
REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

19-02-2004
2. REPORT TYPE

Final Report
3. DATES COVERED (From – To)

01-Dec-00 - 19-Feb-04
5a. CONTRACT NUMBER

ISTC Registration No: 1994p

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Formal Methods for Information Protection Technology
Task 2: Mathematical Foundations, Architecture and
Principles of Implementation of Multi-Agent Learning
Components for Attack Detection in Computer Networks
Part I

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5d. TASK NUMBER

6. AUTHOR(S)

Professor I.V. Kotenko Ph.D.

5e. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
St. Petersburg Institute For Informatics & Automation of the Russian Academy of
Sciences
39, 14th Liniya
St. Petersburg 199178
Russia

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

10. SPONSOR/MONITOR’S ACRONYM(S)9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

EOARD
PSC 802 BOX 14
FPO 09499-0014 11. SPONSOR/MONITOR’S REPORT NUMBER(S)

ISTC 00-7035

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited. (approval given by local Public Affairs Office)

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report results from a contract tasking St. Petersburg Institute For Informatics & Automation of the Russian Academy of Sciences as
follows: Formal Methods for Information Protection Technology
The use of open computer networks as an environment for exchange of information across the globe in distributed applications requires
improved security measures on the network, in particular, to information resources used in applications. Integrity, confidentiality and
availability of the network resources must be assured. To detect and suppress different types of computer unauthorized intrusions, modern
network security systems (NSS) must be armed with various protection means and be able to accumulate experience in order to increase its
ability to front against known types of intrusions, and to learn new types of intrusions. The project will perform three main tasks.
1. Develop a mathematical model and a tool that simulates various coordinated intrusion scenarios against computer networks;
2. Develop the mathematical foundations, architecture, and principles of implementation of autonomous-software-tool technology
implementing the learning system for intrusion detection;
3. Develop the fundamentals, architecture and software for the computer security system based on multi-level encoding for information
protection in mass application.
Currently, scientific efforts in network security area are undertaken mainly in the development of the network defense mechanisms.
Unfortunately, substantially less attention is paid to the study of the nature of intrusions and, in particular, remote distributed intrusion
attempts. No appropriate tools for intrusion/attack simulation nor research on a formal framework for intrusion specification exists.

TASK 2
To detect and suppress different types of computer intrusions, modern NSS must be able to accumulate experience in order to increase its
ability to front against known type of attacks/intrusions and to learn unknown simple and complex, local and distributed types of attacks. This
requires the use of a powerful intelligent learning subsystem (LS) in NSS. That is why the second task of the project concerns to the
development of the formal model, architecture, and software prototype of the autonomous intelligent learning system for detection of the
attacks/intrusions against computer network. Two main focuses are the core of this research. The first one is a decomposition of the whole
learning task into multitude of sub-tasks according to the ontology of attacks/intrusions and allocating them among specialized autonomous
learning software systems/modules. The second focus is a mathematical issue of the generic autonomous learning abilities of a software
module. It is necessary to select or to develop a number of mathematical methods to cover the necessary and sufficient functionalities of
generic learning software modules to cope with the learning over the data of various formats. One more mathematical issue of this research is
to develop a multi-level interaction among the learning software modules of various levels realizing meta-classification idea within multi-

member knowledge discovery from data architecture applied to the attack/intrusion detection LS.

15. SUBJECT TERMS
EOARD, Mathematical & Computer Sciences, Computer Systems

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
/Signed/PAUL LOSIEWICZ, Ph. D.a. REPORT

UNCLAS
b. ABSTRACT

UNCLAS
c. THIS PAGE

UNCLAS

17. LIMITATION OF
ABSTRACT

UL

18, NUMBER
OF PAGES

19b. TELEPHONE NUMBER (Include area code)
+44 20 7514 4474

 Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39-18

EUROPEAN OFFICE OF AEROSPACE
RESEARCH AND DEVELOPMENT

(EOARD)

St. Petersburg
November 2003

Final Report
 Task 2: Mathematical Foundations, Architecture and

Principles of Implementation of Multi-Agent Learning
Components for Attack Detection in Computer Networks

ST. PETERSBURG INSTITUTE
FOR INFORMATICS AND AUTOMATION

(SPIIRAS)

SPIIRAS

Project #1994 P
Formal Methods for Information Protection Technology

Principal Investigator of Task 2
Leading Researcher of the Intelligent
Systems Laboratory of SPIIRAS
Ph.D. Professor I.V. Kotenko

Part I

 1

EUROPEAN OFFICE OF AEROSPACE
RESEARCH AND DEVELOPMENT

(EOARD)

ST. PETERSBURG INSTITUTE
FOR INFORMATICS AND AUTOMATION

(SPIIRAS)

St. Petersburg
November 2003

Project # 1994P
Task 2: Mathematical Foundations, Architecture and Principles

of Implementation of Multi-Agent Learning Components
for Attack Detection in Computer Networks

Final Report

SPIIRAS

Principal Investigator of Task 2
Leading Researcher of the Intelligent
Systems Laboratory of SPIIRAS
Ph.D. Professor I.V. Kotenko

Part I

 2

Contents

Preface 4
Report summary 6
Table of Abbreviations used in the Report 9
Chapter 1. Peculiarities of Intrusion Detection Learning Task. Methodology and Models of

Intrusion Detection Learning 10
1.1. Introduction 10
1.2. Main Concepts of Logging and Auditing of Events in Computer Networks.

Representation of Audit Data at Various Generalization Levels 15
1.3. The IDLS Data Sources Taxonomies 19
1.4. Features of Audit Data used for Knowledge-based Attack Detection 21
1.5. Basic Data Structures and Measurement Scales used for Data Representation.

Dimensionality and Size of the IDL Training and Testing data 25
1.6. Design Principles and Methodology used in IDLS and IDS 25
1.7. Methodology of Multi-Agent Intrusion Detection Learning 27

1.7.1. Basic Principles of Data and Information Fusion 28
1.7.2. Decision Fusion Meta-model 29
1.7.3. Structure of IDS Distributed Knowledge Base 29
1.7.4. Data Mining and Knowledge Discovery Techniques used for Engineering of

Distributed Knowledge Bases and Decision Making Mechanisms of IDS 31
1.7.5. Temporal Data mining for Anomaly Detection 32
1.7.6. Techniques for Combining of Decisions 40
1.7.7. Training and Testing Methodology 41

1.8. Methodology of Allocation and Management of Training and Testing Datasets 42
1.9. Conclusion 43

Chapter 2. Intrusion Detection Learning System Design, Implementation and Deployment.
Ontology of Intrusion Detection Learning 45
2.1. MASDK: Generic Model of a Software Agent 45
2.2. Agent Specification Technology 48
2.3. Information Fusion Learning Toolkit 55
2.4. Problem Ontology for Data Fusion and Learning Data Fusion 58
2.5. Intrusion Detection Application ontology 61
2.6. Intrusion Detection Learning Application ontology 67
2.7. Conclusion 71

Chapter 3. Multi-agent Architecture and Operation of Intrusion Detection Learning System 72
3.1. Architecture of Intrusion Detection Learning System 72
3.2. Functional Structure and Operation of Generalized IDS 80
3.3. Intrusion Detection Learning Scenario 82
3.4. Engineering of the Shared Components of the Application Ontology 85
3.5. Design of the Structure of Classifiers 87
3.6. Training and Testing of Base Classifiers 89

 3

3.7. Engineering and Training of Meta–Classifier 91
3.8. Testing of IDS, Monitoring of the Training and Testing Procedures 93
3.9. Conclusion 94

Chapter 4. Case Study Description 95
4.1. Description of Attacks Ised in Case Study 95
4.2. Data Sources and Structures Representing Training and Testing Data 99
4.3. Specification of Instances of Data Structures of Different Sources 100
4.4. Examples of Training and Testing Data 104

4.4.1. Examples of Training and Testing Data of Network-based Source (Traffic
Level) 104

4.4.2. Examples of Training and Testing Data of Host-based Source (Operating
System Level) 109

4.4.3. Examples of Training and Testing Data of Application-based Source (FTP-
Server Level) 112

4.5. Conclusion 114
Chapter 5. Software Prototypes of Components of Multi-agent Intrusion Detection Learning

System and Simulation Results 115
5.1. Generic Architecture and Engineering of IDLS Software Prototype 115
5.2. Intrusion Detection KDD Master Agent 119

5.2.1. Meta-level Ontology Editing 119
5.2.2. Editing of the Decision Fusion Meta–model 120
5.2.3. Analysis of Data Available for Classifiers Training and Testing 121

5.3. Intrusion Detection KDD–Agent of a Source 125
5.3.1. Base Classifiers Training Scenario 125
5.3.2. Conversion of Features 126
5.3.3. The VAM Method 127
5.3.4. The GK2 Method 130
5.3.5. Training Results’ Analysis 131

5.4. Meta-level Intrusion Detection KDD Agent 132
5.5. DSM-Agents 132
5.6. Testing of the Designed IDS Prototype and Assessment of Learning Quality 133

5.6.1. Peculiarities of Training and Testing Data and Respective Procedures 133
5.6.2. Description of Training and Testing Results and Evaluation of Classification

Quality
135

5.7. Conclusion 137
Project Conclusion 138
Publication of the Project Results 143
References 144
Appendixes. Logs of Operation of the Developed Software Prototype of Multi-agent Learning

System: Training and Testing for the Application corresponding to the Case Study 154
Appendix A. Training and Testing on the Basis of Network-based Datasets 154
Appendix B. Data Sources of OS and Application Level 168

 4

Preface

This volume is the Final Report on Task 2 of the Project #1994P “Formal Methods for Information
Protection Technology”. The Project is being performed according to the agreement between European
Office of Aerospace Research and Development (EOARD), The International Science and Technology
Center (ISTC) and St. Petersburg Institute for Informatics and Automation (SPIIRAS).

The title of the Task 2 of the Project #1994P is “Mathematical Foundations, Architecture and
Principles of Implementation of Multi-Agent Learning Components for Attack Detection in Computer
Networks”.

This Project is devoted to exploration of the basic principles of the intrusion detection learning
(learning data sources, learning data representation and processing, basic algorithms and structure of
learning), multi-agent architecture of intrusion detection learning system and software implementation
of its basic components.

According to the Work Plan, during the period from the Project beginning (on December 1, 2000)
three interim reports summarizing intermediate results were submitted that are

1. Interim Report #1 on the Project 1994P, Task 2: Mathematical Foundations, Architecture and
Principles of Implementation of Multi-Agent Learning Components for Attack Detection in
Computer Networks. Interim Report #1, SPIIRAS, August 2001 [InterRep#1],

2. Interim Report #2 on the Project 1994P, Task 2: Mathematical Foundations, Architecture and
Principles of Implementation of Multi-Agent Learning Components for Attack Detection in
Computer Networks. Interim Report #2, SPIIRAS, May 2002 [InterRep#2], and

3. Interim Report #3 on the Project 1994P, Task 2: Mathematical Foundations, Architecture and
Principles of Implementation of Multi-Agent Learning Components for Attack Detection in
Computer Networks. Interim Report #3, SPIIRAS, May 2003 [InterRep#3].

The intermediate results were also presented in the workshop “Novel Information Technologies
and Information Assurance” organized by Air Force Research Laboratory (Information Directorate),
European Office of Aerospace Research and Development and St. Petersburg Institute for Informatics
and Automation hosted by Binghamton University (March 4-7, 2002).

All theoretical results and conclusions of the research are explored and validated via simulation on
the basis of the software developed by authors. The developed software can be demonstrated in
AFRL/IT as well as software code can be submitted to the Partner on demand.

Nine papers describing results of the Project have been accepted for presentation and publication
in Proceedings of International Conferences (including publication in Lecture Notes in Computer
Science and Artificial Intelligence series), one paper has been published in The International Journal
of Computer Systems Science & Engineering (see section “Publication of the Project results”).

According to the Work Plan the following tasks have been solved:
B-1. Development of the learning task ontology, allocation of learning tasks over generic learning

agents.
B-2. Development of an architecture of the Multi-agent Learning System and mathematical

methods realizing learning functionalities of the generic agents.
B-3. Development of the protocols of inter-level intelligent agent interaction (negotiation),

generalization of the particular agent decisions according to the meta-classification approach and
development of architecture of the Multi-agent Learning System as a whole.

B-4. Development of object-oriented conceptual project of the Multi-agent Learning System.
B-5. Development of the software prototype of the Multi-agent Learning System implementing

theoretical results of research and its evaluation.
B-6. Evaluation of the properties, advantages and disadvantages of the developed architecture and

mathematical methods implemented within the prototype of the intelligent Multi-agent Learning
system.

All the tasks provided by the Work Program are solved completely.
The interim reports presented the basic results of the research implied by Work Plan. To express the

final view of the Project results and to make this Report in some sense self-contained, it is written in the
way that summarizes all main results of the research obtained during three year period with the focus on
the implementation issues and simulation results, which have not yet been highlighted in the previously

 5

submitted interim reports because these issues were the main subject of the research efforts during the
last three quarters.

Demonstration of the developed technology and supporting software tool can be performed on
request. The software itself can also be supplied on request.

Thus, all the researches provided by the Task 2 of the Project 1994P are successfully carried out
according to the Work Plan. This Report outlines them as a whole. The main results and proposals for
future research are given in the final Report conclusion.

Principal Investigator of Task 2
Leading Researcher of the Intelligent Systems Laboratory of
the St. Petersburg Institute for Informatics and Automation
of the Russian Academy of Sciences

Ph.D. Prof. Igor Kotenko

 6

Report Summary
This Report presents the final view of the Project results. It is written in the way that summarizes all the

results of the research obtained during three year period with the focus on the implementation issues and
simulation results, which have not yet been highlighted in the previously submitted interim reports because these
issues were the main subject of the research efforts during last two quarters.

Intrusion detection learning (IDL) is a task of distributed data processing aiming at engineering knowledge
bases and decision making mechanisms responsible for detection of illegitimate operations of network and
computer users. The main peculiarity of this learning task for the purposes of computer network assurance
system as compared with conventional data mining and knowledge discovery from data is that in the former case
it is necessary to take into account several heterogeneous information sources. At that each such a source only
partially specifies an abnormal user activity or attack against computer. This is why the detection of the above
abnormalities in usage of a computer can be successful only if the detection technology is organized on the basis
of several data sources because each of them contains only a fragment of information about attack “traces” and
the complete “picture” can be assembled on the basis of combining these fragments or decisions made on their
basis.

This Project is focused on the development of Intrusion Detection Learning Systems (IDLS) components
based on use of data fusion principles and built as multi-agent system. In other words, the research focus is
development and prototyping of a software infrastructure supporting collaborative semi-automated work of
specialists in design and implementation of applied IDS, in particular, in design and implementation of its
decision making components.

The research results described in the Report are presented in five chapters and two appendixes. A brief
summary of the Report contents is given below.

Chapter 1 “Peculiarities of Intrusion Detection Learning Task. Methodology and Models of Intrusion
Detection Learning”. The Chapter introduces into the problems to be solved and outlines peculiarities of the
intrusion detection learning task as well as the basic ideas that form the milestones of the onward research. It
outlines the main peculiarities of intrusion detection learning task and presents a brief overview of the modern
days research on this subject. It also introduces generally the approach accepted in this Project. The Chapter
considers the main concepts of logging and auditing of the events, happening in computer networks to be
defended, presents analysis of the data structures and examples of audit data used in modern operating systems,
security systems, and applications. The Chapter analyses data sources, which can be used for training and testing
of the IDLS. The IDLS data sources taxonomies, classifying data sources due to location of source and software
generating data, processing level, and an object associated with data, are presented. The typical structures,
measurement scales, size and dimensionalities of the data used for the IDLS training and testing are analyzed.

Also it reviews the proposed decisions regarding to the structure of the learning data and their usage in attack
detection and learning. In general, this Chapter aims to make it clearer the peculiarities of data to be mined, the
kind of diversity of this data structures, specificity of the distributed data mining and knowledge discovery
within the framework of this particular task. One of the project objectives is investigation of the feasibility and
advantages of use of both multi-agent and data and information fusion technologies for intrusion detection
learning task. This Chapter gives motivations of the potentially important advantages of use multi-agent
paradigm.

The Chapter is also considers the basic aspects of the methodology of multi-agent intrusion detection learning
adopted within this Project. Particularly, it discusses the existing principles of intrusion detection learning and
motivates the choice adopted, analyzes the potential structures of distributed decision making and decision
combining (“Decision fusion meta-model”). The Chapter describes the developed structure of intrusion detection
learning system distributed knowledge base, structure of the distributed decision making mechanisms and
outlines their interactions with the intrusion detection learning ontology. It gives short information concerning
particular techniques used in this Project for engineering of the local knowledge bases, local solvers, and
particular techniques used.

The Chapter specifies mathematical methods of data mining and knowledge discovery that are available for
use in the developed prototype of IDLS. The methods described in this Chapter are divided into five groups: (1)
Methods for combining decisions of multiple classifiers; (2) Methods for mining numerical (continuous) data;
(3) Methods for mining discrete data; (4) Methods for mining frequent patterns and association rules from
transactional data; (5) Methods for mining temporal data.

All the considered methods for combining decisions divided into three groups: (1) Voting methods; (2)
Probability-based or fuzzy methods; (3) Meta-learning methods based on stacked generalization (meta-
classification methods); (4) Meta-learning methods based on classifiers' competence evaluation. A modified
approach to competence-based classifier combining is developed. Two types of methods are selected and

 7

implemented in IDLS: meta-classification methods and methods based on competence evaluation. These
methods are outlined in more detail. The developed temporal mining algorithm based on statistical properties of
the temporal vector-wise sequences of binary and/or numerical data is considered.

A certain attention is also paid to the training and testing methodology with accent on peculiarities entailed by
distributed nature of training and testing data sources and also methodology of allocation and management of
training and testing datasets, which possesses a number of specific features caused by the interdependences and
constraints imposed on admissible splitting of the entire learning dataset into training and testing ones and also
on admissible allocation of their parts to particular solvers to be trained.

All the above aspects of intrusion detection learning system methodology are considered within the context of
the known approaches and each choice is motivated. The methodology proposed in the Chapter constitutes the
basis for multi-agent architecture of intrusion detection learning system, development, implementation and
deployment within a computer network supported by the developed software tool that are the subjects of the
subsequent chapters of the Report.

Chapter 2 “Intrusion Detection Learning System Design Implementation and Deployment Issues. Ontology
of Intrusion Detection Learning”. The Chapter presents thorough mainly conceptual description of the
developed and implemented technology of multi-agent information fusion system engineering intended for
design, implementation and deployment of applied multi-agent data and information fusion systems. Intrusion
detection system is considered in the Project as a particular application of the general data and information
fusion problem. At the beginning, the Chapter outlines general view of multi-agent data and information fusion
system technology and divides the engineering processes into two classes, which are those supporting design,
implementation and deployment of the reusable components of the multi-agent system under design and those
supporting design and implementation of data and information fusion–oriented functionalities. Respectively, two
software tools used for support of the engineering processes of each of the above two classes developed by the
Project authors are described. The first of them called Multi-Agent System Development Kit, MASDK, supports
design procedures of the first, mostly of general purpose, class of technological processes while the second one,
Information Fusion Design Toolkit, mainly supports design procedures of the second class, i.e. those specifically
destined for making use in design of data and information fusion–oriented functionalities. Description of these
toolkits, description of the content and peculiarities of design procedures carried out by each of them are the
main subjects of this chapter.

The Chapter describes conceptually the developed model of “Generic agent” that is considered as a basic
component supporting technology for applied software agent design and implementation. “Generic agent”
comprises reusable components forming in some sense an “empty” agent, which after specialization (according
to an application to be designed) is transformed in semi-automated mode into instances of an applied software
agent of IDLS. The Chapter also presents the technology and its implementation issues concerning the semi-
automated specialization of “generic agent” resulting in particular software agent of IDLS.

The Chapter also describes the developed ontology specifying a high-level representation of the basic notions
of Intrusion Detection Learning domain. According to the modern view of the information system technology,
ontology is one of the most important components of every information system, in particular, if such an
information system is highly distributed, is of large scale and knowledge-based. It forms the high-level
conceptual model of the basic shared knowledge represented in the form of the structured multitude of basic
notions with clearly and undoubtedly defined semantics independent of accepted design and implementation
issues of a particular application. Ontology is presented in the system software implementation as a very
important part of the software, which plays the role of a factor providing the developed software by integrity and
consistency. In a multi-agent system (including the system under development) it provides much easier mutual
understanding of different agents operating in distributed manner with lack of much knowledge about
environment and other agents. The specific of the subject domain under research is that it combines knowledge
and therefore, combines ontologies, from different domains, namely, “Data Fusion and Data Fusion Learning
problem domain ontology”, “Intrusion Detection application ontology” and “Intrusion Detection Learning
application ontology”. These ontologies are developed and described in this Chapter.

Chapter 3 “Multi-agent Architecture and Operation of Intrusion Detection Learning System”. The Charter is
devoted to the conceptual view of the architectural and technological issues of IDLS design and implementation.
It formulates the main assumptions accepted in the design of IDLS that concretize interaction of IDLS
components and target IDS. The Chapter presents the developed multi-agent architectures of Multi-agent IDS
and IDLS and discusses some important issues that are specific for intrusion detection learning. The proposed
IDLS architecture comprises two types of components: (1) data sources-based learning components responsible
for knowledge discovery from particular datasets and (2) a meta-level component responsible for learning meta-
level classifier aiming at combining decisions of source-based classifiers. According to this respect, the Chapter
describes generic tasks resulting from the entire task decomposition and allocation these tasks over particular

 8

agent classes. It outlines also some peculiarities of the multi-agent and data and information fusion technologies
that are used in design and software implementation of IDLS components.

The conceptual view of the structure of agent communication is outlined. Three types protocols needed for
support of agent interactions are considered: (1) protocols that support agent message exchange; (2) protocols
aiming at management of semantically interconnected dialogs (conversations) of agents; (3) protocols supporting
cooperative work of agents in distributed design and learning procedures.

General configuration of generalized IDS based on information fusion (IF) approach and the structure of its
distributed knowledge base are described. It is suggested that IDS includes the agents of the following classes:
Information Fusion (Decision combining) management agent for brevity called hereinafter System Managing
agent (SM-agent); Agent-classifier of meta-level called hereinafter for brevity Meta-Classifier agents (МС-
agents); Source-based Base Classifiers (ВС-agents); Data source managing agents (DSM-agents). The standard
scenario of the IDS operation is outlined.

Intrusion Detection Learning Scenario is suggested. It includes engineering of the shared component of the
application ontology, design of the binary classification tree, design of the meta-model of decision combining
(decision tree), engineering of base classifiers and meta–classifiers, testing of IDS as a whole and monitoring of
the learning process. These phases of intrusion detection learning scenario are described.

Chapter 4 “Case study Description”. The Chapter specifies the developed case study that is currently used
for design and implementation of the software prototype of the components of IDLS. It determines the categories
and instances of attacks used in the case study, data sources and data structures representing data of the selected
sources, the instances of data structures, and the examples of training and testing data.

Chapter 5 “Description of software prototypes of Intrusion Detection Learning Components. Evaluation of
the developed architecture and mathematical methods implemented within the prototypes”. The objective the
Chapter is to present the implemented components of IDLS and some simulation results that in more details are
given in Appendix.

Report conclusion presents the main results of the Project as a whole and authors' view of the further
research and development.

Appendixes demonstrate the developed multi-agent technology destined for distributed intrusion detection
learning and decision making.

In the end of the Report the list of the main publications of the results obtained within the Project is given.
The results presented in this report contain the solution of all the tasks provided by the Project.

 9

Table of Abbreviation Used in the Report

Abbreviation Full Text
BC Base classifier
DF Decision Fusion
DMT Decision making tree
DSN Data Source Name
DS Data source
DSM Data Source Management (agent)
EOARD European Office of Aerospace Research and Development
ID Intrusion Detection
IDL Intrusion Detection Learning

IDL MAS Multi-agent Intrusion Detection Learning System

IDLS Intrusion Detection Learning Systems
IF data and Information Fusion
IF MAS Multi-agent Data and Information Fusion System
IFL MAS Multi-Agent Information Fusion System
IFLS Information Fusion Learning System
KB Knowledge Base
KDD Knowledge Discovery from Databases
KQML Knowledge Query Manipulation Language
LAN Local Area Network
MAS Multi-Agent System
MASDK Multi-agent System Development Kit
MC Meta–classification (agent)
ODBC Open Data base Connectivity
RDF Resource Definition Language
RMI Remote Method Invocation
SM System manager (Information Fusion management agent)

SPIIRAS St. Petersburg Institute for Informatics and Automation of the Russian Academy of
Sciences

SQL Standard Query Language
UML Unified Modeling Language
VAM Visual Analytical Mining
XML eXtended Mark-up Language

 10

Chapter 1. Peculiarities of Intrusion Detection Learning Task. Methodology
and Models of Intrusion Detection Learning

Abstract. The Chapter briefly formulates the main lessons learnt from contemporary studies on
data mining for intrusion detection and IDLS prototyping, analyses the main notions regarding the
audit data used for intrusion detection and intrusion detection learning and describes the
methodology developed for design of multi-agent IDLS.
The approach accepted in this Project to intrusion detection system design is data centric in the
sense that historical interpreted audit data is considered as the main source of knowledge needed
for intrusion detection. Chapter analyzes the main concepts of logging and auditing of the events
happening in the defended computer networks, presents analysis of the data structures and
examples of audit data used in modern operating systems, security systems, and applications. In
general, the results of this Chapter make it clear the peculiarities of data to be mined, the diversity
and heterogeneity of available data structures and specificity of the distributed data mining and
knowledge discovery in the framework of intrusion detection task.
This Chapter is also devoted to the description of the basic aspects of the methodology of the IDLS
operation adopted within this Project. Particularly, it discusses the existing principles of data and
information fusion and motivates the choice adopted, analyzes the potential structures of
distributed decision making and decision combining (“Decision fusion meta-model”). The Chapter
considers the developed structure of IDLS distributed knowledge base (KB), structure of the
distributed decision making mechanisms and outlines their interactions with the IDLS ontology. A
developed method for mining temporal sequential data is described in detail. A certain attention is
paid to the training and testing methodology with accent on peculiarities entailed by distributed
nature of training and testing and also methodology of allocation and management of training and
testing datasets. All the above aspects of IDLS methodology are considered within the context of
the known approaches and each choice is motivated. The methodology proposed in the Chapter
constitutes the basis for both multi-agent architecture of IDLS and IDLS engineering,
implementation and deployment supported by the developed software tool that are the subjects of
the subsequent chapters of the Report.

1.1. Introduction

At present there is no necessity to advocate much the importance of the research and development
in the area of computer network assurance. It is well known that this problem is now of great concerns
because of worldwide spread of computer-based technologies, which are vital components of the
modern world society.

There exist many threads for computer networks, their resources and respective information
systems, and malefactors permanently invent new ones quicker than counter side is able to develop an
adequate response. The modern-days competition between malefactors, on the one hand, and computer
network security researchers and engineers, on the other hand, is still resulting in favor of the former
by many reasons. Possibly, the most important one among them is that modern computer network
assurance systems use mostly manually and “ad hoc” built security systems aimed at defense against
known types of attacks and other threats. The current state-of-the art in the area of computer network
assurance systems forces researchers and developers to reconsider this approach. In particular, it
forces the researchers and developers to focus on the development of such security systems that
“would be capable to learn detection of new attacks and counter-measures in a semi-automatic mode
in order to eliminate, as much as possible, the manual and ad-hoc elements from the process of
building an intrusion detection system” [Lee-98].

Intrusion detection learning problem is destined to provide Intrusion Detection System (IDS)
designers with automated tools and techniques for analysis of raw and preprocessed data (“audit data”)
and for extraction of useful attack patterns.

Nowadays this problem is recognized as a top priority one in the area of computer network and
information security. It is considered as a very promising alternative for current state of the practice,
which mostly relies on human expertise in identification and specification of specific patterns peculiar

 11

for particular types of known attacks. The latter also possesses many other well known drawbacks and
in practice requires formidable efforts of many high quality experts.

During the last decade this problem has received substantial studies ([Denning-87], [Teng et al-90],
[Javitz et al-93], [Forrest et al-94], [Brodley et al-96], [Forrest et al-96], [D'haeseleer et al-96],
[D'haeseleer et al-97], [Forrest et al-97a], [Forrest et al-97b], [Lane et al-97a], [Lane et al-97b], [Lane
et al-97c], [Lee et al-97], [Stolfo et al-97a], [Stolfo et al-97b], [Stolfo et al-97c], [Endler-98], [Lane-
98a], [Lane-98b], [Lane et al-98a], [Lane et al-98b], [Ghosh et al-98], [Hofmeyr et al-98], [Lee et al-
98a], [Lee et al-98b], [Chan et al-99], [Ghosh et al-99a], [Ghosh et al-99b], [Ghosh et al-99c],
[Hofmeyr et al-99], [Warrender et al-99], [Lane-99], [Lane et al-99], [Lee et al-99a], [Lee et al-99b],
[Lee et al-99c], [Lee-99], [Luo-99], [Manganaris et al-99], [Prodromidis et al-99a], [Prodromidis et
al-99b], [Prodromidis-99], [Clifton et al-00], [Eskin-00], [Eskin et al-00], [Fan et al-00], [Lee et al-
00a], [Lee et al-00b], [Lee et al-00c], Lee et al-00d], [Lee et al-00e], [Manganaris et al-00],
[Mukkamala et al-00], [Portnoy-00], [Stolfo et al-00], [Ye-00], [Zhang et al-00], [Barbara et al-01a],
[Barbara et al-01b], [Bloedorn et al-01a], [Bloedorn et al-01b], [Cabrera et al-01], [Eskin et al-01],
[Fan et al-01], [Julisch-01], [Lee et al-01a], [Lee et al-01b], [Mahoney et al-01], [Portnoy et al-01],
[Schultz et al-01a], [Schultz et al-01b], [Ye et al-01], [Apap et al-02], [Dokas et al-02], [Eskin et al-
02], [Hellerstein et al-02], [Honig et al-02], [Gomez et al-02a], [Gomez et al-02a], [Julisch-02],
[Julisch et al-02], [Lazarevic et al-02], [Liao et al-02], [Mahoney et al-02], [Sequeira et al-02], [Ye et
al-02a], [Ye et al-02b], [Chan et al-03], [Heller et al-03], [Hershkop et al-03], [Gomez et al-03], [Kim
et al-03], [Lazarevic et al-03a], [Lazarevic et al-03b], [Mahoney-03], [Mahoney et al-03a], [Mahoney
et al-03b], [Michael-03], [Robertson et al-03], [Stolfo et al-03a], [Stolfo et al-03b], [Stolfo et al-03c],
[Stolfo et al-03d], [Ye et al-03], [Wang et al-03], etc.).

The most prominent works on data mining for intrusion detection have been conducted in the
following research groups:

• Columbia University (S. Stolfo, E. Eskin, etc.),
• University of New Mexico (S. Forrest, P. D'haeseleer, S. A. Hofmeyr, etc.),
• University of Memphis (D. Dasgupta, J. Gomez, etc.),
• Purdue University (T. Lane and C. E. Brodley),
• Reliable Software Technologies (A.K. Ghosh, A. Schwartzbard, M. Schatz, etc.),
• University of Minnesota (V. Kumar, P. Dokas, L. Ertoz, A. Lazarevic, etc.),
• North Carolina State University (W. Lee, etc.),
• Florida Institute of Technology (P. Chan, M. Mahoney, etc.),
• George Mason University (S. Jajodia, D. Barbara, N. Wu, etc),
• Arizona State University (Nong Ye, etc.), etc.
Of course, this list is not exhaustive.
The most known approaches are twofold. The first of them is being developed by group headed by

Prof. S.Stolfo (Columbia University). This group takes a data-centric viewpoint. The second group of
approaches is based on the ideas borrowed from immunology. The respective models of intrusion
detection learning are known as computer immunology models. Several groups are investigating such
kind of models. Among them, the first most known group is headed by S.Forrest (University of New
Mexico, USA) and second one is headed by D.Dasgupta (Memphis University, USA).

The basic peculiarity of the approach developing by group of S.Stolfo is that in it intrusion
detection learning is considered as a data analysis process ([Lee et al-98a], [Lee et al-99a], [Lee et al-
99b], [Lee et al-00b]).

Anomaly detection is understood as finding the normal usage patterns from the historical audit
data, and contrasting them with the patterns discovered from current connections (on-line audit data).
A remarkable distinction between the normal usage patterns and patterns of current connection is
considered as an evidence of abnormal activity.

Misuse detection is considered as encoding and matching the intrusion patterns using the audit
data. These patterns play the role of arguments of rules used for intrusion detection. The central theme
of this approach is to apply data mining and knowledge discovery from database techniques to audit
data represented in terms of sequential records of system calls or TCPdump in order to construct
concise and accurate classifiers for detection and classification of anomalies.

 12

Three basic data mining and knowledge discovery algorithms are used for learning intrusion
detection classifiers ([Lee et al-00b], [Prodromidis et al-99b]). They are the (1) association rules
mining, (2) frequent episodes mining and (3) rule extraction algorithms. The first and the second
algorithms are used to extract useful associations and serial frequent episodes from historical
sequences of audit records, whereas the third one is applied to build knowledge-based classifier. To
solve the aforementioned tasks, the authors use modifications of the respective standard algorithms.
The modifications aim at increasing efficiency of the existing data-flow mining algorithms due to the
peculiarities of the structure and other characteristics of the audit data.

One more specific approach is based on so-called meta-classification [Prodromidis et al-99b].
Conceptually, the proposed approach uses several simple (“light”) interacting learners instead of one
complex (“heavy”) one. Learning system is composed of a number of simple classifiers learned
inductively on the basis of their own training and testing data. Each such a classifier is called “base
classifier”. It must be computationally efficient, though not very accurate. All base classifiers are
tested on a new audit data, and each testing record is submitted to all base classifiers. While
performing classification of the same audit record, each base classifier makes its own classification
decision. All decisions of base classifiers are joined in a new record supplemented by the correct
interpretation. These records form data for training the meta-classifier. Base classifiers and meta-
classifier interact during solving the intrusion detection tasks in the same way.

The developed approach is being implemented in the framework of the JAM project – “Java Agent
for Meta-learning”. In this project, in order to meet the challenges of both efficient learning (mining)
and real-time detection, the authors of the approach under description proposed an agent-based
architecture for intrusion detection systems. This architecture supposes that the learning agents
continuously compute and provide the updated (detection) models to the responsible intrusion
detection agents. According to [Lee et al-98a], the developed framework “consists of a set of
environment-independent guidelines and programs that can assist a system administrator or security
officer to

• select appropriate system features from audit data to build models for intrusion detection;
• architect a hierarchical detector system from component detectors;
• update and deploy new detection systems as needed.”
Among other researchers working in the field of intrusion detection learning, this group is

undoubted leader because it is developing a strict formal framework for this task solution and, in
parallel, takes care about implementation issues of the developing approach.

An alternative (the second) approach to the design and development of the modern learnable
intrusion detection systems is being developing in the framework of so-called “computer
immunology”. The respective results can be found in ([Forrest et al-96], [D'haeseleer et al-96],
[Forrest et al-97a], [Somayaji et al-98], [Hofmeyr et al-99], [Dasgupta et al-01], [Skormin et al-01],
etc.). This approach aims to take advantages from the close analogy between the tasks of the computer
network intrusion detection system and human immune system. The idea of computer immunology is
to use biological principles of human immune system used for distinction between “self” and “non-
self” for formalizing processes of intrusion detection in computer network. This approach seems to be
very perspective one but now it is at the stage of fundamental research and is exploring usefulness of
implementation of some simple basic principles within computer security task.

The main lessons learnt from these studies and prototyping of Intrusion Detection Learning
Systems (IDLS) can briefly be formulated as follows:

1. Data Mining and Knowledge Discovery from Databases (KDD) approaches form a very
promising theoretical basis for intrusion detection learning, but existing approaches and
techniques cannot completely meet the needs of this field. That is why the necessity to
develop particular approaches and techniques focused on peculiarities of data sources that can
potentially be used for intrusion detection is remaining an important task within the problem
in question. To our opinion, the main drawback of the existing approaches to available data
mining is low attention to the temporal aspects of the above data.

 13

2. IDSs have to operate on the basis of processing of data collected from many heterogeneous
and distributed data sources and this is why it has to be considered as a particular case of data
fusion (DF) systems [Bass-00]. Learning such systems presents a number of challenges that
are the subjects of the research in distributed data mining scope, at that some of such
challenges remain open. Unless the understanding of this fact, there is lack of researches
which practically follow this paradigm.

3. Abnormal activity, in particular, an attack has to be considered as a rare event [Lazarevic et
al-03a]. Classification of rare events entails a number of particular features determining
appropriate selection of metrics used for evaluation of the classification quality and also
learning and classification algorithms. Neglect of the above fact should lead to failing of the
quality of IDS performance and to increase of frequency of false alarms. On the other hand,
acceptance of this view results in admissibility of the assumption that the probability of
occurrence of two such events within a small time interval is equal to zero.

4. A critical problem of intrusion detection and intrusion detection learning is feature selection
([Lee-99], [Lee et al-00a], [Stolfo et al-00], [Dokas et al-02], [Lazarevic et al-03a], [Guyon et
al-03], [Bekkerman et al-03], [Bengio et al-03]). There is no definite viewpoint how to select
the features from raw data or what kind of features have to be formed as a result of raw data
preprocessing. It is clear that due to very diversity of software installed in particular computer
networks (OS, applications, etc) and particular requirements to the degree of computer
network security this problem has no unique solution. Analysis of the state of the art in this
topic shows that the most of researches ignores features specifying temporal aspects although
recognizes the necessity of their use for intrusion detection and pays not enough attention to
usage of sequential-like features.

5. The main attention of the researchers is paid to the anomaly detection task and the developed
techniques mostly oriented respectively. At the same time, if one deals with multiple classes
intrusion detection task and reduce it to the sequence of binary classification tasks using
respective classification tree then anomaly detection techniques can also be used is some
misuse detection tasks.

Our research is focused on the development of IDLS components based on use of data fusion
principles and built as a multi-agent system. In other words, the research focus is development and
prototyping of a software infrastructure supporting collaborative semi-automated work of specialists in
design and implementation of applied IDS, in particular, in design and implementation of its decision
making components.

Multi-sensor data and information fusion (IF) is able to provide an advantageous framework for
intrusion detection systems of the next generation aiming at defending not a particular hosts but
computer network as a whole.

Data and information fusion is an area of information technology that aims at making decisions on
the basis of joint processing of available data and information obtained from different sources
distributed in space and time. The modern understanding of IF is mostly associated with a class of
large scale distributed decision making tasks that is primarily referred to IF specific features of
methodological kind. For example, [IF] presents such an opinion regarding comprehension of IF:
“Information Fusion, in the context of its use by the Society, encompasses the theory, techniques and
tools conceived and employed for exploiting the synergy in the information acquired from multiple
sources (sensor, databases, information gathered by human, etc.) such that the resulting decision or
action is in some sense better (qualitatively or quantitatively, in terms of accuracy, robustness and etc.)
than would be possible if any of these sources were used individually without such synergy
exploitation”.

As applied to the military applications, the IF problem is formulated by US Air Force Research
Laboratory in terms of the most complicate and most significant military application as follows [IF]:
“Information Fusion: Events, activities and movements will be correlated and analyzed as they occur
in time and space, to determine the location, identity and status of individual objects (equipment and
units), to assess the situation, to qualitatively and quantitatively determine threats and to detect

 14

patterns in activity that reveal intent or capability. Specific technologies are required to refine, direct
and manage the information fusion capabilities.”

It is emphasized in [Bass-00] that “A significant challenge remains for IDSs designers to combine
data and information from numerous heterogeneous agents (and managers) into a coherent process,
which can be used to evaluate the security of cyberspace”. And data fusion learning is the central point
of this challenge. In the project we accepted this view extended with multi-agent view on the
architecture of the IDS and its learning components ([InterRep#1], [InterRep#2], [InterRep#3]). That
is way the intrusion detection learning is considered here as data fusion learning problem.

Multi-agent system (MAS) view presents an advantageous paradigm for analysis, design and
implementation of complex software systems the IDLS belongs to. It proposes powerful metaphors for
information system conceptualization, a range of new architectures, techniques and technologies
specifically destined for large scale distributed intelligent systems ([Weiss et al-99], [Wooldridge-
01]). It is necessary to distinguish two aspects of using multi-agent paradigm in intrusion detection
learning scope: (1) Use of multi-agent architecture in intrusion detection learning systems (Multi-agent
IDLS); (2) Use of multi-agent architecture for intrusion, i.e. for distributed decision making (Multi-
agent IDS). IDLS and IDS definitely fall into the class of potential MAS applications. The main
reason is that in these applications data sources are spatially distributed and data processing is
performed in distributed manner.

The approach that is being developed in the reporting Project is in some respects close to the
approach that is being developed by the group of S.Stolfo. We borrowed from it the idea of meta-
classification and idea of using multi-agent architecture for intrusion detection learning system.
However, this similarity concerns only with the ideas in general.

The distinctions are manifold:
• The first of them is in architecture of agents and multi-agent system as a whole. The particular

agents are proactive and of different specialization.
• The second distinction is that agents interact on the basis of shared knowledge represented in

ontology, which includes structured problem and subject domain components. The latter would
make it possible to deal with detection not only simple attacks against particular computer, but
also with detection of distributed attacks against computer network as a whole.

• The third distinction is in techniques for knowledge discovery from audit data that we
implemented. Together with the standard techniques for learning base classifiers and meta-
classifiers we implemented the original ideas and methods including original algorithm of
temporal data mining.

• Possibly, the most important distinction of the approach accepted in this project (as compared
with the approach used by S.Stolfo's group) is that we consider network intrusion detection task
as multi-sensor data fusion. This view was firstly discussed in [Bass-00]. Actually, to provide
reliability and required quality of IDS operation and its cooperation with network management
system, network-based IDS has to collect and to process information from numerous
heterogeneous distributed sensors monitoring input traffic, audit trails, operational system,
servers, directories, databases of user profiles, etc. These sensors should be situated in different
hosts of the network and measure and compute numerous characteristics on the basis of analysis
of the network traffic and audit data trails. These characteristics are very diverse from several
points of view. They can present IP packets and their components, symbolic data measured in
categorical scale, temporary ordered sequences and subsequences of events with attributes, real-
valued data. This data can be of different generalization level. Some data are derivative due to
preprocessing and high-level computations. In order to detect attacks against a particular host or
against the computer network as a whole, it is necessary to solve large-scale data fusion task
[Bass-00].

The following material of the Report is organized as follows.
The rest of the Chapter 1 is practically devoted to the methodology of distributed intrusion

detection on the basis of heterogeneous distributed data sources. Firstly it reviews the structures of the
available learning data and its use in attack detection and learning and afterwards "builds a bridge"

 15

from peculiarities of available data to methodology of distributed intrusion detection and intrusion
detection learning. . In general, the objective of this Chapter is to make it clear the peculiarities of data
to be mined and specificity of the intrusion detection learning based on multi-agent architecture.
Particularly, it discusses the existing principles of data and information fusion and motivates the
choices adopted, analyzes the potential structures of distributed decision making and decision
combining, considers the developed structure of IDLS distributed knowledge base and the training and
testing methodology with accent on peculiarities entailed by distributed nature of training and testing
and also describes a methodology of allocation and management of training and testing datasets.

Chapter 2 describes the technology of multi-agent IDLS design, implementation and deployment.
Two software tools intended for support of the engineering processes are presented. The first of them
called Multi-Agent System Development Kit (MASDK) supports design, implementation and
deployment of the reusable components of MAS while the second one, Information Fusion Design
Toolkit, mainly supports design procedures oriented to design of distributed data and information
fusion–oriented functionalities. The Chapter also describes the developed ontology specifying high-
level representation of the basic notions of Intrusion Detection Learning domain.

Charter 3 is devoted to the architectural issues of IDLS system from design and implementation
viewpoints. The Chapter describes generic tasks resulting from decomposition of the entire intrusion
detection learning task and allocation subtasks over particular agent classes. It outlines also generic
architecture of agents and points out some peculiarities of the multi-agent technology that was used in
design and software implementation of the Intrusion Detection Learning System components.

Charter 4 considers a case study used for prototyping IDLS according to the developed architecture
and model by use of the proposed technology. Categories and instances of attacks to be used in case
study are described. The proposed “strategy” of multiple classifications implementing detection of
intrusions in terms of multi-step anomaly detection is described. The data sources and generic data
structures used by IDLS components are considered. Examples of training and testing instances are
given.

Charter 5 presents the software tools destined for the design, implementation and deployment of
IDLS as well as evaluation of these tools.

Concluding remarks provide generalized view on the results of the Project.
Appendixes demonstrate the developed multi-agent technology destined for distributed intrusion

detection learning and decision making. For this purposes, while solving an intrusion detection
learning task used the developed case study (see Chapter 4), it comments the designers' activity and
describes the distributed learning process itself and also intermediate and final results of data mining
and knowledge discovery aiming at engineering and validation of the distributed knowledge base of a
multi-agent intrusion detection system.

1.2. Main Concepts of Logging and Auditing of Events in Computer Networks.
Representation of Audit Data at Various Generalization Levels

Let us consider at first main concepts of logging and auditing of the events in computer networks
(event, logging, auditing, audit database, audit record, audit data analysis etc.).

Event is an occurrence formed on the basis of processing of the input message traffic. An event is
specified as triple comprising a subject (an active object, fulfilling action, for example, user or
program), an object (a passive object subjected to an action, for example, disk, directory, file, etc.) and
an action (for example, reading, recording, execution, etc.). Sometimes event can be assigned
additional attributes. The following list of the inspected events can be used: logon (logoff) of an access
subject into (from) a system; generation of printed (graphical) output document; start-up (completion)
of a program and process (jobs, tasks); access of an access subject program to defended files,
including their creation and deletion; message transmission to data link; access of an access subject
program to a terminal, host, data link, peripheral, program, volume, directory, file, record, fields of
record; modification of the access subject authority, defended access object, etc.

Any event at the host or at the network level can be caused by message transmitting. A message
can be transmitted through a legal or an unauthorized access channel. Any message is assigned a set of

 16

attributes. Using values of these attributes, it is possible to determine with preset probability whether
the message is transferred through a legal or through an unauthorized access channel, and also whether
it belongs to an unauthorized access script.

Logging represents a process of the security related event sequence registration in the defended
network resulting in log data, or audit data.

Auditing is a process aiming at analysis of the log data. Analysis aims to detect attacks and
unauthorized actions, to disclose security system vulnerabilities, to assess user's operation, etc.

The audit mechanism enables logging of security related input events occurred. The log, or the
audit trail, provides the history of system operation that makes it possible for administrator to review
the causes of security violations and to trace it back to the user accountable.

Thus, logging and auditing aim together to disclose the malefactor or user responsible for abnormal
or suspicious activity, to detect attacks and unauthorized actions, to reconstruct the event sequence, to
store information needed for detection and analysis of other network security problems.

For purposes of the Project, logging and auditing are considered as a way to form data about
attacks, normal and suspicious activity to use it as learning (training and testing) data in development
and implementation of the security system learning mechanisms.

Audit database is the main source of the learning data. It comprises records of sequences of the
time-ordered events occurred. The audit data registers the results of network and host (OS and
applications) activity and should be such as to provide sufficient data to restore, to look-up and to
analyze a sequence of operations executed by someone within the defended network.

Each record in the audit database can be represented in terms of the event (message) attributes and
(or) their values. An event attributes are partitioned into two groups. The attributes of the first group
specify the event itself (subject, object, access mode, arrival time), and the attributes of the second
group specify results of event (message) processing (processor usage time, size of information input in
a data link, etc.).

Normally an audit record specification comprises the following positions: record type, date and
time of an event occurrence (time stamp), name (address) of the target host, identifier of the user
initiated an event, event type, result of the event execution, etc.

Typically an audit record specifies the subject in terms of user name and identifier, group
membership identifier, process identifier and terminal identifier. As a rule, the action identifier
specifies the event. Name, identifier, access permission and locations typically specify an object.

Most of event-associated actions within computer network are not atomic; instead, they generate
multiple secondary events. The latter corresponds to different processing levels however in audit
record they can be presented by single event. For example, a single write operation might generate
multiple events including “request for a write operation” event, “initiation of a write operation” event,
a number of “status of a write operation” events, and “completion of a write operation” event.
However often, only a single “write” event is recorded in the audit trail. The type and timing of an
event recorded in an action define the types of information that may be extracted from the audit trail
with regard to an action. If a forepart of the operation sequence is only recorded in audit trail as the
event then the outcome of the operation sequence would not be deducible from it. If an event is
generated only at the completion of the operation then suspicious operations can be detected too late.

The logging and auditing subsystem should realize the following procedures: collection and storage
of the audit data (network traffic packets, system calls, operating system or application commands),
data fragments integration, event extraction, audit record creation and audit data analysis.

Collection and storage of audit data supposes recording the following data items: data to collect
and to store, period of cleaning and archiving of audit database, degree of data management
centralization, storage location and tool, possibility of ciphered recording of information, etc. The
audit data should be protected, first of all, against unauthorized modification and, probably, disclosure.
Integration is necessary for unification and coordination of the recorded data formats received from
different sources.

One of the most important functions is audit data analysis. For detection of attacks and
unauthorized access, two classes of methods can be used: (1) statistical and (2) heuristic (or signature-
based). Statistical methods compute averaged values of parameters representing performance of the
computer software components (so-called “historical” profile of traffic) with subsequent on-line

 17

matching them against current values. Remarkable deflections can serve as evidence in favor of attack
like directional storm of inquires, fast spread computer virus, implantation into a system of an
infringer masked for a legal user, but behaving differently (“masquerade”), etc. Heuristic methods use
attack detection rules based on known scripts and patterns peculiar to particular attacks, and on
parameters of the monitored system that indicate breakdowns or infringer’s actions aiming at
unauthorized access. Heuristic methods are only able to detect known threats specified in the
knowledge base of IDS.

The main data sources of audit data are as follows ([Bace-00], [Proctor-01]):
(1) Host-based sources (or system subjects' activities - users, OS, applications, etc.);
(2) Network-based sources;
(3) Additional sources (out-of-band sources, for example, users’ messages, telephone switches,

physical security systems, etc.).
The first source corresponds to the real time actions performed by subjects of the defended system

(users, OS applications, etc.) on hosts. The actions recorded in the audit data have to be selected
among those that are the most representative in line with the security policy used.

Network traffic is one of the primary data sources used to detect violations of the security policy.
Network traffic consists of the transmitted network packets (frames). A standard network traffic
packet consists of three components: packet header (overhead data, sender and destination address,
and other fields); packet data fields; packet ending (checksum, delimiter, etc.).

In most cases, additional data are derived from users' messages on the basis of analysis of the
software (for example, the network service software), analysis of the processes executed, target file
types that can provide an evidence about attack (normally, digital “fingerprints” and banners), etc.

It is noteworthy to note that information from a single source cannot often be a solid argument in
favor of an attack or a violation of security policy. Results of fusion several data sources (preferably
independent from each other) lead to a more certain and reliable conclusion.

Let us describe in more detail the first and the second levels of audit data representation
([InterRep#1], [InterRep#2]).

Host-based audit data sources consist of three main sources ([Bace-00], [Proctor-01], [Amoroso-
99], [Northcutt-99]):

(1) Operating system audit trails (records of system events generated by particular operating
system mechanism, and records of operating system kernel events – system calls);

(2) System logs (file of records of system and application events normally registered in text
format by special programs);

(3) Audit data of applications.
Operating system audit trails are generated by particular auditing software of the operating system.

Audit trails are a collection of data reflecting operating system activities ordered chronologically and
recorded into audit file(s). Audit file is composed of audit records. Each record corresponds to a single
system event. The records represent user actions and processes (commands) invoked on behalf of
users. The commands can be local or remote. Each audit record is composed of a series of audit tokens
describing the fields within the record [Bace-00]. Operating system records events at kernel level
(reflecting system calls) and at user level (reflecting application events). Audit records contain
information concerning the subjects responsible for the event and concerning the objects associated
with the event. Most records also include information about the process initiating the event, and the
userID associated with the event. The latter sometimes includes current userID together with the
original userID (in case of the user identity changes). Kernel-level entries contain system call
arguments and return values, whereas user-level entries contain high-level descriptions of the event or
application-specific data.

System log is a file that contains records of various system events and settings. UNIX operating
systems provide a set of system logs, along with a common service, syslog, which supports generating
and updating event logs via the syslogd daemon. Although a rich lexicon of standard formats and
definitions can be used in generating and interpreting syslog entries, the security of the logs is
considered to be weaker than that of kernel-generated operating system audit trails [Bace-00]. There
exist several strategies to consolidate logs to fit it for intrusion detection. The first of them that is still

 18

widely used consists in saving raw logs in a database and in constructing afterwards queries that aim
to represent the log data from a variety of perspectives. In some cases, when external evidence
indicates that a problem has taken place during a particular time interval in the past, it can be very
helpful to simply isolate the logs corresponding to that interval. The respective data can be sorted then
according such attributes as user, system object, and occurrence order. In some cases, when analyzing
audit trails or network traffic, an administrator or IDS may be able to understand that something
suspicious is happened, but not able to confirm or dispel this suspicion. In this situation, synchronizing
events reflected in low-level kernel audit records with coarser-grained log events can sometimes help
to decide what further exploration and/or responses are required [Bace-00].

Application logs often represent the only available user-level marks of system activity. An example
of an application environment in which the need for audit trails and intrusion detection is apparent is
the database management system. In many large companies the most critical information resources are
housed and accessed strictly via the database management system.

The issue associated with application audit depicts the following intrusion detection challenges:
• Temporal ordering of audit events. In IDS, information is normally structured by recording or

assigning a time stamp to each event with the following saving the event stream in respective
order. If the time stamp has been missed it is hard to discover events that occur in particular
time.

• Composition (fusion) of audit trails from different applications. It is undoubtedly that this can
lead to the strengthening of the intrusion detection mechanisms.

Network traffic is the most common information source in modern IDSs. In network-based

approaches, information is collected from the network traffic stream as it travels within the network
segment.

In the Internet the TCP/IP protocol stack is used. The TCP/IP stack contains four protocol layers,
which are depicted in Fig.1.1.

Each layer adds header information to data of application layer.

The TCP layer adds header information to packets as shown in Fig.1.2.

APPLICATIO

N
Telnet FTP Gophe

r
SMT

P
HTTP BGP Finge

r
POP DNS SNM

P
RI
P

 Ping

TRANSPORT TCP UDP ICMP OSPF

INTERNET IP ARP
NETWORK

INTERFACE
Ethernet Token

Ring
FDDI X.25 Frame Relay SMDS ISDN ATM SLIP PPP

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Source Port Destination Port
Sequence Number

Acknowledgement Number
Offset (reserved) Flags Window

Checksum Urgent Pointer
Options ... (Padding)

Data ...

The packet with TCP header information is then forwarded to the Internet layer, where the IP

datagram header is attached. The content of IP packet headers is shown in Fig.1.3.

Fig.1.1. Simplified TCP/IP protocol stack

Fig.1.2. TCP segment form

 19

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Telnet IHL TOS Total Length
Identification Flags Fragment Offset

TTL Protocol Header Checksum
Source Address

Destination Address
Options ... (Padding)

Data ...

Finally, the packet is passed to the network interface and sent on to the intended destination, where

the TCP layer strips off the header information and reconstructs the data stream from the source
computer.

The network packets are captured by special software tools called packet sniffers. For example,
such packet sniffers as Microsoft Network Monitor and Windump can be used with on Windows
platform. There are a lot of different monitors used in Unix, for example, TCPdump, and Arpwatch.
For example, TCPdump is a network monitoring and data acquisition tool that performs filter
translation, packet acquisition, and packet display. The filter translation function provides a high-level
language for specification of filters, along with a user-transparent compiler and optimizer. In addition
to packet sniffers, different other network devices can yield information that affects the detection of
security problems. For example, a network management system can provide performance and
utilization statistics that are extremely helpful for understanding whether a detected problem is likely
to be security-related or due to other system factors.

One of the main additional data sources is users’ messages recorded manually. In some cases they
will help discover problems that are not detectable by other means. Another additional source is the
network service banners. Many network services in response to any query send definite reply called a
header, or a banner. The analysis of the banner data (e.g., the version number) provides opportunity
for conclusions about whether or not the network service is vulnerable. Digital fingerprint is based on
the comparison of the fingerprint of a fragment of software to a fingerprint of a known vulnerability.
The antivirus software that matches fragments of the scanned software against virus signatures using
virus detection database also uses this process. The varieties of this method are checksums and time
stamps of the analyzed software. A discrepancy between the current and the standard values indicates
the changes made to the checked object (program or data file) that could be result of an attack.

Examples of the audit data corresponding to different data sources were considered in [InterRep#1]
and [InterRep#2].

1.3. The IDLS Data Sources Taxonomies

The data, which can be used for intrusion detection learning, exist in many different forms and can
be received from different sources.

This information are gathered immediately from network traffic, from logs of operating systems,
logs of DBMS, logs of different applications, alerts and system messages of monitoring subsystems,
programs analyzing executable processes for unexpected behavior, programs detecting changes of
directories and files, etc.

For systematization of data sources, which can be used for intrusion detection learning, we shall
consider their taxonomies.

The taxonomy of data sources of possible intrusions into computer networks is a classification
scheme, which structures knowledge of this subject domain and determines the relations between units
of knowledge.

Let us select three main tags (characteristics) for distinguishing data sources:
(1) location of source and software generating data;

Fig. 1.3. IP-packet header format

 20

(2) level of data processing;
(3) an object, with which the data are associated. The data sources taxonomy, which classifies data

sources due to location of source and software generating data, is as follows:
(1) Network-based data sources;
(2) Host-based data sources;
(3) Other data sources.
Let us differentiate network-based sources depending on network layers and used protocol. So the

following sources can be distinguished:
 Link layer (Ethernet, Token Ring, FDDI, X.25, ATM, Frame Relay, ISDN, SLIP, PPP);
 Network layer (IP, ARP);
 Transport layer (TCP, UDP, ICMP, OSPF);
 Application layer (FTP, TELNET, Gopher, SMTP, HTTP, SNMP, BGP, r-service, X-

Windows, DNS, RIP, etc.).
Host-based sources of data are as follows:

 Operating system (OS) audit trail (system event records sequenced in chronological order and
generated by an OS auditing software);

 System logs (usually text files representing system and application events written by system
programs as a record/per time discrete). Examples of such system logs are log of commands
running by users indicating the resource used, most recent successful/ unsuccessful login for
each user, log of all login failures, all use of su command, log of all user logins/logouts and
system startups and shutdowns, etc.

 Application-related audit data (FTP log, TELNET log, Mail logs, HTTP log, DNS log,
Firewall logs, DBMS logs, etc.).

Other data sources can be represented by users’ messages informing about problems met; data
derived from telephone switches, physical security systems, etc.

The data sources taxonomy, which classifies data sources due to processing level, can be defined
by three sources:

(1) Primary (raw) sources;
(2) Preprocessed (filtered, cleaned) sources;
(3) Generalized sources.
Primary (raw) sources are network traffic (packets), host command (system calls) traffic, and data

from other sources.
The following preprocessed (filtered, cleared) sources can be selected: tcpdump (for packets),

preprocessed (cleaned) OS audit trail, system logs, and audit data of different applications.
Generalized sources results from computing by statistical processing programs (SPP). The data

sources taxonomy, which classifies data sources due to an object, with which the data are associated,
is the following:

1. For network-based sources:
• Packets;
• Connections;
• All network traffic.

2. For host-based sources:
• Traffic within a connection;
• Processes (Logins/logouts, System startups and shutdowns, Opening/closing of files, etc.);
• Users (Remote users, Local users);
• Files and directories (System files and directories, Users’ files and directories);
• Disks; System registry, etc.

Let us select data sources that are supposed to use in IDL case study. These are as follows: (1)
Network-based sources:

• Tcpdump (preprocessed IP, TCP, UDP, ICMP packets);
• Tcpdump-based statistical data.

(2) Host-based sources:

 21

• Preprocessed OS audit trail and statistical OS audit data;
• System logs (for example, log and statistical data of commands run by users plus resource;

Log and statistical data of all login failures; log and statistical data of all user
logins/logouts and system startups and shutdowns);

• Application audit data (for example, FTP logs and FTP statistical data, TELNET logs and
TELNET statistical data, mail logs and Mail statistical data, HTTP logs and HTTP
statistical data, DNS logs and DNS statistical data).

1.4. Features of Audit Data used for Knowledge-based Attack Detection

In order to be able to detect attacks in progress of accumulation of the audit data it is necessary to
identify them and differentiate from regular events. The list of main common patterns for knowledge-
based attack detection can be as follows ([Amoroso-99], [Lukazky-01]):

(1) Repetition of a suspicious action;
(2) Mistyped commands or responses during an automated sequence;
(3) Searching for and exploitation of known vulnerabilities;
(4) Inconsistencies in traffic parameters and contents;
(5) Unexpected attributes of some service request or packet;
(6) Unexplained problems in some service request, system, or environment.
Any means of protection (firewalls, authentication servers, access control systems, etc.) use one or

two of the conditions listed above, while IDS (depending on the implementation) must use all of them.

Repetition of a suspicious action. One of the best ways to detect an attack is to detect a repetition
of a suspicious action. This mechanism is based on a premise that if a malicious party does not know
how to get access to a resource at first attempt, it will try again. Examples of such actions include
scanning ports in search for available network services or fitting passwords. The illegal activity
detection algorithms should be able to detect such repetitions and decide after how many additional
attempts the conclusion can be made about the attack. It should be noted that if a malefactor knows
how to access a resource from the very beginning (or is able to intercept or fit an identifier and
password of an authorized user) and makes no mistakes, then this illegal intrusion will be virtually
impossible to detect. If the malefactor is able to create a testbed simulating the system he will attack
later, and practices on this testbed, aiming to imitate the patterns of authorized users, then it is often
impossible to detect such illegal activity. Detection of repetitive actions is a powerful approach,
because it helps detect unknown attacks of unknown types.

There are three methods of repetition detection:
• Thresholds control. In this case a certain threshold is controlled that allows distinguishing

between authorized and unauthorized repeats. Unauthorized repeats may correspond to both
regular errors and real attacks. In any case, all instances going over the threshold will be
detected. The practical operational experience allows for finer tuning of threshold values for
different system parts as opposed to default threshold values. A typical example of threshold
values specifying is the number of password input attempts. A wrong choice of a threshold
value may lead to either the false negative or false positive problem. In other words, a
threshold value that is too small will lead to triggering the attack detection system too often
(false detection), and a threshold value too great may lead to leaving some of the attacks
undetected.

• Control of the time between repeat instances. A typical example is detecting port scanning, i.e.
a given number of a node's port accesses per specified time interval. It is noteworthy that a
wrong choice of the time interval may also lead to the false negative and false positive
problems.

• Repetitive patterns control. Let us look at an example of this method. Through the SYN Flood
attack, a well-known hacker Kevin Mitnick was able to disrupt the operation of the Tsutomu
Shimomura's computer ([Northcutt-99]). In this example, a connection request (sending of a
SYN-packet) is viewed as pattern. Repetitive connection requests lead to the host queue

 22

overflow, and the node being unable to receive new requests. In this example, the overflow
took place after 8 requests for login service (port #513).

Mistyped commands or responses during an automated sequence. Another method of
unauthorized activity detection consists in detecting mistyped commands or responses during an
automated sequence. Inconsistency between expected and actual responses leads to the conclusion that
one of the parties in the information exchange has been substituted: either the requesting party, or the
responding party. For example, information about the sendmail system handshake procedure between
the mail processes is kept in the Unix event log. Command sequence in this procedure is predictable.
Audit data can reflect the fact that one of the processes sent mistyped requests or responses. This may
be caused by the malefactor's attempt to replace the mailing system software. A classic example of
such attack is shown in [Amoroso-99]. The malefactor used a widely known vulnerability in the
debugger mode of the sendmail program. He then tried to obtain password file for the mail gateway,
but made a typing mistake (symbols ^H), which caused detection.

Searching for and exploitation of known vulnerabilities. An attack detection system should
detect searching for and exploitation of known vulnerabilities. The use of automated search tools for
widely known vulnerabilities (the so-called security scanners) typically constitutes a separate category
of attack characteristics. There are a number of such tools, including both freeware utilities (Nmap,
Queso, or SATAN) and commercial software (Internet Scanner, Cisco Secure Scanner, etc.). The fact
that a security scanner is being used does not necessarily mean that an attack is in progress. These
tools may be used for scheduled security system component checks. Therefore, an additional analysis
of all registered occurrences of security scanner usage must take place. For example, if a short time
after a scheduled system scan another vulnerability scan is taking place on the same system, this may
mean that an attack is being undertaken.

Inconsistencies in traffic parameters and contents. Certain inconsistencies in traffic parameters
and contents of network traffic may also serve as indication of attacks.

Let us consider main types of these inconsistencies:
• Input external packets with internal source IP addresses. In case an attack detection system or

another access separation tool (firewall or router) cannot control the traffic direction, then an
“address spoofing” attack may be undertaken. This attack allows the malefactor to perform
illegal actions if they were coming from one of the nodes internal to the system, which usually
have less strict security requirements.

• Output internal packets with external source IP addresses. In this case, a malefactor would try
to make his activities in a mode to look as if activities were performed by a user external to
network, to send any investigation on the false track and to avert any suspicions from the
internal users.

• Unforeseen packet addresses. In this case, packets with unforeseen sender address (or receiver
port for protocols based on TCP/UDP) may serve as attack indications. The first example of
this case is a detection of the input packet with the IP-address that is inaccessible or impossible
for the external network. E.g., there are addressees that are not routed in the Internet. Among
such addresses are: 10.*.*.*, 172.16.0.0 — 172.31.255.255 and 192.168.*.*. Their description
is found in RFC 1918 ([RFC1918-96]). Besides the addresses listed above, there are a number
of address ranges, from which no packets can come into your network. The second example is
a Land attack, in which the sender port and address are the same as the receiver port and
address. Processing such a packet leads to infinite looping. The third example can be a
connection request by Telnet protocol from an unknown node or from a node with which there
is no trusting relationship.

• Unforeseen parameters of network packets. There are many attacks with unforeseen
parameters of network packets. The number of such attacks keeps growing, as malefactors
keep finding vulnerabilities in the TCP/IP stack implementations in different OS. Any packet
that does not comply with the RFC standard may lead to the malfunction in the communication
equipment that processes that packet, including not only routers or switches, but also firewalls
and IDS. Many attacks use illegal combinations of TCP-flags in network packets. Some

 23

combinations lead to malfunction of the host that processes such packets; other combinations
leave such packets undetected by some attack detection systems or firewalls. [RFC0793-81]
describes how different systems should respond to normal TCP-packets. However, RFC
documents do not say how a system should respond to incorrect TCP-packets. As a result,
different devices and OS respond differently to TCP-packets with illegal combinations of TCP-
flags. Illegal combinations can be detected by at least one of the characteristics listed below
[Frederick-00]:
o SYN + FIN, for these two flags cancel one another out. The first one establishes a

connection, while the second one ends it. Now many systems register such flag
combinations. However, the addition of another flag to this combination (e.g., SYN + FIN
+ PSH, SYN + FIN + RST, SYN + FIN + RST + PSH) leads to some attack detection
systems not being able to detect this altered scanning.

o ТСР-packets should never contain just one FIN flag. Typically, a single FIN flag is an
indicator of stealth FIN-scanning.

o ТСР-packets should have at least one flag (but not FIN).
o If a TCP-packet does not have the АСК flag and that packet is not the first one in the

three-way handshake then such packet is definitely incorrect, i.e. any TCP-packet should
have the АСК flag.

o Other suspicious combinations are RST+FIN, SYN+RST.
In some protocols, for example, in TCP, there are bits that are reserved for the future
expansion of the protocol. Presently these bits are not used, and therefore an appearance of
network packets in which they are used may mean unauthorized activities.
Other indicators of an incorrect network packet include:
o Sender or receiver port is 0 (for TCP- and UDP-packets);
o For TCP-packets with the ACK flag, the acknowledgement number can never be 0.

Very often, the network packet size that is larger than normal can be an indicator of an
attack. For example, most of the ICMP Echo Requests have an 8-byte header and a 56-byte
data field. When packets of irregular length appear, this may be an indicator of illegal activity.
E.g., the Loki attack allows tunneling different commands into the ICMP Echo Requests and
responses to them into the ICMP Echo Replies, which changes the data field size substantially
compared to normal. Another example could be the Ping of Death attack, which generates an
ICMP Echo Request with the packet size over 65,535 bytes. This attack is particularly
dangerous together with fragmentation of an ICMP request.

Another classic indicator that allows detecting an attack in most cases is the appearance of
fragmented network packets. Many network security tools are not able to collect fragmented
packets correctly, which leads either to the malfunction of these tools or to such packets
getting into the network under protection. The former is achieved through fragments with
incorrect displacement, and the latter – through the so-called tiny fragment attack. This attack
creates two TCP-fragments. The first one is so small that it does not even include a full TCP-
header, and more importantly, it contains no receiver port. The other fragment contains the rest
of the header. Many firewalls allow the first or both of the fragments to enter into a corporate
network.

• Network traffic anomalies. Network traffic anomalies are any deviations of the network
parameters from the predefined standards. Among them, the following parameters can be taken
into account: (1) load factor, (2) typical packet size, (3) average amount of fragmented packets,
etc. Any discrepancy may be characterized as an attack, e.g., a denial of service, or as regular
network problems caused by network equipment failures.

• Suspicious characteristics of the network traffic. The following are some of the suspicious
characteristics that may be indicators of attacks:
o Suspicious traffic from/to a specific address. In some cases, certain types of traffic or its

contents may be suspicious. It may be email messages containing the keywords “job
search”, access to servers www.job.ru, www.recruitment.com, www.vacation.com, or
running a protocol that is not expected to be used by the certain address (e.g., Telnet
requests from a bank operations clerk).

 24

o Suspicious traffic regardless of address. Certain types of traffic are suspicious regardless
of address, e.g., appearance of unregistered protocols in the network, or internal traffic
coming from addresses that don't belong to the network. In a Moscow bank, the
RealSecure system was able to detect unauthorized use of modem by one of the employees
who accessed his office computer from home and thus gained a higher-speed Internet
access [Lukazky-01]. Another example could be a transfer of highly confidential corporate
materials outside the corporate network, which can be detected by monitoring the contents
for the certain keywords (e.g., 'Confidential', 'Top Secret', etc.).

Unexpected attributes of some service request or packet. Requests by any system, network, or
user are characterized by certain attributes that describe the system, network or user profile. Such
profiles are used for monitoring and analyzing the object under control.

The most frequently used parameters that are helpful in identifying potential attacks are as follows:
(1) Time and date. Time and date are attributes often used to detect violations of security policies.

If, for example, the attack detection system registers an access to the system after the specified
time, on a weekend or during holiday time by a financial department employee, this could
serve as a reason for additional investigation. The employee is not performing well enough, or
they are working on a quarterly report, or somebody is trying to undertake an attack using
their login. There is also another example of using the time as attack indicator: if the time
period between the transaction request and confirmation is too short to properly acknowledge
the correctness of the transaction, this may be an indication of a fraud or an incorrect
transaction.

(2) Location. Usually a user logs into the system from the same computer, or accesses the Internet
through dial-up connection from the same telephone number. Thus, logging in from a different
computer or telephone number may be viewed as an anomaly. In a large network that is spread
spatially, the physical location at the time of access may also be monitored. Thus, a non-
typical location of access may be an indication of an attack.

(3) System resources. Characteristics of many system resources can also be indicators of attacks.
For example, an intensive higher-than-average load of the CPU may mean that various illegal
activities are taking place. This could occur either because of irregular operation of the system
or of some application, or because of an attack (e.g., the brute force attack). Other
characteristics of resources used to detect attacks include intensified use of RAM/HDD
memory, files, ports, etc.

(4) Service requests. Another method of detecting attacks consists in the analysis of services that
are most often requested by the subject (user, process, etc.) in their regular activity. E.g., if an
employee needs Internet access to do their job, then a list of most often needed Web servers
can be made, and then connections to servers that are not on the list may be viewed as
violations of security policies. Requesting certain files, sending and receiving of e-mail
messages to/from certain addresses, using certain services (e.g., FTP or Telnet) and other
types of activity may also be indicators of security policy violations.

(5) User and system profiles. The usage of profiles is a more general approach than the analysis of
services or system resources. User and system profiles include requests for these services and
resources. However, they also have new parameters that are specific to the user, process, or
node (e.g., peak and lowest load times, typical session duration, typical login and logout times,
etc). Discrepancies between the current and the typical values of such parameters pertaining to
the system under protection could indicate anomalous behavior.

Unexplained Problems in Service Requests, System, or Environment. Any problem in the
protected network should be a reason for additional investigation. Some of such unexplained problems
are as follows.

• Software and hardware problems. Router failure, server overload, or impossibility of starting
of a system process/service may be an indication of a “Denial of Service” attack.

• System resources problems. A sudden shortage of disk space may indicate a “bomb” in he
system (a small archived file that takes up hundreds of megabytes after being extracted).

 25

• Processing power problems. Delays in Internet gateway or application server responses may
camouflage the “Denial of Service” attack.

• Unexplained user behavior. Unexpected request for a resource that has never been requested
before may indicate the fact that a malefactor has intercepted or fitted a password of an
authorized user and is now trying to access some important information.

1.5. Basic Data Structures and Measurement Scales used for Data Representation.
Dimensionality and Size of the IDL Training and Testing Data

The data structures are characterized by relationships met by data items. They concern, in essence,
to “space” concepts: they can be represented to the scheme of organization of data in computer
memory. The important tag of data structure is a character of order of its units.

In practice the following typical structures of data are used for IDL:
• Time-based sequential (temporal, time-stamped) data. The specific feature of most audit data

(independently from level of its specification) is that each event of audit data flow is time
stamped. Time stamps can be measured in terms of real time or in terms of a discrete time
sequence);

• Sequential (ordered) data (when data are ordered, but time stamps are absent or non-relevant);
• Relational (non-sequential) data;
• Transactional data. These data describe different elements of some process, for instance,

commands of operating systems fulfilled as a single unit (all or anything) and transforming
system from one state to another.

The usual is to represent data utilized for training a classifier in the form of a table. In such a table
each column is mapped by the name of an attribute and each row corresponds to an “object”
(“instance”, “case”), for example, network packet, OS command, connection, etc. The tuple of
attributes of each table row corresponds to the particular object and is mapped to the “interpretation”
that is the label of a category (class) to which the object belongs. For example, interpretation can be
the status of connection (normal, abnormal), name of attack, etc. It is admissible that each table row
can be mapped to several categories. In the last case each of the categories corresponds to a particular
classification. An example is the case of hierarchical classification, in which each category
corresponds to the classification at a particular level of generalization-specialization. Data structured
according to a classification decision tree is one more example of the case, in which every line of the
respective data table storing data is assigned several interpretations.

The most significant property of each attribute is its measurement scale or “data type”. There exist
several measurement scales of data ([Suppes et al-63], [Pfanzagl-71]).

The typical measurement scales that are used for representation of IDL data are Binary (or
Boolean), Categorical, Linear ordered and Numerical. Analysis of measurement scales and their
properties was done in [InterRep#1].Thus, the task of intrusion detection learning to create distributed
knowledge base content concerns extraction of knowledge from large or very volumes of distributed
heterogeneous data and this circumstance in the main one determining the peculiarities of the
developed engineering methodology described below.

1.6. Design Principles and Methodology used in IDLS and IDS

Intrusion detection (ID) objective is to detect illegitimate operations of computer users or/and
inside and outside attacks on the basis of data and information received from multiple sources of the
computer network. Although the ID task is understood as classification of status of use of the
computer network, it possesses some distinctive peculiarities as compared with the conventional
classification tasks. The first distinction lies in the fact that ID in its nature is distributed classification
task. The second considerable difference is determined by the heterogeneity of the data represented in
the different sources, and by their possible incompleteness. The third important distinction is that
different attacks reveal themselves in different subsets of data sources, have different "life time" what
considerably affect on the technology of intrusion detection-associated classification.

 26

Intrusion detection learning (IDL) is a task of distributed data processing aiming at creation of
distributed knowledge bases and distributed decision making mechanisms of intrusion detection
systems. Within the Project, it is assumed that knowledge needed for ID is formed through using the
data mining and knowledge discovery technology, based on the accumulated experience represented in
the form of interpreted dataset used for training and testing of IDS components. Technology destined
for engineering of distributed knowledge bases through coordinated use of data mining and knowledge
discovery techniques is one of the central tasks of the Project.

An essential peculiarity of the intrusion detection-oriented data mining and knowledge discovery
technology is that in this technology it is necessary to take into account many heterogeneous sources
of data and information. Each such a source can only partially specify user activity, both normal and
abnormal. This is why the detection of abnormalities in usage of a computer and intrusions into
computer network can be successful if only the detection technology is capable to fuse information
from many heterogeneous sources and combine decisions reflecting the “traces” of abnormalities “to
restore” the complete “picture”.

While summarizing the properties of data available for IDL and ID (see sections 1.2–1.5) and also
peculiarities of the ID task itself, the following aspects of the above data and task entail the most
considerable difficulties in IDLS and IDS engineering:

• Formidable diversity of attacks: a great deal of existing attack types, potential diversity of ways
of realization of each of them and also increasing number of new attacks daily invented by
malefactors.

• Multiplicity and diversity of data sources reflecting users’ activity: information can be got from
numerous heterogeneous sensors monitoring input traffic, audit trails, operating system,
servers, applications, directories, databases of user profiles, etc. (see Fig.1.4).

…………………………………………………………………………………………

Network-based sources

IP
Hdr

TCP
Hdr

FTP
Data

FTP
Data

FTP
Data

FTP
Data

… … …… … IP
Hdr

TCP Hdr
(SYN)

IP
Hdr

TCP Hdr
(ACK)

IP
Hdr

TCP Hdr
(FIN)

Connection N

Host-based sources

TCPDUMP (WINDUMP)

Tcpdump

SPP

Tcpdump statistical data on Connection 1

Tcpdump statistical data on Connection N

…

IP
Hdr

TCP
Hdr

SMTP
Data

SMTP
Data

SMTP
Data

SMTP
Data

… … …… … IP
Hdr

TCP Hdr
(SYN)

IP
Hdr

TCP Hdr
(ACK)

IP
Hdr

TCP Hdr
(FIN)

Connection 1

Mail log Mail statistical data on Connection 1 SPP Mail service

FTP service FTP log FTP statistical data on Connection N SPP

System program 3

Filtered OS audit trail Auditing subsystem of OS

System program 2

System program 1

Log of commands run by
users plus resource

Log of all user logins/logouts and
 system startups and shutdowns

OS audit trail statistical data on Connection 1 SPP

Statistical data on Connection 1
SPP

OS audit trail statistical data on Connection N

Statistical data on Connection N

Statistical data on Connection 1
SPP

Statistical data on Connection N

Case 1

Case N

Fig.1.4. Illustration of the diversity of data sources and essence of the data identification problem

 27

• Large size and dimensionality of learning data: sensors measure and/or compute numerous
characteristics in real-time mode with high frequency.

• Diversity of data sources from several viewpoints: IP-packets and their components; symbolic
data measured or computed in categorical, Boolean and numerical scales; temporal sequences
of events with many attributes; data represented at different levels of abstraction
(generalization); data derived from raw data via preprocessing and high-level computations,
etc. (see Fig.1.4).

The above peculiarities of the task itself and learning data entail several new difficult problems
which at glance seem to be aside ones for IDL and ID technology but in practice they considerably
influence on both technologies [Goodman et al-97]. Let us briefly consider these problems.

The first problem associated with any IDL system engineering is development of the shared
thesaurus providing distributed software entities of the system in question with monosemantic
understanding of the terminology used for formal specification of intrusion detection domain. This
problem arises due to the fact that specifications of particular data sources can being developed by
particular experts. In most cases these processes are executed in parallel and independent mode.
Therefore, experts can denote different domain entities via the same terms and vice versa, they can
denote the same entities by different terms.

The second problem arises due to the fact that in different sources the same entities can be
represented in different data structures, but in meta-level all of them can be understood and used
equally.

According to the modern understanding, to cope with the both above problems it is necessary to
use meta-level specifications of data and knowledge shared by all software entities of the ID system.
As a rule, such meta-level specifications are built in terms of ontology comprising problem ontology,
application ontology and task ontology. In the Project exactly such an approach is used. However,
creation and maintenance of consistent ontology in context of the above peculiarities requires
development of a new functionalities and special software. In the developed architecture this task
concerns the area of responsibility of several agents dealing with local and global components of the
application ontology.

The third problem corresponds to a so-called entity identification problem [Goodman et al-97].
Each local data source specifies an entity (object to be classified) only partially. Its complete
specification is made up of data fragments distributed over the data sources. Therefore, a formal
technique to identify such fragments is needed to make possible retrieving, collecting and analyzing
together distributed data about the same user activity. It is noteworthy to notice that some fragments of
data associated with the above entity can be absent in some sources.

An explanation of this problem is given in Fig.1.4 and also in Fig.1.5.
The above problems together constitute the so-called data non-congruency problem [Goodman et

al-97], which considerably influences on the conceptual model, algorithmic basis and architecture of
both ID and IDL systems and on the methodology of their engineering.

1.7. Methodology of Multi-Agent Intrusion Detection Learning

Information fusion (IF) methodology developed for IDL systems is constituted by basic conceptual
solutions with regard to the following engineering aspects:

(1) Basic principle of data and information fusion, that is how to allocate data and information
processing functions to data source-based level and meta–level executing some processing and
decision making functions in centralized mode.

(2) Decision fusion (DF) meta-model that determines structure of decision making and combining in
IDS and IDLS.

 28

(3) Structure of IDS distributed knowledge base (KB), its interconnection with ontology and
structure of decision making mechanisms.

(4) Particular data mining and knowledge discovery techniques used by IDLS for engineering of
distributed KB and decision making mechanisms of IDS.

(5) Particular techniques used for decision combining.
(6) Methodology of Training and Testing Management.

All these aspects of the methodology were described in different details in [InterRep#2]. Let us
summarize this description in this section.
1.7.1. Basic Principles of Data and Information Fusion

There exist several variants of allocation of functions to source-based and centralized levels of data
and information processing proposed for IF ([Goodman et al-97]):

• Centralized data and information processing. This variant supposes straightforward
transmission of data from data sources into a central database for subsequent centralized data
and information fusion what on default means that both classification and learning of
classification are also performed in the centralized mode. This approach possesses the very
obvious drawbacks: (1) inefficiency in the case if the dimensionality of the entire data
representation space is too large; (2) very high communication overhead and data duplication.
If various data structures are used in different sources then this methodology becomes
practically infeasible. In fact, such an approach ignores the very idea of distributed processing.

• Combining knowledge bases of data sources. In this case knowledge bases designed on the
basis of particular data sources are simply combined in single KB which afterwards is used as
KB of a centralized classification system. This model is applicable in case if all local
knowledge bases are represented in a common structure, e.g. all of them are rule-based, and
the attributes of different sources are in some sense similar. Unfortunately, such an approach
is not applicable if data of sources are of large dimensionality and differs very much.

• Source data based decision fusion. In this model the decisions produced by local classification
mechanisms (base classifiers [Prodromidis et al-99b]) are combined in the meta–level. This
model is advantageous in many cases, in particular, if there are many data sources and there
are representative interpreted datasets sufficient for training and testing of both base and
meta–level classifiers combining decisions of the formers. The advantages of this IF model are

19

17

15

 14

12

 11
9

5

4

1

Attributes B # of
case 17

14

11

9

8
4

2

 1

Attributes C # of
case

 21

 15

 11

 9

 7

 4

 3

 1

Attributes A # of
case

Tcpdump: Network
and transport layer

DNS Application:
DNS system calls

Fig.1.5. Illustration of the essence of the data identification problem

Telnet application: Telnet
system calls

 29

as follows: it provides considerable decrease of communication overhead; it is applicable in
the case if data structures used in particular sources are very different; there exist a number of
effective and efficient methods of combining such decisions in upper level to obtain the final
one; it preserves the source data privacy if necessary. This methodology outperforms all
aforementioned approaches in many respects. It is accepted in this research as a component of
the methodology of data and information fusion.

1.7.2. Decision Fusion Meta-model
In the developed methodology Decision fusion (DF) meta-model is composed of three types of

structures:
a. Source-based decision making model. In the simple case if the dimensionality of the vector of

data source attributes is pretty small (about 20–25) and attribute representation structures are
more or less homogeneous of source, e.g. are measured either only in numerical or only in
discrete scales, then it can by satisfactory to use the single source-based base classifier, whose
decision is forwarded to meta–level. In amore complicated case if the dimensionality of the
attribute vector is high enough and/or the data of sources are too heterogeneous (measured in
different scales, are of different accuracies and reliabilities, have missed values of attributes,
etc.), then it is reasonable for such a data source to provide with several base classifiers, such
that they produce classifications on the basis of different sets of attributes of trained on the
basis of different subsets of training and testing datasets. The decisions produced by these
classifiers can be forwarded to the meta–level for combining with decision produced by base
classifiers of other sources. An alternative is to combine the data source-based decisions
within particular data source (Fig.1.6).

b. Meta-model of decision combining (“decision making tree”) is constituted by the set of base
classifiers of data sources, one or several
meta–classifiers and structure given over the
base classifiers. In the meta–level, the
system combines either decisions of
particular base classifiers, or combined
decisions of base classifiers, or combination
of both above variants. It is important to note
that all decisions to be combined are
measured either in binary or in cardinal
scales. Within classification model used in
this research, any classification task for
multiple classes is reduced to a number of
binary (pair wise) classification tasks and
that is why below considered input data of a
decision combiner is a binary vector of
attributes.

c. Meta-model of classification (“classification tree”) is used to reduce a classification task in
which the number of classes is more than two, to a number of binary (“pair wise”)
classification tasks. To each node of classification tree a decision making task is mapped that
includes all the tasks of the base classifiers and also meta–classifiers supposed by decision
making tree. Therefore, each node of the classification tree is mapped a decision making tree
that is composed of meta-model of decision combining and data source decision making
models associated with the particular data sources.

Structure of Decision Fusion meta–model, its components and their interactions are explained in
Fig.1.7.
1.7.3. Structure of IDS Distributed Knowledge Base

In the developed methodology knowledge base of IDS consists of knowledge bases of particular
classifiers performing together information fusion for intrusion detection. It turn, the structure of
information fusion comprising classification tree and decision making trees associated with each node

Meta-level classifier

Fig.1.6. Data source decision making model:
General case

… Base classifier r
of data source

Local database (database of source)
ID of
case

Attributes

Base classifier
1 of data source

To decision combining component

 30

of the former unambiguously
determines the structure of IDS
knowledge base (KB). A KB
peculiarity is that it is distributed over
hosts, in which the data of particular
sources are stored and part of KB is
situated in a host, in which combining
of source-based decisions is performed.

Distribution of KB components as
well as their heterogeneity influence on
the architecture of IDS and IDLS and
also on methodology of their design.

In overall structure of distributed
knowledge base the ontology is
considered as top-level part of it. Such
an understanding of the ontology role
makes it easier to effectively resolve
the data non-congruency problem discussed in section 1.6. Let us consider the developed structure of
the ontology. Its central component, application ontology1 is shared by all software entities of applied
IDLS. Shared component of ontology ("shared ontology") explicitly represents all the notions
(terminology) used within IDLS and all existing relationships between them thus providing consistent
use and interpretations of terminology within IDLS including unambiguous understanding of
messages which the agents of multi-agent IDLS exchange.

According to the developed methodology of joint representation of ontology and distributed
knowledge base, the ontology and IDLS distributed knowledge base are structured as it is shown in
Fig.1.8. In it, upper level corresponds to the problem ontology that is shared component representing
its common part used in any applied IDLS. The next level represents shared ontology specifying
particular application of IDLS. Exactly this level of ontology must be developed in such a way that
resolves the problems mentioned in section 1.6, which arise due to distribution and heterogeneity of
data and respective components of KB. The next level of ontology specifies mostly "private" notions
of particular source-based components of IDLS.

Thus, the overall structure of IDLS KB and decision making software consists of ontology and
distributed KB components, which support decision making procedures performed by particular base–

1 Here and below if we say “application ontology” we mean an ontology of a concrete application from the
intrusion detection and intrusion detection learning domain.

Fig.1.8. Tower of IDLS ontology components

Problem ontology
(shared component)

…
Private

component of
application
ontology 1

Private
component of

application
ontology k

Private
component of

application
ontology 2

Shared part of application ontology

Distributed knowledge base

Root node:
Any class of situations=

{Class1, Class2, Class3, Class4}

DMT 3

Meta–class 2

Class4 Class2

Meta-class 1

Class3 Class1

DMT 2

DMT1

Example of detailed structure of decision making
tree used in Root node

 DS3 DS2 DS1

MC-3

MC-1 MC-2

BC-1 BC-2 BC-3

Level of source-based classification

Level 1of meta-
classification

Level 2 of meta-
classification

Fig.1.7. Example of Data Fusion meta–model composing classification and decision making trees.
Denotations: "DMT" – Decision making tree; "DS"-Data source; "BC"–Base classifier; "MC"-meta–classifier

 31

and meta–classifiers structured according to DF meta–model. Let us remind that DF meta–model, in
turn, consists of classification tree (in the upper level) and the set of decision trees corresponding to
each node of the former.

Using of the ontology-based approach to IDLS knowledge base representation resulted in one
more untypical problem to be resolved within IDLS. This problem is caused by the fact that
application ontology notions are specified in terms of ontology language (in the Project–in terms of
the XML language). However, the ontology notion instances (interpretations) are represented in a
database language. To provide interaction of ontology and databases of sources (accessibility of data
requested in ontology terms), a special gateway destined for transformation of queries to data base
from XML into SQL language is to be developed.

A more detailed description of the conceptual model of ontology, its interconnection with
distributed knowledge base and description of the algorithms intended for ontology-based resolution
of data non-congruency problem was given in [InterRep#2].
1.7.4. Data Mining and Knowledge Discovery Techniques used for Engineering of Distributed
Knowledge Bases and Decision Making Mechanisms of IDS

Several techniques for data mining and knowledge discovery are used in the developed IDLS
technology. Their detailed description and also specialization (except technique for temporal data
mining) were considered in detail in [InterRep#2], and that is why this section intends only to remind
them. All the techniques described below are implemented as the classes of the library of training and
testing methods of IDLS. In it, five different techniques are used. They are destined for extraction of
production rules and association rules from relational and transactional databases which attributes are
numerical, binary and categorical and also for mining of temporal data (sequences of packet headers
and others). Let us briefly remind them.

Visual Analytical Mining (VAM) is a technique, which is destined for extraction of production rules
and/or decision trees from databases containing attributes represented in numerical and linear ordered
measurement scales ([Gorodetski et al-02f], [Gorodetski et al-00]). This technique is appropriately
effective. In particular, it makes it possible to extract production rules specified in terms of the first
order logic fragment which does not use quantifiers.

GK2 is a technique for extraction of production rules from data represented in discrete scales
(binary, categorical, integer and linear-ordered) ([Gorodetski et al-96], [Gorodetski et al-02e]). This
technique is conceptually close to the well known AQ technique [Michalski-83], but uses different
algorithm for extraction of minimal rules.

FP-grows algorithm is a technique destined for association rule mining [Han et al-01]. It is well
known within data mining and knowledge discovery community as very efficient one. Its formal and
informal description can be found in [Han et al-01].

An approach developed and used in this Project for temporal data mining is of statistical nature and
is based on statistical properties of the temporal vector-wise sequences of binary and/or numerical
data. This method is described in section 1.6.5 in detail.

The methods of extracting rules from data described above enable engineering of the knowledge
necessary for the decision making by base classifiers. Let us consider the question how the base
classifiers use the rules for producing of decisions in respect to new incoming data.

According to the adopted IF methodology, in each node of the classification tree, and accordingly,
in each node of decision making tree, the task of binary classification is being solved. Let us designate
classes (meta–classes) that correspond to any given node of classification tree as Q and Q . The
production rule mining techniques are formed two sets of rules },...,,{ 21

+++
kRRR and },...,,{ 21

−−−
lRRR ,

where the first set is such that it “argues in favor” of class Q , i.e. contains rules of the type
QFR ii ⊃= ++ , i=1,2,…,k, and the second set of rules “argues in favor” of class Q , i.e. contains rules

of the type QFR ji ⊃= −− , i=1,2,…,l. For brevity, these rules will be called arguments hereinafter.
Based on the training and testing datasets, a four cell confusion matrix of probabilities of correct and
incorrect classification, and consequently, a numerical value of a metric adopted to assess the accuracy

 32

of the rule, can be set up in correspondence to each of the arguments. The choice of a metric is
application requirement dependent.

Several decision making schemes can be used for the above variant of knowledge base structure.
The first and relatively simple variant of decision making consists in counting the weights of the
“positive” and the “negative” arguments in favor of one and the other decision (here, the values of the
metric that determines accuracy of the rules calculated for the rules, are used as weights), and the
conclusion is made in favor of that of the classes whose arguments are “stronger”. Essentially, this
variant of decision making constitutes a well-known method called “weighted voting”.

Another, more promising variant is based on the use of probabilistic dependencies between the
“pro” and “contra” rules of the class Q. These probabilistic dependencies (calculated, for example, as
joint probabilities of different subsets of arguments– pairs of arguments, triplets of arguments, etc. on
the training and testing datasets) may be formalized in terms of Algebraic Bayesian Network
[Gorodetski-92], which constitutes one of the ways of representing data with uncertainty. Further, for
the decision making, the Bayesian inference in the Algebraic Bayesian Network can be effectively
used for estimation of the classes’ "a posteriori" probabilities. Unlike the first approach, which
implicitly assumes the independence of the rules of the base classifier knowledge base, this approach
utilizes the existing dependencies explicitly, which secures against adding up weights of rules that
correlate very closely and essentially duplicate one another.

The decision making method based on rules that has been implemented can be characterized as a
method based on argumentation that utilizes the ideas of Inferential Theory of Learning developed by
R.Michalski [Michalski et al-93]. This theory views learning as a knowledge mining through
knowledge space transformation.. From such a viewpoint, each hypothesis generated by an inductive
learning procedure can be considered as twofold. On the one hand, such a hypothesis can be
considered as a new generalized attribute specifying the data of a category and forming a new
dimension of this data specification. The set of such hypotheses, in turn, can be considered as a new
specification of the representation space determined by the primary set of attributes, specifying
situation to be classified. On the other hand, a new hypothesis (for example, a rule) may represent a
decision procedure that is supposed to be used to discriminate the situation of one category from those
of the other ones. Thus, in this case, the set of hypotheses can be viewed as a decision structure
[Michalski et al-97].

In the implemented model of decision making the rules (arguments) extracted by base classifiers
are considered as a new specification of the representation space determined by the primary set of
attribute. All of these “new attributes” are binary. For these attributes training and testing datasets are
computed from the primary dataset. These datasets are subsequently used for training and testing of
base classifiers. As a rule, this step results in extraction more “strong” arguments “pro” and “contra”
of the class Q. Experience proved that in any case, this process can be repeated up to the situation in
which the decision making procedure is expressed by a single rule given over truth values of the lower
level attributes and decision is determined by its truth value for an instance under classification. From
theoretical point of view, such a procedure uses specification of knowledge in terms of a higher-level
predicate logic.
1.7.5. Temporal Data Mining for Anomaly Detection

It is well known that temporal data in itself is a very important and informative source of
information and knowledge needed for reliable detection of anomalies in user behavior and/or some
kind of intrusions in computer networks. It also plays an important role as a source of information
and/or alerts supplementing other data sources used in computer and information security systems.
According to the accepted in the Project taxonomy of data sources used in computer network security
systems, temporal data are presented at each level that are

(1) Network-based level, where it specifies the sequence of packets' headers associated with each
particular connection;

(2) Host-based level, where they, for example, specifies sequences of operating system calls, and
(3) Application-based level.
It is also well known that different types of users' suspicious and abnormal activities are showed

within different subsets of data sources used in computer network security systems, can be of different

 33

structure and have different duration. Respectively, detection of the status of the current connection
implies combining knowledge, alerts and particular decisions. Exactly this idea forms the basis of
intrusion detection technology being developed within this Project

It is important to note that temporal data mining and knowledge discovery in itself and also as
applied to intrusion detection is currently not well developed scientific area although it is common
understanding in the respective scientific community that the future in this area belong to the
behavior-based detection technologies [Stolfo-03].

The most of the existing approaches to temporal data mining exploit statistical basis. An approach
used in this Project1 is also of statistical nature and statistical properties of the temporal vector-wise
sequences of binary and/or numerical data. In the context of the Project, development of temporal data
mining and knowledge discovery approaches is not a subject of the research and that is why it is below
described mostly conceptually with limited formal details because it aims only to provide readers with
general understanding of its idea. This approach is described as applied to mining of temporal
sequences (streams) of packets headers of current connection. Thus, this data together with data of
Tcpdumps corresponds to network-based level.

An algorithm implementing the approach described below is included into the library of training
and testing methods of MAS prototype destined for learning of intrusion.

Let time be a sequence of increasing integers 1,2 …, and a discrete vector-wise stream of temporal
data is observed over this time, i.e.

,...X)k(X,...,X)1(X k1 ==

Specifically, this data stream is a temporal sequence of headers of packets. Each component of the
vector X is associated with a name of flag from the ordered set {URG, ACK, PSH, RST, SIN, FIN}. The
flag can be present or absent in the respective position of vector X and its dimension is equal to 6.
Components of the vector X take values from the set {0,1}, at that if a flag is present in the packet
header then respective component of binary vector X takes value "1", otherwise–"0".

Sequence of Packet Headers (SPH) can correspond to a normal connection or to abnormal one. For
example, it can correspond to an attack (known or unknown). It is noteworthy to note that the above
task is called as "anomaly detection" and exactly it is the subject of investigation within this section. It
is a binary classification task in which one class corresponds to a normal user behavior ("normal
connection") and the alternative is "abnormal' including suspicious behavior stimulating alert and
attacks of any kind.

The basic idea of the developed approach is explained in Fig.1.9. In it, two simple functions given
over finite time interval are presented: sinusoid and linear function. Let us suppose that both of them
are approximated in two ways: in the first one the Fourier's series are used and in the second one –
Taylor's series. It is naturally, that a sinusoid-like function can be precisely approximated by no more
than two series members, but in case of use for approximation Taylor's series an infinite number of
members are necessary to use. Foe linear-like function the situation is opposite: it would be enough
only no more than two members for its exact approximation by Taylor's series and infinite number of
members of Fourier's series.

Let us suppose that it is necessary to classify two groups of functions: (1) functions that are
representable with given accuracy by linear combinations of n sinusoids of multiple spectrum, and (2)
functions that are representable with given accuracy by polynomials of degree n. Two simple
approaches can be used to solve the task under consideration. In the first of them, the input function is
approximated by Fourier's series based on given finite set of sinusoids of multiple spectrums and the
resulting discrepancy is compared with some predefined threshold. If the above discrepancy is upper
than threshold then the input function is classified a sinusoid-like, otherwise it is classified as linear-
like function. In the second approach one can use linear approximation of input function with a
decision rule that is similar to the one described for the first approach.

The main conceptually important conclusion from the above consideration is as follows. If for a
given class of data streams an optimal finite functional basis is built and it is other than such a basis
for other class of function, then the difference in optimal functional bases can be used to discern

1 The basic ideas of this approach were developed by the Report authors several years ago.

 34

functions of one class from functions of other one. Actually, the sequences of the firs class will at
average be more precisely approximated in terms of its optimal functional basis than in terms of the
functional basis of alternative class of functions.

Thus, if each class of sequences is approximated by use of its specific (optimal in some sense)

functional basis then a threshold-like criterion can be used for binary classification of sequences
belonging to given finite set of classes. If the sequences belong to a Hilbert space (in it the norm is
defined as inner product) or in its particular case, Euclidean space that it is reasonable a full-range
orthogonal basis to select, since this selection simplifies computation of such an approximation
coefficients and gives birth new types of classification approaches.

Thus, for practical use the above described approach to temporal data classification and respective
learning algorithms, the following tasks have to be solved:

(1) To compute finite set of "optimal orthogonal basis functions" corresponding to normal behavior
of users. Such a basis functions has to provide at average a higher accuracy of approximation of the
data streams corresponding to normal connections as compared with the approximation accuracy of
data streams specifying abnormal accuracy.

(2) To determine a justified value of the classification threshold.
(3) To build an algorithm for approximation of the input data sequences (stream of packet headers)

on the basis of the selected (computed) functional basis and also to build an algorithm of discrepancy
computing.

(4) To introduce a classification rule, for example, in terms of threshold-like classification
criterion, which performs classification on the basis of "Self"–"Non-self" principle.

The first and second tasks constitute the essence of the anomaly detection learning procedure, and
the third and fourth ones provide classification rule design.

It should be noted that although the above described classification approach intends binary
classification, after slight adaptation it can also be used in multiple classification tasks. For such an
adaptation it is necessary to exploit an idea of binary classification tree performing pair-wise (binary)
classification in each node. Other variant of adaptation is computation of particular optimal basis
functions for each class of data streams.

Let us consider the developed formal model of temporal data mining for anomaly detection and
detection algorithm.

Let {Normal} be training and testing sample of binary sequences interpreted as belonging to
"Normal" connections (user behavior). Due to diversity of users behavior classified as "Normal" the
sample {Normal} can be considered as a subset of instances of vector-wise random sequences. Denote
as {Abnormal} a sample of vector-wise instances of random sequences corresponding to abnormal
connections, i.e. corresponding to abnormal users' behaviors.

t

t
--approximation by Fourier’s
 series (infinite)

–approximation by Taylor's
 series (finite)

–approximation by Taylor's
 series (infinite)

--approximation by Fourier’s
 series (finite)

Fig.1.9. Towards the temporal data based classification

kN

1k k0

10

taaF

)t(SinaaF

∑ =
+=

+= ω

kN

1k k0

10

taaF

)t(SinaaF

∑ =
+=

+= ω

 35

Below a simplest statistical model of the sample {Normal} is considered. In it, the sample of given
class of vector-wise random sequences are specified by its mathematical expectation vector
M[iX]= iX depending on time i=1,2,… and also by mutual covariance matrix W(ji XX ,)= jiW , =

M[(ii XX −)(ii XX −) T], i, j∈1, 2, 3…...(indexes i, j correspond to time points).
A peculiarity of the anomaly detection task is that it is considered within each particular

connection. In general case classification of a dynamic process (in particular, discrete sequence) is
performed on the basis of a metric which evaluate a measure of proximity to or similarity with the
class etalon model and the classification procedure as a rule exploits a threshold algorithm. Such a
metrics can also be presented in terms of inner product of the input process and etalon process of some
class or have a sense of conditional probability, etc.

For classification of dynamic processes, it is useful to involve some ideas from theory of signal
determination, in which a metric is also used for estimation of the probabilities of the "loss of signal"
(false negative) and "false alarm" (false positive). In anomaly detection task it is very important to
form an alert as earlier as possible to prevent negative consequences of attacks. A prognosis of input
sequences makes it possible to shorten a delay in anomaly detection.

Let us consider briefly formal aspects of temporal data mining and knowledge discovery used in
the implemented prototype for anomaly detection while omitting any proofs. Let us note that learning
and classification algorithms described below differ slightly from algorithms implemented in the
software prototype of multi-agent intrusion detection system although the basic ideas are the same in
both cases. A reason of the above difference is that some theoretical changes were made based on
experimental results.

Let us represent a discrete random process 1X , 2X , 3X ,…by its approximation which uses linear
combination of given finite set of functions:

[]




















==−

n
T

in

2
T

i2

1
T

i1

T
in

T
ni2

T
2i1

T
1ii

A)t(f
...

A)t(f
A)t(f

)t(fA...)t(fA)t(fAXX , (1.1)

where Tk
s

k
2

k
1k]a,...,a,a[A = – vector of the coefficients of the sequence approximation,1,)t(f ik –

vector-wise functions, s n≤ , n is the dimensionality of the vector X.
Let vector-wise functions)t(f ik are orthogonal and normalized, i.e.

}otherwise0and,srif,1{)t(f)t(f ikr
N

1i iks −==∑ =

The approximation coefficients of an arbitrary vector-wise sequence X, if the respective functions
are orthogonal and normalized are to be found as follows:

=jA ∑ =

N

1i jj)i(f)i(x (1.2)

As it was indicated above, the choice of a set of orthogonal normalized functions for approximation
of the instances of a sample of the sequences of a given class must be made via minimization of a
similarity or a proximity metrics. In this Project, the mathematical expectation of the root mean square
error is used as a metric and a set of such functions is built for the set of sequences of class {Normal}.
Thus, the selected metrics is as follows:

Q=∑ −

N

1i iQ , iQ =∑ =

N

1i
M[(ii XX −) T (ii XX −)]. (1.3)

1 It is supposed that vectors are represented as columns.

 36

(N–the sequence length). In other words, selection of the first approximation function ()i(f0 is equal

to iX) must be made via minimization of the root mean squire of error for the case if a simple
approximation function is used. The second approximation function of the functional basis must be
orthogonal to the first one while minimizing the above error, etc.

Let us consider the simplest approximate point-wise algorithm of the computation of the set of
optimal vector-wise functions)(ifk , i∈1, 2,…N, k=1,2,…,s, which ignores cross correlations of the
components of the sequences iX for different moments of the time. Each such function is computed
in a table-wise form which columns are mapped to the time i∈{1,2,…,N} 1.

Let us apply to the vector ii XX − a linear transform at an arbitrary time moment:

iY = T
iB (ii XX −), (1.4)

where iB =[)(),...,(),(21 ibibib n]–matrix of the size n× s which columns are)(1 ib ,…,)(ibn , n–
dimensionality of the vector iX (in our case it is equal to 6), s–the number of columns (the number of

approximation members), iY = T
s21)]i(y),...,i(y),i(y[,)(iyr =))((ii

T
r XXib − . At that the

transform (1.9) is such that

)]i(y)i(y[M vr =0 при r≠ v и)]i(y)i(y[M vr =1 при r=v. (1.5)

Let us further cal this transform (point-wise) quasi-orthogonalization of a random process.
Formally, the last conditions (1.5) can be represented as follows:

sii
T
r bWb =0 и rii

T
r bWb =1 (1.6)

respectively what in matrix form can be written as follows:

iii
T
i BWB =E

Let us note that if matrix iiW is of the rank s<n then the number of components of the vector iY is
equal to s, matrix E is of size s× s, and matrix iB is rectangular of size n× s.

From the last formula the following important ones are entailed:

ii
T
ii WBB =+

(ii XX −)= +)B(T
i iY (1.7)

where +
iB is pseudo-inverse matrix in respect to matrix iB [Rao-68].

Let us consider a random value corresponding to a discrepancy of an instance X of the random
process and root mean squire error of the latter averaged in time:

∆ =(1/N)∑ =

N

1i
(ii XX −) T (ii XX −)=(1/N)∑ =

N

1i i∆

The average of the above discrepancy is as follows:

Q=(1/N)∑ −

N

1i iQ = (1/N) ∑ =

N

1i
M[(ii XX −) T (ii XX −)]. (1.8)

While taking into account formula (1.7) expression for metrics ∆ and Q can be presented in terms
of components of the vector iY

1An algorithm which takes into account temporal cross correlations of the vector X components is developed but
it is not described here because it have not yet been validated via simulation.

 37

2∆ =(1/N)∑ =

N

1i
(ii XX −) T (ii XX −)=(1/N)∑ =

N

1i
T

iY ii
T
i WB iiW iB iY

and

Q=(1/N)∑ −

N

1i iQ = (1/N) ∑ =

N

1i
M[T

iY ii
T
i WB iiW iB iY] (1.9)

While taking into account the formula (1.5), the latter one can be re-written as follows:

Q =(1/N)∑ ∑= =

N

1i

n

1j jjj)i(y)i(y[M)i(λ]= ∑ ∑= =

n

1i

N

1j j)i()N/1(λ (1.10)

and in it

)i(bWW)i(b)i(jiiii
T
jj =λ (1.11)

Let us consider how the matrix iB can be built. Generally said, it starts from search for)(1 ib ,
i∈{1,2,…,N} while maximizing

1I =∑ =

N

1i 1)i(λ (1.12)

(see (1.11) concerning how the values)i(jλ are computed).

In the next step the vector)(2 ib is to be computed using the analogous optimization criteria like
(1.12) but with additional constraints representing the orthogonality condition (1.6):

21)(bWib ii
T (i)=0 (1.13)

While continuing such process for r=1,2…s≤ n, and adding in each next step additional constraints
representing the orthogonality condition (1.6) for functions)i(y j in respect to the columns of matrix

iB computed in the previous steps. The number of such steps cannot be more than the rank of the
matrix iiW .

In further part of this subsection the function ry (i)=))((ii
T
r XXib − is called as r-th principal

component of the metrics (1.9), and)(irλ is called as its weight in the time point i. The sum

∑ ∑= =
= N

1i

m

1j jm)i(I λ (1.14)

m≤ s, is called as main part of the metrics (1.9) of degree m. Let us further describe how the above
steps aiming at design the matrices iB , i=1,2,…,N, are to be carried out1.

It can be proved that if to ignore cross correlations of vector X components for different time
points, then the task of computation of any)i(b j , j=1,2,…,s (s n≤) is reduced to the series of
eigenvalue and eigenvector tasks formulated for each time point i=1,2,…,N. In the case under
consideration each last task is equal to the principal component analysis task.

Thus, let j=1 and let us solve for each i=1,2,...,N the following principal component analysis task:

0E)i(Wii =− λ (1.15)

1 Let us note that all the below transformations suppose that the matrix W is nonsingular for all values of time
i=1,2,…,N, although this is not the case for practice. Nevertheless, if this matrix is singular, the derivation way
is very analogous with some distinctions mostly concerning more accurate manipulations with pseudo-inverse
matrices. The given description makes it clearer the general idea understanding.

 38

Let)i(),...,i(),i(s21 λλλ are the eigenvalues (s is equal to the rank of the matrix iiW 1) and
)i(b),...,i(b),i(b s21 are the eigenvector forming the transformation iB of the vector X at the time

t=i. This operation is performed for all values of i=1,2,...,N and exactly it is the most complicate and
time consuming operation of the temporal data mining used in this Project for behavior-based anomaly
detection.

The first practically important conclusion that can be entailed from the previous discussion is as
follows. If the formula (1.7) represent in the form

=− ii XX i
2/1

ii
2/1

ii
T
i Y)W()W(B , (1.16)

then it looks as approximation of an input sequence with orthogonal set of functions 2/1
ii

T
i)W(B and

these functions are optimized according to the criterion (1.3) and ordered in decreased fashion
according to their contribution into the potential accuracy of the approximation (1.16) of the vector

ii XX − (see also formulae (1.9)–(1.11)). In approximation (1.16) the coefficients presented by the

components of the vector i
2/1

ii Y)W(are variable and this is an important distinction as compared
with the representation (1) under search. Fortunately, the simulation showed that both matrix iiW and
vector iY for the sequences of the class "Normal" are not very variable. While taking into account such
properties, it was accepted one more simplification according to which instead of variable vectors

i
2/1

ii Y)W(the permanent vectors are used in the approximation (1.16). In other words, the

components of the approximation (1.1) are as follows:)t(f ik = 2/1
ii

T
i)W(B , and vectors jA ,

j=1,2,…,s, are the subjects of the computations according to the formulae (1.2).
Thus, while summarizing the above discussion and derivations, the algorithm used in this Project

for temporal data mining aiming at intrusion detection learning in case of binary classification, is as
follows:
1. To find the vectors iX and covariance matrices iiW , and mutual covariance matrices ikW for all i,
k=1,2,…,N, k>i, by use of sample of sequences (headers of packets) {Normal}.
2. To build the transformation (1.16) via solving the series of task (1.15) that are like principal
component analysis
3. To select value of m, presented in formula (1.14), which makes it to justify the decrease of the
dimensionality of the representation space by use of m s≤ first columns of the matrix iB , i=1,2,…,s, in

formula (1.16) corresponding to its largest values of the sums ∑ =

N

1i r)i(λ , r=1,2,…,m. The value of m

is selected in such a way that provides the rest percentage of the sum ∑ ∑= +=
= N

1i

s

1mj jrest)i(I λ less

than a chosen threshold (say, 5% or other validated on the basis of simulation). The latter makes it
possible to speed the intrusion detection2. Note that this step can be also interpreted as informative
feature extraction. The values of)i(rλ are computed according to formula (1.11).

The anomaly detection algorithm based on processing of the input sequence of the packets headers
which uses additionally a multi-dimensional regression for sequence development prognosis is
described below. Note that it uses prediction of sequences within time windows of the size 123.

Let R is the current number of input packet received.

1 It is admitted that this matrix can be singular and that is why we further use pseudo-inversion instead if
inversion.
2 This value is interpreted as percentage of the approximation error metrics arisen due to ignorance of the less
informative members of approximation.
3 The size N=12 was selected due to the fact that that this size "covers" all anomalies that where included in the
training and testing sample of sequences {Abnormal}.

 39

1. On the basis of R values of iX received to the current time, a prognosis of this sequence is
computed for the forthcoming vectors iX , i=R+1, …,N:

)ZZ()W(WZZ 11
Z

11
Z

2122 −+= + (1.17)

where









=

2

1
N Z

Z
Z , 








=

2221

1211
N WW

WW
W ,

TT
R

T
2

T
11]X,...,X,X[Z = –vector, comprising the packet headers of a particular connection, which

have been received to the current time;
TT

N
T

2R
T

1R2]X,...,X,X[Z ++= –the analogous vector computed on the basis of the prognosis (1.17);

NWZ , 11WZ , 12WZ , 21WZ и 22WZ –covariance matrices of the vector NZ and its components

1Z , 2Z .
Let us again emphasize that vector 1Z is known and vector 2Z is estimated on the basis of the

multidimensional regression (1.17). In should be also remarked that the components of the vector 2Z
are presented in numerical scale but not in binary since they are averaged and can be interpreted as
conditional probabilities of the presence of the respective flags in the packet headers. Use of prognosis
is very important because it makes anomaly detection procedure quicker.

2. Let =Z ,X,...,X,X[]Z,Z[T
R

T
2

T
1

TT
2

T
1 = TT

N
T

2R
T

1R]X,...,X,X ++ be an instance of input
sequence with added part computed on the basis of prognosis (17). On the basis of known (due to
learning procedure) vector-wise functions)t(f ik =lines of matrix 2/1

ii
T
i)W(B , the vectors jA ,

j=1,2,…,s, are found according to the formulae (1.2). This procedure results in obtaining of the
approximation of input sequence with functional basis of class "Normal". Let us denote this
approximation by symbol iX~

3. The value of the approximation discrepancy (to be compared with a selected threshold) is
computed:

∑ =
−−= N

1i ii
T

ii)XX~()XX~(Ψ (1.18)

4. The decision corresponding to the truth value of the predicate

If ΨΨ < then Normal otherwise "Abnormal" (1.19)

is made.

Let us remind that the threshold Ψ is determined via testing procedure. The last predicate can also
be added by the possible decision "Alert" if the value of Ψ is increasing and is more that some
intermediate threshold that is less than threshold Ψ .
Simulation results corresponding to the described simplified approach showed that it works good in

itself and also while combined in the meta-level with decisions produced on the basis of other sources
of data.

Experiments proved that the value of the threshold Ψ reasonable to compute for each time
i=1,2,…,N. In the case study the following algorithm of the threshold calculation is used:

1. To compute the values of Ψ (1.18) on the basis of training sample {Normal} for all i=1,2,…,N.
2. For each i=1,2,…,N. the histogram of the values of Ψ is computed and presented graphically.
3. To select a number of the values of the percentage of the examples covered by the threshold,

say, from 75% до 100% interval;

 40

4. Based on the histograms indicated in the item 2 and on the selected grid of the values of the
percentage indicated in item 3, the values of the thresholds Ψ are computed.

5. The selected values of the threshold Ψ are tested by use of the developed classification
algorithm and testing sample of the sequences. The results received are used for selection of the
values of the thresholds that possesses the best features (probability of correct classification,
false negative and false positive).

1.7.6. Techniques for Combining of Decisions
According to the accepted methodology, the selected strategy of DF consists in use of hierarchy of

multiple classifiers producing decisions on the basis of particular data sources followed by combing
these decisions at the meta- level. Let us briefly consider the existing decision combining approaches
and techniques.

The existing approaches to and techniques for decisions combining can be grouped as follows:
1. Voting algorithms;
2. Probability-based or fuzzy algorithms;
3. Meta-learning algorithms based on stacked generalization;
4. Meta-learning algorithms based on classifiers' competence evaluation.
Voting methods were developed about twenty years ago and are to date in use since they provide

satisfactory accuracy in many applications.
The methods of the second group use different uncertainty models like probabilistic (Bayesian

model of a posteriori probability assessment, Bayesian networks of different structures), possibility
theory-based (like Dempster–Shafer theory of evidences), and also on fuzzy set-based models.

However, at present the data mining and knowledge R&D community practically pays the most
attention to the methods of combining decisions that use some knowledge about properties of base-
level classifiers. General idea of this group of approaches proposed in [Prodromidis et al-99b] is called
"stacked generalization". The idea is to use the results of classifications (records of labels of classes)
produced by base classifiers over a sample of interpreted data instances as dataset for training and
testing of meta-classifier. This dataset is called learning meta-data. The latter is used for training meta-
classifier to combine decisions of base classifiers in a conventional way. In general, stacked
generalization-based methods of decisions combining are effective and still being actively researched.
A drawback of this group of methods is their inability to preserve already existing set of classifies
unchanged if a new classifier inserted in the classification system [Ting-96].

The basic idea of the fourth group of decision combining approaches is that each classification
algorithm (in our case–each base classifier) is the most “competent” within a particular region of the
representation space. Thus, these methods are based on the evaluations of classifiers' competences
with regard to each particular record of input data specifying a situation to be classified. The main
procedure here is to specify in a way the region of competence of each particular classifier in the
attribute space [Merz-97].

The core of the approach proposed in it is that a special procedure "referee" is associated with each
particular classifier. A responsibility of referee is to assess the competence of the respective classifier
with regard to particular input data [Ortega et al-01]. To provide the referee with such ability, learning
procedure is used. Referee learning is a conventional learning task, which is solved on the basis of the
same learning dataset that is used for learning of the respective classifier itself. A specific of the
referee learning task is that in it other partition of learning dataset is used. Specifically, the same
training and testing data are partitioned into two subsets of positive and negative examples at that a
positive example is that for which the classifier produces correct classification, otherwise the example
labeled as negative. Thus, in competence-based methods, decision combining consists of two steps: (1)
detection of the most competent classifier and (2) selection of the classification produced by the most
competent one. Further considerably improved version of the basic method was proposed in the papers
[Gorodetski-02] and [Todorovski et al-00]. The advantages of the competence-based approach are
higher accuracy (as compared with both voting and stacked generalization-based approaches) and also
its capability to preserve already existing set of classifies unchanged if a new classifier is inserted in
the decision combining model.

 41

Two types of methods discussed in this section, i.e. meta-classification and competence-based
methods were used in the Project as decision combining techniques.
1.7.7. Training and Testing Methodology

An assumption accepted in the Project is that all the components of distributed knowledge base and
distributed decision making mechanisms are designed through training on the basis of the interpreted
datasets (samples). Since the decision making procedure of IDS is organized in two stages according
to which (see Fig.1.7) in the first stage base-level classifiers produce their decisions and in the second
stage these decisions are combined in the meta-level, training and testing procedures have to be
organized according to the same structure. Thus, in the first stage, learning procedures perform
training and testing the base classifiers and in the second stage they perform training and testing meta-
classifier(s).

Conceptual and algorithmic aspects of the task of the first stage were considered above. Let us
consider the peculiarities of base and meta– classifiers learning caused by the accepted Meta–model
of decision fusion. These peculiarities are as follows:

(1) In some cases several base classifiers may be required even within a single data source. This
necessity can be caused by large dimensionality of attribute vector of the data source and by
heterogeneity of data within a single data source. Use of multiple classifiers within a single data
source can make it easier to cope with the computational complexity peculiar to any high
dimensional and heterogeneous learning task. Other situation, in which it is reasonable to use
several base classifiers within a single data source, corresponds to the case if the size of training
and testing dataset is limited. In this case, an increase of decision making accuracy can be
achieved through use of several different learning techniques and respectively, several
classifiers, which decisions should be combined to increase the quality of classification.

(2) It is necessarily to use meta-classifier destined for combining distributed decisions produced by
the classifiers of the source-based level. This peculiarity entails the necessity to reserve a
certain part of training and testing datasets for meta–classifier learning. According to the
meta–classification approach chosen in the Project as a strategy of decision combining, the
reserved part of training and testing dataset is used for computation of meta–data that, in turn,
must be spitted into training and testing parts used accordingly in meta–level. It should be noted
that not any dataset is appropriate for use in meta–level. An important requirement to such a
dataset is its “completeness” requiring that each instance of this dataset must not contain missed
fragments in all the data sources.

The above peculiarities lead to the fact that training and testing of different base classifiers both
within the same data source and within different data sources are very interdependent. The same is
true with regard to interdependence of training and testing procedures of base level and meta–level.
The major conclusion entailed from this is that all training and testing procedures must be agreed in a
way and coordinated. Since in the Project a multi-agent architecture of IDLS is used, then such an
agreement and coordination can be only achieved through agent negotiation according to predefined
protocols.

The specific of the task of meta–classifier learning (meta–learning) is caused by the fact that data
sources are distributed and this is why meta–learning is a distributed procedure. Therefore, it must be
carried out according to a protocol determining how the distributed software components (agents)
interact in meta-learning procedure.

A conceptual explanation of the IDLS learning procedures both in base level and meta–level is
given in Fig.1.10. In it, the components performing decision making, the learning components and
also the components of the software tool supporting distributed knowledge engineering processes are
depicted.

Let us remind that in the Project two option with regard to learning components are admitted: either
they can only be used in design stage as the components of the software tool supporting knowledge
engineering procedures, or they can be designed as a part of IDS system destined to provide the latter
with off-line learning capabilities supporting incremental learning on the basis of experience
accumulated during IDS operation. In the left hand part of Fig.1.10 the components of IDL responsible
for knowledge engineering procedures are depicted while those components responsible for decision

 42

making are depicted in the right hand part of the figure. In the upper and bottom parts of the Fig.1.10
the components of software tool supporting design of intrusion detection learning and intrusion
detection components are depicted.

1.8. Methodology of Allocation and Management of Training and Testing Datasets

Allocation of training and testing datasets to different components of IDLS to be learnt both in
source-based and in meta– levels possesses a number of peculiarities considerably influencing on the
whole methodology of learning and subsequently on engineering procedures. These peculiarities are as
follows [Samoilov-02]:

• Training and testing datasets allocated to base classifiers and meta–classifiers should be
different.

• Training and testing data sets allocated to the same classifier must be definitely different. This
difference can be provided in different ways, for example, by use of cross-validation approach.

• Meta–classifier can be trained and tested on the basis of complete samples, i.e. those ones
which contain its fragments in all data sources.

Allocation of training and testing datasets to base classifiers for learning needs is also subjected to
a number of constraints. This allocation is carried out according to the structure of DF meta–model

Components of IDLS

software tool

Communication environment

Learning components
of IDS

User
interface

Training and testing
dataset of host k

Decision making
components of IDS

Source-based
classification agents Source-based

classification agents Source-based
classification agents

Source-based training and
testing agents Source-based training and

testing agents Source-based training and
testing agents

 User interface

User interface

Fig.1.10. Explanation of the interaction of learning and decision making components of
IDLS, involved protocols and supporting software tool

Library of training and testing methods

Interaction protocols supporting
distributed decision making

User interface

Components of IDLS software tool

Interaction protocols supporting
learning of base classifiers and

meta-classifiers

Training and testing
dataset of host 2 Training and testing

dataset of host 1

Meta-level
classification and data
management agents

Meta-level training and
testing agents

 43

(see Fig.1.7). Each node of classification tree is mapped a number of preconditions determining
properties of training and testing samples. The same also concerns to each node of decision trees
mapped to the respective nodes of classification tree. These samples are firstly computed for the nodes
of classification tree (according to the respective preconditions) within each data source. Afterwards,
the entire data sample mapped to each node of classification tree and split into training and testing
sub–samples. The last sub–samples, in turn, have to be used for training and, afterwards, for testing of
the classifiers constituting decision tree mapped to the respective classification tree node.
Additionally, the above training and testing samples must meet a number of constraints, which are
dictated by particular data mining and knowledge discovery techniques used and also requirements of
meta-learning technique mentioned in the beginning of this section.

In general case the procedure of allocation and management of training and testing datasets is not as
simple as it can seem “at glance” and it is much more complicate than similar procedures peculiar to
conventional (non-distributed) learning. In the former process distributed entities that are software
agents of IDLS and designers managing learning activity participate and the entire process of training
and testing sample allocation is managed by a special protocol coordinating activity of user and
operation of the software supporting the technology. This protocol regulates interactions of agents of
IDLS and distributed users in computing and allocation of training and testing samples to the
respective classifiers.

1.9. Conclusion

The Chapter briefly formulates the main lessons learnt from contemporary studies on data mining
for intrusion detection and IDLS prototyping, analyses the main sources of the audit data available for
intrusion detection and learning of intrusion detection and describes en engineering methodology
developed for design of multi-agent IDLS.

The main lessons learnt from contemporary studies of intrusion detection learning and IDLS
prototyping is that it is understood by specialists that ID cannot be efficient and effective if it
separately deals with particular data sources. Instead of this, IDS have to be built as an IF systems,
which collects traces and evidences of potentially abnormal use of computer network resources and
makes decision concerning the status of user's activity on the basis of combining data, information and
decisions, obtained from all available sources. Unfortunately, there are very few researches and
developments that practically use this understanding and follows IF paradigm. Hence, new IDS
architectural solution is very necessary.

This Project is focused on the development of IDLS components based on use of IF principles and
built as multi-agent system. In this context, the Project is focused on methodology and technology of
engineering of multi-agent IDLS based on IF principles and prototyping of a software infrastructure
supporting collaborative semi-automated work of designers and software means aiming at design,
implementation and deployment of applied IDS with focus on its learning capabilities.

While analyzing data available and informative for intrusion detection and intrusion detection
learning, the Chapter presents thorough analysis of such data structures, gives examples of audit data
formed in modern operating systems, security systems, and applications. This analysis makes it clear
the peculiarities of data to be mined for intrusion detection needs, demonstrates the diversity and
heterogeneity of such data structures and specificity of the general distributed data mining and
knowledge discovery task in the intrusion detection applications. The Chapter also outlines the
representation structures and examples of audit data of different levels of generalization and analyses
the most potentially informative characteristics and features of attacks that can be extracted from audit
data. Analysis of data available for intrusion detection and intrusion detection learning results in the
following conclusions:

• As a rule, information of any single source does not contain reliable evidences needed for
timely and efficient detection of attacks and security policy violations. Efficient intrusion
detection learning system has to jointly utilize audit data received from multiple sources of
different generalization levels (network level, host-based (OS) level, application level).

• The known attack detection learning mechanisms are computationally complex. The
complexity can be significantly reduced through the preliminary expert analysis and

 44

identification of the most informative attributes of the audit data. Examples of such attributes
are repeated instances and combinations (patterns) of events; mistyped commands; indications
of exploitation of the known vulnerabilities, illegal parameters, irregularities in the network
traffic parameters and contents; substantial discrepancies in the values of attributes that
characterize the system subjects' operations profile, and unexplained problems.

Based on the conceptual analysis of the peculiarities of intrusion detection learning task, the
Chapter presents briefly the developed methodology of intrusion detection learning. This methodology
has already been presented by its fragments in interim reports ([InterRep#1], [InterRep#2],
[InterRep#3]), but as a whole it was formulated in the final phase of the research when the
methodology has been tested on the basis of a case study developed. The proposed methodology
determines basic principles, methods and techniques of multi-agent intrusion detection learning based
on data and information fusion, description of the new problems peculiar to any IF applications and
those ones that are specific for IDS applications, proposes possible ways of these problems resolving.
The developed methodology also determines requirements to the architecture of IDLS, technology of
its engineering and software tool destined for computer support of the technology in the design,
implementation and deployment phases.

 45

Chapter 2. Intrusion Detection Learning System Design, Implementation
and Deployment. Ontology of Intrusion Detection Learning

Abstract. This Chapter presents the developed and implemented technology of multi-agent
Intrusion Detection Learning System (IDLS) design, implementation and deployment. The Chapter
outlines general view of multi-agent data and information fusion system technology and divides
the engineering processes into two classes supporting (1) design, implementation and deployment
of the reusable components of the multi-agent system and (2) design and implementation of data
and information fusion-oriented functionalities. Respectively, two software tools intended for
support of the engineering processes of the above two classes developed by the Report authors are
presented. The first of them called Multi-Agent System Development Kit (MASDK) supports
design procedures of the first class of technological processes while the second one, Information
Fusion Design Toolkit, mainly supports design procedures of the second class, i.e. procedures
specifically oriented for making use in design of data and information fusion–oriented
functionalities. Description of these toolkits, description of the content and peculiarities of design
procedures carried out by use each of them are the main subjects of the Chapter. Chapter also
describes the developed ontology specifying high-level representation of the basic notions of
Intrusion Detection Learning domain. The specific of the subject domain under research is that it
combines knowledge and therefore, ontologies from three domains, namely, "Data Fusion and
Data Fusion Learning problem ontology", "Intrusion Detection application ontology" and
"Intrusion Detection Learning application ontology". These components of the domain ontology
are described.

2.1. MASDK: Generic Model of a Software Agent

The life cycle of knowledge-based multi-agent system (MAS), like any other information system,
consists of a number of standard phases: development of a business model and requirements analysis,
design, implementation, deployment, testing, maintenance, and evolutionary modification. At present
development of software tools supporting the above stages of MAS life circle is a task of great
concern. Till now a lot of such software tools has been developed ([AgentBuilder-99], [Bee-gent-00],
[JADE-99], [http-1], [http-6]–[http-20]). Between them, the most known ones are such as
AgentBuilder [AgentBuilder-99], MadKit [http-6], Bee-gent [Bee-gent-00], FIPA-OS [Posland et al-
00], JADE [JADE-99], Zeus [Collis et al-99], etc. However, despite a large number of research
projects of this class, the most of the developed MAS software tools are still in the research stage, but
the existing commercial MAS software tools present a very limited functionality.

Most of the developed and being developed MAS software tools use the idea that, despite the
diversity of MAS applications and respective implementations, there exist much common (reusable)
functionalities in different applied MAS that are practically independent from application to
application [Sloman-98]. That is why it is reasonable to implement these common components within
a software tool as generic classes and data structures, and reuse them as ready software components in
various applications what could decrease the total MAS development time.

This view is also accepted as a basic idea of the developed technology support for IDLS system
design and implementation. Practical realization of such a technology support in the form of a
software tool supposes to carry out a formidable work to determine reusable components
(functionalities, data structures) among many applications. This task was a subject of the research
resulted in development of an efficient MAS software tool. Within the developed software technology
support the reusable components of MAS are united within a so-called “generic agent”, which
comprises a hierarchy of standard software classes and generic data structures. Actually, generic agent
is a nucleus that is “bootstrapped” by the developer via specialization of the software classes and data
structures and via replication of software agent classes into instances of particular agents of particular
functionalities. These agent instances compose applied MAS. The rest of the MAS development
procedure is the conceptual and object oriented design of agent task-oriented collaboration protocols
transforming the set of agents into single whole, i.e. into a system. These procedures are supported by
a number of special means that play the roles of user-friendly editors aiming at specialization of the

 46

"generic agent" to design applied software agent according to the tasks designated to target applied
MAS, in this Project, multi-agent IDLS.

A software agent of MAS (the same concerns to agents of multi-agent IDLS) consists of two parts:
a generic agent, who is also called below an Invariant platform for software agent design, and an
application-oriented component called hereinafter “applied agent's component”. The former
implements the application-invariant functions those are common for all agents of any applied MAS.
The latter represents specific application-oriented functionalities, agent’s data and knowledge that

determine the software agent role and the tasks it should solve in a particular application. Fig.2.1
presents conceptual model of generic and applied agent's components Let us explain it.

A meta-scenario of the agent’s behavior is managed by Generic agent manager. It manages the
allocation of the CPU time between processing the three main execution threads that correspond to the
realization of the following functions:
• Primary processing of events incoming from the agent’s external world: messages from other

agents, user commands and events of the environment perceived by agent’s sensors. These
functions are performed by the Manager of external events.

• Analysis of the agent’s current state and management of agent operation depending on the above
state and on incoming events. This function is performed by the Manager of agent operation.

• Sending messages, which have been formed by the agent according to its behavior scenarios, to
other agents according to interaction protocols. This function is performed by the Manager of
output messages.
The main part of computations is needed for processing of the second execution thread supervised

by Manager of agent operation. Two other threads are jointly responsible for realization of agent’s
communication functions including communication with external environment of the agent (“external
environment” also includes other agents). In particular, as a result of processing the first execution
thread Manager of external events forms a specification of the external world, the analysis of which
belongs to the responsibility of the Manager of agent operation. The task of Manager of agent

Applied agent's component
Input message queue (received

from agent and users)

Storage (database)

Library of external
functions

Interaction
protocols

Model of agent operation

State machines

Behavior scenarios

Models of variable classes of
ontology notions A

pplication
ontology Output message queue

Fig.2.1. Model of generic agent and applied agent's component

Generic Agent

G
en

er
ic

 a
ge

nt
 m

an
ag

er

Manager of
state machines

Scenario
Interpreter

Data access
support

Manager of
external events

Manager of agent
operation

Manager of output
messages

 47

operation consists in computation of jobs to be designated to Manager of state machines in
accordance with the management model and the results of the analysis of the current situation. In other
words, Manager of agent operation initiates the execution of particular behavior functions, or re-starts
them if their operation has been broken.

Particular functions of agents (components of its behavior) are represented in terms of state
machines [Booch et al-00]. The function selected for execution is processed by the Manager of state
machines. It forms the sequence of particular behavior scenarios specified in terms of particular state
machines. The execution of behavior scenarios is assigned to the program called Scenario Interpreter.
The program called Data access support provides access to the agent’s database and modification of
the data in database if necessary.

Applied software agent that is an agent instance solving specific tasks within applied MAS,
comprises the generic agent which model is described above, as well as a number of other components
that realize application-oriented functions. The latter components united under the common name
“Applied agent's component” (Fig.2.1) are as follows:
• Application ontology represents the general terminology (classes of notions of application domain

and the relationships given over them) used by all agents in messages exchange. The ontology is
also used as the terminological basis of agent’s knowledge representation. This knowledge is
specified in terms of (1) transition rules designated to every state of a state machine, (2) behavior
scenarios provided for by the current state of state machine, and (3) behavior scenarios performed
in the transition of a state machine from its current state to a new state.

• Interaction protocols specify agents’ interaction in the execution of certain algorithms that are parts
of meta-scenarios (executed by interacting agents in coordinated mode. These protocols specify
coordination of particular agent behaviors. Protocols are specified in terms of “roles” and are
performed by agents in accordance with the functionalities supposed by the respective roles.

• Library of external functions contains names of methods used for solving specific sub-tasks that are
represented as executable code. External functions are invoked in the process of executing the
behavior scenarios and fall into the following two categories: synchronous and asynchronous. The
synchronous functions of a scenario are such that while they are executed, no other functions can be
executed. Asynchronous functions of a scenario initiated during its execution can be executed in
pseudo-parallel mode together with the other functions of the scenario.

• Input message queue is a temporary storage for perceived events of the agent’s environment
(messages received from other agents, perceived events of the environment, user commands). These
events are stored in the temporary storage from the moment they are received until the start of their
processing by agent.

• Model of agent operation contains upper-level specification of agent’s behavior. Possible agent
behavior scenarios in this specification are represented as a set of particular state machines. Model
of agent operation specifies rules for choosing functions to execute depending on the current agent's
state, and also stores the current states of the state machines if their operation is interrupted.

• State machines are used to specify agent behavior meta-scenarios. A state machine specifies the set
of states and rules of transition between the states depending on the specified set of conditions and
input data.

• Behavior scenarios specify behavior (executable functions) of agents in particular states. Agent
behavior scenarios are specified for each of the states of a state machine and for each existing
transition from the current state to a new one.

• Models of variable classes of ontology notions are the extension of the specification of object
domain ontology. It specifies the storage structure of the ontology notions examples in the storage
and is used for automatic generation of the structure of that storage, as well as for providing access
to data in the process of an agent specialization.

• Storage (agent's database) is formed based on the data model (classes of variable of ontology
notions). It is used to store of the examples of classes of notions and relations which the agent
manipulates with. In a general case, storage consists of two components used accordingly for
temporary and long-term storage of data. Temporary storage stores the intermediate data computed

 48

during the current session. Long-term storage is meant for storing the initial data and results of
agent’s operation needed in the future operation. Long-term storage, for example, contains a
representation of the initial state of agent’s mental model specified at the agent design stage.

• Output message queue is a temporary storage of outgoing messages formed by agent. Messages are
stored in the queue from the moment they are created until the moment they are sent.

To make it clearer the previous description, let us consider a few typical agent behavior patterns.
• Initialization of agent behavior functions on condition that applied multi-agent system is

operating. There are three possible ways to actuate the functional behavior of MAS: (1) as a
response to an input message from another agent; (2) as a response to an end user’s command
sent through user interface; (3) as a response to certain events generated by the agent itself.

• Interaction between agent and end user. Agents may have or not have a user interface. User
interface may be invoked either by a user command from the meta-level of agent management,
or by the agent’s command generated during executing a certain scenario. The first variant is
realized through a user menu that makes it possible for user to generate commands, which
actuate the respective dialogs.

• Response to incoming message. Upon receiving a message, the agent initiates the execution of
the corresponding function (it launches one of its state machines). In the process of executing
the actions stipulated by the function, the agent can: (1) change the state of its mental model,
(2) generate messages addressed to other agents, (3) provide user with data informing him
regarding its state.

• Dialogs. During operation, agent may initiate dialogs with user or other agents. An outgoing
message usually implies a response. Until the receipt of response the operation of agent
specified by the corresponding state machine is suspended, and that state machine goes to
stand by mode. This is not applied to the agent’s parallel execution of its other functions.

• Response to user commands. User command is generated through his/her interface. Agent’s
behavioral response to user command is identical to response to an incoming message from
another agent.

• Agent’s pro-activity. Agent may initiate its behavior scenarios automatically. This may be a
result of an analysis of the current state of agent’s mental model. The start of this type of rules
may be specified, e.g., based on a time threshold.

2.2. Agent Specification Technology

When the invariant platform for agent design called “generic agent” is used, the design of MAS is
mainly reduced to specification of classes of agents and their instances, as well as specification of
protocols for interaction between agents. Fig.2.2 depicts the main components to be specified
according to their functions in the application. Specification of these components and protocols is the
essence of the MAS design. Besides the composition of the components specified, Fig.2.2 also shows
the partial order given over the set of specification procedures of different components.

Conceptually, these technology consists of several stages. In the first stage, application ontology is
developed and specified. In the second stage, protocols (scenarios) of agent interaction are described
and classes of agents are determined. In the specification of interaction protocols, it is necessary to
have ontology got ready, because the latter is the mean providing agents with monosemantic
understanding of messages they exchange with. Interaction protocols are distributed algorithms
executed by a group of agents. In specification of interaction protocols, a notion of role is used, which
is necessary for specification of functionalities of agents according to designated roles. In the third
stage, agents of different classes that form the MAS are specified. This stage includes the specification
of Models of variable classes of ontology notions, Model of agent operation, agent's State machines,
library of Behavior scenarios, and Library of external functions. Agent of each class can be
represented in the MAS by several instances. Specification of instances of each agent class is made in
the fourth stage of applied MAS development. Instances of agents of the same class differ in names,
databases and knowledge bases.

 49

Let us consider some components of specifications technology in more details.

Specification of the Application Ontology

Ontology represents the classes of notions of application domain and relations given over them.
Presently, there exists a family of languages used for specification of application ontology, for
example, XML, RDF, DAML+OIL, etc ([Boumph et al-00], [http-2], [http-3], etc.). However, at present
these languages are mostly used as means for exchange with ontologies between various applications
and developers of various projects. Different projects use their own specialized languages for
specification of ontologies as “working” languages. For example, popular ontology editors like
Protégé ([http-5]), Ontoedit ([http-4]), etc. support specification of ontologies in terms of the editor’s
internal language, while using translating them into XML, RDF and some others.

Let us describe the approach to ontology specification that is supported by MASDK:
• Specification of classes of notions. A class of notions is specified by name of the class and list

of its attributes. Each attribute is specified by name (short and full) and its domain. In some
cases, the domain is specified by the domain data type: {Boolean, string, integer, double}. In
other cases, the specification of the domain also implies assignment the set of admissible
values. Class of notions may have both its own attributes specified for this class of notions,
and inherited attributes.

• Specification of classes of structural relationships. Typical instances of structural relationship
classes are “Part of” and “Example of”. Representation of each class of structural relations is

usually as follows: (1) Name of
relation; (2) Names of notion classes
(relation arguments); (3) “Direction”
of the relation. Its possible values are
{“neutral”, “directed from A to B”,
“directed from B to A”}; (4) Arity of
relationship. Its possible values are
{“1:1”, 1: N”, “N: 1”, “M: N”}; (5)
Determination of relationship’s
"necessity". Necessity to establish
relationship is specified for all classes
of notions included in the
relationship. If the relationship <A,
B> is specified as "necessary" for
class A of notions then in the creation
of an instance of notion of this class
the connection between this instance
and the corresponding instance of
class B has to be specified by the
same token. If the relationship is
specified as necessary for class B of
notions then in the generation of a
notion instance of class B the
connection between this instance and
the corresponding instance of class A
has to be specified. The latter is used
in the generation of database scheme
for storing notions instances of the
ontology.

• Specification of inheritance
relationship. In the project only single
inheritance is supported that is a class
of notions that may not inherit more

Operations corresponding to Agent
class specification

Application
ontology

Protocols

Agents' classes

Agent
instances

Models of variable
classes of

ontology notions

Model of agent
operation

State machines

States of state
machines

Behavior
scenarios

Library of
external functions

Fig.2.2. Order in which software components of agent
classes are specified

 50

than one class of notions. Inheritance relationship between two classes of notion supposes that
characteristics of the inherited class of notions become characteristics for the other class of
notions that is inheriting from the first one. This relationship is applicable to all attributes of
the inherited class of notions, including the ones that would be added to the description of the
inherited class and describe its relations with other classes of notions.

Models of Variable Classes of Notions

Models of variable classes of ontology notions are components of application ontology
specification. These models are used in solving the following tasks:

• Automatic generation of data storage structure for the dynamic component of agent’s mental
model.

• Support for data access mechanism.
• Interpretation functions of classes of notions and relationships of ontology in the data storage

of the dynamic component of agent’s mental model.
In the technology described here application ontology is not only used as shared dictionary of

notions to ensure “understanding” between agents, but also as terminology for specification mental
models of agents. In the specification of mental model in ontology terms, the agent’s behavior
scenarios are represented in terms of high-level language, the sentences of which are on-line
interpreted by components of the “generic agent” software. This approach to the mental model
implementation makes its operation slower but however, it brings a number of substantial advantages
that are as follows:

• It diminishes development and verification cost of software agents because behavior scenarios
can be specified by user but not programmer;

• It simpler provides a modifiability of existing agent mental model if necessary.
Models of variable classes of ontology notions specify additional characteristics of application

ontology aiming to provide monosematic understanding and processing of messages received from
other agents. In particular, these variables describe:

• decomposition of classes of ontology notions into concrete and abstract classes to single out
those (specific) classes of notions that have instances;

• requirements for storage of instances of particular notions that can be of two types: long-term
or short-term;

• realization schemes for structural relationships.
This kind of information allows for generating the data storage structure automatically. However,

in some cases, data storage or some of its parts may be defined from the very beginning. In that case,
on the contrary, models of some classes of variables are determined by data storage structures.
Example of such application is MAS for data fusion, when interpretations of many ontology notions
are represented in the database language which reduces interpretation an SQL queries.

Agent Classes

The developed technology uses the notion of agent classes in object-oriented style: agent classes
correspond to the notion of agent instances (agents) just like the notions of class and instance of class
in object-oriented programming. Specifications for data structures and methods of the agent class are
inherited by all agents generated as instances of the respective class. Fig.2.3 shows an example of
graphic representation of agent classes and their instances as applied to one of Intrusion Detection
Learning applications. This example combines two agent classes: Data source management agent and
KDD agent of source. Both classes are used to generate three instances with similar names differing in
the names of data sources with which they work.

The agent classes list is determined by the decomposition of applied task and adopted agent
interaction protocols typically described in terms of roles. The latter are associated with agent classes.
In the particular case, each role defined in the protocol corresponds to particular agent class. For
example (Fig.2.3), three instances of agents correspond to the role Data mining and KDD. In general
case, it is permitted that agents of a certain class may play several roles in one or several interaction
protocols.

 51

Allocation of particular functions over agent classes specifies requirements to agent functionality,
which in turn serves for creating the agent’s mental model. Mental model is the main component of an
agent class determining its functionality, behavior, and possibility to carry out this or that role within
MAS. Mental model of an agent class includes dynamic and static components. The dynamic
component includes a set of facts, or data obtained or generated by the agent during its operation. This
data is represented in the data storage, in which the respective variable classes have to be specified.
The static component of the mental model contains the specification of management model, state
machines, library of agent behavior scenarios, and library of external functions used by the agent for
analyzing and modifying the facts of its mental model’s dynamic component. List of functions and
their allocation over the set of agent classes is, essentially, a conceptual representation of the mental
model.

Model of agent operation

Model of agent operation specifies the agent’s behavior depending on the current state of
environment and its mental model. The set of rules managing agent behavior is specified in the static
component of the agent’s mental model. The latter has a two-level structure. The upper level specifies
meta-scenarios of agent behavior in terms of names of states and transition conditions, as well as
names of functions that are associated with states and transitions. Essentially, meta-scenario is
determined by the meta-specification of the state machine. At the lower level, a set of agent’s
particular functions (behavior scenarios) is specified, which interprets names of above actions.

Each state machine, depending on its capabilities, may execute a certain function, provide a
service, realize a decision algorithm for a specific sub-task, etc. The set of state machines of a specific
agent determines its functional capabilities. Hereinafter, let us call the agent’s state machines its
functions. It should be emphasized that all agents of the same class possess identical sets of functions,
with each agent class, as a rule, possessing several functions. The agent’s behavior (executed functions
and their sequence in time) is either its reaction to events in the environment (messages from other
agents, user commands, environment events), or is determined by reaching certain internal states, in
which certain functions may be activated without the outside stimuli (through “self-activation”).
Model of operation connects these classes of events to the agent’s internal state and functions. In
particular, it determines, in which situations the agent’s functions should be initiated, and under what
conditions the agent should resume the action if its execution was interrupted.

Agents

Data source 1
management agent
• Ontology
• Mental model

Agent classes

Data source management
agent
• Ontology
• Mental model

KDD agent of source
• Ontology
• Mental model

Interaction protocols.
List of roles:

Data source
management

Data mining and
KDD

KDD agent of source 1

KDD agent of source 2
KDD agent of source 3

Data source 2
management agent
• Ontology
• Mental model

Data source 3
management agent
• Ontology
• Mental model

Fig.2.3. Roles, agent classes and agent instances

 52

Model of operation is explained in Fig.2.4.
The component “Protocols” specifies a role or roles assigned to an agent class in different

protocols. It contains a representation of protocol dialogs that specify the behavior of agents of this
class. If the agent is going to participate in executing a certain protocol through fulfilling a certain role
(this is determined by incoming message and the agent’s internal state), it uses information about the
protocol and the role that is stored in the component Protocols. This information, in turn, is used by
the agent for initializing the corresponding dialogs. Names of these dialogs, as well as their structure
within the interaction protocols, are stored in the component Protocols.

In the specification of Model of agent operation, the structure of the set of dialogs initiated by the
agent in playing a certain role, is recorded in the component Protocols. In accordance with the
protocol scheme, classes of messages in dialogs are categorized (from the standpoint of agent class)
into Input messages and Output messages. Besides, they are categorized into Questions and Replies.
Input of questions always implies the initialization of a certain response-formulating function; this is
why these classes of messages are processed within the component Initialization. The processing of
the other three classes of messages constitutes execution of functions, and that is why they are

processed with the functions of component Agent class functionalities.
The component “User interfaces” specifies the interaction between agent class and users, if such

interaction is provided for. This component processes only such user-agent interaction scenarios where
user exercises control over the agent. Different user interfaces and functions may be initialized by
different components of the operation model. If the interaction is initiated by the user who initializes a
certain function, then a corresponding class of events is specified in the component Initialization. If
the initiative in the interaction lies with the agent, then the initialization of the function is specified in
the component Agent class functionalities.

D
ia

lo
g

A
1

(P
ro

to
co

l A
)

D
ia

lo
g

A
2

(P
ro

to
co

l A
)

D
ia

lo
g

B
1

(P
ro

to
co

l B
)

U
se

r i
nt

er
fa

ce
 1

U
se

r i
nt

er
fa

ce
 2

User
interfaces

Protocols

In
iti

al
iz

at
io

n

Agent class functionalities

A ?

B

C

D

A

KB

? !

C

? !

!

- Dialog

- Question in a dialog

- Answer in a dialog

- Initialization of one function by

another

- Self-initialization of behavior by the

rules of the knowledge base
- User interface

?

!

A

KB

Fig.2.4. Example of a Model of agent operation

 53

The component “Initialization” specifies classes of events whose occurrence initiates execution of
certain functions. Part of the initialization functions executed by the component has been considered in
the description of components “Protocols” and “User interfaces”. For example, a case has been
described where it records an incoming message or a user command. Other classes of events that can
initiate functions and therefore have to be specified and executed by this component are Self-
initialization rules, Invocation of nested function, Sensor information input. They are specified in this
component of the Model of agent operation regardless of the content of other components of the agent
class.

State Machines and Behavior Scenarios

State machines used for describing agent classes’ functions can also be interpreted as agent
behavior meta-scenarios (meta-models). They determine the sequence of execution of particular
behavior scenarios associated with the states of state machines.

Fig.2.5 shows an example of object-oriented specification of a state machine specifying a meta-
scenario of behavior of agent aiming at solving a part of the task base classifiers learning that is a
component of multi-agent IDLS under development. Conceptually, the scenario for the case if training
data are of relational type is as follows. First, user analyzes the quality of rules and coverage of
training data by the rules that have already been generated during previous steps of learning. For this
purpose, user utilizes the respective user interface. This analysis is resulted in selection of the
uncovered examples of training data that are used for learning in the subsequent step. In the next step,
the learning procedure analyses columns of training data in order to detect whether there exist equal
columns for a pair of features or for rules extracted. (The latter are considered as new features and for
each such a rule a new column in training and testing data is generated.) One of equal columns is
deleted. If among the features (attributes marking columns) the numerical ones exist then agent
transits into the state in which the procedure VAM ([Gorodetski et al-02c], [Gorodetski et al-00]) is
activated. This procedure transforms numerical data into statements about numerical data that are
represented in terms of the first order logic, ([Gorodetski et al-02c], [Gorodetski et al-00]) After
transforming all numerical data into predicates of the first order logic, the agent transits into state
corresponding to generation of rules for the chosen class of data. In this state, user specifies the
parameters of the GK2 algorithm [Gorodetski et al-96] and runs it for generated new rules. In the next
step, the user analyses the quality of rules according to a given (predefined) criteria and selects those
of them that meet the above criteria. Afterwards, the agent again transits into the state, in which it
analyzes the whole batch of rules already generated (extracted) using training data. In the subsequent
step the agent can continue the search for new rules or transit into one of two concluding state
corresponding to the end of the agent's respective state machine operation. These states are (1) end of
rule search and adding the generated ones in base classifier knowledge base or (2) temporary stop with
the possibility to continue rule generation later.

Specification of a state machine is reduced to specification of a set of states and transitions among
them. At that, the set of the state machine states is divided into two classes. States of the first class
represent particular agent behavior scenarios, while states of the second class represent dialogs, in
which agent exchanges messages with other agents. In the example shown in Fig.2.5, states of the
second class are highlighted gray. The difference between the said classes also lies in the fact that the
states of the first class are specified at the initial stage of development of the state machine, and the
states of the second class are generated automatically based on the specification of the Model of agent
operation. Besides, the states of the first class require detailed specification, while the states of the
second class do not. The only thing that needs to be specified for these states is the transition rules.

The mechanism for processing the states of the second class is invariant to applications and uses
data from the interaction protocols specifications. For example, based on the specification of a dialog
in the interaction protocol, this mechanism determines the necessity for interrupting the meta-scenario
execution (suspending the state machine), if the current dialog needs a response to a certain question.
After receiving all the responses, the state processing mechanism re-activates the state machine.

 54

State Machine States and Behavior Scenarios

The states of state machines corresponding to the first class indicated in the previous section initiate
execution of certain agent behavior scenarios. As the prototype for the model of states of the state
machine, the general scheme described in [Booch et al-00] was chosen. In a simplified form, the
model of a state of the state machine can be represented as two components. The content of the first
component is the representation of a particular behavior scenario associated with the state, which is
initiated by the machine in that state. The content of the second component is the specification of
conditions of transitions from that state.

Behavior scenarios are described with interpreted software code in a higher-level language. In the
project, Visual Basic Script is mostly used. Another method of representation of behavior scenarios is
based on using particular “if ..., then ...” rules. In particular, this approach is realized in the intelligent
agent development tool AgentBuilder [AgentBuilder-99]. However, this approach has a more limited
expressive power compared to the approach chosen in this Project.

Behavior scenarios specify the agent’s decision-making rules. Through using these rules to
analyze the current state of the mental model, the agent performs the necessary actions that can belong
to one of six classes. Three of these classes specify the agent’s action in the external environment.
They are:

• forming messages to be sent to other agents;
• invocation of external functions. Typical examples of components of the latter type are: (1) user

interfaces, through which user can both receive information from agent and partially control its
behavior; (2) components that realize decision methods for specific, well-formulated tasks,
whose description in the scenario description language is either impossible or pointless;

Initialization

Testing rules

User interface:
Coverage checking

Selection of the next sample
for learning

Deletion of unused
columns and saving

of new rules

The rules for a
class in question

are got

Extraction rules
from Boolean data

Rule quality assessment
and rules selection

Temporary break
of rule search

Rule search
 is broken

VAM
procedure

GK2 procedure

User interface for
analysis of features and

predicates

Transformation of
numerical scales

Analysis of features
and predicates

Adding new rules and new
predicates

End of rule search

Fig.2.5. Example of state machine specified in UML language

 55

• affecting the environment.
Three other classes of actions manage computations and affect the state of agent’s mental model.

They are:
• invocation of nested state machines;
• invocation of nested behavior scenarios;
• actions modifying the content of agent’s mental model.
Invocation of external procedures may be done either in the synchronous or the asynchronous

mode. If an external procedure is invoked in the synchronous mode, the scenario being executed is
paused and re-starts only after external procedure completes its operation. In this mode, data or control
commands are entered. In the asynchronous mode, the execution of the external procedure and the
continuous operation of the state machine take place independently. An example of such operation
mode can be the invocation of user interface, through which the user monitors the agent’s work
without managing it.

Agent Instances and External Environment

Each class of agents can generate an arbitrary number of examples of agents. All characteristics of
any agent class are inherited by its instances. Instances of agents also contain additional specific data,
such as agent’s name, agent’s network address, initial state of mental model. Data storage of the
agent’s mental model can contain initial data specified as early as the description stage. This data is
recorded into agent’s database.

Specifications of agents' instances and classes of agents are the initial information for the
generation of the software agents in the operational environment within a computer network, whose
nodes have the Portal support service installed. At the system generation stage, it provides remote
access to computer. Generation of an agent includes copying the invariant agent platform,

specification of agent class and
generation of the mental model
storage, and description of the initial
state of the mental model in the
storage.

System’s operation, besides the
Portal support service, is also
supported by the Server of the
operational environment providing the
operation of certain functions. The
most important of them is the remote
start of agents (for that, Server uses
auxiliary program, Portals). Agent
system can start simultaneously for all
agents and selectively based on
necessity. Another important function
of Server is support for agent
communication. In particular, all
agents’ messages go through the
Server.

2.3. Information Fusion
Learning Toolkit

Information Fusion Learning
Toolkit is used together with MASDK
and primarily supports engineering of
the components of an applied IF MAS
(in our case - the components of
IDLS) that implements data and

Fig.2.6. High-level protocol of the distributed design of IF MAS

 56

information fusion–oriented functions.
The components of Information Fusion Learning Toolkit can be divided into three groups that are

(1) protocols supporting collaborative design of applications and also collaborative distributed data
and information fusion procedures, (2) library of training and testing methods that are used by training
and testing agents for learning of IF decision making and decision combining agents, and (3) user
interface supporting designers' activity.

It is noteworthy to note, that Information Fusion Learning Toolkit actually implements a new kind
of agent-oriented software engineering technology that could reasonably be called as “Agent-mediated
software engineering”. As compared with the existing variants of the agent-oriented software
engineering, the new features peculiar to the technology supported by Information Fusion Learning
Toolkit are (1) Support of the distributed design of an applied IF MAS that in some cases (private or
classified training and testing dataset) is the only admissible one and (2) use of agents as mediators of
designers in engineering procedures.

A high-level understanding of what kind of technological processes Information Fusion Learning
Toolkit supports is provided by Fig.2.6. It presents high-level specification of the protocol of activities
performed by agent-mediated designers. It should be noted that agents involved in these activities play
two roles: they support designers' activity (in training and testing of IF MAS classifiers and meta-
classifier) and also participate in operation of the designed IF MAS.

The main engineering activities supported by Information Fusion Learning Toolkit mediated by IF
MAS agents are as follows:

A0. Distributed application ontology design.
A1. IF meta-model design, i.e. design of decision making tree and classification tree.
A2. Distributed data mining.
A3. Information Fusion (Distributed decision making).
A4. Monitoring of arrival of new data to data sources.
It is noteworthy to note that users collaborate in design procedures according to these protocols. In

the most part of the design activities the initiative belongs to users but protocols enforce them to
follow a predefined order of an applied IF MAS engineering, provide users with design templates thus
monitoring the “design discipline” as a whole. Below in this section the content of the users' and
agent-mediators' activity is described.

Fig.2.7. Protocol for distributed design of application ontology

 Application

Access via VIEW objects

Database objects

Local data source

Client-gateway

IF
Application

ontology Local source data
properties

IF problem ontology

IF problem ontology

Fig.2.8. Three-level hierarchy of access to
the database objects

IF application ontology

 57

Distributed ontology design

The key peculiarities of IF systems architecture and its operation come out of the fact that data
sources are distributed, heterogeneous and together constitute a large scale data and information
processing task. In IF system engineering practice these peculiarities are challenging and considerably
influence on many issues of IF MAS design. According to the modern view of how to cope with these
challenges the ontology-based approach is the most promising one. In the project this approach is in
the focus of both IF MAS architecture and design technology.

The responsibility of Information Fusion Learning Toolkit is to specify instances of the application
ontology, to maintain ontology consistency on the whole and to provide the ontology under design
with a number of the necessary properties considered below.

The main procedures of the ontology design protocol, the agents participating in its execution as
well as input, intermediate and output data are presented in Fig.2.7. The particular processes supported
by this protocol are as follows:

1. Design of consistent naming of the ontology notions providing IF MAS components (agents)
with monosemantic understanding of the terminology used in formal specification of domain entities
and therefore providing mutual understanding and monosemantic interpretation of the messages,
which the agents exchange with. This procedure maintains the consistency shared thesaurus of agents.

2. Design of the coherent measurement scales and value domains of the ontology notions attributes.
This task is also solved via negotiation of the data source managers and meta-data manager according
to a particular sub protocol extending this process.

3. Design of keys for entity instance identification intending to solve so-called "entity instance
identification problem".

4. Tuning the gateway for data base access. This process of application ontology design come out
from the fact that application ontology notions are specified in terms of ontology language (XML,
etc.) but their instances (interpretations) are represented in database language. To provide interaction
of ontology and databases of sources (accessibility of data requested in ontology terms), a special

gateway is to be designed. Fig.2.8
explains the content of the fourth
process of the protocol depicted in
Fig.2.7.

The protocol of distributed design
of distributed ontology completely
solving the particular problems is
developed in detail and implemented
as a component of Information Fusion
Learning Toolkit.

In the implemented versions of
MASDK and Information Fusion
Learning Toolkit the applied IF MAS
ontology is so far specified in terms of
the XML language. In their next
versions RDF, DAML+OIL languages
will be used.

Information fusion meta–model design

According to the high level protocol
(Fig.2.6), design of IF meta–model is
carried out as the second step of the
technology supported by Information
Fusion Learning Toolkit. The upper
level of IF meta–model is constituted
by classification tree. Each node of
this tree corresponding either meta–Fig.2.9. Protocol of IF meta–model design

 58

class or class of situation is mapped a decision tree, which in turn can comprise several level. The
main design procedures, their ordering and agent participating in performance of this or that design
procedures of IF meta–model are determined by the protocol presented in Fig.2.9.

Distributed data mining

The protocol of distributed data mining is the core of IF system technology because it conducts
training and testing of particular classifiers and also manages decision combining that is one of the
basic IF system functionalities. IDEFO diagram of this protocol is presented in Fig.2.10.

Distributed decision making

The methodology of distributed decision making is realized according to the special protocol that is
depicted in terms of IDEF0 diagram in Fig.2.11.

2.4. Problem Ontology for Data Fusion and Learning Data Fusion

The conceptual basis of the multilevel Intrusion Detection Learning Problem is formed by three
tightly correlated components of the ontology. These components are as follows:

(1) Problem ontology for Data Fusion and Learning Data Fusion;
(2) Intrusion Detection Application ontology;
(3) Intrusion Detection Learning Application ontology.
Ontology specifying data fusion and learning data fusion problem domain represents knowledge of

the basic concepts of the problem associated with data fusion and learning data fusion that is
independent from a concrete application. The concepts of this ontology reflect knowledge that is
common for most of the data fusion, data mining, knowledge discovery and knowledge based
decision-making systems. This ontology specifies upper-level knowledge of this problem and can be
used in various domains (not only in the subject domain associated with the detection intrusions into
computer network and learning such intrusion detection).

The Intrusion Detection Application ontology specifies knowledge of the basic concepts peculiar
only to a domain of the intrusion detection.

The Intrusion Detection
Learning Application ontology sets
knowledge of the basic concepts
peculiar to the respective subject
domain.

In this section, the Problem
ontology for Data Fusion and
Learning Data Fusion is described
briefly [InterRep#1]. The problem
domain ontology specified below
borrows the basic structure
proposed in [Zitkov et al-00] and
extends the latter in some aspects.
The basic notions of the problem
domain ontology for data fusion
and learning data fusion problems
are the following: Learning
application domain; Basic data;
Local data source; Data dictionary;
Object; Attribute; Attribute type;
Attribute domain; Relation; Object
domain entity identifier; Notion;
Interpretation function; Base
classifier; Meta-data; Meta-
classifier; Source meta-Fig.2.10. Protocol managing distributed data mining procedures

 59

characteristics; Sample set;
Training data; Testing data;
Local discovery task; New
knowledge; Feature; Meta-
feature; Association rule;
Frequent episode; Frequent
episode rule; Classification
rule.

Below the brief definitions
and explanations of the above
ontology notions are given. The
basic notions are referred using
an italic letters.

Learning application
domain — a real or abstract
system existing independently
from the discovery system. An
application domain consists of
(1) objects, which can belong
to one or several classes and
jointly form the set called
universe, (2) specific attributes
of objects and (3) relations
between objects. Discovery
systems attempt to discover
domain models and domain
theories. In the Project the
learning application domain is

a domain of intrusion detection into computer networks.
Basic data — real data residing in local data sources in the form in which it is usually gathered.

Some local sources may be data warehouses with pre-processed and cleaned data; others may contain
direct sensor readings not ready for immediate use. In the Project the basic data corresponds to the
audit data generated on host, network and additional sources levels.

Local data source — geographically, physically, or logically separate data source with its own data
storage structure and mechanism.

Data Dictionary — an ordered set of data about the attribute types and other attribute semantics.
Object (entity, event, unit, case, situation) — an entity or a part of an application domain. Objects

belong to the classes of similar objects, such as persons, transactions, locations, events, processes and
situations. Objects are characterized by attributes and relations given over objects.

Attribute (field, variable, feature, property) — a single characteristic of an object belonging to an
object class. Attribute can be viewed as mapping of objects to values of the given type combined with
the mapping of meaningful operations and relations on objects into operations and relations on values.

Attribute Type — a type of values in the attribute domain, the operations and relations over the
values, which are meaningful for the objects. An attribute can be binary, nominal, ordinal, interval-
valued, and continuous. The value types can be simple (names or numbers, one per object), but the
value may be also a complex structure like a time series, temporal sequence, etc.

Attribute Domain — a set of possible values of an attribute.
Relation — a set of object tuples (pairs, etc.), which have specific meaning, interpretation. For

example, "event a is earlier than event b'', i.e. event a ("read the directory /ad", etc) occurs earlier in
time than event b ("open the file passwd"). Relations can also be formally specified as relations over
object values.

Fig.2.11. Protocol for distributed decision making

 60

Object domain entity identifier — an analog of the first key for a flat table defined for an object of
the object domain. For every such identifier, a rule is defined within the framework of the problem
domain ontology, which can be used to calculate the value of this key. For example, a unique
combination of several attributes of a specific entity could be one such rule.

Notion — a function built on the terms of the local problem domain ontology (possibly using the
already defined notions).

Interpretation function — a function that establishes relationships over objects of a database
(fields, procedures, etc.) and over the attributes of objects or notions of the local problem domain
ontology. Interpretation functions have a certain measurement type ("measurement scale") and
domain.

Base classifier — a decision support system (classifier) based on rules derived from the single
source of data and aiming at making classification using corresponding inference mechanism.

Meta-data — data formed by generalization and joining in a tuple the decisions made by the base
classifiers regarding an object specified in terms of local data sources (in terms of common ontology).

Meta-classifier — a base classifier that uses meta-data as input data to be classified.
Source meta-characteristics — characteristics of the local source represented in terms of the local

ontology. Such characteristics could be, for example, quantity of objects of such class of the object
domain, percentage of missed values of object domain object class attribute, etc.

Sample Set — a subset of objects of an application domain (population) for which data are
available or sought. Probabilistic properties of the sample set should be given or assumed, that relate
the sample set to the whole domain universe, or weights for objects that indicate their
representativeness. Especially for probabilistic domain models, the sample set should be a
representative sample of the joint distribution.

Training data — data used for knowledge base learning (in particular, in intrusion detection
learning, it is used for generation (modification) of pattern, frequent episodes and rules forming
knowledge base of intrusion detection system).

Testing data — data used testing learned knowledge base, for example, intrusion detection
knowledge base. They include data not used in the training data.

Local Discovery Task — a request for a specific component of new knowledge. "Find regularity'',
"generalize regularity'', "combine regularities into theory'' are examples of such tasks. Each discovery
task can be best characterized by the search space explored to accomplish that task, because we do not
know in advance the concrete form of new knowledge or even whether any knowledge will be
discovered in a given input.

New Basic Knowledge — knowledge augmenting or refining the contents of the current domain
model and/or domain theory. New knowledge can be new to the user and extend the user's mental
model of the application domain. For an autonomous system, new knowledge may be just knowledge
new to the discovery system.

Feature — a field describing the basic data records ([Lee et al-98a], [Lee-99]). The feature can
describe the characteristics of some event, for example, the source address of the network packet, the
number of bytes transferred, etc.

Meta-feature — a field describing the meta-data records or a feature specified as a function having
features as arguments. For example the meta-feature can describe average duration of network
connections, etc.

Association rule — a rule for deriving multi-feature (multi-attribute) correlation from a set of data
(basic data or meta-data). Formally, given a set of records, where each record is a set of items, an
association rule is an expression X ⇒ Y; confidence; support. X and Y are subsets of the items in a
record, support is the percentage of records that contain X + Y, whereas confidence is support(X+Y) /
support(X) ([Srikant et al-95]). In intrusion detection area the order of attributes in patterns X and Y is
an important property of the association rule.

Frequent episode — a set of events that occur frequently together within a definite time window or,
in other words, a time-based sequence of events frequently encountered together.

 61

Frequent episode rule — a rule for deriving frequent episode. For X and Y where X+Y is a frequent
episode, X ⇒ Y with confidence = frequency(X+Y) / frequency(X) and support = frequency(X +Y) is
called a frequent episode rule ([Mannila et al-95], [Lee et al-98a], [Lee-99]).

Classification rule — a rule that maps a data item into one of several predefined categories.
Each of the represented concepts specified in more detail at lower levels of the ontology.

2.5. Intrusion Detection Application Ontology

The intrusion detection application ontology represents knowledge specified in terms of the basic
notions of the intrusion detection domain. This knowledge is not influenced by the specifics of design
and implementation issues like chosen high-level architecture, architecture of the particular learning
components, techniques used for attack detection, etc.

The structured representation of the basic notions of the Intrusion Detection domain ontology is as
follows ([Cheswick et al-94], [Cohen-97], [Howard-97], [Howard et al--98], [Krsul-98], [Landwehr-
94], [Lee et al-98a], [Lee et al-98b], [Lee et al-99a], [Lindqvist-97]):

• Message traffic
• Network packets

• Header
• Data field
• Ending

• System calls
• Application events
• Users’ commands

• Event
• Significant event
• Critical significant event

• Audit records (data)
• Pattern (tag, profile, sample)

• Significant event
• Simple sequence of significant events
• Combined structured sequence of significant events distributed across multiple hosts

• Rule
• Access control rule
• Identification and authentication rule
• Intrusion detection rule

• Activity
• Authorized activity
• Non-authorized activity

• Scenario of activity
• Vulnerability

• Design vulnerability
• Implementation vulnerability
• Configuration vulnerability

• Connection
• Actual connection

• Sequence of significant events
• Sequence of patterns or activities

• Completed connection
• Sequence of patterns or activities
• Category (normal/abnormal and, possibly, the name of abnormality class)

• Attack target
• Logical entity

• Account
• Process
• Data

 62

• Files
• Data in transit

• Physical entity
• Component
• Computer
• Network

• Attacker
• Attack tool

• Physical attack
• Information exchange
• User command
• Script or program

• Shell script to exploit a software bug
• Trojan horse
• Password cracking program

• Autonomous agent
• Virus
• Worm

• Toolkit
• script or program
• autonomous agent

• Distributed tool
• Data tap

• Attack
• Reconnaissance

• Identification of hosts
• Network ping sweeps
• Port scanning

• TCP connect scan
• TCP SYN scan

• Identification of Services
• Port scanning

• TCP connect scan
• TCP SYN scan
• TCP FIN scan
• TCP Xmas Tree scan
• TCP null scan
• UDP scan
• Half scan
• Scanning “FTP bounce”
• Dumb host scan
• “Proxy”- scanning

• Identification of OS
• Collection of additional information
• Resource enumeration
• Users and groups enumeration
• Applications and banners enumeration

• Implantation and threat realization
• Getting access to resources

• Direct connection to a shared recourse
• Installation of backdoor server daemons and trojans
• Exploitation of known server application vulnerabilities
• Cracking of PWL file
• Anonymity access to Ftp server
• Brute force password guessing
• Password stealing attack

 63

• Escalating privilege
• Password cracking (use of John- or L0phtcrack)
• Use of known exploits (use of Ls_messages, getadmin or sechole)

• Gaining additional data
• Evaluate trust relations
• Search for cleartext password

• Threat realization
• Confidentiality violation (information disclosure) realization
• Integrity violation (information corruption) realization
• Availability violation (denial of service) realization

• SYN flood
• Land
• Ping flooding
• Smurf
• Ping of Death
• UDP flooding
• storm of inquiries to FTP-server

• Theft of resources realization
• Covering tracks

• Clear logs
• Hide tools (Rootkits, File streaming)

• Creating back doors
• Create rogue user accounts
• Schedule batch jobs
• Infect startup files
• Plant remote control services
• Install monitoring mechanisms
• Replace apps with trojans

• Unauthorized result of activity (attack)
• Increased access
• Information disclosure
• Information corruption
• Denial of service
• Theft of resources

• Attack (intrusion) detection technique
• Misuse detection
• Anomaly detection

• Intrusion detection agent
The shift of the corresponding notion shows dependence (for example, part of relation) of a shifted

notion from the situated above non-shifted or less-shifted one.
Let us explain a part of notions of the domain ontology of the intrusion detection in computer

networks. Using italic font refers to the basic notions.
Message traffic — a stream of network packets into hosts from inside and/or outside of the network

or generated by hosts, and also a stream of System calls, Application events and Users’ commands
within hosts.

Network packets — messages of the network level. A network packet consists of Header (service
information, source address, destination address and other fields), Data field and Ending of a packet
(check sum, delimiter).

System call — operating system kernel events.
Application events — applied program events.
Users’ commands — instructions generated by the user.
Any message is assigned a set of attributes, which values are possibly assigned probability

determining, whether particular attribute is transferred on the legitimate channel, or on the
unauthorized access channel, and also whether it belongs to an unauthorized access script. These

 64

attributes comprise two subsets: (1) attributes associated with the properties of the message itself
(source, receiver, transfer time, outgoing computer network status, predictable status of the network
receiving the message, etc.); (2) attributes assigned by a message processing procedure (a processing
time, involved resources, the status, with which it passes the network, etc.).

Event — an action directed at a target, which is intended to result in a change of the state (status) of
the target. Event can be determined as an occurrence selected from the input message traffic on the
basis of a message processing. An event is assigned triple including a subject (an active object,
fulfilling action, for example, user or program), an object (a passive object, over which an action is
executed, for example, disk, directory, file), an action (for example, reading, recording, execution
etc.), and also additional parameters. Examples of events are as follows: an input (output) of the access
subjects in (from) a system; start-up (completion) of programs and processes (jobs, tasks); access of
the access subjects to defended files, including their creation and deletion; message transmission on
data links, etc.

Significant event — an event “significant” from the viewpoint of a security assurance task.
Critical significant event — a significant event that enables a security system to perform a

protective activity, because otherwise irreversible dangerous aftereffects could occur. For example,
security system can immediately disable all actions supposed by the critical event and disable the
connection itself.

Audit records (data) — a fixed (in database, files, etc.) sequence (chain) of significant events.
Pattern (tag, profile, sample) — an informative (from intrusion detection task viewpoint)

significant event or an ordered significant event sequence associated with normal or/and abnormal
actions. For example, a pattern may be associated with the profile of a user's normal behavior or with
the profile of a user's abnormal behavior (the unauthorized access script). Patterns play the roles of
basic features, evidences of intrusion attempts that are used by intrusion detectors.

Patterns may be Simple sequence of significant events that characterize an attempt to access a
specific port of the host or may be Combined structured sequences of significant events distributed
across multiple hosts within an arbitrary period of time.

Rule — a logic formula specified over a subset of patterns (and/or over their attributes) thus
forming higher-level concepts. Rule may be a logic formula specified over such higher-level concepts
that belong to different levels of generalization. Examples of rules are Access control rules managing
access rights of the subjects (users, programs) to objects (files, directories, hosts, etc.). One simpler
example of rules is Identification and authentication rules that are intended to confirm or reject
authenticity of the subject and the identifier submitted. Intrusion detection rules may represent
knowledge of an intrusion detection agent used for classification of connections in order to distinguish
normal, suspicious or abnormal behavior of a subject.

Activity — a concept specified in terms of a single rule or in terms of a conjunction (or disjunction)
of rules each given over a set of patterns. Each activity intends to achieve a particular goal. A goal of
the activity may be altering the state or status of the respective system objects. In terms of significant
events that are arguments of patterns, an activity is a number of (ordered) sequences of significant
events and associated actions comprising, for example, data reading, copying, modification, deletion,
etc.

Authorized activity — an activity that is consistent with the access control rules.
Non-authorized activity is one that contradicts the access control rules.
Scenario of activity — an ordered or a partially ordered in time set of activities that aims typically

to achieve a goal through achieving sub-goals. In this notion, each particular activity aims to achieve a
particular goal. A scenario of activity may be distributed over the network entry points and in time.
Distributed network-based attack is an example of activities represented in generalized form by a
scenario.

Vulnerability — a weakness in a computer system allowing unauthorized action.
Design vulnerability — vulnerability inherent in the design or specification of hardware or software

whereby even a perfect implementation will result in vulnerability.

 65

Implementation vulnerability — vulnerability resulting from an error made in the software or
hardware implementation of a satisfactory design.

Configuration vulnerability — vulnerability resulting from an error in the configuration of a
system, such as having system accounts with default passwords, having “world write” permission for
new files, or having vulnerable services enabled.

Connection (session) — a sequence of significant events associated with the single entry of a
particular user from entry time till breaking time. The concept of connection is used to detect activities
and to associate activity or activities with the particular user. Note that scenario of activity may be
detected on the basis of several connections that must be identified as one through processing several
connections at an upper level. It is supposed that intrusion detection system possesses the last
functionality. Connections may be partitioned into two groups, i.e. a group of actual connections and a
group of completed connections. Connections are stored in a database.

Actual connection is specified, as a rule, at two levels. At the first level it is specified as a Sequence
of significant events and at the second one this specification is generalized and is represented in terms
of Sequence of patterns or activities.

The model of Completed connection is of two-level as well. At the first level it is specified in terms
of Sequence of patterns or activities. At the second level a completed connection is specified in terms
of assigned Category that corresponds to the decision made regarding whether it is normal or
abnormal and, possibly, is assigned the name of class of abnormality if any.

Attack target — a computer or network Logical entity (account, process, or data) or Physical entity
(component, computer, network) that is the goal of the attack.

Account — a domain of user access on a computer or network that is controlled according to the
record of information, which contains the user’s account name, password and use restrictions.

Process — a program in runtime consisting of the executable program, the program’s data and
stack, its program counter, stack pointer and other registers, and all other information needed to
execute the program.

Data — representations of facts, concepts, or instructions in a manner suitable for communication,
interpretation, or processing by humans or by automatic means. Data can be represented in the form of
Files in a computer’s volatile or non-volatile memory, or in a data storage device, or in the form of
Data in transit across a transmission medium.

Component — one of the parts that make up a computer or network.
Computer — a device that consists of one or more associated components, including processing

units and peripheral units, that is controlled by internally stored programs, and that can perform
substantial computations, including numerous arithmetic operations, or logic operations, without
human intervention during execution.

Network — an interconnected or interrelated group of host computers, switching elements, and
interconnecting branches.

Attacker — an individual who attempts one or more attacks in order to achieve an objective.
Attack tool — some means that can be used to exploit vulnerability in a computer or network.

Sometimes a tool is simple, such as a user command, or a physical attack. Other tools can be very
sophisticated and elaborate, such as a Trojan horse program, computer virus, or distributed tool.

Physical attack — a means of physically stealing or damaging a computer, network, its
components, or its supporting systems (such as air conditioning, electric power, etc.).

Information exchange — a means of obtaining information either from other attackers (such as
through an electronic bulletin board), or from the people being attacked (commonly called social
engineering).

User command — a means of exploiting vulnerability by entering commands to a process through
direct user input at the process interface. An example is entering Unix commands through a Telnet
connection, or commands at an SMTP port.

 66

Script or program — a means of exploiting vulnerability by entering commands to a process
through the execution of a file of commands (script) or a program at the process interface. Examples
are Shell script to exploit a software bug, Trojan horse login program, or Password cracking program.

Autonomous agent — a means of exploiting a vulnerability by using a program, or program
fragment, which operates independently from the user. Examples are computer viruses or worms.

Toolkit — a software package that contains scripts, programs, or autonomous agents that exploit
vulnerabilities. An example is the widely available toolkit called rootkit.

Distributed tool — a tool that can be distributed to multiple hosts, which can then be coordinated to
anonymously perform an attack on the target host simultaneously after some time delay.

Data tap — a means of monitoring the electromagnetic radiation emanating from a computer or
network using an external device.

With the exception of the physical attack, information exchange and data tap categories; each of the
tool categories may contain the other tool categories within them. For example, toolkits contain
scripts, programs, and, sometimes, autonomous agents. So when a toolkit is used, the scripts and
programs category is also included. User commands also must be used for the initiation of scripts,
programs, autonomous agents, toolkits and distributed tools ([Howard-98]).

Attack — a series of steps taken by an attacker to achieve an unauthorized result. An attacker uses
some tool to exploit vulnerability in order to cause a needed event. Attack is expressed as an abnormal
part of connection, abnormal connection or a number of connections classified together as abnormal.
A class of abnormality may be detected or undetected. As a rule, network attack includes phases of
Reconnaissance, Implantation and Threat Realization.

Reconnaissance consists in Identification of Hosts, Identification of Services, Identification of OS,
Collection of additional information, Resource enumeration, Users and groups enumeration or
Applications and banners enumeration.

Identification of Hosts can be realized by Network ping sweeps or Port scanning.
Port scanning is used for Identification of Services. Port scanning can be fulfilled by different

methods: TCP connect scan, TCP SYN scan, TCP FIN scan, TCP Xmas Tree scan, TCP null scan,
UDP scan, Half scan, Scanning “FTP bounce”, Dumb host scan, “Proxy”- scanning, etc.

Implantation and threat realization includes, as a rule, the phases of Getting access to resources,
Escalating privilege, Gaining additional data, Threat realization, Covering tracks and Creating back
doors.

Getting access to resources can be realized by Direct connection to a shared resource, Installation
of backdoor server daemons and trojans, Exploitation of known server application vulnerabilities,
Cracking of PWL file, Anonymity access to Ftp server, Brute force password guessing, Password
stealing attack, etc.

Escalating privilege is accomplished by Password cracking (use of John or L0phtcrack) or Use of
known exploits (use of Ls_messages, getadmin or sechole).

Gaining additional data includes Evaluating the trust relations and (or) Searching for cleartext
password.

Threat realization can be Confidentiality violation (information disclosure) realization, Integrity
violation (information corruption) realization, Availability violation (denial of service) realization, and
Theft of resources realization.

Denial of service can be realized through SYN flood, Land, Ping flooding, Smurf, Ping of Death,
UDP flooding, storm of inquiries to FTP-server, etc.

Covering tracks includes Clearing logs or (and) Hiding tools.
Creating back doors can be fulfilled by Creating the rogue user accounts, Scheduling batch jobs,

Infecting startup files, Planting remote control services, Installing monitoring mechanisms or (and)
Replacing apps with trojans.

Unauthorized result of activity (attack) — an unauthorized consequence of events, the logical end
of a successful activity (attack). If successful, an activity (attack) will result in one of the following:

 67

Increased access, Information disclosure, Information corruption, Denial of service, Theft of
resources.

Increased access — an unauthorized increase in the domain of access on a computer or network.
Information disclosure — dissemination of information to anyone who is not authorized to access

that information.
Information corruption — unauthorized alteration (including destruction) of data on a computer or

network.
Denial of service — enabling of an intentional degradation or blocking of computer or network

resources.
Theft of resources — unauthorized use of computer or network resources.
Attack (intrusion) detection technique — a formal or informal method used for attack (intrusion)

detection.
Misuse detection — an intrusion detection technique, which uses patterns of well-known attack or

weak spots of the system or some other information and/or technique to identify type of intrusion.
Anomaly detection — an intrusion detection technique that tries to determine whether deviation

from established normal usage patterns can be flagged as intrusions.
Intrusion detection agent (IDA) — specialized agent that performs cooperatively with other agents

or other software an intrusion detection task. IDA is responsible for detection of attacks, search for
unprotected entry points into the host caused by software/hardware “bugs”, monitoring of connections
and system calls, gathering of pre-processed audit data.

Each of the represented concepts may be considered in more detail at lower level of the ontology.

2.6. Intrusion Detection Learning Application Ontology

The intrusion detection learning application ontology specifies the high-level knowledge regarding
fundamental concepts peculiar to the above domain. The structured representation of the basic notions
of the Intrusion Detection Learning domain ontology is as follows ([Bass-00], [Cohen-95], [Fayyad et
al-96], [Forrest et al-96], [Kumar et al-95], [Lane et al-97b], [Lee et al-97], [Lee et al-98a], [Lee-99],
[Mannila et al-95], [Porras et al-98], [Srikant et al-95]):

• Common intrusion detection learning
• Intrusion detection meta-learning
• Local data source intrusion detection learning
• Audit

• Event registration (audit data gathering)
• Audit data analysis

• Audit data base
• Audit log

• Audit file
• Audit record

• Audit token
• System attribute

• Audit data
• Host-based audit data

• Operating system audit trail
• System event (calls) sequences (traces)

• Normal trace
• Process identifier
• System call “number”

• Abnormal traces
• Exploit identifier
• System call “numbers”

• Sliding window
• Application events sequences

 68

• System log
• Users’ command

• Subject (user/process identifier)
• Object

• Disk
• Directory
• File
• Process

• Action
• Read
• Write
• Delete
• Execute

• Additional parameters
• Application audit data

• Network-based audit data
• Network packet attributes and data

• TCP packet header attribute
• Time stamp
• Source IP-address
• Source port
• Destination IP-address
• Destination port
• Flags (“SYN”, “FIN”, “PUSH”, “RST”, or “.”)
• Data sequence length in the packet
• Data sequence length in the data expected in return
• Number of bytes of the receive buffer space available
• Indication of whether or not the data is urgent

• UDP-packet header attribute
• Time stamp
• Source IP-address
• Source port
• Destination IP-address
• Destination port
• Length of the packet

• Network packet data
• Network connections attribute

• Basic properties of individual TCP connection
• Duration of the connection
• Type of the protocol
• Network service on the destination
• Number of data bytes from source to destination
• Number of data bytes from destination to source
• Flags (“SYN”, “FIN”, “PUSH”, “RST”, or “.”)
• Flag (normal or error status of the connection)
• Land tag (1 if connection is from/to the same host/port; 0 otherwise)
• Number of “wrong” fragments
• Number of urgent packets

• Content features within a connection suggested by domain knowledge
• Number of “hot” indicators
• Number of failed login attempts
• Logged tag (1 if successfully logged in; 0 otherwise)
• Number of “compromised” conditions
• Root shell tag (1 if root shell is obtained; 0 otherwise)
• Su attempted tag (1 if “su root” command attempted; 0 otherwise)
• Number of “root” accesses

 69

• Number of file creation operations
• Number of shell prompts
• Number of operations on access control files
• Number of outbound commands in an FTP session
• Hot login tag (1 if the login belongs to the “hot” list; 0 otherwise)
• Guest login tag (1 if the login is a “guest” login; 0 otherwise)

• Traffic feature computed using a time window (in the past� n seconds)
• Number of connections to the same host as the current connection in the

past n seconds
• % of connections to the same destination host as the current connection in

the past n seconds that have “SYN” errors
• % of connections to the same destination host as the current connection in

the past n seconds that have “REJ” errors
• % of connections to the same destination host as the current connection in

the past n seconds to the same service
• % of connections to the same destination host as the current connection in

the past n seconds to different services
• number of connections to the same service as the current connection in

the past n seconds
• % of connections to the same service as the current connection in the past

n seconds that have “SYN” errors
• % of connections to the same service as the current connection in the past

n seconds that have “REJ” errors
• % of connections to the same service as the current connection in the past

n seconds to different hosts
• Audit data of other sources

• Algorithms of learning (data mining) for intrusion detection domain
• Classification
• Link analysis
• Sequence analysis (frequent episodes detection)
• Learned rule sets

• Learned rule
Let us give definitions (descriptions) of some basic notions of the Intrusion Detection Learning

domain ontology. The basic notions are referred to using italic font.
Common intrusion detection learning — a generation (modification) of the whole intrusion

detection knowledge base.
Intrusion detection meta-learning task — formulations of the intrusion detection learning tasks for

the local sources, the intrusion detection knowledge generalization scheme, and the intrusion detection
learning of meta-classifiers that uses audit data from one or more sources.

Local data source intrusion detection learning — finding of patterns/regularities/rules based on the
local source audit data in accordance with the formulated intrusion detection learning task.

Audit — a process of Event registration and Audit data analysis.
Event registration (audit data gathering) — fixing of information about messages, transmitted to/in

the defended network, and (or) security concerned events occurring in a network.
Audit data analysis – a procedure aiming at detecting violations of security policy and at

identifying current state of computer system safety.
Audit database — a chronologically ordered log and (or) audit data set. Audit database is the basis

for intrusion detection and intrusion detection learning. Audit database can consist of audit logs. Audit
log includes a sequence of Audit files, which are composed of Audit records. Each audit record
consists of a sequence of Audit tokens, which specify System attributes. Structures representing audit
files have special file tokens in order to mark the beginning and end of file; header and trailer tokens
denoting each audit record.

Audit data — records registering occurred events. The audit data fixes results of the system
subjects’ activity and should be sufficient for restoration, look-up and analysis of a sequence of

 70

operations fulfilled in a defended system. Audit data plays the role of input information for intrusion
detection learning and intrusion detection. So two kinds of audit data should be prepared: Training
data and Testing data.

The sources for audit records can be such as Host-based audit data (Operating system audit trails,
System logs and Application audit data), Network-based audit data, and (or) Audit data from other
sources.

Operating system audit trail fixes the System events (calls) and Application events sequences.
Sequence can be Normal trace or Abnormal trace. Each sequence (trace) can be represented as a

row of the table that has two columns of integers, the first is Process (Exploit) identifier and the
second is System call “number”. These numbers are indices into a lookup table of system call names.

Sliding window is used to scan the traces and create (investigate) a list of (unique) sequences of
system calls.

System logs determine different event, including users’ commands. These event are characterized
by subject (user/process identifier), object (Disk, Directory, File, Process, etc.), action (Read, Write,
Delete, Execute, etc) and Additional parameters.

In Network-based audit data for each network event (described by Network packet attributes and
data) there are attributes defined on the moment of its originating (subject, object, access mode, arrival
time), and attributes describing event (message) processing (processor usage time, size of information
input in a data link, etc.).

For each TCP-packet, the following TCP-packet header attributes can be fixed in audit data: Time
stamp, Source IP-address, Source port, Destination IP-address, Destination port, Flags (“SYN”, “FIN”,
“PUSH”, “RST”, or “.”), Data sequence number of this packet, Data sequence number of the data
expected in return, Number of bytes of receive buffer space available, and Indication of whether or not
the data is urgent.

For each UDP packet, the following UDP packet header attributes can be fixed: Time stamp,
Source IP address, Source port, Destination IP address, Destination port, and Length of the packet.

A lot of different Network connection attributes can be defined.
Basic properties of individual TCP connection are Duration of the connection, Type of the

protocol, Network service on the destination, Number of data bytes from source to destination,
Number of data bytes from destination to source, Flags (“SYN”, “FIN”, “PUSH”, “RST”, or “.”), Flag
(normal or error status of the connection), Land tag (1 if connection is from/to the same host/port; 0
otherwise), Number of “wrong” fragments, Number of urgent packets.

Content features within a connection resulting from domain knowledge are Number of “hot”
indicators, Number of failed login attempts, Logged tag (1 if successfully logged in; 0 otherwise),
Number of “compromised” conditions, Root shell tag (1 if root shell is obtained; 0 otherwise), Su
attempted tag (1 if “su root” command attempted; 0 otherwise), Number of “root” accesses, Number
of file creation operations, Number of shell prompts, Number of operations with access control files,
Number of outbound commands in an FTP session, Hot login tag (1 if the login belongs to the “hot”
list; 0 otherwise), Guest login tag (1 if the login is a “guest” login; 0 otherwise).

Traffic features computed using a time window (in the past n seconds, for example, n =2) are
number of connections to the same host as the current connection in the past n seconds, % of
connections to the same destination host as the current connection in the past n seconds that have
“SYN” errors, % of connections to the same destination host as the current connection in the past n
seconds that have “REJ” errors, % of connections to the same destination host as the current
connection in the past n seconds to the same service, % of connections to the same destination host as
the current connection in the past n seconds to different services, number of connections to the same
service as the current connection in the past n seconds, % of connections to the same service as the
current connection in the past n seconds that have “SYN” errors, % of connections to the same service
as the current connection in the past n seconds that have “REJ” errors, % of connections to the same
service as the current connection in the past n seconds to different hosts.

Algorithms of learning (data mining) for intrusion detection domain – algorithms for
(automatically) extracting models (knowledge) from large stores of audit data in order to form

 71

knowledge base of intrusion detection system. As a rule, for intrusion detection learning, three classes
of algorithms are used.

Classification — a class of algorithms that maps a data item into one of classes (normal or
abnormal). An ideal application in intrusion detection will be to gather sufficient “normal” and
“abnormal” audit data for a user or a program, then apply a learning algorithm to learn a classifier that
will determine (future) audit data as belonging to the normal class or the abnormal class.

Link analysis — a class of algorithms that determines relations between fields in the audit database.
Finding out correlation in audit data will provide insight for selecting the right set of system features
for intrusion detection ([Lee-98]).

Sequence analysis (frequent episodes detection) — a class of algorithms that models sequential
patterns. These algorithms can help to understand what (temporal) sequence of audit events is
frequently encountered together. These frequent event patterns are important elements of the behavior
profile of a user or program ([Lee-98]).

Learned rule sets — a collection of learned rules.
Learned rule (rule) — a logic formula specified over a subset of the audit data patterns and their

attributes used for generation (modification) of intrusion detection knowledge base.
Each of the represented concepts considered in more detail at lower levels of the ontology.

2.7. Conclusion

The Chapter presents the developed and implemented software toolkits used in the Project for
support of the design, implementation and deployment technology of IDLS. The technology makes
use of two software tools. These software tools are Multi-agent System Development Kit (MASDK)
and Information Fusion Design Toolkit. The first toolkit, MASDK, mostly supports engineering,
implementation and deployment of the reusable components of multi-agent IDLS that weakly depend
on the application domain. The second toolkit, Information Fusion Design Toolkit, is responsible for
design and implementation of the application-dependent components of multi-agent IDLS.

One of two main components of MASDK is so-called “generic agent”, while the second one is
composed of a number of editors destined for specialization of “generic agent” according to particular
application in design. Use of such an approach to multi-agent system design leads to enough flexible
technology, in which the target multi-agent IDLS is specified formally in a language (this specification
is called MAS “System kernel”) and afterwards is deployed (installed) within a computer network. In
case of necessity of MAS modification the designers can do this through modifying specifications of
the respective components of the system represented as System kernel and re-generating software
agents. At that, such modifications can be only applied to agents' knowledge and data. All architectural
solutions incorporated in the reusable agent components remain unchanged.

The main peculiarity of the technology part supported by Information Fusion Design Toolkit is that
the latter actually implements a novel kind of IF technology that can be called as “agent-mediated
technology”. This class of technology assumes that design of an IF MAS is performed by distributed
collaborating designers, which activity is mediated by a number of agents specifically destined to
support for collaboration of designers and dismiss them from a number of routine engineering
operations. A number of special protocols described in the Chapter and libraries of external functions
make the distributed engineering activity coherent and effective.

The developed multi-level ontology of the intrusion detection learning task unites a structured
multitude of basic notions used for specification of the upper levels of the knowledge model
manipulated by the components of the system under development. This ontology encompasses the
notions from several domain ontologies, i.e. from the “Data fusion” & “Data fusion learning” problem
ontology, from the “Intrusion detection” and “Intrusion Detection Learning” application ontologies.
The common ontology developed here serves as a basis for design and implementation of the upper-
level representation of distributed knowledge that is a shared knowledge for the agents of the multi-
agent IDLS. This level of knowledge provides, on the one hand, the integrity of the distributed
knowledge base, and on the other hand, the “mutual understanding” of the agents interacting via
message exchange.

 72

Chapter 3. Multi-agent Architecture and Operation of Intrusion Detection
Learning System

Abstract. The focus of the Chapter is description of the developed multi-agent architecture of
IDLS. Architecture is developed on the basis of thorough decomposition of the IDLS
functionalities, on analysis of the set of particular system functions and subsequent composition
them into groups that are allocated to the particular agents. The basic agent classes are introduced
and their collaboration is described. Architecture of the communication platform supporting
agents' interaction, classes of communication and interaction protocols used by agents are also
briefly outlined.
The Chapter describes also operation of IDS based on information fusion. This description
supposes that the system is implemented and deployed in a computer network, learning procedures
aiming engineering of the system distributed knowledge base and distributed classifiers have
already been successfully completed.
The technology of intrusion detection learning is presented. The Chapter thoroughly describes the
learning technology and respective interaction of both IDS and IDLS components. The conceptual
explanation of how IDLS operates in classification of the newly received data is given. The accent
is on the explanation of the interactions of IDLS agents.

3.1. Architecture of Intrusion Detection Learning System

In this section we present the results of decomposition of the entire task to be solved by multi-agent
IDLS, the chosen variant of allocation of the IDLS functionalities to the classes of agents, architecture
of IDLS and the agents' communication environment.

One of the objectives of this section is to present exhaustive and structured lists of the tasks
allocated to particular agent classes of IDLS and thus to provide the necessary understanding of the
roles and responsibilities of agent classes, that in turn must provide understanding of the protocols of
agents' interaction. The depth of the entire task decomposition is chosen to the degree that guarantees
for the most tasks of the bottom level that they are executed by a particular agent class.

The list of tasks in Tab.3.1 is presented in a semi-structured form. In it, the relation “Part of”, which
is here interpreted as “Task"–"Sub-task” relation, is represented via the size of indent of paragraphs
naming the tasks and subtasks. A general understanding of the senses of the tasks can be concluded
from their naming that is made in such a way that, according to our opinion, as much as possible
provides self-explanations.

Table 3.1. List of tasks and subtasks of IDLS and their allocation to particular agent classes

Agent's name Names of tasks and subtasks

KDD Master

Distributed application ontology design

Design and providing for consistency of the naming of the set of
ontology notions
Design of the keys for entity instance identification
Application ontology edition

Design of meta-model of decision making by IDS as a whole
Support for decision making task specification
Design of meta-model of IDS decision making
Getting and analysis of meta-properties of data of data sources
Splitting the data into training and testing samples
Design of classification tree
Specification of learning tasks
Sending of the decision making structure to the particular decision
makers of IDS

Distributed learning management
Meta-classifier learning management
Preparation of IDS for use in decision making mode

 73

Agent's name Names of tasks and subtasks

Meta-level
KDD agent

Distributed learning management

Computation of (relational) data for training and testing Meta-classifier
Meta-classifier learning

Mining of rules from meta-data
Adjusting the inference mechanism of meta-classifier
Testing of the meta-classifier and its performance quality
assessment

Design of meta-model of decision making by IDS as a whole
 Sending of the decision making structure to agent-classifier of
meta-level

KDD Agent (of
a source)

Design of meta-model of decision making by IDS as a whole

Receiving of the decision making structure to KDD master
Distributed learning management

Selection of data for training and testing of Base Classifiers
 Receiving data form DSM agent
Base Classifier learning

Mining patterns used by Base Classifier's in decision making
procedure
Adjusting the inference mechanism of Base Classifiers of
source
Base Classifiers testing and its performance quality assessment
Transformation data represented in numerical scales into
discrete ones

Sending of the decision making structure to KDD agent of source
Server of
learning
methods

Learning, training and testing methods management

*1 Source-
based

classification
agent
(base

classifier)

Distributed learning management

Classifier learning
Receiving of the decision making structure from KDD agent of source
Computation of data for training and testing Meta-classifier

Base Classifier's decision making
Decision making *

Base Classifier's decision making
Check for incoming of new data
Base Classifier's decision making management
Firing particular rule of Base Classifier Knowledge Base
Making decision by Base Classifier

* Agent-
classifier of
meta-level

Distributed learning management (subject of learning)

Meta-classifier learning
Receiving of the decision making structure from KDD agent of
meta-level

Decision making (in IDS operation)
Meta-classifier's decision making management
Meta-classifier's decision making

1 Agents marked by symbol “*” are not the subject of the research in this project. These agents are the
components of Intrusion Detection System designed by IDLS. Nevertheless, the simplified versions of such
agent are also under development due to the necessity to validate the developed technology of IDLS design.

 74

Agent's name Names of tasks and subtasks

* Information
Fusion

(Decision
combining)

management
agent

Design of meta-model of decision making by IDS as a whole

Receiving of the decision making structure
Distributed learning management

Preparation of the system for operation in decision making mode
Decision making

Analysis of incoming events participating in classification procedure
Decision making management
IDS decision making

Data source
managing

agent

Decision making *

Data preparing
Retrieval of data samples from data bases of data source1
Transformation of samples attributes types
Computation of training and testing data samples for
Classification agents of data source

Distributed application ontology design
Design and providing for consistency of the naming of the set of
ontology notions
Design of the keys for entity instance identification
Application ontology edition
Tuning the gateway for database access

Design of meta-model of decision making by IDS as a whole
Getting meta-properties of data of data sources

Computation of aggregated data properties in reply on a query
Getting the list of identifiers of attributes specifying the entity
to be classified Extraction from database of the list of
identifiers of data to be used for training and testing of IDS

Distributed learning management
Selection of data for training and testing of Base Classifier

Extraction of data from database (for dealing with relational
data)
Extraction of data from database and its transformation into
needed format (for sequences of events)
Extraction of data from database and its transformation into
needed format (for vector time series of binary data)

Computation of data for training and testing Meta-classifier
Base Classifier learning

Designation the names and types of attributes of data
specification that is input data for Base Classifier

Meta-classifier learning
Designation the names and types of attributes of data
specification that is input data for Meta-classifier

Data source monitoring to detect receipt of new data*

The interaction of these tasks (and therefore, interaction of the agents responsible for task

performance) in the process of IDLS operation specified in terms of protocols is presented in Chapter
2. Interaction of the tasks of applied IDS (respectively, the agents responsible for their performance)
designed as the result of the IDLS operation is also considered in Chapter 2.

If the same task is shared by several agents then this means that different agents participate in its
solving in distributed manner and these agents are responsible for different subtasks of a shared task.

IDLS can be viewed as the learning component of IDS (Fig.3.1), if it is supposed that the former is
from time to time used in off-line mode for incremental learning of IDS.

1In our model each data source generates several instances of data of different structures which must by stored in
different databases of the same source. Therefore, this agent must provide access to several ODBC sources.

 75

In our development we use multi-agent architectures for both learning (IDL) and decision making
(ID) components. In turn, both of them comprise two types of components. The first type corresponds
to those handling with the source-based data; these components are situated in the same hosts as
databases of the respective data sources. The second one corresponds to the components manipulating
with meta-data generated on the basis of source-based data. The last components can be situated in
any host.

In Fig.3.1 the learning components are given in darker color while decision making components
are given in white one.

A more detailed architecture of IDL and ID components is depicted in Fig.3.2. In it, the learning
(IDL) components (both source- and meta-levels) are depicted in the left hand side and the
components corresponding to decision making functionalities (ID) (although both of source- and meta-
levels) are depicted in the right hand part of this figure.

Let us outline main components of IDL and ID parts of multi-agent IDLS and their functionalities.
Detailed specification of these functionalities including specification of agent interaction protocols
corresponding different task is given in the following chapters.

The functions of source-based components of the system under consideration (Fig.3.2, lower part)
are as described below.
Data source managing agent

• Participates in the distributed design of the shared components of the application ontology;
• Collaborates with meta-level agents in management of training and testing procedures of

particular source-based classifiers and in forming meta-data sample for meta-level training and
testing;

• Supports gateway to databases through performing transformation of queries from the language
used in ontology into SQL language.

KDD agent of data source
• Trains and tests of source-based classification agents and assesses performance quality of the

designed classifiers. In this process, it uses library of training and testing methods, shared and
private components of the application ontology and training and testing datasets.

Source-level components of IDS

Host 1

TT-agent
2

TT-agent
1

Local classifier
k

Local classif
er 2

Local classifier
1

Host 1

TT-agent
2

TT-agent
1

Local classifier
k

Local classif
er 2

Local classifier
1

Data

Source

Meta-level components of IDS
Meta-

classifier Learning-
meta–agent 1

Learning-
meta–agent 2

Fig.3.1. General view of common IDS architecture

Data

Source

Data

Source

Host 1

Learning
-agent 2

Learning-
agent 1

Local classifier
k

Local classifier
2Local classifier

1

 76

Classification agent of data source
• Produce decisions using source-based information. It is the subjects of training and testing

performed by agents of KDD agent. Classification agent of data source includes several base
classifiers (according to the meta-model of source-based decision making).

Server (library) of learning method (not an agent)
• Comprises a set of the software classes implementing particular KDD methods, metrics, etc.

The meta-level components responsible for IDL and ID (Fig.3.2, upper part) and their functions are
as follows:
Meta-Learning agent (“KDD Master”)

• Manages the distributed design of shared application ontology;
• Computes the training and testing meta-data samples;
• Manages the design of meta-model of decision making.

Meta-level KDD agent
• Trains and tests of meta-level classification agent and assesses its quality.

Decision combining management agent
• Coordinates operation of Agent-classifier of meta-level and Meta-level KDD agent both in training

and decision combining modes of their performance.
Agent-classifier of meta-level

 Produce decisions using meta-level information. It is subject of training and testing performed by
Meta-level KDD agent of IDLS

IDLS

Meta-level part of IDLS

Source-based part of IDL
component of IDLS

Fig.3.2. Architecture and interaction of IDL (left) and ID (right) components

User interface
User interface

User interface

KDD Master

KDD agent

Server (library) of
learning methods

Testing

Training and
testing data

Training and
testing Meta-data

Meta-level KDD
agent

Server of learning
methods

Data source
managing agent

User interface

Training

Testing

Training

IDS

Meta-level part of IDS

Source-based part of ID
component of IDLS

Source-based classification
agents of IDS

Base classifier k
Base classifier 2

Base classifier 1

Information Fusion
(Decision combining)

management agent

User interface

Meta-data (for
decision combining)

Agent-classifier of
meta-level

Data
Source Data source

managing agent

 77

Server (library) of KDD methods (not an agent)
• Comprises a set of the software classes implementing particular KDD methods, metrics, etc.

The list of functions, libraries or modules developed and their allocation to particular agent classes
is presented in Tab.3.2. It should be noted that architecture of IDLS designed by making use of
MASDK implements agents behavior (its functionalities) in terms of state machines. Decomposition
of the entire IDLS functionalities and composing the subtasks to be allocated to the particular agents is
made in implementation-oriented mode. This is the reason why the functions of agents are named in
Tab.3.2 as state machines of the respective destinations. Such a terminology is more understandable
for designers of IDLS that use MASDK as a design technology support software tool.

Table 3.2. List of functions, libraries or modules and their allocation to particular agent classes

Agent name Names of function, library or module

Editor of meta-level ontology
State machines providing interaction with editor of meta-level ontology
Editor of decision making meta-model
State machines providing interaction with Editor of information fusion meta-model
State machine querying characteristic of data sources
Information Fusion meta–model editor
State machines providing interaction with Information fusion meta–model editor
State machine responsible for forwarding learning tasks to KDD agents
State machine responsible for forwarding Decision making meta-model to the
decision making agent
State machine responsible for forwarding training and testing data sample
specification
State machine responsible for preparation of meta-data used for meta-classifier
training and testing
Function querying generalized specification of data sample

KDD Master

Function querying identifiers
Interface of the meta-learning program tracing (debugger of meta-learning)
State machine implementing interaction with meta-learning program tracing
State machine receiving information about finalizing of the base classifier learning

Meta-level
KDD agent

State machine receiving meta-learning task specifications
State machine receiving local learning task specification
Basic state machine of user interface supporting training and testing
Interface of the managers of classifiers' status
State machine responsible for resending classifiers' attributes
Interface for estimation of the coverage factor of the rules
State machine managing rule extraction procedure
Interface supporting the classifier attribute tuning
State machine supporting the classifier attribute tuning

KDD Agent (of
a source)

Interface supporting transformation of the data measurement scales

Data mining function “vam”
Data mining function “gk2”

Server of
learning
methods

Data mining function “FP-grows”

 78

Agent name Names of function, library or module

 Data mining function “Temporal mining”
State machine receiving rules generated and classification attributes
Decision making state machine of classifier
State machine informing about readiness of a base classifier to produce decision
Function responsible for monitoring of arrival of input data
Decision making based on particular rules

* Source-
based

classification
agent
 (base

classifier)
State machine receiving attributes specifying a classifier
Decision making state machine of Meta- classifier
State machine receiving decision making meta-model

* Agent-
classifier of
meta-level State machine receiving attributes specifying meta-classifier

Interface of the decision combining support system
State machines of the decision combining support system
Decision combining system

Information
Fusion

(Decision
combining)

management
agent

State machine receiving input data arrived

State machine performing data preparation
Function responsible for data extraction and transformation
State machine receiving specification of notions
State machine receiving attributes of data
Interface for tuning of the application ontology notion interpretation
State machine implementing interface for tuning of the application ontology notion
interpretation
State machine receiving generalized data properties
State machine performing receiving and forwarding of the identifier's list
State machine preparing a data sample
Function responsible for preparing of a data sample
State machine performing monitoring of the data source
Function responsible for monitoring of the data source
State machine responsible for receiving of data attributes

Data source
managing

agent

State machine responsible for receiving attributes of classes

In development of the agents' communication environment the “de facto” standard language is
KQML that is used as message content wrapper, whereas the content itself is specified through use of
XML language representing message in terms of application ontology. Transport level of message
wrapper also corresponds to the standard protocol that is TCP/IP protocol.

The conceptual view of the structure of agent communication within computer network in which
multi agent IDLS is situated is depicted in Fig.3.3. It supposes that agent communications are
supported by three intermediate components that are:

• Portal of the computer at which an agent sending a message is situated;
• Portal of the computer at which an agent receiving a message is situated;
• Communication meta-agent (agent-facilitator) of the IDLS that provide message addressing.

These components provide the complete transport services for messages.
Protocols needed for support of agent interactions comprises three groups:

 79

1. Protocols that support agent message exchange in accordance with the generally accepted (for
multi-agent systems) three-level scheme: “message transport protocol” (message envelope) –
“message syntax specification” – “message content specification”.

2. Protocols aiming at management of semantically interconnected dialogs (conversations) of agents
that take place if agents need a cooperation to solve a task. As a rule, such kind of protocols is
necessary in case if several agents are involved in a multi-step task solving procedure. This kind
of protocols plays the role of meta-level protocols with regard to the protocols of the first group.

3. Protocols supporting cooperative work of agents in distributed design and learning procedures.
These protocols are specific for any multi-agent information fusion technology. They are
necessary to support for distributed development of data meta-model, ontology, scheme of
combining decisions of particular classifiers, and other functions to be performed in order to
support for distributed information fusion systems engineering including engineering of IDLS.

This type of protocols plays the role of meta-level protocols in regard to the protocols of the first and
the second groups.

Let us conceptually outline the protocols that already implemented.
Protocols of the first group

Transport level of the first group protocols is implemented of the basis of the standard JAVA
RMI (Remote Method Invocation) technology that, in turn, is based on usage of standard TCP/IP
protocol. The message syntax is represented in KQML language tuned for the purposes of DF
applications. Message content (formally, it is not a part of a protocol) is specified in terms of XML
language. In the further development of system architecture and technology it is planned to substitute
the pure XML by one of its extensions like RDF or DAML+OIL language. Generally say, protocols of
this group support coding, transport and agent mutual understanding of each particular message.

The protocols of the second group are realized on the basis of the protocols and respective
languages of the first group.
Protocols of the second group

At the current step of the research these protocols are represented as a set of scenarios for
processing of a finite set of agent conversations (a conversation is understood as a set of
interconnected dialogs of agents solving a shared task). In principle, these scenarios make it possible
to support all agent conversations supposed by the IDLS system functionalities. Note that each
particular dialog between a pair of agents can activate a series of dialogs of the agent-receiver with
other agents if the former needs a help of the latter. In turn, secondary agent-receivers can need a help

Agent-1

Portal
A

Agent-2

Agent-k

….
Portal

B ….

Agent-1Computer A

Agent-
facilitator

Agent-2

Agent-s

Message 1 Computer B

Message 2

Fig.3.3. Message exchange scheme

 80

of third party agents, and so on. The protocols of this group aim at supporting and management of
such multi-step multi-agent dialogs.

It should be noted that these protocols are necessary in every multi-agent system independently of
application area. Therefore it is reasonable to develop a reusable software component for such
protocol specification, editing and execution. Currently, such a tool is being developed in parallel with
the development of particular scenarios for management of agents' conversations. It is a part of the
“generic agent” whose conceptual model is considered in detail in Chapter 2. This tool supposes that
the whole set of conversation scenarios is represented in terms of a computational model in such a way
that each particular scenario corresponds to a “path” within this model. Use of such a tool would
provide IDLS system for more flexibility and modifiability of inter-agent conversations.
Protocols of the third group

This group of protocols supports the interaction of agents in process of collaborative design of an
applied IDLS system. These protocols are specific for any kind of applications. Protocols of this group
are necessary to support for the procedures of distributed development of distributed ontology of an
applied IDLS and for management of distributed learning. The protocols of the third group constitute
the most important part of the protocol-oriented research within technology for IDLS system design
and implementation. Realization of such protocols supposes usage of protocols of the second group
that represent the protocols of this group in terms of a number of dialogs. In turn, the latter are
implemented in terms of the protocols of the first group.

3.2. Functional Structure and Operation of Generalized IDS

General configuration of generalized IDS based on information fusion (IF) approach and the
structure of its distributed knowledge base are depicted in Fig.3.4. In this figure and also in the text
below symbol “!” denotes the logical connective “or” while the symbol “/” is below used as separator
of alternative (exclusive) events, classes of situation, etc. called further for generality as entities.

According to the architecture of IDS (see Fig.3.2)), it includes the agents of the following classes:
• Information Fusion (Decision combining) management agent for brevity called hereinafter

System Managing agent (SM-agent). The agent of such a class is always unique in the system.
• Agent-classifier of meta-level called hereinafter for brevity Meta-Classifier agents (МС-

agents). It can be unique but also can be presented in the system in several instances what
depends on the designed meta–model of IDS, that
in turn, is determined by the peculiarities of the
application;

• Source-based Base Classifiers (ВС-agents) (single
agent for each data source);

• Data source managing agents (DSM-agents)
(single agent for each data source).

Below for more clarity of explanations an abstract
example of IDS is used. Its characteristics are as follows.
The number of data sources is chosen equal to 2. It is
supposed that the number of the alternative object states to
be discriminated is equal to 4 and the labels of the object
states are A1, A2, A3, A4. The designed classification tree
used in meta-model of Decision Fusion (DF) procedure is
presented in Fig.3.5. According to this tree, meta-model of
IDS includes 2 meta–classes, M1=A1!A2 and M2=A3!A4. Accordingly, for each of the nodes of this
classification tree except its leaves a meta-model of decision combining (called also for short decision
tree) has to be built. Let us remind that each meta-model of decision combining (decision tree)
specifies the structure of decision combining and participating classifiers. Therefore, in the example
under consideration IF uses three decision trees at that each of them is mapped to the respective meta-
class of the classification tree. The first of the decision trees is destined for discrimination of the meta–

All the classes of object
states (Root node)
{A1, A2, A3, A4}

A1 ! A2 A3 ! A4

A1 A2 A3 A4

Fig.3.5. Classification tree used in
explanations

 81

classes M1 and M2, and two others destined for discrimination of the classes A1 and A2 of the meta–
class M1 and the classes A3 and A4 of the meta–class M2 respectively (Fig.3.5).

The knowledge concerning IF meta–model that is classification tree structure and decision trees
corresponding to the classification tree meta–classes, is a part of SM agent knowledge base (Fig.3.4).

Each BC-agent as a rule consists of several base classifiers and MC-agent includes all meta-
classifiers. The architecture depicted in Fig.3.4 contains singe MC-agent, although this is not the
necessary case. Respectively, all the three meta-classifiers supposed by IF meta–model are the
components of MC-agent. Connections SM- agent with MC- agent reflect the fact that SM-agent
“knows” the structure of the meta-classification tree and which particular meta-classifier is responsible
for combining decisions in each node (meta–class) of the classification tree.

Connections between MC- agent and BC- agents reflect the fact that MC-agent “knows” which BC-
agents and which particular base classifiers of these BC-agents are used in the respective tasks
corresponding to the IF meta–model. Connections between BC-agents and DSM-agents reflect the fact
that the respective BC-agents and DSM-agents handle with the data of the same source. Connections
between SM- agent and DSM- agents reflect the fact that the former “knows” which data sources are
used in IF procedure and which DSM- agents are provided with the interface with the respective data
sources.

The only agent of the system that is provided with the interface to user is SM- agent.
It should be noted that the IDS architecture described in this section is not a general case.

Depending on the application, the architectures can be different; in particular, these differences are
caused by the followings:
• Several MC-agents can exist. The distribution of meta-classifiers among MC-agents has only

one restriction – all meta-classifiers concerning to one node of classification tree must be the
components of the same MC-agent.

• Meta–models of combining decisions (decision trees) mapped to different nodes of
classification tree can be very different.

• SM-agent can be responsible for solving of several IF tasks. In this case each such an IF
application can operate according to each particular IF meta–model and different meta–models
can differ in both classification trees and the sets of decision trees.

DSM- agent ВС- agent 1

ВС- agent 2

МС- agent

Мeta classifier 3

Task
specification

SM-agent

{A1 ! A2} / {A3 ! A4}

A3 / A4

ВС 1

...

ВС k

ВС-1

...

ВС-r

D
at

ab
as

e
1

DSM- agent

D

at
ab

as
e

2

D
at

a
so

ur
ce

 1

D
at

a
so

ur
ce

 2

Fig.3.4. A component of the IDS distributed knowledge base

A1 / A2

Meta–classifier
2

Мeta-classifier 1

 82

Let us outline the standard scenario of the IDS operation.
At the system start, SM-agent selects the task corresponding to the root node of the classification

tree. In our case it corresponds to the task aiming at discrimination of the meta–classes M1=A1!A2
and M2= A3!A4.

Step 1. SM-agent sends the messages to DSM- и MC-agents. In reply to these messages, DSM-
agents extract the pertinent data from "own" data sources to be fused. MC-agent, in reply to the
message received formulates the task corresponding to the root node of the classification tree to be
solved by BC-agents.

Step 2. In the second step the operation of BC-agents is initiated. A signal to start of each BC-agent
is receiving the respective messages from DSM- and MC-agents. The messages of DSM- agents send
to BC-agents the vectors of input data specifying an instance of a situation to be classified. Messages
from MC-agent determines to BC-agents specification of the classification sub task to be solved in the
current step. While receiving these messages, BC- agents initiate the operation of their base classifiers.

Step 3. In this step, BC-agents forward to MC-agent the solutions produced by their own base
classifiers.

Step 4. In this step MC-agent initiates operation of the meta–classifiers, which combine the
decisions received and produce a final result of the first subtask solving. Afterwards MC-agent sends
the result to the SM- agent.

Based on the results of the first subtask, SM- agent selects one of the two remaining subtasks and
initiates its solving by IF system according to the same scenario. The only peculiarity of this stage is
that after the first stage SM- agent doesn't send message to DSM- agents while in the second stage
DSM- agents don't send messages to BC- agents. The latter is cased by the fact that at the beginning of
the previous cycle DSM- agents have already computed the input data and sent it to BC- agents.
Accordingly, in this stage the BC- agents have already possessed the input data and that is why are
capable to start the task solving.

3.3. Intrusion Detection Learning Scenario

Life cycle of both systems, IDS and IDLS, starts with the development of their configuration
(number and nomenclature of agents, as well as their distribution on the hosts of computer network in
which the system is going to be deployed). The main information for determining the configuration of
both systems is the information about the data source (sources and their location in the system).

The number and location of data sources determines the number and location of DSM-, BC- and
KDD-agents. On each host where a data source is located, one instance of each of the above-
mentioned agent classes is also located. Regarding agents of other classes, the following rules are
applied. Agents of classes SM and KDD master are always given as single instances. The number of
agents of classes MC-agent and Learning agent of Meta–classifiers, in a general case, depends on the
characteristics of the application domain, and there may be several agents of these classes. In the
current version of the software implementation an agreement was reached that agents of these classes
are also given as single instances.

The generated agents in their original form do not possess any object knowledge. An abstract
example of configuration of both systems for two data sources is found in Fig.3.6.

The process of formation and learning of IDS includes solving a large number of particular
subtasks. A list of the main subtasks may be structured as shown in Fig.3.7. This list partially reflects
the order of their execution. Many of the subtasks in that list are quite complex. They, in turn, consist
of subtasks, which are also substantial components of the learning technology. A brief description of
each of them is given further in this section. More detailed descriptions are to be found in the later
subsections.

Design of the shared application ontology. The role of ontology to provide the different agents with
a shared set and the same interpretation of notions of the application domain, which is necessary for
ensuring a coordinated interaction both between agents and data sources and between agents in the
exchange of messages through using the same thesaurus and having the same “understanding” of the
meaning of notions in it.

 83

Design of binary classification trees. Each classification tree corresponds to a separate task solved
by IDS. Such tree’s leaves correspond to the set of alternative (exclusive) classes of the object’s states
or situation classes, and its nodes, and to meta-classes, each of which includes several possible states.
In a general case, several classification trees with identical sets of leaves may be used for the same
classification task.

Design of Meta-model of decision combining (Decision tree). Decision tree is determined for each
non-terminal node (meta-class) of classification tree. Formation of a decision tree implies the
description of a meta-model of decision-making at the corresponding node of the classification tree,
which describes (1) a structured set of base classifiers and meta-classifiers, and (2) a set of features
that are entered into each of the mentioned classifiers.

A description of a block of tasks for the development of base classifiers’ knowledge bases follows
below.

Design of training and testing datasets. In this Project, it is assumed that the expert knowledge is
not used in the engineering of the knowledge bases of the IDS components. These knowledge bases
are built on the basis of the data mining and knowledge discovery processes. It is assumed that there is
an interpreted dataset in each of the sources that is used as the training and testing dataset for the
learning of the system’s classifiers. An interpreted dataset is a set of instances of specifications of
states of objects or situations, to each of which corresponds an identifier (a name) of its class it is
belong to. Since IDS uses binary classification trees, which, besides the notion “class”, also utilizes
the notion “meta-class”, it is necessary to solve the task of calculation of the corresponding interpreted
sample of training and testing data for the learning of classification in the nodes of the classification
tree that correspond to meta-classes. The essence of this task consists in choosing the subset of lines of
the database in accordance with the condition specified by the description of the meta-class. On the
other hand, each base classifier uses a certain subset of characteristics for decision making, therefore
the second task that needs to be solved in the computation of the training and testing dataset of base
classifiers lies in selecting the columns of the database corresponding to attributes used by base
classifier as features for decision making. Other tasks connected to the computation of the training and

Data
source

1

Data
source

2

Host 3Host 2

Host 1
Data source

management agent
(DSM-agent)

Base classifier
agent

(BC-agent)

Meta–classification
agent (MC-agent)

Data Fusion
(Decision combining)

management agent
(System manager,

SM-agent)

Fig.3.6. Example of initial configurations of IDS and IDLS

IDLS components Learning agent of
base classifiers
(KDD agent) Learning agent of

base classifiers
(KDD agent)

KDD master

Learning agent of
Meta–classifiers

(Meta–level KDD
agent)

Data source
management

agent
(DSM-agent)

Base classifier
agent
(BC)

 84

testing data of base classifiers are determined by the
necessity to divide instances of databases into those that
are used for training and those that are used for testing.
Besides, it is also necessary to reserve data for the
learning of the meta-classifiers.

Training of the classifier. This task is central to the
learning technology suggested. It consists of two main
subtasks. The first one consist in building the production
rules of the classifier on the basis of the training data
through the data mining and knowledge discovery
procedures, as well as interactive procedures. The set of
production rules is represented through two subsets: a set
of arguments voting in favor of one of the classes, and a
set of arguments in favor of the other class. The second
subtask consists in building a mechanism for processing
the arguments and making the decision of the
classification task.

Testing of the classifier. Creation of the classifiers’
knowledge bases is an iterative process. Each iteration is
accompanied by an assessment of the quality of the newly
created knowledge base in accordance with the adopted
metric based on the data of confusion matrix. The quality
is assessed based on the testing of the created classifier on
a testing dataset. If the assessment results do not comply
with the specifications, then the training process must be
continued.

Infilling of classifier knowledge base. This procedure
is reduced to the overwriting the contents of the
classifier’s knowledge base obtained at the previous step
with the two above-mentioned sets of rules (arguments)
and the decision making rule derived at the next step of
the learning process.

Below a block of tasks pertaining to the development
of meta-classifiers’ knowledge bases follows.

Computation of training and testing data (meta–data)
for meta–classifier learning. By the same labels of classes
as in the previous case, the purpose of the task is to form

two interpreted subsets of instances specifying the object’s states or situations; however, this task is
more complex. The input data for the meta-classifiers are not the data specifying the states of object or
situations represented in terms of the attributes that are in fact fields of sources’ databases. The input
data for the meta-classifiers are decisions of base classifiers, i.e. labels of classes to which the base
classifiers have referred to specifications of situations, instances of which are represented in the testing
sample. Thus, computation of the sample of meta-data used for the learning of the meta-classifier is
only possible after the learning procedures for all the base classifiers have been completed. Thus,
computation of the training sample for a meta-classifier is reduced to testing the set of base classifiers
on the dataset specifically allocated for the training of the meta-classifier.

Training of meta-classifier. The content and sequence of procedures to solve this problem, as well
as the form of representation of the results (two sets of arguments “voting in favor” of the
corresponding class, and the decision-making mechanism) fully concur with the similar task of
training of base classifiers.

Testing of meta-classifier. The content and sequence of procedures to solve this problem fully
concur with the ones that have been considered in the task of testing of base classifiers.

Training and testing
procedures
monitoring

Engineering of the shared
component of the application

ontology

Design of the binary
classification tree

Design of the meta-model of
decision combining

(Decision tree)

Engineering of base
classifier

Computation

of training and
testing dataset

Training

Testing

IDS testing

Filling in of
knowledge base

and decision
making

mechanism

Engineering of
meta–classifier
Computation of

training and
testing dataset

Training

Testing

Filling in of
knowledge base

and decision
making

mechanism

Fig.3.7. Decomposition of the technology of
intrusion detection learning

 85

Infilling of meta-classifier knowledge base. The content and sequence of procedures to solve this
problem fully concur with the ones that have been considered in the task of infilling the base classifier
knowledge base.

Testing of IDLS as a whole. Testing of IDLS as a whole after its learning is conducted in the
manner analogous to the previously described testing procedures, and can use the same data on which
the particular classifiers have been trained and tested, as well as newly-formed datasets and meta-
datasets.

Monitoring of the learning process. Fulfilling the tasks in the intrusion detection learning process
has a number of characteristic features. Firstly, the tasks have to be solved in a certain order.
Secondly, the training of classifiers is an iterative process. Thirdly, the process of design and training
of classifiers is distributed in nature; this means that, on the one hand, there is the possibility to solve
several tasks in parallel, and on the other hand, there is a protocol for the coordination of distributed
learning. The content of the task of monitoring of the learning process is to maintain the order of
solving the particular tasks and to maintain coordination of the distributed process.

Several of the key tasks listed here will be further reviewed in more detail.

3.4. Engineering of the Shared Components of the Application Ontology

The design of the shared components of the application ontology, as well as the main data
structures used therein, is shown in Fig.3.8. It is assumed that in the initial state, all data sources are
defined. The example shows an IDS with two data sources.

The design process of shared ontology can be divided into four stages.
At the first stage, the first versions of the data sources ontology (data source local ontology) are

designed. It is done by the designers mediated by DSM-agents. In a general case, this task is
essentially about describing each source’s database structures in terms of the language of application’s
ontology. The final specification of the data source application ontology components is done by a
designer mediated by KDD–master agent.

At the second stage, the designer working through KDD–master agent forms the shared
application ontology component. Here, the data source application ontology components are used that
were created at the first stage. The design of the shared ontology starts with the determining of a list of
notions used in intrusion detection task. The representation structure of the notions of the shared
ontology includes a key attribute (entity instance’s identifier) ID and a number of other compulsory
attributes. Those attributes are shown in gray in Fig.3.8. They are used to identify instances of the
same objects (situations) in the sources’ databases (see Chapter 1 in which the conceptual explanation
of the entity instance identification problem is described in detail). Here, the ID parameter is defined
as the function of compulsory attributes. For example, the definition of the identifier ID of entity A
uses attributes Atr 1 and Atr 2.

The necessity of using certain attributes in the specification of notions is dictated by the
peculiarities of the intrusion detection application. The notions that, according to an expert, may be
necessary for the specification of the IDS knowledge base are included in the attributes. Here, since
the sources’ databases may be different, some of the attributes may have an interpretation in only one
of the databases, and others – in several sources’ databases (in the example in question – in both
databases). The interpretation of an attribute of a notion of the shared ontology is specified in the
knowledge bases either explicitly, when they have a field for this attribute, or implicitly, when the
interpretation is calculated as an answer to the query to databases as a function of several database
fields.

Compulsory attributes used in the calculation of the identifier of the entity’s instance must be
interpreted in all data sources’ databases. Otherwise, the attribute fits as an element of the function that
specifies the identifier of the entity’s instance.

In the design of the shared ontology, the user working with mediation of KDD master agent may
specify an arbitrary number of notions. In turn, the notions of the shared ontology correspond to
certain notions in the components of local ontology of data sources interpreted in the respective
databases. In the database structures, certain relationships may be specified between the notions.
Consequently, such relationships must exist between the notions in the shared ontology as well.

 86

After the completion of the second stage of development of the shared component of the
application ontology, it is forwarded to DSM-agents. Here, each agent is only told the necessary
attributes of the notion’s specification, namely, names of notions and those attributes that are
interpreted in the data source.

At the third stage, the final specification of the shared ontology is conducted in distributed mode.
Here, DSM-agents form interpretations for each notion of the shared ontology in their databases. This
task, considering its special character, should be fulfilled by an agent under the supervision of the
database administrator.

The fourth stage is of formal nature. Here, KDD-master agent should get confirmation receipts
from DSM-agents about the completion of the specification of the shared component of the application
ontology. The receipt of such confirmations enables the fulfillment of the next steps of the
development of IDLS.

Shared component of the application ontology

Shared component of the application
ontology

Shared component of the application
ontology

Notion А
Attribute Data

source
ID

Atr 1 1, 2
Atr 2 1, 2
Atr 3 1
Atr 4 1
Atr 5 2
Atr 6 2
Atr 7 1, 2

Local component
of application

ontology of data
source 1

Local component
of application

ontology of data
source 1

Local component
of application

ontology of data
source 2

Data source
1

Data source
2

Notion B
Attribute Data

source
ID

Atr 1 1, 2
Atr 2 1
Atr 3 1
Atr 4 1, 2
Atr 5 2
Atr 6 1. 2

Notion А
Attribute

ID
Atr 1
Atr 2
Atr 5
Atr 6
Atr 7

VIEW

Notion B
Attribute

ID
Atr 1
Atr 4
Atr 5
Atr 6

VIEW

DSM-agent
1

KDD-master agent

Notion А
Attribute

ID
Atr 1
Atr 2
Atr 3
Atr 4
Atr 7

VIEW

Notion B
Attribute

ID
Atr 1
Atr 2
Atr 3
Atr 4
Atr 6

VIEW

Fig.3.8. Development of the application ontology and ontology structure

Local component
of application

ontology of data
source 2

DSM-
agent 2

 87

In a general case, shared application ontology should make it possible to solve all the classification
tasks of interest. Thus, the next step of the IDLS design is the specification of these tasks.

Specification of a single task consists of the following. Firstly, an entity (object) is chosen from the
application ontology, whose states’ classification is one of the tasks of the system under development.
Then, classes of its states are determined. In the simplest case, this task consists in the following. Let
us assume that one of the attributes that describe the object’s states is supposed to describe the classes
of its states. Let us assume this attribute is interpreted in all data sources and is interpreted in the same
domain, comprising, for example, the set of states (situations) {C1, C2, C3, C4}. Then, the task
specification is defined by that set.

It is further assumed that the
classification task is determined, i.e. an
attribute is specified that describes the
required set of classes of states. Let us
assume, for example, that the object’s
states can belong to one of the four
alternative classes. This will specify the
first task – the development of the IDLS
distributed knowledge base. As
described earlier in this Chapter, first,
one or several binary classification trees
are built, determining the upper level of
the IF decision making meta–model.

Classification tree is designed by
user mediated by KDD master agent in non-distributed way. The result is forwarded to SM-agent of
IDS and represented formally in the knowledge base of the latter.

3.5. Design of the Structure of Classifiers

Each of the formed binary entity classification trees is used for the structuring of the target
system’s agents’ knowledge bases and for the development of their learning specifications. Here, a
number of subtasks are considered separately for each classifier, and other subtasks in the
specification process require the joint analysis of the classifiers that have a common relationship to the
same binary classification tree (for example, tasks of specifications for classifiers that are related to the
same non-terminal node of binary classification tree).
Further in this section, for the sake of definiteness it is
assumed that the base that corresponds to the
classification task to be solved in node 1 of the tree
shown in Fig.3.9 was chosen for creation of fragments
of the target system’s knowledge bases. This node
specifies the target subtask that implies determining
one of the two groups of alternatives, С1 ! С2 or С3 !
С4, to which the instance of a situation belongs.

Design and specification of the base classifiers

This task, as well as the majority of others, is
solved in the context of the shared application
ontology. The structure of base classifiers is specified as their unordered list. The composition of data
constituting a base classifier specification is presented in Fig.3.10. These data include:

• Base classifier’s identifier. It is given randomly, but must be unique.
• Data source used by base classifier.
• Training and testing datasets indicated by the set of identifiers of the interpreted instances of the

specifications of their classes.
• Subset of characteristics (attributes) used for training and testing of base classifier. These

characteristics are specified in terms of the notions of the ontology. Subset of characteristics

Identifies of base classifier = BCx
The task assigned = (C1 ! C2) / (C3 ! C4)
of data source = 1
Training data set – [IDx … IDy]
Testing data set – [IDz … IDt]
Features:

• A.Atr 1
• A.Atr 2
• A.Atr 3
• …

Fig.3.10. An example of the base classifier
specification

Task specification

Task
• С1
• С2
• С3
• С4

Fig.3.9. Specification of the IDLS task

Root

С1 С2!С3!С4

С2 С3 !

С3 С4

Root

С1 ! С2 С3 ! С4

С1
С2

С3
С4

Classification
tree 1

Classification
tree 2

 88

should have interpretations for all instances in the data source, for which the classifier is
specified. Besides, it is desirable that the chosen subset of characteristics have the same type of
value. This will simplify data mining and knowledge discovery procedures.

Design and specification of the meta-model of decision making and combining

The structure of meta-classifiers is determined for the set of already designed base classifiers. The
contents of components that specify a meta–classifier and the data used for its training is shown in
Fig.3.11, namely:

• Meta–classifier’s identifier. It is given randomly, but must be unique.
• Training and testing datasets. These are specified by enumerating instances of the object’s

states represented by their fragments
in all sources’ databases. Belonging
to the same instance is determined
through the same value of the key
that identifies fragments of the
instance’s specifications in databases
of different sources. The latter is
graphically illustrated in Fig.3.12.
The figure shows three columns. The
first column enumerates all values of
instance identifier found in input
data. The second and third columns
show in gray strings from data
sources where this value of the
identifier can be found. The figure
demonstrates that only three
instances (marked by symbol "+")
found in the sources’ databases
describe the same instance; namely,
instances with identifiers Id2, Id4 и
Id5.

• Set of characteristics used by meta–
classifier in training, testing and in
solving data fusion tasks. These
characteristics form a vector, whose
components are decisions of base
classifiers. If the decision combining
structure has several (two or more)

levels of meta–classifiers, then the vector of characteristics of the upper meta–classifier is
composed of the decisions of meta-classifiers of the lower level. The top level meta–classifier

Meta–classifier identifier = MCx
IDS task (C1 ! C2) / (C3 ! C4)
Training data set – [IDx … IDy]
Testing data set –- [IDz … IDt]
Features (decisions of base
classifiers):
• BC1
• BC2
• MC1
• …

Fig.3.11. Example of a meta–classifier
specification

Specification of the fragments of state
instances in data sources

ID ID1 ID2 Comment
Id1
Id2 +
Id3
Id4 +
Id5 +
Id6
Id7

Fig.3.12. Example explaining how training and
testing data sets of meta–classifier are computed

MC1

MC2 MC3

MC4

Classification task = (С1 ! С2 ! С3 ! С4)
Binary classification tree = 1
Meta–class in which the classification task is solved =
(С1 ! С2) / (C3 ! C4)

BC-agent 1
Data source 1

Base Classifiers
BC11
BC12
BC13
BC14

…

BC-agent 2
Data source 2

Base Classifiers
BC21
BC22
BC23
BC24

…

Fig.3.13. Example of the correct specification of the meta-
model of decision making and combining

 89

produces the final decision. In the most cases meta-model of decision combining (decision tree)
contains the only meta–classifier.

Representation of the meta-model of decision making and combining in distributed knowledge bases

An example of correct specification of Base classifiers is shown in Fig.3.13. The drawing explicitly
shows only connections between meta–classifiers. The explicit illustration of connections between
base and meta–classifiers could greatly simplify the perception of this graphic representation. In a
general case, each of the base classifiers may form an entry for several meta–classifiers. For the sake
of clarity, Fig.3.13 only shows those base classifiers whose decisions constitute a set of input data for
the operation of meta–classifier MC2.

Meta–model of decision combing is designed by a user mediated by KDD master agent. This
meta–model representation is stored in knowledge bases of IDS and IDLS. In particular, specification
of the base classifiers are stored in knowledge bases of BC-agents and also in the knowledge base of
KDD agent of the data sources.

3.6. Training and Testing of Base Classifiers

This task can be solved after base classifier is provided with specification of the task it is
responsible to solve. Training procedure is carried out by the designer who is mediated by the agents
situated in the same host as data source. Below the subtask to be solved in training of base classifier
are outlined.

Training and testing data of base classifier

The first subtask solved in the process of training of base classifier consists in choosing data for its
training and testing. In order to choose such data, user sends query containing request for getting such
datasets to the BC-agent. The query content contains the following data specifying the task of interest:
(1) specification training and testing samples; (2) list of attributes of the data source database. These
attributes play the role of features used by base classifier for solution of classification task.

The aforementioned query is sent to the DSM-agent responsible for its processing. DSM-agent
processes this query automatically without user's intervention. Results of its operation are table in the
database of KDD agent of the data source. Examples of tables that contain datasets for training and
testing of base classifier are shown in Fig.3.14. The data structure represented there corresponds to the
case when the characteristics, in terms of which the base classifier operates, are measured on
numerical scales. Fig.3.15 shows the structure of data for a case when characteristics of the base
classifier are measured on the binary scale. This structure is of no difference as compared with the
structure described earlier, except that the values of characteristics in it are represented in Boolean
format.

Preprocessed training data
State Features State

class
 A.A1 … A.Ax

Id1 10 … 8 С1!С
2

Id2 12 … 5 С1!С
2

… … … … …
Id3 3 … 12 С3!С4
Id4 15 … 14 С3!С4
… … … … ...

Preprocessed training data
State Features State

class
 A.A

1
… A.Ax

Id1 t … f С1!С2
Id2 t … t С1!С2
… … … … …
Id3 f … t С3!С4
Id4 f … f С3!С4
… … … … ...

Fig.3.14.Training data structure prepared
for use of VAM algorithm

Fig.3.15. Training data structure prepared for use
of GK2 algorithm

 90

Base classifier training

Base classifier training includes the following subtasks:
• Engineering (search, mining from training data) of rules (arguments) of classifiers. Note that

according to the scheme adopted in the Project, two sets of production rules are formed for
each classifier that “argue” in favor each of the two alternative groups of classes of states
produced by a certain node (meta–class) of classification tree.

• Rules analysis. The goal of this subtask is to decide which of the rules obtained should be
included in the classifier’s knowledge base, as well as to decide whether it is advisable to
continue searching for new rules.

• Formation of decision making mechanism based on the analysis of the true values of sets of
rules (arguments). As a result of this analysis, the classifier under development should make
decisions regarding which class one or another instance of the object’s state or situation
recorded in the data source belongs to.

All the base classifier training subtasks are solved consequently by knowledge engineer mediated
by KDD agent of base classifiers. The training mechanism automatically chooses the training method
that corresponds to the respective structure of training data.

Analysis of the extracted rules to be used by the knowledge base

The process of extracting the set of rules that constitute the classifier’s knowledge base is iterative
in nature. As a result of each iteration a subset of new rules is formed, which complements the set of
rules found at the previous iterations. The analysis of the combined set of rules is aimed at assisting
the expert in making the following types of decisions:

• Should the search for new rules be continued?
• Which of the found rules should be included in the classifier’s knowledge base?

Note that the rules not included in the classifier’s knowledge base are stored in the database of
KDD agent of base classifiers. This helps avoiding the repetition of the same rule in the further
iterations.

Two types of metrics are used in the analysis of the quality of the found rules:
(1) Analysis of the coverage provided by a set of rules. It is said that an instance of training data is

covered by a certain rule if its premise and conclusion are true for the respective instance. The formal
expression of the coverage analysis of the extracted rules explained in Fig.3.16. The entire set of
instances that constitute the training dataset is divided into several (three in this particular case)
subsets:

• Subset of instances covered by more than one rule.
• Subset of instances covered by exactly one rule.
• Subset of instances that are not covered by any rules (at least at this point).
This kind of division of subsets is done for the rules and the data that represent both classes of

Analysis of coverage of training data for meta-class С1 ! С2
Subset of training data Degree of coverage Cardinality of the subset

IDn = { …, Id, …} More than 1 Kn
ID1 = {…, Id, …} 1 K1
ID0 = {…, Id, …} 0 K0

Analysis of coverage of training data for meta-class С3 ! С4
Subset of training data Degree of coverage Cardinality of the subset

IDn = { …, Id, …} Более 1 Kn
ID1 = {…, Id, …} 1 K1
ID0 = {…, Id, …} 0 K0

Fig.3.16. Data structure destined for analysis of the rule coverage

 91

states. The resulting information helps to make conclusions about which of the instances of the
training data should be used in the next iterations in the search for rules. Note that the use of the
above-mentioned information lies at the basis of the acceleration of the search of rules for the purposes
of classification tasks. Such kind of training procedures is typically called “boosting” procedures.

(2) Evaluation of the quality of a particular rule. Evaluations of the quality of a particular rule
allow for comparing rules and choosing subsets of rules to be included in the classifier’s knowledge
base. To calculate different evaluations of the quality of production rules, the so called “confusion
matrix” is used. The example therein uses it for the evaluation of the quality of the rule “if Exp, then
(C1 ! C2)” (Fig.3.17). Fields of the table shown in gray determine the quantities of specifications in
the input data that possess the following characteristics:

• Na – the number of examples in training data set, in which Exp=true and C1!C2=true,
• Nb – the number of examples in training data set, in which Exp=true and C3!C4=true,
• Nc – the number of examples in training data set, in which not Exp=true and C1!C2=true,
• Nd – the number of examples in training data set, in which not Exp=true and C3!C4=true,
• N(Exp) the number of examples in training data set, in which Exp=true,
• N(not Exp) – the number of examples in training data set, in which not Exp=true,
• N(C1!C2) the number of examples in training data set, in which C1!C2=true,
• N(C3!C4) – the number of examples in training data set, in which C3!C4=true,
• N – the size of the training data set.

An example of the evaluation of the quality of this table is an empirical (statistical) evaluation P of
the correct classification. This evaluation is computed in the following manner: P = Na / (Na+Nb).

Testing of classifier

Testing of classifier uses the same algorithms as the evaluation of the quality of a single base rule.
The distinction of classifier testing lies in the fact that in this case, data not used for training, or
different from the data used for training, is used as input data (as in, for example, the widely known
cross-validation strategy). Besides, testing of classifier is aimed in general at quantifying the degree of
reliability of its decisions. These evaluations are further used by meta–classifiers in combining
decisions made by different base classifiers, since essentially they specify the degree of trust the meta–
classifier should have for the decisions made by different base classifiers.

“Filling in” of base classifier

Filling in of Base Classifier consists in recording into its knowledge base the rules (arguments)
found for it by KDD agent of base classifier and also mechanism of making decisions on the basis of
analysis of truth values of these rules. If BC-agent already had a knowledge base created at the
pervious iteration then it is partially or fully overwritten.

3.7. Engineering and Training of Meta–Classifier

The process of engineering and training of meta–classifiers in general repeats the same processes
for the base classifiers; however, they have a number of characteristic distinctions. These distinctions

 C1!C2 C3!C4

Exp Na Nb N(Exp)

not Exp Nc Nd N(not Exp)

 N (C1!C2) N (C3!C4) N

Fig.3.17. Structure of the confusion matrix

 92

arise in solving subtasks described further in this section. The other subtasks are solved in the same
manner as the ones considered in the previous section.

Meta–classifier training procedures start after the training processes for all classifiers of the lower
level, whose decisions are used by the meta–classifier, have been completed. Thus, if several meta–
classifiers that combine decisions of base classifiers have been set in correspondence to the node of a
classification tree then their training is conducted strictly in the “bottom-up” manner.

Calculation of data sets used for training and testing of a meta–classifier (such data are usually
called meta–data) involves all classifiers (that are possibly structured into several levels), whose
decisions are used by meta–classifier as input data. At that, all such classifiers must already be
engineered, and their knowledge bases must be filled in. Fig.3.18 shows the protocol for agents’
interaction in the computation of one record of meta-data. The computation of the entire set of both the
input and the testing data requires a consecutive implementation of this interaction scheme.

The difference between this scheme and the basic scheme of IDS agents’ interaction lies in the fact
that here, the role of SM-agent is played by the Meta-level KDD agent. In accordance with the
interaction scheme shown in Fig.3.18, this particular agent initiates the process of meta-data
calculation. For this purpose, it sends two first messages to the DSM-agents. These messages in
particular contain the value of the identifier of the instance of data, for which the record of meta-data

Fig.3.18. Protocol of agent interaction in the process of computation of training and
testing meta–data used for meta–classifier learning

KDD meta
agent

MC BC1 BC2 DSM1 DSM2

Tell (Task (Id, A1!A2 / A3!A4))

Tell (Task (Id, A1!A2 / A3!A4))

Tell(Task (Id, A1!A2 / A3!A4))

Task ((Id, A1!A2 / A3!A4))

Tell (Task (Id, A1!A2 / A3!A4))

Tell (Task (Id, A1!A2 / A3!A4))

Tell ({ BCx, Value })

Tell (Task (Id, A1!A2 / A3!A4))

Tell ({ BCx, Value })

Tell (Task (Id, Value))

Tell ({ Attribute, Value })

EOS

Tell ({ Attribute, Value })

EOS

 93

must be created in the process of the dialog.
The third message is sent to the MC-agent and contains the description of the meta–classifier in

training (possibly only partial still). The next fragment of this protocol until the moment when the
MC-agent receives the decisions made by all lower classifiers is fully identical to the corresponding
fragment of the basic interaction protocol for IDS agents. Upon the receipt of these decisions by MC-
agent, it will record this information into the appropriate meta-database. Note that the partial
description of the meta–classifier in the knowledge base of MC-agent fully enables its correct
operation in implementing this protocol.

The further process of training and testing of meta–classifier is fully identical to the process of
engineering and training of the base classifier described above.

3.8. Testing of IDS, Monitoring of the Training and Testing Procedures

Testing of IDS after completion of training and testing of all its classifiers (both base and meta–
classifiers) can be conducted on both new instances and the instances of the sources’ databases. In the
latter case, the quality of the formed system can be evaluated. Here, the same methodology for quality
assessment can be used that has been described as applied to evaluating the quality of both single rules
and classifiers as a whole. This methodology has been reviewed in Section 3.6.

Monitoring of the training and testing processes is aimed at depicting the current state of IDS
development and training, as well as controlling the order and execution of particular subtasks.

A user interface shown in Fig.3.19 is used for monitoring. This interface allows for depicting the
current state of all classifiers of the meta–model of information fusion. At that, the entire set of
classifiers is split into subsets, each of which corresponds to a certain meta–class (node) of
classification tree. The user interface allows for depicting the state of classifiers that belong to one of
its nodes.

Classifiers may be characterized by one of the three states in the process of their development.
• Specified – this state implies that the classifier has been specified, and its description has been

relayed to Source-based classification agent, and the respective base classifier is ready for
training.

• Trained – this state implies that the trained classifier is represented in the knowledge base of
the MC-agent.

• Requires re-training – this state is analogous to the state “Trained” and is only applied to
meta–classifiers. It implies that the trained meta–classifier is described in the knowledge base

BC-agent 1
Classifier State

BC1 S1
BC2 S2
BC3 S3
… …

BC-agent 2
Classifier State

BC1 S1
BC2 S2
BC3 S3
… …

MC-agent
Classifier State

MC1 S1
MC2 S2
MC3 S3
… …

{List of tasks} : Task = (С1 ! С2 ! С3 ! С4)
{List of trees} : Classification tree = 1
{List of subtasks} : Subtask = (С1 ! С2) / (С3 ! С4)

States of classifiers:
• Specified
• Trained
• Requires re-training

Fig.3.19. Tables of user interface reflecting the state of IDS engineering

 94

of MC-agent, but since one or several classifiers of its lower levels are re-trained, training and
testing of this meta–classifier must be repeated.

The final state of training and testing of IDS is such in which all classifiers reached the state “trained”.

3.9. Conclusion

In this section we presented the results of decomposition of the entire task to be solved by IDLS,
the IDLS functionalities allocation to the classes of agents, architecture of IDLS and the agents'
communication environment. IDLS is viewed as the learning component of IDS and it is supposed that
the former is from time to time used in off-line mode for incremental learning of IDS. We selected
several different classes of IDLS agents: KDD Master, Meta-level KDD agent, KDD Agent (of a
source), Server of learning methods, Data source managing agent.

In development of the agents' communication environment the “de facto” standard language is
KQML that is used as message content wrapper, whereas the content itself is specified through use of
XML language representing message in terms of application ontology. Transport level of message
wrapper also corresponds to the standard protocol that is TCP/IP protocol. Protocols needed for
support of agent interactions comprises three groups: (1) Protocols that support agent message
exchange; (2) Protocols aiming at management of semantically interconnected dialogs (conversations)
of agents; (3) Protocols supporting cooperative work of agents in distributed design and learning
procedures.

The main classes of IDS are Information Fusion (Decision combining) management agent (SM-
agent), Agent-classifier of meta-level (МС-agents), Source-based Base Classifiers (ВС-agents) and
Data source managing agents (DSM-agents). The Chapter showed how IDS operates. It conceptually
outlined the operation and interaction of IDS and IDLS agents from functional point of view with the
focus on the structure of distributed knowledge bases and on its use in IDS operation.

The process of formation and learning of IDS by IDLS components includes solving a large
number of particular subtasks. These are Design of the shared application ontology, Design of binary
classification trees, Design of Meta-model of decision combining (Decision tree), development of base
and meta–classifiers’ knowledge bases, Testing of IDS as a whole and Monitoring of the learning
process. A description of each of these tasks was given.

