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Abstract

The feasibility of using a sparse array of mirrors in a satellite systemisbeing
evaluated. This study focuses on the control laws necessary for achieving the
minimization of the effect of vibration which happens at the primary mirror of the
satellite, by using the elgenstructure assignment technique. White Gaussian noise was
assumed as the external input. AFRL has developed a 79 state model with9 control
inputs and 9 outputs, 3 sparse array mirrors, and a base. To extend the theory, a
simplified model with 2 mirrors and a base which has 12 states, 4 control inputs and 8
outputs was developed. The system is not completely controllable nor observable because
there are 4 rigid body modes

The control law starts from realizing the states which are controllable or
uncontrollable. Then only for the controllable states, the eigenstructure assignment
technigque is applied. The closed-1oop eigenstructure was determined by analyzing the
opentloop modes. To find the best value for the eigenstructure, Newton's line search
method was applied.

The relative motions of the primary and secondary mirrors were described by
wave reflection dynamics. Results show that this technique achieves a reasonable amount
of control use for the objective and relates these result to those obtained from linear

quadratic regulator (LQR) technique.
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CONTROLLING THE PRIMARY MIRROR IN A SPACE-BASED TELESCOPE
UTILIZING AN EIGENSTRUCTURE
ASSIGNMENT TECHNIQUE

|. Introduction

M otivation

The United States derives great benefit from space-based assets, and the
importance of capability of the satellite is continually increasing. In 1990, NASA
developed and launched a 2.4 meter diameter primary mirror in a600Km orbit. The effort
to create large satellites and launching them into space is not an easy one. To launch large
satellites we have to pay alot of attention to drag, GNC and manufacturing issues. These
requirements drive the satellites to be small. But small satellites have their own
restrictions like narrow scope angles. So to achieve the advantages of large satellites, the
Deployable Optical Telescope (DOT) is being considered by AFRL as the next
generation of large optical satellites. To reduce weight, AFRL has selected sparse array
aperture which can achieve larger diameters, instead of filled aperture. To compensate for
lack of image they added high tech image processing for reconstructing the perfect image,

albeit dimmer than the same-size filled aperture.

Background ( Description of AFRL’s Deployable Optical Telescope (DOT) )
The following description was based on Development of a spare-aperture testbed

for opto-mechanical control of space-deployable structures from AFRL (ref [1]).



The DOT system isa sparse -

aperture finite-conjugate imaging

4 m

system and is shownin Figure 1 [ref Deployable Secondary
Secondary [ Mirror

(13)]. The primary mirror is a three- Tower

element, spherical, reflective sparse ‘.

aperture array. The secondary mirror is . | Precision

Deployment

. . Mechanisms
amonolithic element, and isaso a

spherical surface of rotation. The

Composite/Glass Deployable
design is smilar in structure to a large Hybrid Mirrors L Lo )

Plate

space telescope with a deployable

sparse-aperture primary mirror and

deployable secondary. Each primary
mirror segment has a spherical radius of Figure 1. Sparse array mirror
curvature of 5 meters and a clear aperture of 600 mm in diameter. The vertices of these
segments are located in a radially symmetric configuration, a distance of 550 mm from
the primary optical axis at increments of 120 degrees The circumscribed aperture of the
assembled system is 1.7 meters, with afill factor of 37.4 percent and an equivalent light-
collecting aperture of a1.04 meter diameter monolithic mirror.

The impetus for the finite conjugate optical design is one of cost. For the lab
design with a finite object distance, a point source may be used for full aperture
illumination of the primary mirror, mitigating the need for a nearly 2 meter diameter
collimator in the pseudo-star illuminator system. Additionally, the purely spherical
reflectors require only three degrees of alignment correction, reducing the complexity of
the actuation and control sensor metrology designs. Thus, the lab design is representative
of the space system, but unique.

A single lightweight primary mirror segment is shown in Figure 2. The

construction consists of athin ultra-low expansion (ULE) glass face sheet, supported by



an array of composite rods attached to a lightweight composite structure to provide
stiffness. The composite portions of the structure are nickel coated to improve thermal
conduction properties and reduce the distorting effects of large thermal gradients.

Each primary mirror segment is attached to a supporting deployable boom or
reaction plate, by three actuator stacks. The actuator assembly consists of alow voltage
piezo-ceramic stack mounted atop a micrometer drive with a DC servomotor. The piezo
actuator has arange of 30 nm and a resolution of 1 nm, providing high bandwidth control
capability to compensate for induced mirror jitter due to external disturbances, such as
reaction wheels. These devices are driven by a 0-100v analog signal obtained from a
linear amplifier. The micrometer has a 10- mm range with a 60-nm resolution, providing a

low bandwidth, coarse positioning capability over abroad range, to compensate for

Figure 2. Ultra-lightweight primary mirror segment

deployment errors in positioning the mirror. The resolution of the coarse actuators is
obtained by use of an encoder sensor built into the servomotor, which provides feedback
signals to a separate PID controller. This controller accepts external commands from the

control executive via an RS-232 serial interface. Eachassembly is attached to the reaction



plate via a screw clamp on the micrometer. A diaphragm flexure assembly, attached to
the reaction plate by three posts, protects the piezo-ceramic from shear forces induced by
gravitational loading whenthe reaction plates are in the stowed position.

The reaction plates are constructed of lightweight composite materials. These sub-
assemblies are attached to a main optics integrating structure via a stainless stedl tie-rod

assembly that exhibits dynamic behavior similar to alatch mechanism.

Problem Statement

Many dynamical systems are modeled using Newton's Law or Lagrange's
equations and perturbation theory. The result is a second order system of linear constant
coefficient differential equations. This class of systems can be mathematically described

by the equations of motions

MX + Cx + Kx = Du 2

where xI A"and ul A™ are the state and control (actuator) vectors respectively,
M isthe n” n positive definite symmetric mass matrix , C isthe n” n positive semi-
definite symmetric structural damping matrix, K isthe n” n positive semi-definite

symmetric stiffness matrix, D isthe n”~ m control influence matrix, and X:%.

dt

By using output feedback, the control and measurement equation can be written

y=C,x 2)
y=Cpx ©)
u=-G,y- Gy (4)



where yT A™ isthe output(sensor) vector, and C, isthe m” n output

measurement matrix, and G, and G, arethe n” m feedback gains. Equation (2), (3) and

(4) can be substituted into Equation (1) and everything can be taken to the left hand side:

Mx+(C+DGC,)x+(K+DG,C, )x=0 5)

The problem considered herein is how to select the control matrices[G, ,G ], such

that it minimizes a cost function. The system considered cortains both rigid body and
flexible modes. The control matrices are selected based on a placing the eigenvalues and
eigenvectors (hereafter refered to as the eigenstructure) such that the achieved

eigenstructure minimizes the cost function.

M ethodology

The research for this thesis includes devel oping mathematical models
representative of a sparse telescope array and designing a technique and computer
algorithm for designing a feedback control system. The desired eigenvalues and
eigenvector (eigenstructure) were found using Newtori s line search method by analyzing
the opentloop system and the eigenstructure assignment technique is used to find the
proper control gain matrix. To place redlistic limits on the control usage, the maximum
element value of the control gain matrix was constrained.

The results of the elgenstructure assignment technique were compared with

results obtained using a linear quadratic regulator (LQR) approach.

Organization
This thesis is organized around designing a control system for adynamic system

with rigid body and flexible modes. Figure 3 illustrates the overall process



This thesis begins with devel oping the equations of motion (EOM) for the
simplified satellite model at Chapter 2. Chapter 3 establishes the techniques for achieving
the proper control gain for the eigenstructure assignment technique. Chapter 3 also
addresses the technique for systems that do not have enough measurement information to
place al the desired eigenvalues. These results are then compared to LQR results. Then
Chapter 4 provides result applied to the theoretical model. Lastly, the technique is applied
to AFRL’s DOT experimenta data.



Input System Matrix

Analyzing Open-loop Eigenstructure

Eigenstructure Assignment

LOR
Technique
Finding State Weighting
Determining Target Modes Vaue

Finding Desired Eigenvalues
Finding Desired Eigenvectors

Assigning Desired Eigenvalue
and Eigenvector

Find Control Gain Matrix

Figure 3. Block diagram of Eigenstructure Assignment Process




I1. Developing Equations of Motion

Physical modeling of two primary mirrors and a base

The DOT system is three dimensional. To demonstrate the technique and aid in
analysis, asimplified planar model representative of a system with two primary mirrors
and a base was used. For this model, asin the actua structure, al the elements are subject
to small perturbations, and thus the small angle and small disturbance approximations
were used.

Each mirror’'s movement has both horizontal and vertical movement. Because of
the small angle approximation, horizontal movement will be negligible with respect to
vertical movement, thus only vertical directional movement and rotation was considered.
As aresult, each mirror has 2 degrees-of-freedom, namely the vertical movement and
rotation. The planar model is shown in Figure 4. The full system has a total of 6 degrees-
of-freedom. Although there are six DOFs, only internal force actuators are available, thus
not all the DOFs can be controlled. For this model, as with DOT, the rigid body modes
can not be controlled.

For system control, there are two actuators for each mirror and each actuator has
its own spring damper and electronic forcing device such as the piezo actuators used on

DOT.

Deriving the Equations of Motion.

Mirror “1” and “2” have mass my and m and moment of inertial, and I
respectively. Next, define the rotation angle of mirror “1” and “2” as 1 and , with
counter-clockwise direction for positive rotations. In this expression Az, Az, Az and A4

stand for the actuators that have a spring, a viscous damper, and an electronic forcing



devicein paralel as shown in Figure 4. Thisistypical for space applications, where the

flexible modes are controlled, independent from the rigid body ( orbital motion ).

k c F A,

. @ Focus at
., secondary
. INILTOr
h
¢ Mirror 2"
Aj
[ J
|
L L

Figure 4. A Planar Physical Model of a Sparse Array

The equations of motion at each actuator is:
A:kiDi+CiDi+Fi (6)
dD

where i =1,2...4, D; represents the relative distance in the actuator and D, = e



For this analysis, the elements representing the base, mirrors and secondary mirror were
assumed as rigid elements.
From a static point of view, for the mirror to focus on the focal point, the angle

should be :

f :arctan(a;élg (M
elLo
N ®
4 2

where h and L are defined as in Figure 4.
To derive the EOMs, first consider the free body diagram for mirror “1”.

If the mirror “1” and the base were disturbed in the positive direction then the

transversal movement will be as shown in Figure 5.

| cosaq, I

Figure 5. Diagram Showing Coor dinate Relations

Thus the distance difference ( D, ) for the actuator 1 and 2 will be:

10



D,=12z- z -1q,cosa + (L +Icosa)q,
D, =z - z,+lqg,cosa +(L- | cosa)q,

©)
where | and g; are defined in Figure 5.

With this distance difference and using Equation (6) each actuator will have a

force of :

Ai = k1D1+ C1D1+ I:l
A =kD,+c,D, +F, (10)

Notice that the positive distance difference will produce a compressive force.
The resulting Equations of Motion for mirror 1 is (from direct application of

Newtoris Law):

mz=-A-A

) (12)
g, =1cosa (A - A)

Likewise for mirror 2, the distance difference for actuator 3 and 4 will be:

D,=2z-12z-1q,cosa - (L-1cosa)q,

(12)
D,=z,-z +Ig,cosa - (L+|cosa)q,
and each actuator will have a force of:
% :k3D3+CSD3+F3
Ah = k4D4'|' C4D4 + F4 (13)

In asimilar fashion, the Equations of Motion for mirror 2 and the base will be:

11



mz, =-A- A

mz, =A+A+A+A

1,g, =lcosa(A, - A) (14)
Ig, =[L- lcosal(A; - A,) +[L+Icosa](A, - A)

Deriving an Error Metric
With this set of dynamic equations, we define our output error ( which consist of

the two tilt angles and the two wavelength errors) as follows.

S

Y1

>4 4

\

Figure 6. Errors Resulting from Relative Vertical M ovement.

Thetilt angle errors and wavelength errors are developed separately. The total error is
then the sum of all the errors. From Figure 6 the distance x; and yi resulting from vertical

movement is

X, = adnf (15)
y, = acosf (16)

where a=12z - z,

Then the wavelength error (ER;) and tilt angle error (T1) for mirror 1 is:



ER, =-x =-adnf

(17)
T = W _ acosf
YT (18)
Likewise the wavelength error (ER) and tilt angle error (T2) for mirror 2 is.
ER, =-banf (19)
b cosf
T, =-

e 20

where b=z, - z,

)~

2

Y2 ®)

Figure 7. Errors Resulting from Mirror 1 Rotational M ovement

From Figure 7 the distance % and y» made by rotational movement of mirror 1 is:

y, =+/L? +h’q, (21)

X, =Y, tanf (22)

13



Then the wavelength error (ER;) and tilt angle error (T1) for mirror 1 is.
ER, = x, =tanf +/L? +h?q, (23)
T, =q, (24)

Likewise the wavelength error (ER) and tilt angle error (T2) for mirror 2 is.

ER, = - tanf +/L* + h’q, (25)

T, =q, (26)

N "

)

f

X3
Y3
f
Figure 8. Error Resulting from Base Rotational M ovement

From Figure 8, the distance x; and y5 made by horizontal movement is.
X, = ccosf (27)
y, =cdanf (28)

where c=(h+h_)q,

The wavelength error (ER;y) and tilt angle error (T1) for mirror 1is.

14



ER, =-X; = - ccosf 29)
T, =- Ys ___canf

L2 +he - [l +h? (30)

Likewise the wavelength error (ER2) and tilt angle error (T2) for mirror 2 is.

ER, = x, =ccosf
Vs _ canf

VTl e @)

(31)

T, =-

The total wavelength error and total tilt angle error made by the vertical and
horizontal movement will be the sum of all the above errors. In addition to this, the tilt

angle error is changed by rotational movements of mirror 1 and 2.

ER =-(z,- z)sdnf +tanf VL* +h’q, - (h+ h,)q, cosf
_(z- z)cost  (h+h,)q, snf

T = +

! L2 +he L2+ he 9 (34)
ER, =-(z,- z,)snf - tanf L? +h?q, + (h+h,_)q, cosf
(z,- z,)cost  (h+h,)q,snf

[l +h? [l +h? d (36)

This represents the coupling of errors between wavelength error and tilt angle error.

(33)

(35)
T, =-

15



Conventional Linearization

For this analysis, we require a linearized model described in state-space form as:

X = AX +BU
Y =CX + DU (37)
where the state vector X is defined as follows:
_ L T
X_[ZlZZququqSleZququqS] _[X X]
From the Equations (9) and (12), distance vector can be described as:
€
éD,u él 0 -1 -Icosa 0 L +1 cosa ggzzg
D8 91 0 -1 lcosa 0 L- Icosa Y6z, G
D=¢ “uU=¢ 8 ° (=D, X
@,0 @ 1 -1 0  -lcosa -L+lcosalgy,y (38)
D0 D 1-1 0 | cosa -L-Icosagngg
&, 0
In asimilar fashion D will be similar type of D.
eD,u
é-"u
b=820-p 4
85,0 " (39)
é.’u
eD. g

The actuator vector will be ( using Equation (10) and (13) ):

16



éAu & 0 0 0 ¢ 0 O Ou éF1u
NE Oy G0
p =u-® ko 0 0 0 ¢ 0 0ydu G
eA0 €0 0 k; 0 0 0 ¢ OUgDH eF 30
GAL 80 0 0 k, 0 0 O cd4y &4y
éFlu (40)

on €zl

= Ang+E

u SF3u

e u

& 44

Combining the results we can build Equations of Motion from Equation (11) and

(14) in matrix form as:

o ¢ um um, 0 0o
&0 & 0 0 - 1/m, -um, %A
&u_e  1m, 1/m, 1/m, vm  Ea,!
gj'lg_g lcosa /1, -lcosa/l, 0 0 ﬂ@ G
q,u ¢ 0 0 | cosa /1, -lcosa/l, UgAq
éi‘bﬁ g(L+Icosa)/Ib - (L-lcosa)/t, (L-lcosa)/l, (L+|cosa)/|b5
eA U
_ pp, &4
"eAU
X
(41)

The output equation is defined in terms of Equations (33), (34), (35) and (36) as:

Yl = [Tl TZ ERl ERZ]T
where T; and T, represent the tilt angle error for the mirror 1 and 2 and ER; and ER,

represent wavelength error for the mirror 1 and 2.

In matrix form thisis represented as:

17



62,0
é u
20
&z, U (42)
Y=C.,é u=C_x
&
a
g2y
&0
where
é cod 0 __cod 1 0 _(h+h)snf G
éw/L2+h2 VL +h? VL2 +h? ﬂ
c,=§ o -2 = 0 p - (hrhysnt g
m_g \/L2+h2 «/L2+h2 /L2+h2 3
é - anf 0 anf tanf +/L2 +h? 0 - (h+h,)cod
g 0 - snf snf 0 tanfL>+h  (h+h )cosf g
(43)
Thus the output equation is given as.
Y=[Cm O]X (44)
whee X=[z, 2z, 7, o, a9, 9 2z 2 2 d d G
Now in the state-space form, the A, B, C and D matrix will be:
€705 5 g6 u
A_e &6 D N{
D, xA, %5 " Zero“ g (45)
: o, D,

where 1(6” 6) stands for identity matrix.

18



_ &m0,

- &DD, (46)
c=[c, 0] (47)

and
D =zero,, (48)

For agiven set of physical parameters of the mirror, base and actuators,
generation of the corresponding state-space model matrices A, B, C and D have been
automated and the MATLAB code is contained in Appendix A.

Summary

In this chapter a simplified two dimensional DOT system and the corresponding
EOMSs were developed. The state-space model has less measurement outputs and
control inputs than the number of states. Chapter 3 establishes the techniques for
achieving the proper gains for the eigenstructure assignment technique. The
eigenstructure assignment technique and the constraints will be discussed on a case by

case basis.
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[11. Methodology

The previous chapter developed the simplified planar model. This chapter

devel ops the methodology for control. It begins with a development of a performance

index for the system. Eigenstructure assignment technique will be developed in the case

of the full- state feedback and the output feedback. Then the LQR methods will be

reviewed to compare the result.

Developing the performance index

Control system performance is typically measured with respect to a performance

metric. For the problem herein, a suitable metric must be established to measure the

closed-loop performance. For alinear system as given below:

%(t) = AX(t) + Bu(t)
y(t) =Cx(t)

(49)

Under proportional output feedback we get the closed-loop system shown in

Figure9.

d

r € u
Gc ]

X = Ax+Bu
y =CX

y

o1

|

Figure 9. General Closed-loop System

For the sparse array, the objective is to minimize the effect of disturbances (d)

whenr = 0. Thisis referred to as the regulator problem, i.e. (r = 0 above) the objective of
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the regulator isto drive e® 0 andthusy ® 0 (or x® O if full-state feedback C = I is

available) . The effect of measurement error (m) will be not considered in the research.

One measure of how successful the controller is

J, = O X' Qxat (50)

where Q is a positive semidefinite scalar weighting matrix such as
Q = diag (0}, 0, 9s»----0h) (51)

For afixed cost J; the bigger we make ¢ the smaller x must be, and thus the
speed of response will be improved by increasing a particular g.

In general we can always speed up the al response by increasing the gain but it
will cost more control energy to achieve. So we probably need to add a penalty for
control use. Thus consider

Ty

J, :(‘)O(XTQx+uTRJ)dt (52)

where R is positive definite. A natural choice would be
R=diag(r,r,,r5,...1,) (53)

and if we pick r; large, then y would be small for agiven J. Thus we can see that by
varying our choicesin Q and R, we can trade off speed of response for control use.
If there is specified external input ( d in Figure (9) ), the objective of control

system is minimizing the effect of the disturbance (noise). For the case of white Gaussian
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Noise, every output variance value from the noise can be calculated through a Lyapunov

Equation. If output variance is defined such as Vy =[v,;,V,,,.....,V,, ]" then the objective

function can be the sum of each variance. This thesis used the sum of all output variances

for the objective function.

Response of Linear system to white noise
The following is based on reference (11).
Suppose that x(t) is the solution of

X(t) = Ax(t) + Bw(t)

X(ty) =X, S

Where w(t) is white noise with intensity V(t) and X is a stochastic variable

independent of w(t), and mean of Xx(to) is equa to my and the variance matrix Qo is
Qo = E{(x, - m)(x% - m,)'} (55)

Then x(t) has mean

m,(t) = X o (56)

and covariance

: i in(t,
R, (t,,t,) = eAt Qe -t 4 6"“ L

0

ARy ()BT (-t (57



The variance matrix Q(t)=Rx(t,t) satisfies the differential equation (Lyapunov)

Q(t) = AQ(t) + Q(t) A" +BV (t)B' (58)

where Q(to)=Qo

Now consider the case where w(t) is stationary i.e. constant intensity. If A is

asymptotically stable the variance matrix will be as follows as t increases:

im Q(t) = im Q(t) =Q = Qe BVB e dt (59)

Further, since Q(t) is the solution to the differential equation, its limit Q must

also satisfy the differential equation at steady state. Specifically
AQ+QA" +BVBT =0 (60)

The Lyapunov equation has a unique solution for an asymptotically stable system,
which meansthat the al of the eigenvalues of matrix A cannot be zeros [ref (12)].
For the problem considered herein, this means if w(t) is a stationary, zero- mean,

white Gaussian noise, and is the only input to the system

X(t) = Ax(t) + Bw(t) (61)

then the process x(t) will also be zero-mean Gaussian noise with variance Q(t), given by

- T (t- N - T (t-
Q(t) = Al ro)QoeA (t-to) 4 QeA(t DRV (t )BT e” Ut (62)
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For the steady-state case, and stationary w(t)
Q=E{xOxX 0} (63
and is the solution to
AQ+QA” +BVB" =0 (64)
Further, if y(t) = Cx(t) then E{y(t)} =0 and

E{yy’ (v} = Elcxox e ) (65)
= CE{x(t)x" ®}cT

:C&:T

So the root mean square response of y(t) is the square root of the diagona of the

expresson CQC . In this thesis, the objective function used is diagonal sum of CQC .

J =& diag(cQC”) (66)
where Q isthe intensity of the disturbance, assumed to be zero- mean White Gaussian

Noise.
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Stabilizable/ Detectable System

The goa of contral is to stabilize the system with minimum input control. To
ensure a solution exists, we must first verify that the system is both stabilizable and
detectable. For a system, if there exist uncontrollable modes and the uncontrollable
modes are unstable then there is no way to stabilize the system. Likewiseg, if there exist
unobservable modes and the unobservable modes were totally undetectable, then there is
no way to detect the states. Thus before a control system can be designed, we need to
verify whether the system is stabilizable and detectable or not.

If the system is stabilizable and detectable, then it is reasonable to find a
controller to minimize the cost function in Equation (66).

The definition of stabilizableis “if all the unstable modes are controllable then the
system is said to be stabilizable”. Clearly a controllable system is sufficient to be
stabilizable but the reverse is not.

The definition of detectableis “if all the unstable modes are observable, then the
system is said to be detectable”. Clearly an observable system is sufficient to be
detectable but the reverse is not [ref (11)].

Thus to stabilize the system, all the unstable modes must be observable in the
performance index. Intuitively, if the unstable modes are not included in the performance
index then the optimization will not consider them in the optimal solution, even if they
are controllable.

As developed in Chapter 2, the planar model has both uncontrollable and

unobservable modes. These will need to be removed prior to control design.
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Method to separate a system into the controllable and uncontrollable matrix

In general, a system can have both controllable and uncontrollable modes. But to
control the system we need to separate a system into the controllable and uncontrollable
form. If the uncontrollable modes are stable then the system can be stabilized.

For agiven system:

X = Ax+ Bu
y =Cx+ Du (67)
Define the controllability matrix as [ref(2)]
M.=|B AB A*B ... A"'g] (68)
Using singular value decomposition M can be decomposed as follows :
TSV =M, (69)

where the T represents an orthogonal matrix and the columns of T correspond to the
singular valuesof M_ in S. Thusif M_ has m ronzero singular values and the
remaining m+1....n form a basis for the rest of R'.

Then apply transformation T such as

A=T*AT,B=T"'B,C=CT. (70)

S0 that:

éAcc Acuu — éBccu

A= 4 . B=a gadC = [cc cu | (71)
§0 Auwyf ~ EoY [ ]



With this new state-space relation the output feedback system with u =- Ky is

aéAcc Acuu eBccu

% =Ca ‘K[Cc culix (72)
S Auu O u [ ]
i.e
— éAcc- BecKCec  Acu - BecKCuu-
X=¢ (X (73)
é 0 Auu a

From the block diagonal form, it is clear that the closed-loop eigenvaueis
eigenvalue of Acc- BecKCce and eigenvalue of Auul.

It is also clear from Equation (72) that Auu cannot be affected by any input. So
Auu results in completely uncontrollable modes. Thus if any uncontrollable modes are
unstable, i.e. if real part of any eigenvalue of Auu is greater than zero, then the system is

not stablilizable.

Likewise Acc can be called the completely controllable matrix.

So the system with (Acc, Bec, Ccec) is a completely controllable system.

The state x can be expressed such as x = Tx, then x can be decomposed such as
éx.u

x=¢
el

g- Where x_is controllable states and X, is uncontrollable states.

Notice that the transfer functionsCcc(sl - Acc) *Bec = C(sl - A)''B are

equivalent for the controllable subsystem and the original system So we can use Acc,
Bcc and Cec matrix instead of A, B and C. For the model developed in Chapter 2, this
technique must be applied to remove the uncontrollable and unobservable (rigid body

modes) before proceeding to design the controller.
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Analyzing the Open-loop Eigenstructure

In agiven system

X0 _ L 1X0 €0 1 uxg 60y
[ y=A y+tBuU=g TRRAR - (74)
TX% TXKV) 8— Ks -Cd&xtv) SBSULJJ
1 X0 i X0
y=Ci y+Du=[C, 0]y
(Re Re

where the system is proper and Ks represents normalized stiffness matrix, Cd represents
normalized damping matrix, Bs represents input direction matrix and Cm represents the
states outpuit.

For a given system, if all the springs and dampers are collocated, then the possible
openloop mode shapes can be found from the eigenvector set of Ksor Cd. If the opent
loop eigenstructure doesn’'t contain rigid body modes, then all the eigenvalues of Ksare
non-zeros. The eigenvectors related with the zero eigenvalues stand for rigid body mode
shapes and the others with non-zero eigenvalues are the mode shapes that can be
controlled. By using the controllable mode shapes as the basis, any closed-1oop mode
shape can be obtained, constrained only by the max allowable control use. That means

the basis of open-loop mode shapes are the same as the basis of closed-oop mode shapes.

Developing eigenstructure assignment [ref (11)]
Consider a system that has n states, m control inputs, and r measurement outputs.
For a static output feedback system

u=-Ky (75)

then the closed- loop regulator is given by :
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x =(A- BKC)x (76)

and the eigenstructure is determined by (A- BKC)

As described before, the system can have both controllable and uncontrollable
modes at a same time. Eigenstructure assignment can be used for the controllable modes.
% = Accx +Bec U

(77)

Y/ = Ccex

Consider the system that has n controllable states. If the maximum number of
inputs or outputsis greater than n, then arbitrary n eigenvaues can be assigned. But if
the maximum number of inputs or outputsislessthan n, then someof the eigenvaues
cannot be assigned. There are several waysto assign the eigenstructure. This technique

will briefly be reviewed [ref(11)].

Eigenstructure assignment technique with output feedback.

For a linear system given by:

X = Ax+ Bu -8
y =Cx (78)
=- Ky
where xT R",ul R™,y =R’ the closed-loop regulator is given by
X =[A- BKC]x (79)

and the modes are determined by the eigenvalues of [ A- BKC]
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If the system is completely controllable and observable, and B has full column rank and
C has follow row rank, then the following property can be proven [ref(11)]:
1) Thevaueof max(m,r) closed-loop eigenvalue can be arbitrarily assigned
If n> max(m,r) then the eigenvalue cannot be assigned.
2) The shape of the closed-1oop eigenvectors associated with the assigned
eigenvalues can be assigned as well. A total of min(m,r) elements of each

assigned eigenvector can be chosen arbitrarily.

3) The eigenvector associated with the closed-1oop eigenvalue |, must lie in the

subspace spanned by
Il,1-A'B (80)
The closed- 1oop eigenvalue problem looks like:
[A- BKC)v, =1 v, (81)

and we wish to choose K in order to achieve the desired | ;, v, pairs.

The above equation can be rearranged as follows

[IiI'A]Vi:BWi (82

where w, = - KCy,
Oncethe w,’s have been found, the gain matrix K is determined by

K=-W[CV]™ (83)

where W =[w,,W,,W,,...W, ]



This method allows the designer to place r eigenvalues assuming [CV] isinvertible.

Eigenstructure assignment technique for full-state feedback case.
For the full- state feedback case, C =1 and thisimpliesr = n.
This can be considered as 3 separate cases
m=1, 1<m<n and m=n
1) m=1
a) K hasn parameters
b) All n eigenvalues can be assigned
c) 1 element of each eigenvector can be assigned (but since eigenvectors
have arbitrary scaling in this case it’s useless)
2) m=n
a) K hasrf parameters
b) All n eigenvalues can be assigned arbitrarily
c) All dlement of al eigenvector can be assigned (complete
eigenstructure assignment is possible)
3) 1<m<n
a) K hasm n<rf parameters.
b) All n eigenvalues can be arbitrarily assigned
c) A portion of each eigenvector can be assigned

For each case

K =-W[CV]™ (84)

where W =[w,,W,,W,,...W, ]
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If the desired eigenvalues are distinct ‘' values in the assignment process, then the
eigenvectors will necessarily be linearly independent and V will be invertible. If the
desired eigenvalues are complex eigenvalues then the eigenvectors will also be complex,

which result in a complex gain matrix K. To avoid complex gain matrices, the following

technique can be used. Consider v, and v, are complex and conjugate.

KV =-W (85)
P K[Vig 1V, ,Vig = 1V Vo, V] = - [Wig W, , Wig - IW,, W, W, ]
Post multiply both sides by
a2 -il2 0Oy
= . L,J
/2 /2 0
go 0 1§
which yields:
[ AV VN VA V] = - [Wig, Wy, Wy, w, ] (86)

Then K=-WV, and the resulting K matrix is real.
Thus there is always areal matrix K by ssmply replacing the complex pair of
eigenvectors with the real and imaginary parts of the complex eigenvector.

As described before for the case 2 and 3 the gains are not unique and so the extra
freedom can be used to place the components of the eigenvectors.

To do this, the desired eigen pair must satisfy Equation (87).

[I il - A]Vi = Bw; (87)

where | ;,v, are the desired eigen pair
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Every eigenvector must lie in the subspace spanned by [I - A]'1 B. Thisputsa
restriction on the achievable eigenvectors.

Now let’ s find the algorithm to achieve a vector close to the desired eigenvector if

the desired eigenvector v,, does not lie in the subspace. To do this let’ sdefine a

performance index
1 T
J; :E(Vi - Vig) PV - vig) (88)

where v,, © desired eigenvector
v, © achievable eigenvector

P ° apositive definite symmetric matrix whose elements are chosen to

weight the difference between v, and v, for each element.

Using a Lagrange multiplier method,
‘]_izl/z(vi-vid)Pi(Vi-Vid)+uiT([|i|- Alv; - Bw,) (89

To find the minimum, take partial derivatives with respect tov, ,w. and u, and set

to zero.

&: Pv, +[l,I - Alu, - Pv, =0

v

I B'u, =0

w, (90)
&:“ - Alv, - Bw, =0

Tu,



Which can be written as

ivio 1 0 (@
1T o7 (91)
Nitwy=1 0y
%uib }Pividb
where
l.1-Al -B 0 ¥
N—glo] 0 B' 0 2
iTé a
g8 R 0 [I,I-A'g
("~ denotes hermitian transpose )
It can be shown that as long as the system is completely controllable, N; will be
nontsingular.

o O
T

(93)

—— —— —
=
T
1
Z
—— —— —

If an eigen pair is not to be altered setting w, =0 and v,,equd to it’s original

open-loop value assures that the associated eigen pair remain in their openloop
configurations.

So eigenstructur e assignment techniques can provide desirable time response
characteristics (eigenvalue placement) and modal decoupling (eigenvector specifications)
for the nominal plant, but there are no guaranteesin terms of stability or performance

robustness. Thisis left to the designer in choosing the desired eigenstructure.



State-space model with limited measurement data.

Suppose we have A, which hasan eigenvalueset L ={1, |1 .1 ,,1 5,0l )

Then the characteristic polynomia for matrix A is

8- A=l 1) L) 1 )uds- 1,) -

— an n-1 n-2
=s"+as" +a,s" ... +a,

If A represents closed-loop system A matrix which is A-B*K*C, then the

eguation (94) can be described as follows:
8- A=4 fk)s° (%5)
g=0
where k;; represents the " row and j" column element of regulator gain matrix K.

If the desired closed-1oop poles are specified as eigenvalue set L then the
characteristic polynomial for matrix A must satisfy the equation (94) and (95).

By comparing the coefficient of the characteristic polynomial between equation
(94) and (95), every element of the regulator gain matrix K can be found. This method
can be used for the multi- input- multi- output case too.

In single-input-single-output case reference (2) page 833~834 shows an easy way
determining the K matrix. It should be also noted that in the SISO case the K matrix is
unique.But in the multi- input- multi-output case, the K matrix is not unique. There are

severa ways to choose the K matrix.



As developed in Chapter 2, the model has 4 inputs, 4 outputs and 12 states. The
model output information is only for the displacement states. The dynamic system can be

described as follows:

VXU _ X0 ¢0 I txy, 0y
[ y=Aly*+BU=g i Yt e (%)
TX% X S-KS -Cd&xtv) SBSULJJ
1 XU 1 XU
Y=Ci y+Du=[C, O] y
X X

where x represents the displacement state vector and X the velocity. If the system is
strictly proper, then the D matrix can be removed. Here Ks represents normalized

stiffness matrix, Cd represents normalized damping matrix, Bs represents input direction

for the forcing element and C, represents output.

The opentloop system characteristic equation is:

-1 !
det[A-II]z‘_ Ks _Cd_ll‘:o (97)

The coefficientsof | " and | ™* (the two highest polynomia terms) happen only at the
product of the diagonal term.

Now let' s assume that we can measure only displacement.

1 XU
y=[Cy O 3 (99
I

With this openloop system let’s build the closed- 1oop system with output feedback.

u=-Ky (99)



Then the system will be:

0 I axg é0u

é i XQ
X =g 0.y en K[Cn Ol Ly (100)
& ks - callx) gl Oy
¢ 0 | dxp
& Ks- BKC, - Cdlfix)
s i
= A_cl:' ,l'J
X
where
é 0 (Y
A d=a ] (101)
— & Ks- BKC, - cdf
The characteristic equation of the closed-loop system A_cl matrix is:
-1 I
det[A_dl - 11]= 0 (102)

_Ks-BKC, -Cd-11|"

Again, the coefficientsof | " and | "* happen only at the product of the diagonal
term. But in this product any control element of K matrix cannot affect the coefficient of
the highest and the next highest term of | . That means that the coefficient of | "* is
fixed. But as noticed the coefficient of | "* for the closed-loop system is the same as the
open-loop system. In calculating the polynomial, the coefficient of the | "*term of the
characteristic equation is equal to the sum of all eigenvalues. If one of the desired
eigenvalues is relatively larger than before, then the other eigenvalue should be relatively
smaller and the sum of eigenvalues should be the same as the openloop e genvalue sum.
If the controller is to stabilize a mode extremely fast, i.e. the desired eigenvalue’s real

value is extremely large with negative sign, then at least one of the other eigenvalue’s

37



real value can be positive, i.e. the closed-loop system could become unstable. So in the
eigenstructure assignment, there is an inherent trade-off of the desired eigenval ues.

We need to measure the output velocity in order to guarantee arbitrary eigenvalue

: : €, Ou
assignment. The results shown in Chapter 4 used a g asthe output measurement
e mU

matrix C, to guarantee the placement of desired eigenvalue. In practice, this could be
accomplished with both displacement and velocity sensors or with velocity sensors and

digital integrators for the displacement.

Determining the desired eigenvalues

From a given openloop system, the related frequency response can be found by
using asingular value plot. The peak points represent the output strength with the related
natural frequency. The objective of this thesis is to minimize the output variance for a
random input. If that output variance is zero when the input is random (assumed zero-
mean White Gaussian Noise), that is the best result. But it isimpossible to make the
output zero, but minimizing the output variance, the closed-loop system will maintain
focus better than the opent loop system.

The output variance can be changed by adjusting the peak singular values with
related frequency in openloop system. If the peak singular value is lowered, the output
variance can be lowered. The eigenstructure assignment technique can be used to lower
the peak singular values. (which are directly related to the eigenvalues)

The idea behind selecting the lowering of the peak singular valuesis as follows.

Figure 10 shows the relations between real, imaginary and absolute value of eigenvalue,

where the open-loop eigenvalueis |, =-a+hi.



Figure 10. Relation between Natural frequency and Damping frequency

The speed of stabilizing the system strictly depends on the real part of the
eigenvalue which is called an attenuation constant. So minimizing the output variance, or
lowering the peak singular value, is maximizing the eigenvalue sreal part ‘a which
maintaining the same natural frequercy.

But each singular value does not have the same co-relation with the output
variance. The output variance is dominated by the lower frequency eigenvalues because
the modes with lower natura frequencies decay slower with respect to higher natural
frequency modes. So the modes which occur at the lowest frequencies and have high
singular values are the best candidate modes to lower their peak singular values.

But selecting the best real eigenvalue must satisfy s ? £v 2 and the constraint of
the max allowable gain value. The control effort required, which is directly related to the
required gain, is dependant on the required changes to the eigenvalue. Thus these gain
increases were minimized by increasing the real part but maintaining the frequency at

which the modes occur [ref(11)].

Deter mining the desired eigenvector
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As described in the section Eigenstructure Assignment technique with output

feedback, the desired eigenvector associated with the closed-loop eigenvalue |, must lie

in the subspace spanned by:
Vi_1=[I,1- A|'B (103)

Thisis the first necessary condition of the desired eigenvector.

In the full- state feedback case, or atotally controllable system, the condition
stated above of the desired eigenvedtor is aways satisfied, but a system which has rigid
body modes or uncontrollable modes is not.

Asdescribed in the section on Analyzing the opentloop Eigenstructure, every

closed- 1oop mode shape which is controllable lies in the subspace spanned by the oper+

loop controllable eigenvectors (mode shapes). Let M, be abasis of the set of open-loop

mode shapes. Then the closed-loop mode shape M, can be determined by alinear

combination of openloop mode shape.

M, =M, " {C
CL OL { } . (104)
{cd={a, a, .. a}
where k is the number of linearly independent open loop mode shapes.
Then the closed- |oop eigenvector V, with arbitrary eigenvalue must be:
6 My, 0 é M, {u e M, ¢
Vo =4 =& . O (078 c} (105)
S R R T R



So any closed-1oop eigenvector related with eigenvalue |, must liein the

& M
subspace spanned by % |\le u and let’scall that asVi _ 2. Thisis the second necessary
s oL u

condition of the desired eigenvector.

So desired eigenvector must satisfy both necessary conditions. But there is an
intersecting space which satisfies the first and second necessary condition as shown in
Figure 11. It is necessary to use the intersection space in finding the desired eigenvector.

The intersection space must lie in the subspace of the first and second necessary

condition. If {x} isa vector which liesin the intersection space of the two necessary

conditions space, then the vector {x} can be expressed such as:

=[vi_1f{a} = [vi _2fn} (106)
where {a} and {b} representslinear combination of column space of the intersection of

matrix Vi_1 and Vi_ 2.

i.e

Vi_1fa}- [vi_2fb}={d} (107)
oVi_1 vi_ abg (108)

A
Therefore vector 1 bz is null space of [Vi 1 Vi_2].
;-

So the intersectionspace (V) of the two necessary condition spacesis
span{[Vi _1]{ al}or span{ B/i _ 2]{b}} . The space V represents the achievable desired

eigenvector space.

v = spanf{vi_fa})
~ ol 216} (109
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Vi_1l

Figure 11. Necessary Condition Set Relationship Diagram

Then the best desired eigenvector (n,,) is avector which liesin the space of V

and minimizes the ‘J" as in following equation:

Y. =Cn,
ni . id (110)
J=Y, "PY,

where P is any positive semi-definite penalty matrix and n,, is avector liesin the space

V.

Physically, equation (110) tells us to select eigenvectors that contribute to the
weighted cost *J'.

In redlity as the eigenvalue moves, the related eigenvector moves from openloop
eigenvector to a vector which liesin the space of achievable desired eigenvector (V). But
as eigen-pair (eigenstructure) approaches the desired eigenvalue and the best desired
eigenvector, the elements of control gain matrix increases. The allowable maximum
control gain constraints limit the extent to which the desired eigenvectors can be achieved.
In this thesis, the proper desired eigenstructure which satisfies allowable maximum
control gain constraints was found by using Newtoris Line Search Method. Typically a
desired eigenvector was found by finding the proper ratio value r; in Equation (111)

between 1 through O.
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Nia =Nl + (- 1Ny (111)
where n,, is the i mode assigned eigenvector as the desired one, n,, is the i mode open

loop system eigenvector, and n,is " mode best desired eigenvector.

Every assigned eigenvector was found by finding related r; simultaneously using the
Newtoris Line Search Method again.
For comparison with the eigenstructure assignment technique, an LQR approach

was also used, and will briefly be discussed below.

Linear Quadradic Regulator (LQR).
LQR isthe well known in finding optimal regulator. As shown in Equation (112),

the LQR problem is stated as determine u(t) which minimize performance index:

J= 6 (xTQx +u' Ru)dt (112)
where Q is positive semi definite and R is positive definite matrix.

The solution which will determine the control law u(t) and hence compensator is
found from calculus of variation techniques. Using a Lagrange multiplier to convert this
constrained i order minimization to 2ri" order unconstrained minimization.

In the steady state case, LQR problem turns out to be the solution to the Algebraic
Riccati Equation (ARE). The ARE is solved in MATLAB. Thisthesisused LQR

command in MATLAB by assigning the diagonal value of matrix Q and R.

Summary



This chapter established the technique for achieving the proper gains for the
eigenstructure assignment technique and showed the simple approach with LQR method.

In using the eigenstructure assignment technique, the number of measurement
outputs was an important factor in achieving desired eigenvalues. If there are not enough
measurement outputs rather than states, restricted eigenvalue could be assigned. To
overcome this restriction, a proper state estimator or more output measurement was
needed. With the assumption of existence of best estimator, eigenstructure assignment
can be fully devel oped.

The next chapter shows the result using eigenstructure assignment technique. The
result of using LQR is aso shown to compare the result from eigenstructure assignment

technique. Finally, the AFRL model analysis results are added at the end.



IV. Result and Analysis

The previous chapter devel oped eigenstructure assignment and L QR methods.
This chapter shows the result of the 2-D planar model with both techniques and the

AFRL model analysis result using the eigenstructure assignment technique.

Open-loop system analysis (2-D planar Model)
Assumptions:

1). There is no output measurement error

2). In developing the EOM S (Equations of mation), small angle and small
displacement approximations were used to make the control system linear

3). Both displacements and vel ocities can be measured.

Congtraints:
1). Control gain max value of 100 (max absolute value of any element of ‘K’

matrix).

As shown in Chapter 1 problem statement, the given system can be described as

follows:

Mx +Cx+ Kx = Du 1)
where
M : Mass matrix

C : Damping matrix



K : Stiffness matrix

For the EOM above, the state-space system can be devel oped (with the

assumption of output velocity measurements) as follows:

IX0_ IX( é¢ O I uixg é0u

[Yy=A y+tBuU=g —1  —aoyi yta—gu (78)
TX TX e'M K -M CL“XE ﬁu

‘!y[,J_Ci,x[,J_gcm 0 di xu

i.y=Ci.y=e 9]

ivh 1xp 80 C,fixp

where C, . represents measurement matrix for state the x.

In this thesis, parametersinthe M, K and C were chosen to get similar

characteristics of performance of the AFRL DOT model system. The AFRL’s DOT
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Figure 12. Open-Loop System Singular Plot (AFRL DOT System)



model singular value plot is shown in Figure 12, and the planar model singular value plot

isshown in Figure 13.

System: Gol
Frequency (radfsecy 181

Open Loop Sigma Plot

S e S B O Targetmodes """" 7
. ,
% -100
I IS W LA L N N N M
Figure 13. Open-Loop System Singular Plot (2-D Planar Model)
Table 1. OpenLoop System Mode
1st mode | 2nd mode | 3rd mode | 4th mode | 5th mode | 6th mode
Eigenvalue | -0.1401 -0.1040 | -0.0007 -0.0009 0 0
(10%) +2.643L | 2.2780i | +0.1812i | +0.2165i
Damping 5.29e-002 | 4.56e-002 | 3.62e-003 | 4.33e-003
z 0.6803 0.7068 0 0.2699 0.5774 -
Mode |z -0.6803 0.7068 0 -0.2699 0.5774 | 0.4472
Shape | z 0 -0.0283 0 0 0.5774 0.4472
01 -0.0013 0 0.7071 0.6256 0 0
o -0.0013 0 -0.7071 0.6256 0 0.4472
b 0.2729 0 0 -0.2674 0 0.4472
0.4472
Controllability Controllable Uncontrollable
(Rigid body mode)
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The openloop mode shapes were determined by finding the eigenvalues and
eigenvectors. Each mode’s eigenstructure is shown in Table 1 and each mode shape is

shown in Figure 14.

Mode 3 Mode 4
Figure 14. Open-L oop System Mode Shape (2-D Planar Model)

As assumed from the beginning, the satellite system can have several disturbance
sources (noise). All the sources of noise were assumed to be White Gaussian Noise with

intensity 2” 10" to be close to the AFRL model which had nano range disturbances.



Using the Lyapunov equation, the steady-state output variance and Root Mean
Square (RMS) value was computed. There are 4 displacements and angle errors and 4
velocity errors. The velocity error variance was not used in the objective function.
Intuitively, the tilt angle errors are more important than the displacement errors, so the

objective function used was as follows:

J=R"" PR (113)
where

R:RMSof {T, T, D, D,}'

T, : Tilt Angle Error for Mirror 1

T, : Tilt Angle Error for Mirror 2

D; : Displacement Error for Mirror 1
D, : Displacement Error for Mirror 2
P : penalty positive semi-definite matrix

(inthisthesis P = diag(10* 10* 1 1)

The open-loop RMS results are provided in Table 2. The result of objective

function was 4.1718" 10 *°.

Table 2. Open-Loop System Measurement RM S (2-D Planar M odel)

Planar Model ( ~ 10°°) AFRL Mode (“ 10°%)
A segment

Mirror Tilt Error 143 143.3 X-tilt
A segment

“1” Piston Error 2028.9 46.68 piston
C segment

Mirror Tilt Error 143 170.5 X-tilt
C segment

‘2" Piston Error 2028.9 60.58 piston
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Through analyzing the openloop system singular value plot, the candidate modes
to be changed were determined as the mode which has largest singular value and
minimum absolute real eigenvalue.

As shown in Figure 13, there are two candidate modes to be changed. At first, the
objective function can be reduced by selecting only one mode and increasing the real part
of the eigenvalue which satisfies the constraint that the maximum control gain matrix

eement must be less than allowed value. The constraint used was 100.

Closed-loop system assigned 3" mode eigenvalue

The 3% mode eigenvalue - 0.657 +181i has the smallest real value, i.e. the Slowest
mode. So the assumption that the 3" mode has a large contribution to the objective
function result was made. By assigning a different eigenvalue real part and the same
eigenvector with opentloop system at the same frequency, the objective function result
can be lowered. But as the eigenvalue real part is increased, the control gain matrix
element value was increased, as expected. Thus, there was a unique eigenvalue that
satisfies the constraint that the maximum the control gain matrix element value was less
than 100 (actually it was equal to 100).
By assigning the maximum control gain matrix element value as 100, the resulting
singular value plot with respect to frequency was given in Figure 15.

The resulting eigenvalue difference is shown in Table 3.

Table 3. 3rd Mode Eigenvalue Comparison.

Open Loop Closed Loop
Eigenvalue -0.657 +18li -27.1+179i
Damping 3.62°10° 1.50" 10*
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Figure 15. Closed-L oop System Singular Plot ( 3rd mode changed )

The result of objective function was 2.1367” 10" *° which was almost 51.2 % of

open-loop result. The resulting jittering performance is shown in Table 4.

Table 4. Closed-loop System M easurement RM S (3" mode changed)

(7 107°) Open-Loop Closed- Loop
Planar Model Planar Model
. ) 103
Mirror Tilt Error 143
_ 1193
“1” Piston Error 2028.9
. ) 103
Mirror Tilt Error 143
_ 1193
‘2" Piston Error 2028.9
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Closed-loop system assigned 4™ mode eigenvalue

Using the same procedure, the 4™ mode eigenvalue (- 0.937 + 216i ) has as small
eigenvalue red part as 3" mode. That means that the 4th mode still has a contribution to
the objective function result as much as the 3" mode. Then by assigning a different
eigenvalue real part and the same eigenvector as the opentloop system at the same
frequency, the objective function result was lowered to 2.1469” 10 *° which is 51.5 % of
open-loop resullt.

Figure 16 shows the resulting singular value plot with respect to frequency with
the same max alowable control gain matrix element value constraint. The resulting

eigenvalue differences are shown in Table 5.

Table 5. 4" Mode Eigenvalue Comparison.

Open Loop Closed Loop
Eigenvalue -0.937 + 216i -32.5 + 214
Damping 4337 10° 1.50" 10

Table 6. Closed-L oop System M easurement RMS

4™ mode changed)

("10°) Open-Loop Closed- Loop
Planar Modéel Planar Modéel
. ) 102
Mirror Tilt Error 143
. 1673
“1” Piston Error 2028.9
. ) 102
Mirror Tilt Error 143
. 1673
“2” Piston Error 2028.9
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Figure 16. Closed-L oop System Singular Plot ( 4th mode changed )

Closed-loop system assigned 3'% and 4™ mode eigenvalue

The previous section changed the eigenvalue only for a single mode and showed
the possible eigenvalue range that can be achieved. So the assumption that the objective
function result could be lowered by changing two eigenvalues at the same time in the
achievable range was made. Newton's Line Search Method which is developed in Matlab
as built-in function with command name of ‘fmincon’ was used in finding the best two

eigenvaue pair to minimize.



Table 7 and Figure 17 show the optimized result only by changing the

eigenvalues, but with the same openloop system eigenvectors.

Table 7. 3% and 4™ M ode Eigenvalue Comparison.

Open Loop Closed Loop
3" mode 4" mode 3" mode 4" mode
Eigenvaue -0.657 £ 18l -0.937 + 216 -13.3+ 18l -17.4+ 216
Damping 3.62° 107 4.33° 10 7.36° 10 8.02° 102
ency (
N
| | RN RN

Freguency (radizec)

Figure 17. Closed-L oop System Singular Plot

(3% and 4™ mode changed at the sametime)




Table 8. Closed-L oop System Measurement RM S (3" and 4" mode changed)

(" 107°) Open-Loop Closed- Loop
Planar Modéel Planar Model
. ) 32.6
Mirror Tilt Error 143
) 4575
“1” Piston Error 2028.9
. . 32.6
Mirror Tilt Error 143
4575
“2" Piston Error 2028.9

After changing only the eigenvalues for modes 3 and 4, the objective function

result was lowered to 0.2164" 10™*° which is 5.2% of the open-loop resullt.

Closed-loop system assigned 3'% and 4™ mode eigenvector

With the same eigenval ues achieved above, there can exist desired eigenvectors to

further minimize the objective function.

Using the technique from Chapter 3 Equation (109) and (110), the desired

eigenvectors were determined and the related mode shape is shown in Table 9.

Table 9. 3% and 4™ M ode Optimum M ode Shape.

Mode Shape
3'9Mode 4™ Mode

Open Loop Desired Open Loop Desired
z 0 -0.7054 0.2699 -0.7054
V2 0 -0.7054 -0.2699 -0.7054
Zy 0 0.0282 0 0.0282
1 0.7071 0.0456 0.6256 0.0456
o -0.7071 -0.0456 0.6256 -0.0456
0o 0 0 -0.2674 0




Mode 3

Mode 4

Figure 18. Desired Closed-L oop M ode Shape (2-D Planar M odel)

As aresult, using the desired eigenvector with the mode shape as described in

Table 9, the eigenvector was exactly achieved and the resulting objective function was

lowered to 0.1244" 10°*° which is 2.98 % of open-loop result. But the maximum gain

matrix element was increased to 9.99” 10°. So by assigning the desired eigenvector

between opent loop elgenvector to the best achievable eigenvector as described in

Equaion (113) in Chapter 3, the maximum gain matrix element could be lowered to 100

and the achieved result of objective function was 0.2164" 10 *° which is almost the same

result of the previous section. The achieved closed-1oop mode shape was almost same

with the result of previous section which was similar to the openloop mode shape.

The results showed that using the desired eigenvectors can further reduce the

objective function, but a an increase in gain and hence control usage. The technique

allows the designer to quickly adjust the amount of ‘shape control’ achieved

(etgenvector) for a given amount of control use.



Closed-loop control using LQR
The advantage of LQR is the guaranteed stability with plenty of margins. The cost

function minimized was Equation (112) Chapter 3, repeated here for ease of reading.

J= 5 (XTQX +u’ Rj)dt (112)

The given system in this thesis has uncontrollable rigid body modes. One of the
requirements in using LQR is that the system must be completely controllable. So only
the controllable modes were used by separating the system into controllable and
uncontrollable subsystem as outlined in Chapter 3. The LQR problem can be converted to
a problem of finding the proper penalty value for the state and control usage. To
minimize the search space, this thesis assumed that all the control usage has the same
importance (i.e. all the actuators are equally weighted). So every diagonal value of the
matrix Rwas set to 0.1. With this, the problem is now finding the proper diagona value
of the Q matrix. To find the proper diagonal value, Newtoris Line Search Method was
used again.

As aresult, the 1% and 2! mode eigenval ues were almost the same as the open
loop system. The 34 and 4" mode eigenvalues were changed mostly, but the values were
dightly different from the result of assigning the 3" and 4™ mode eigenval ues.

The resulting singular plot and the eigenvalue comparison is given in Figure 16
and in Table 10.

The resulting objective function was lowered to 0.2169 ~ 10°*° which is 5.2 % of

opentloop result (same as the eigenstructure assignment technique).
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Figure 19. Closed-loop System Singular Plot (Using LQR )
Table 10. 3% and 4" Mode Eigenvalue Comparison( Using L QR)
Open Loop Closed Loop
3" mode 4" mode 3" mode 4" mode
Eigenvalue | -0.657+181i -0.937 + 216i -13.7+181i -16.9+ 216i
Damping 3.62" 10° 4.33" 10° 7.54" 10° 7.82° 10°
Table 11. Closed-L oop System Measurement RM S (Using L QR)
(" 10°°) Open-Loop Closed- Loop
Planar Model Planar Model
_ _ 32.6
Mirror Tilt Error 143
_ 456
“1” Piston Error 2028.9
32.6
Mirror Tilt Error 143
456
“2" Piston Error 2028.9

Comparison between Eigenstructure assignment technique and L QR approach




In many cases LQR was used because LQR guarantees the stability if it is possible
to measure the output exactly. The number of penalty variables to be determined using
LQR was equal to the sum of the number of states and the number of inputs. In this thesis,
the simplified model had 8 penalty variables and it was the same as the number of system
eigenvalues. But the eigenstructure assignment technique used several eigenvalues (or
modes) which have small rea eigenvalue parts and mostly occur in the low frequency
band. The number of target eigenvalues was less than number of states and should be less
than half because of the complex conjugate stipulation. In this thesis there was 2
eigenvalues and their complex conjugates, was used as the target mode eigenvalue. The
resulting objective functionvalue after using the eigenval ue assignment was pretty much
equivalent with the result of using the LQR method. So assigning the eigenvalue was a
computationally faster method then LQR.

Eigenvector assignment was effective to reduce the objective function but most of
the reduction is attributed to the eigenvalue assignment. Finding the optimum
eigenvectors (optimum mass motion) was the same as finding the linear combination
from the first and second desired eigenvector necessary conditions. Achieving the
optimized eigenvectors results in a requirement of high control gain values, such as an
order of 10° in the simplified model. After finding and assigning the best desired
eigenvector between opentloop system eigenvector and optimized eigenvector by
Newtion s Line Search Method (Equation (111) in Chapter 3), resulting objective

function was similar to the result from assigning just the eigenval ues.
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Closed-loop system for the AFRL DOT system with Eigenvalue Assignment

The actual DOT system model which AFRL developed had 9 inputs and 9 outputs
and 79 states. The corresponding opert loop singular value plot and optical jitter output
was shown previously Figure 12 and is tabulated in Table 12.

To reduce the computation time, this thesis used a balanced model realization and
model reduction to 20 states, with 9 inputs and 9 outputs. The obtained singular value
plot is shown in Figure 20. After reducing the system, a combination of noise intensities
was assumed for the reduced model openl1oop system to be close to the original systemi s
jitter performance.

The assumed noise intensity and resulting opent loop performance is shown in
Tables 13 and 14.

The objective function was determined as the sum of output variance and the

open+loop system result was 2.3629° 10° ™.

Table 12. Optical Performance ( AFRL DOT System)

Segment D.O.F. Open-Loop Jitter Specification Units (rms)
piston 46.68 14 nm
A X-tilt 168.44 95 nrad
X-tilt 143.03 95 nrad
piston 45.64 14 nm
B X-tilt 106.57 95 nrad
X-tilt 89.96 95 nrad
piston 60.58 14 nm
C X-tilt 170.5 95 nrad
X-tilt 117.88 95 nrad




In using the eigenstructure assignment technique, a full state feedback system or a
system which has the same number of output measurements as the number of states
guarantees every desired eigenvalue can be achieved. The system that AFRL had
developed has only 9 inputs and 9 outputs. Thisis less than the number of states. This
means the elgenvalue assignment technique has a restriction (trade-off) as discussed in
Chapter 3 (State-space model with limited measurement data). For this thesis, the
assumption that this system had an optimized state estimator was made. In that case,

eigenstructure assignment technique can be fully implemented.

Table 13. Assumed Input Noise I ntensity

Noise direction ( Input # )

1 2 3 4 5 6 7 8 9

Intensity| O |[131.0617| O 0 0 0 ]199437|322.9485| O

Table 14. Optical Performance (Reduced M odel Open-loop System)

Segment D.O.F. Open-Loop Jitter | Open-Loop Jitter Units (rms)
(Reduced Modd!) (AFRL Modd)
piston 1773.2 46.68 nm
A X-tilt 143.7 168.44 nrad
Y-tilt 144.8 143.03 nrad
piston 1136.6 45.64 nm
B X-tilt 105.3 106.57 nrad
Y-tilt 112.8 89.96 nrad
piston 4368.3 60.58 nm
C X-tilt 172.4 170.5 nrad
Y-tilt 122.1 117.88 nrad
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Using the full- state feedback system, the target eigenvalue to be changed was

determined to be the eigenvalue which is located in the frequency between 262 and 447

(rad/ sec) as seen in the Figure 20.

After assigning the desired eigenvalue and using the opent loop system

eigenvector as the desired eigenvector, the closed- loop system was developed and the

resulting objective function value was 0.287" 10" ** (12 % of open-loop system result)

with max allowable gain value 1. The resulting singular value plot and closed-loop jitter

performance was shown in Figure 21 and table 15.

N

40
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Singular Values (dB). 27.5
U
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-50
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Singular Values
T

Singular Yalues (dB): 45.9

System: hoel

System: hdel
Frequency (radfsec): 447
Singular Values (cB): 465

--------------------------------------------------------------------------------- —

System: hoel

Singular Yalues (dBY 26.5

Freguency (radisec)

Figure 20. Open-Loop System Singular Plot (Reduced Model)
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The proper desired eigenvector to be assigned was determined by using the first

necessary condition which was described in Chapter 3, and given below:

Vi_1=[I,1- A|'B

(103)

The second necessary condition wasn’t used because this portion assumed full-

state feedback.

After finding the optimum desired eigenvectors with related desired eigenval ue,

the objective functionresult which satisfies the max allowable control gain matrix

element value was amost the same with the result of assigning the desired eigenvalue.

Table 15. Optical Performance

(Reduced M odel Closed-loop System with Assigning Eigenvalue)

Segment D.O.F. Closed- Loop Jitter | Open-Loop Jitter Units (rms)
(Reduced Model) | (Reduced Model)
piston 598.4 1773.2 nm
A X-tilt 51.6 143.7 nrad
X-tilt 52.2 144.8 nrad
piston 276 1136.6 nm
B X-tilt 22.5 105.3 nrad
X-tilt 33.1 112.8 nrad
piston 1557.6 4368.3 nm
C X-tilt 53.9 172.4 nrad
X-tilt 51.1 122.1 nrad




40

System: G_cl
Frequency (radisec) 443
Singular Values (dB): 31

Singular Yalues (dB)

50 i i i i i i i i

Frequency (radisec)

Figure 21. Closed-L oop System Singular Plot
(Reduced Modd after Assigning Eigenvalue)

Summary

In analyzing the simplified 2-D model, the result between using eigenstructure
assignment technique and using LQR method was almost the same. Both results showed
94.8% reduction of objective function. In analyzing the AFRL model, the objective
function was reduced to 12% of the open-loop resuilt.

Assigning the desired eigenvectors (i.e. shape control) took a great amount of
control usage, but can reduce the effect of noise further. As described in assumptions, the
result is highly dependent on the value of max alowable gain vaue. So as the control

constraints change, the performance can be changed.




V. Conclusions and Recommendations

Conclusions

This research effort examined the use of eigenstructure assignment to maintain
the focus for a sparse flexible array representative of a future space imaging system. It
was expected that by increasing the real part of the eigenvalue of the target modes and
controlling the eigenvector (i.e. shape control) to maintain the focus, eigenstructure
assignment technique would lead to closed- loop control which minimized the effect of
disturbance. The solution technique involved identifying a desired eigenstructure, and
discussed methods of dealing with uncontrollable, unobservable modes, and the output
feedback (rather than full-state feedback).

The advantage of the method was reduction of the computation time for solution.
There were 2 parameters needed to be found in assigning the desired eigenvalue which
was the most effective part in minimizing the effect of disturbance rather than 8
parameters in the LQR method. In finding the desired eigenvector, a search method was
still needed but could reduce the computation time by using a basis for the achievable
eigenvector range space which satisfied the necessary conditions.

In controlling the AFRL DOT model, which had less output measurements than
states, the existence of a state estimator was essentia to achieve the desired eigenvalues.
If there is an optimum estimator, the eigenstructure assignment technique was a

computationally faster approach than LQR.

Recommendations
In analyzing the AFRL model, this thesis assumed full- state feedback (i.e. there is

optimized and perfect state estimators). Thisisimpossible in area system. Future



research oneigenstructure assignment techniques should take into account the existence
of an estimator, and determine the effect on performance.

Not addressed in this thesis was the selection of a desired eigenvector (shape) to
meet a secondary objective such as decoupling the ‘tip’ and * tilt’” modes. This approach
could be used combined with optical modes (zernikes) to further enhance control by
decoupling the optical modes.

For further studies, the planar model should be expanded to a 3-D modd.
Additionally flexible body effects of the individual mirrors could also be included to

qualify these effects.



Appendix A: Main script file (Eigenstructure Assignment Technique)

%6%6%%6%6%0%60%6%6%0%6%6%6%0%6%6%6%0%6%6%6%0%6%6%6 %6%6%0%0%6%0%0%6%6%0%0%%6%0% %%
%
%  Eigenstructure Assignment Technique
%  Planar modd control by changing 3rd and 4th mode
%  Main script file
%
%6%0%0%0%6%0%0%0%6%0%0%0%6%6%6%0%6%6%0%0%6%6%0%%6%6%0%0%6%6%0%0%6%6%%%6%6%0 % %%
%driving the equations of motion for 2 mirrors and a base
cc;clear;closeal;

1= 15
2= 1.5;
b= 5
ml= 1
m2= 1
mb= 50;
= 4:
hm= 0.1
= ]_’
= 01,
= 2571076
c= 100;
%lnitial Set up
phi=atan(h/L);
al_0=pi/4-phi/2;

DM=[10-1-I*cos(al_0) O (L+I*cos(a_0));
10-11*cos(@_0) O (L-I*cos(d_0));
01-10-I*cos(a_0) -(L-I1*cos(a_0));
01-10I*cos(a_0) -(L+I*cos(al_0))];%distance matrix

DDM=[DM zeros(4,6);
zeros(4,6) DM,

ACM=[k 000¢c000;
0k000c0O:
00k000cO;
000k000d];

AB=[1/m1*[-1-100];
1/m2*[00-1-1];
Umb*[1111];
VI1*|*cos(al_0)*[1-100];
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112*1*cos(a_0)*[00 1 -1]:
UIb*[(L+* cos(al_0))*[-1 0 0 1]+(L-1*cos(a_0))*[0-1 1 0]]]:

A=[zeros(6) eye(6)
AB*ACM*DDM];
B=[zeros(6,4);
AB];

Cm=[[cos(phi)/sgrt(L"2+h"2), 0, -cos(phi)/sgrt(L"2+h"2), 1, 0, -
sin(phi)* (h+hm)/sgrt(L"2+h"2) ;  %mirror 1 tilt angle

0, -cos(phi)/sgrt(L"2+h"2), cos(phi)/sgrt(L"2+h"2), 0, 1, -
sin(phi)* (h+hm)/srt(L"2+h"2) ], %mirror 2 tilt angle
-sin(phi) 0 sin(phi) tan(phi)* sgrt(L"2+h"2) O -

(h+hm)*cos(phi) ; %mirror 1 wavelength error
0 -sin(phi) sin(phi) O -tan(phi)* sqrt(L"2+h"2)
(h+hm)* cos(phi)]; %mirror 2 wavelength error

C=[Cm zeros(4,6);
zeros(4,6) Cmy;
D=zeros(8,4);

[vo do]=eig(A);do=diag(do);

%Controllable system Identification
[ABAR,BBAR,CBAR,T,KK] =ctrbf(A,B,C);
Ac=ABAR(5:12,5:12);

Bc=BBAR(5:12,);

Cc=CBAR(:;,5:12);
Gol=ss(Ac,Bc,Cc(1:4,:),D(1:4,.));

[vd,lamd]=eig(Ac):lamd=diag(lamd);
wn5=abs(lamd(5)); %Natural Frequency (Mode 4)
wn7=abs(lamd(7)); %Natural Frequency (Mode 3)

max_k=100
x0=[real (lamd(5));real (lamd(7))];

%Using Newton's Line Search Method

option=optimset('TolX',1e-12, TolFun',1e-20, TolCon',1e-
18,'MaxFunEvals,10"6,'MaxIter',10"4,'Display','iter");

[x,fvall,exitflag,output] =
fmincon(@fun_nock,x0,[1,[1.[1.[1.[].[],@nonlcon_nock,option,Ac,Bc,Cc,max_Kk);

%Overlapping Desired Eigenvalue
lamd(5)=x(1)+sgrt(wn5"2-x(1)"2)*i;



lamd(6)=x(1)-sqrt(wn5"2-x(1)"2)*i;
lamd(7)=x(2)+sgrt(wn7/2-x(2)"2)*i;
lamd(8)=x(2)-sqrt(wn772-x(2)"2)*i;

%Eigenstructure Assignment Technique

for jj=1.8
N=[lamd(jj)* eye(8)-Ac, -Bc ,zeros(8,8);
zeros(4,12) ,BC';

eye(8) ,zeros(8,4), (lamd(jj)*eye(8)-Ac)T;
VWNC(:,jj)=inv(N)*[zeros(12,1);vd(:,j)];
end
VWN;

for jj=1:2:8
VWN(:,jj)=real (VWNL(.,jj));
VWNC(:,jj+1)=imag(VWNC(:,jj+1));
end
VWN;
% required gain
Kbar=-VWN(9:12,:)* pinv(Cc*VWN(1:8,))

Sw=diag([1 1 1 1])*2*10"-7; % Assumed White Gaussian noise Intensity

%open loop root mean square(lqr)
S x=lyap(Ac,Bc* Sw*Bc');%V ariance of X matrix
S y=Cc(1:4,:)*S x*Cc(1:4,:)"; %Variance of y matrix
RMS cl=diag(sgrt(S_y)); %Close loop Root mean square of x

p_angle=10"4;
P=diag([p_angle,p_angle,1,1]); %Penalty matrix
f ol=RMS d*P*RMS_cl*10"10

%closed loop root mean square(lqr)
S x=lyap(Ac-Bc*Kbar* Cc,Bc* Sw*Bc'); %V ariance of x matrix
S y=Cc(1:4,:))*S x*Cc(1:4,)"; %Variance of y matrix
RMS cl=diag(sgrt(S_y)); %Close loop Root mean square of x

p_angle=10"4;
P=diag([p_angle,p_angle,1,1]); %Penalty matrix
f cl=RMS cl*P*RMS cl*10"10

%finding Optimum Desired Eigenvector
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for ii=1:2:3

lamd(ii+4)

SUB=orth(inv(A-lamd(ii+4)* eye(12))* B);
rank_sub=rank(SUB);
OL=real(vo(7:12,[1,3,5,7]));
OL_b=lamd(ii+4)*OL;
SUB_2=[OL;OL_b;
Rank_sub2=rank(SUB_2);
SUB_total=[SUB SUB_2];
rank_total=rank(SUB_total);

x0=[1;1;1];

option=optimset('TolX',1e-7, TolFun',1e-7, TolCon',1e-9,
'MaxFunEvals,10"6,' MaxIter',10"4,'Display’,'iter");
[x,fval,exitflag,output] =
fmincon(@fun_vec_t,x0,[],[1.[1.[1.[].[],@nonlcon_vec,option,SUB_2,C);
x_f=[x;1];

vd_opt(:,ii)=SUB_2*x _f;

end

for kk=1:2:3
vd_opt(:,kk)=vd_opt(:,kk)/norm(vd_opt(:,kk)); %Optimum Eigenvector

Trans=T*vd_opt;
%Assigning Proper Ratio between Open-Loop Eigenvector ard Optimum Eigenvector

x0=[0.5;0.5];

option=optimset('TolX',1e-7, TolFun',1e-7,"TolCon',1e-
9,'MaxFunEvals,10"6,'MaxIter',10"4,'Display’,'iter");

[x,fval,exitflag,output] =

fmincon(@fun_vec_a,x0,[],[1.[1.[1.[].[],@nonlcon_vec a,option,Ac,Bc,Cc,max_k,wd,lam
d,Trans);

vd(:,5)=x(1)*vd(:,5)+(1-x(1))* Trans(5:12,1);

vd(:,6)=conj(vd(:,5));

vd(:,7)=x(2)*vd(:,7)+(1-x(2))* Trans(5:12,3);

vd(:,8)=conj(vd(:,7));

for jj=1:8
N=[lamd(jj)* eye(8)-Ac, -Bc ,zeros(8,8);
zeros(4,12) ,Bc';

eye(8) ,zeros(8,4), (lamd(jj)*eye(8)-Ac)T;
VWNC(:,jj)=inv(N)*[zeros(12,1);vd(:,j)];

for jj=1:2:8
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VWNC(:,jj)=rea (VWNC(:,jj));
VWN(:,jj+1)=imag(VWN(:,jj+1));
end

% required gain matrix
Kbar=-VWN(9:12,:)* pinv(Cc*VWN(1:8,’));
[vc dc]=eig(A-B* Kbar* C);dc=diag(dc);

%closed loop root mean square(lqr)
S x=lyap(Ac-Bc*Kbar* Cc,Bc* Sw* Bc'); %V ariance of X matrix
S y=Cc(1:4,:)*S x*Cc(1:4,:)"; %Variance of y matrix
RMS cl=diag(sqrt(S_y)); %Close loop Root mean square of x

f cI=RMS cI*P*RMS cl*10"10
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Appendix B: Objective Function File (Finding Eigenvalue)

%0%6%0%0%0%0%%%6%6%6%6%6%6%6%0%0%0%%6%6%6%6%6%6%0%0%0%0%%6%6%6%6%0 %% %% %% %%
%

%  Eigenstructure Assignment Technique

%  Planar model control by 3rd and 4th mode change

%  Objective Function File

%
%0%6%0%0%0%0%%%6%6%6%6%0%6%6%0%0%0%%6%6%6%6%6%6%0%0%0 %% %6%6%6%6%0%6 %0 %% %% %%

function f=fun_nock(x,Ac,Bc,Cc,max_k)

[vd,lamd]=eig(Ac);lamd=diag(lamd);
wn5=abs(lamd(5)); %Natural Frequency (Mode 4)
wn7=abs(lamd(7)); %Natural Frequency (Mode 3)

lamd(5)=x(1)+sgrt(wn5"2-x(1)"2)*i;
lamd(6)=x(1)-sgrt(wn5"2-x(1)"2)*i;
lamd(7)=x(2)+sqrt(wn7/2-x(2)"2)*i;
lamd(8)=x(2)-sgrt(wn7/2-x(2)"2)*i;

for jj=1.8
N=[lamd(jj)* eye(8)-Ac, -Bc ,zeros(8,8);
zeros(4,12) ,BC';

eye(8) ,zeros(8,4), (lamd(jj)*eye(8)-Ac)T;
VWNC(:,jj)=inv(N)*[zeros(12,1);vd(:,jj)];

VWN;
for jj=1:2:8
VWN(: jj)=real (VWNC.,jj));
VWNC( jj+1)=imag(VWN(:,jj+1));
VWN;

% required gain
Kbar=-VWN(9:12,:)* pinv(Cc* VWN(L:8,’));

E=eig(Ac-Bc*Kbar* Cc);E=real (E);|=find(E>0);s=siz&(l);
CON=cond(Ac-Bc*Kbar*Cc);
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if CON<10M9 & s(1)==
Sw=diag([1 1 1 1])*2*10"-7; % Assumed White Gaussian noise Intensity

%closed loop root meansquare(lqr)
S x=lyap(Ac-Bc*Kbar* Cc,Bc* Sw*Bc'); %Variance of X matrix
S y=Cc(1:4,))*S x*Cc(1:4,2)"; %V ariance of y matrix
RMS cl=diag(sart(S_y)); %Close loop Root mean square of x

P=diag([10"4,10"4,1,1]); %Penalty matrix

f=RMS _clI*P*RMS_cl*10"10; %Ohbjective Function
else

f=10"20;
end
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Appendix C: Constraint Function File (Finding Eigenvalue)

%0%6%0%0%0%0%%%6%6%6%6%6%6%6%0%0%0%%6%6%6%6%6%6%0%0%0%0%%6%6%6%6%0 %% %% %% %%
%

%  Eigenstructure Assignment Technique

%  Planar model control by 3rd and 4th mode change

%  Constraint Function File

%
%0%6%0%0%0%0%%%6%6%6%6%0%6%6%0%0%0%%6%6%6%6%6%6%0%0%0 %% %6%6%6%6%0%6 %0 %% %% %%

function [c,ceg]=nonlcon_nock(x,Ac,Bc,Cc,max_k)

[vd,Jamd]=eig(Ac);lamd=diag(lamd);
wn5=abs(lamd(5)); %Natura Frequency (Mode 4)
wn7=abs(lamd(7)); %Natural Frequency (Mode 3)

lamd(5)=x(1)+sgrt(wn5"2-x(1)"2)*i;
lamd(6)=x(1)-sgrt(wn5"2-x(1)"2)*i;
lamd(7)=x(2)+sgrt(wn772-x(2)"2)*i;
lamd(8)=x(2)-sgrt(wn7/2-x(2)"2)*i;

for jj=1:8
N=[lamd(jj)* eye(8)-Ac, -Bc ,zeros(8,8);
zeros(4,12) ,BC';

eye(8) ,zeros(8,4), (lamd(jj)*eye(8)-Ac)T;
VWNC(:,jj)=inv(N)*[zeros(12,1);vd(:,j)];
end

for jj=1:2:8
VWN(:,jj)=real (VWNC.,jj));
VWNC(:,jj+1)=imag(VWN(:,jj+1));
end

% required gain
Kbar=-VWN(9:12,)*pinv(Cc* VWN(L:8,));

for jj=1.8
temp(4* (jj-1)+1:4*(jj-1)+4,1)=Kbar(: jj);
end
temp=abs(temp);
c=[temp- max_k* ones(32,1);
X];
ceg=[];
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Appendix D: Objective Function File (Finding Eigenvector)

%6%0%0%0%6%6%0%%6%6%0%0%0%6%6%0%0%6%6%0%0%0%6%6%0%%6%6%6%0%%6%6 %% %0%6%0%6%0%%6%0
%

%  Planar model control By Eigenstructure Assignment

%  Objective Function file

%
%6%6%0%6%6%6%0%6%6%0%%6%6%0%0%6%6%6%6%6%6%0%0%6%6%6%0%%6%0%0%%6%0%0%6%6%0%0%%6%0%0

function f=fun_vec_a(x,Ac,Bc,Cc,max_k,vd,lamd,Trans)

vd(:,5)=x(1)*vd(:,5)+(1-x(1))* Trans(5:12,1);
vd(:,6)=conj(vd(:,5));
vd(:,7)=x(2)*vd(:,7)+(1-x(2))* Trans(5:12,3);
vd(:,8)=conj(vd(:,7));

for jj=1:8
N=[lamd(jj)* eye(8)-Ac, -Bc ,zeros(8,8);
zeros(4,12) ,BC';

eye(8) ,zeros(8,4), (lamd(jj)*eye(8)-Ac)];
VWNC(:,jj)=inv(N)*[zeros(12,1);vd(:,j)];

VWN;

for jj=1:2:8
VWNC(:,jj)=real (VWNC.,jj));
VWNC(:,jj+1)=imag(VWNC(:,jj+1));
end
VWN;
% required gain
Kbar=-VWN(9:12,:)* pinv(Cc*VWN(1:8,));

%closed loop root mean square(lqr)
Sw=diag([1 11 1])*2* 10"-7; % Assumed White Gaussian noise Intensity
S x=lyap(Ac-Bc*Kbar* Cc,Bc* Sw*Bc');%V ariance of X matrix
S y=Cc(1:4,:)*S x*Cc(1:4,:)"; %Variance of y matrix
RMS cl=diag(sqrt(S_y)); %Close loop Root mean square of x
p_angle=10"4;
P=diag([p_angle,p_angle,1,1]); %Penalty matrix
f=RMS cI*P*RMS cl*10M10;

75



Appendix E: Constraint Function File (Finding Eigenvector)

%6%0%0%6%6%0%0%6%6%0%%0%6%6%6%6%6%6%6%6%6%6%6%0%6%0%0%0%6%6%0%0%6%6%0%6%6%6 %0 %% %%
%

%  Planar model control By Eigenstructure Assignment

%  Constraint Function file

%
%6%6%0%6%6%6%0%6%6%0%%6%6%0%0%6%6%6%6%6%6%0%0%6%6%6%0%%6%0%0%%6%0%0%6%6%0%0%%6%0%0

function [c,ceq]=nonlcon_vec a(x,Ac,Bc,Cc,max_k,vd,lamd,Trans)

vd(:,5)=x(1)*vd(:,5)+(1-x(1))* Trans(5:12,1);
vd(:,6)=conj(vd(:,5));
vd(:,7)=x(2)*vd(:,7)+(1-x(2))* Trans(5:12,3);
vd(:,8)=conj(vd(:,7));

for jj=1:8
N=[lamd(jj)* eye(8)-Ac, -Bc ,zeros(8,8);
zeros(4,12) ,BC';

eye(8) ,zeros(8,4), (lamd(jj)*eye(8)-Ac)T;
VWNC(:,j)=inv(N)*[zeros(12,1);vd(:,jp)];

for jj=1:2:8
VWNC(:,jj)=real (VWNL(:,jj));
VWN(:,jj+1)=imag(VWN(:,jj+1));

% required gain
Kbar=-VWN(9:12,:)* pinv(Cc* VWN(1:8,.));
m_k=max(max(abs(K bar)));
c=[m_k-max_Kk;
=X
x-ones(2,1)];

ceg=[l;
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Appendix F: Main script file (LQR)

%0%6%0%0%0%0%%%6%6%6%6%6%6%6%0%0%0%%6%6%6%6%6%6%0%0%0%0%%6%6%6%6%0 %% %% %% %%
%

%

%  Planar model control By L Q R Method

%  Main script file

% %%%%6%6%6%6%0%0%0%0%0%%%6%6%6%6%6%6%0%0%6%6%%%0%6%6%6%6%0%0%0%%%%%6%%
%%

%(driving the equations of motion for 2 mirrors and a base

cc
clear
closeall
1= 15
2= 15
Ib= 5
ml= 1
m2= 1,
mb=  50;
h= 4
hm= 0.1
L= 1
I= 0.1,
k= 25106
c= 100,
%lnitial Set up
phi=atan(h/L);
al_0=pi/4-phi/2;

DM=[10-1-I*cos(a_0) O (L+l*cos(al_0));
10-11*cog(@a_0) O (L-1*cos(al_0));
01-10-I*cos(d_0) -(L-I*cos(a_0));
01-10I*cos(d_0) -(L+I*cos(al_0))];%distance matrix

DDM=[DM zeros(4,6);
zeros(4,6) DMJ;

ACM=[k000c000;
0k000c0O:
00k000cO:
000k000d];



AB=[1/m1*[-1-100];
1/m2*[00-1 -1;
Umb*[111 1];
1/11*1* cos(d_0)*[1-100];
1/12*1* cos(a_0)*[00 1 -1];
UIb*[(L+*cos(al_0))*[-1 0 0 1]+(L-1*cos(a_0))*[0-1 1 0]]];

A=[zeros(6) eye(6)
AB*ACM*DDM];
B=[zeros(6,4);
AB];

Cm=[[cos(phi)/sgrt(L"2+h"2), 0, -cos(phi)/sgrt(L"2+h"2), 1, O, -
sin(phi)* (h+hm)/sgrt(L"2+h"2) ;  %mirror 1 tilt angle
0, -cos(phi)/sgrt(L"2+h"2), cos(phi)/sgrt(L*2+h"™2), O, 1, -
sin(phi)* (h+hm)/srt(L"2+h"2) ], %mirror 2 tilt angle
[-sin(phi) O sin(phi) tan(phi)* sgrt(L"2+h"2) O -

(h+hm)* cos(phi) ; %mirror 1 wavelength error
0 -sin(phi) sin(phi) 0O -tan(phi)* sgrt(L"2+h"2)
(h+hm)* cos(phi)]]; %mirror 2 wavelength error

C=[Cm zeros(4,6);
zeros(4,6) Cmy;
D=zeros(8,4);

[vo do]=eig(A);do=diag(do);

%Controllable system Identification
[ABAR,BBAR,CBAR,T ,KK] =ctrbf(A,B,C);
Ac=ABAR(5:12,5:12);

Bc=BBAR(5:12,);

Cc=CBAR(:,5:12);

max_k=100
x=[100;100;100;100;1;.1;.01;.01]

option=optimset('TolX',1e-10, TolFun',1e-19, TolCon',1e-
10,'MaxFunEvals,10"6,'MaxIter',10"5,'Display','iter");

for kkk=1:1

load XXXO0

x0=(x*1)/1;

[x,fval1,exitflag,output] =
fmincon(@fun_lqgr,xO,[],[1.[1.[1.[1.[],@nonlcon_Igr,option,Ac,Bc,Cc,max_K);
%bsave XX X0 x;

78



end

Q=diag([x])*10"1,
R=diag([1,1,1,1]*.1);
K=Igr(Ac,Bc,Q,R);

Kbar=K*Cc"-1,

Sw=diag([1 11 1])*2*10"-7; % Assumed White Gaussian noise Intensity
%closed loop root mean square(lqr)

S x=lyap(Ac-Bc*Kbar* Cc,Bc* Sw*Bc'); %Variance of x matrix

S y=Cc(1:4,:))*S x*Cc(1:4,:)" %V ariance of y matrix
RMS_cl=diag(sart(S_y)); %Close loop Root mean square of x

P=diag([10"4,10"4,1,1]); %Penalty matrix
f=RMS _cl*P*RMS cl*10"10
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Appendix G: Objective Function File (LQR)

%6%0%0%6%6%0%0%6%6%0%%0%6%6%6%6%6%6%6%6%6%6%6%0%6%0%0%0%6%6%0%0%6%6%0%6%6%6 %0 %% %%
%

%  Planar model control By L Q R Method

%  Objective Function file

%
%6%6%0%6%6%6%0%6%6%0%%6%6%0%0%6%6%6%6%6%6%0%0%6%6%6%0%%6%0%0%%6%0%0%6%6%0%0%%6%0%0

function f=fun_lqgr(x,Ac,Bc,Cc,max_k)

Q=diag[x])*10"1; % State Penalty
R=diag([1,1,1,1]*.1);% Control Penlaty
K=Igr(Ac,Bc,Q,R);

Kbar=K*Cc"-1;

Sw=diag([1 11 1])*2*10"-7; % Assumed White Gaussian noise Intensity
%closed loop root mean square(lqr)

S x=lyap(Ac-Bc*Kbar* Cc,Bc* Sw* Bc'); %V ariance of x matrix

S y=Cc(1:4,))*S x*Cc(1:4,))"; %Variance of y matrix
RMS cl=diag(sgrt(S_y)); %Close loop Root mean square of x

P=diag([10"4,10"4,1,1]); %Penalty matrix
f=RMS cl*P*RMS_cl*10"10;



Appendix H: Constraint Function File (LQR)

20%%%%0%0%6%0%0%0%0%6%0%%0%0%6%0%%0%0%6%0%%0%0%6%0%6%0%0%6%0%6%0%0%0%0 %% % %%
%

%  Planar model control By L Q R Method

% Constraint Function file

%
20%%%%0%0%6%0%%0%0%6%0%%0%0%6%0%0%0%0%6%0%6%0%0%6%0%%0%0%0%0 %% %0 %6%0 %% % %%

function [c,ceg]=nonlcon_Igr(x,Ac,Bc,Cc,max_k)

Q=diag([x])*10"1; % State Penalty
R=diag([1,1,1,1]*.1);% Control Penlaty
K=lgr(Ac,Bc,Q,R);

Kbar=K* Cc?-1;

for jj=1.8
temp(4* (jj-1)+1:4*(jj-1)+4,1)=Kbar(: jj);
end
temp=abs(temp);
c=[temp- max_k* ones(32,1);
-x+0.1*ones(8,1)];

ceg=[];
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Appendix I: Main script file (AFRL Model)

%6%0%0%6%6%0%0%6%6%0%%0%6%6%6%6%6%6%6%6%6%6%6%0%6%0%0%0%6%6%0%0%6%6%0%6%6%6 %0 %% %%
%

%  AFRL Model control By Eigenstructure Assignment Technique

%  Main script file

% %6%%0%%6%6%0%%6%6%6%%6%6%0%6%0%6%0%0%0%6%6%0%6%6%6%0%0%6%0%0%%6%6%0%%6%6 %%
%%

clc;clear;close dl;

% Model Reduction
load tuned_best_fit_OL
sys=d2c(fit_sys);
n=size(sys(:, 1);
h=minreal (sys);

[hb,g]=balreal (h);

index=21:79;
hdel=modred(hb,index,'del");
figure(1);sigma(hdel ,{ 200,2000} );grid on
[A,B,C,D]=ssdata(hdel);

%Setting Open Loop Vaue as desired one.
[vd lamd]=eig(A);lamd=diag(lamd);
[xx0,I]=sort(abs(lamd));lamdd=lamd;vdd=vd;

%Arranging Eigenvalue by increasing order

for kk=1:20
lamd(kk)=lamdd(I (kk));
vd(:,kk)=vdd(:,I (kk));

end

for kk=1:9
r(kk,1)=real (lamd(2* kk));
Wn(kk,1)=abs(lamd(2* kk));

max_k=1 %Max alowable gain matrix element.
%0Open loop root mean square(lqr)

load XX_modred % Contains variable for the White Gaussian noise
intensity (x)
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Sw=diag(x); % White Gaussian noise intensity

S x=lyap(A,B* Sw*B’); %V ariance of X matrix

S y=C*S x*C;; %V ariance of y matrix
RMS1=diag(sart(S_y)) %Closed loop Root mean square of x
f=RMS1*RMS1/10"4 %0ODbjective Function

%Finding optimum eigenval ue assignment with open loop eigenvector for desired one.
x0=[r]
option=optimset('TolX',1e-9, TolFun',1e-9, TolCon',1e-9,
'MaxFunEvals,10"6,' MaxIter',40"3,'Display’,'iter");
[x,fval1,exitflag,output] =
fmincon(@fun_e val,x0,[1,[1.[1.[1.[].[],@nonlcon_e val,option,A,B,C,max_k,lamd,vd,
Wn);
saveresult_e val x

for kk=1:9
lamd(2* kk-1)=x(kk,1)+sgrt(Wn(kk)"2-x(kk,1)"2)*i;
lamd(2* kk)=conj(lamd(2* kk-1));

end

% Checking the result of assigning the eigenvalue.
P=eye(20); %eigenvector penalty matrix

for jj=1:20
N=[lamd(jj)* eye(20)-A, -B ,zeros(20);
zeros(9,20+9) B;
P ,zeros(20,9), (lamd(jj)* eye(20)-A)';
VWNC(:,jj)=inv(N)*[zeros(29,1);P*vd(:,jj)];
end

for jj=1:2:20
VWN(:jj)=real (VWN(.,jj));
VWNC(:,jj+1)=imag(VWNC(:,jj+1));

Kbar=-VWN(20+1:20+9,:)* pinv(eye(20)* VWN(1:20,:)); % required gain matrix with
full state-feedback

G_cl=ss(A-B*Kbar,B,C,D);

figure(2);sigma(G_cl ,{ 200,2000} );grid on

%Closed loop root mean square(lqr)
load XX _modred % Contains variable for the White Gaussian noise
intensity (x)



Sw=diag(x); % White Gaussian noise intensity

S x=lyap(A-B*Kbar,B* Sw*B'); %V ariance of X matrix

S y=C*S x*C; %V ariance of y matrix

RM S=diag(sgrt(S_y)) %Closed loop Root mean square of x
f=RMS*RMS10"11

MAX_K=max(max(abs(Kbar))) %0ODbjective Function

save E VAL _result



Appendix J: Objective Function File(AFRL Model)

%%0%6%0%6%6%0%6%6%6%6%6%6%0%6%6%0%6%6%6%6%0%6%0%6%6%0%6%6%6%0%0%6%0%6%6%6%6%0%6% %%
%

%  AFRL Model control By Eigenstructure Assignment Technique

%  Objective Function file

%
%6%0%6%0%6%6%6%6%0%6%6%0%6%0%6%6%0%6%0%6%6%0%6%0%6%6%0%6%0%6%6%0%6%0%6%6%0%6%0 %% %%

function f=fun_e val(x,A,B,C,max_k,lamd,vd,Wn)

for kk=1:9
lamd(2* kk-1)=x(kk,1)+sgrt(Wn(kk)"2-x(kk,1)"2)*i;
lamd(2* kk)=conj(lamd(2* kk-1));

end

% Checking the result of assigning the eigenvalue.
P=eye(20); %eigenvector penalty matrix

for jj=1:20
N=[lamd(jj)* eye(20)-A, -B ,zeros(20);
zeros(9,20+9) B
P ,zeros(20,9), (lamd(jj)* eye(20)-A)7;
VWN(:,jj)=inv(N)*[zeros(29,1);P*vd(:,jj)];

for jj=1:2:20
VWNC(:,jj)=real (VWN(.,jj));
VWN(:,jj+1)=imag(VWN(:,jj+1));

Kbar=-VWN(20+1:20+9,:)* pinv(eye(20)* VWN(1:20,:)); % required gain

E=eig(A-B*Kbar);E=real (E);|=find(E>0);s=siz&(l);
CON=cond(A-B*Kbar);
if CON<10M9 & s(1)==

load XX_modred % Contains variable for the White Gaussian noise intensity
Sw=diag(x); % White Gaussian noise intensity

%Closed loop root mean square(lqr)
S x=lyap(A-B*Kbar,B*Sw*B"); %Variance of X matrix
S y=C*S x*C; %V ariance of y matrix
RM S=diag(sqrt(S_y)); %Closed loop Root mean square of x
f=RMS*RMS/10"4;



dse
f=10"20;



Appendix K: Constraint Function File (AFRL Model)

%%0%6%0%6%6%0%6%6%6%6%6%6%0%6%6%0%6%6%6%6%0%6%0%6%6%0%6%6%6%0%0%6%0%6%6%6%6%0%6% %%
%

%  AFRL Model control By Eigenstructure Assignment Technique

%  Constraint Function file

%
%6%0%6%0%6%6%6%6%0%6%6%0%6%0%6%6%0%6%0%6%6%0%6%0%6%6%0%6%0%6%6%0%6%0%6%6%0%6%0 %% %%

function [c,ceq]=nonicon_e va(x,A,B,C,max_k,lamd,vd,Wn)

for kk=1:9
lamd(2* kk-1)=x(kk,1)+sgrt(Wn(kk)"2-x(kk,1)"2)*i;
lamd(2* kk)=conj(lamd(2* kk-1));

end

% Checking the result of assigning the eigenvalue.
P=eye(20); %eigenvector penalty matrix

for jj=1:20
N=[lamd(jj)* eye(20)-A, -B ,zeros(20);
zeros(9,20+9) B
P ,zeros(20,9), (lamd(jj)* eye(20)-A)1;
VWNC(:,jj)=inv(N)*[zeros(29,1);P*vd(:,jj)];

for jj=1:2:20
VWN(:,jj)=real (VWNC(. jj));
VWN(: jj+1)=imag(VWNC(: jj+1));
end

K bar=-VWN(20+1:20+9,:)* pinv(eye(20)* VWN(1:20,:)); % required gain matrix
K_max=max(max(abs(Kbar)));

c=[x(;,1);K_max-max_K];
ceg=(];
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Appendix L: Objective Function File(AFRL Model)

%%0%6%0%6%6%0%6%6%6%6%6%6%0%6%6%0%6%6%6%6%0%6%0%6%6%0%6%6%6%0%0%6%0%6%6%6%6%0%6% %%
%

%  AFRL Model control By Eigenstructure Assignment Technique

%  Objective Function file

%
%6%0%6%0%6%6%6%6%0%6%6%0%6%0%6%6%0%6%0%6%6%0%6%0%6%6%0%6%0%6%6%0%6%0%6%6%0%6%0 %% %%

function f=fun_e val(x,A,B,C,max_k,lamd,vd,Wn)

for kk=1:9
lamd(2* kk-1)=x(kk,1)+sgrt(Wn(kk)"2-x(kk,1)"2)*i;
lamd(2* kk)=conj(lamd(2* kk-1));

end

% Checking the result of assigning the eigenvalue.
P=eye(20); %eigenvector penalty matrix

for jj=1:20
N=[lamd(jj)* eye(20)-A, -B ,zeros(20);
zeros(9,20+9) B
P ,zeros(20,9), (lamd(jj)* eye(20)-A)7;
VWNC(,jj)=inv(N)*[zeros(29,1);P*vd(:,jj)];

for jj=1:2:20
VWNC(:,jj)=real (VWN(.,jj));
VWN(:,jj+1)=imag(VWN(:,jj+1));

Kbar=-VWN(20+1:20+9,:)* pinv(eye(20)* VWN(1:20,:)); % required gain

E=eig(A-B*Kbar);E=real (E);|=find(E>0);s=siz&(l);
CON=cond(A-B*Kbar);
if CON<10M9 & s(1)==

load XX_modred % Contains variable for the White Gaussian noise intensity
Sw=diag(x); % White Gaussian noise intensity

%Closed loop root mean square(lqr)
S x=lyap(A-B*Kbar,B*Sw*B'); %Variance of X matrix
S y=C*S x*C; %V ariance of y matrix
RM S=diag(sart(S_y)); %Closed loop Root mean sgquare of x
f=RMS*RMS/10"4;



dse
f=10"20;
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Appendix M: Constraint Function File (AFRL Model)

%%%6%0%%6%0%%0%6%0%6%0%0%6%6%6%6%0%6%0%6%6%0%6%0%0%6%0%%0 %% %0%6%0%6%6%6%6% %%
%

%  AFRL Model control By Eigenstructure Assignment Technique

%  Constraint Function file

%
%6%0%6%0%6%6%6%6%0%6%6%0%6%0%6%6%0%6%0%6%6%0%6%0%6%6%0%6%0%6%6%0%6%0%6%6%0%6%0 %% %%

function [c,ceq]=nonicon_e va(x,A,B,C,max_k,lamd,vd,Wn)

for kk=1:9
lamd(2* kk-1)=x(kk,1)+sgrt(Wn(kk)"2-x(kk,1)"2)*i;
lamd(2* kk)=conj(lamd(2* kk-1));

end

% Checking the result of assigning the eigenvalue.
P=eye(20); %eigenvector penalty matrix

for jj=1:20
N=[lamd(jj)* eye(20)-A, -B ,zeros(20);
zeros(9,20+9) B
P ,zeros(20,9), (lamd(jj)* eye(20)-A)1;
VWNC(:,jj)=inv(N)*[zeros(29,1);P*vd(:,jj)];

for jj=1:2:20
VWN(:,jj)=real (VWNC(.,jj));
VWN(: jj+1)=imag(VWNC(: jj+1));
end

K bar=-VWN(20+1:20+9,:)* pinv(eye(20)* VWN(1:20,:)); % required gain matrix

K_max=max(max(abs(Kbar)));

c=[x(;,1);K_max-max_K];
ceg=(];
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