
REPORT DOCUMENTATION PAGE Form Approved
0MB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of infomiation, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Infomiation Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE pD-MM-yyyV9

09/23/04
2. REPORT DATE

Final Reoort
3. DATES COVERED (Frvm - To)

05/01/01-04/30/04
4. TITLE AND SUBTITLE

Building Interactive Digital Libraries of Formal Algorithmic
Knowledge

5a. CONTRACT NUMBER

5b. GRANT NUMBER

N00014-01-1-0765
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Robert L. Constable
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Cornell University, Computer Science Dept.
4130 Upson Hall
Ithaca, NY 14853

8. PERFORMING ORGANIZATION
REPORT NUMBER

39544

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Research, Navy, Dept. of Defense
800 N. Quincy St.
Arlington, VA 2217-5660

10. SPONSOR/MONITOR'S ACRONYM(S)

ONR

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER

12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; distribution is unlimited

13. SUPPLEMENTARY NOTES 20041008 419
14. ABSTRACT

This is a project to design and create a software system for sharing formal algorithmic mathematics
among theorem provers, and for making formal algorithmic mathematics accessible to people who
value verified accounts of algorithms. The project is also committed to creating interesting

s specimens of formally explained algorithms. Our work enables a new approach to CIP/SW; we call
it information-intensive infrastructure protection. We describe the rationale for this approach in this
report.

15. SUBJECT TERMS

Digital libraries, algorithmic knowledge, theorem proving.

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPONE NUMBER {Include area code)

Standard Form 298 (Rev. 8-98)
Prescribed byANSI-Std Z39-18

Final Report

"Building Interactive Digital Libraries of Formal Algorithmic Knowledge"

Contract Number ONR N000014-01-1-0765

Reporting Period: May 1, 2001 - April 30, 2004

Submission Date: September 22, 2004

Prepared by:
Robert L. Constable
Cornell University
4130 Upson Hall
Ithaca, NY 14853

Summary

This is a project to design and create a software system for sharing formal algorithmic mathematics
among theorem provers, and for making formal algorithmic mathematics accessible to people who
value verified accounts of algorithms. The project is also committed to creating interesting speci-
mens of formally explained algorithms. In the first year, we invested heavily in building a software
infrastructure that includes a prototype Formal Digital Library (FDL) and procedures for storing
formal content in it and procedures for presenting that content on the Web.
Our work enables a new approach to CIP/SW; we call it information-intensive infrastructure pro-
tection. We describe the rationale for this approach in this report.
This second year of the project has been a period during which the basic infrastructure and results
established in the first year have borne visible fruit, and during which we have considerably enriched
that infrastructure to support results anticipated in the third and critical year. During the next
year (third) we expect to demonstrate our progress over two-and-a-half years and make a strong
case for the optional two additional years of funding.
The most "visible" results aje the collections of algorithmic knowledge posted on the Web from
the Formal Digital Library (FDL). The collections are from three provers — MetaPRL, Nuprl,
and PVS. For the Nuprl and PVS collections, we have harvested formal metadata whose value is
directly apparent.
We have also demonstrated new direct access to the FDL using a new navigator tool and VNC
(Virtual Network Computing). Extensive documentation and user manuals are available at the
FDL Web page.
Among the collections are important new verified algorithms such as Red/Black trees, a small
collection of graph algorithms, and a linear arithmetic package used in theorem proving. These
provide the basis for illustrative Web-based articles that are semantically anchored in the FDL
collections.
The additions to the infrastructure and basic capabilities over this period are not yet as visible.
We have written a considerable amount of code for harvesting formal metadata. This code will
be critical as we work this year to automate the Web-posting process. We have also explored
mechanisms for formula-based search and for automatically clustering the FDL objects based on
the latent semantics of the link structure.
We have extensively studied and explained fundamentals of "Logical Libraries" and how one might
effect them. The two theoretical issues are, first, how to build a repository of certified (digitally ex-
pressed) knowledge as opposed to mere information, and second, how to enable different, sometimes
incompatible, methods of certifying such knowledge to be accomodated in the same repository. Dif-
ferent chents may have radically difierent criteria for what counts as verified knowledge, and yet
may be able to agree on substantial aspects and so share large parts of the knowledge repository.
These issues are resolved by maintaining records of certification and strict accounting for bases of
knowledge.
The "openness" of such repositories practically entails that criteria for certification include calls to
agents external to the repository, and that methods for developing material for contribution to a
logical library can be developed with the same accounting methods used in it, and that contributions
not interfere with extant content (for example name colhsion must be avoidable).
Issues of cognitive accessibility include the attachment of informal explantory material to the logical
material, provision of extra-logical organization of logical and other content, as well as utiHties for
exploiting the logical content in concert with the informal content. We continue to investigate

1

search based upon formula patterns, complementing search for words leading to content via concise
annotations (see section below on Goals).
Larger social issues are discussed, including the cooperation of distinct repositories in ways that
respect their independence and account for integrity of content composed from different sources, and
the practicality of independent implementation of repositories to avoid an intolerable dependency
on a few institutions.
We have continued our investigations of the theoretical foundation of inter-theory sharing, and the
foundations for presenting a class of algorithms that is especially relevant to protecting the nation's
critical software infrastructure, namely distributed algorithms and protocols. These foundational
results were selected to complement investments being made by the Naval Research Laboratory in
software engineering for reliability of distributed systems.
We have made significant progress towards practical methods of reflecting syntactic and computa-
tional aspects of logics. The bulk of the methods pertain to reasoning about expressions abstractly
and are intended to be applied to the abstract syntax of typical contributions to the FDL itself.
Logics sharing the FDL as a medium will then be able to refer to themselves and each other. This
may be expected to expedite metamathematical work relating multiple logics, as it is hoped that
it will provide a practical medium for enhancing various logics by reflection.
We expect to bring all of these threads together in the third year to demonstrate the power of
information-intensive critical infrastructure protection. Our efforts are fundamental and progres-
sive. That they are fundamental can be seen through their ties to two other MURI projects —
SPYCE, and Language-Based Security — as well as through ties to research at the NRL. The fact
that they are progressive can be seen from the fact that we are the only such project in the U.S.,
and we are highly competitive with European eff'orts that are far more extensive and well funded.

Project Web Page

We use the project Web page to post results, publications, lectures, briefings, algorithms and news
items. We regard the Web page as an important supplement to this report. We will put the report
on the Web page with hyperlinks. The page is at http://www.nuprLorg/FDLproject/.

I w» t* a»i fpol lafc mi

u
1^ ^ -l __,....1___11^JS;^^**^„ ^^^?^^^^J^^.^^^Z,4l

'iHiraiiiCT:rmiimrffi'o

.A ^
I^Mwtf' ^ i^ IMwfe liOM

■a Ja 0 3"'^* "^ K& . ^
A«)9' mt fm

■*!^»me^»i*«W»^* &^&*a ttftttt&aomr ftfi^cUcft"

FDL Project
te««taifS4S«*r«l5*'

^.'-IL,-',''' S?,^.:?^?;'

'men &K^* - S(5t ^ EinM*^^ t biife

"tf^h^ hf &i^^ ^tME^iU 3)^'>^

im 'ii&i rm^3i& P]^ e^^iiofi 5fAasj^s (feefe.ls Ssr^;^

iS

Index of Accomplishments

Basic FDL
Navigator manual
VNC interface
Additional collections
XML interface

PVS proofs
MetaPRL proofs

Web-based Presentation of FDL Collectioi^
PVS standard libraries
Graphs — PVS, Nuprl
Metadata harvesting
Formal metadata
Automating web presentation

Creating New Content
Red/Black trees
Graph algorithnw
Linear arithmetic
Distributed algorithms

Poundational
Abstract object identifiers
Certificates and sentinels
Relating theories - thesis work

Reflection - thesis work (to be demonstrated at LICS '03)

Relationship to CIP/SW

Why is a formal digital library of algorithmic knowledge important to critical infrastructure pro-
tection? Here is one justification based on four categories of assertion: A, statements that are self
evident; B, basic facts that have been discovered some time ago in computer science; AB, more
modern discoveries in computer science; C, conclusions from these facts.
A: Algorithms, programs, processes and protocols are all examples of formal procedural knowl-
edge. Because computers execute these procedures, systems of this kind of knowledge have become
indispensable to modern society — to defense, health, learning, and discovery.
The nation's critical infrastructure includes a number of software systems, and elements of the
physical infrastructure are controlled by software. Software is fundamentally systems of algorithms.
To promote reuse of algorithms, to allow careful scrutiny of them and to preserve them, the re-
search community has long supported the creation of libraries of code that can be shared, studied,
improved, and preserved.
Bl: Computer scientists and mathematicians since the Greeks have known that procedural knowl-
edge is incomplete without corresponding factual knowledge. We know more about an algorithm
than that it ran with certain results. Algorithms are produced in concert with factual and analyt-
ical knowledge that determines their design and justifies claims of the designers and programmers
that the algorithms accomplish the tasks for which they are intended. This knowledge is closely
related to computational and constructive mathematics. Not all of this critical knowledge is writ-
ten or saved in any form, and even the elements which are carefully written can easily become lost
or disconnected from the algorithms as they evolve. Consequently, further development of such
algorithms is more likely to be erroneous.
Collecting declarative knowledge along with the algorithms and linking it to the code is considered
to be excellent professional practice by both the research community and industry. When code
is collected into libraries, associated declarative knowledge should be included as well so that it
can be scrutinized, criticized, improved, checked, and so that it will evolve with the code and be
preserved with it.
This practice is known to be eflfective. Moreover this declarative knowledge is frequently critical to
understanding the algorithm, as we can tell from the way textbooks present algorithms. However,
code libraries do not typically include the amount of detail given by textbooks, when in fact we
believe that even more such knowledge is necessary to justify the code and explain it.
AB2: Significant parts of the declarative knowledge documenting algorithms can now be formal-
ized. Because computers can check and process this formal declarative knowledge, it has become
included as a part of the code verification process.
As computer security and software reliability become more important to government and industry,
formal code documentation and its verification will increase. Libraries containing formal documen-
tation and explanation will then become indispensable to society - to defense, health, learning and
discovery.
The classification of knowledge into computer checked (formal) and noncomputer checked (informal)
aids those who are responsible for locating flaws in reasoning that justifies algorithms in critical
software systems. It is vastly less hkely that errors occur in the computer checked knowledge.

For subtle algorithms or tedious ones with many cases, experience has shown that computer as-
sistance in the form of extended type checking, proof checking and model checking is essential
to finding errors in reasoning. In the case of concurrent and distributed algorithms, even simple
protocols can be so subtle and complex that it is very difficult to program them correctly without
computer assistance in checking for errors or automatically creating arguments for correctness along
with the code.
AB3: Libraries of declarative knowledge require trustworthy mechanisms that account for long
chains of logically connected evidence. Surprisingly little is known about these accounting mech-
anisms for any feasible means of providing sufficiently large and scalable collections of formal
declarative knowledge.
Even less is known about mechanisms that can account for the formal evidence produced by different
verifieK with incompatible logics. Nevertheless, there is good reason to believe that there will always
be several verifiers in use because there are several incomparable logics with which to carry out
verification tasks. Just as there are many different programming languages and dialects, each one
suited to a certain class of problems, there are also many different logical systems for verifying
declarative knowledge, each well suited to a certain class of problems. Furthermore, research
develops new approaches that are not simple modifications to old ones, and can be expected to
continue that way. For example, linear logic might become a practical formalism, various mixtures
of types, sets, and domains might fit into place in unforeseen ways, and we might use relevance
logic to contain inconsistencies so that they do not spread beyond local effects.
Formal logics are extremely precise; minor changes in a single rule can render the entire logic
inconsistent. There are many points at which all the modern logics for theorem proving differ.
Some allow empty types, some do not. Some depend on decidable type systems, others do not.
Some allow dependent types, others do not. Some use the axiom of choice some do not, and among
those that do, some use the Hilbert epsilon operator to state it, and others do not. Some logics
allow full recursive types, others only restricted recursion. In some logics types are ordinary objects,
in other logics they have a special limited status,
Cl: This ONR/MURI project is providing the required technical understanding needed to build
large libraries of formal declarative knowledge in digital form and account for evidence archived
in them. We are applying this understanding to building small sustainable examples, especially
examples that support multiple distinct verifiers.
C2: In addition to mechanisms to account for long chains of Justifications, these libraries require
standard services — organizing, archiving, and searching. The formal character of this knowledge
opens new possibilities for computer assistance in these tasks. We are exploring those possibilities
and will test them on our examples.
B4: Using computers to check and even generate declarative knowledge remains a difficult task.
The rate at which formal knowledge can be generated depends on the power of the logical reasoning
took, called provers, and on the amount of formal knowledge available to the provers. It also
depends on the number of trained personnel. This crude equation illustrates the relationship.

veriiication_rate = prover_strength x size(knowledge base).

Researchers have spent 30 years building powerful provers and sharing algorithms used in them,
and they have spent no time making large collections of formal knowledge that can be shared.
Government and industrial funding has helped create the powerful provers but there has been
essentially no fimding for the the knowledge base. ONR/OSD is a leader in this regard.

As formal knowledge is shared and made available to provers, the verification task becomes faster
and easier. Collecting this knowledge into libraries facilitates sharing, criticism, and improvement.
The libraries will also contribute to the education of professionals able to use verification tools and
produce formal content.
C3: Our project creates mechanisms that allow logically sound sharing of formal knowledge. We
are providing a basis for creating a vast collection of formal facts. It is plausible that once a critical
mass of formal knowledge is assembled in a form allowing automatic sharing, a singularity will
occur in the capacity of the research community to produce more.
C4: If this singularity results in the rapid creation of formal knowledge about algorithms, the
benefits to society will be enormous because that capability will enable a dramatic increase in the
reliability and security of software, and it will free a large number of highly trained people to focus
their efforts more productively.
It is possible that a technology for the routine verification of formal knowledge will also dramatically
alter the means of verifying and communicating precise knowledge of many kinds.
The stability, accessibility and extensibility of libraries of formal knowledge, is key to harnessing the
power of a community of developers who use results of the formal knowledge providers. Libraries
of formalized knowledge form a basis for long-term collaboration between parties with differing
interests and skills in the development of such knowledge.

Goals

1. Foundations of Logical Libraries

Stuart Allen's notes on the structure of the Formal Digital Library, Notes on the Design and
Purpose of the FDL, lay out a foundation for the notion of a logical library described in
the project Goals section of the Web page. Work on this topic progresses as we approach
implementing the capabilities described in Allen's notes.

2. Formal System Cooperation

2.1. Create model-sharing environment for the Logic of Events (LoE) (Nuprl, MetaPRL,
PVS, JProver combined)

For critical infrastructure protection, distributed algorithms are very important. These
algorithms are also investigated by the Software Engineering section at the Naval Re-
search Laboratory using the PVS theorem prover in the Timed Automata Modeling
Environment (TAME). We want to demonstrate the value of the FDL in algorithm
development by combining the capabilities of PVS, MetaPRL and Nuprl through the
Formal Digital Library.

2.2. Installing beta-version of sentinels in FDL

It is not possible to simply combine results from different theorem provers. The exact
conditions under which a combination is possible is a fundamental matter for logical
libraries such as the FDL. One approach to keeping track of logical dependencies is
presented in our foundational work on the FDL. We plan to concretely illustrate this
mechanism on various shared libraries such as number theory, lists, graphs, trees, and
protocols.

2.3. Metamathematics FDL theory - basis for relating theories

The basic logical results allowing sharing among Nuprl, HOL, and PVS have not been
formally supported. We intend to lay the ground work for this by Hnking theoretical
results to the sentinels mentioned above,

2.4. Formal Symbolic Algebra
Computer algebra systems are a substantial source of basic algorithmic mathematics.
We axe making a small effort to connect some of these algorithms to the provers. This is
a major activity in Europe. Our approach is to use the module system of the MetaPRL
logical framework to track the domains of a system such as Axiom. The module system
and Kopylov's dependent records are both important for organizing the theory. The
module system manages system content, like rules and tactics, and the records manage
the formal parts like groups, rings, and fields.

2.5. Preparing to support Larch proofs
The corporation ATC-NY has allocated ftinds to transfer a large number of Larch the-
orems to the FDL. They are also interested in restoring their Larch prover within the
FDL. They have done some preliminary work in this direction, and they plan more when
we are ready.
Larch is a language with overloading so after parsing there is a "sort-checking" phase
that assigns a sort to every term and chooses a signature for every function symbol.
Before we can do any semantic analysis (in particular the checking of proofs) of the
Larch theories we have to get them sort-checked and store in the library a version with
all function symbols resolved. So the first tool we must build is the'sort checker. This is
non trivial because Larch has a complex syntax for specifying how traits include other
traits with renaming, and that defines the possible signatures for the function symbols.

2.6. Verified decision procedure for abstract algebra and arithmetic
The MetaPRL system is building a very general arithmetic decision procedure. The
procedure is being used to derive results in abstract algebra. As the algebra work
progrrases, it will be used to derive more general axioms for the decision procedure.
Elements of this work will be included in the FDL and can be contributed to QPQ as
well. Since the procedure generates primitive proofs, it does not need to be verified
directly.

3. CoUectioi^

3,1. Automating PVS acquisition and posting
Currently the methods used for acquisition of PVS Hbraries have involved an amount
of human supervision that is not practical for repeated efforts of acquiring PVS files for
the FDL. The methods should be completed so that no human intervention is required
beyond targeting the PVS files.
The acquisition of PVS proofs requires significantly more human intervention because the
PVS proof engine often crashes during the process. We must either find a more reliable
method of running PVS for proof acquisition, or develop a fault-tolerant method.
Currently although a large number of proofs have been collected into the FDL, they
have not been included in our web presentations. Methods for presenting them have yet
to be finished, and more incremental methods for managing them as data are required.
We must also account for proofs we have been unable to acquire.

A final stage of this work is to verify that the automatic acquisition is correct by replaying
the proofs in the FDL.

The entire acquisition, posting and verification work is very compute intensive.

3.2. Collecting formal metadata for PVS libraries

While establishing links between objects is fundamental to acquisition for the FDL, it is
quite important to assemble data from those objects to forestall some of the web walking
clients would otherwise have to do themselves. For example, it is of general interest
among clients which objects refer directly or perhaps indirectly to a given object. In
addition to adding such cross-referencing indices to the FDL itself, there are further issues
of organization to make them surveyable by human browsers of the Web presentation,
since the indices can become long.

Extending the indices for cross-referencing to provide elaborate larger organizations of
objects is a further design and programming problem. This can involve the collection of
related objects such as all lemmas needed for a proof.

It has been particularly challenging to collect metadata for PVS because there is no
notion of primitive proof. We expect to encounter this problem with other proof systems
as well.

3.3. Preparing to support Larch proofs

Larch is a language with overloading so after parsing there is a "sort-checking" phase
that assigns a sort to every term and chooses a signature for every function sjonbol.
Before we can do any semantic analysis (in particular the checking of proofs) of the
Larch theories we have to get them sort-checked and store in the library a version with
all function symbols resolved. So the first tool we must build is the sort checker. This is
non trivial because Larch has a complex syntax for specifying how traits include other
traits with renaming, and that defines the possible signatures for the function symbols.

3.4. Other libraries

We might be able to add HOL and Minlog libraries pending technical discussions over
the summer, and we are alert for other opportunities, e.g. a possibility with Mizar.

4. Access to Content

Access Media

4.1. Posting to other presentation media (Helm, OMDoc, MathML)

We have connected Nuprl libraries to Helm and are discussing connections to OMDoc and
MathML. We plan to make it possible to connect all FDL content to these presentation
resources.

4.2. Dynamic FDL server architecture

Full access to the formal knowledge content is available only at the FDL server and only
using the editors and navigators provided for the FDL. Here there is complete access
to proofs as well as theorems, definitions, and algorithms. Execution of algorithms is
principally in ML, Lisp, and OCaml.

There are currently two ways to access the FDL via web servers: (1) a limited demon-
stration utility showing that XML formatted objects can be retrieved from the FDL,

and (2) projections of material from the PDL intended to show to readers the kind of
content available. Three advances to be made are giving a full access to the FDL via
a server; supplementing the precomputed projections for browsing with a companion
server for dynamic browsing requests too expensive to precompute generally; dynami-
cally tying the relation between the browser presented information and the active FDL
more directly, i.e., making the browseable material more a "view" than a "projection,"

Semantic Access

4.3. Semantic anchoring of expository text
We will produce examples of expository text that are "semantically anchored" in the
formal proofs and definitions of the FDL that support it. The first example of a seman-
tically anchored research paper will be one about Event Systems, to which great value
can be added by linking it to the extensive FDL material corresponding to the subject
matter of that paper,

4.4. Concise Annotation of FDL content
Work is underway for developing methods to add concise annotations to FDL objects.
The purpose of the annotations is to provide brief paraphrases in words for formal con-
cepts and entities of the FDL, These complement more expository texts for readers and
also serve as a more focussed basis for word-based search since each concise annotation
is about fewer subjects. Further, these concise annotations are considerably less expen-
sive to produce by knowledgeable annotators than are broader expository texts; they
are simpler technically to produce since they consist simply of ordinary text, and are
therefore amenable to elementary creation through forms on the Web.
Although it is of little intellectual interest, we must provide some recommendations to
readers as to which word searches are hkely to bear fruit. This could be as simple as an
index of prepared search buttons,

4.5. Continued exploration of formula-based search
Concise annotations (as well as semantically anchored texts) serve as entry points via
word-search to the FDL contents. But once one has the formula structure in hand, one
has a radically different means for specifying search criteria. For example one could
specify what it means to be a theorem expressing distributivity of any binary operation
over any other binary operation. Development of methods for specifying useful patterns
is underway, with particular focus on automatically identifying operators that can be
considered interchangeable for most purposes based upon mining theorems relating them,

5. Formal Content Creation

5.1. Create model-sharing environment for the Logic of Events (LoE) (Nuprl, MetaPRL,
PVS, JProver combined)
For critical infrastructure protection, distributed algorithms are very important. These
algorithms are also investigated by the Software Engineering section at the Naval Re-
search Laboratory using the PVS theorem prover in the Timed Automata Modeling
Environment (TAME). We want to demonstrate the value of the FDL in algorithm
development by combining the capabilities of PVS, MetaPRL and Nuprl through the
Formal Digital Library,

5.2. General content production

A significant part of the overall project effort is the production and integration of new
content. Some of this arises as preexisting libraries are moved into the FDL, annotated,
and posted. As part of this process, formal metadata is collected and displayed.

Other content arises as we expand the scope or depth of the existing collections, e.g.
enhancing graph theory, adding new algorithms such as red/black trees, and adding new
theories such as the logic of events. In all cases the libraries are integrated into the FDL,
and they are used to test the acquisition and posting capabilities.

5.3. Verified decision procedure for abstract alg and arith

The MetaPRL system is building a very general arithmetic decision procedure. The
procedure is being used to derive results in abstract algebra. As the algebra work
progresses, it will be used to derive more general axioms for the decision procedure.
Elements of this work will be included in the FDL and can be contributed to QPQ as
well (see Community on the FDL home page). Since the procedure generates primitive
proofs, it does not need to be verified directly.

6. Publication and Communications

6.1. Papers, lectures and conference preparation

We are writing a variety of papers about the FDL, and R. Constable has again been
invited to speak about this work in Europe. Much of June and July will be occupied in
preparing articles and presentations, which will appear on the Web site in due course.

The Web site keeps a running account of the publications.

6.2. FDL technical meetings (OMDoc, Peer-to-peer, PVS automation)

We have plans to work with Michael Kohlhase on OMDoc and MathML over the summer.
We will also work with C. Jechlitschek in Ithaca this summer. We hope to have a meeting
with a PVS staff member to help us automate the PVS acquisition process.

7. Graduate Student Supervision

The professors and research assistants are heavily involved in supervising the work of the
graduate students. In some cases involving implementation, this requires several hours per
week.

8. System Support

Maintaining and improving the FDL involves a great deal of basic system support. It is
necessary to operate several theorem provers, (JProver, MetaPRL, Nuprl, and PVS for now;
others later) and relate them. We also support a VNC connection to the FDL.

Publications

Dependent Intersection: A New Way of Defining Records in Type Theory, by A. Kopylov. LICS,
2003.

10

The FDL Navigator: Browsing and Manipulating Formal Content, by C. Kreitz, Technical Report,
Cornell University, 2003.

Introduction to the Objective Caml Programming Language, by J, Hickey. California Institute of
Technology, 2003.

A Logic of Events, by M. Bickford and R. Comtable, Technical Report, Cornell University, 2003.

MetaPRL - A Modular Logical Environment, by J. Hickey, et al. Technical Report, California
Institute of Technology and Cornell, 2003.

Practical Reflection in Nuprl, by E. Barzilay, S. Allen, and R. Constable. Presentation at LICS '03.

Abstract Identifiers, Intertextual Reference and a Computational Basis for Recordkeeping, by Allen,
S. First Monday, vol. 9, no. 2, 2004.

Formal Design Environments, by B, Aydemir, A. Granicz, and J. Hickey, TPHOLs, 2002, Appears
in NASA Technical Report NASA/CP-2002-211736, 2002,

Notes on the Design and Purpose of the FDL, by S, Allen, Cornell University, ongoing.

Iteflecting Higher-Order Abstract Syntax in Nuprl, by E. Barzilay and S, Allen. TPHOLs, 2002,

Representing Nuprl Proof Objects in ACL2: toward a proof checker for Nuprl, by J. Caldwell and
J, Cowles. ACL2 Workshop, 2002,

Theory and Implementation of an Efficient Tactic-Based Logical Framework, by Alefaey Nogin,
PhD Thesis, Cornell University, 2002,

Steps Toward a World Wide Digital Library of Formal Algorithmic Knowledge, by R, Constable,
S. Allen, M. Bickford, J. Caldwell, J. Hickey, and C. Kreitz. Unpublished manuscript 2003.

11

