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Figures 

1. Schematic of the interfacial synthesis of polyaniline (PANI) nanofibers grafted 
onto a Au substrate using a self-assembled monolayer of 4-aminothiophenol (4-ATP)        2 

2. Series of chips showing progression of nanofiber growth on surface        2 

3. An SEM image of the chip from Figure 2 after a reaction time of 24 h shows a dense mat 
of nanofibers, completely obscuring the underlying gold interdigitated electrode        3 



Organic nanowires, particularly those made from polyaniline (PANI), have recently received consid- 
erable attention due to their unique chemical sensing and electrical properties. Interest has been 
directed towards fine-tuning the synthesis of tubular morphologies by controlling reaction conditions. 
The method frequently employed to construct such morphologies has typically involved template-free 
chemical synthesis, in which the aniline monomer polymerizes in the presence of large bulky acids. 
For instance, Huang et al.' recently developed a simple, practical method using a bi-phasic or "inter- 
facial" polymerization for making uniform, template-free^ nanofibers. Furthermore, Wan et 
^ 3,4,5,6^jjj others'"* have developed a template-free solution method in which the diameter of the tube 
could be controlled by the dopant functionality and amount. Besides the many challenges in poly- 
merizing these chains into nanosized tubes, the next largest hurdle is arranging these nanosized fibers 
onto a substrate in an ordered fashion for the purpose of fabricating useful, nanoscale devices such as 
chemiresistive vapor sensors. The ability to polymerize nanostructures directly on metallic substrates 
has been previously achieved by MacDiarmid,' Hayes et al.,'" and Porter et al." where electrochemi- 
cal and Langmuir-Blodgett methods were used to grow and organize nanometer-sized polyaniline 
tubes on modified Au electrodes. Current methods for synthesizing covalently bound nanostructured 
PANI to metal surfaces require templates and utilize electrochemical or time-consuming lithography 
methods that produce low yields. 

In this report we describe a simple, two-step process for the direct synthesis of conductive nanosized 
PANI fibers bound directly to the surface of a Au substrate. The process uses an interfacial polym- 
erization technique to form a two-dimensional mesh of PANI fibers that were grafted to the Au sur- 
face using a self-assembled monolayer of 4-aminothiolphenol (4-ATP). The two-step process is as 
follows: (1) A self-assembled monolayer (SAM) of 4-ATP is created on a Au surface, (2) then PANI 
nanofibers are directly synthesized onto the Au surface by placing the substrate at the interface of a 
biphasic solution of dopant and aniline monomer. The use of exact molar ratios of reactants 
facilitates the formation of the nanofibers. 

The objective of the SAM formation step is to functionalize the Au surface with an amine that will 
promote covalent attachment of PANI. A SAM of 4-ATP was created using a standard monolayer 
formation technique,'^ and was confirmed by X-ray photoelectron Spectroscopy (XPS) and grazing 
angle IR-absorption measurements. During the polymerization, the 4-ATP-treated substrate sits at the 
interface of the organic/aqueous biphasic system (Figure 1) used to synthesize PANI nanofibers.' 
Using a high mole ratio of lR-(-)10-camphorsulfonic acid (dopant) to aniline monomer,' the poly- 
merization is autocatalyzed by the presence of the doping acid and proceeds at a rapid rate. During 
the reaction, aniline monomer diffuses from the organic layer (bottom) to the interface, gets proto- 
nated by the acidic aqueous layer to form an anilinum cation (stabilized by the phenyl group), and 
then connects to the "tail" end of an oligomer. Nanofibers form in or near the interface, which sug- 
gests that species or conditions at the interface influence polymer morphology. In this template-free 
synthesis, the driving force(s) involved in forming nanofibers is unclear, but it is hypothesized that 
there may be preferential electrostatic interaction'^ between the aniline monomer and the growing 
PANI chains that favor nanosized fiber formation. 

The growth of these nanofibers on Au was monitored with a scanning electron microscope (SEM)'" 
by recording micrographs of chips that were submerged in the interfacial reaction mixture for 1, 3, 
and 5 min (Figures 2-b, c, d) and after 24 h (Figure 3). As shown in Figure 2-b, the growth of the 
polyaniline nanofibers begins with the formation of sub-micron finger-like projections emanating on 
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Figure 1.     Schematic of the interfacial synthesis of polyaniline (PANI) nanofibers grafted onto a Au 

substrate using a self-assembled monolayer of 4-aminothiophenol (4-ATP). It is not clear 
whether the PANI grows directly off of the 4-ATP-modified gold surface or whether 
PANI is synthesized in solution at the interface and then diffuses to the gold surface where 
it "links" with the self-assembled monolayer of gold. 

Figure 2.     Series of chips showing progression of nanofiber growth on surface, (a) SEM image of a 
bare, interdigitated gold electrode pre-treated with a self-assembled monolayer of 4- 
aminothiophenol (light area), (b-c) SEM images following the growth of sub-micron sized 
PANI on a 4-aminothiophenol treated gold electrodes using an interfacial polymerization 
technique. The chips were removed from the reaction mixture and imaged after (b) 1 min, 
(c) 3 min, and (d) 5 min. Insets show magnification of the circled areas. 



Figure 3.     An SEM image of the chip from Figure 2 after a reaction time of 
24 h shows a dense mat of nanofibers, completely obscuring the 
underlying gold interdigitated electrode. 

the patterned Au surface. After 3 min, the Au surface is covered with two-dimensional interconnect- 
ing ribbon structures that span the Au strips. The growth of these sub-micron PANI structures, as 
seen in Figure 2-c, appears to be guided by the preabsorbed monolayer of 4-ATP. With increased 
polymerization time, these ribbon-like structures form rods (Figure 2-d) that are surrounded by amor- 
phous aggregates. The rods serve as a new polymerization initiation site from which aniline nucleates 
and grows into nanosized fibers. After 24 h, both the Au and glass are covered by a thick mat of nan- 
ofibers (Figure 3), and to the eye has the appearance of a uniform green film. The fibers within this 
dense mat had nearly uniform diameters of 40-50 nm, which is consistent with interfacially grown 
fibers first observed by Huang et al.' The low resistance of the PANI nanofibers in Figure 4 across the 
interdigitated electrodes suggests a minimal amount of contact resistance at the interface between the 
PANI fibers and the Au. 

To ensure that the PANI nanofibers are not merely physisorbed, the 4-ATP monolayer was substi- 
tuted with a benzenethiol (BT). Using the same polymerization conditions that yielded the PANI 
nanofiber morphology in Figure 2, the same morphology was not observed with the BT-treated chip. 
This supports the notion that the 4-ATP directs the growth of the PANI on the surface of the 
substrate. 

Although it has been clearly established in the literature'^ and in our lab that PANI films grow on 
untreated substrates, the resulting adhesion is non-covalent and mechanically weak. The most 
important aspect of this novel procedure is the remarkable durability of the covalently bonded nanofi- 
bers to the Au interface. For instance, samples prepared without a 4-ATP SAM do not exhibit the 
same improved adhesion, nor do samples of neat PANI nanofibers drop cast onto a Au substrate pre- 
adsorbed with a monolayer of 4-ATP. Repeated finger abrasion and Scotch tape tests indicated 
improved adhesion of the covalently bonded PANI fibers compared to physisorbed samples. In addi- 



tion to these simple abrasion tests, a series of acid/base exposures (doping/dedoping) showed Uttle 
influence on the durability or conductivity of the PANI nanofibers. These two important physical and 
chemical durability experiments distinguish this method from other nanopatteming techniques for 
poly aniline on Au surfaces. 

This is a preliminary report of a novel and easy method to chemically synthesize template-free poly- 
aniline nanofibers directly onto a functionalized Au substrate. The 4-ATP SAM acts like an initial 
template, directing the growth of the PANI nanofibers into structured morphologies. The mechanism 
for this process is not well understood, but the covalent attachment of the PANI nanofibers to the Au 
leads to improved durability over current nanofiber fabrication techniques. 
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