration is closer to that of 

the ARF coarse fin than to the ARF baseline fin.   

 The trend for the pitching moment derivative is probably not as accurate for the 

given Mach number because of the numerical model being run inviscid for all 

calculations with no correction factor.  Previous numerical results demonstrated an offset 

of the numerical data collected from experimental results.  If the numerical data is offset 

by a Mach number 0.2, then the data is much more accurate than before.  Both the 

baseline and coarse numerical data support the theory that there is a shift in the inviscid 

results from the viscous experimental data and this should continue with the AFIT lattice 

grid fin geometry. 

AFIT Flowfield 
 
 The flowfield that occurs with the AFIT lattice grid geometry is consistent with 

the other two models tested experimentally and numerically.  The same type of shocks 

that are formed by the nose, transition, fin, and base are found when the Mach number 

increases over one (Figures 77,78, and 79), but are not shown when the Mach number is 

below one (Figures 71, 72, and 73). 
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Figure 71: AFIT Mach Contours M=0.7 AOA=0 deg 
  

 

  

 

Figure 72: AFIT Streamlines M=0.7 AOA=0 deg 
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           Top Fin-Side View          Top Fin-Top View 

Figure 73: AFIT Top Fin Mach Contours M=0.7 
 

As expected, the flowfield from the AFIT lattice grid fin configuration is similar 

to that of the baseline and coarse models.  At Mach 0.7, there is the beginning of the 

formation of shocks at the front leading edges of the lattices as well as a stagnation 

pressure region at the rear of the fin.  The flow shown in the streamlines of Figure 75 and 

the Mach contours of Figure 74 are similar to that of the baseline and the coarse model in 

that flow travels over the nose and body and does not enter the bottom cell lattice of the 

grid fin when the angle is decreased to -5 deg.  Figure 76 shows that at the decrease of 

angle of attack, the top fin experiences oblique shocklets that are symmetrical at the 

lattice fin face.  However, the bottom fin experiences stronger shocklets at the top face of 

the lattice grid fins. 
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Figure 74: AFIT Mach Contours M=0.7 AOA=-5 deg 

 
Figure 75: AFIT Streamlines M=0.7 AOA=-5 deg 
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Top Fin 

 

  
Bottom Fin 

 

   
Side Fin 

 

Figure 76: AFIT Mach Contours M=0.7 AOA=-5 deg 
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At higher Mach numbers (such as M=1.19), the shocks are much stronger and 

affects more of the flow within the cells as shown in Figures 77-81.  In agreement with 

the other two models, the AFIT model flowfields were different at different angles of 

attack.  There is a formation of the shocks at the back of the fin that was documented in 

the ARF experiments as a bubble shock 4c.  The bottom fin had stronger shocks than that 

of the top fin as well as the presence of a shock after the expansion at the lattice furthest 

from the missile.   

    
Figure 77: AFIT Model Mach Contours/Streamlines M=1.19 AOA=0 deg 

 

   
                     Top Fin-Side View           Top Fin-Top View 

Figure 78: AFIT Model Top Fin Mach Contours M=1.19 AOA=0 deg 
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Figure 79: AFIT Model Mach Contours M=1.19 AOA=-5 deg 

 
Figure 80: AFIT Model Streamlines M=1.19 AOA=-5 deg 
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Top Fin 

 

   
Bottom Fin 

 

  
Side Fin  

Figure 81: AFIT Model Mach Contours M=1.19 AOA=-5 deg 
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Lattice Grid Fin Lift Comparisons 
 
 An important comparison that has to be made is that the normal force coefficient 

or lifting force remains somewhat constant when changing the lattice grid fin geometry.  

This can be done by graphing the normal force coefficient with angle of attack.  Figure 

82 shows the lifting force comparisons between the different lattice geometries at Mach 

0.7 and 1.19, respectively.  

 

M=0.7            M=1.19 

Figure 82: Normal Force Coefficient Comparisons 
       

 At a lower Mach number, the baseline and AFIT normal force coefficients are 

nearly the same.  But as the Mach number increases, the coarse and baseline models are 

slightly different.  However, the discrepancies between the three lattice grid fin 

configurations are negligible.  This is desired so that each configuration will achieve the 

same amount of lift, while allowing for drag reduction based on changing the interior 

lattice geometry and surface area. 
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V. Conclusions and Recommendations 
 

 Research conducted at the United States Air Force Aeroballistic Research Facility 

(ARF) at Eglin AFB indicated that there is a critical transonic Mach number where 

normal shock waves and choked flow are believed to be present within some of the grid 

cells.  At this particular Mach number, there is a severe dynamic instability with severe 

variations of the pitch moment coefficient.  A computational fluid dynamics (CFD) study 

was made to investigate these findings and examine the lattice grid fin flowfield.  The 

missile model was numerically modeled in Gridgen and computational tests were run 

inviscidly in Fluent.  A viscous correction factor was applied to the drag coefficients in 

order to develop results closer to that of the experimental data and validate the numerical 

model.   

The results of the drag calculation found that the baseline lattice grid fin 

configuration had the most drag at different Mach numbers.  The AFIT lattice grid fin 

configuration was designed in order to decrease the drag without sacrificing lift.  The 

numerical results proved that the AFIT lattice grid fin design did decrease the overall 

drag of the missile, appears to be a promising geometry to mitigate the choked flow 

phenomena at transonic Mach numbers.  

No correction factor was found for the pitching moment coefficients, but the trend 

line results showed the same characteristics of the experimental data.  There seemed to be 

an offset of the data by a Mach number of 0.2.  This may have caused the absence of the 

moment coefficient spike seen in the ARF experimental data.  More numerical test points 

need to be performed at lower Mach numbers to see if the shock spike does occur 
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inviscidly at low Mach numbers.  The AFIT lattice grid fin configuration had some 

difference in static stability than the other configurations, but not nearly enough to 

discredit it as being unstable when compared to the baseline and coarse models based on 

the numerical runs completed. 

 Further research can be done in the development of lattice grid fins.  By applying 

a viscous grid to the numerical models, the offset of the data might not have occurred.  

This should be done and compared to the experimental tests as well as the invicsid 

numerical runs completed.  This would also confirm the skin friction correction factor 

used for the drag analysis.  Additionally, unsteady computational tests should be 

conducted to determine if the spike in the moment data observed in the experiments is a 

transient, dynamic phenomenon.  Experimental tests should also be continued with the 

AFIT lattice grid fin configuration; this would be compared to the numerical tests for   

accuracy of the predicted flowfield. 
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Appendix A: Grid Generation 
 
 Three grids were generated on Gridgen by the user for this grid convergence 

study:  coarse, fine, refined.  All these grids had the same dimensions.  First, the grid was 

modeled only on one fourth of the GTCM.  This could be done because of the cruciform 

geometry the missile had.  The reason for doing this was simple; to reduce the number of 

cells; therefore decreasing the runtime.  The connectors were then made; the forward 

connector was two missile lengths in front of the missile, the rear connectors extended 

ten missile lengths back, and the top connector was made to be two missile lengths as 

well.  This provided for more than enough space to enclose the shock.   

 For the coarse grid, the number of points per connector was picked based on the 

importance of flow characteristics in the region.  Therefore, there are many more points 

located on the surfaces (missile, fin, and sting) than the farfield condition.  Once the 

number of points was assigned, a boundary decay factor of 0.95 was made on each 

farfield domain.  A close up of the empty coarse fin with connector numbers shows that 

the mesh is very dense, but the number of points on the connectors was needed to ensure 

that the flow characteristics can be seen on the side faces of the lattice grid fin.  The 

number of cells generated were around 600,000.   

 Once a coarse grid was made, a much finer grid had to be made.  The points were 

increased from the coarse grid by almost a factor of two.  The Farfield connectors and the 

sting connectors were kept the same because more points would be unnecessary.  

Because of the increase of connectors points, there were more than 2,000,000 cells. 

 The refined grid was then made to take into account more information generated 

during the runs.  First of all, the farfield connectors could have fewer points; therefore, 
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they were decreased up to a factor of two.  But, the number of points on the fin and 

missile was kept the same amount as the coarse grid.  But the major difference in the 

refined grid was the addition of points on the estimated shock wave.  The estimation of 

the shock angle was made using the σ-θ-M relationship for a cone.  When assuming 10 

degrees as the incidence angle of the nose, the shock angle came to nearly 60 degrees.  

Therefore, a connector was made at the angle in order to gain more information about the 

shock.  The refinement of the course grid led to more grid cells, but nearly as much as the 

fine grid.  The number came to around 750,000 cells. 
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Appendix B: Baseline Data Tables 
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Appendix C: Coarse Data Tables 
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Appendix D: AFIT Data Tables 
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viscous effects.  Therefore, a correction factor was applied to the drag coefficients in order to develop results closer to that of the experimental data.  No 
correction factor was found for the pitching moment coefficients, but the trend line results showed the same characteristics of the experimental data.  Finally, 
another fin configuration was developed that produced less drag and similar dynamic stability that the other lattice grid fin configurations tested.  
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