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Abstract 
 
 

The feasibility of using a sparse array of mirrors in a satellite system is being 

evaluated. This study focuses on the control laws necessary for achieving the 

minimization of the effect of vibration which happens at the primary mirror of the 

satellite, by using the eigenstructure assignment technique. White Gaussian noise was 

assumed as the external input. AFRL has developed a 79 state model with 9 control 

inputs and 9 outputs, 3 sparse array mirrors, and a base. To extend the theory, a 

simplified model with 2 mirrors and a base which has 12 states, 4 control inputs and 8 

outputs was developed. The system is not completely controllable nor observable because 

there are 4 rigid body modes. 

The control law starts from realizing the states which are controllable or 

uncontrollable. Then only for the controllable states, the eigenstructure assignment 

technique is applied. The closed- loop eigenstructure was determined by analyzing the 

open- loop modes. To find the best value for the eigenstructure, Newton's line search 

method was applied. 

The relative motions of the primary and secondary mirrors were described by 

wave reflection dynamics. Results show that this technique achieves a reasonable amount 

of control use for the objective and relates these result to those obtained from linear 

quadratic regulator (LQR) technique.  
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CONTROLLING THE PRIMARY MIRROR IN A SPACE-BASED TELESCOPE 
UTILIZING AN EIGENSTRUCTURE 

ASSIGNMENT TECHNIQUE 
 
 
 

I.  Introduction 
 
 

Motivation 

           The United States derives great benefit from space-based assets, and the 

importance of capability of the satellite is continually increasing. In 1990, NASA 

developed and launched a 2.4 meter diameter primary mirror in a 600Km orbit. The effort 

to create large satellites and launching them into space is not an easy one. To launch large 

satellites we have to pay a lot of attention to drag, GNC and manufacturing issues. These 

requirements drive the satellites to be small. But small satellites have their own 

restrictions like narrow scope angles. So to achieve the advantages of large satellites, the 

Deployable Optical Telescope (DOT) is being considered by AFRL as the next 

generation of large optical satellites. To reduce weight, AFRL has selected sparse array 

aperture which can achieve larger diameters, instead of filled aperture. To compensate for 

lack of image they added high tech image processing for reconstructing the perfect image, 

albeit dimmer than the same-size filled aperture. 

 

Background ( Description of AFRL’s Deployable Optical Telescope (DOT) ) 

The following description was based on Development of a spare-aperture testbed  

for opto-mechanical control of  space-deployable structures from AFRL(ref [1]). 
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The DOT system is a sparse 

aperture finite-conjugate imaging 

system and is shown in Figure 1 [ref 

(13)]. The primary mirror is a three-

element, spherical, reflective sparse 

aperture array. The secondary mirror is 

a monolithic element, and is also a 

spherical surface of rotation. The 

design is similar in structure to a large 

space telescope with a deployable 

sparse-aperture primary mirror and 

deployable secondary. Each primary 

mirror segment has a spherical radius of 

curvature of 5 meters and a clear aperture of 600 mm in diameter. The vertices of these 

segments are located in a radially symmetric configuration, a distance of 550 mm from 

the primary optical axis at increments of 120 degrees. The circumscribed aperture of the 

assembled system is 1.7 meters, with a fill factor of 37.4 percent and an equivalent light-

collecting aperture of a 1.04 meter diameter monolithic mirror. 

The impetus for the finite conjugate optical design is one of cost. For the lab 

design with a finite object distance, a point source may be used for full aperture 

illumination of the primary mirror, mitigating the need for a nearly 2 meter diameter 

collimator in the pseudo-star illuminator system. Additionally, the purely spherical 

reflectors require only three degrees of alignment correction, reducing the complexity of 

the actuation and control sensor metrology designs. Thus, the lab design is representative 

of the space system, but unique. 

A single lightweight primary mirror segment is shown in Figure 2. The 

construction consists of a thin ultra-low expansion (ULE) glass face sheet, supported by 

Figure 1. Sparse array mirror 
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an array of composite rods attached to a lightweight composite structure to provide 

stiffness. The composite portions of the structure are nickel coated to improve thermal 

conduction properties and reduce the distorting effects of large thermal gradients.  

Each primary mirror segment is attached to a supporting deployable boom or 

reaction plate, by three actuator stacks. The actuator assembly consists of a low voltage 

piezo-ceramic stack mounted atop a micrometer drive with a DC servomotor. The piezo 

actuator has a range of 30 µm and a resolution of 1 nm, providing high bandwidth control 

capability to compensate for induced mirror jitter due to external disturbances, such as 

reaction wheels. These devices are driven by a 0-100v analog signal obtained from a 

linear amplifier. The micrometer has a 10-mm range with a 60-nm resolution, providing a 

low bandwidth, coarse positioning capability over a broad range, to compensate for  

 

 

 

deployment errors in positioning the mirror. The resolution of the coarse actuators is 

obtained by use of an encoder sensor built into the servomotor, which provides feedback 

signals to a separate PID controller. This controller accepts external commands from the 

control executive via an RS-232 serial interface. Each assembly is attached to the reaction 

Figure 2. Ultra-lightweight primary mirror segment 
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plate via a screw clamp on the micrometer. A diaphragm flexure assembly, attached to 

the reaction plate by three posts, protects the piezo-ceramic from shear forces induced by 

gravitational loading when the reaction plates are in the stowed position. 

The reaction plates are constructed of lightweight composite materials. These sub-

assemblies are attached to a main optics integrating structure via a stainless steel tie-rod 

assembly that exhibits dynamic behavior similar to a latch mechanism. 

 
 
Problem Statement 

Many dynamical systems are modeled using Newton’s Law or Lagrange’s 

equations and perturbation theory. The result is a second order system of linear constant 

coefficient differential equations. This class of systems can be mathematically described 

by the equations of motions 

 

DuKxxCxM =++ &&&  (1) 

 

where nx ℜ∈ and mu ℜ∈  are the state and control (actuator) vectors respectively, 

M  is the nn ×  positive definite symmetric mass matrix , C  is the nn ×  positive semi-

definite symmetric structural damping matrix, K  is the nn ×  positive semi-definite 

symmetric stiffness matrix, D  is the mn ×  control influence matrix, and 
dt
dx

x =& . 

By using output feedback, the control and measurement equation can be written 

as  

 

xCy m=  

xCy m && =  

yGyGu vp &−−=  

(2) 

(3) 

(4) 
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where my ℜ∈  is the output(sensor) vector, and mC  is the nm ×  output 

measurement matrix, and pG  and vG  are the mn ×  feedback gains. Equation (2), (3) and 

(4) can be substituted into Equation (1) and everything can be taken to the left hand side: 

 

( ) ( ) 0v m p mMx C D G C x K DG C x+ + + + =&& &  (5) 

 

The problem considered herein is how to select the control matrices [ , ]v pG G , such 

that it minimizes a cost function. The system considered contains both rigid body and 

flexible modes. The control matrices are selected based on a placing the eigenvalues and 

eigenvectors (hereafter refered to as the eigenstructure) such that the achieved 

eigenstructure minimizes the cost function.  

 
 

Methodology 

The research for this thesis includes developing mathematical models 

representative of a sparse telescope array and designing a technique and computer 

algorithm for designing a feedback control system. The desired eigenvalues and 

eigenvector (eigenstructure) were found using Newton’s line search method by analyzing 

the open-loop system and the eigenstructure assignment technique is used to find the 

proper control gain matrix. To place realistic limits on the control usage, the maximum 

element value of the control gain matrix was constrained. 

The results of the eigenstructure assignment technique were compared with 

results obtained using a linear quadratic regulator (LQR) approach. 

 

 
Organization 

This thesis is organized around designing a control system for a dynamic system 

with rigid body and flexible modes. Figure 3 illustrates the overall process 
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This thesis begins with developing the equations of motion (EOM) for the 

simplified satellite model at Chapter 2. Chapter 3 establishes the techniques for achieving 

the proper control gain for the eigenstructure assignment technique. Chapter 3 also 

addresses the technique for systems that do not have enough measurement information to 

place all the desired eigenvalues. These results are then compared to LQR results. Then 

Chapter 4 provides result applied to the theoretical model. Lastly, the technique is applied 

to AFRL’s DOT experimental data. 
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Input System Matrix 

Analyzing Open- loop Eigenstructure 

Eigenstructure  Assignment 
Technique  

 
Determining Target Modes 

∞ 
Finding Desired Eigenvalues 

∞ 
Finding Desired Eigenvectors 

∞ 
Assigning Desired Eigenvalue 

and Eigenvector 
 

LQR 
 

Finding State Weighting 
Value 

 
 

Find Control Gain Matrix 

Figure 3. Block diagram of Eigenstructure Assignment Process 
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II. Developing Equations of Motion 
 

 

Physical modeling of two primary mirrors and a base 

The DOT system is three dimensional. To demonstrate the technique and aid in 

analysis, a simplified planar model representative of a system with two primary mirrors 

and a base was used. For this model, as in the actual structure, all the elements are subject 

to small perturbations, and thus the small angle and small disturbance approximations 

were used. 

Each mirror’s movement has both horizontal and vertical movement. Because of 

the small angle approximation, horizontal movement will be negligible with respect to 

vertical movement, thus only vertical directional movement and rotation was considered. 

As a result, each mirror has 2 degrees-of-freedom, namely the vertical movement and 

rotation. The planar model is shown in Figure 4. The full system has a total of 6 degrees-

of- freedom. Although there are six DOFs, only internal force actuators are available, thus 

not all the DOFs can be controlled. For this model, as with DOT, the rigid body modes 

can not be controlled. 

For system control, there are two actuators for each mirror and each actuator has 

its own spring damper and electronic forcing device such as the piezo actuators used on 

DOT. 

 

 

Deriving the Equations of Motion. 

Mirror “1” and “2” have mass m1 and m2 and moment of inertia I1 and I2 

respectively. Next, define the rotation angle of mirror “1” and “2” as q1 and q2 with 

counter-clockwise direction for positive rotations. In this expression A1, A2, A3 and A4 

stand for the actuators that have a spring, a viscous damper, and an electronic forcing 
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device in parallel as shown in Figure 4. This is typical for space applications, where the 

flexible modes are controlled, independent from the rigid body ( orbital motion ). 

 

 

 

The equations of motion at each actuator is: 

iiiiii FDcDkA ++= &        (6) 

where i =1,2…4, Di represents the relative distance in the actuator and 
dt
dD

Di =& . 

 

Figure 4. A Planar Physical Model of a Sparse Array 
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For this analysis, the elements representing the base, mirrors and secondary mirror were 

assumed as rigid elements. 

From a static point of view, for the mirror to focus on the focal point, the angle a 

should be : 

 







=

L
h

arctanφ  

24
φπ

α −=  

(7) 

(8) 

 

where h and L are defined as in Figure 4. 

 

To derive the EOMs, first consider the free body diagram for mirror “1”. 

If the mirror “1” and the base were disturbed in the positive direction then the 

transversal movement will be as shown in Figure 5. 

 

 

 

 

Thus the distance difference ( iD ) for the actuator 1 and 2 will be: 

Z1 

Zb 

1cosαθl  

bLθ
 

A1 A2 

 Figure 5. Diagram Showing Coordinate Relations  

l 

1θ  

bθ  
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bb

bb

lLlzzD
lLlzzD

θααθ
θααθ
)cos(cos
)cos(cos

112

111

−++−=
++−−=

 (9) 

where l and iθ  are defined in Figure 5. 

With this distance difference and using Equation (6) each actuator will have a 

force of : 

 

1 1 1 1 1 1

2 2 2 2 2 2

A k D c D F

A k D c D F

= + +

= + +

&

& &
 (10) 

 

Notice that the positive distance difference will produce a compressive force. 

The resulting Equations of Motion for mirror 1 is (from direct application of 

Newton’s Law): 

 
1 1 1 2

1 1 1 2cos ( )

m z A A

I l A Aθ α

= − −

= −

&&
&&  (11) 

 

Likewise for mirror 2, the distance difference for actuator 3 and 4 will be: 

 

bb

bb

lLlzzD
lLlzzD

θααθ
θααθ
)cos(cos
)cos(cos

224

223

+−+−=
−−−−=

 (12) 

 

and each actuator will have a force of: 

 

3 3 3 3 3 3

4 4 4 4 4 4

A k D c D F

A k D c D F

= + +

= + +

&

&
 (13) 

 

In a similar fashion, the Equations of Motion for mirror 2 and the base will be: 
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)](cos[)](cos[

)(cos

1423

4322

4321

4322

AAlLAAlLI

AAlI

AAAAzm
AAzm

bb

bb

−++−−=

−=

+++=
−−=

ααθ

αθ
&&

&&
&&

&&

 (14) 

 

Deriving an Error Metric 

With this set of dynamic equations, we define our output error ( which consist of 

the two tilt angles and the two wavelength errors) as follows. 

 

 

The tilt angle errors and wavelength errors are developed separately. The total error is 

then the sum of all the errors. From Figure 6 the distance x1 and y1 resulting from vertical 

movement is: 

 

φsin1 ax =  

φcos1 ay =  

where bzza −= 1  

(15) 

(16) 

 

Then the wavelength error (ER1) and tilt angle error (T1) for mirror 1 is: 

φ  

φ  a 

x1 

 
Figure 6. Errors Resulting from Relative Vertical Movement. 
 

y1 
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Figure 7. Errors Resulting from Mirror 1 Rotational Movement 

 

φsin11 axER −=−=  

2222

1
1

cos

hL

a

hL

y
T

+
=

+
=

φ
 

(17) 

(18) 

Likewise the wavelength error (ER2) and tilt angle error (T2) for mirror 2 is: 

 

φsin2 bER −=  

222

cos

hL

b
T

+
−=

φ
 

where bzzb −= 2  

(19) 

(20) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Figure 7 the distance x2 and y2 made by rotational movement of mirror 1 is: 

 

1
22

2 θhLy +=  

φtan22 yx =  

(21) 

(22) 

 

x2 

φ  

φ  

y2 
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Then the wavelength error (ER1) and tilt angle error (T1) for mirror 1 is: 

 

1
22

21 tan θφ hLxER +==  

11 θ=T  

(23) 

(24) 

 
Likewise the wavelength error (ER2) and tilt angle error (T2) for mirror 2 is: 

2
22

2 tan θφ hLER +−=  

22 θ=T  

(25) 

(26) 

 From Figure 8, the distance x3 and y3 made by horizontal movement is: 

 

φcos3 cx =  

φsin3 cy =  

(27) 

(28) 

where bmhhc θ)( +=  

The wavelength error (ER1) and tilt angle error (T1) for mirror 1 is: 

φ  

c 

x3 

 
Figure 8. Error Resulting from Base Rotational Movement 

y3 

φ  
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φcos31 cxER −=−=  

2222

3
1

sin

hL

c

hL

y
T

+
−=

+
−=

φ
 

(29) 

(30) 

Likewise the wavelength error (ER2) and tilt angle error (T2) for mirror 2 is: 

 

φcos32 cxER ==  

2222

3
2

sin

hL

c

hL

y
T

+
−=

+
−=

φ
 

(31) 

(32) 

 

The total wavelength error and total tilt angle error made by the vertical and 

horizontal movement will be the sum of all the above errors. In addition to this, the tilt 

angle error is changed by rotational movements of mirror 1 and 2.  

 

φθθφφ cos)(tansin)( 1
22

11 bmb hhhLzzER +−++−−=  

12222

1
1

sin)(cos)(
θ

φθφ
+

+

+
−

+

−
=

hL

hh

hL

zz
T bmb  

(33) 

(34) 

φθθφφ cos)(tansin)( 2
22

22 bmb hhhLzzER +++−−−=  

22222

2
2

sin)(cos)(
θ

φθφ
+

+

+
−

+

−
−=

hL

hh

hL

zz
T bmb  

(35) 

(36) 

 
This represents the coupling of errors between wavelength error and tilt angle error.  
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Conventional Linearization 
 

For this analysis, we require a linearized model described in state-space form as: 

 

DUCXY
BUAXX

+=
+=&

 (37) 

 

where the state vector X is defined as follows: 

 

[ ]Txx &&&&&&& == T
321b 21321b 21 ]    zz z    zz [zX θθθθθθ  

 

 

From the Equations (9) and (12), distance vector can be described as: 

 

xD
z
z

z

lLl
lLl

lLl
lLl

D
D
D
D

D m

b

b =













































−−−
+−−−

−−
+−−

=



















=

θ
θ
θ

αα
αα

αα
αα

2

1

2

1

4

3

2

1

coscos0110
coscos0110

cos0cos101
cos0cos101

 (38) 

 

In a similar fashion D&  will be similar type of D. 

 

xD

D
D
D
D

D m &

&

&
&
&

& =





















=

4

3

2

1

 (39) 

 

The actuator vector will be ( using Equation (10) and (13) ): 
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

















+







=













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



+
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




















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














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3
2
1

4
3
2
1

4000000
000000
000000
000000

4

33

22

11

4

3

2

1

F
F
F
F

D
D

A

F
F
F
F

D
D

ck
ck

ck
ck

A
A
A
A

A

cm

C

&

&

 (40) 

 

Combining the results we can build Equations of Motion from Equation (11) and 

(14) in matrix form as: 
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(41) 

 

The output equation is defined in terms of Equations (33), (34), (35) and (36) as: 

 

[ ]TERERTTY 21211 =  

where T1 and T2 represent the tilt angle error for the mirror 1 and 2 and ER1 and ER2 

represent wavelength error for the mirror 1 and 2. 

In matrix form this is represented as: 
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(42) 

where 
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           (43) 

Thus the output equation is given as: 

 

[ ]XCY m 0=  

where  [ ]T
bbbb zzzzzzX θθθθθθ &&&&&& 21212121=  

(44) 

 

Now in the state-space form, the A, B, C and D matrix will be:  

 

121264

64

6666

××

×

××



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












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
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


⋅⋅

=

m

m
cmm Dzero

zeroD
ADD

Izero

A  (45) 

 

where )66( ×I  stands for identity matrix. 
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B= 






 ×

mDD
zero 46  (46) 

 

[ ]0mCC =  (47) 

and 

44×= zeroD  (48) 

 
For a given set of physical parameters of the mirror, base and actuators, 

generation of the corresponding state-space model matrices A, B, C and D have been 

automated and the MATLAB code is contained in Appendix A. 

 

 

Summary 

In this chapter a simplified two dimensional DOT system and the corresponding 

EOMSs were developed. The state-space model has less measurement outputs and 

control inputs than the number of states. Chapter 3 establishes the techniques for 

achieving the proper gains for the eigenstructure assignment technique. The 

eigenstructure assignment technique and the constraints will be discussed on a case by 

case basis.  
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III. Methodology 
 

 

The previous chapter developed the simplified planar model. This chapter 

develops the methodology for control. It begins with a development of a performance 

index for the system. Eigenstructure assignment technique will be developed in the case 

of the full-state feedback and the output feedback. Then the LQR methods will be 

reviewed to compare the result. 

 

Developing the performance index 

Control system performance is typically measured with respect to a performance 

metric. For the problem herein, a suitable metric must be established to measure the 

closed- loop performance. For a linear system as given below: 

 

)()(
)()()(

tCxty
tButAxtx

=
+=&

 (49) 

Under proportional output feedback we get the closed- loop system shown in 

Figure 9. 

 

For the sparse array, the objective is to minimize the effect of disturbances (d) 

when r = 0. This is referred to as the regulator problem, i.e. (r = 0 above) the objective of 

Gc 
Cxy

BuAxx
=

+=&
 

e u y 

Figure 9. General Closed-loop System 

r 
d 

m 
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the regulator is to drive 0→e  and thus 0→y  (or 0→x  if full-state feedback C = I is 

available) . The effect of measurement error (m) will be not considered in the research. 

One measure of how successful the controller is  

 

QxdtxJ T
t

o

f

∫=1  (50) 

 

where Q is a positive semidefinite scalar weighting matrix such as 

 

),....,,( 321 nqqqqdiagQ =  (51) 

 

For a fixed cost J1 the bigger we make qi the smaller xi must be, and thus the 

speed of response will be improved by increasing a particular q.  

In general we can always speed up the all response by increasing the gain but it 

will cost more control energy to achieve. So we probably need to add a penalty for 

control use. Thus consider  

 

( )dtRuuQxxJ TT
t f

+= ∫
0

2  (52) 

 

where R is positive definite. A natural choice would be 

 

),....,,( 321 mrrrrdiagR =  (53) 

 

and if we pick ri large, then ui would be small for a given J2. Thus we can see that by 

varying our choices in Q and R, we can trade off speed of response for control use. 

If there is specified external input ( d in Figure (9) ), the objective of control 

system is minimizing the effect of the disturbance (noise). For the case of white Gaussian 
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Noise, every output variance value from the noise can be calculated through a Lyapunov 

Equation. If output variance is defined such as T
yryy vvvVy ],.....,,[ 21=  then the objective 

function can be the sum of each variance. This thesis used the sum of all output variances 

for the objective function. 

 

 

Response of Linear system to white noise 

The following is based on reference (11). 

Suppose that x(t) is the solution of  

 

00 )(
)()()(

xtx
tBwtAxtx

=
+=&

 (54) 

 

Where w(t) is white noise with intensity V(t) and x0 is a stochastic variable 

independent of  w(t), and mean of x(t0) is equal to m0 and the variance matrix Q0 is  

 

( )( ){ }TmxmxEQ 00000 −−=  (55) 

 

Then x(t) has mean 

 
00 )()( mttA

x etm −=  (56) 

 

and covariance 

 

ττ ττ deBBVeeQettR
tt

t

tATtAttAttA
x

TT

∫ −−−− +=
),min( )()()(

0
)(

21
21

0

210201 )(),(  (57) 
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The variance matrix Q(t)=Rx(t,t) satisfies the differential equation (Lyapunov)  

 
TT BtBVAtQtAQtQ )()()()( ++=&  

where Q(t0)=Q0 

(58) 

 

Now consider the case where w(t) is stationary i.e. constant intensity. If A is 

asymptotically stable the variance matrix will be as follows as t increases: 

 

τττ deBVBeQtQtQ
TATA

tt ∫
∞

−∞→∞→
===

0
)(lim)(lim

0

 (59) 

 

Further, since Q(t) is the solution to the differential equation, its limit Q  must 

also satisfy the differential equation at steady state. Specifically 

 

0=++ TT BVBAQQA  (60) 

 

The Lyapunov equation has a unique solution for an asymptotically stable system, 

which means that the all of the eigenvalues of matrix A cannot be zeros [ref (12)]. 

For the problem considered herein, this means if w(t) is a stationary, zero-mean, 

white Gaussian noise, and is the only input to the system 

 

)()()( tBwtAxtx +=&  (61) 

 

then the process x(t) will also be zero-mean Gaussian noise with variance Q(t), given by 

 

ττ ττ deBBVeeQetQ
t

t

tATtAttAttA TT

∫ −−−− +=
0

00 )()()(
0

)( )()(  (62) 
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For the steady-state case, and stationary w(t) 

 

{ })()( txtxEQ T=  (63) 

 

and is the solution to 

 

0=++ TT BVBAQQA  (64) 

 

Further, if )()( tCxty =  then { } 0)( =tyE  and  

 
{ } { }

{ }
T

TT

TTT

CQC

CtxtxCE

CtxtCxEtytyE

=

=

=

)()(

)()()()(

 
(65) 

 

So the root mean square response of )(ty  is the square root of the diagonal of the 

expression TCQC . In this thesis, the objective function used is diagonal sum of TCQC . 

 

)( TCQCdiagJ ∑=  (66) 

where Q  is the intensity of the disturbance, assumed to be zero-mean White Gaussian 

Noise. 
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Stabilizable/ Detectable System 

The goal of control is to stabilize the system with minimum input control. To 

ensure a solution exists, we must first verify that the system is both stabilizable and 

detectable. For a system, if there exist uncontrollable modes and the uncontrollable 

modes are unstable then there is no way to stabilize the system. Likewise, if there exist 

unobservable modes and the unobservable modes were totally undetectable, then there is 

no way to detect the states. Thus before a control system can be designed, we need to 

verify whether the system is stabilizable and detectable or not.  

If the system is stabilizable and detectable, then it is reasonable to find a 

controller to minimize the cost function in Equation (66). 

The definition of stabilizable is “if all the unstable modes are controllable then the 

system is said to be stabilizable”. Clearly a controllable system is sufficient to be 

stabilizable but the reverse is not. 

The definition of detectable is “if all the unstable modes are observable, then the 

system is said to be detectable”. Clearly an observable system is sufficient to be 

detectable but the reverse is not [ref (11)]. 

Thus to stabilize the system, all the unstable modes must be observable in the 

performance index. Intuitively, if the unstable modes are not included in the performance 

index then the optimization will not consider them in the optimal solution, even if they 

are controllable.  

As developed in Chapter 2, the planar model has both uncontrollable and 

unobservable modes. These will need to be removed prior to control design. 
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Method to separate a system into the controllable and uncontrollable matrix 

In general, a system can have both controllable and uncontrollable modes. But to 

control the system we need to separate a system into the controllable and uncontrollable 

form. If the uncontrollable modes are stable then the system can be stabilized.  

For a given system: 

 

DuCxy
BuAxx

+=
+=&

 (67) 

 

Define the controllability matrix as [ref(2)] 

 

[ ]BABAABBM n
c

12 .... −=  (68) 

 

Using singular value decomposition cM  can be decomposed as follows :  

 

cMVT =Σ  (69) 

 

where the T represents an orthogonal matrix and the columns of T correspond to the 

singular values of cM  in Σ . Thus if cM  has m nonzero singular values and the 

remaining m+1….n form a basis for the rest of Rn.  

Then apply transformation T such as 

 

ATTA 1−= , BTB 1−= , CTC = . (70) 

 

so that: 
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B  and [ ]CuCcC = . (71) 
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With this new state-space relation the output feedback system with Kyu −=  is 

 

[ ] xCuCcK
Bcc

Auu
AcuAcc

x 



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


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&  (72) 

i.e. 

x
Auu
BccKCuAcuBccKCcAcc

x 






 −−
=

0
&  (73) 

 

From the block diagonal form, it is clear that the closed- loop eigenvalue is 

eigenvalue of BccKCcAcc−  and eigenvalue of Auu.  

It is also clear from Equation (72) that Auu cannot be affected by any input. So 

Auu results in completely uncontrollable modes. Thus if any uncontrollable modes are 

unstable, i.e. if real part of any eigenvalue of Auu is greater than zero, then the system is 

not stablilizable.  

 

Likewise Acc can be called the completely controllable matrix.  

So the system with  (Acc, Bcc, Ccc) is a completely controllable system. 

 

The state x  can be expressed such as xTx = , then x  can be decomposed such as 









=

u

c

x
x

x . Where cx is controllable states and ux is uncontrollable states. 

Notice that the transfer functions BAsICBccAccsICcc 11 )()( −− −=−  are 

equivalent for the controllable subsystem and the original system. So we can use Acc, 

Bcc and Ccc matrix instead of A, B and C. For the model developed in Chapter 2, this 

technique must be applied to remove the uncontrollable and unobservable (rigid body 

modes) before proceeding to design the controller. 
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Analyzing the Open-loop Eigenstructure  

In a given system 
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(74) 

where the system is proper and Ks represents normalized stiffness matrix, Cd represents 

normalized damping matrix, Bs represents input direction matrix and Cm represents the 

states output. 

For a given system, if all the springs and dampers are collocated, then the possible 

open- loop mode shapes can be found from the eigenvector set of Ks or Cd. If the open-

loop eigenstructure doesn’t contain rigid body modes, then all the eigenvalues of Ks are 

non-zeros. The eigenvectors related with the zero eigenvalues stand for rigid body mode 

shapes and the others with non-zero eigenvalues are the mode shapes that can be 

controlled. By using the controllable mode shapes as the basis, any closed- loop mode 

shape can be obtained, constrained only by the max allowable control use. That means 

the basis of open- loop mode shapes are the same as the basis of closed- loop mode shapes. 

  

 

Developing eigenstructure assignment [ref (11)] 

Consider a system that has n states, m control inputs, and r measurement outputs.  

For a static output feedback system 

 

Kyu −=  (75) 

 

then the closed- loop regulator is given by : 
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( )xBKCAx −=&  (76) 

 

and the eigenstructure is determined by ( )BKCA −  

As described before, the system can have both controllable and uncontrollable 

modes at a same time. Eigenstructure assignment can be used for the controllable modes.  

 

xCccy

uBccxAccx

=

+=&
 (77) 

 

Consider the system that has n  controllable states. If the maximum number of 

inputs or output s is greater than n , then arbitrary n  eigenvalues can be assigned. But if 

the maximum number of inputs or outputs is less than n , then some of  the eigenvalues 

cannot be assigned. There are several ways to assign the eigenstructure. This technique 

will briefly be reviewed [ref(11)]. 

 

 

Eigenstructure assignment technique with output feedback. 

For a linear system given by: 

 

Kyu
Cxy

BuAxx

−=
=

+=&
 

(78) 

where rmn RyRuRx =∈∈ ,,  the closed-loop regulator is given by 

 

xBKCAx ][ −=&  (79) 

 

and the modes are determined by the eigenvalues of ][ BKCA −  
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If the system is completely controllable and observable, and B has full column rank and 

C has follow row rank, then the following property can be proven [ref(11)]: 

1) The value of  max(m,r) closed- loop eigenvalue can be arbitrarily assigned 

If >n  max(m,r) then the eigenvalue cannot be assigned. 

2) The shape of the closed- loop eigenvectors associated with the assigned 

eigenvalues can be assigned as well. A total of min(m,r) elements of each 

assigned eigenvector can be chosen arbitrarily. 

3) The eigenvector associated with the closed- loop eigenvalue iλ must lie in the 

subspace spanned by 

 

[ ] BAIi
1−−λ  (80) 

 

The closed- loop eigenvalue problem looks like: 

 

[ ] iii vvBKCA λ=−  ( 81) 

 

and we wish to choose K in order to achieve the desired ii v,λ pairs. 

The above equation can be rearranged as follows 

  

[ ] iii BwvAI =−λ  

where ii KCvw −=  

( 82) 

 

Once the iw ’s have been found, the gain matrix K is determined by 

 
1][ −−= CVWK  

where ],....,,[ 321 rwwwwW =  

and ],....,,,[ 321 rvvvvV =  

(83) 
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This method allows the designer to place r eigenvalues assuming [CV] is invertible.  

 

 

Eigenstructure assignment technique for full-state feedback case. 

For the full-state feedback case, IC = and this implies r = n. 

This can be considered as 3 separate cases 

m=1, 1<m<n and m=n 

1) m=1 

a) K has n parameters 

b) All n eigenvalues can be assigned 

c) 1 element of each eigenvector can be assigned (but since eigenvectors 

have arbitrary scaling in this case it’s useless) 

2) m=n 

a) K has n2 parameters 

b) All n eigenvalues can be assigned arbitrarily 

c) All element of all eigenvector can be assigned (complete 

eigenstructure assignment is possible) 

3) 1<m<n 

a) K has m× n < n2 parameters. 

b) All n eigenvalues can be arbitrarily assigned 

c) A portion of each eigenvector can be assigned 

For each case 

 
1][ −−= CVWK  

where ],....,,[ 321 rwwwwW =  

and ],....,,,[ 321 rvvvvV =  

(84) 
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If the desired eigenvalues are distinct ‘n’ values in the assignment process, then the 

eigenvectors will necessarily be linearly independent and V will be invertible. If the 

desired eigenvalues are complex eigenvalues then the eigenvectors will also be complex, 

which result in a complex gain matrix K. To avoid complex gain matrices, the following 

technique can be used. Consider 1v and 2v are complex and conjugate. 

 

],......,,,[],......,,,[ 3111131111 nIRIRnIRIR wwiwwiwwvvivvivvK
WKV

−+−=−+⇒
−=

 (85) 

 

Post multiply both sides by 
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which yields: 

 

],......,,,[],......,,,,[ 311311 nIRnIR wwwwvvvvK −=  ( 86) 

  

Then K=-WV-1, and the resulting K matrix is real. 

Thus there is always a real matrix K by simply replacing the complex pair of 

eigenvectors with the real and imaginary parts of the complex eigenvector. 

As described before for the case 2 and 3 the gains are not unique and so the extra 

freedom can be used to place the components of the eigenvectors. 

 To do this, the desired eigen pair must satisfy Equation (87). 

 

[ ] iii BwvAI =−λ  (87) 

where ii v,λ are the desired eigen pair 
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Every eigenvector must lie in the subspace spanned by [ ] BAIi
1−−λ . This puts a 

restriction on the achievable eigenvectors.  

 Now let’s find the algorithm to achieve a vector close to the desired eigenvector if 

the desired eigenvector idv does not lie in the subspace. To do this let’s define a 

performance index 

 

)()(
2
1

idii
T

idii vvPvvJ −−=  (88) 

 

where ≡idv desired eigenvector 

  ≡iv achievable eigenvector 

  ≡iP a positive definite symmetric matrix whose elements are chosen to 

weight the difference between iv and idv for each element. 

 

 Using a Lagrange multiplier method,  

 

)]([)()(2/1 iii
T

iidiiidii BwvAIvvPvvJ −−+−−= λυ  (89) 

 

 To find the minimum, take partial derivatives with respect to iv , iw  and iυ  and set 

to zero. 
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Which can be written as 
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(91) 

 

where 
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(92) 

 

 It can be shown that as long as the system is completely controllable, Ni will be 

non-singular. 
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(93) 

 

 If an eigen pair is not to be altered setting 0=iw  and idv equal to it ’s original 

open- loop value assures that the associated eigen pair remain in their open- loop 

configurations. 

So eigenstructure assignment techniques can provide desirable time response 

characteristics (eigenvalue placement) and modal decoupling (eigenvector specifications) 

for the nominal plant, but there are no guarantees in terms of stability or performance 

robustness. This is left to the designer in choosing the desired eigenstructure. 
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State-space model with limited measurement data. 

Suppose we have A , which has an eigenvalue set { }ni λλλλλ ,....,,,| 321=Λ  

Then the characteristic polynomial for matrix A  is  

 
( )( )( ) ( )

n
nnn

n

asasas

ssssAsI

+++=

−−−−=−
−− .......

....
2

2
1

1

321 λλλλ
 (94) 

 

If  A  represents closed- loop system A matrix which is A-B*K*C, then the 

equation (94) can be described as follows: 

 

∑
=

=−
n

g

g
ij skfAsI

0

)(  (95) 

 

where ijk  represents the ith row and jth column element of regulator gain matrix K. 

 

If the desired closed- loop poles are specified as eigenvalue set Λ  then the 

characteristic polynomial for matrix A  must satisfy the equation (94) and (95). 

By comparing the coefficient of the characteristic polynomial between equation 

(94) and (95), every element of the regulator gain matrix K can be found. This method 

can be used for the multi- input-multi-output case too.  

In single-input-single-output case reference (2) page 833~834 shows an easy way 

determining the K matrix. It should be also noted that in the SISO case the K matrix is 

unique.But in the multi- input-multi-output case, the K matrix is not unique. There are 

several ways to choose the K matrix.  

 



 

 36 

As developed in Chapter 2, the model has 4 inputs, 4 outputs and 12 states. The 

model output information is only for the displacement states. The dynamic system can be 

described as follows: 
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where x represents the displacement state vector and x&  the velocity. If the system is 

strictly proper, then the D matrix can be removed. Here Ks represents normalized 

stiffness matrix, Cd represents normalized damping matrix, Bs represents input direction 

for the forcing element and mC  represents output.  

The open- loop system characteristic equation is: 

 

[ ] 0det =
−−−

−
=−

ICdKs
II

IA
λ

λ
λ  (97) 

 

The coefficients of nλ  and 1−nλ  (the two highest polynomial terms) happen only at the 

product of the diagonal term. 

Now let’s assume that we can measure only displacement. 

 






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=
x
x

Cy m &
]0[  (98) 

 

With this open- loop system let’s build the closed- loop system with output feedback. 

 

Kyu −=  (99) 
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Then the system will be: 
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where 

A_cl= 







−−− CdBsKCKs

I

m

0
 (101) 

 

The characteristic equation of the closed- loop system A_cl matrix is: 

 

[ ] 0_det =
−−−−

−
=−

ICdBsKCKs
II

IclA
m λ

λ
λ  (102) 

 

Again, the coefficients of nλ  and 1−nλ  happen only at the product of the diagonal 

term. But in this product any control element of K matrix cannot affect the coefficient of 

the highest and the next highest term ofλ . That means that the coefficient of 1−nλ   is 

fixed. But as noticed the coefficient of 1−nλ  for the closed- loop system is the same as the 

open- loop system. In calculating the polynomial, the coefficient of the 1−nλ term of the 

characteristic equation is equal to the sum of all eigenvalues. If one of the desired 

eigenvalues is relatively larger than before, then the other eigenvalue should be relatively 

smaller and the sum of eigenvalues should be the same as the open-loop eigenvalue sum. 

If the controller is to stabilize a mode extremely fast, i.e. the desired eigenvalue ’s real 

value is extremely large with negative sign, then at least one of the other eigenvalue ’s 
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real value can be positive, i.e. the closed-loop system could become unstable. So in the 

eigenstructure assignment, there is an inherent trade-off of the desired eigenvalues. 

We need to measure the output velocity in order to guarantee arbitrary eigenvalue 

assignment. The results shown in Chapter 4 used 








m

m

C
C
0

0
 as the output measurement 

matrix C, to guarantee the placement of desired eigenvalue. In practice, this could be 

accomplished with both displacement and velocity sensors or with velocity sensors and 

digital integrators for the displacement. 

 

 

Determining the desired eigenvalues 

From a given open- loop system, the related frequency response can be found by 

using a singular value plot. The peak points represent the output strength with the related 

natural frequency. The objective of this thesis is to minimize the output variance for a 

random input. If that output variance is zero when the input is random (assumed zero-

mean White Gaussian Noise), that is the best result.  But it is impossible to make the 

output zero, but minimizing the output variance, the closed- loop system will maintain 

focus better than the open- loop system.  

The output variance can be changed by adjusting the peak singular values with 

related frequency in open- loop system. If the peak singular value is lowered, the output 

variance can be lowered. The eigenstructure assignment technique can be used to lower 

the peak singular values. (which are directly related to the eigenvalues) 

The idea behind selecting the lowering of the peak singular values is as follows. 

Figure 10 shows the relations between real, imaginary and absolute value of eigenvalue, 

where the open- loop eigenvalue is biai +−=λ . 
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Figure 10. Relation between Natural frequency and Damping frequency 

 

 The speed of stabilizing the sys tem strictly depends on the real part of the 

eigenvalue which is called an attenuation constant. So minimizing the output variance, or 

lowering the peak singular value, is maximizing the eigenvalue’s real part ‘a’ which 

maintaining the same natural frequency. 

But each singular value does not have the same co-relation with the output 

variance. The output variance is dominated by the lower frequency eigenvalues because 

the modes with lower natural frequencies decay slower with respect to higher natural 

frequency modes. So the modes which occur at the lowest frequencies and have high 

singular values are the best candidate modes to lower their peak singular values.  

But selecting the best real eigenvalue must satisfy 22
nϖσ ≤  and the constraint of 

the max allowable gain value. The control effort required, which is directly related to the 

required gain, is dependant on the required changes to the eigenvalue. Thus these gain 

increases were minimized by increasing the real part but maintaining the frequency at 

which the modes occur [ref(11)]. 

  

 

Determining the desired eigenvector 

bd =ϖ  

a−=−σ  

22 ban +=ϖ  
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As described in the section Eigenstructure Assignment technique with output 

feedback, the desired eigenvector associated with the closed- loop eigenvalue iλ  must lie 

in the subspace spanned by: 

 

[ ] BAIVi i
11_ −−= λ  (103) 

 

This is the first necessary condition of the desired eigenvector. 

In the full-state feedback case, or a totally controllable system, the condition 

stated above of the desired eigenvector is always satisfied, but a system which has rigid 

body modes or uncontrollable modes is not. 

As described in the section on Analyzing the open- loop Eigenstructure, every 

closed- loop mode shape which is controllable lies in the subspace spanned by the open-

loop controllable eigenvectors (mode shapes). Let OLM  be a basis of the set of open- loop 

mode shapes. Then the closed-loop mode shape CLM  can be determined by a linear 

combination of open- loop mode shape.  
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where k is the number of linearly independent open- loop mode shapes. 

(104) 

 

Then the closed- loop eigenvector CLV  with arbitrary eigenvalue must be: 

 
{ }

{ } { }c
M

M
cM

cM
M

M
V

OL

OL

OL

OL

CL

CL
CL 








×

=







××

×
=








×

=
λλλ

 (105) 
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So any closed- loop eigenvector rela ted with eigenvalue iλ  must lie in the 

subspace spanned by 







× OL

OL

M
M

λ
 and let’s call that as 2_Vi . This is the second necessary 

condition of the desired eigenvector.  

So desired eigenvector must satisfy both necessary conditions. But there is an 

intersecting space which satisfies the first and second necessary condition as shown in 

Figure 11. It is necessary to use the intersection space in finding the desired eigenvector. 

The intersection space must lie in the subspace of the first and second necessary 

condition. If { }x  is a vector which lies in the intersection space of the two necessary 

conditions space, then the vector { }x  can be expressed such as: 

 

{ } [ ]{ } [ ]{ }bViaVix 2_1_ ==  (106) 

where { }a  and { }b  represents linear combination of column space of  the intersection of  

matrix 1_Vi  and 2_Vi . 

  i.e. 

 

[ ]{ } [ ]{ } { }02_1_ =− bViaVi  

so [ ] { }02_1_ =







− b
a

ViVi  

(107) 

(108) 

 

Therefore vector 







− b
a

 is null space of [ ]2_1_ ViVi . 

So the intersection space ( V ) of the two necessary condition spaces is 

[ ]{ }{ }aVispan 1_ or [ ]{ }{ }bVispan 2_ . The space V represents the achievable desired 

eigenvector space. 

 
[ ]{ }{ }
[ ]{ }{ }bVispan

aVispanV
2_
1_

=
=

 (109) 
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Figure 11. Necessary Condition Set Relationship Diagram 

 

 Then the best desired eigenvector ( idν ) is a vector which lies in the space of V 

and minimizes the ‘J’ as in following equation: 

 

i
T

i

idi

YPYJ

CY

νν

ν ν

××=

=
 (110) 

where P is any positive semi-definite penalty matrix and idν  is a vector lies in the space 

V. 

 Physically, equation (110) tells us to select eigenvectors that contribute to the 

weighted cost ‘J’. 

 In reality as the eigenvalue moves, the related eigenvector moves from open- loop 

eigenvector to a vector which lies in the space of achievable desired eigenvector (V). But 

as eigen-pair (eigenstructure) approaches the desired eigenvalue and the best desired 

eigenvector, the elements of control gain matrix increases. The allowable maximum 

control gain constraints limit the extent to which the desired eigenvectors can be achieved. 

In this thesis, the proper desired eigenstructure which satisfies allowable maximum 

control gain constraints was found by using Newton’s Line Search Method. Typically a 

desired eigenvector was found by finding the proper ratio value ri in Equation (111) 

between 1 through 0. 

1_Vi  2_Vi  

V  
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idiiioia rr ννν )1( −+=  (111) 

where iaν  is the ith mode assigned eigenvector as the desired one, ioν is the ith mode open-

loop system eigenvector, and idν is ith mode best desired eigenvector.  

 

Every assigned eigenvector was found by finding related ri simultaneously using the 

Newton’s Line Search Method again. 

 For comparison with the eigenstructure assignment technique, an LQR approach 

was also used, and will briefly be discussed below. 

 

 

Linear Quadradic Regulator(LQR). 

LQR is the well known in finding optimal regulator. As shown in Equation (112), 

the LQR problem is stated as determine u(t) which minimize performance index: 

 

( )∫
∞

+=
0

dtRuuQxxJ TT  (112) 

where Q is positive semi definite and R is positive definite matrix. 

The solution which will determine the control law u(t) and hence compensator is 

found from calculus of variation techniques. Using a Lagrange multiplier to convert this 

constrained nth order minimization to 2nth order unconstrained minimization.  

In the steady state case, LQR problem turns out to be the solution to the Algebraic 

Riccati Equation (ARE). The ARE is solved in MATLAB. This thesis used LQR 

command in MATLAB by assigning the diagonal value of matrix Q and R. 

 

 

Summary 
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This chapter established the technique for achieving the proper gains for the 

eigenstructure assignment technique and showed the simple approach with LQR method. 

In using the eigenstructure assignment technique, the number of measurement 

outputs was an important factor in achieving desired eigenvalues. If there are not enough 

measurement outputs rather than states, restricted eigenvalue could be assigned. To 

overcome this restriction, a proper state estimator or more output measurement was 

needed. With the assumption of existence of best estimator, eigenstructure assignment 

can be fully developed. 

The next chapter shows the result using eigenstructure assignment technique. The 

result of using LQR is also shown to compare the result from eigenstructure assignment 

technique. Finally, the AFRL model analysis results are added at the end. 
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IV. Result and Analysis 
 

 

 The previous chapter developed eigenstructure assignment and LQR methods. 

This chapter shows the result of the 2-D planar model with both techniques and the 

AFRL model analysis result using the eigenstructure assignment technique. 

 

Open-loop system analysis (2-D planar Model) 

Assumptions: 

  1). There is no output measurement error 

2). In developing the EOMS (Equations of motion), small angle and small 

displacement approximations were used to make the control system linear 

3). Both displacements and velocities can be measured. 

 

Constraints: 

  1). Control gain max value of 100 (max absolute value of any element of ‘K’ 

matrix). 

 

As shown in Chapter 1 problem statement, the given system can be described as 

follows: 

 

uDxKxCxM =++ &&&  (1) 

where  

M  : Mass matrix  

  C : Damping matrix 
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       K  : Stiffness matrix 

For the EOM above, the state-space system can be developed (with the 

assumption of  output velocity measurements) as follows: 
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(78) 

where mC  represents measurement matrix for state the x. 

In this thesis, parameters in the M , K  and C  were chosen to get similar 

characteristic s of performance of the AFRL DOT model system. The AFRL’s DOT 

 

 

Figure 12. Open-Loop System Singular Plot ( AFRL DOT System) 
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model singular value plot is shown in Figure 12, and the planar model singular value plot 

is shown in Figure 13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Open-Loop System Singular Plot (2-D Planar Model) 

 
Table 1. Open-Loop System Mode  

 1st mode 2nd mode 3rd mode 4th mode 5th mode 6th mode 
Eigenvalue 

( 310× ) 2.6431i
0.1401-

±
 

2.2780i
0.1040-

 
0.1812i
0.0007-

±
 

0.2165i
0.0009-

±
 

0 0 

Damping 5.29e-002 4.56e-002 3.62e-003 4.33e-003   
 
Mode 
Shape 

z1 
z2 
zb 
θ1 
θ2 
θb 

0.6803 
   -0.6803 
    0 
   -0.0013 
   -0.0013 
    0.2729 

0.7068 
    0.7068 
   -0.0283 
    0 
    0 
    0 

0 
    0 
    0 
    0.7071 
   -0.7071 
    0 

0.2699 
   -0.2699 
    0 
    0.6256 
    0.6256 
   -0.2674 

0. 5774 
0.5774 

    0.5774 
0 
0 

    0 

-
0.4472 
    0.4472 
    0 
    0.4472 
    0.4472 
    0.4472 

Controllability Controllable Uncontrollable 
(Rigid body mode) 

Target modes 
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The open- loop mode shapes were determined by finding the eigenvalues and 

eigenvectors. Each mode’s eigenstructure is shown in Table 1 and each mode shape is 

shown in Figure 14. 

 

  

Mode 1 Mode 2 

  

Mode 3 Mode 4 

Figure 14. Open-Loop System Mode Shape (2-D Planar Model) 

 

As assumed from the beginning, the satellite system can have several disturbance 

sources (noise). All the sources of noise were assumed to be White Gaussian Noise with 

intensity 7102 −×  to be close to the AFRL model which had nano range disturbances.  
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Using the Lyapunov equation, the steady-state output variance and Root Mean 

Square (RMS) value was computed. There are 4 displacements and angle errors and 4 

velocity errors. The velocity error variance was not used in the objective function. 

Intuitively, the tilt angle errors are more important than the displacement errors, so the 

objective function used was as follows: 

 

RPRJ T ××=  (113) 

where  

          R  : RMS of { }TDDTT 2121   

          T1 : Tilt Angle Error for Mirror 1 

          T2 : Tilt Angle Error for Mirror 2 

          D1 : Displacement Error for Mirror 1 

         D2 : Displacement Error for Mirror 2 

         P : penalty positive semi-definite matrix 

           ( in this thesis ( )111010 44diagP =  

 

 

The open- loop RMS results are provided in Table 2. The result of objective 

function was 4.1718 1010−× . 

 

Table 2. Open-Loop System Measurement RMS (2-D Planar Model) 

 Planar Model ( 910−× ) AFRL Model ( 910−× ) 

Tilt Error 143 143.3 
A segment 

X-tilt Mirror 

“1” Piston Error 2028.9 46.68 
A segment 

piston 

Tilt Error 143 170.5 
C segment 

X-tilt Mirror 

“2” Piston Error 2028.9 60.58 
C segment 

piston 

 



 

 50 

Through analyzing the open- loop system singular value plot, the candidate modes 

to be changed were determined as the mode which has largest singular value and 

minimum absolute real eigenvalue.  

As shown in Figure 13, there are two candidate modes to be changed. At first, the 

objective function can be reduced by selecting only one mode and increasing the real part 

of the eigenvalue which satisfies the constraint that the maximum control gain matrix 

element must be less than allowed value. The constraint used was 100. 

 

 

Closed-loop system assigned 3rd mode eigenvalue  

The 3rd mode eigenvalue i1810.657- ±  has the smallest real value, i.e. the slowest 

mode. So the assumption that the 3rd mode has a large contribution to the objective 

function result was made. By assigning a different eigenvalue real part and the same 

eigenvector with open- loop system at the same frequency, the objective function result 

can be lowered. But as the eigenvalue real part is increased, the control gain matrix 

element value was increased, as expected. Thus, there was a unique eigenvalue that 

satisfies the constraint that the maximum the control gain matrix element value was less 

than 100 (actually it was equal to 100). 

By assigning the maximum control gain matrix element value as 100, the resulting 

singular value plot with respect to frequency was given in Figure 15. 

The resulting eigenvalue difference is shown in Table 3. 

 

Table 3. 3rd Mode Eigenvalue Comparison. 

 Open Loop Closed Loop 

Eigenvalue i1810.657- ±  179i  27.1- ±  

Damping -3103.62 ×  -1101.50 ×  
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Figure 15. Closed-Loop System Singular Plot ( 3rd mode changed ) 

 

The result of objective function was 2.1367 1010−×  which was almost 51.2 % of 

open- loop result. The resulting jittering performance is shown in Table 4. 

 

Table 4. Closed-loop System Measurement RMS (3rd mode changed) 
( 910−× ) Open-Loop  

Planar Model 
Closed-Loop 
Planar Model 

Tilt Error 143 
103 

Mirror 

“1” Piston Error 2028.9 
1193 

Tilt Error 143 
103 

Mirror 

“2” Piston Error 2028.9 
1193 

 

 

 3rd mode controlled 
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Closed-loop system assigned 4th mode eigenvalue  

Using the same procedure, the 4th mode eigenvalue ( 216i0.937- ± ) has as small 

eigenvalue real part as 3rd mode. That means that the 4th mode still has a  contribution to 

the objective function result as much as the 3rd mode. Then by assigning a different 

eigenvalue real part and the same eigenvector as the open- loop system at the same 

frequency, the objective function result was lowered to 2.1469 1010−×  which is 51.5 % of 

open- loop result.  

Figure 16 shows the resulting singular value plot with respect to frequency with 

the same max allowable control gain matrix element value constraint. The resulting 

eigenvalue differences are shown in Table 5. 

 

Table 5. 4th Mode Eigenvalue Comparison. 

 Open Loop Closed Loop 

Eigenvalue 216i0.937- ±  i214  32.5- ±  

Damping -3104.33 ×  -1101.50 ×  

 

 

Table 6. Closed-Loop System Measurement RMS (4th mode changed) 
( 910−× ) Open-Loop 

Planar Model 
Closed-Loop 
Planar Model 

Tilt Error 143 
102 

Mirror 

“1” Piston Error 2028.9 
1673 

Tilt Error 143 
102 

Mirror 

“2” Piston Error 2028.9 
1673 
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Figure 16. Closed-Loop System Singular Plot ( 4th mode changed ) 

 

 

Closed-loop system assigned 3rd and 4th mode eigenvalue  

The previous section changed the eigenvalue only for a single mode  and showed 

the possible eigenvalue range that can be achieved. So the assumption that the objective 

function result could be lowered by changing two eigenvalues at the same time in the 

achievable range was made. Newton’s Line Search Method which is developed in Matlab 

as built- in function with command name of ‘fmincon’ was used in finding the best two 

eigenvalue pair to minimize.  

 

 

 4th mode controlled 
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Table 7 and Figure 17 show the optimized result only by changing the 

eigenvalues, but with the same open- loop system eigenvectors. 

 

Table 7. 3rd and 4th Mode Eigenvalue Comparison. 

 Open Loop Closed Loop 

 3rd mode 4th mode 3rd mode 4th mode 

Eigenvalue i1810.657- ±  216i0.937- ±  i81113.3- ±  i216 17.4- ±  

Damping -3103.62 ×  -3104.33 ×  -2107.36 ×  -2108.02 ×  

 

 

Figure 17. Closed-Loop System Singular Plot 

( 3rd and 4th mode changed at the same time ) 
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Table 8. Closed-Loop System Measurement RMS (3rd and 4th mode changed) 
( 910−× ) Open-Loop 

Planar Model 
Closed-Loop 
Planar Model 

Tilt Error 143 
32.6 

Mirror 

“1” Piston Error 2028.9 
457.5 

Tilt Error 143 
32.6 

Mirror 

“2” Piston Error 2028.9 
457.5 

 

After changing only the eigenvalues for modes 3 and 4, the objective function 

result was lowered to 0.2164 1010−×  which is 5.2% of the open-loop result. 

 

 

Closed-loop system assigned 3rd and 4th mode eigenvector 

 

With the same eigenvalues achieved above, there can exist desired eigenvectors to 

further minimize the objective function. 

Using the technique from Chapter 3 Equation (109) and (110), the desired 

eigenvectors were determined and the related mode shape is shown in Table 9. 

Table 9. 3rd and 4th Mode Optimum Mode Shape. 

Mode Shape 

3rd Mode 4th  Mode 

 

Open Loop Desired Open Loop Desired 
z1 
z2 
zb 
θ1 
θ2 

θb 

0 
0 
0 

0.7071 
-0.7071 

0 

-0.7054 
-0.7054 
0.0282 
0.0456 
-0.0456 

0 

0.2699 
-0.2699 

0 
0.6256 
0.6256 
-0.2674 

-0.7054 
-0.7054 
0.0282 
0.0456 
-0.0456 

0 
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Mode 3 Mode 4 

Figure 18. Desired Closed-Loop Mode Shape (2-D Planar Model) 

 

As a result, using the desired eigenvector with the mode shape as described in 

Table 9, the eigenvector was exactly achieved and the resulting objective function was 

lowered to 0.1244 1010−×  which is 2.98 % of open-loop result. But the maximum gain 

matrix element was increased to 9.99 610× . So by assigning the desired eigenvector 

between open- loop eigenvector to the best achievable eigenvector as described in 

Equaion (113) in Chapter 3, the maximum ga in matrix element could be lowered to 100 

and the achieved result of objective function was 0.2164 1010−×  which is almost the same 

result of the previous section. The achieved closed-loop mode shape was almost same 

with the result of previous section which was similar to the open- loop mode shape. 

The results showed that using the desired eigenvectors can further reduce the 

objective function, but at an increase in gain and hence control usage. The technique 

allows the designer to quickly adjust the amount of ‘shape control’ achieved 

(eigenvector) for a given amount of control use. 
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Closed-loop control using LQR 

The advantage of LQR is the guaranteed stability with plenty of margins. The cost 

function minimized was Equation (112) Chapter 3, repeated here for ease of reading. 

 

( )∫
∞

+=
0

dtRuuQxxJ TT  (112) 

 

The given system in this thesis has uncontrollable rigid body modes. One of  the 

requirements in using LQR is that the system must be completely controllable. So only 

the controllable modes were used by separating the system into controllable and 

uncontrollable subsystem as outlined in Chapter 3. The LQR problem can be converted to 

a problem of finding the proper penalty value for the state and control usage. To 

minimize the search space, this thesis assumed that all the control usage has the same 

importance (i.e. all the actuators are equally weighted). So every diagonal value of the 

matrix R was set to 0.1. With this, the problem is now finding the proper diagonal value 

of the Q matrix. To find the proper diagonal value, Newton’s Line Search Method was 

used again.  

As a result, the 1st and 2nd mode eigenvalues were almost the same as the open-

loop system. The 3rd and 4th mode eigenvalues were changed mostly, but the values were 

slightly different from the result of assigning the 3rd and 4th mode eigenvalues. 

The resulting singular plot and the eigenvalue comparison is given in Figure 16 

and in Table 10.  

The resulting objective function was lowered to 0.2169 1010−×  which is 5.2 % of 

open- loop result (same as the eigenstructure assignment technique).  
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Figure 19. Closed-loop System Singular Plot (Using LQR ) 

 

Table 10. 3rd and 4th Mode Eigenvalue Comparison( Using LQR) 

 Open Loop Closed Loop 

 3rd mode 4th mode 3rd mode 4th mode 

Eigenvalue i8110.657- ±  i216 0.937- ±  i81113.7- ±  i216 16.9- ±  

Damping -3103.62 ×  -3104.33 ×  -2107.54 ×  -2107.82 ×  

 

Table 11. Closed-Loop System Measurement RMS (Using LQR) 
( 910−× ) Open-Loop 

Planar Model 
Closed-Loop 
Planar Model 

Tilt Error 143 
32.6 

Mirror 

“1” Piston Error 2028.9 
456 

Tilt Error 143 
32.6 

Mirror 

“2” Piston Error 2028.9 
456 

Comparison between Eigenstructure assignment technique and LQR approach 
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           In many cases LQR was used because LQR guarantees the stability if it is possible 

to measure the output exactly. The number of penalty variables to be determined using 

LQR was equal to the sum of the number of states and the number of inputs. In this thesis, 

the simplified model had 8 penalty variables and it was the same as the number of system 

eigenvalues. But the eigenstructure assignment technique used several eigenvalues (or 

modes) which have small real eigenvalue parts and mostly occur in the low frequency 

band. The number of target eigenvalues was less than number of states and should be less 

than half because of the complex conjugate stipulation. In this thesis there was 2 

eigenvalues and their complex conjugates, was used as the target mode eigenvalue. The 

resulting objective function value after using the eigenvalue assignment was pretty much 

equivalent with the result of using the LQR method. So assigning the eigenvalue was a 

computationally faster method than LQR. 

 Eigenvector assignment was effective to reduce the objective function but most of 

the reduction is attributed to the eigenvalue assignment. Finding the optimum 

eigenvectors (optimum mass motion) was the same as finding the linear combination 

from the first and second desired eigenvector necessary conditions. Achieving the 

optimized eigenvectors results in a requirement of high control gain values, such as an 

order of  910  in the simplified model. After finding and assigning the best desired 

eigenvector between open- loop system eigenvector and optimized eigenvector by 

Newtion’s Line Search Method (Equation (111) in Chapter 3), resulting objective 

function was similar to the result from assigning just the eigenvalues.  
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Closed-loop system for the AFRL DOT system with Eigenvalue Assignment 

The actual DOT system model which AFRL developed had 9 inputs and 9 outputs 

and 79 states. The corresponding open- loop singular value plot and optical jitter output 

was shown previously Figure 12 and is tabulated in Table 12. 

 To reduce the computation time, this thesis used a balanced model realization and 

model reduction to 20 states, with 9 inputs and 9 outputs. The obtained singular value 

plot is shown in Figure 20. After reducing the system, a combination of noise intensities 

was assumed for the reduced model open- loop system to be close to the original system’s 

jitter performance.  

The assumed noise intensity and resulting open- loop performance is shown in 

Tables 13 and 14. 

The objective function was determined as the sum of output variance and the 

open- loop system result was 2.3629 1110−× . 

 

 
Table 12. Optical Performance ( AFRL DOT System ) 

Segment D.O.F. Open-Loop Jitter Specification Units (rms) 

piston 46.68 14 nm 

X-tilt 168.44 95 nrad 

 

A 

X-tilt 143.03 95 nrad 

piston 45.64 14 nm 

X-tilt 106.57 95 nrad 

 

B 

X-tilt 89.96 95 nrad 

piston 60.58 14 nm 

X-tilt 170.5 95 nrad 

 

C 

X-tilt 117.88 95 nrad 
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In using the eigenstructure assignment technique, a full state feedback system or a  

system which has the same number of output measurements as the number of states 

guarantees every desired eigenvalue can be achieved. The system that AFRL had 

developed has only 9 inputs and 9 outputs. This is less than the number of states. This 

means the eigenvalue assignment technique has a restriction (trade-off) as discussed in 

Chapter 3 (State-space model with limited measurement data). For this thesis, the 

assumption that this system had an optimized state estimator was made. In that case, 

eigenstructure assignment technique can be fully implemented. 

 

Table 13. Assumed Input Noise Intensity 

Noise direction ( Input # )  

1 2 3 4 5 6 7 8 9 

Intensity 0 131.0617 0 0 0 0 19.9437 322.9485 0 

 

 
Table 14. Optical Performance (Reduced Model Open-loop System)  

Segment D.O.F. Open-Loop Jitter 
(Reduced Model) 

Open-Loop Jitter 
(AFRL Model) 

Units (rms) 

piston 1773.2 46.68 nm 

X-tilt 143.7 168.44 nrad 

 

A 

Y-tilt 144.8 143.03 nrad 

piston 1136.6 45.64 nm 

X-tilt 105.3 106.57 nrad 

 

B 

Y-tilt 112.8 89.96 nrad 

piston 4368.3 60.58 nm 

X-tilt 172.4 170.5 nrad 

 

C 

Y-tilt 122.1 117.88 nrad 
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 Using the full-state feedback system, the target eigenvalue to be changed was 

determined to be the eigenvalue which is located in the frequency between 262 and 447 

( rad / sec ) as seen in the Figure 20. 

 After assigning the desired eigenvalue and using the open- loop system 

eigenvector as the desired eigenvector, the closed- loop system was developed and the 

resulting objective function value was 0.287 1110−× (12 % of open- loop system result) 

with max allowable gain value 1. The resulting singular value plot and closed-loop jitter 

performance was shown in Figure 21 and table 15. 

 

 

Figure 20. Open-Loop System Singular Plot (Reduced Model) 
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The proper desired eigenvector to be assigned was determined by using the first 

necessary condition which was described in Chapter 3, and given below: 

 

[ ] BAIVi i
11_ −−= λ  (103) 

 The second necessary condition wasn’t used because this portion assumed full-

state feedback. 

 After finding the optimum desired eigenvectors with related desired eigenvalue, 

the objective function result which satisfies the max allowable control gain matrix 

element value was almost the same with the result of assigning the desired eigenvalue.  

 

 
Table 15. Optical Performance  

(Reduced Model Closed-loop System with Assigning Eigenvalue) 

Segment D.O.F. Closed-Loop Jitter 
(Reduced Model) 

Open-Loop Jitter 
(Reduced Model) 

Units (rms) 

piston 598.4 1773.2 nm 

X-tilt 51.6 143.7 nrad 

 

A 

X-tilt 52.2 144.8 nrad 

piston 276 1136.6 nm 

X-tilt 22.5 105.3 nrad 

 

B 

X-tilt 33.1 112.8 nrad 

piston 1557.6 4368.3 nm 

X-tilt 53.9 172.4 nrad 

 

C 

X-tilt 51.1 122.1 nrad 
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Figure 21. Closed-Loop System Singular Plot 

(Reduced Model after Assigning Eigenvalue) 

 

 

Summary 

In analyzing the simplified 2-D model, the result between using eigenstructure 

assignment technique and using LQR method was almost the same. Both results showed 

94.8% reduction of objective function. In analyzing the AFRL model, the objective 

function was reduced to 12% of the open-loop result. 

 Assigning the desired eigenvectors (i.e. shape control) took a great amount of 

control usage, but can reduce the effect of noise further. As described in assumptions, the 

result is highly dependent on the value of max allowable gain value. So as the control 

constraints change, the performance can be changed. 
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V.  Conclusions and Recommendations  
 
 

Conclusions  

 This research effort examined the use of eigenstructure assignment to maintain 

the focus for a sparse flexible array representative of a future space imaging system. It 

was expected that by increasing the real part of the eigenvalue of the target modes and 

controlling the eigenvector (i.e. shape control) to maintain the focus, eigenstructure 

assignment technique would lead to closed- loop control which minimized the effect of 

disturbance. The solution technique involved identifying a desired eigenstructure, and 

discussed methods of dealing with uncontrollable, unobservable modes, and the output 

feedback (rather than full-state feedback). 

 The advantage of the method was reduction of the computation time for solution.  

There were 2 parameters needed to be found in assigning the desired eigenvalue which 

was the most effective part in minimizing the effect of disturbance rather than 8 

parameters in the LQR method. In finding the desired eigenvector, a search method was 

still needed but could reduce the computation time by using a basis for the achievable 

eigenvector range space which satisfied the necessary conditions. 

In controlling the AFRL DOT model, which had less output measurements than 

states, the existence of a state estimator was essential to achieve the desired eigenvalues. 

If there is an optimum estimator, the eigenstructure assignment technique was a 

computationally faster approach than LQR. 

  

Recommendations  

 In analyzing the AFRL model, this thesis assumed full-state feedback (i.e. there is 

optimized and perfect state estimators). This is impossible in a real system. Future 
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research on eigenstructure assignment techniques should take into account the existence 

of an estimator, and determine the effect on performance. 

 Not addressed in this thesis was the selection of a desired eigenvector (shape) to 

meet a secondary objective such as decoupling the ‘tip’ and ‘tilt’ modes. This approach 

could be used combined with optical modes (zernikes) to further enhance control by 

decoupling the optical modes.  

 For further studies, the planar model should be expanded to a 3-D model. 

Additionally flexible body effects of the individual mirrors could also be included to 

qualify these effects. 
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Appendix A:  Main script file (Eigenstructure Assignment Technique) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%       Eigenstructure Assignment Technique 
%       Planar model control by changing 3rd and 4th mode  
%       Main script file 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%driving the equations of motion for 2 mirrors and a base 
clc;clear;close all; 
    
   I1=      1.5; 
   I2=      1.5; 
   Ib=      5; 
   m1=      1; 
   m2=      1; 
   mb=      50; 
    h=      4; 
   hm=      0.1; 
    L=      1; 
    l=      0.1; 
    k=      2.5*10^6; 
    c=      100; 
    
%Initial Set up 
    phi=atan(h/L); 
    al_0=pi/4-phi/2 ; 
 
    DM=[1 0 -1 -l*cos(al_0) 0 (L+l*cos(al_0)); 
        1 0 -1 l*cos(al_0) 0 (L- l*cos(al_0)); 
        0 1 -1 0 -l*cos(al_0) -(L- l*cos(al_0)); 
        0 1 -1 0 l*cos(al_0) -(L+l*cos(al_0))];%distance matrix  
     
    DDM=[DM zeros(4,6); 
        zeros(4,6) DM]; 
     
    ACM=[k 0 0 0 c 0 0 0; 
        0 k 0 0 0 c 0 0; 
        0 0 k 0 0 0 c 0; 
        0 0 0 k 0 0 0 c]; 
  
    AB=[1/m1*[-1 -1 0 0]; 
        1/m2*[0 0 -1 -1]; 
        1/mb*[1 1 1 1]; 
        1/I1*l*cos(al_0)*[1 -1 0 0]; 
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        1/I2*l*cos(al_0)*[0 0 1 -1]; 
        1/Ib*[(L+l*cos(al_0))*[-1 0 0 1]+(L-l*cos(al_0))*[0 -1 1 0]]]; 
     
        
    A=[zeros(6) eye(6) 
        AB*ACM*DDM]; 
    B=[zeros(6,4); 
              AB];  
 

Cm=[[cos(phi)/sqrt(L^2+h^2), 0, -cos(phi)/sqrt(L^2+h^2), 1, 0, -
sin(phi)*(h+hm)/sqrt(L^2+h^2)  ;    %mirror 1 tilt angle 
0, -cos(phi)/sqrt(L^2+h^2), cos(phi)/sqrt(L^2+h^2), 0, 1, -
sin(phi)*(h+hm)/sqrt(L^2+h^2) ];      %mirror 2 tilt angle 
-sin(phi) 0 sin(phi) tan(phi)*sqrt(L^2+h^2) 0 -
(h+hm)*cos(phi)  ;                               %mirror 1 wavelength error 
0 -sin(phi) sin(phi) 0 -tan(phi)*sqrt(L^2+h^2) 
(h+hm)*cos(phi)];                                %mirror 2 wavelength error 

 
    C=[Cm zeros(4,6); 
       zeros(4,6) Cm]; 
    D=zeros(8,4); 
     
[vo do]=eig(A);do=diag(do); 
 
%Controllable system Identification 
[ABAR,BBAR,CBAR,T,KK] =ctrbf(A,B,C); 
Ac=ABAR(5:12,5:12); 
Bc=BBAR(5:12,:); 
Cc=CBAR(:,5:12); 
Gol=ss(Ac,Bc,Cc(1:4,:),D(1:4,:)); 
 
[vd,lamd]=eig(Ac);lamd=diag(lamd); 
wn5=abs(lamd(5));   %Natural Frequency (Mode 4) 
wn7=abs(lamd(7));   %Natural Frequency (Mode 3) 
 
max_k=100 
x0=[real(lamd(5));real(lamd(7))]; 
 
%Using Newton's Line Search Method 
option=optimset('TolX',1e-12,'TolFun',1e-20,'TolCon',1e-
18,'MaxFunEvals',10^6,'MaxIter',10^4,'Display','iter');     
[x,fval1,exitflag,output] =  
fmincon(@fun_nock,x0,[],[],[],[],[],[],@nonlcon_nock,option,Ac,Bc,Cc,max_k); 
 
%Overlapping Desired Eigenvalue 
lamd(5)=x(1)+sqrt(wn5^2-x(1)^2)*i; 
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lamd(6)=x(1)-sqrt(wn5^2-x(1)^2)*i; 
lamd(7)=x(2)+sqrt(wn7^2-x(2)^2)*i; 
lamd(8)=x(2)-sqrt(wn7^2-x(2)^2)*i; 
 
 
 
%Eigenstructure Assignment Technique 
    for jj=1:8 
        N=[lamd(jj)*eye(8)-Ac, -Bc ,zeros(8,8); 
            zeros(4,12)          ,Bc'; 
            eye(8)     ,zeros(8,4), (lamd(jj)*eye(8)-Ac)']; 
        VWN(:,jj)=inv(N)*[zeros(12,1);vd(:,jj)]; 
    end 
    VWN; 
 
 
    for jj=1:2:8 
        VWN(:,jj)=real(VWN(:,jj)); 
        VWN(:,jj+1)=imag(VWN(:,jj+1)); 
    end 
    VWN; 
% required gain 
    Kbar=-VWN(9:12,:)*pinv(Cc*VWN(1:8,:)) 
 
     
    Sw=diag([1 1 1 1])*2*10^-7; % Assumed White Gaussian noise Intensity 
 
%open loop root mean square(lqr) 
    S_x=lyap(Ac,Bc*Sw*Bc');%Variance of x matrix 
    S_y=Cc(1:4,:)*S_x*Cc(1:4,:)'; %Variance of y matrix 
    RMS_cl=diag(sqrt(S_y)); %Close loop Root mean square of x 
     
    p_angle=10^4; 
    P=diag([p_angle,p_angle,1,1]); %Penalty matrix 
    f_ol=RMS_cl'*P*RMS_cl*10^10 
     
%closed loop root mean square(lqr) 
    S_x=lyap(Ac-Bc*Kbar*Cc,Bc*Sw*Bc');%Variance of x matrix 
    S_y=Cc(1:4,:)*S_x*Cc(1:4,:)'; %Variance of y matrix 
    RMS_cl=diag(sqrt(S_y)); %Close loop Root mean square of x 
 
    p_angle=10^4; 
    P=diag([p_angle,p_angle,1,1]); %Penalty matrix 
    f_cl=RMS_cl'*P*RMS_cl*10^10  
     
%finding Optimum Desired Eigenvector 
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for ii=1:2:3  
lamd(ii+4) 
SUB=orth(inv(A-lamd(ii+4)*eye(12))*B); 
rank_sub=rank(SUB); 
OL=real(vo(7:12,[1,3,5,7])); 
OL_b=lamd(ii+4)*OL; 
SUB_2=[OL;OL_b]; 
Rank_sub2=rank(SUB_2); 
SUB_total=[SUB SUB_2]; 
rank_total=rank(SUB_total); 
 
x0=[1;1;1]; 
option=optimset('TolX',1e-7,'TolFun',1e-7,'TolCon',1e-9, 
'MaxFunEvals',10^6,'MaxIter',10^4,'Display','iter');     
[x,fval,exitflag,output] =  
fmincon(@fun_vec_t,x0,[],[],[],[],[],[],@nonlcon_vec,option,SUB_2,C); 
x_f=[x;1]; 
vd_opt(:,ii)=SUB_2*x_f; 
end 
    for kk=1:2:3 
        vd_opt(:,kk)=vd_opt(:,kk)/norm(vd_opt(:,kk));  %Optimum Eigenvector 
    end 
Trans=T*vd_opt; 
 
%Assigning Proper Ratio between Open-Loop Eigenvector and Optimum Eigenvector 
 
x0=[0.5;0.5]; 
option=optimset('TolX',1e-7,'TolFun',1e-7,'TolCon',1e-
9,'MaxFunEvals',10^6,'MaxIter',10^4,'Display','iter');     
[x,fval,exitflag,output] =  
fmincon(@fun_vec_a,x0,[],[],[],[],[],[],@nonlcon_vec_a,option,Ac,Bc,Cc,max_k,vd,lam
d,Trans); 
vd(:,5)=x(1)*vd(:,5)+(1-x(1))*Trans(5:12,1); 
vd(:,6)=conj(vd(:,5));                
vd(:,7)=x(2)*vd(:,7)+(1-x(2))*Trans(5:12,3); 
vd(:,8)=conj(vd(:,7)); 
 
 
 for jj=1:8 
        N=[lamd(jj)*eye(8)-Ac, -Bc ,zeros(8,8); 
            zeros(4,12)          ,Bc'; 
            eye(8)     ,zeros(8,4), (lamd(jj)*eye(8)-Ac)']; 
        VWN(:,jj)=inv(N)*[zeros(12,1);vd(:,jj)]; 
    end 
 
    for jj=1:2:8 
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        VWN(:,jj)=real(VWN(:,jj)); 
        VWN(:,jj+1)=imag(VWN(:,jj+1)); 
    end 
 
% required gain matrix 
    Kbar=-VWN(9:12,:)*pinv(Cc*VWN(1:8,:)); 
    [vc dc]=eig(A-B*Kbar*C);dc=diag(dc); 
 
 
%closed loop root mean square(lqr) 
    S_x=lyap(Ac-Bc*Kbar*Cc,Bc*Sw*Bc');%Variance of x matrix 
    S_y=Cc(1:4,:)*S_x*Cc(1:4,:)'; %Variance of y matrix 
    RMS_cl=diag(sqrt(S_y)); %Close loop Root mean square of x 
 
 
    f_cl=RMS_cl'*P*RMS_cl*10^10 
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Appendix B:  Objective Function File (Finding Eigenvalue) 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%       Eigenstructure Assignment Technique 
%       Planar model control by 3rd and 4th mode change 
%       Objective Function File 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
function f=fun_nock(x,Ac,Bc,Cc,max_k) 
 
 
[vd,lamd]=eig(Ac);lamd=diag(lamd); 
wn5=abs(lamd(5));   %Natural Frequency (Mode 4) 
wn7=abs(lamd(7));   %Natural Frequency (Mode 3) 
 
 
lamd(5)=x(1)+sqrt(wn5^2-x(1)^2)*i; 
lamd(6)=x(1)-sqrt(wn5^2-x(1)^2)*i; 
lamd(7)=x(2)+sqrt(wn7^2-x(2)^2)*i; 
lamd(8)=x(2)-sqrt(wn7^2-x(2)^2)*i; 
 
 
    for jj=1:8 
        N=[lamd(jj)*eye(8)-Ac, -Bc ,zeros(8,8); 
            zeros(4,12)          ,Bc'; 
            eye(8)     ,zeros(8,4), (lamd(jj)*eye(8)-Ac)']; 
        VWN(:,jj)=inv(N)*[zeros(12,1);vd(:,jj)]; 
    end 
    VWN; 
 
 
    for jj=1:2:8 
        VWN(:,jj)=real(VWN(:,jj)); 
        VWN(:,jj+1)=imag(VWN(:,jj+1)); 
    end 
    VWN; 
% required gain 
    Kbar=-VWN(9:12,:)*pinv(Cc*VWN(1:8,:)); 
 
         
E=eig(Ac-Bc*Kbar*Cc);E=real(E);I=find(E>0);s=size(I); 
CON=cond(Ac-Bc*Kbar*Cc); 
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if CON<10^9 & s(1)==0 
    Sw=diag([1 1 1 1])*2*10^-7; % Assumed White Gaussian noise Intensity 
 
%closed loop root mean square(lqr) 
    S_x=lyap(Ac-Bc*Kbar*Cc,Bc*Sw*Bc');  %Variance of x matrix 
    S_y=Cc(1:4,:)*S_x*Cc(1:4,:)';       %Variance of y matrix 
    RMS_cl=diag(sqrt(S_y));     %Close loop Root mean square of x 
 
 
    P=diag([10^4,10^4,1,1]);    %Penalty matrix 
    f=RMS_cl'*P*RMS_cl*10^10;   %Objective Function 
else 
    f=10^20; 
end 
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Appendix C:  Constraint Function File (Finding Eigenvalue) 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%       Eigenstructure Assignment Technique 
%       Planar model control by 3rd and 4th mode change 
%       Constraint Function File 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function [c,ceq]=nonlcon_nock(x,Ac,Bc,Cc,max_k) 
 
[vd,lamd]=eig(Ac);lamd=diag(lamd); 
wn5=abs(lamd(5));   %Natural Frequency (Mode 4) 
wn7=abs(lamd(7));   %Natural Frequency (Mode 3) 
 
lamd(5)=x(1)+sqrt(wn5^2-x(1)^2)*i; 
lamd(6)=x(1)-sqrt(wn5^2-x(1)^2)*i; 
lamd(7)=x(2)+sqrt(wn7^2-x(2)^2)*i; 
lamd(8)=x(2)-sqrt(wn7^2-x(2)^2)*i; 
 
    for jj=1:8 
        N=[lamd(jj)*eye(8)-Ac, -Bc ,zeros(8,8); 
            zeros(4,12)          ,Bc'; 
            eye(8)     ,zeros(8,4), (lamd(jj)*eye(8)-Ac)']; 
        VWN(:,jj)=inv(N)*[zeros(12,1);vd(:,jj)]; 
    end 
 
    for jj=1:2:8 
        VWN(:,jj)=real(VWN(:,jj)); 
        VWN(:,jj+1)=imag(VWN(:,jj+1)); 
    end 
 
% required gain 
    Kbar=-VWN(9:12,:)*pinv(Cc*VWN(1:8,:)); 
 
for jj=1:8 
    temp(4*(jj-1)+1:4*(jj-1)+4,1)=Kbar(:,jj); 
end 
temp=abs(temp); 
c=[temp-max_k*ones(32,1); 
    x]; 
ceq=[]; 
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Appendix D:  Objective Function File (Finding Eigenvector) 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%        
%       Planar model control By Eigenstructure Assignment 
%       Objective Function file 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function f=fun_vec_a(x,Ac,Bc,Cc,max_k,vd,lamd,Trans) 
 
vd(:,5)=x(1)*vd(:,5)+(1-x(1))*Trans(5:12,1); 
vd(:,6)=conj(vd(:,5));                
vd(:,7)=x(2)*vd(:,7)+(1-x(2))*Trans(5:12,3); 
vd(:,8)=conj(vd(:,7)); 
 
 
 for jj=1:8 
        N=[lamd(jj)*eye(8)-Ac, -Bc ,zeros(8,8); 
            zeros(4,12)          ,Bc'; 
            eye(8)     ,zeros(8,4), (lamd(jj)*eye(8)-Ac)']; 
        VWN(:,jj)=inv(N)*[zeros(12,1);vd(:,jj)]; 
    end 
    VWN; 
 
    for jj=1:2:8 
        VWN(:,jj)=real(VWN(:,jj)); 
        VWN(:,jj+1)=imag(VWN(:,jj+1)); 
    end 
    VWN; 
% required gain 
    Kbar=-VWN(9:12,:)*pinv(Cc*VWN(1:8,:)); 
     
 
 
%closed loop root mean square(lqr) 
    Sw=diag([1 1 1 1])*2*10^-7; % Assumed White Gaussian noise Intensity 
    S_x=lyap(Ac-Bc*Kbar*Cc,Bc*Sw*Bc');%Variance of x matrix 
    S_y=Cc(1:4,:)*S_x*Cc(1:4,:)'; %Variance of y matrix 
    RMS_cl=diag(sqrt(S_y)); %Close loop Root mean square of x 
    p_angle=10^4; 
    P=diag([p_angle,p_angle,1,1]); %Penalty matrix 
    f=RMS_cl'*P*RMS_cl*10^10 ; 
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Appendix E:  Constraint Function File (Finding Eigenvector) 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%        
%       Planar model control By Eigenstructure Assignment 
%       Constraint Function file 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function [c,ceq]=nonlcon_vec_a(x,Ac,Bc,Cc,max_k,vd,lamd,Trans) 
 
vd(:,5)=x(1)*vd(:,5)+(1-x(1))*Trans(5:12,1); 
vd(:,6)=conj(vd(:,5));                
vd(:,7)=x(2)*vd(:,7)+(1-x(2))*Trans(5:12,3); 
vd(:,8)=conj(vd(:,7)); 
 
 
 for jj=1:8 
        N=[lamd(jj)*eye(8)-Ac, -Bc ,zeros(8,8); 
            zeros(4,12)          ,Bc'; 
            eye(8)     ,zeros(8,4), (lamd(jj)*eye(8)-Ac)']; 
        VWN(:,jj)=inv(N)*[zeros(12,1);vd(:,jj)]; 
    end 
 
 
 
    for jj=1:2:8 
        VWN(:,jj)=real(VWN(:,jj)); 
        VWN(:,jj+1)=imag(VWN(:,jj+1)); 
    end 
 
% required gain 
    Kbar=-VWN(9:12,:)*pinv(Cc*VWN(1:8,:)); 
     
    m_k=max(max(abs(Kbar))); 
     
 
c=[m_k-max_k; 
    -x; 
    x-ones(2,1)]; 
 
ceq=[]; 
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Appendix F:  Main script file (LQR) 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%        
%       Planar model control By L Q R Method 
%       Main script file 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
%driving the equations of motion for 2 mirrors and a base 
clc 
clear 
close all 
    
   I1=      1.5; 
   I2=      1.5; 
   Ib=      5; 
   m1=      1; 
   m2=      1; 
   mb=      50; 
    h=      4; 
   hm=      0.1; 
    L=      1; 
    l=      0.1; 
    k=      2.5*10^6; 
    c=      100; 
     
    
%Initial Set up 
    phi=atan(h/L); 
    al_0=pi/4-phi/2 ; 
 
    DM=[1 0 -1 -l*cos(al_0) 0 (L+l*cos(al_0)); 
        1 0 -1 l*cos(al_0) 0 (L- l*cos(al_0)); 
        0 1 -1 0 -l*cos(al_0) -(L- l*cos(al_0)); 
        0 1 -1 0 l*cos(al_0) -(L+l*cos(al_0))];%distance matrix  
     
    DDM=[DM zeros(4,6); 
        zeros(4,6) DM]; 
     
    ACM=[k 0 0 0 c 0 0 0; 
        0 k 0 0 0 c 0 0; 
        0 0 k 0 0 0 c 0; 
        0 0 0 k 0 0 0 c]; 
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    AB=[1/m1*[-1 -1 0 0]; 
        1/m2*[0 0 -1 -1]; 
        1/mb*[1 1 1 1]; 
        1/I1*l*cos(al_0)*[1 -1 0 0]; 
        1/I2*l*cos(al_0)*[0 0 1 -1]; 
        1/Ib*[(L+l*cos(al_0))*[-1 0 0 1]+(L-l*cos(al_0))*[0 -1 1 0]]]; 
     
        
    A=[zeros(6) eye(6) 
        AB*ACM*DDM]; 
    B=[zeros(6,4); 
              AB];  
 
    Cm=[[cos(phi)/sqrt(L^2+h^2), 0, -cos(phi)/sqrt(L^2+h^2), 1, 0, -
sin(phi)*(h+hm)/sqrt(L^2+h^2)  ;    %mirror 1 tilt angle 
       0, -cos(phi)/sqrt(L^2+h^2), cos(phi)/sqrt(L^2+h^2), 0, 1, -
sin(phi)*(h+hm)/sqrt(L^2+h^2) ];      %mirror 2 tilt angle 
       [-sin(phi) 0 sin(phi) tan(phi)*sqrt(L^2+h^2) 0 -
(h+hm)*cos(phi)  ;                               %mirror 1 wavelength error 
       0 -sin(phi) sin(phi) 0 -tan(phi)*sqrt(L^2+h^2) 
(h+hm)*cos(phi)]];                                %mirror 2 wavelength error 
 
    C=[Cm zeros(4,6); 
       zeros(4,6) Cm]; 
    D=zeros(8,4); 
     
[vo do]=eig(A);do=diag(do); 
 
%Controllable system Identification 
[ABAR,BBAR,CBAR,T,KK] =ctrbf(A,B,C); 
Ac=ABAR(5:12,5:12); 
Bc=BBAR(5:12,:); 
Cc=CBAR(:,5:12); 
 
max_k=100 
x=[100;100;100;100;1;.1;.01;.01] 
 
option=optimset('TolX',1e-10,'TolFun',1e-19,'TolCon',1e-
10,'MaxFunEvals',10^6,'MaxIter',10^5,'Display','iter');     
 
for kkk=1:1 
load XXX0 
x0=(x*1)/1; 
[x,fval1,exitflag,output] =  
fmincon(@fun_lqr,x0,[],[],[],[],[],[],@nonlcon_lqr,option,Ac,Bc,Cc,max_k); 
%save XXX0 x; 
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end 
 
Q=diag([x])*10^1; 
R=diag([1,1,1,1]*.1); 
K=lqr(Ac,Bc,Q,R); 
 
Kbar=K*Cc^-1; 
 
    Sw=diag([1 1 1 1])*2*10^-7; % Assumed White Gaussian noise Intensity 
 
%closed loop root mean square(lqr) 
    S_x=lyap(Ac-Bc*Kbar*Cc,Bc*Sw*Bc');  %Variance of x matrix 
    S_y=Cc(1:4,:)*S_x*Cc(1:4,:)';       %Variance of y matrix 
    RMS_cl=diag(sqrt(S_y));             %Close loop Root mean square of x 
 
 
    P=diag([10^4,10^4,1,1]);            %Penalty matrix 
    f=RMS_cl'*P*RMS_cl*10^10 
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Appendix G:  Objective Function File (LQR) 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%        
%       Planar model control By L Q R Method 
%       Objective Function file 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
 
function f=fun_lqr(x,Ac,Bc,Cc,max_k) 
 
 
Q=diag([x])*10^1;    % State Penalty 
R=diag([1,1,1,1]*.1);% Control Penlaty 
K=lqr(Ac,Bc,Q,R); 
 
Kbar=K*Cc^-1; 
 
    Sw=diag([1 1 1 1])*2*10^-7; % Assumed White Gaussian noise Intensity 
 
%closed loop root mean square(lqr) 
    S_x=lyap(Ac-Bc*Kbar*Cc,Bc*Sw*Bc');%Variance of x matrix 
    S_y=Cc(1:4,:)*S_x*Cc(1:4,:)'; %Variance of y matrix 
    RMS_cl=diag(sqrt(S_y)); %Close loop Root mean square of x 
 
 
    P=diag([10^4,10^4,1,1]); %Penalty matrix 
    f=RMS_cl'*P*RMS_cl*10^10; 
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Appendix H:  Constraint Function File (LQR) 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%        
%       Planar model control By L Q R Method 
%       Constraint Function file 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
function [c,ceq]=nonlcon_lqr(x,Ac,Bc,Cc,max_k) 
 
 
Q=diag([x])*10^1;    % State Penalty 
R=diag([1,1,1,1]*.1);% Control Penlaty 
K=lqr(Ac,Bc,Q,R); 
 
Kbar=K*Cc^-1; 
 
for jj=1:8 
    temp(4*(jj-1)+1:4*(jj-1)+4,1)=Kbar(:,jj); 
end 
temp=abs(temp); 
c=[temp-max_k*ones(32,1); 
    -x+0.1*ones(8,1)]; 
 
ceq=[]; 
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Appendix I:  Main script file (AFRL Model) 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%        
%       AFRL Model control By Eigenstructure Assignment Technique 
%       Main script file 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
clc;clear;close all; 
 
% Model Reduction 
    load tuned_best_fit_0L 
    sys=d2c(fit_sys); 
    n=size(sys(:,1)); 
    h=minreal(sys); 
 
    [hb,g]=balreal(h); 
 
    index=21:79; 
    hdel=modred(hb,index,'del'); 
    figure(1);sigma(hdel,{200,2000});grid on 
    [A,B,C,D]=ssdata(hdel); 
 
 
%Setting Open Loop Value as desired one. 
    [vd lamd]=eig(A);lamd=diag(lamd); 
    [xx0,I]=sort(abs(lamd));lamdd=lamd;vdd=vd; 
 
     
%Arranging Eigenvalue by increasing order     
    for kk=1:20         
        lamd(kk)=lamdd(I(kk)); 
        vd(:,kk)=vdd(:,I(kk)); 
    end 
    for kk=1:9 
        r(kk,1)=real(lamd(2*kk)); 
        Wn(kk,1)=abs(lamd(2*kk)); 
    end 
 
 
    max_k=1                             %Max allowable gain matrix element. 
 
%Open loop root mean square(lqr)     
   load XX_modred                       % Contains variable for the White Gaussian noise 
intensity  (x) 
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   Sw=diag(x);                          % White Gaussian noise intensity 
 
   S_x=lyap(A,B*Sw*B');                 %Variance of x matrix 
   S_y=C*S_x*C';                        %Variance of y matrix 
   RMS1=diag(sqrt(S_y))                 %Closed loop Root mean square of x 
   f=RMS1'*RMS1/10^4                    %Objective Function 
    
    
%Finding optimum eigenvalue assignment with open loop eigenvector for desired one. 
    x0=[r] 
    option=optimset('TolX',1e-9,'TolF un',1e-9,'TolCon',1e-9, 
'MaxFunEvals',10^6,'MaxIter',40^3,'Display','iter');     
    [x,fval1,exitflag,output] =  
fmincon(@fun_e_val,x0,[],[],[],[],[],[],@nonlcon_e_val,option,A,B,C,max_k,lamd,vd, 
Wn); 
    save result_e_val x 
     
    for kk=1:9 
        lamd(2*kk-1)=x(kk,1)+sqrt(Wn(kk)^2-x(kk,1)^2)*i; 
        lamd(2*kk)=conj(lamd(2*kk-1));     
    end 
     
% Checking the result of assigning the eigenvalue. 
    P=eye(20); %eigenvector penalty matrix 
 
    for jj=1:20 
        N=[lamd(jj)*eye(20)-A, -B ,zeros(20); 
            zeros(9,20+9)          ,B'; 
            P     ,zeros(20,9), (lamd(jj)*eye(20)-A)']; 
        VWN(:,jj)=inv(N)*[zeros(29,1);P*vd(:,jj)]; 
    end 
 
    for jj=1:2:20 
        VWN(:,jj)=real(VWN(:,jj)); 
        VWN(:,jj+1)=imag(VWN(:,jj+1)); 
    end 
     
     
    Kbar=-VWN(20+1:20+9,:)*pinv(eye(20)*VWN(1:20,:));  % required gain matrix with 
full state-feedback 
    G_cl=ss(A-B*Kbar,B,C,D); 
    figure(2);sigma(G_cl,{200,2000});grid on     
 
%Closed loop root mean square(lqr) 
    load XX_modred                          % Contains variable for the White Gaussian noise 
intensity  (x) 
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    Sw=diag(x);                             % White Gaussian noise intensity 
    S_x=lyap(A-B*Kbar,B*Sw*B');             %Variance of x matrix 
    S_y=C*S_x*C';                           %Variance of y matrix 
    RMS=diag(sqrt(S_y))                     %Closed loop Root mean square of x 
    f=RMS'*RMS/10^11 
    MAX_K=max(max(abs(Kbar)))               %Objective Function 
    save E_VAL_result 
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Appendix J:  Objective Function File(AFRL Model) 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%        
%       AFRL Model control By Eigenstructure Assignment Technique 
%       Objective Function file 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function f=fun_e_val(x,A,B,C,max_k,lamd,vd,Wn) 
 
    for kk=1:9 
        lamd(2*kk-1)=x(kk,1)+sqrt(Wn(kk)^2-x(kk,1)^2)*i; 
        lamd(2*kk)=conj(lamd(2*kk-1));     
    end 
     
% Checking the result of assigning the eigenvalue. 
    P=eye(20); %eigenvector penalty matrix 
 
    for jj=1:20 
        N=[lamd(jj)*eye(20)-A, -B ,zeros(20); 
            zeros(9,20+9)          ,B'; 
            P     ,zeros(20,9), (lamd(jj)*eye(20)-A)']; 
        VWN(:,jj)=inv(N)*[zeros(29,1);P*vd(:,jj)]; 
    end 
 
    for jj=1:2:20 
        VWN(:,jj)=real(VWN(:,jj)); 
        VWN(:,jj+1)=imag(VWN(:,jj+1)); 
    end 
     
    Kbar=-VWN(20+1:20+9,:)*pinv(eye(20)*VWN(1:20,:));  % required gain 
 
      
E=eig(A-B*Kbar);E=real(E);I=find(E>0);s=size(I); 
CON=cond(A-B*Kbar); 
if CON<10^9 & s(1)==0 
     
    load XX_modred  % Contains variable for the White Gaussian noise intensity 
    Sw=diag(x);  % White Gaussian noise intensity 
%Closed loop root mean square(lqr) 
    S_x=lyap(A-B*Kbar,B*Sw*B');    %Variance of x matrix 
    S_y=C*S_x*C';             %Variance of y matrix 
    RMS=diag(sqrt(S_y));      %Closed loop Root mean square of x 
    f=RMS'*RMS/10^4; 
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else 
    f=10^20; 
end 
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Appendix K:  Constraint Function File (AFRL Model) 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%        
%       AFRL Model control By Eigenstructure Assignment Technique 
%       Constraint Function file 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function [c,ceq]=nonlcon_e_val(x,A,B,C,max_k,lamd,vd,Wn) 
 
 
    for kk=1:9 
        lamd(2*kk-1)=x(kk,1)+sqrt(Wn(kk)^2-x(kk,1)^2)*i; 
        lamd(2*kk)=conj(lamd(2*kk-1));     
    end 
     
% Checking the result of assigning the eigenvalue. 
    P=eye(20); %eigenvector penalty matrix 
 
    for jj=1:20 
        N=[lamd(jj)*eye(20)-A, -B ,zeros(20); 
            zeros(9,20+9)          ,B'; 
            P     ,zeros(20,9), (lamd(jj)*eye(20)-A)']; 
        VWN(:,jj)=inv(N)*[zeros(29,1);P*vd(:,jj)]; 
    end 
 
    for jj=1:2:20 
        VWN(:,jj)=real(VWN(:,jj)); 
        VWN(:,jj+1)=imag(VWN(:,jj+1)); 
    end     
     
    Kbar=-VWN(20+1:20+9,:)*pinv(eye(20)*VWN(1:20,:));  % required gain matrix 
 
     
    K_max=max(max(abs(Kbar))); 
     
c=[x(:,1);K_max-max_k]; 
ceq=[]; 
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Appendix L:  Objective Function File (AFRL Model) 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%        
%       AFRL Model control By Eigenstructure Assignment Technique 
%       Objective Function file 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function f=fun_e_val(x,A,B,C,max_k,lamd,vd,Wn) 
 
    for kk=1:9 
        lamd(2*kk-1)=x(kk,1)+sqrt(Wn(kk)^2-x(kk,1)^2)*i; 
        lamd(2*kk)=conj(lamd(2*kk-1));     
    end 
     
% Checking the result of assigning the eigenvalue. 
    P=eye(20); %eigenvector penalty matrix 
 
    for jj=1:20 
        N=[lamd(jj)*eye(20)-A, -B ,zeros(20); 
            zeros(9,20+9)          ,B'; 
            P     ,zeros(20,9), (lamd(jj)*eye(20)-A)']; 
        VWN(:,jj)=inv(N)*[zeros(29,1);P*vd(:,jj)]; 
    end 
 
    for jj=1:2:20 
        VWN(:,jj)=real(VWN(:,jj)); 
        VWN(:,jj+1)=imag(VWN(:,jj+1)); 
    end 
     
    Kbar=-VWN(20+1:20+9,:)*pinv(eye(20)*VWN(1:20,:));  % required gain 
 
      
E=eig(A-B*Kbar);E=real(E);I=find(E>0);s=size(I); 
CON=cond(A-B*Kbar); 
if CON<10^9 & s(1)==0 
     
    load XX_modred  % Contains variable for the White Gaussian noise intensity 
    Sw=diag(x);  % White Gaussian noise intensity 
%Closed loop root mean square(lqr) 
    S_x=lyap(A-B*Kbar,B*Sw*B');    %Variance of x matrix 
    S_y=C*S_x*C';             %Variance of y matrix 
    RMS=diag(sqrt(S_y));      %Closed loop Root mean square of x 
    f=RMS'*RMS/10^4; 
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else 
    f=10^20; 
end 
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Appendix M:  Constraint Function File (AFRL Model) 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%        
%       AFRL Model control By Eigenstructure Assignment Technique 
%       Constraint Function file 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function [c,ceq]=nonlcon_e_val(x,A,B,C,max_k,lamd,vd,Wn) 
 
 
    for kk=1:9 
        lamd(2*kk-1)=x(kk,1)+sqrt(Wn(kk)^2-x(kk,1)^2)*i; 
        lamd(2*kk)=conj(lamd(2*kk-1));     
    end 
     
% Checking the result of assigning the eigenvalue. 
    P=eye(20); %eigenvector penalty matrix 
 
    for jj=1:20 
        N=[lamd(jj)*eye(20)-A, -B ,zeros(20); 
            zeros(9,20+9)          ,B'; 
            P     ,zeros(20,9), (lamd(jj)*eye(20)-A)']; 
        VWN(:,jj)=inv(N)*[zeros(29,1);P*vd(:,jj)]; 
    end 
 
    for jj=1:2:20 
        VWN(:,jj)=real(VWN(:,jj)); 
        VWN(:,jj+1)=imag(VWN(:,jj+1)); 
    end     
     
    Kbar=-VWN(20+1:20+9,:)*pinv(eye(20)*VWN(1:20,:));  % required gain matrix 
 
     
    K_max=max(max(abs(Kbar))); 
     
c=[x(:,1);K_max-max_k]; 
ceq=[]; 
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