
REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

19-02-2004
2. REPORT TYPE

Final Report
3. DATES COVERED (From – To)

01-Dec-00 - 19-Feb-04
5a. CONTRACT NUMBER

ISTC Registration No: 1994p

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Formal Methods for Information Protection Technology
Task 1: Formal Grammar-Based Approach and Tool for
Simulation Attacks against Computer Network
Part I

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5d. TASK NUMBER

6. AUTHOR(S)

O.V.Karsayev, Ph.D
I.V. Kotenko, Ph.D

5e. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
St. Petersburg Institute For Informatics & Automation of the Russian Academy of
Sciences
39, 14th Liniya
St. Petersburg 199178
Russia

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

10. SPONSOR/MONITOR’S ACRONYM(S)9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

EOARD
PSC 802 BOX 14
FPO 09499-0014 11. SPONSOR/MONITOR’S REPORT NUMBER(S)

ISTC 00-7035

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited. (approval given by local Public Affairs Office)

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report results from a contract tasking St. Petersburg Institute For Informatics & Automation of the Russian Academy of Sciences as
follows: Formal Methods for Information Protection Technology
The use of open computer networks as an environment for exchange of information across the globe in distributed applications requires
improved security measures on the network, in particular, to information resources used in applications. Integrity, confidentiality and
availability of the network resources must be assured. To detect and suppress different types of computer unauthorized intrusions, modern
network security systems (NSS) must be armed with various protection means and be able to accumulate experience in order to increase its
ability to front against known types of intrusions, and to learn new types of intrusions. The project will perform three main tasks.
1. Develop a mathematical model and a tool that simulates various coordinated intrusion scenarios against computer networks;
2. Develop the mathematical foundations, architecture, and principles of implementation of autonomous-software-tool technology
implementing the learning system for intrusion detection;
3. Develop the fundamentals, architecture and software for the computer security system based on multi-level encoding for information
protection in mass application.
Currently, scientific efforts in network security area are undertaken mainly in the development of the network defense mechanisms.
Unfortunately, substantially less attention is paid to the study of the nature of intrusions and, in particular, remote distributed intrusion
attempts. No appropriate tools for intrusion/attack simulation nor research on a formal framework for intrusion specification exists.

TASK 1
The first research task in the project aims to (1) to develop a formal framework for modeling of distributed computer intrusions scenarios; (2) to
develop a software tool for simulation of distributed intrusions, and (3) to explore advantages of using of such model and tool in the design
and validation of the network assurance systems. Experts’ analysis of distributed intrusions shows that malefactors plan attempted intrusions
on macro-level as a partially ordered set of steps. Each step aims at achieving a particular sub-goal, say, to break through a "security wall",
get non-authorized access to some information, services, applications, etc. The partially ordered set of the steps of intrusions on the macro
level is called a scenario of attack. To realize each particular step of the intrusions scenario, the malefactor uses operations of low (micro-)
level.. Thus, each such a step of the scenario is represented as a sequence of commands. Following the aforementioned conceptual
representation of the intrusion attempt, the research focuses on the two-level model of attacks. It is supposed that available learning
information about intrusions of different types comprises the experts' information and limited number of cases.

The importance of the Project in the framework of the ISTC mission is determined by several reasons. The Project makes it possible to
involve military oriented scientists into civilian basic research. It contributes the integration of Russian scientists into international society and
ministers in deciding problems of safe and secured utilization of the network, in particular, Internet-based information resources.

15. SUBJECT TERMS
EOARD, Mathematical & Computer Sciences, Computer Systems

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
/Signed/PAUL LOSIEWICZ, Ph. D.a. REPORT

UNCLAS
b. ABSTRACT

UNCLAS
c. THIS PAGE

UNCLAS

17. LIMITATION OF
ABSTRACT

UL

18, NUMBER
OF PAGES

19b. TELEPHONE NUMBER (Include area code)
+44 20 7514 4474

 Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39-18

EUROPEAN OFFICE OF AEROSPACE
RESEARCH AND DEVELOPMENT

(EOARD)

Project Manager
Research Fellow of SPIIRAS
Ph.D. O.V.Karsayev

Manager of Task 1
Leading Scientist of SPIIRAS
Ph.D. Professor I.V. Kotenko

St. Petersburg
February, 2003

Final Report
Task 1: Formal Grammar-Based Approach and Tool for

Simulation Attacks against Computer Network
Part I

ST. PETERSBURG INSTITUTE
FOR INFORMATICS AND

AUTOMATION

SPIIRAS

Project 1994P
Formal Methods for Information Protection Technology

 1

EUROPEAN OFFICE OF AEROSPACE
RESEARCH AND DEVELOPMENT

(EOARD)

ST. PETERSBURG INSTITUTE
FOR INFORMATICS AND AUTOMATION

(SPIIRAS)

St. Petersburg

February 2003

Formal Grammar-Based Approach
and Tool for Simulation of Attacks

against Computer Networks

Final Report
on Task 1 of the Project # 1994P

Part I

SPIIRAS

Project Manager
Research Fellow of SPIIRAS
Ph.D. O.V.Karsayev

Manager of Task 1
Leading Scientist of SPIIRAS
Ph.D. Professor I.V. Kotenko

 2

Contents

Preface 4
Chapter 1. Overview of the theoretical results presented in previous reports: formal

grammar-based approach for modeling and simulation of computer
network attacks

5

1.1. Introduction 5
1.2. Specification of the representative set of distributed attacks against computer

networks
6

1.2.1. Analysis and classification of attacks on computer networks 6
1.2.2. Scenario-based specification of the representative set of distributed attacks

of different classes
12

1.2.3. Techniques for case-based regenerating of the formal grammar specifying
models of the attacks

15

1.3. Mathematical methods and techniques realizing the attack formal modeling 16
1.3.1. Conceptual explanation of the attack modeling and simulation strategy 16
1.3.2. Problem domain ontology: structure of the basic malefactors’ intentions and

actions
19

1.3.3. Formal grammar framework for specification of computer network attacks 21
1.3.4. Formal models of a representative multitude of computer network attacks 22
1.3.5. State machine-based implementation of the attack generation 25
1.3.6. Formal model of the attacked computer network and its response to attacks 27

1.4. Object-oriented project of the Attack Simulator–software tool prototype for
simulation of attacks on the computer network

29

1.4.1. Peculiarities of the developed technology for Attack Simulator design 29
1.4.2. Object-oriented project of the Attack Simulator 31

1.5. Related works 32
1.5.1. Works describing attacks and attack taxonomies 32
1.5.2. Works immediately coupled with network attack modeling and simulation 33
1.5.3. Works devoted to the description of attack languages 37
1.5.4. Works on evaluating intrusion detection systems 38
1.5.5. Works on vulnerability assessment tools (scanners), signature and traffic

generation tools
39

1.6. Conclusion 39

Chapter 2. Software prototype of the Attack Simulator implementing theoretical

results of the research and their evaluation
43

2.1. Generalized architecture of Attack Simulator prototype 43
2.2. State-machine based descriptions of main components 46
2.3. Component of the application domain ontology 49
2.4. Generic Hacker Agent 57

2.4.1. Fragment of the ontology used by Hacker Agent 57
2.4.2. State machines model of the Hacker Agent operation 59
2.4.3. Component of the attack task specification 65
2.4.4. Component calculating probabilities of Hacker Agent’s actions 68
2.4.5. Network traffic generator 71
2.4.6. Visualization component of the attack scenario development 76

2.5. Generic Network Agent 78
2.5.1. Fragment of the ontology used by the Network Agent 78
2.5.2. Component of specification of computer network configuration 80
2.5.3. State machines model of the Network Agent operation 84
2.5.4. Component calculating the probabilities of Hacker Agent’s actions success

and generating network response
86

 3

2.6. Case-study Simulation: examples of Attack Simulator performance and its
evaluation

90

2.6.1. Simulation of attacks on macro-level (generation malic ious actions against
computer network model)

91

2.6.2. Simulation of attacks on micro-level (generation malicious network traffic
against real computer network)

120

2.7. Conclusion 125

General Conclusion of the Project 129

References 130

Appendix 1. Examples of the state machines of the Hacker Agent operation 136
Appendix 2. Examples of the scripts of the Network Agent operation 153
Appendix 3. Examples of the source codes of network traffic generation programs 174
Appendix 4. Logs of attack traces and results 190

A4.1. Logs of attack traces on macro-level 190
A4.2. Logs of attack traces on micro-level (network traffic level) 204

 4

Preface

This volume is the Final Report on the Task 1 of the Project #1994P “Formal Methods for
Information Protection Technology” that is being performed according to the agreement between
European Office of Aerospace Research and Development (EOARD), The International Science and
Technology Center (ISTC) and St. Petersburg Institute for Informatics and Automation (SPIIRAS).

Task 1 of the Project #1994P is entitled “Formal Grammar-Based Approach and Tool for
Simulation of Attacks on Computer Network”. This report describes the results of the fifth research
phase scheduled by the Work Plan and also summarizes results of the Project research on the whole.

Formal model of distributed attacks is the subject of the research presented in this report. The goal
of the Task 1 of the Project is development of the formal model and software for simulation of broad
spectrum of network attacks, and also an investigation of their possibilities and usefulness in
analyzing of computer network assurance.

According to the Work Program, at this phase of research the following task is scheduled:
A-4. Development of the software prototype of the Attack Simulator implementing theoretical

results of research and its evaluation.
The results are presented in two chapters associated with the aforementioned tasks.
Chapter 1 “Overview of the theoretical results presented in previous reports: formal grammar-

based approach for modeling and simulation of computer network attacks” summarizes the suggested
approach for modeling attacks against computer network, the developed technology and software tool
for design and implementation of knowledge-based multi-agent systems, and the object-oriented
project of the Attack Simulator. More detailed description of these results was given in Interim
Reports submitted to EOARD according to the Work Program ([IntRep#1], [IntRep#2], [IntRep#3]).

In Chapter 2 “Software prototype of the Attack Simulator implementing theoretical results of the
research and their evaluation”, the results of research on the task A-4 are presented. The Chapter
describes the architecture and main components of the Attack Simulator prototype, as well as its
functional capabilities and specific features of implementation. It also outlines the simulation-based
exploration of the developed Attack Simulator prototype and its benefits in use for evaluation of the
computer network system assurance.

All theoretical results and conclusions of the research are explored and validated via simulation on
the basis of the software developed by authors. The developed software can be demonstrated in
AFRL/IT as well as software code can be submitted to the Partner on demand.

All tasks presupposed by the Work Program are solved completely.
The papers describing results of the Project have been accepted for presentation and publication in

Proceedings in several Russian and International Conferences ([Gorodetski et al-01a], [Gorodetski et
al-01b], [Gorodetski et al-01c], [Gorodetski et al-01d], [Gorodetski et al-02a], [Gorodetski et al-02b],
[Gorodetski et al-02c], [Gorodetski et al-02d], [Gorodetski et al-02e], [Gorodetski et al-02f],
[Kotenko et al-02a], [Kotenko et al-02b], [Kotenko-02a], [Kotenko-02b], [Alexeev et al-02],
[Stepashkin et al-02], [Nesterov et al-02], [Kotenko et al-03], [Kotenko-03]), including Fifth
International Symposium “Recent Advances in Intrusion Detection (RAID 2002)” (Zurich,
Switzerland. October 2002) [Gorodetski et al-02c], Fourth International Workshop “Agent-Based
Simulation 4 (ABS 4)” (Montpellier, France. April 28-30. 2003) [Kotenko et al-03] and Third
International Central and Eastern European Conference on Multi-Agent Systems (CEEMAS 2003)
(Prague, The Czech Republic. June 16 – 18, 2003) [Kotenko-03].

Two papers have been published and one has been accepted for publication in the Lecture Notes in
Computer Science and Artificial Intelligence series ([Gorodetski et al-02a], [Gorodetski et al-02c],
[Kotenko-03]). One paper has been prepared for publication in IEEE Security and Privacy journal.

Project manager
Leading Scientist of the St. Petersburg Institute for Informatics
and Automation of the Russian Academy of Sciences

Ph.D. Prof. Igor Kotenko

 5

Chapter 1. Overview of the Theoretical Results Presented in Interim
Reports: Formal Grammar-based Approach for Modeling and
Simulation of Attacks against Computer Networks

Abstract. This chapter describes theoretical results that mostly already have been presented in
Interim Reports submitted to EOARD according to the schedule supposed by Work Program and
gives a review of recent related works. It presents a brief survey of computer network attacks,
including definitions of main concepts, a review of existing computer and network attack
taxonomies, classification and analysis of standard remote attacks. It introduces the scenario-based
specifications of computer network attacks. Specifications are based on developed conceptual
model of attacks and proposed generalized formal means for attack scenario specifications. An
important task concerning synthesis (recovery) of grammars specifying models of attacks is
analyzed and the corresponding grammar recovery algorithms are described. The developed
mathematical methods and techniques used for formal modeling of attacks are reviewed. In this
research attack model is considered as a complex process of contest of adversary entities those are
malefactor or team of malefactors, on the one hand, and network security system implementing a
security policy, on the other one. The Chapter also presents conceptual justification of the chosen
approach, specification of the basic components composing attack model and their interaction in
simulation procedure and describes examples of the network attacks specifications. The behavior
of malefactor implementing an attack is specified in terms of state machines simulating attack
development. An important issue is formal model of the attacked comp uter network and its
response to attacks. This model is developed and described in the Chapter. Implementation and
deployment of the agent-based attack simulator was carried out by use of “Multi-agent System
Development Kit”, MAS DK, which is outlined. The final design result that concerns the object-
oriented project of the software prototype of the Attack Simulator is overviewed in the end of the
Chapter.

1.1. Introduction

Efficiency of computer network security systems, including intrusion detection systems,
vulnerability assessment kits, honeypots, etc., depends in a high degree on the quality and
completeness of the knowledge about strategies and implementation of computer network attacks
taken into account in the security policy.

However, modern computer network security systems use mostly “ad hoc” built security policies
aimed at defense against known types of attacks and other threats. It is undoubtedly that remarkable
increase of security systems efficiency could be achieved in case of using knowledge resulting from
generalization and formalization of the accumulated experience regarding computer system
vulnerabilities and attack cases data ([Axelsson 00], [Allen et al-00], [McHugh-01]).

Till now a lot of such data is accumulated. There are a number of publications in which the attack
cases are systematized in the form of taxonomies ([Aslam-95], [Howard et al-98], [Krsul-98],
[Ranum-97], etc.). Nevertheless, till now there are no serious attempts to generalize the accumulated
data in order to develop a formal model of computer network attacks. Such a model could be a
powerful source of knowledge needed for security systems development and implementation. It could
help in deeper study of the essence and peculiarities of attacks (intentions of malefactors, attack
objects, structure of attacks, strategies of attack realization, etc.).

The current competition between security systems and malefactors, in which the latter are
permanently inventing new attacks, is such that malefactors have a remarkable advantage. This
advantage is becoming more noticeable if malefactors implement distributed attacks intending as a
target not only a particular host but also the whole computer network. An example of such an attack is
given in [Mukherjee-94]. It exemplifies a distributed attack that comprises 11 phases performed during
several days. At present, it is not possible to detect such attacks automatically and particularly on-line.
However, in the modern days distributed attacks are becoming the practice of malefactors.

This is a cogent argument for the necessity of deep study and research of the essence and
peculiarities of distributed attacks. The study cannot only be restricted by generalization of the
experience; it has also to be based on using of formal models and simulation of attacks. The intentions

 6

and objects of attacks, strategies and ways of realization must be the prime subjects of such a study.
These formal models could be very valuable in the design of security systems capable to operate with
high-level notions like “identif ication of an attack scenario”, “forecasting of the attack development”,
etc. Such capabilities could make feasible to break on-line an attack development before the
irreversible consequences. “We also need to know what the exploited vulnerability is, how the attack
was performed, what are its consequences, and how to react (automatically or not) in order to stop it
[Michel et al-01].”

The model of distributed attacks could be very useful in learning to cope with both known and
unknown attack detection. Therefore, artificially generated sample of attack could be used as training
and testing data for security system learning, especially intrusion detection systems learning.

Finally, a formal model of attacks and attack simulation tool if used together with vulnerability
assessment systems could play an important role in the validation of security policies. Such simulator
could be used as a test bed for security systems thus providing decrease of the cost and time of a
security policy validation.

A formal model of computer network attacks is the subject of the research presented in the Project.
The goals of the Project are the following:

(1) development of a powerful formal framework for specification of a broad spectrum of attacks
against computer network;

(2) elaboration of formal specifications of a representative spectrum of such attacks;
(3) implementation of a software tool prototype making it possible to simulate attacks and

respective responses of the attacked computer network objects;
(4) exploration of practical utility of Attack Simulator prototype.
According to the Work Program the Project research was carrying out in several phases and results

of each stage were submitted in three Interim Reports ([IntRep#1], [IntRep#2], [IntRep#3]) and in this,
Final report.

The Final Report is concluding one. It gives a brief summary of the results presented in the
previous reports in order to connect them with the results presented in this one, and to make available
the complete understanding of the results on the whole.

Besides the Final Report presents results, which are a natural continuation and also complement to
the previous results, that is software prototype of the Attack Simulator implementing theoretical
results of research and its evaluation.

1.2. Specification of the representative set of distributed attacks against computer
networks

1.2.1. Analysis and classification of attacks on computer networks

A review of computer network attacks was given in the Interim Report #1 [IntRep#1]. This review
includes the following main elements:

• Definitions of the main concepts of remote attacks on computer networks;
• Review of existing computer and network attack taxonomies;
• Classification of standard remote attacks;
• Analysis of remote attacks on computer networks.
The purpose of computer networks attacks undertaken by the malefactors (intruders) consists in

obtaining access to the necessary information and network resources, violation of their integrity and
availability. A basic feature of attacks realized by the malefactors in open networks is a factor of
distance between a host selected as a victim and a malefactor. So a remote attack is an unauthorized
information effect on objects of the computer networks realized on data links.

Invariance of mechanisms of an attack implementation with regard to features of the concrete
system (topology, infrastructure, type of a network operating system, protocols of an interaction)
allows using a concept of a standard remote attack as a remote effect irrespective to the type of a
computer networks. The majority of computer networks, including the Internet, were formed as
unprotected systems, which have not been intended for storage and processing of confidential
information.

 7

On the basis of the analysis of many scientific and technical materials concerning the network
security the following taxonomies of network attacks were analyzed ([Radatz et al-96], [Krsul-98],
[Landwehr et al-94], [Amoroso-94], [Howard-97], [Howard et al-98]):

(1) Lists of attack terms ([Cohen-95], [Icove et al-95], [Cohen-97], [Howard-97], [Howard et al-
98]),

(2) Lists of attack categories ([Cheswick et al-94], [Ranum-97]),
(3) Attack results categories ([Cohen-95], [Russell et al-91]),
(4) Empirical lists of attack types ([Lackey-74], [Neumann et al-89], [Amoroso-94], [Lindqvist et

al-97]),
(5) Vulnerabilities matrices ([Amoroso-94], [Landwehr et al-94]),
(6) Action-based taxonomies [Stallings-95],
(7) Security flaws or vulnerabilities taxonomies ([Beizer-90], [Saltzer et al-75], [Hogan-88],

[Aslam-95], [Dodson-96], [Krsul-98], [Power-96]),
(8) Taxonomies of intrusions based on the signatures [Kumar-95],
(9) Incident taxonomies ([Howard-97], [Howard et al-98]).
These taxonomies are multifold but can not ensure the project objective realization. We think that

the incident taxonomies are the most prominent for our goals, but they require a more elaboration with
emphasis on remote actions.

On the basis of generalization of the works on computer network security ([Radatz et al-96],
[Krsul-98], [Landwehr et al-94], [Amoroso-94], [Howard, 97], [Howard et al-98], [Medvedovsky et
al-99], [Cole-02], et al) classification of standard remote attacks is developed. According to this
classification, the remote attacks are structured by seven basic tags:

• Character of an effect (passive, active);
• Purpose of an effect (violation of confidentiality, integrity and service availability);
• Condition of beginning of the effect realization (according to an inquiry from the attacked

object, on fulfillment of the expected event on the attacked object, unconditional attack);
• Availability of feedback with the attacked object (with feedback, without feedback – one-

direction attack);
• Layout of the subject of attack concerning the attacked object (intra-segmental, inter-

segmental);
• Layer of standard ISO/OSI model, on which the effect is carried out (physical, link, network,

transport, session, presentation, application);
• Object on which an effect is directed to (on network services, on an infrastructure of the

network);
• Attack complexity level (simple and composed).
Let us consider main classes of standard remote attacks according to aforementioned basic tags.
1. Character of an effect on the distributed computing system or network:
(1) Passive effect;
(2) Active effect.
The passive effect is one, which does not render immediate influence on system operation, but can

break its security policy. The active effect is one, rendering immediate influence on the system
operation (reconfiguration of a system or network, violation of a service capability, etc.) and breaking
its security policy. The example of attacks of the first type is listening of data links and interception of
information entered from the keyboard. The example of the second type of attacks is an attack “third
in the middle”, when the malefactor can substitute data of the message exchange between two users of
the network or between the user and the network service requested by him.

2. Purpose of an effect:
(1) Violation of information confidentiality;
(2) Violation of information integrity;
(3) Violation of service capability (availability) of the system.
This classification attribute is a direct projection of three main types of threats - disclosure,

integrity and denial of service.
3. Condition of beginning of the effect realization:

 8

(1) Attack according to an inquiry from the attacked object. In this case an intruder (attacker)
expects transmission from the potential attack object of defined inquiry, which will be the condition of
beginning of the effect realization;

(2) Attack on fulfillment of the expected event on the attacked object. In this case an intruder
realizes continuous tracing of the state of an operating system of the remote host, and starts the effect
at origin of a specific event in this system;

(3) Unconditional attack. In this case the beginning of attack realization is unconditional with
regard to the attack purpose that is the attack is carried out immediately and regardless to state of
attacked object.

4. Availability of feedback with the attacked object:
• Feedback from attacked object is provided;
• No feedback (one-direction attack).
Under remote attack, realized at presence of feedback with the attacked object, the intruder must

receive answers to some inquiries transferred to the attacked object. Therefore between the intruder
and the attacked object a feedback exists, which allows intruder to react adequately to all changes
happening on the attacked object. The remote attacks without feedback do not require reacting to any
changes happening on the attacked object.

5. Layout of the subject of attack concerning the attacked object:
(1) Intra-segmental;
(2) Inter-segmental.
Segment of the network is a physical association of hosts. For example, a segment of the network

can consist of a set of hosts connected with the server by means of the “common bus” scheme. The
intra-segmental attack is an attack, when the subject and object of attack are situated in one segment.
The inter-segmental attack is an attack, when the subject and object of attack are situated in different
segments.

6. Layer of standard ISO/OSI model on which an effect is taken:
(1) Physical layer;
(2) Link layer;
(3) Network layer;
(4) Transport layer;
(5) Session layer;
(6) Presentation layer; and
(7) Application layer.
7. According to the object, on which an effect is taken, two classes of attacks can be discerned:
(1) Class A – attacks on network services (effects on an application layer);
(2) Class B – attacks on an infrastructure of the network (effects on layers below the application

layer).
The attacks of class A are directed on lowering of efficiency of the computing systems operation

by means of effects on application processes. These attacks have the following purposes: degradation
of the workstations and servers performance or violation of their service capability; obtaining of an
unauthorized access to information (violation of confidentiality, integrity and availability of
information processed by application processes); imposing of false information at an interaction of
application processes through data links.

The attacks of class B are directed on lowering of efficiency of the network operation through
effecting on the network infrastructural characteristics. The purposes of these attacks are the
followings: deterioration of dynamic characteristics of a telecommunication subsystem (reduction of
data links capacity, degradation of network devices or violation of their service capability); change of
the network structural characteristics (change or violation of logical connectivity between objects,
implantation of false objects).

8. Attack complexity level:
(1) Simple;
(2) Composed (complex).
Simple attacks consist of one or several actions. Complex attacks include a set of the simple

attacks.

 9

The enumerated characteristics of attacks can be considered as a basis for construction of complex
attack classifications necessary for the concrete applications.

We discern eight typical classes of the remote attacks:
(1) Analysis of the network traffic ;
(2) Network scanning (probing);
(3) Substitution of the trusted object of the network and transmission of the messages from its

name with appropriation of its access rights;
(4) Implantation of the false object in a network;
(5) Denial of service;
(6) Unauthorized access from a remote machine by guessing password;
(7) Unauthorized access to local superuser (root) privileges;
(8) Remote initiation of applications.

The eight most frequently undertaken typical classes of the network attacks and their examples are
represented in Tab.1.2.1.

Tab.1.2.1. Classes of network attacks

Attack type Attack Examples
1. Analysis of the network traffic – sniffing or

listening of a data link by means of sniffers

§ to study a logic of the network operation (to get
unambiguous correspondence of events happening in
the system and commands transferred by hosts)

§ to intercept a stream of data (for extraction
passwords for access to the remote hosts on the FTP
and TELNET protocols)

Means: Esniff.c, Gobler, ethdump, LanPatrol,

LanWatch, Netmon, Netwatch, ethload, Linsniffer,
BUTTSniffer, Session Wall-3, LANAlyzer, PacketBoy,
Lan Trace, Shomiti Surveyor, Sniffer Ballista/NT,
tcpdump, web_snif.c, readsmb.c, icq-spof.c, C2MyAzz,
IP-Watcher, etc.

§ to study symbol sequences entering into the host

from the keypad

Means: Keytrap, Playback, Keycopy, Getit, etc.

2. Network scanning (probing) – a
transmission of inquiries to the network
services of hosts and analysis of the answers
from them

Means: ipsweep, mscan, portsweep, satan, ping, fping,
Pinger, WS_PingProPack, icmpquery, icmpush,
strobe, udp_scan, netcut, PortPro, nmap, ident, queso,
cheops, tkined, etc.

(1) ”Visible” scanning § TCP ports scanning (TCP SYN scanning, TCP FIN
scanning, scanning based on IP fragmentation, TAP
IDENT scanning)

§ UDP ports scanning
§ Scanning by DNS
§ Scanning by ping sweep

(2) ”Invisible” anonymous scanning § Half scan
§ FTP bounce
§ Dumb host scan
§ Proxy scanning
§ Scanning by ministorm of inquiries

3. Substitution of the trusted object of the
network and transmission on links of the

 10

messages from its name with appropriation of
its access rights

(1) Substitution of the trusted object of a
network at an establishment of virtual
connection

§ TCP-IP Spoofing
§ Web spoofing

(2) Substitution of the trusted object of a
network without an establishment of virtual
connection

§ DNS spoofing

4. Implantation of the false object of the
network

(1) by obtrusion of the false path using the
disadvantages of routing algorithms of the
protocols

Attacks using RIP, OSPF, LSP, ICMP, SNMP protocols

(2) by usage of disadvantages of the remote
search algorithms

Attacks using SAP, ARP, DNS, WINS protocols

5. Denial of service (DoS)

(1) DoS caused by usage of a portion of the
network resources

§ directed storm of echoes - inquiries on the ICMP
protocol (Ping flooding)

§ ministorm of inquiries on installation of TCP-
connections (SYN flooding)

§ storm of inquiries to FTP server

(2) DoS caused by exhaustion of the network
resources at processing of packages
transmitted by the malefactor

§ storm of broadcasting ICMP- echoes-inquiries
(Smurf)

§ directed storm (SYN flooding)
§ storm of the messages to a mail server (Spam)

(3) DoS caused by violation of logical
connectivity between the network objects by
transmission of control messages changing the
route data or the identification and
authentication information on behalf of
network devices

§ ICMP Redirect Host,
§ DNS-flooding

(4) DoS caused by transmission of packages
with uncommon attributes or having length
exceeding a valid maximum size

§ Land, TearDrop, Bonk, Nuke, UDP bomb
§ Ping Death, attack on a ftpd demon of UNIX host

6. Unauthorized access from a remote
machine by guessing password

§ “brute force” method;
§ simple guessing password;
§ “crypt and compare” method
§ social engineering

7. Unauthorized access to local super user
(root) privileges

various “buffer overflow” attacks

8. Remote initiation of applications

(1) distribution of files containing the
unauthorized executed code

I-Worm.LoveLetter

(2) remote initiation of an application by buffer
overflow of the application server

Morris virus

(3) remote initiation of an application by usage
of possibilities of the remote system control
provided by hidden software and hardware
beetles or used regular means

Back Orifice, Net Bus,
Landesk Management Suite, Managewise, BackOffice

 11

The analysis of the network traffic consists in an interception of network packets and their
analysis. This attack class allows to research the parameters of a network (protocols, topology, types
of operating systems, physical and logic addresses of objects) and to get access to the confidential
information (for example, to the users’ names and passwords). The widespread type of the data
interception means is a sniffer, i.e. a network analyzer or means of dataflow inspection. Examples of
this type programs are the following: for SunOS - Esniff.c (it captures only first 300 bytes telnet, ftp
and rlogin sessions, that it is quite enough for obtaining the identifier and password), Etherfind and
Snoop; for the MS DOS - Gobler, ethdump, LanPatrol, LanWatch, Netmon, Netwatch, ethload; for
Linux - Linsniffer; for Windows - BUTTSniffer V 0.9.3, Session Wall-3, LANAlyzer, PacketBoy vl.2
for Win95/NT, Lan Trace, Shomiti Surveyor, Sniffer Ballista/NT, etc. For many operating systems,
the Unix utility tcpdump can be used.

The network scanning consists in a transmission of inquiries to the network services of hosts and
analysis of the answers from them. The purpose of the attacks of this class is detection of the used
protocols, accessible ports of network services, determination of active network services, selection of
users’ identifiers and passwords. The basic ways of scanning are: TCP ports scanning (for example,
TCP SYN-scanning, TCP FIN-scanning, scanning based on IP fragmentation, TAP IDENT scanning,
“Christmas tree” scanning, zero scanning), UDP ports scanning, scanning by DNS, ping sweep
scanning, “proxy”-scanning, FTP bounce scanning, etc. The most widely used means of network
scanning are nmap, strobe, udp_scan, netcat, PortPro, Portscan, Ipsweep, Mscan, Portsweep, Satan,
etc.

The substitution of the trusted object of the network and transmission of the messages on its behalf
and appropriation of its access rights is effectively realized in systems, where unstable algorithms of
the identification and authentication are used.

Two varieties of the attacks of this class can be discerned:
(1) attacks using installed virtual connection;
(2) attacks without installation of a virtual connection.
The first type of attack consists in appropriation of the rights of the trusted subject of interaction

that allows intruder to perform a session with the network object on behalf of the trusted subject (for
example, attack of the rsh-service of a UNIX-host). An attack without installation of virtual
connection can take place in networks realizing an identification of the transmitted messages only
using a network address of the sender. The essence of this attack consists in transmission of service
messages concerning the change of the route data on behalf of the network control devices. An
example of such attack is imposing of the false router using of the ICMP message “Redirect Host”.

The main purpose of implantation of the false object in the network is a variation of the route data
on the attacked object so that the new path passes through the false object. This attack is carried out in
two ways:

(1) by obtrusion of the false path using disadvantages of routing algorithms. As a result, the attack
object traffic can get, for example, to the host of the malefactor, where it is possible “to open” the
attacked host by means of some tools. This way consists in unauthorized use of the routing protocols
(RIP, OSPF, LSP) and the network management protocols (ICMP, SNMP) for modification of the
route data;

(2) by use of disadvantages of the remote search algorithms. If the network objects have no
address information about each other, various protocols of the remote search are used (for example,
SAP in Novell NetWare networks; ARP, DNS, WINS in TCP/IP networks). The remote search
protocols consist in transmission to the network of address retrieval inquiries and obtaining the
answers with the required information. Thus, the intruder can intercept the address retrieval inquiry
and transmit the false answer, whose use will change the route data. Further all traffic associated with
the object-victim will pass through the false network object. This attack allows to effect on the
intercepted information as follows: to carry out selection and saving of data stream; to update
transmitted data or transmitted code; to substitute transmitted data.

 “Denial of service” attack consists in transmission by intruder on behalf of the legal objects of
many inquiries addressed to network services, or transmission of packages with unusual attributes, or
having length exceeding a valid maximum size. Some varieties of this class of attacks can be
indicated: (1) the hidden denial of service caused by the use of a part of computer network resources

 12

while processing the packages transmitted by the malefactor. That can violate the requirements for the
inquiry processing time. Examples of these attacks are as follows:

(1)directed storm of echoes - inquiries on the ICMP protocol (Ping flooding), mini-storm of
inquiries on installation of TCP connections (SYN-flooding), storm of inquiries to FTP server;

(2) the evident denial of service caused by exhaustion of the network resources at processing of
packages transmitted by the malefactor. Examples of these attacks are a storm of broadcasting ICMP-
echoes-inquiries (Smurf), directed storm (SYN-flooding), storm of the messages to the mail server
(Spam);

(3) the evident denial of service caused by violation of logical connectivity between the network
objects by transmission of control messages changing the route data or the identification and
authentication information on behalf of network devices (for example, ICMP Redirect Host, DNS-
flooding);

(4) the evident denial of service caused by transmission of packages with unconventional
attributes (Land, TearDrop, Bonk, Nuke, UDP-bomb) or having length exceeding the valid maximum
size (Ping Death, attack of a ftpd demon of UNIX-host). This attack can cause a failure of network
devices participating in the inquiry processing in presence of faults in programs realizing the network
exchange protocols.

Unauthorized access from a remote machine by guessing password can be realized in three ways:
(1) “brute force”; (2) simple guessing; (3) “crypt and compare”. Besides, social engineering can be
used. When “brute force” method is used, an attacker, first of all, can test default passwords
installations (for example, in Unix-systems - root or bin, in VMS - system, in Windows NT -
administrator, in Netware - supervisor), or guest passwords (guest, demo, visitor). When simple
guessing password is realized, the special programs automating this process are used. Some of these
programs use a list of widespread passwords with known or installed "on default" login name, others
apply network utilities of the user’s login determination (Finger for Unix, Finger32 and WSFinger for
the Windows, FFEU for OS/2 etc.), and try as passwords various permutations of symbols in these
names. Malefactors, as a rule, use password guessing means based on “crypt and compare” method. It
consists in an encryption of various words via the algorithm used for encryption of the passwords, and
matching two ciphered strings. If they are equal the necessary password is determined.

Unauthorized access to local super-user (root) privileges is carried out, as a rule, by start-up of
the application, which causes buffer overflow under the preset initial conditions. In some cases of the
system registers adjustment the processor can be switched after interruption caused by buffer overflow
to fulfillment of a code contained out of the buffer space and possessing higher rights. The attack of
this type was used in a well-known Morris virus.

“Remote initiation of applications” attacks consist in an implantation and initiation of various
beetles on the attacked host (for example, trojan programs Back Orifice, Net Bus), viruses (for
example, “VBS.LoveLetter”), or in use of a standard network control and administration means
(Landesk Management Suite, Managewise, Back Office, etc.). The main purpose is violation of
information confidentiality, integrity, availability and complete administrative control of the host
operation. Schematically the main stages of these programs operation are as follows: installing in
memory; waiting for inquiry from the remote host, on which the head server program is initiated;
message exchange with the head server program; transmitting the intercepted information to the head
server-program or granting it control of the attacked host.

The analysis of mentioned classes of remote attacks is elaborated in detail in the Interim Report #1
[IntRep#1]. The represented results allowed developing the conceptual descriptions of representative
set of network attacks and their formal models.

1.2.2. Scenario-based specification of the representative set of distributed attacks of different
classes

The scenario-based specifications of computer network attacks were given in the Interim Report
#1 [IntRep#1].

It was shown that computer network attacks are of great concern to the class of complex systems
possessing such features as large scale, multi-connectivity of elements, diversity of their connections,
variability of structure, multiplicity of executed functions and structural redundancy.

 13

An attack model is understood as a formal object having a likeness in basic properties with regard
to real-life attacks, serving for investigations of their properties by means of using known and
obtaining new information about attacks. A formal model of attacks is a collection of mathematical
dependencies specifying attacks and allowing study of them formally and via simulation.

The research focused on the conceptual model of attacks which includes two levels: (1) macro-
level and (2) micro-level. It is supposed that available information about attacks to study them
comprises experts' information and limited number of cases.

Analysis of remote attacks proved that a malefactor plans each attack on macro-level as a partially
ordered set of steps. The partially ordered set of attack steps on the macro level is called a scenario of
attack . In any case, realization of a scenario is represented by a sequence of various lengths. Each step
aims at achieving a particular sub-goal, say, to break through a firewall, to get a non-authorized access
to some information, services, applications, to execute an operation with the object of interest, to
remove evidences of the attack steps, etc. In realization of some steps of such a scenario may not be
successful, while other ones may be successful. In principle, the total number of such steps of different
purposes is not too large, and they can be realized by malefactors in diverse orders, in a repeatable
mode, from different source hosts, etc. Availability of even a unique case of an attack scenario allows
an expert to identify and anticipate the malefactor's intentions, peculiarit ies of the attack
implementation and to anticipate a variety of possible scenarios aimed to the same target

To realize each particular step of the attack scenario, the malefactor uses operations of low level.
Therefore, each such a step of a scenario may be represented as a sequence of low level commands,
system calls, etc., that specify an attack on micro-level. Although each step can be formed by the same
operations, specific character of each step can be expressed by particular probabilistic characteristics
of sequences of commands corresponding to the various steps of scenario and by particular values of
attributes (names of files, directories, services, etc.).

The developed means of the attack specification can be represented as described below.
On macro-level, each sequence of attack steps may be considered as a “word” belonging to a

formal language that, in turn, can be specified by a formal grammar ([Aho et al-72], [Fu-74],
[Gorodetski-86], [Lammel et al-00]). A description of the common attack scenario by stochastic
grammar which is the following1:

GA=<VN, VT, S, P >,

where VN is a set of the non-terminal symbols, which are put into the correspondence with the upper
levels of attack steps; VT is a set of the terminal symbols, which denote the attack steps of the lower
level; S is an initial symbol ("axiom") of attack scenario; P is a set of the productions assigned
probabilities of their use. P represents syntax of the language to be generated by grammar GA, at that
each "word" of this language represents the sequence of malefactor's activity on macro-level.

It is supposed that each terminal symbol of the "word" of the language generated by grammar GA,
in turn, can be considered as an "initial symbol" (axiom) of a grammar specifying the respective step
in more details. Formally, this more detailed elaboration of the attack specification corresponds to the
well known (within formal grammar theory) operation called "Substitution of grammar" ([Glushkov et
al-78]).

The developed model of attack scenario is very flexible. It is able to specify such peculiarities of
attacks as variety of orders of steps of the same attack in different its instances, repeatability of steps,
possibility to initiate different steps of an attack from different hosts (if attack is performed in
distributed way), etc. It also takes into account that attack can be directed to different objects of the
victim computer network.

This grammar may be regenerated by formal methods inductively on the basis of cases, and later it
can serve as a formal model of such kind of attacks on the macro level. This grammar can play a dual
role, namely , it can be used as model of cases generation, and it can serve as a formal model used for
attack detection on the basis of syntactical analysis of the "words" representing scenario of the
malefactor's activity. There also exist other options of formal approaches to modeling of attacks, e.g.,
Markov’s Chains model.

1 Later in subsection 1.3.3 a more precise definition of the grammar used for attack specification is done.

 14

In terms of micro-level, each step of the macro level scenario consists of a sequence of events (for
example, system calls). Modeling and simulation of an attack on the micro level can also be realized
by means of the expert analysis of the intruder's intention at each step of the attack. In some respects
this task is similar to the one considered on the macro level. But as a rule, intruder's actions on the
micro level may slightly vary from the normal actions and be more noticeable on the macro level. This
is a significant argument in favor of the necessity of the macro level attack modeling and simulation.
Mathematically the formal model on micro level can also be specified in terms of formal grammars or
in terms of Markov's chains. Let us remind that operations of micro level are used for implementation
of each step of the macro-level attack scenario.

The scenario-based models are practically specified for the following classes of network attacks:
(1) analysis of the network traffic , (2) network scanning (probing) , (3) substitution of the trusted
object of the network and transmission of the messages from "on its behalf" with appropriation of its
access rights, (4) implantation of the false object in a network, (5) denial of service, (6) unauthorized
access from a remote machine by guessing password, (7) unauthorized access to local super user (root)
privileges, and (8) remote initiation of applications.

Each scenario is described in terms of a set of admissible sequences of steps specifying attack
class on macro- and micro levels.

The models of the “analysis of the network traffic” of attacks include a sequence of the following
stages: indication of the place in the network from which it is favorably to listen the network;
determination of analyzed levels of network protocols and the protocols themselves; determination of
the running network equipment in the network and mechanisms of its operation; determination of the
software for analysis and OS under control of which this analysis will be realized; adjustment of the
software and the development of rules (patterns) on which basis information is filtered; analysis and
choice of host masking means, when an intruder analyzes the traffic; intrusion in the network and
starting up of all software (both analyzing the network traffic, and masking the intruder); reception and
analysis (filtering) of the traffic passing through the intruder’s network; disconnecting from a network;
analysis, decoding, and classification of the information received by intruder.

The most important stages, which can be presented in network scanning, are the followings:
selection of an “agent” computer and connection to it; finding computes existing in the target network;
recognition of the target network structure; recognition of the services running on the target computer;
getting additional information about the target network.

The common stages of the attack “substitution of the trusted object of the network” are:
preparatory stage concerning analysis of the attacked objects and substitution of information on the
server; listening of the network; sending of a query (a storm of queries); sending of a reply,
mathematical prediction of the next message number and its sending to the attacked host, rerouting the
query on the intruder’s host by the server; execution of commands on the attacked host; reception and
analysis of the intercepted information; influencing on intercepted information; transfer of intercepted
information (probably changed or substituted); distribution of attack on other objects.

The models of the “implantation of the false object of the network” attacks include the following
stages: studying the attacked host network; listening of the network; sending a false message (or a
storm of messages); reception and analysis of intercepted information by the intruder or the "deceived"
server; influencing on intercepted information; transferring of intercepted information (probably
changed or substituted).

The models of the “denial of service” attacks contain a sequence of the following generalized
stages: a reconnaissance of the network; an installation of master-agents and daemon-agents on the
intermediary (auxiliary) hosts; sending messages from daemon-agents to master-agents (for example,
about the status); sending information about the status of daemon-agents from master-agents to a
malefactor; a sending of commands from the malefactor’s host to master-agents; sending of
commands from master-agents to daemon-agents; sending of a specially crafted packet from the
malefactor’s host (or from the host used by the malefactor) to the intermediary host (or a set of
intermediary hosts); the intermediary host (or a set of intermediary hosts) receives the packet and
responds by sending a packet to the target host; the target host receives the packet and responds back
to the intermediary host; sending of a specially crafted packet (a sequence of the packets, fragments of

 15

the packet) from the malefactor’s host (from the host used by the malefactor or by daemon-agents) to
the target host.

The main stages of the “unauthorized access from a remote machine by guessing password”
attacks are: getting information about the target system and its authentication subsystem; getting
information about users of the target system; interception of ciphered (or hashed) passwords; getting
database with ciphered (hashed) passwords; single entering of the password in online mode; multiple
entering of passwords in online mode; retrieval of the passwords in offline mode; interception of
passwords in plain text format (may be used for some other services).

The following stages are common for “unauthorized access to local super user (root) privileges”
attacks: analysis of the attack targets; preparation of the code; implantation of the code; implantation
of parameters ("parameterization" of the code); transfer of control to the code.

The “remote initiation of an application” attacks are characterized by the following stages:
reconnaissance of the target computer system; implementation of a malicious code or program text
into the target system; unauthorized access to the system resources; initiation and usage of auxiliary
software, which is legally installed in the target system; initiation of a malicious program; activation of
some special functions, available in the implemented malicious program; sending of information from
the implemented program to the intruder; cleaning logfiles and deleting other attack evidences; self-
reproduction of a malicious program.

For representation of these models (see Interim Report #1, [IntRep#1]) the scenario-based
specification including verbal and formalized representation of attack steps was used.

1.2.3. Techniques for case-based regenerating of the formal grammar specifying models of the
attacks

Analysis of the task of sample-based synthesis (recovery) of grammars specifying models of
attacks was presented in the Interim Report #2 [IntRep#2]. The respective grammar recovery
algorithms were described. In order to demonstrate the expressive and performance capabilities of
formal grammar-based model of attacks against computer networks, several cases of computer
network attacks were conceptually analyzed and specified. Examples of use of grammar recovery
algorithms for specification of computer network attacks were also considered.

Analysis of sample-based of synthesis (recovery) of grammars specifying models of attacks
showed that the scenario of a computer network attack can be represented in terms of formal grammar.
This grammar can be used both as a model generating the instances of attacks and as a model for
recognition of attacks based on syntactic analysis of sequences of malefactor's steps. For practical
implementation of scenario-based attack simulation systems, it is possible to construct such grammars
on the basis of cases of attacks.

Formally, synthesis of a formal grammar consists in sample-bases recovery of an unknown
grammar productions in which the role of "sample" plays a finite set of words S of the language L(G)
to be recovered as well as possibly a finite set of words from the supplement to the language L(G)
([Fu-74], [Gorodetski-86], [Lammel et al-00], etc.).

If the task of grammar recovery solved ambiguously it would be advisable to use some quantitative
measure (metric) of the grammar recovery quality, the values of which could help compare different
admissible solutions. Typically, this measure characterizes the complexity of resulting grammar, and
its specific form should take into account the peculiarities of the specific applied task at hand and the
possible “losses” resulting from the inaccuracy of the recovered grammar.

Three different approaches applicable to the synthesis of grammar that generates scenarios for
computer network attacks were described in the Interim Report #2 [IntRep#2]. They are briefly as
follows:

(1) through inductive recovery based on the set of cases through the use of formal methods;
(2) by an expert who possesses knowledge of the malicious party’s intentions and the possible

ways these intentions can be realized;
(3) through combining the two above methods.
Two groups of algorithms can be used for recovery of grammar specifying models of attacks:
(1) enumeration grammar recovery algorithms;
(2) induction grammar recovery algorithms.

 16

The inductive grammar recovery methods are deemed the most adequate for the purposes of
recovering grammars that specify computer network attacks, specifically, the inductive method for
recovering regular grammars on the basis of positive examples (the Feldman method). This method
consists in constructing a non-recursive grammar that creates precisely those strings that were
presented in the training sample , and then arriving at a simpler recursive grammar that generates all
the strings of the positive examples and an infinite amount of other strings.

In order to demonstrate the performance capabilities of algorithms for recovery of grammars that
specify different types of computer network attacks, we have looked at several cases of computer
network attacks. These cases set the basic methods for implementing attacks of the following types:
network scanning for identification of hosts; network scanning for identification of services;
identification of operating system; shared resource enumeration; users and groups enumeration;
applications and banners enumeration; actions on getting access to resources; denial of service attacks.

The examples of using grammar recovery algorithms for specification of computer network
attacks were developed ([IntRep#2]). These examples showed practical applicability of the algorithms
suggested for recovery of grammars specifying computer network attacks. The synthesized grammars
can be used for generation of versions of attacks. The grammars developed through combining a
number of productions are capable of generating the attacks that were not taken into account in the
training cases. This expands the capability of the attack simulator that is based on the utilization of
these grammars.

1.3. Mathematical methods and techniques realizing the attack formal modeling

Mathematical methods and techniques realizing the attack modeling were described in the Interim
Report #2 ([IntRep#2]) and defined more precisely in the Interim Report #3 ([IntRep#3]).

We consider below the model of attack realization as a complex process of contest of adversary
entities those are malefactor or team of malefactors, on the one hand, and network security system
implementing a security policy, on the other hand.

1.3.1. Conceptual explanation of the attack modeling and simulation strategy

We defined the following peculiarities of planning and execution of attacks, influencing on choice
of a formal model of attacks:

• Any attack is target– and intention–centered, i.e. it is directed against a particular object
(network, computer, service, directory, file, etc.) and, as a rule, has a quite definite intention.
Intention is understood as a goal or sub-goal a malefactor intends to achieve. We speak about
malefactor’s “intentions” according to the terminology used for mental concepts. Formally
specified intention is called a “goal”. Examples of intentions: reconnaissance (e.g. learning of
network structure, identification of OS, hosts and/or services, etc.); penetration into the
system; access to files of some directory; denial of service, etc. Examples of targets: IP-
addresses of trusted hosts; password file; files of a particular directory; some resources of a
particular host, etc. It should be noticed, that in some cases intention cannot be determined in
advance. It can be accepted by malefactor in progress of attack development as a decision
made on the basis of the obtained information and successfulness or ineffectiveness of
particular malefactor’s actions fulfilled earlier.

• Attack intention can be represented in terms of partially ordered set of lower-level intentions.
A set of malefactor’s intentions partially ordered in time is called an attack scenario .
Intentions constituting attack scenario can be represented at different generalization levels. At
the lowest level, each such intention is realized by a malefactor as a sequence of actions
(network packets, commands of OS, etc.). Any malefactor's intention can be realized in
multiple ways. Malefactor can vary the scenario implementing the same intention and the
same attack object.

• Attack modeling corresponds to an adversary domain. Attack development depends on the
result of each particular step of attack, i.e. it depends on response of the attacked network. In
turn, a network response depends on security policy implemented. The current attack “state” is
determined in terms of initial malefactor's information about the attacked network (or host),

 17

information collected at preceding attack steps, and also the results (successfulness or
ineffectiveness) of the preceding steps.

Thus, any attack development depends on many random
factors and, first of all, depends on attacked network response.
Therefore, even if a general malefactor's intention is
determined, the attack development scenario cannot be
definitely specified beforehand.

An attack development depends on many uncertainties:
• uncertainty in choice of the attack intention and attack

object;
• uncertainty caused by the information content with

regard to the attacked network which a malefactor
possesses at the beginning of attack and in progress of
its development;

• uncertainty of choice of attack scenario implementing
the already selected intention;

• uncertainty of the attacked computer network response.
The following scheme of attack generation (simulation) was developed.
Selection of the attack intention and attack object is a subjective act. Let the list X={X1, X2,,…,

XN} of possible attack intentions and the list Y={Y1, Y2, …, YM} of attack objects be given. To select
some attack intention and an attack object, it is necessary to set some formal mechanism of choice, for
example, randomization mechanism. Let an intention X∈X and an attack object Y∈Y be selected.

The next component of attack modeling is a mechanism for generation of the attack given upper-
level intention X and attack object Y in terms of hierarchy of lower-level malefactor’s intentions and
respective sequences of actions. Let us suppose that the malefactor’s intention X consists in getting
access to files in some directory of a host. If malefactor does not possess some basic information about
computer network or host then he/she has to start from reconnaissance R, which corresponds to the
first intention at the level that is lower with regard to the intention X of the top level. The
reconnaissance R can be fulfilled, for example, by four different sub-attacks {A, B, C, D}. Only one of
them can be selected on current step of the attack development as a sub-goal (intention) of the second
level. We admit, that the malefactor has selected sub-goal C. Another malefactor in the same situation
could make other selection. Therefore, it is quite reasonable to specify the above selection as a
randomized step. Thus, generation of an attack in terms of lower level intentions given upper-level
intention X and attack object Y can be formalized on the basis of randomization of choice among {A,
B, C, D}.

Let the selected sub-goal C be a sequence of “commands”, first of which be the command a1. The
term “command” is used here in the generalized sense. Main difference between “command” and
“intention” consists in the following. The command is a concrete action; it is not a mental concept,
which represents a certain abstraction in malefactor’s mind. It can be a sequence of IP-packages, a
command of operating system, etc. An intention is a component of the plan of actions; it is an
“abstraction” represented formally at respective level of detail.

A set of sequences of commands, by which the malefactor tries to realize his /her intention, can be
selected ambiguously. Therefore it is necessary to set a non-deterministic mechanism for generation of
sequences of commands. It is obvious, that it can be randomization mechanism, however, probably,
not so simple, as the random-number generator with a discrete distribution. Let a1 be the first
generated command. This command is dispatched to the attacked computer network (host). The
hierarchy <attack intention X, attack target Y>→<lower level intentions>→<actions>, corresponding
to the considered example scheme of the initial phase of the attack generation is shown in tree-like
form in Fig.1.3.1.

The formally determined process of choice can be represented as follows: <Attack: intention X,
target Y> → <R> <Attack continuation, detailing X>, <R>→<C><Attack continuation, detailing R>,
<C>→ a1<Attack continuation, detailing C>. The response of the attacked system to each command
can be characterized as “success” if the command is executed like the malefactor wanted, or “failure”,

•

•

• •

•

•

<Attack continuation>

<Attack continuation>

<Attack continuation>

<Attack: intention X, target Y>

<R>

<C>

1a

Fig.1.3.1 . Attack scheme

•

 18

if the attacked system reacts to the command in the way that is undesirable for the malefactor. The
next commands are determined in response of the attacked object to the command a1.

If the chosen intention C is failed then the attack generation process can be stopped, or the attack
can be continued starting with reselection of the choice associated with specialization of intention R –
predecessor of the failed intention C in the tree (see Fig.1.3.1) in terms of the rest of the set {A, B, C,
D}, i.e. in terms of one of the lower level intentions {A, B, D}. In the last case, the choice of a new
alternative for the intention R specialization is made with the respective recalculation of the
probability distribution given over the truncated set of lower-level intentions.

The next step and any subsequent one of attack generation is similar to the previous step. If in the
following steps no one of intentions A, B and D does not result in success then the attack can be either
finished or continued with the probable subsequent modification of the attack object. It is worth to
notice, that in both above cases the probability distribution given over the set of the potentially
admissible next step selections of intention alternatives should be recalculated.

If the attack with intention C is successful, then the attack can be stopped (if the goal is reached),
or can be continued. This choice is also non-deterministic and can be simulated by a probabilistic
mechanism and so on and so forth.

To an arbitrary step n of the attack generation (simulation) its state can be specified by a sequence
of the following sort:

A(n)=<Attack prehistory> <Current state> <Attack continuation>,
where <Attack prehistory> is a sequence of the symbols corresponding to the preceding steps, in
which each symbol is marked with a flag from a set {“success”, “failure”}. This sequence can include
symbols of intentions of different levels of detail, and symbols of actions. It is supposed, that the
attack can be simulated at various levels of detail of the description; <Current state> is a partially
unfolded sequence of the current attack step symbols; <Attack continuation> is still unknown part of
the sequence A(n), which generation is expected. In addition, current state of the attack development
can also contain information collected at preceding steps.

It should be clear that it is impossible to enumerate and to specify all sequences A(n), i.e. to
specify completely in declarative form the total set of attacks and variants of their development
mapped to total set variants of the attacked network responses. Therefore, the only way to specify
attacks, if such way exists at all, is procedural way, which suppose to model attack by a generation
algorithm. This way is used in our research.

While describing the developed model of attacks, we defined main notions of attack generation
that are formalized in the problem domain ontology “Computer network attacks”. In the developed
formal model, the basic notions of the domain correspond to malefactor’s intentions and all other
notions are structured according to the structure of intentions. This is a reason why the developed
approach is referred to as “intention-centric approach”.

The following two basic classes of high-lever malefactor's intentions and their identifiers were
used in the developed formal model:

• R – Reconnaissance aiming at getting information about the network (host). The particular
cases of intentions of this class are Identification of the running Hosts, Identification of the
host Services, Identification of the host Operating system, Collection of additional Information
about the network , Shared Resource Enumeration, Users and groups Enumeration,
Applications and Banners Enumeration.

• I – Implantation and threat realization. The particular cases of intentions of this class are
Getting Access to Resources of the host, Escalating Privilege with regard to the host
resources, Gaining Additional Data needed for further threat realization, Threat Realization,
Covering Tracks to avoid detection of malefactors’ presence, Creating Back Doors. Threat
Realization can be detailed by the following sub-intentions: Confidentiality destruction
(Confidentiality Violation Realization), for example, through getting access to file reading,
Integrity Destruction (Integrity Violation Realization) realizing through attacks against
integrity of the host resources, and Denial of Service (Availability Violation Realization).

The numbers, designations and interpretations of basic malefactor's intentions are explained in
Tab.1.3.1.

 19

Tab.1.3.1. The list of the malefactor's intentions
Number Designation Interpretation

1 IH Identification of the running Hosts
2 IS Identification of the host Services
3 IO Identification of the host Operating system
4 RE Resource Enumeration
5 UE Users and groups Enumeration
6 ABE Applications and Banners Enumeration
7 GAR Gaining Access to Resources
8 EP Escalating Privilege
9 CVR Confidentiality Violation Realization or Confidentiality

destruction
10 IVR Integrity Violation Realization or Integrity Destruction
11 AVR Availability Violation Realization or Denial of Service
12 CBD Creating Back Doors

An attack task specification (or a top-level attack goal) can be specified by the following quad:

<Network (host) address, Malefactor's intention, Known data, Attack object>2.
The task specification has to determine the class of scenarios that lead to the intended result.

Known data specifies the information about attacked computer network (host) known for a malefactor.
Attack object corresponds to the optional variable in attack goal specification. It is specified in the
following ways:

• “_” – the attack object is not specified for the malefactor's intention “Reconnaissance” (R);
• If the intention corresponds to the attacks like CVR or IVR then the attack object is specified

as follows: [Account,] [Process {<Process name >/< Process mask >},] [File {<file name
>/< file mask >},] [Data in transit {< file (data) name >/< file (data) mask >}], where
Account is object's account, Process is running process(es), File is file(s) that is the attack
target(s) to get, Data in transit is data transmitting, where the variables in [] are optional, the
repeatable variables are placed in {}, and symbol “/” is interpreted as “OR”;

• “All” – all resources of the host (network);
• “Anyone” – at least one of the resources of the host (network).

1.3.2. Problem domain ontology: structure of the basic malefactors’ intentions and actions

The developed problem domain ontology “Computer network attacks” comprises a hierarchy of
notions specifying activities of malefactors directed to implementation of attacks of various classes in
different levels of detail. In this ontology, the hierarchy of nodes representing notions splits into two
subsets according to the macro- and micro-levels of the domain specif ications. All nodes of the
ontology of attacks at the macro- and micro-levels of specification are divided into the intermediate
(can be further detailed) and terminal (cannot be detailed).

The notions of the ontology of an upper level can be interconnected with the corresponding
notions of the lower level through one of three kinds of relationships:

• “Part of” that is the decomposition relationship (“Whole”–”Part”);
• “Kind of” that is the specialization relationship (“Notion”–”Particular kind of notion”);
• “Seq of” that is the relationship specifying sequence of operation (“Whole operation” – ”Sub-

operation”).
High-level notions corresponding to the intentions form the upper levels of the ontology. They are

interconnected with the “Part of” relationship. Attack actions realizing malefactor's intentions are
interconnected with the intentions by “Kind of” or “Seq of" relationship. The developed ontology

2 In the software tool this 4-tuple is used for specification of simulation task by user.

 20

includes detailed descriptions of the network attack domain in which the notions of the bottom level
(“terminals”) can be specified in terms of network packets, OS calls, and audit data.

Let us look at a high-level fragment of the developed ontology (Fig.1.3.2). At the upper-level of
the macro-specification of attacks, the notion of “Network Attack” (designated by A) is in the “Part
of” relationship to the “Reconnaissance” (R) and “Implantation and threat realization” (I). In turn, the
notion R is in the “Part of” relationship to the notions IH, IS, IO, CI, RE, UE, and ABE. The notion I is
in the “Part of” relationship to the notions GAR, EP, GAD, TR, CT, and CBD. In the next (lower) level
of the hierarchy of the problem domain ontology, for example, the notion IH is in the “Kind of”
relationship to the notions “Network Ping Sweeps” (DC) and “Port Scanning” (SPIH). At that, the
notion “Network Ping Sweeps” (DC) is the lowest (“terminal”) notion of the macro-level of attack
specification, and the notion “Port Scanning” (SPIH) is detailed through the use of the “Kind of”
relationship by a set of “terminal” notions of the macro-level of attack specification.

The “terminal” notions of the macro-level are further detailed at the micro-level of attack
specification, and on this level they belong to the set of top-level notions detailed through the use of
the three relationships introduced above. Thus, for example, the notion “Network Ping Sweeps” (DC)
is in the “Kind of” relationship with the notions “Network Ping Sweeps with ping” (PI), “Network
Ping Sweeps with Ping Sweep” (PSW), etc., which, in turn, correspond to the names of utilities that
perform “Network Ping Sweeps”.

In turn, each of these notions, e.g. “Network
Ping Sweeps with Ping Sweep” (PSW), is in the
“Seq of” relationship to the “ICMP ECHO
REQUEST” (IER) notions. The “ICMP ECHO
REQUEST” (IER) notions correspond to network
packets that are directed at the host (or the
network) – the target of the attack.

In micro specifications of the attacks ontology,
besides the three relations described (“Part of”,
“Kind of”, “Seq of”), the relationship “Example of”
is also used. It serves to establish the “type of

Network Ping Sweeps with Ping Sweep PSW

ICMP ECHO
REQUEST

IER

<time> <src_addr> > <dest_addr>: icmp:
echo request

 – “Seq Of” relationship

 – “Example Of” relationship

Fig.1.3.3. Micro-level fragment of the domain
ontology “Computer network attacks”

Network attack
A

Reconnaissance
R

Implantation and threat
realization

I

Collection of additional Information
Identification
of hosts

Identification
of services

Identification
of OS

Resource Enumeration

Users and Groups Enumeration
IH

IS
IO

CI
RE

UE
Applications and Banners Enumeration

ABE

Escalating
Privilege

Threat Realization

Covering Tracks

Getting Access to
Resources

GAR
ER

GAD

TR

CT Creating
Back Doors

CBD

Gaining Additional Data

Network
Ping
Sweeps

DC Port Scanning
SPIH

TCP
connect
scan

ST

TCP SYN scan
SS

Notions of
 micro-level

TCP FIN scan
SFI

TCP Xmas Tree scan
SX

Proxy
scanning

Dumb host
scan

Scanning 'FTP Bounce'

PS

DHS

SFB

TCP Null scan

SN

Half scan
HS

UDP scan
SU – “Part Of” relationship

N o t i o n s o f l o w e r l e v e l s

Fig.1.3.2. Macro-level fragment of the domain ontology “Computer network attacks”

 – “Kind Of” relationship

CVR
IVR

AVR

Confidentiality
destruction Integrity destruction

Denial of Service

 21

object – specific sample of object” relationship. In Fig.1.3.3, this type of relationship is used to
establish the connection between the echo-request of the protocol ICMP (“ICMP ECHO REQUEST”)
and its specific implementation specified, for example, as a message <time> <src_addr> >
<dest_addr>: icmp: echo request, where <time> – time stamp, <src_addr> – source IP address,
<src_port> – source port, <dest_addr> – destination IP address.

1.3.3. Formal grammar framework for specification of computer network attacks

Being based on explanation of the attack modeling strategy, definition of basic notions of attack
specification, structure of the basic malefactors’ intentions and actions, the following basic
assumptions and statements used for formal attack specification were determined ([IntRep#2],
[IntRep#3]):

• Each attack intention can be considered as a sequence of symbols in terms of lower-level
intentions and actions. These sequences can be formally considered as "words" of a language,
which can be generated by a formal grammar. Thus, each node of the ontology “Computer
network attacks” can be specified in terms of a formal grammar generating more detailed
attack specification;

• Analysis of a wide spectrum of formal grammar-based specifications of attack intentions
justified that attack intentions can be adequately specified in terms of LL(2) context-free
grammars;

• Specification of uncertainties inherent to the attack development can be done in probabilistic
terms through attributes and functions given over them. Thus, the resulting framework for
attack specification can be restricted to a stochastic attribute grammar;

• Each node (grammar) of the ontology is interconnected with the upper level node (grammar)
and this interconnection can be specified through “grammar substitution” operation [Glushkov
et al-78] in which a terminal symbol of the parent node is considered as the axiom of the
grammar corresponding to its child node;

• Each malefactor’s action has to be followed by an attacked network response.
Thus, mathematical model of attack intentions was determined in terms of a set of formal

grammars specifying particular intentions interconnected through “substitution” operations:
MA=<{Gi}, {Su}>, where {Gi} – the formal grammars, {Su} – the “substitution” operations.

Every formal grammar is specified by quintuple

G = < VN, VT, S, P, A >,

where G is the grammar name, VN is the set of non-terminal symbols (that are associated with the
upper and the intermediate levels of an attack scenario), VT is the set of its termina l symbols (that
designate the malefactors’ actions represented as steps of a lower-level attack scenario), S∈ VN is the
grammar axiom (an initial symbol of an attack scenario), P is the set of productions that specify the
specialization operations for the intention through the substitution of the symbols of an upper-level
node by the symbols of the lower-level nodes, and A is the set of attributes and algorithms of their
computation.

Attribute component of each grammar serves for two main purposes:
• The first of them is to specify randomized choice of a production at the current inference step

if several productions have the equal left part non-terminals coinciding with the “active” non-
terminal in the current sequence under inference. These probabilities are recalculated on-line
subject to the prehistory of attack development and previous results of attack. So, in order to
specify a stochastic grammar, each production is supplemented with a specification of the
probability of the rule being chosen in the inference process.

• Also the attribute component is used to check conditions determining the admissibility of
using a production at the current step of inference. These conditions depend on attack task
specification, attacked computer network (host) response and also on the malefactor’s
previous actions. These conditions may depend on compatibility of malefactor's actions and
attacked network or host properties, e.g., OS type and version, running services, security
parameters, etc.

 22

These are the examples of host parameters, which may form production conditions: (1) OS types –
Unix, Linux, Win (all Windows OS), 9x (95, 98, Me), NT (NT, 2000), SunOS, Solaris, etc.; (2) running
applications – e.g., PWS – an initial version of Microsoft's Personal Web Server is running; (3)
protection parameter – CFP (shared files and printers), NS (Null Sessions), PA (Password is Absent),
RR (Remote Registry), etc.; (4) additional parameters – AS (Access to Segment of LAN), THD
(Trusted Host Data), etc.

If it is necessary to specify several parameters, operations “OR” (signified by “,”) and (or) “AND”
(“.”) are used. Relationships of ownership and membership are also taken into account, e.g.
SunOS∈Unix; {95, 98, Me}⊂ 9x; {95, 98, Me, NT, 2000, XP}⊂ Win, 9x ∈ Win, etc.

Thus, in general case, the grammar production is recorded as follows: [(U)] X → α (Prob), where
U – the condition for the rule usage, [] – an optional element, X – non-terminal symbol, α –a string of
terminal and non-terminal symbols, Prob – the initial value of probability of the rule usage.

Let us explain by example the operation of grammar substitution and its role in the formal model
of attacks. Let a∈VT(Gi) be a terminal symbol of the grammar Gi in the sequence of symbols generated
by the grammar Gi. Symbol a denotes the name of a particular intention or attack action, and G(a) is
the grammar generating variants of the a implementation. Then, operation Su(a) of substitution G(a)
in place of symbol a is specified in the form Su(a): {a → G(a)}. Semantics of this operation is that in
place of symbol a in already generated sequence any “word” generated by grammar G(a) can be
placed. In fact, this operation corresponds to a step towards the more detailed specification of an attack
scenario.

When the micro specifications are used for modeling of attacks, it is necessary to use the ontology
nodes of the lowest (terminal) level and substitute specific values for the variables that determine the
attack task specification. For example, let us suppose a ping attack is being implemented using
“Network Ping Sweeps with Ping Sweep” (PSW). PSW is in the “Seq of” relationship to the “ICMP
ECHO REQUEST” (IER) network packets that are directed at the target host (network). In micro
specifications of attacks the IER node is in the “Example of” relationship to its specific
implementation defined as the following message: <time> <src_addr> > <dest_addr>: icmp: echo
request ,where <time> – time stamp, <src_addr> – source IP address, <src_port> – source port,
<dest_addr> – destination IP address. The grammar that specifies PSW may look like this: VN={PSW,
PSW1}, VT={IER}, S={PSW}, P={PSW → IER PSW1 (1), PSW1 → IER PSW1 (0.2), PSW1 → IER
(0.8)}.

Let us suppose a ping attack with “Ping Sweep” is being implemented from host 244.146.4.20 on
the hosts of the network 198.24.15.0 in the time interval [0:43:10.094644, 00:43:16.036735]. Let us
suppose that the string “IER IER” was created as a result of using the PSW grammar. Then, based on
the “Example of” relationship, the symbols of this string should generate two messages:

<time1> <src_addr> > <dest_addr>: icmp: echo request ,
<time2> <src_addr> > <dest_addr>: icmp: echo request .
After the parameterization <time1> = 00:43:10.094644, <src_addr>=244.146.4.20, <dest_addr> =

198.24.15.255, <time2>=00:43:16.036735, these messages should look like these:

00:43:10.094644 244.146.4.20>198.24.15.255:icmp:echo request and 00:43:16.036735
244.146.4.20>198.24.15.255:icmp:echo request,
which correspond to the icmp-packets sent to the network hosts 198.24.15.0 (since the X.X.X.255
address is specified in the icmp-packets, the packets are sent to all the hosts of the specified networks).

1.3.4. Formal models of a representative multitude of computer network attacks

The development of the family of grammars {Gi} was conducted in the following order
([IntRep#2], [IntRep#3]):

• First, for each basic malefactor's intention, its own family of enclosed attributed stochastic
context-free grammars was constructed;

• Second, these families of grammars were transformed into the generalized grammars that
correspond to each non-terminal node of ontology for all of the intentions.

 23

It is assumed that if a value of the production condition is not determined at the moment of
production selection all available productions may be used at the respective step of attack simulation.
Also it is supposed that the terminal actions generated by productions are associated with the
probabilities of successful realization of those actions (attacks) and the host response.

Each grammar corresponding to basic malefactor's intention is described through four elements:
(1) the set of non-terminal symbols VN, (2) the set of terminal symbols VT, (3) the first symbol S and
(4) the set of productions P.

Each production is established as:
[(U)] X → α (Prob),

where U – the condition for usage of the rule, [] – indicates that the element if braces is optional, X –
non-terminal symbol, α –the string of terminal and non-terminal symbols , Prob – the initial value of
the probability of the rule being chosen for given intention.

Let us consider two examples of developed grammars for basic malefactor's intentions: (1)
grammars for the intention “Identification of Operating system” (IO) and (2) grammars for the
intention “Users and groups Enumeration” (UE).

The family of attributed stochastic context-free grammars for the intention “Identification of
Operating system” (IO) can be represented as follows:

Grammar “Network Attack”:

VN={A, A1}, VT={R}, S={A}, P={A → A1 (1), A1 → R (0.7), A1 → R A1 (0.3)}.

Grammar “Reconnaissance”:
VN={R, R1}, VT={IO}, S={R}, P={R → R1 (1), R1 → IO (0.7), R1 → IO R1 (0.3)}.

Grammar “Identification of Operating system”:
VN={IO, IO1},
VT={TZ, TS, FF, RF, RS, II, IL, MD, IW, MA, IV, IF, IP, ISP, IDOS}, S={IO},
P={IO → IO1 (1), IO1 → TZ (0.05), (Unix, Linux) IO1 → TS (0.05),
(Unix, Linux) IO1 → FF (0.05), IO1 → RF (0.05), IO1 → RS (0.05),
IO1 → II (0.05), IO1 → IL (0.05), IO1 → MD (0.05),
IO1 → IW (0.05), IO1 → MA (0.05), IO1 → IV (0.04),
IO1 → IF (0.04), IO1 → IP (0.04),
IO1 → IS (0.04), (Win) IO1 → IDOS (0.04),
IO1 → TZ IO1 (0.02), (Unix, Linux) IO1 → TS IO1 (0.02),
(Unix, Linux) IO1 → FF IO1 (0.02), IO1 → RF IO1 (0.02),
IO1 → RS IO1 (0.02), IO1 → II IO1 (0.02), IO1 → IL IO1 (0.02),
IO1 → MD IO1 (0.02), IO1 → IW IO1 (0.02), IO1 → MA IO1 (0.02),
IO1 → IV IO1 (0.02), IO1 → IF IO1 (0.02),
IO1 → IP IO1 (0.02), IO1 → IS IO1 (0.02),
(Win) IO1 → IDOS IO1 (0.02)}.

In this set of grammars the following denotations are used: A – Network Attack; R –

Reconnaissance; IO – Identification of Operating system; TZ – Connection on telnet and examination
of the message header about operating system; TS – Connection on telnet and execution of the SYST
command; FF – Connection on FTP and examination of bin-files in the directory /bin/ls; RF – FIN
Probe - Exploration by the FIN package; RS – Bogus flag Probe - Exploration by the package SYN
with a false (unused) flag (BOGUS-flag); II – ISN sampling - Capture of initial sequential number ISN
at response to a TCP SYN connection request; IL – Definition of the law of the ISN change; MD –
Monitoring of the fragmentation prohibition bit DF; IW – Watching of an initial size of the TCP
window; MA – Watching of value of sequential number used for a field ACK; IV – Watching of an
initial size of the TCP window; IF – FIN Probe - Exploration by the FIN package; IP – Examination
of the answer for sending of the TCP packet with certain values of a field “Options”; ISP – Infecting

 24

Startup Files; IDOS – Examination of response for DoS attacks Ping of Death, WinNuke, Teardrop,
Land for detection of a Windows OS type; A1, R1, IO1– auxiliary symbols.

The family of attributed stochastic context-free grammars for the intention “Users and groups
Enumeration” (UE) can be described as follows:

Grammar “Network Attack”:

VN={A, A1}, VT={R}, S={A}, P={A → A1 (1), A1 → R (0.7), A1 → R A1 (0.3)}.

Grammar “Reconnaissance”:
VN={R, R1}, VT={UE}, S={R}, P={R → R1 (1), R1 → UE (0.7), R1 → UE R1 (0.3)}.

Grammar of the level “Users and groups Enumeration”:
VN={UE, UE1, UE2, UE3, UE4}, S={UE},
VT={DNNT, EUE, PIUD, IAUS, SNMPE, FUE, UTFTP},
Pfor Windows 9x,Me,NT,2000={(Win) UE→ UE1(1), (NS)UE1→ UE2(0.65), UE1→ SNMPE(0.25),
UE1→SNMPE UE1 (0.05), (NS)UE1→UE2 UE1 (0.05), (&)UE2→CNS UE3(1), UE3→DNNT
(0.2), UE3→DNNT UE4 (0.05), UE3→IAUS(0.35), UE3→EUE(0.2), UE3→ PIUD (0.2),
UE4→DNNT UE4(0.1), UE4→DNNT(0.9)},
Pfor Unix/Linux ={(Unix, Linux) UE→UE1(1), UE1→FUE(0.3),
UE1→SNMPE(0.2), UE1→UTFTP(0.1), UE1→FUE UE1(0.1),
UE1→SNMPE UE1(0.1), UE1→UTFTP UE1(0.2)}.

Grammar “Identifying Accounts with user2sid/sid2user”:
VN={IAUS, IAUS1, IAUS2}, VT={ISU, IAS}, S={IAUS},
P={(NT) IAUS → IAUS1 (1), (&) IAUS1 → ISU IAS (0.8), IAUS1 → IAUS1 IAUS2 (0.2),
(&) IAUS2 → ISU IAS (1)}.

In the second set of grammars the following denotations are used: A – Network Attack; R –
Reconnaissance; UE – Users and groups Enumeration; DNNT – Dumping the NetBIOS Name Table
with nbtstat and nbtscan; EUE – Enumerating Users with enum; PIUD – Providing Information about
Users with DumpSec (DumpACL); IAUS – Identifying Accounts with user2sid/sid2user; SNMPE –
SNMP Enumeration with snmputil or IP Network Browser; FUE – Finger Users Enumeration; UTFTP
– Use of Trivial File Transfer Protocol for Unix enumerating by stealing /etc/passwd and (or)
/etc/hosts.equiv and (or) ~/.rhosts; ISU – Identifying SID with user2sid ; IAS – Identifying Account
with sid2user using user’s RID; A1, R1, UE1, UE2, UE3, UE4, IAUS1, IAUS2 – auxiliary symbols.

Each generalized grammars were described through four elements: VN, VT, S, and P.
Specifications of these elements are analogous to grammars corresponding basic malefactor's
intentions with the exception of the descriptions of productions. For each production [(U)] X → α
(Prob), instead of the element (Prob), the set of probabilities of the choice of the rule for each i-th
intention is set as follows: Si= Prob. If Si=0, the corresponding probability is not assigned. The
generalized grammars are stochastic attributive LL(2)-grammars. LL(2) means that the strings of such
a grammar are generated left to right, top to bottom with uncertainty of the choice of substitution
through the second symbol.

As an example of the generalized grammars let us consider the grammar “Getting Access to
Resources” (GAR):

VN={GAR, GAR1}, VT={DCSR, IBSD, EKV, CPF, AAF, BFPG, PSA, CSS, End}, S={GAR},
P={GAR → DCSR GAR1 (S7=0.2, S8=0.2, S9=0.2, S10=0.2, S11=0.2, S12=0.2),
GAR → IBSD GAR1 (S7=0.1, S8=0.1, S9=0.1, S10=0.1, S11=0.1, S12=0.1),
GAR → EKV GAR1 (S7=0.1, S8=0.1, S9=0.1, S10=0.1, S11=0.1, S12=0.1),
GAR → CPF GAR1 (S7=0.1, S8=0.1, S9=0.1, S10=0.1, S11=0.1, S12=0.1),
GAR → AAF GAR1 (S7=0.2, S8=0.2, S9=0.2, S10=0.2, S11=0.2, S12=0.2),

 25

GAR → BFPG GAR1 (S7=0.1, S8=0.1, S9=0.1, S10=0.1, S11=0.1, S12=0.1),
GAR → PSA GAR1 (S7=0.1, S8=0.1, S9=0.1, S10=0.1, S11=0.1, S12=0.1),
GAR → CSS GAR1 (S7=0.1, S8=0.1, S9=0.1, S10=0.1, S11=0.1, S12=0.1),
(Win) GAR → DCSR GAR1 (S7=0.3, S8=0.3, S9=0.3, S10=0.3, S11=0.3, S12=0.3),
(Win) GAR → IBSD GAR1 (S7=0.1, S8=0.1, S9=0.1, S10=0.1, S11=0.1, S12=0.1),
(Win) GAR → EKV GAR1 (S7=0.1, S8=0.1, S9=0.1, S10=0.1, S11=0.1, S12=0.1),
(Win) GAR → CPF GAR1 (S7=0.1, S8=0.1, S9=0.1, S10=0.1, S11=0.1, S12=0.1),
(Win) GAR → AAF GAR1 (S7=0.2, S8=0.2, S9=0.2, S10=0.2, S11=0.2, S12=0.2),
(Win) GAR → BFPG GAR1 (S7=0.1, S8=0.1, S9=0.1, S10=0.1, S11=0.1, S12=0.1),
(Win) GAR → PSA GAR1 (S7=0.1, S8=0.1, S9=0.1, S10=0.1, S11=0.1, S12=0.1),
(Windows 9x) GAR → DCSR GAR1 (S7=0.4, S8=0.4, S9=0.4, S10=0.4, S11=0.4, S12=0.4),
(Windows 9x) GAR → IBSD GAR1 (S7=0.3, S8=0.3, S9=0.3, S10=0.3, S11=0.3, S12=0.3),
(Windows 9x) GAR → EKV GAR1 (S7=0.2, S8=0.2, S9=0.2, S10=0.2, S11=0.2, S12=0.2),
(Windows 9x) GAR → CPF GAR1 (S7=0.1, S8=0.1, S9=0.1, S10=0.1, S11=0.1, S12=0.1),
(Windows NT) GAR → AAF GAR1 (S7=0.4, S8=0.4, S9=0.4, S10=0.4, S11=0.4, S12=0.4),
(Windows NT) GAR → BFPG GAR1 (S7=0.3, S8=0.3, S9=0.3, S10=0.3, S11=0.3, S12=0.3),
(Windows NT) GAR → PSA GAR1 (S7=0.3, S8=0.3, S9=0.3, S10=0.3, S11=0.3, S12=0.3),
(Unix) GAR → AAF GAR1 (S7=0.25, S8=0.25, S9=0.25, S10=0.25, S11=0.25, S12=0.25),
(Unix) GAR → BFPG GAR1 (S7=0.25, S8=0.25, S9=0.25, S10=0.25, S11=0.25, S12=0.25),
(Unix) GAR → PSA GAR1 (S7=0.25, S8=0.25, S9=0.25, S10=0.25, S11=0.25, S12=0.25),
(Unix) GAR → CSS GAR1 (S7=0.25, S8=0.25, S9=0.25, S10=0.25, S11=0.25, S12=0.25),
(SunOS 1.4.x, THD) GAR → CSS GAR1 (S7=1, S8=1, S9=1, S10=1, S11=1, S12=1),
GAR1 → End (S7=1, S8=1, S9=1, S10=1, S11=1, S12=1)}.
In this grammar the following denotations are used: GAR – Getting Access to Resources; DCSR –

Direct Connection to a Shared Recourse; IBSD – Installation of Backdoor Server Daemons and
Trojans and access to a host; EKV – Exploitation of Known server application Vulnerabilities; CPF –
Cracking of PWL File and access to a host; AAF – Anonymity Access to Ftp-server; BFPG – Brute
Force Password Guessing and access to a host; PSA – Password Stealing Attack and access to a host;
CSS – Combined IP spoofing on SunOS v.1.4.x; GAR1, End – auxiliary symbols.

1.3.5. State machine -based implementation of the attack generation

Algorithmic representation of the attack generation specified as a family of formal generalized
grammars was implemented by a family of state machines ([IntRep#2], [IntRep#3]).

The basic elements of each state machine are states, transition arcs, and explanatory texts for each
transition. States of each state machine are divided into three types:

• first (initial),
• intermediate, and
• final (marker of this state is End).
The initial and intermediate states are the following:
• non-terminal, those that initiate the work of the corresponding nested state machines;
• terminal, those that interact with the host model;
• abstract (auxiliary) states.
Transition arcs are identified with the productions of grammars, and can be carried out only under

certain conditions. Within the state, besides the transition choice depending on the intention and the
current transition probability, the following types of action can be performed:

• Entry action (an action performed at entering the state);
• Do action (a set of basic actions, including actions of transition to the nested state machine or

realizing the host response model);
• Exit action (an action performed at exit).

 26

A – Network Attack; R
– Reconnaissance; I –

Implantation and
Thread Realization;

End – final state

R – Reconnaissance; R1 – Intermediate state; IH –

Identification of the running Hosts; IS – Identification of
the host Services; IO – Identification of the host OS; CI –
Collection of Information; RE – Resource Enumeration;

UE – Users and Groups Enumeration; ABE –
Applications and Banners Enumeration; End – final state

I - Implantation and Thread Realization;
I1 – Intermediate state; GAR – Getting
Access to Resources; EP – Escalating
Privilege ; GAD – Gaining Additional
Data; TR – Thread Realization; CT –

Covering Tracks; CBD – Creating Back
Doors; End – final state

(a) Network Attack (b) Reconnaissance (c) Implantation and threat realization

IH – Identification of the running
Hosts; IH1, IH2 – Intermediate

states; DC – Network Ping
Sweeps; SPIH – Port Scanning;

End – final state

SPIS – Port Scanning during Identification of Services; SPIS1, SPIS2 – Intermediate
states; ST – TCP connect scan; SS – TCP SYN scan; SFI – TCP FIN scan; SX – TCP

Xmas Tree scan; SN – TCP Null scan; SU – UDP scan; HS – Half scan; SFB – Scanning
“FTP Bounce”; DHS – Dumb host scan; PS – “Proxy”- scanning; End – final state

(d) Identification of Hosts (e) Port Scanning during Identification of Services

Fig.1.3.4. Examples of state machine diagrams

 27

The model of each state machine was set by specifying the following components:
• diagram of state machine;
• main parameters of the state machine;
• parameters of transitions that determine the stochastic model of the state machine functioning

for different relevant intentions regarding the implementation of network attacks;
• transition conditions.
In the state machine diagram, the first and the final states are signified by black circles, and the

intermediate states – by rectangles with rounded corners.
Arrows signify the transitions of the state machine. Dotted lines connect the transition arcs to

explanatory texts with the grammar rules.
The explanatory texts contain number and contents of grammar production that corresponds to the

transition, numbers of intentions for which the rule should be implemented (numbers of intentions are
in parenthesis), conditions of the transition (if they exist).

The main parameters of the state machine includes state machine name, relevant intentions, states,
first state, non-terminal, terminal and auxiliary states.

The parameters of the transitions from every state are described in a table. Several lines of this
table can be assigned to each state; their number is determined by the number of transitions from this
state.

Each line of the table includes:
N – the number of the transition rule; CS – current state; Rule – the corresponding production of

the grammar; NS – the state achieved through the application of this rule;
Cond – the marker of the transition condition; probabilities Pi of the choice of the transition

depending on the realization of the ith intention and factor K (in the gray sub-string), the multiplier for
the current probability Pi in case of recursive application of the rule aimed at limiting the length of the
generated string of action symbols. After the multiplication by K, all the other rules of transition from
this state are normalized. The probability of choice of each rule is divided by the sum of probabilities
of all rules of transition from this state. The resulting sum of all probabilities equals to 1;

Actions (Entry action, Do action, Exit action) are actions that are to be performed upon the
transition to the next state. Actions may be absent.

Each rule is applied under the condition that the intention is within the permissible range of
intentions of the rule. Gray is used to designate the sub-string that contains the values for the factor K.

Examples of the state machines diagrams “Network Attack” (A), “Reconnaissance” (R),
“Implantation and threat realization” (I), “Identif ication of Hosts” (IH) and “Port Scanning during
Identification of Services” (SPIS) without explanatory texts are represented in Fig.1.3.4.

1.3.6. Formal model of the attacked computer network and its response to attacks

The attack development depends on the malefactor's “skill”, information regarding network
characteristics, which he/she possesses, some other malefactor's attributes, security policy of the
attacked network, etc. An attack proceeds as interactive process, in which the network reacts to the
malefactor's action. Computer network plays the role of the environment for attacker, and therefore its
model must be a part of the attack simulation tool.

The peculiarity of any attack is that the malefactor's strategy depends on the results of the
intermediate actions. This is the reason why it is not possible to generate the complete sequence of
malefactor's actions from the very beginning. The malefactor's action has to be generated on-line in
parallel with the getting reaction from the attacked network. The proposed context-free grammar
syntax provides the model with this capability. At each particular step of inference, it generates no
more than single terminal symbol that can be interpreted by the computer network model as a
malefactor's action. The network returns the value of the result (success or failure). The model of
attacker receives it and generates the next terminal symbol according to the attack model and
depending on the returned result of the previous phase of the attack.

Model of the attacked computer network and its response to attacks is represented as the following
quadruple ([IntRep#2], [IntRep#3]):

MA = <MCN, {MHi}, MP, MHR >,

 28

where MCN – the model of the network structure; {MHi} – a set of models of the host resources; MP –
the model of computation of attack success probabilities; MHR – the model of the host reaction in
response of attack. The diagram of interaction of these sub-models under effect of the attack simulator
is represented in Fig.1.3.5.

The model MCN of the computer network structure was determined as follows:

MCN = < A, P, N, C>,

where CN – the computer network identifier, A – the network address; P – a family of protocols used
(e.g., TCP/IP, FDDI, ATM, IPX, etc.); N – a set {CNi} of sub-networks and/or a set {Hi} of hosts of
the network CN; C is a set of connections between the sub-networks (hosts) established as a mapping
matrix. If N establishes a set of sub-networks {CNi}, then each sub-network CNi can in turn be
specified by the model MCNi (if its structure needs to be developed in detail and if information is
available about this structure). Each host Hi is determined as a pair MHi= <A, T>, where A is the host
address, T is a host type (e.g., firewall, router, host, etc.).

The models {MHi} of the network host (resources) serve for representing the host parameters that
are important for attack simulation. The model of the network host resources is determined as follows:

MHi = < A, M, T, N, D, P, S, DP, ASP, RA, SP, SR, TH, etc.>,

where A – IP-address, M – mask of the network address, T – type and version of OS, N – users'
identifiers (IDs), D – domain names, P – host access passwords, S – users' security identifiers (SID),
DP – domain parameters (domain, names of hosts in the domain, domain controller, related domains),
ASP – active TCP and UDP ports and services of the hosts, RA – running applications, SP – security
parameters, SR – shared resources, TH – trusted hosts.

Success or failure of any attack action (corresponding to terminal level of the attack ontology) is
determined by means of the model MP of computation of the attack success probabilities. This model
was specified as follows:

MP = {RSPr
j },

where RSPr
j is a special rule that determines the action success probability depending on the basic

parameters of the host (attack target). The rule RSPr
j includes IF and THEN parts. The IF part contains

action name and precondition (values of attributes constraining the attack applicability). The THEN
part contains the value of success probability (SPr). Examples of interpretations of the probability
computation rules are as follows:

“If action is ‘FF’ (Connection on FTP and examination of bin-files in the directory /bin/ls) and OS
Type is ‘Unix, Linux’ and Service is ‘FTP’ then SP is 0.7”;

Simulator of attack

Model of the attacked computer network (MA)

Model
of the host 1 (M

H1
) Model

of the host 2 (M
H2

)

Model
of the host k (M

Hk
)

……..
Model of the network structure

(MCN)

Model of the host
reaction (MHR)

Model of computation of the
attack success probabilities (MP)

Fig.1.3.5. Interaction of the attacked computer network sub-models under effect of the attack simulator

Attacks

Responses

 29

“If action is ‘FCA’ (Free Common Access) and OS type is ‘Windows 9x’ and Security parameter
is ‘CFP’ (shared files and prin ters) then SP is 0.7”.

The result of each attack action is determined according to the model MHR of the host reaction.
This model is determined as a set of rules of the host reaction:

MHR = {RHR
j },

RHR
j: Input → Output [& Post-Condition],

where Input – the malefactor’s activity, Output – the host reaction, Post-Condition – a change of the
host state, & – logic connective “AND”, [] – optional part of the rule.

The Input format:

<Attack name>: <Input message> : <Attack objects> [; <Objects involved in the attack>].

The Output format:

{<Attack success parameter S> [: <Output message>];
{<Attack success parameter F> [: <Output message>]}.

The Attack Success Parameter is determined by the success probability of the attack that is
associated with the host (attack target) depending on the implemented attack type. The values of attack
success parameter are Success (S), and Failure (F).

The part of output message shown in the < > is taken from the corresponding field of the host
(target) parameters. The part of output message shown in quotation marks “ ” is displayed as a
constant line.

The Post-Condition format:

{p1=P1, p2=P2,,…, pn=Pn},

where pi – ith parameter of the host (for instance, SP, SR, TH, etc.) which value has changed, Pi – the
value of ith parameter.

Examples of the host reaction rules:

SFB: Scanning “FTP Bounce” : Target host; Intermediate host (FTP-server) → {S: <Active ports
(services) of a host>; F: “It was not possible to determine Active ports (services)”};
IF: ICMP message quoting : Target host → { S: <The type of operating system>; F: “It was not
possible to determine the type of operating system”}.

1.4. Object-oriented project of the Attack Simulator–software tool prototype for
simulation of attacks on the computer network

The object-oriented project of the Attack Simulator prototype is described in detail in the Interim
Report #3 [IntRep#3].

1.4.1. Peculiarities of the developed technology for Attack Simulator design

For development of the object-oriented project of the Attack Simulator and its implementation the
special technology and software tool – the Multi-agent System Development Kit (MAS DK) designed
for design and implementation of multi-agent systems was used.

Till now a good deal of such software tools for design and implementation of multi-agent systems
(MAS) have been developed. Between them, the most known ones are such as AgentBuilder
[AgentBuilder-99], MadKit [Madkit], Bee-gent [Bee-gent-00], FIPA-OS [Poslad et al-00], JADE
[Bellifemine et al-99], Zeus [Collis et al-99], etc.

However, they do not meet wholly the present-day requirements [Sloman-00].
The first group of the requirements corresponds to the properties of the technology provided by a

software tool, including support for the entire circle of MAS design, friendly interfaces for all
categories of users, visual programming style, concurrency of the development, automated
documenting, etc.

 30

The second group concerns the target MAS properties (ontology, inference mechanisms, behavior
scenarios, communication component, etc.). These requirements form the focus of MAS DK being
developed by authors ([IntRep#3], [Gorodetski et al-02a]).

The MAS technology used in MAS DK comprises two main phases.
At the first one the application is specified in terms of a MAS DK specification language resulting

in so called “System Kernel”. If MAS has to be modified, it is necessary to modify System Kernel and
to re-generate the respective software code.

At the next phase System Kernel is used for MAS deployment. At this phase the software of MAS
is generated and software agents are situated in computers of the network according to the MAS
specification in System Kernel.

A hierarchy of reusable software classes and generic data structures are comprised in the Generic
Agent component. Generic Agent consists of the invariant scheme of agents' databases, the library of
invariant Visual C++ and Java classes implementing basic mechanisms of data processing and the
library of reusable Visual C++ and Java classes supporting message exchange. The latter includes
implementation of KQML language, message content specification language based on XML, message
templates, parsers needed to interpret message content.

The procedure of installation of the software agents in the target computers of the network is
carried out in the semi-automatic mode. The only information that can be defined by the developer is
to point out the name of hosts (IP-addresses), in which each agent must be situated as it is specified in
System Kernel. Special software generates the parameters of the message templates to tune
addressee(s) for each message, and copies the data associated with the agent to a folder in the host
computer. Several simple operations follow up the last ones.

MAS DK consists of several specialized editors: Ontology editor, Editor of agent classes, Agent
class ontology editor, Editor of agents' behavior scenarios, Editor of message templates, and Agents'
cloning manager.

The agents generated by use of the developed technology have the same architectures. Differences
are reflected in the content of particular agents’ data and knowledge bases. Let us outline agents'
architecture.

Each agent's neighborhood comprises other agents that it communicates with environment which
it perceives, and, possibly, modifies, and user interacting with agents through his interface.

Receiver of input and Sender of output messages perform the respective functions. Messages
received are recorded in Input message buffer.

The order of its processing is managed by Input message processor. In addition, this component
performs syntax analysis and KQML messages interpretation and extracts the message contents.

The component Database of agent's dialogs stores for each input message its attributes that are
identifiers, type of message and its source. If a message supposes to be replied it is mapped the
respective output message when it is sent.

Meta-state machine manages the semantic processing of input messages directing it for processing
by the respective State machines. One of the functionalit ies of this component is management of the
parallel performance of agent's processes.

The basic computations of agent corresponding its role in MAS are executed by State machine
1,…, State machine N. Each of them is realizing a scenario of processing of some kind of input
messages. The set of these state machines realize attack scenario specified as a family of formal
grammars.

The selection of scenario and therefore the output result depend on the input message content and
inner state of the State Machine. In turn, inner state of this Machine depends on pre-history of its
performance; in particular, this prehistory is reflected in the state of agent's Knowledge base and
Database. One more state machine called “Self-activated behavior machine” is changing its inner state
depending on the state of the data and knowledge bases. In some combinations of these states it can
activate functionality independently of input messages or state of the environment.

Each agent class is provided with a set of particular message templates according to its
functionalities. These templates are formed through specialization of the of Generic agent component
called generic message template. The developer carries out the specialization procedure with Editor of
message templates, which, in turn, is a component of MAS DK. The message templates are specified

 31

in KQML language and specialization corresponds to the assignment to each template the respective
performatives. At current phase of MAS DK development only standard KQML performatives are
used. Communication component of each agent includes also data regarding potential addressees of
messages of given template. The last data are assigned at the phase of agent class instances cloning.
Message content is specified in XML. The XML content of each message is formed on-line according
to the chosen scenario depending on the input message and agent's internal state. The package
KQML+XML is configured by the procedure “Output message”.

1.4.2. Object-oriented project of the Attack Simulator

The following main components of the Attack Simulator software compose the object-oriented
project of the Attack Simulator [IntRep#3]:

(1) The component setting the subject domain ontology (DomainOntology). It serves for
specifying and storing the notions, notion attributes, and values of notion attributes of the
subject domain of computer network attack modeling. The subject domain ontology is filled in
during the design-time stage by the MAS DK ontology editor. At this stage, notions (classes)
of the ontology, notion (class) attributes, as well as meta-classes that unite notions into groups
(they are not used in DomainOntology) are entered and modified through the user interface.

(2) The component realizing the set of attack scenarios as a family of state machines
(AttackModel). Through specifying the so-called “applied” state machines, AttackModel
determines the executable computer network attack scenarios. This component is used to
specify the set of different classes of computer network attacks in the form of a family of state
machines. States and transitions between states are the main elements of a state machine. The
scheme of description of each state machine includes the following elements: name of state
machine, its purpose and general description; identifier of the attacks ontology node to which
the state machine corresponds; state machine diagram; main parameters of the state machine;
parameters of transitions; transition conditions; and scripts.

(3) The component interpreting the family of state machines (Engine). It realizes the operation
mechanisms of the “applied” state machines specified in the component AttackModel, and
controls their behavior by an invariant meta- state machine. The applied state machines
operates under the control of the meta- state machine. Meta- state machine creates examples of
applied state machines, transforms state machines’ scripts into the internal view, enables the
communication between state machines’ scripts and the component DomainOntology,
executes the scripts, delegates control between applied state machines, and eliminates the
examples of applied state machines after they complete their function.

(4) The kernel component defining the attack task specification and supporting the interaction
between main components of the prototype (AgentLib). The component AgentLib is a sort of a
“gateway” connecting the component Engine to the program components that realize specific
applied tasks.

(5) The user interface component for attack task specification (TargetObjectiv). Attack
specification includes intention, address of the attacked host (network), object of attack, and
information about the object of attack (host or network) already known to the attacker.

(6) The component calculating probability of the state machine transition to the next state
(SMProb). The component consists of three classes: (a) Transition responsible for each
separate (unique) transition; (b) Transitions containing a probabilistic group that consists of
instances of the class Transition that are responsible for each separate transition within this
probabilistic group; and (c) Prob_DB responsible for working with the table SrcProb, the
interaction with the classes of the probabilistic group and the classes of the separate transitions
within the probabilistic group.

(7) The user interface component for visualizing the process of attack realization (AtlogView).
The component model of the software prototype of the Attack Simulator is represented in

Fig.1.4.1.
The components AgentLib, TargetObjectiv, SMProb and AtlogView are the program implementing

the prototype in VC++. The components DomainOntology and AttackModel (marked blue in Fig.1.4.1)

 32

are the semantic constituents of the prototype. They are described in terms of the structures
represented by the MAS DK environment.

The diagram shows that the components TargetObjectiv, SMProb and AtlogView interact through
calling the functions of the component AgentLib, which in turn is governed by Engine.

The object-oriented description of the software implementation of the state machine model and the
interaction between the state machine model and the subject domain is represented (specified) in the
component Engine.

SMProb

AtLogView

AgentLib

int _InitDB()

int TransitionSelect()

int _GetTargetObjectiv()

int _UpdateAtLogView()

int _InitAtLogView()

Engine

AttackModel DomainOntology

<<realizes component AttackModel>>

<<utilizes DomainOntology concepts>>

<<realizes component DomainOntology>>

<<operates under Engine control>>

TargetObjectiv

Fig.1.4.1. Component model of the software prototype of the Attack Simulator

1.5. Related works

The works relevant to attack modeling and simulation can be divided into the following groups:
(1) Works describing attacks and attack taxonomies.
(2) Works immediately coupled with network attack modeling and simulation.
(3) Works devoted to the description of attack languages.
(4) Works on evaluating intrusion detection systems (IDSs).
(5) Works on vulnerability assessment tools (scanners), signature and traffic generation tools.
But this list is not exhaustive. Let us consider the works relevant to attack modeling and

simulation according to these groups.

1.5.1. Works describing attacks and attack taxonomies

Till now a lot of data about different security incidents is accumulated. There are a lot of
publications in which attack cases are systematized in the form of attack taxonomies.

The following attack taxonomies can be distinguished:
• lists of attack terms ([Cohen-95], [Icove et al-95], [Cohen-97], [Howard-97], [Howard et al-

98]);
• lists of attack categories ([Cheswick et al-94], [Ranum-97]);
• attack results categories ([Cohen-95], [Russell et al-91]);
• empirical lists of attack types ([Lackey-74], [Neumann et al-89], [Amoroso-94], [Lindqvist

et al-97]);
• vulnerabilities matrices ([Amoroso-94], [Landwehr et al-94]);
• action-based taxonomies [Stallings-95];

 33

• security flaws or vulnerabilities taxonomies ([Beizer-90], [Saltzer et al-75], [Hogan-88],
[Aslam-95], [Dodson-96], [Krsul-98], [Power-96]);

• taxonomies of intrusions based on the signatures [Kumar-95]; incident taxonomies
([Howard-97], [Howard et al-98]).

The example of the incident taxonomy is a common language for security inc idents suggested by
Howard and Longstaff [Howard et al-98]. Three main high-level concepts of the language (an
incident, an attack, and an event) are defined by seven groups of auxiliary low-level concepts
(attackers, tools, vulnerabilities, actions, targets, unauthorized results, and objectives) (Fig.1.5.1). An
attack is defined as “a series of intentional steps taken by an attacker to achieve an unauthorized
result.” An incident is defined as “a group of related attacks that can be distinguished from other
attacks because of the distinctiveness of the attackers, attacks, objectives, sites, and timing.”

Based on these taxonomies we built our own taxonomy as an ontology comprising a hierarchy of
intentions and actions of malefactors directed to implementation of attacks of various classes split into
macro- and micro-levels.

Incident

Attack

Event

Attacker
s

 Tool Vulnerabil
ity

 Action Target Unauthorized
Result

 Objective
s

Hackers Physical
Attack

 Design Probe Account Increased
Access

 Challeng
e, Status,
Thrill

Spies Informati
on
Exchange

 Implementati
on

 Scan Process Disclosure of
Information

 Political
Gain

Terrorists User
Comman
d

 Configurati
on

 Flood Data Corruption of
Information

 Financial
Gain

Corporate
Raiders

 Script or
Program

 Authenticat
e

 Compone
nt

 Theft of
Resources

 Damage

Professio
nal
Criminals

 Autonomo
us Agent

 Bypass Computer Denial of
Service

Vandals Toolkit Spoof Network
Voyeurs Distribute

d Tool
 Read Inter-

network

 Data Tap Copy
 Steal
 Modify
 Delete

Fig.1.5.1. Computer and Network Incident Taxonomy [Howard et al-98]

1.5.2. Works immediately coupled with network attack modeling and simulation

In different works on attack modeling and simulation, as a rule, attack is considered as temporal
orderings of actions ([Kumar et al-94], [Iglun et al-95], [Chung et al-95], [Kemmerer et al-98],
[Amoroso-99], [Cohen-99], [Stewart-99], etc.).

 34

In a temporal model of attack realization, an intruder begins with some initial action, and this
action is followed by supporting actions, etc. [Amoroso-99]. Response and other actions may also be
involved, and the security officer, normal users, other intruders, and so on may initiate these actions.
The resultant sequence of actions models the exploitation of vulnerabilities to bring about the
unauthorized security threat. This notion is represented in Fig.1.5.2 ([Amoroso-99]).

Fig.1.5.2. Temporal Model of Intrusion([Amoroso-99])

The model of intrusions based on Colored Petri Nets was proposed in [Kumar et al-94]. Each

intrusion signature is expressed as a pattern that represents the relationship among events and their
context. The notions of start and final states, and paths between them determine the set of event
sequences. Intrusion patterns have preceding conditions and following actions associated with them.

In [Iglun et al-95] the state transition analysis technique was developed to model host-based
intrusions. This paper describes computer penetrations as sequences of actions that an attacker
performs to compromise the security of a computer system. Attacks are described by using state
transition diagrams. A description of an attack has a “safe” starting state, zero or more intermediate
states, and (at least) one “compromised” ending state. States are characterized by means of assertions
describing aspects of the security state (file ownership, user identification, user authorization).

An approach to simulate intrusions in sequential and parallelized forms was suggested in [Chung
et al-95]. This paper presents an algorithm for transforming a sequential intrusive script into a set of
parallel scripts, which simulate an intrusion.

The paper [Kemmerer et al-98] describing IDS NetSTAT presents formal models of both network
and attacks. These models permit to determine “which network events have to be monitored and
where they can be monitored”. The NetSTAT approach extends the state transition analysis technique
[Iglun et al-95] to network-based intrusion detection in order to represent attack scenarios in networks.

In [Cohen-99] a simple network security model “Cause-Effect Model of Information System
Attacks and Defenses” was suggested. It is composed of network model represented by node and link,
cause-effect model, characteristic functions, and pseudo-random number generator (Fig.1.5.3).
However, cyber attack and defense representation which is based on cause-effect model [Cohen-99] is
very simple.

Fig.1.5.3. Cause-effect model of cyber attack ([Cohen-99])

In [Yuill et al-99] and [Yuill et al-00] the descriptive models of the network and the attacker’s

capabilities, intentions, and courses-of-action are described. These models are used to identify the

 35

devices most likely to be compromised. Principles from economics are used to predict the attacker's
behavior.

One of the conceptual models of computer penetration was presented in [Stewart-99]. The paper
compares the traditional and new attack paradigms. Traditional attack paradigm includes phases of
“information gathering”, “exploitation”, and “metastasis”. The metastasis phase of the attack, as
defined by Cheswick and Bellovin [Cheswick et al-94], can be logically separated into sub-phases of
“consolidation” and “continuation”. During consolidation the attacker must remove evidence of the
entry onto the host, escalate their privilege to the highest level, and enable remote unauthorized access.
On continuation sub-phase he tries to deep the penetration to other hosts.

The core of the distributed metastasis methodology suggested in [Stewart-99] is a desire to utilize
the distributed nature of network environment, and to perform an automation of the metastasis phase
of the traditional attack process. A distributed agent-based approach can be applied to the metastasis
phase of the tradit ional attack methodology to reap appreciable benefits for an attacker. Multiple
agents distribute on network, reside on topologically disparate hosts, communicate attack-relevant
information, and penetrate the network.

We used in our formal model the temporal orderings of actions and proposed multi-agent based
approach for modeling of attacks.

In ([Huang et al-98], [Schneier-99] [Moore et al-01], [Dawkins et al-02]) attacks are described
and modeled in a structured and reusable “tree”-based form.

In [Huang et al-98] a high-level conceptual model of attack based on the intruder’s intent (attack
strategy) is presented. The large-scale distributed intrusion detection is compared with the task of
battleground management. The paper determines intrusion intention as the goal-tree. The ultimate goal
of intrusion corresponds to the root node. Lower level nodes represent alternatives or ordered sub-
goals in achieving the upper node/goal. The end nodes (leaves) are sub-goals. They can be
substantiated by events generated in different environments. The “OR”, “AND”, and “Ordered-AND”
constructs are used for representation of temporal sequences of intrusion intentions. For example,
Fig.1.5.4 shows a possible representation of flooding/spoofing/sniffing sequences [Huang et al-98].

Fig.1.5.4. Flooding/spoofing/sniffing and possible directions of intrusion development

The paper [Schneier-99] also suggests a formal approach for describing computer attacks. This

approach is called “Attack trees”. “AND” and “OR” nodes are used in attack trees. OR nodes are
alternatives. AND nodes represent different steps toward achieving the same goal.

A more comprehensive work using so-called “tree”-based approach is proposed in [Moore et al-
01]. This paper describes a means for documenting attacks in a form of attack trees. A node of an
attack tree is decomposed either as an AND-decomposition (a set of attack sub-goals, all of which
must be achieved for the attack to succeed), or as an OR-decomposition (a set of attack sub-goals, any
one of which must be achieved for the attack to succeed). “An enterprise typically has a set, or forest,
of attack trees that are relevant to its operation. The root of each tree in a forest represents an event
that could significantly harm the enterprise’s mission. Each attack tree enumerates and elaborates the
ways that an attacker could cause the event to occur” [Moore et al-01]. Two structures are used for
attack representation: (1) attack pattern (characterizing an individual type of attack), and (2) attack
profile (organizing attack patterns to make it easier to apply them). Each attack pattern contains: the
overall goal of the attack, a list of preconditions for its use, the steps for carrying out the attack, a list

 36

of post-conditions that are true if the attack is successful. Attack profiles contain a common reference
model, a set of variants, a set of attack patterns, and a glossary of defined terms and phrases.

As in [Huang et al-98] and [Moore et al-01] we apply intension- and tree-based attack strategy
representation, but “go further” using for node decomposition a formal framework based on context-
free stochastic attribute grammars implemented in terms of state machines.

A model to evaluate survivability of networked systems after network inc idents was developed in
[Moitra et al-01]. The model consists of three sub-models. The first one simulates the occurrence of
attacks or incidents. The second one evaluates the impact of an attack on the system depending on the
attack type and the protection system maturity. The third one assesses the survivability of the system.
The model of incidents is determined as a marked, stochastic process, where the incidents are the
events that occur at random points in time, and the event type is the mark associated with an incident.
Each occurrence time tk of the k-th incident in a temporal point-process has a mark jk associated with
it, where jk will have values in a specified space. The mark has to take into account the severity of the
incident and the possibility of single, or multiple and simultaneous attacks. Therefore the mark space
will be 2-dimensional, characterized by type (severity) and number-of-attackers.

Besides attack generation model, our approach includes also the model of attacked computer
network that evaluates the impact of an attack on the network hosts and generates reaction of the
network. The attacked network is considered as environment that reacts on the malefactors' actions.
The variance of attacks is ensured by the random choice of the grammar productions (or, what is the
same, the state machine transition rules). The peculiarity of any attack is that the malefactor's strategy
depends on the results of the intermediate actions.

The paper [Chi et al-01] describes the cyber attack modeling and simulation methodology based
on SES/MB (system entity structure and model base) framework, Discrete Event Simulation (DEVS)
formalism [Zeigler 90], and experimental frame concept underlying the object-oriented software
environment. This simulation methodology allows classifying threats, specifying attack mechanisms,
verifying protection mechanisms, and evaluating consequences.

The paper [Templeton et al-00] describes a flexible extensible model for computer attacks, a
language for specifying the model, and how it can be used in security applications such as
vulnerability analysis, intrusion detection and attack generation.

In [Goldman-02] the task of modeling and simulation of intelligent, reactive attackers is described.
The suggested computer network attack model uses an action representation based on the Golog
situation calculus [Levesque et al-97] and goal-directed procedure invocation. Using the situation
calculus, the developed attack simulator can project the results actions with complex preconditions and
context-dependent effects. The goal-directed invocation permits to express attacker plans like “first
attain root privilege on a host trusted by the target, and then exploit the trust relationship to escalate
privilege on the target”. Goldman has designed components of a stochastic attack simulator which can
simulate some goal-directed attacks on a network.

Several works propose and use a concept of attack graphs ([Dacier-94], [Phillips et al-98],
[Ritchey et al-00], [Swiler et al-01], [Jha et al-01], [Sheyner et al-02a], [Jha et al-02], [Sheyner et al-
02b], etc.).

Dacier [Dac94] proposed the concept of privilege graphs, where each node represents a set of
privileges owned by the user and arcs represent vulnerabilities. Privilege graphs are explored to
construct attack state graphs, which represent different ways in which an intruder can reach a certain
goal, such as root access on a host. An experimental evaluation of this framework is described in
[Ortalo et al-01].

Phillips and Swiler built a tool for generating attack graphs by forward exploration starting from
the initial state of the attack ([Phillips et al-98], [Swiler et al-01]) and used it for attack network
vulnerability assessment.

Ritchey and Amman [Ritchey et al-00] also applied model checking for vulnerability analysis of
networks. They used the unmodified model checker SMV [SMV].

In ([Sheyner et al-02a], [Jha et al-02], [Sheyner et al-02b], [Jha et al-01]) an automated technique
for generating and analyzing attack graphs is represented. The technique is based on symbolic model
checking algorithms ([Clarke et al-00], [SMV], [NuSMV]), letting construct attack graphs
automatically and efficiently. Since a generic state machine model is used, the authors can model not

 37

just attacks, but also seemingly benign system events (e.g., link failures and user errors) and even
system administrator recovery actions. The authors implemented the technique in a tool suite and
tested it on a small network example, which includes models of a firewall and an intrusion detection
system. They use a symbolic model checker (i.e., NuSMV [NuSMV]) that works backward from the
goal state to construct the attack graph. Authors suggested applying this technique and the tool suite
for vulnerability analysis of a network. A typical process for vulnerability analysis proceeds as
follows. First, vulnerabilities of individual hosts (using scanning tools, such as COPS and Nessus
Scanner) are determined. Using this local vulnerability information along with other information about
the network, such as connectivity between hosts, they then produce attack graphs. Each path in an
attack graph is a series of exploits, which they call atomic attacks, that leads to an undesirable state,
e.g., a state where an intruder has obtained administrative access to a critical host. Then further
analyses (such as risk analysis, reliability analysis, or shortest path analysis) on the attack graph to
assess the overall vulnerability of the network are performed.

As in these works our approach can be also used to build different attack graphs, but it uses
stochastic formal-grammar-based specification of the malefactor’s intentions and scenarios of
network attacks.

1.5.3. Works devoted to the description of attack languages

Attack languages are used with the purpose of attack recognition, analysis of the relations between
various attacks, response on them and documenting of intrusions. Besides, attack languages can be
used for fixing the scenarios and prehistory of attacks, and also for reproduction of attacks with the
purposes of testing intrusion detection systems ([Vigna et al-00], [Eckmann et al-00]).

Attack languages are classified using various tags. In particular, in [Vigna et al-00] the
classification of the attack description languages is offered, according to which six types of languages
are entered:

• event languages;
• exploit languages;
• reporting languages;
• detection languages;
• correlation languages;
• response languages.
Event languages ([BSM-91], [Jacobson et al-00], [Bishop-95], etc.) describe the format of events

used during the detection process.
Exploit languages ([CASL-98], [Deraison-99], etc.) are used to describe the stages to be followed

to perform an intrusion.
Reporting languages ([Feiertag et al-99], [Curry-00]) describe the format of alerts produced by the

IDS.
Detection languages ([Kumar et al-95], [Paxson-98], [Roesch-99], [Turner et al-00], [Eckmann et

al-00], [Me-98]) allow the expression of the manifestation of attacks.
Correlation languages permit analysis of alerts provided by several IDS.
Response languages are used to express countermeasures to attacks.
Examples of specific attack languages are represented in Table 1.5.1 [Michel et al-01].
Let us consider, for example, how attacks can be represented in two of the advanced attack

languages: STATL [Eckmann et al-00] and AdeLe [Michel et al-01].
STATL is an extensible attack language designed to support intrusion detection [Eckmann et al-

00]. The STATL provides constructs to represent an attack as a composition of states and transitions.
States are used to characterize different snapshots of a system during the evolution of an attack. A
transition has an associated action that is a specification of the event that may cause the scenario to
move to a new state. The space of possible relevant actions is constrained by a transition assertion,
which is a filter condition on events that may possibly match the action.

AdeLe is designed to model a database of known attack scenarios [Michel et al-01]. An ADeLe
description looks like a function in C programming language with name and parameters. The
description body is made up of three parts: exploit part, detection part, and response part.

 38

Table 1.5.1. Examples of specific attack languages

 Event
languages

Exploit
languages

Reporting
languages

Detection
languages

Correlation
languages

Response
languages

BSM [BSM -91] +
Tcpdump [Jacobson et
al-00]

+

Bishop [Bishop-95] +
CASL [CASL-98] +
NASL [Deraison-99] +
CISL [Feiertag et al-99] +
IDMEF [Curry-00] +
Kumar [Kumar et al-95] +
BRO [Paxson-98] +
Snort [Roesch-99] +
SNP-L [Turner et al-00] +
STATL [Eckmann et al-
00]

 +

GasSATA [Me-98] +
LAMBDA [Cuppens et
al-00]

 + +

AdeLe [Michel et al-01] + + +

The exploit part represents the attacker's point of view. It is composed of three sections: pre-
condition, attack, and post-condition. The pre-condition section expresses the requirements for
launching the attack. These are data about the target operating system, installed software, the
vulnerabilities, the level of privilege needed by the attacker to launch a successful attack, etc. The
attack section determines the source code of the attack that can be expressed in different languages
(“C”, “C++”, “Perl”, “Casl”, “Nasl”, etc.). In order to represent the variants of the same attack,
operators Non_ordered, One_among, and Subset_of are introduced. In the post-condition section, what
the attacker has obtained is expressed (an increased level of privilege, disclosure of information,
corruption of information, denial of service, etc.).

Our formal language concerns mostly to the exploit and event languages, because it is used to
describe attack stages and the format of events generated. Our attack representation language
includes parts used for description of attack pre-conditions, attack intentions and actions, formats of
actions of terminal level, and post-conditions (states of the attacked hosts).

1.5.4. Works on evaluating intrusion detection systems

Several publications devoted to evaluation of IDSs have considered attack modeling and
simulation issues.

The papers ([Puketza et al-96], [Puketza et al-97]) describe a methodology and software tools for
testing IDSs. The methodology consists of using scripts to generate both background traffic and
intrusions with multiple streams of activities.

In evaluations of IDSs described in ([Lippmann et al-98], [Lippmann et al 1-00], [Lippmann et al
2-00], [Kendall-99], [Korba-00], [Das-00]), investigators were given sensor data in the form of sniffed
network traffic, audit data, and file -system snapshots. The test network consisted of real and simulated
machines. The attack set includes denial-of-service attacks, remote-to-local attacks, user-to-root
attacks, probe attacks, insider attacks, console-based attacks, a man-in-the-middle attack, and an
attack using macro code.

The report [Debar et al-98] discusses issues associated with generation of suitable background
traffic, noting the difficulties associated with alternatives, including developing accurate models of
user and server behavior, using test suites designed by operating system developers to exercise server

 39

behavior and using recorded “live” data. Attacks are obtained from an internally maintained
vulnerability database.

The Air Force Rome Lab has built a real-time test bed [Durst et al-00].
Like systems in general, IDSs can be evaluated in various ways, such as benchmarking or

modeling. The papers ([Alessandri et al-01], [Durst et al-00], [Lippmann et al 1-00], [Lippmann et al
2-00]) point out that benchmarking real IDSs is not generic and systematic enough for evaluation
needs. John McHugh has criticized the benchmarking approach according to exactly the same reasons
[McHugh-00]. Because of these insufficiencies in [Alessandri et al-01] another approach is
investigated. It consists of comparing and evaluating IDSs at the level of their specification rather than
at the level of their implementation. This approach describes IDSs by formalizing their characteristics,
and does not attempt to describe the implementation of the intrusion detection algorithms used.

Our approach also presumes that IDSs can be evaluated and verified at different phases of their
development and implementation. The more detailed level of attack representation is used in the attack
model the more advanced level of IDS is evaluated.

1.5.5. Works on vulnerability assessment tools (scanners), signature and traffic generation tools

Now a lot of tools can automate the vulnerability discovery process. For example, Internet
Scanner (ISS), NetRecon (Axent Technologies), CyberCop Scanner (Network Associates), Nessus
Security Scanner, etc.

Also there are a lot of signature and traffic generation tools: WebRamp, MS WCAT, Hailstorm,
IDS Informer, nidsbench, SmartBits, FlameThrower, Stick, Fragrouter, etc. But the majority of these
tools are doing only simulated pseudorandom malicious packets. As Marcus Ranum marked by
discussions on focus-ids@securityfocus.com: “Make sure that you're not only generating “signatures”
but that they are within the context of apparently valid sessions - otherwise you're actually
benchmarking an IDS' ability to detect false positives, not real attacks.”

According to our sight, Hailstorm (Cenzic) and IDS Informer (BLADE Software) have most
interesting properties.

Hailstorm [Hailstorm-00] is a traffic generation product aimed at simulating severe-load
conditions, malicious network attacks and robust integrity-analysis of online applications. Hailstorm
generates traffic based on patterns specifying how a packet is to be generated over the network.

IDS Informer [IDS Informer-01] has been designed to allow launch S.A.F.E. (Simulated Attacks
For Evaluation) attacks, and to report on how the IDS system coped and responded to those attacks.
The S.A.F.E. process builds the attacks based on previously recorded real attacks.

In our approach we tried to realize the malicious and background traffic on the terminal levels of
the attack model within the context of valid sessions.

As one can see from the review of relevant works, the field of attack modeling and simulation has
been delivering significant research results to date, nevertheless the publications reflect a beginning
phase of research. Perhaps this is due to the extreme complexity of the network attack and computer
networks. “There is no widely accepted information physics that would allow making an accurate
model, and the sizes of the things we are modeling are so large and complex that we cannot describe
them with any reasonable degree of accuracy” [Chi et al-01]. The high cost of running real-world
attacks, the limited extent to which they exercise the space of actual attacks, and the high potential for
harm from a successful attack conspire to make some other means of analysis an imperative [Cohen-
99]. We have developed a strict formal model and techniques for attack modeling based on stochastic
formal-grammar-based specification of the malefactor’s intentions and scenarios of network attacks
on the macro and micro levels. Our approach has applied the results of reviewed relevant works, but is
evolving own theoretical and practical ideas about stochastic formal grammar and multi-agent based
attack modeling and simulation.

1.6. Conclusion

The Chapter presents summary of the theoretical results received in the research according to the
Task 1 of Project 1994P. Let us summarize the main results.

 40

1. Main concepts of standard remote attacks on computer networks, review, classification and
analysis of the computer network attacks were presented.

• The existing attack taxonomies analyzed are multifold , but can not ensure basis for the project
goals achievement. The incident taxonomies are the most prominent for our goals, but they
require a more elaboration with emphasis on remote actions.

• The to date suggested classifications of the standard remote attacks allow to classify attacks
by character of effect, purpose of effect, condition of beginning of the effect realization,
presence of feedback with the attacked object, layout of the subject of attack concerning the
attacked object, layer of standard ISO/OSI model, on which the effect is carried out, the
object, on which is carried out an effect, attack complexity level.

• Eight typical classes of the remote attacks are marked out in this research: (1) analysis of the
network traffic (or listening of a data link by means of special tools – sniffers), (2) network
scanning (probing) , (3) substitution of the trusted object of the network and transmission of
the messages "on its behalf" with appropriation of trusted object access rights, (4)
implantation of the false object in a network, (5) denial of service, (6) unauthorized access
from a remote machine by guessing password, (7) unauthorized access to local super user
(root) privileges, (8) remote initiation of applications.

• To our opinion, the research results make it deeper the understanding of the environment
within which a modern computer network is operating, potential inside and outside attacks,
degrees of the particular attack danger with respect to the possible aftereffects, and degree of
the network vulnerability. The proposed attack classification constitutes the starting points for
development of the formal approach and the tool for simulation of attacks against computer
networks. The presented results enable the development of the conceptual descriptions of
representative set of network attacks on a macro-level and to develop their formal models.

2. Scenario-based specifications of computer network attacks were introduced. This result
corresponds to the phase of a complex system design on which the conceptual model of the research
area is specified. Particularly,

• An attack model is understood as a formal object having a likeness in basic properties with
regard to real-life attacks, serving for investigations by means of fixing known and obtaining
new information about attacks. A formal model of attacks is a collection of mathematical
dependences specifying a broad spectrum of attacks and allowing study of them formally and
via simulation.

• The developed conceptual model of computer network attacks includes two levels: (1) macro-
level and (2) micro-level. On the macro-level, a common attack scenario is defined. It includes
partially ordered set of malefactors’ intentions and actions. The micro-level specifies more
detailed representation of attack as a sequence of low level commands, system calls, etc. Each
step of the macro-level scenario is represented as a sequence of simple operations (events) on
micro-level.

• Each sequence of attack steps can be considered as a “word” belonging to a formal language
that, in turn, can be specified in terms of a formal grammar. The grammar may be regenerated
by use of formal methods inductively on the basis of sample of cases, and than it can serve as
a formal model of attacks on the macro level.

• The scenario-based models of eight network attack classes are determined. These classes are
the followings: (1) analysis of the network traffic , (2) network scanning (probing) , (3)
substitution of the trusted object of the network and transmission of the messages from its
name with appropriation of its access rights, (4) implantation of the false object in a network,
(5) denial of service, (6) unauthorized access from a remote machine by guessing password,
(7) unauthorized access to local super user (root) privileges, and (8) remote initiation of
applications. Each scenario is described by a set of admissible sequences of steps determining
an attack class on both macro and micro levels.

3. Techniques for case-based regenerating of the formal grammar specifying models of the attacks
were defined. Particularly,

 41

• It is shown that the scenario of a computer network attack can be specified formally as a
certain formal grammar. That grammar can be used both as the model generating the
examples of attacks and as the model for recognition of attacks based on syntactic analysis.
For practical implementation of attacks modeling systems, it is necessary to construct such
grammars based on sample of cases of the already implemented attacks.

• Formally, the task of synthesizing a grammar consists in creating the algorithm to recover its
production rules based on the finite set of words of the language (represented by the grammar)
that specifies attack cases, and possibly, based on the finite set of words from the supplement
to this language.

• The grammar that generates scenarios for computer network attacks can be synthesized: (1)
through inductive recovery based on the set of cases through the use of formal methods; (2) by
an expert who possesses knowledge of the malicious party’s intentions and the possible ways
these intentions can be realized; (3) through combining the two above methods.

• Two groups of algorithms can be used for grammar recovery: (1) enumeration grammar
recovery algorithms; (2) induction grammar recovery algorithms. The inductive grammar
recovery methods are deemed the most adequate for the purposes of recovering grammars that
specify computer network attacks; specifically, the inductive method for recovering regular
grammars on the basis of positive examples (the Feldman method). This method consists in
constructing a non-recursive grammar that creates precisely those strings that were present in
the training example, and then arriving at a simpler recursive grammar that generates all the
strings of the positive examples and an infinite amount of other strings.

• The analyzed examples of computer network attacks have shown practical applicability of the
grammar recovery algorithms suggested. It was shown that the synthesized grammars can
generate attacks corresponding to the training data used for development of the grammar. But
the grammars developed through combining different productions are capable of generating
the attacks that are not included in the training cases. This can expand capabilit ies of the
intrusion detection system and (or) attack simulator based on these grammars.

4. Mathematical methods and techniques realizing attack modeling and simulation were
developed. The conceptual justification of the chosen approach, problem domain ontology,
specification of the basic components composing attack model, their interaction in simulation
procedure, and examples of the network attacks specifications have been elaborated.

• The conceptual exploration of the computer network attacks has discovered the following
peculiarities of planning and execution of attacks, influencing on choice of a formal model of
attacks: (1) any attack is directed to the concrete object and, as a rule, has a quite definite
intention; (2) an attack intention can be represented in terms of partially ordered set of lower-
level intentions and actions realized in multiple ways; (3) an attack development greatly
depends on the response of the attacked computer network, choice of attack continuation is
almost always non-deterministic; (4) an attack development scenario cannot be definitely
specified beforehand, since any attack depends on many uncertainties. The basic elements of
the developed approach to network attacks modeling and simulation are the attack goals; the
ontology of the computer network attacks domain; the family of enclosed attributed stochastic
context-free grammars describing different attack scenarios on the basis of the ontology of the
computer network attacks domain; the family of state machines for the computational
interpretation of the grammars; the model of the attacked computer network including a
generalized model of the computer network structure, host models, a model for calculating the
probability of successful actions (attacks) against the host and a host response model.

• The developed approach to the modeling and simulation of network attacks consists in the
following: in accordance with the attack goal a sequence of actions imitating attacks is
generated on the basis of a family of enclosed attributed stochastic context-free grammars (or
a family of state machines based on them) in accordance with the model of the attacked
computer network. The variance of attacks is ensured by the random choice of the grammar
productions (or the state machine transition rules) and randomization of the success of
separate actions.

 42

5. Object-oriented project of the Attack Simulator was developed.
• For development of the object-oriented project, the technology and software tool called Multi-

agent System Development Kit (MAS DK) was used. This tool is implemented on the basis of
Visual C++ 6.0, JAVA1.3 and XML programming languages. The MAS technology
comprises two main phases: (1) Specification of the application in terms of a MAS DK
specification language resulting in so-called “System Kernel” containing the complete
information about the developed application; (2) Usage of System Kernel for MAS
deployment (at this phase the software of MAS is generated and software agents are situated
in computers of the network according to the MAS specification in System Kernel). The
agents, generated by the usage of the developed technology, have the same architecture.
Differences are reflected in the content of particular agents’ data and knowledge bases.

• The suggested approach for the object-oriented design of the Attack Simulator is based on the
usage of the following main components: (1) DomainOntology setting the subject domain
ontology; (2) AttackModel realizing of the set of attack scenarios as a family of state
machines; (3) Engine fulfilling interpretation of the state machines; (4) AgentLib defining the
attack task specification and supporting the interaction with main components of the
prototype; (5) TargetObjectiv for attack task specification; (6) SMProb for calculating
probability of the state machine transitions; (7) the user interface component for visualizing
the process of attack realization (AtlogView).

6. Works relevant to attack modeling and simulation was analyzed and proposed and developed
approach was compared with them.

• The relevant works can be divided into five groups: (1) works describing attacks and attack
taxonomies; (2) works immediately coupled with network attack modeling and simulation; (3)
works devoted to the description of attack languages; (4) works on evaluating intrusion
detection systems; (5) works on vulnerability assessment tools (scanners), signature and traffic
generation tools.

• One can see from the review of relevant works that the field of attack modeling and simulation
has been delivering significant research results to date, nevertheless the publications reflect a
beginning phase of research. Perhaps this is due to the extreme complexity of the network
attack and computer networks.

• In our approach we have applied the results of reviewed relevant works, but have developed
own specific theoretical and practical ideas about stochastic formal grammar and multi-agent
based attack modeling and simulation.

 43

Fig.2.1.1. General Architecture of Attack Simulator

Chapter 2. Software prototype of the Attack Simulator implementing
theoretical results of the research and its evaluation

Abstract. The Chapter overviews the software prototype of the Attack Simulator developed and
its evaluation results. The generalized architecture of Attack Simulator prototype is described. The
main components of the program prototype, including Agent Hacker and Network Agent, as well
as their functional capabilities and specific features of implementation are discussed. State-
machine based descriptions of main components of Attack Simulator are determined. A detailed
specification of all notions of the application domain ontology is fulfilled. The main components
of generic Hacker Agent are outlined. These components include fragment of general ontology of
computer network attack generation application domain, that is used by Hacker Agent in its
operation, state machine model that realizes Hacker Agent’s behavior scenarios, a set of scripts
directing the Hacker Agent’s behavior, program modules that realize the necessary functions and
user interfaces (attack goal specification, calculation of the probabilistic hacker’s behavior,
network traffic generation, visualization of the attack scenario development). The main
components of the generic Network Agent are sketched. They comprise a fragment of the general
computer network attack application domain ontology that is used by the Network Agent,
component of specification of computer network configuration, state machines model that realizes
Network Agent’s behavior scenarios, scripts for controlling the Network Agent in the process of
forming a response to Hacker Agent’s attack actions. The results of experiments that demonstrate
the Attack Simulator efficiency in generating various attacks scenarios against computer networks
with different configuration and security policy used are described in detail. The attack generation
processes on macro (generation malicious actions against computer network model) and micro
levels (generation malicious network traffic against real computer network) are analyzed.

2.1. Generalized architecture of Attack Simulator prototype

The software prototype for computer network attack simulation is built as a multi-agent system
that uses two classes of agents. The agent of the first class simulates defense system of the attacked
computer network (“Network Agent”) and the second one simulates a hacker performing attack
against computer network (“Hacker Agent”). In the developed prototype each agent class has single
instance although the developed technology makes it possible to simulate a team of hackers and a team
of agents responsible for computer network security.

The aforementioned agents are implemented on the basis of the technology supported by Multi-
Agent System Development Kit (MASDK) that is a multi-agent software tool aiming at support of the
design and implementation of multi-agent systems of a broad range [Gorodetski et al-02a]. The

developed and implemented simulator
comprises the multitude of reusable components
generated by use of the MASDK standard
functionalities and application-oriented software
components developed manually in terms of
programming language MS Visual C++ 6.0 SP
5. Fig.2.1.1 illustrates the general prototype
architecture.

Each agent operates using the respective
fragment of the application ontology that is
designed by use of an editor of MASDK
facilities. The interaction between agents in the
process of attack simulation is supported by the
communication environment, which design and
implementation is also supported by MASDK.

It is noteworthy to note that the first version
of the prototype (see Interim Report 3
[IntRep#3]) was implemented as a system that
consisted of a single agent simulating a hacker's

 44

activity whereas computer network security system was simulated as a reactive system. In such
architecture there were no need to situate both attacking Hacker Agent and computer network security
reactive system in a communication environment. In the version of the prototype presented in this
Report, the communication component plays a very important role. Indeed, the knowledge bases of
Network Agent and Hacker Agent are implemented as two separate entities. An advantage of such a
knowledge representation makes it actually possible to simulate adversary interactions. Such a model
adequately implements interactions of the both above opposite sides. In it, while simulating an attack
in order either to obtain response providing it with the needed information (on the reconnaissance
stage) or to perform an attack action (on the threat realization stage) Hacker Agent sends a certain
message to the Network Agent. The Network Agent, like this takes place in real-life interactions,
analyzes the received message and forms a responsive message. This message is formed based on the
Network Agent's knowledge base that models the network configuration and all its attributes needed to
simulate the real-life response. The Network Agent's knowledge base also uses information about
possible existing attacks and reaction of the network on them.

The key components of both agents correspond to so-called kernels that are the modules written in
C++ and compiled into a dll. These components provide interface between the part of the software
written in C++ and the components implemented through use of MASDK. The kernels provide
interfaces to the respective fragments of the application ontology, and initialize the state machines,
which in turn execute their scripts.

Let us consider the main components of

the Hacker Agent.
The component model of the Hacker

Agent is shown in Fig.2.1.2. It comprises the
following main components:

(1) the core (Agent hacker Kernel);
(2) fragment of the application domain

ontology;
(3) state machines model;
(4) scripts;
(5) attack task specification component;
(6) probabilistic (stochastic) decision-

making model with regard to the further
actions;

(7) network traffic generator;
(8) visualization component of the attack

scenario development.
The kernel of the Hacker Agent

(Hacker.dll) contains a standard set of
functions needed for exploiting ontology and
running state machines. It is also provided
with functions that call specification of attack
task, compute next state-machine transition as
well as initiate and perform visualization of
the attack development.

Fragment of the application domain ontology specifies a set of notions and attributes used by the
Hacker Agent. The application domain ontology is considered in section 2.3, and its fragment used by
the Hacker Agent, is described in paragraph 2.4.1.

State machines model component is used for specification of the Hacker Agent behavior including
decision making mechanism used by the Hacker Agent's to choice the next steps of action. The state
machine model of the Hacker Agent is built on the basis of attribute stochastic grammars, and consists
of over 50 nested state machines (the state machines model of the Hacker Agent is described in
paragraph 2.4.2).

Fig.2.1.2. Component model of the Hacker Agent

 45

Script component specifies the set of scripts that can be performed by the Hacker Agent's state
machines. The description of the scripts used by the Hacker Agent is given in paragraph 2.4.2 and
Appendix 1.

Attack task specification component provides user with interface needed for him to specify attack
attributes. This component is described in paragraph 2.4.3.

Probabilistic decision-making model is used to determine the Hacker Agent's further actions in
attack generation. It is considered in paragraph 2.4.4.

Network traffic generator is used to form the flow of network packets for several classes of attacks
directed to the hosts according to the attack specification. This component is initiated through calling
the particular kernel function of the scripts of those states, for which the network traffic has to be
generated. The network traffic generation component is described in detail in paragraph 2.4.5.

Visualization component of the attack scenario development is used for visual representation of
the attack progress, corresponding to each action of attacker and respective response of the Network
Agent. The response may be effective (the attack action was successful in part or in full), or
ineffective (no response message, or the message saying that the attack was blocked by the firewall).
This component is described in more detail in paragraph 2.4.6.

Let us consider the main components of the Network Agent. It is depicted in Fig.2.1.3. They are as
follows:

1) the core (Network Agent Kernel);
2) fragment of the application domain ontology;
3) state machines model component;
4) scripts component;
5) network configuration specification component;
6) firewall model (implementation) component;
7) generator of the network’s response to attack action.
Network Agent Kernel (NetAgent.dll) contains the standard set of functions for processing the

application domain ontology and the state machine model, as well as the functions used for
specification of network configuration through user interface, for the firewall model initialization, and
for computation of the network’s response to an attacking action.

Fragment of the application domain
ontology determines a set of notions and
attributes used by the Network Agent. The
application domain ontology is reviewed in
detail in section 2.3, and its fragment used by
the Network Agent is described in paragraph
2.5.1.

State machines model of the Network
Agent's specifies its behavior. This state
machines model mostly performs
communication functionality. This component
specifies the actions corresponding to the
incoming message receiving, their
classification, processing, and sending the
response. The state machine model of the
Network Agent is described in paragraph
2.5.3.

Scripts component specifies a set of
scripts initialized from the state machine
model of the Network Agent. The description
of scripts used by the Network Agent is given
in paragraph 2.5.3 and Appendix 2.

Network configuration specification
component is used for the specification of a Fig.2.1.3. Component model of the network agent

 46

set of user interfaces for the description and configuration of the network to be attacked. All the
notions and attributes that pertain to network and hosts, including the notions and attributes that
describe firewalls, are attributed through this interface. This component is represented in paragraph
2.5.2.

Firewall model (implementation) component is used to determine the firewall’s response to the
action generated by the Hacker Agent. Each incoming message from the Hacker Agent that constitutes
an attack action is entered into the firewall model, which is assigned to the entire network (in imitation
of a network firewall) or (and) the attacked host (in imitation of a personal firewall). In the event of an
attack being blocked by the firewall, the response message formed by the Network Agent contains
only the information that the attack has been blocked by a specific firewall. The firewall model is
described in paragraph 2.5.4.

Generator of the network’s response to attack action is used for the generation of the network’s
and hosts’ responses (messages) to attack actions. It is initialized through the corresponding function
exported by the agent’s kernel after the Hacker Agent has successfully overcome a firewall. The
process of the response message generation by the Network Agent is considered in paragraph 2.5.4.

2.2. State-machine based descriptions of main components

The behaviors of both the Hacker Agent and the Network Agent specified on the basis of state-
machine models, which are interpretations of behavior specified formally by use of formal grammar
framework. The Hacker Agent acts on the basis of a complicated system of nested state machines. The
state machine model of the Network Agent is represented by a single state machine.

The state machine model determines states, transitions between states, and conditions for such
transitions. Each state corresponds to a description of actions that should be carried out when the state
machine makes a transition into that state. These actions are initialized as the states of the state
machines are processed. Actions are described through scripts in the MASDK Script Language.

The MASDK state machine model provides for four types of scripts, each of which is initiated
from a certain point in the processing of the state machine’s state:

1) Entry script – the type of scripts initialized if state machine transit in the respective state;
2) Do Script – a type of scripts initialized from the script after the entry script has been executed.

If the script is initiated only at a single point from this state, then it doesn’t matter if that point of
initialization is the beginning, the middle, or the end of the script;

3) Exit Script – the type of scripts initialized on exiting a state;
4) Action – the type of scripts initialized on a transition from one state to another. This script is

executed after the transition has been calculated (and the exit script has been executed).
The initialization (invocation) of a script may not be present.
Each script is uniquely identified in the state machines model by its name. Script names may

coincide in agents of different classes, but are unique within a class.
To understand the principles of operation of scripts and state machines models in general, let us

consider the notation of the script language used by agents. The description of scripts is found in the
sections that deal with typical agent models (paragraphs 2.4.2 and 2.5.3). Examples of scripts are
found in Appendixes 1 and 2.

As mentioned above, the script language serves to describe the agent’s actions in terms of
application domain and the global functions that are provided to the program realization of the agent
by its Kernel. The script language is fairly simple, since it has to be used by an agent system developer
but not by programmer. The language is pseudo object-oriented, since it uses object notation when
addressing attributes of examples of notions and pre-determined functions, however, neither
inheritance, encapsulation, nor polymorphism are supported. There is no need for the latter three. If a
task to be solved by an agent is so complex that it requires object-oriented realization, MASDK
provides for a mechanism for utilizing (plugging in) user components (for example, a probabilistic
decision-making model component in Hacker Agent, or response generation component in Network
Agent). These components are accessed through functions exported by the agent’s kernel, and the
functions can be initialized through scripts.

The agreements on usage of variables and constants are as follows:

 47

• obvious declaration;
• beginning with the letter;
• only letters, digits and underlining marks may be used within variable or constant name;
• name could not contain a point;
• names are unique in “visibility” range.
The following types of variables are used (tab.2.2.1):

Tab.2.2.1. Types of variables

N Type Description
1 bool TRUE, FALSE
2 int Integer type (system dependent): –2,147,483,648 to 2,147,483,647
3 double 1.7E +/- 308 (15 digits)
4 string String type, value must be placed in quotation marks

The agreements on declaration of variables are as follows.
Variables may be declared by two ways:
1) Variables of simple types (simple variables) are declared in the script, for example:
 DECLARE string Str1;
2) Objects (instances of classes), and also global variables are created at the description of

interpretation model.
The interpretation model is a superstructure above application domain ontology (component

DomainOntology). It is a link between application domain ontology and scripts which use the
ontology notions and their attributes as instances with their predetermined methods and attributes. The
interpretation model is one of the MASDK components.

In the scripts of the state machine model only two global variables are used: int dC and bool bX.
The first variable sets the probability of terminal action success, and the second one – returned

parameter (success or nonsuccess of the terminal action). Both variables are used as arguments of the
global function AttRandom (of the Network Agent) which is described in section 2.5.3.

The agreements on declaration of constants are as follows.
Constants may be declared by two ways:
1) Constants of simple types (simple constants) are declared in a script, for example:
 DECLARE string Str2 = “attacked host ip-address”;
 DECLARE bool Flag = TRUE;
 DECLARE int i;
2) Global constants are created as properties of special objects at description of the interpretation

model. They are not used in the prototype.

The following agreements on scope of script are used. Simple variables and constants have a scope
of a script level. These variables and constants exist only in an operating time of the script of Do
Action or Entry Action, and are deleted from memory under script operation completion.

Objects are global and accessible in all scripts of the model.

The operations of the Language are as follows:
(1) Mathematical operations;
(2) Comparison operations;
(3) Logical operations.
Mathematical operations are as follows (tab.2.2.2):

Tab.2.2.2. Mathematical operations

Operator Description Operation priority
^ Exponentiation 1
* Multiplication 2
/ Division 2
\ Integer division 2

 48

Operator Description Operation priority
+ Addition 3
- Subtraction 3
- Change of an operand sign 4

Mod Residue of division 5

Comparison operations are as follows (tab.2.2.3):

Tab.2.2.3. Comparison operations

Operator Description
= Equal
<> Not equal
< Smaller
> Large
<= Smaller or equal
>= Larger or equal

Logical operations are as follows (tab.2.2.4):

Tab.2.2.4. Logical operations

Operator Description
NOT Negation
AND Logical multiplication
OR Logical addition
XOR Logical exclusion

The Language operators are as follows (tab.2.2.5):

Tab.2.2.5. Language operators

Operator Description / example
; Separator of operators
= Assignment operator

ID = <Expr>;
Expr – simple variable, global variable, variable value, object attribute,
object method, logical or arithmetic expression

Object method call Obj.Method([p1, p2,…]);
where p1, p2 - arguments of a method; logical or arithmetic
expressions may be arguments;
Obj – direct instance of ontology concept;
Method - predetermined method name or unique method name of the
given class (the list of the predetermined class methods is described on
the following table)

RETURN; Interrupts script performance
BREAK; Interrupts block performance; transfers the control to the first operator

following the block
DECLARE <value type> <name>
[= <value> | <logical-and-
arithmetic expression>];

Declares a simple variable;
Value type - one of 4 types of variables described above;
Logical-and-arithmetic expression - the expression which consists of
logic and (or) arithmetic expressions

SENDMESSAGE (<msg name>); Sends the message to other agent (it is not used in the prototype);
msg name – message name

IF (<condition>)
THEN <set of operators>
ELSE <set of operators>
ENDIF;

If operator;
condition - logical expression (expression in which logical operations
have the least performance priority), may consist of variable bool;
set of operators - a sequence of the operators described in this table,
divided by “;”

REPEAT <set of operators>
UNTIL (<condition>);

Cycle operator with a postcondition

 49

Operator Description / example
WHILE(<condition>)
DO <set of operators>
END;

Cycle operator with a precondition

CALLSCRIPT(<script_name>) ; Call of a script with the name script_name
<global procedure name>
([<set of arguments>])

Call of external procedure

AUTO(<auto_name>) ; Initialization of the state machine with name auto_name

All operators in script are separated by symbol “;”.
In the MASDK script language the opening and closing block constructions are not used. This fact

is stipulated by intention to simplify the script language as much as possible. In our opinion, scripts
should be written not by a programmer, but by a model developer as well as by the problem originator.

The predetermined class methods are as follows (tab.2.2.6):

Tab.2.2.6. Predetermined class methods

Method Description / example
Create(); Creates an instance of the notion
Exist(<condition>); Checks a presence of the class with the attributes specified in

condition ; in condition attributes of other classes, local and global
variables, as well as constants may be used as operands of logic
expression

Next(); Takes the next instance of the notion class; in case of success returns
TRUE, and in case of failure – FALSE

Prev(); Takes the previous instance of the notion class; in case of success
returns TRUE, and in case of failure – FALSE

First(); Takes the first instance of the notion class; in case of success returns
TRUE, and in case of failure – FALSE;
at the same time in the mapping database the cursor moves on the first
record in the table corresponding to the specified notion

Last(); Takes the last instance of the notion class; in case of success returns
TRUE, and in case of failure – FALSE;
at the same time in the mapping database the cursor moves on the last
record in the table corresponding to the specified notion

Delete(<condition>); Deletes instances of the notion class, which satisfy the specified
condition ;
in the mapping database all records fitting the given class and
satisfying the given condition are deleted

DeleteAll(); Deletes all instances of the notion class for which the given method is
called;
in the mapping database all records fitting the given class are deleted

Copy(<class name >); Copies an instance of the class class name ;
an instance (established by any of the predetermined method Exist,
Next, Prev, First, or Last) on which the cursor points is a current one

CopyAll(<class name>); Copies all instances of the class class name

The comments are considered as any text between /* … */ or a part of a text line, beginning with a
symbols //.

2.3. Component of the application domain ontology

This section contains detailed description of all notions of the application domain (hereinafter
ontology) of the Attack Simulator realized in the component of the application domain ontology
(DomainOntology component), as well as the description of the program component – ontology editor.

Ontology serves to specify and store notions, their attributes, and values of attributes of the
application domain of computer network attacks modeling and simulation.

 50

The software support of the ontology is realized in MASDK. Ontology is filled during the design
stage through using the MASDK Ontology Editor. Classes, class attributes, and meta-classes that unify
classes into groups are entered and modified through the ontology editor’s user interface.

Screenshots of the Ontology Editor component of MASDK are shown in Fig.2.3.1 and Fig.2.3.2.
In the window of the ontology editor (Fig.2.3.1), classes of the ontology notions of the prototype, as
well as their categories (mataclasses), are shown. Fig.2.3.2 and Fig.2.3.3 present the modification
process of the notion Attack and its attribute ip.

Meta-classes are used as classifiers of notions of the application domain, and are not used in the
prototype’s runtime.

Names of all meta-classes, notions, and their attributes can only contain digits and letters. They
may only start with a letter and should not contain spaces or underscores. The names are case
sensitive. These restrictions have to do with the usage of these names in the software implementation,
specifically, in the script language, where a notion is a program class, and its attribute is an attribute of
that class. The script language is considered in more detail in sections 2.2, 2.4.2 and 2.5.3.

Fig.2.3.1. Example of ontology editor window supporting notion design and classification

Fig.2.3.2 shows a screenshot of “Class Properties” for the notion Attack . This notion is used in
templates of messages exchanged by Network Agent MainNet and Hacker Agent MainHack , and it
duplicates all the attributes of other notions, such as Host, User, Domain, etc., that are necessary for
the communication.

In this window, the notions are being modified and classified; the window also enables further
modification of the attributes list. A single attribute modification dialog is shown in Fig.2.3.3.

Attributes can belong to one of three classes:
• Nominal (line),
• Double (real floating point number; can be also used for storing integer values, dates and

times), and
• Unknown (type is undefined for this attribute).

HRtology Editoi - M«taClass«£ and Classes yoHl
iMBtadBB dass Edt

— If moHUBBOi ujawet

II 1 ^ Nan 1 DBtdidicin 1 ^ Nvne OesaipTlon Attrl MetaClass 1

II Common Includes comnton loi al Ag Appi Rurir-iing apphcahon^
MessageTviplareICommcn^Hacker And Net]
Nei $ide aiia:k ^pecihcalion

2
2S
13

Host
Com""- Hacker

U Hott
Includes cla^^e^ wUch b«l
Includes cla^^e^ wUch b«l

Attnrk ^^^^^
A»«k$ \ CreaCe Class,,,

Net Includes classes which beL.. DNS1 Paiameler^ of DNS-server 3
3

H
H
H
H

L Modll-yClass,,.^

View All Classes DNS2 t^ ail Aliases
Doman
DomHott
Donij^

M&r, Domain attributes
Hoi m ihs domain

3
? DalaFa Class

Domains Imksd lo the domain 2
3

h !>»■ —r .
Fn»al
FoftiiddenLocalftddr
FofbiddartflenutaUik
Hott

Simple Firewall model Net
Sloiage ol ihe lorbldden local addresses
Stoiage ol i^e lorbldden remote addresses

3
3

Net
Net
Host

Hacker
Net

Hacker
Hacker
Hacker
Hacker

Host
Host
Host

Hacker

Ho^i $pe:ili:aiion
The Li^i ol LAN^ and Hosts

e
4 KnowiANt

LAN Lo:alAiea Nei work
includes pa^^ed ?tates during scenario realization
Allaok lesults

4
e
3

Loo
LocflsttA
Obieotive Attack Scenario Task Specification n
Obieotivst Known ob|ectlves [Intentions] 3

5
3
2
6
2

Seoutv Ho^i Seouiiiy parameters
Seivice open poii^ loi each host
Shncfist Shaied le^ouroas

Qirient AttackModel step parameters
Trusted hosts
User attributes

Steo
TiutHottt h ost

ost Uter 4 h
1

^" 'IM

 51

Fig.2.3.2. Example of ontology editor window supporting notion modification and attribute value assignment

Fig.2.3.3. Example of ontology editor window supporting modification of notions' attributes

After the application domain ontology has been formed, for each of the agent classes NetAgent
and Hacker that contain one agent MainNet and MainHack each, respectively, a set of ontology
notions is specified that will be used for the operation of the agents of that class.

One should note, however, that the MASDK environment allows for creation of any number of
both agent classes and agents within a class, as well as any number of ontologies (in the prototype,
only one ontology is used).

In specifying the set of notions for each agent class, it is necessary to take into account the fact
that if agents of two classes perform their actions in collaboration, they should exchange information
in the manner understandable by both agents. This implies that notions that participate in the
communication between agents of two different classes should be present in both agent classes’ notion
lists.

Let us further consider the general notions of the application domain ontology.
Descriptions of the fragments of ontology used by agents MainHack and MainNet are found in

sections 2.4.1 and 2.5.1 respectively.
Fig.2.3.4 shows a diagram of application domain ontology classes.

Class Properties m
Save

Close

Name ^llack MelaClasi |Co mmon *■

Descnplion Message emplale [Common lor Hacker And Nel]

-

fMJodify

^ttribuies

^ Nama Desoriplion 1 Jvoe j Attached Domain 1
i"~

AppI Applioalion, running on the allaoked host
Class
DNSlHoslI
DNSlHoslN
DNS2DomN
DNS2Posl

Attaok Class: R or 1 (not used)
Host IP-address from DNS

ame
ame

Host Name in DNS
web-address of mail server
Host Post Name [for ex. Dleg.lan3.oom]

DomalnCon
DomainNam

ol web-address of admin Host [for. ex. Admin.Ian.oomj
e Domain Name

DomLink
FailMt^^age

Domain web^name [for ex spb.ru]
Texl f^e^^age From Firewall if il i^ presented and blook.

HacktriP Own IP-addre^^ of Ifie Hacker 1

Dfitfe
tt Alf*-il*hllHnWit'1ir]^NW. 1 in = ---lll ^^H ^^H
I^Nel i^N.„...Fi.n ^"l^^r^'" -

F
Ma^k AllackedLANt^a^k Ho*yAbcuw„- V|

Delele Me^^age Tei-I t^e^^age from Tfie Allacked Ho^l
n= =1-= QH-Kihi il-P

Attribute Propeities m
Name 'P Save

Data Type |Nornii>Bl

Domain

Domain'; Values Let

11 [[IIE^Ill
- _J

Attribute Descilplion

Allacked Host IP \i IsNel = 1 ip = - ^ ■ 0]

 52

Fig.2.3.4. Diagram of the application domain ontology classes

1. The notion Appl serves to store the names of applications running on the attacked host. It has
the following attributes:

• IP – host’s IP address;
• Name – name of the running application.

pTstrtno
RlP:SCrirrO

lotNvTV Siring

1
DomHoil

P:3vlng

Donubn

P Siring
^ntrol; String
Jsrw swing

0NS2
PiSVing
^omName Siring
^1: suing

Appi

P'airing
4am*' Slnrg

3lw*dR«

P airing
'Jama Slnrg

TndH»tB

P; String
■loUlSVlng

teeuilly

P; swing
"jw ■ Siring
Vt: Slnng
iFPiSirtr^
4S : Siring

u»<-
P; String
D' String
"F*'Siring
aio aulng

; t^BB

i
{}oinlJnk

P 'Siring
>3m*n String

Hott

IP. ScNng
ame' ScNng

OSvtrattn. Slrmg
:>Slyp«: String
DsplBifcr'n String
IBDNS boDJ

k airing
FirewaliName Smng
SyiTrne String

Swvl»

P; String
'oct Stnng
^laas String <-^

—>;.

Firtwall

ama Scr^r^g
^tlscliNBm»: String
'rob doubts

UM

P ailing
Jd«« 3rrJr<g
Harris Slrir-rg
'ir«wailNama ■ String

H>W

LoflRfliull

D:k>no
toaulE Stnno

JFiWflsull. SWng

I
A

Atucha

'Jama' String
^lasB String
SdiCUaaO - Scnng
SubCtasfll Stnno
BubCtaM? String
I^Splatlunn Siring
iDSname Siring
^iSverslon Siring
^b douWe

■ StrpPPj

^ecurpiy String
'(vtH' auing
^«ivlc4 - String

Log

D-long
\ Siring
3 Siring
^ - String
^aacripiun: Str^
Typa: OouUa
^eatllCofrirrient; StWig
3ebjglntD' Siring

I

KncwrnLANt

P'String
"Jama String
HoallP airing
iOfilNarUB SlfPfl

^Unama. String
■Slate String
^SUla String
^revSiaie' Siring
^^dition Sliirg

ObfKHva

. Most

^CqiO double
^WTvn«nt String

N01. doubiff
D«niP Siring
Dbjecl Sliifig
=lftg Sinng

<-

ObJecHwet

ID doubiB
"Jaina. Stnng
DbfKllve: String

FortMSdvLMaUMMr

FiivwBliNamg Siring
jxaUP: String
jKilPRange String

FoitiMdinRHwIiAddr

kj> -irewalMamt: String
^emomP Siring
^emoldPRangs: Str^ig

Attack

IppI String
Z\»%^ Sling
^NSiHoiiiP Siring
DNSIHn^lNnmB ■ Siring
:>NS2DomNain« ■ Siring
JN52POSI Siring
>?rTiaini:fln[rol Scnr^
:)orTHinNama String
:X>iiiL>nli Siring
-jilMa^sage Siring
HdckerlP ■ Sinng
p Scring
sNeiibotf
^(nk' Siring
^MsBaga String
Name Suing
DSpialform String
DSly«. String
DS^*rfiiwi ■ Siring
^M Suing
SharedRflB String
BuDOauO -, SVing
3LJbClna1: Suing
^ubdns!' Siring
SytTlma ■ Siring
rrjpHoBE Siring
JssriD S[nr<g
JwrP5». String
JwrSID String

 53

2. The notion Attack serves to ensure communication between agents MainHack and MainNet.
This notion has the following attributes most of which are activated in attack generation (star symbol
denotes attributes mandatory for any attack; the direction of message exchange between agents is
showed in parentheses, where the first agent determines attribute value, and the second one uses this
value):

• Appl – application running on the host (MainNet à MainHack);
• Class – generalized attack class (reconnaissance (R) of Implantation and threat realization (I));

• DNS1HostIP – host’s IP address taken from the attacked server (one message per every IP

address taken from the DNS server); sent together with DNS1HostName (MainNet à
MainHack);

• DNS1HostName – host’s name taken from the host, if it is a DNS server (MainNet à
MainHack);

• DNS2DomName – name of domain whose server is being attacked (MainNet à MainHack);
• DNS2Post – host’s mail address taken from the attacked server; sent together with

DNS1HostIP (MainNet à MainHack);
• DomainControl – DNS address of the attacked DNS server (MainNet à MainHack);
• DomainName – DNS address of network (MainNet à MainHack);
• DomLink – DNS address of the trusted network for the attacked DNS server (MainNet à

MainHack);
• FailMessage – text message sent by the network-agent MainNet in case the attack is blocked

on the network side or by either a network or a local firewall; the message contains the
following information: name of firewall, IP address, content: the attack is detected and
blocked, or the sender’s (i.e. hacker’s) IP address is blocked (MainNet à MainHack);

• HackerIP – hacker’s IP address (MainHack à MainNet)*;
• ip – IP address of the attacked host or network (MainHack à MainNet)*;
• IsNet – parameter that shows the agent of the attacked network that the attack is a network

attack (directed to all hosts of the network) (MainHack à MainNet)*;
• Mask – attacked subnet mask (MainNet à MainHack);
• Message – text message (MainNet à MainHack);
• Name – name (abbreviation) of the attack action (MainHack à MainNet)*;
• OSplatform – attacked host’s OS platform (Windows or Unix) (MainNet à MainHack);
• OStype – OS type (98, ME, XP, SunOS, Linux Mandrace, etc.) (MainNet à MainHack);
• OSversion – OS version (e.g., SE, SP1, 1.4.1, 7) (MainNet à MainHack);
• Port – number of open port on the attacked host; a list of ports is formed for each of the

attacked hosts and sent in a single message (MainNet à MainHack);
• SharedRes – name of open resource; a list of resources is formed for each of the attacked

hosts and sent in a single message (MainNet à MainHack);
• SubClass0 – 0th level subclass of the attack action specified in the attribute Name (MainHack
à MainNet);

• SubClass1 – 1st level subclass of the attack action specified in the attribute Name (MainHack
à MainNet);

• SubClass2 – 2nd level subclass of the attack action specified in the attribute Name (MainHack
à MainNet);

• SysTime – current time on the attacked host (to a millisecond) (MainNet à MainHack);
• TrusHost – trusted host‘s IP address; a list of trusted hosts (if available) is formed for each of

the attacked hosts and sent in a single packet (MainNet à MainHack);
• UserID – user name (from the attacked host’s account); all obtained user names are sent in

separate packets for each of the attacked hosts (in case of a network attack); sent together with
UserPsw, while each of the attributes may not be present (MainNet à MainHack);

• UserPsw – user password (from the attacked host’s account); sent together with UserID, while
each of the attributes may not be present (MainNet à MainHack);

 54

• UserSID – user’s SID, obtained by hacker only if the DNS server attack is successful
(MainNet à MainHack).

3. The notion Attacks determines the knowledge of the agent MainNet about network attacks and

has the following attributes (star symbol denotes attributes mandatory for any attack):
• Appl – list of applications running on the host under attack with the name Name (hereinafter

for attributes of this notion – provided that all the rest of the conditions specified in the
example of this notion are met);

• Class – class to which the attack called Name belongs*;
• Name – name of attack*;
• OSname – types of OS for which the attack called Name is performed;
• OSplatform – OS platforms for which the attack called Name is performed;
• OSversion – OS versions for which the attack called Name is performed;
• Ports – open ports for which the attack called Name is performed;
• Prob – probability of attack called Name in case all other conditions are met*;
• Security – security parameters independent of firewall attributes;
• Service – network services and/or protocols (protocols stack), for which the attack called

Name is performed;
• SubClass0 – 0th level subclass of attacked action called Name*;
• SubClass1 – 1st level subclass of attacked action called Name*;
• SubClass2 – 2nd level subclass of attacked action called Name*.

4. The notion DNS1 has the following attributes:
• HostName – client-host name;
• IP – IP address of network domain;
• HostIP – client-host’s IP address.

5. The notion DNS2 has the following attributes:
• DomName – mail server name;
• IP – network mail server’s IP address;
• Post – mail account.

6. The notion Domain has the following attributes:
• Control – domain-host name;
• IP – domain’s IP address;
• Name – domain’s network name.

7. The notion DomHost has the following attributes:
• Host – host name;
• IP – host’s IP address.

8. The notion DomLink has the following atributes:
• Domain – linked domain’s network name;
• IP – domain’s IP address.

9. The notion Firewall has the following attributes:
• Name – firewall name;
• AttackName – abbreviated name of the attack that is present in the firewall knowledge base;
• Prob – probability of the attack called AttackName.

10. The notion ForbiddenLocalAddr has the following attributes:
• FirewallName – firewall name;

 55

• LocalIP – forbidden local address of the firewall called FirewallName;
• LocalIPRange – range of forbidden local addresses for the firewall called FirewallName.

11. The notion ForbiddenRemoteAddr has the following attributes:
• FirewallName – name of firewall;
• RemoteIP – forbidden remote address for the firewall called FirewallName;
• RemoteIPRange – range of forbidden remote addresses for the firewall called FirewallName.

12. The notion Host has the following attributes:
• DomName – host’s domain name;
• IP – host’s IP address;
• OSVersion – OS version;
• Mask – host’s subnet mask;
• SysTime – host’s system time (further formed dynamically);
• IsDNS – attribute that indicates whether the host is a domain server;
• OSType – OS type;
• OSPlatform – OS platform (presently two platform, Windows and Unix, are used);
• FirewallName –firewall name (may be absent).

13. The notion KnownLANs determines hacker’s knowledge about networks that have been

attacked before or will be attacked in the future. This notion has the following attributes:
• HostIP – host’s IP address;
• HostName – host’s network name;
• IP – network’s address;
• Name – workgroup or domain name.

14. The notion LAN determines the network’s knowledge of itself and has the following attributes:
• HostIP – host’s IP address;
• HostName – host’s network name;
• IP – network’s address;
• Name – workgroup or domain name;
• FirewallName – name of network firewall (may be absent).

15. The notion Log stores the attack route in terms of state machine model and the obtained

results. This notion has the following attributes:
• A – state machine name;
• DebugInfo – auxiliary information that determines the chain leading to the current state

starting from automaton A (“Network attack”);
• Description – description of the state machine’s state (except for the intermediate states); if

the state is terminal, then the action description is specified; if it is non-terminal, then the
description of attack class (0th, 1st or 2nd level) is recorded;

• ID – a unique number identifying the past state of a state machine (this attribute is connected
to the attribute ID of the notion LogResult);

• ResultComment – the description of the result that can be obtained in the used state S (if that
state is terminal);

• S – the used state of a state machine;
• Type – state machine’s state type: 0 – intermediate, 1 – terminal, in which the attack actions

are performed, 2 – non-terminal (leading to other states);
• C – additional comments.

16. The notion LogResult has the following attributes:
• ID – number of used terminal state that has led to success of the attacker;

 56

• Result – information received from the host or message about the successful attack in the
terminal state with the number ID;

• FailResult – information received from the attacked network in case the attacked is blocked
by a firewall; this attribute corresponds to the attribute FailMessage of the notion Attack.

17. The notion Objective stores the description of malefactor’s intention for one attack scenario

generation session. This notion has the following attributes:
• Comment – description of intention;
• Flag – system parameter;
• Host – IP address of the attacked host (network);
• LowLevel – parameter for inclusion of low-level network traffic generation in the attack

scenario;
• Net – parameter that shows whether the attack is a network attack or not;
• Object – attack object (corresponds to the optional variable in attack goal specification);
• ObjID – number of intention; the attacker’s intentions are described in more detail in

paragraph 2.4.3;
• OwnIP – hacker’s own IP address.
• PSWfile – path to the password file (dictionary of most frequently used words);
• SaveLog – logical parameter (with values “true” (1) and “false” (0)); if this parameter is true,

then the attack scenario to be executed will use the information accumulated in the previous
attacks (if there any have been realized), and traces and logs will also be saved;

• ShamIP – false (spoofed) IP address, used to specify the address of the host – source of the
message; specifying a false IP address is used by the hacker for substituting its own address
by another (for example, the address for the target’s trusted host).

18. The notion Objectives stores descriptions of all intentions of the attacker realized in the

prototype, and has the following attributes:
• ID – intention’s unique number;
• Name – abbreviated name of the intention;
• Objective – description of the intention.

19. The notion Security has the following attributes:
• NS –Null Sessions parameter (used if Host.OSPlatform = Windows);
• IP – host’s IP address;
• CFP – parameter that shows the presence or the absence of shared files and printers on the

host;
• Psw – parameter that shows the presence or the absence of the password to enter the system;
• RR – parameter that shows the presence or the absence of Remote Registry on the host.

20. The notion Service has the following attributes:
• Class – protocol name (TCP, UDP, ICMP, etc.);
• IP – host’s IP address;
• Port – open port number.

21. The notion SharedRes has the following attributes:
• IP – host’s IP address;
• Name – path to shared resource.

22. The notion Step has the following attributes:
• Condition – condition of transition at the current step from the state xState into the state

yState;

 57

• Objective – hacker’s intention realized at the current step (in the current realization of the
prototype, intention is not changed in the single attack scenario generation session);

• PrevState – the state before the state xState;
• SMname – state machine’s name;
• xState – state machine’s current state;
• yState – the state, into which the state machine model makes the transition at the current step.

23. The notion TrusHosts has the following attributes:
• Host – attacked host’s IP address;
• IP – trusted host’s IP address.

24. The notion User has the following attributes:
• SID – user’s security identifier;
• IP – host’s IP address;
• ID – user name;
• Psw – user password to enter the system.
One host may have several users with individual accounts.

2.4. Generic Hacker Agent

As noted above, the system provides for two classes of agents: Hacker agent (class Hacker) and
Network Agent (class NetAgent). In the prototype, one agent has been realized for each class: agent
MainHack for the Hacker class, and agent MainNet for the NetAgent class.

A generic Hacker Agent consists of both a set of components realized within the MASDK
environment, and external components developed in MS Visual C++.

The following are the main components of a generic Hacker Agent:
§ Fragment of general ontology of computer network attack generation application domain, that

is used by Hacker Agent in its operation;
§ State machine model that realizes Hacker Agent’s behavior scenarios;
§ Set of scripts directing the Hacker Agent’s behavior in each of the states of the state machine

model and connecting the program modules of the Hacker Agent with the rest of its
components realized in the MASDK environment;

§ Set of program modules that realize the necessary functions and user interfaces created outside
of MASDK. Program modules can be classified onto three groups:
§ Modules responsible for attack goal specification;
§ Modules that calculate the probabilistic model of hacker’s behavior;
§ Modules generating network traffic.

2.4.1. Fragment of the ontology used by Hacker Agent

A detailed description of the application domain ontology of computer network attack generation
is found in section 2.3. Let us specify the notions used exclusively by Hacker Agent. Let us consider
these notions by breaking them up into three categories by the function of notions.

1. Notions used in the attack goal specification process before the generation of its scenario :
1) Objectives. The notion that stores the list of all attacker’s intentions. At present, 12 high-

level objectives are represented in the prototype. Intention is the most important attribute
specified in the process of attack goal specification. Attack specification is considered in
greater detail in 2.4.3.

2) Objective. The notion that stores the intention chosen at the attack specification stage.
This notion has the following attributes:
§ ObjID – number of one of the intentions of the notion Objectives;
§ ip – IP address of the attacked host (network);
§ IsNet – marker that shows if the attack is a network attack;

 58

§ OwnIP – own IP address;
§ Object – object of attack.

3) KnownLANs. An auxiliary notion that participates in the attack task specification. It
stores the list of attacked networks with the names and IP addresses of each network’s
hosts. The IP address of the host or network that will be attacked (the attribute
Objective.ip) is chosen from that list and is a mandatory attribute in attack specification.

At the attack task specification stage, one can also mark the additional information that the
hacker has about each of the hosts from the list KnownLANs (description of the user interface
for specifying the field Known Information is found in 2.4.3). This information will
automatically be taken into account in the attack generation. Thus, some or all notions from
the second category are used. Determination of these parameters is not necessary for the
functioning of the prototype.

2. Notions used for storing the information received through attack deployment from the

attacked network, obtained through the previous attacks, or specified as input data at the
attack task specification:
1) Host;
2) TrusHosts;
3) SharedRes;
4) Domain;
5) DomHost;
6) DomLink;
7) DNS1;
8) DNS2;
9) User;
10) Security;
11) Service;
12) Appl.
These notions are described in paragraph 2.3. They are used to store information about hosts
both on the Hacker Agent side and the attacked Network Agent side.

3. Notions used by the Hacker Agent in the process of attack generation for storing the decision

made at the current step and for recording the attack log:
1) Step. This notion is filled at each step of the state machine model’s operation in the

process of deploying and implementing the attack scenario. It includes the following
attributes:
§ Condition – condition for the transition from the state xState into the state yState at

the current step. This condition is formed directly in the state machine model itself
during the design time. On the realization stage, all conditions for each of the
transitions are already specified where necessary. This attribute only stores the order
number of the condition from the list of transition conditions (from state xState into
state yState in the state machine called SMname);

§ Objective – intention realized by Hacker Agent at the current step (in the current
version of the prototype it does not change within a single attack scenario generation
session);

§ PrevState – state that precedes the current state xState of the Hacker Agent. This
attribute is analyzed in the calculation of the further actions in some attacks of class R
(“Reconnaissance”);

§ SMname – name of the state machine realized by Hacker Agent at the current step;
§ xState – current state of the state machine;
§ yState – state into which the state machine makes the transition at the current step.

2) Log. This notion is responsible for logging the attack. Each record of the log is a piece of
information about the used state of the state machine; it includes the following data
(attributes):

 59

§ S – name of the used state;
§ ID – the unique number of the used state of the state machine (this attributed is

connected to the attribute ID of the notion LogResult);
§ Description – description of the state (with the exception of intermediate states); if the

state is terminal, then action description is specified, if it is non-terminal, then the
description of attack class (0th, 1st or 2nd level) is recorded;

§ A – name of the parent state machine, i.e. the state machine that generated the current
action with the name S;

§ DebugInfo – auxiliary information that specifies the chain of transitions leading to the
current state, starting from the state machine A (“Network attack”). For example, for
the state NS that provides for the attack action “Collection of additional information
from DNS-server”, DebugInfo will be as follows: A => R => CI => NS, where CI
(Collecting Additional Information) is a state machine (specified by attribute A), in
which the action NS is generated. The state machine model of Hacker Agent operation
is represented in greater detail in section 2.4.2;

§ Type – type of state of the state machine: 0 – intermediate, 1 – terminal, in which the
attack actions are performed, 2 – non-terminal (leading to other states). For example,
the abovementioned state NS is terminal (Type=1), for in it the attacker’s actions are
carried out, and the state CI of the state machine R is non-terminal (Type=2), for in it
no action are carried out to implement the threat and only other states are generated;

§ C – additional comments;
3) LogResult. Stores information obtained from the attacked network in each used state with

the unique identifier ID. If the attacker’s action were unsuccessful in the used state, that
state is not recorded in LogResult, and is only recorded in the example of the notion Log.
If the attacker’s actions in the used state were blocked by a firewall, then the
corresponding message is stored in the attribute FailResult. This notion is directly related
to the attack implementation visualization component (considered in section 2.4.6).

4. Notions used for exchange of information between Hacker Agent and attacked Network Agent

through their attributes:
1) Attack.

This notion is considered in great detail in section 2.3. Here, we will list those attributes of
this notion that need to be determined in sending of messages by Hacker Agent to the
Network Agent:
§ Name – name (abbreviation) of attack action;
§ ip – IP address of attacked host or network;
§ IsNet – parameter that indicates to the attacked Network Agent that the attack is a

network attack (IsNet=1), or is directed at a separate host (IsNet=0). If it is a network
attack, it will include all hosts of that subnet, and the IP address will look like this:
x.x.x.0;

§ HackerIP – hacker’s IP address; is necessarily sent to the Network Agent, though
may be false;

§ SubClass0, SubClass1, SubClass2 – attributes that tell the Network Agent the
subclass of the hacker’s attack action. These attributes are necessary to eliminate
ambiguous interpretation of attack by Network Agent when only the abbreviation of
the attack, specified by the attribute Name, is used. The same attack (attack action)
may be present in different attack subclasses, but may have different implementations
and response models.

2.4.2. State machines model of the Hacker Agent operation

In this paragraph the Hacker Agent states machine model is considered, a general structure of
nested state machines (functional and communicational) is defined, and Hacker Agent actions (being
fulfilled inside state machines) are determined by scripts language.

 60

The state machine based model of Hacker Agent operation is realized in the component
AttackModel. This component is used to specify the set of different classes of computer network
attacks in the form of a family of state machines.

The following two principles have been embedded into the component AttackModel in its
development:

1. The starting point of forming a specific attack scenario is the attack task specification or a top-
level attack goal, with the “Malefactor's intention” being the most meaningful element of the attack
task specification.

Twelve different malefactor’s intentions in realizing computer network attacks have been
identified that can be included in the attack task specification:

• Identification of Hosts (IH);
• Identification of Services (IS);
• Identification of Operating system (IO);
• Resource Enumeration (RE);
• Users and groups Enumeration (UE);
• Applications and Banners Enumeration (ABE);
• Gaining Access to Resources (GAR);
• Escalating Privilege (EP);
• Confidentiality Violation Realization (CVR);
• Integrity Violation Realization (IVR);
• Availability Violation Realization (AVR);
• Creating Back Doors (CBD).
The first six intentions are associated with the top-level intention “Reconnaissance” (R), and the

other six – with the top-level intention “Implantation and threat realization” (I).
Top-level intentions may alternate and repeat themselves. This is embedded in the state machine A

(Network Attack) that belongs to the topmost level.
2. The entire set of attack scenarios can be achieved through the sequential decomposition of the

malefactor’s intentions into sub-intentions and different classes of attacks (attack actions). This
process of decomposition is fulfilled until concrete actions of the attacker in relation to the attacked
network (host) are represented on the lowest level. This level, depending on the goals of attack
modeling, can be specified both by the symbols of the attacker’s actions and the concrete network
packets, OS commands, etc.

After forming the hacker’s action the corresponding communicational state machine starts to
work. This state machine transmits the hacker’s action to the attacked Network Agent as a message or
a set of messages.

The sequence of the attacker’s actions, derived from the initial attack task specification as well as
the logic of the functioning of the family of state machines and the used probabilistic models, is the
concrete realization of a class of possible attack scenario variants.

The basic functioning unit of the component AttackModel is a state machine.
All set of state machines consists of two classes:
• Functional state machines, and
• Communicational state machines.
Functional state machines make decisions about the Hacker Agent’s next steps and prepare attack

actions. Communicational state machines transmit prepared messages to the Network Agent and
process received messages.

The list of constructed state machines is given in Tab.2.4.1. Their total amount is 48, including 33
functional and 15 communicational state machines. The entire set of state machines forms a hierarchy
of interrelated state machines. This hierarchy is represented in Fig.2.4.1 as the interaction diagram.

In the diagram, the connections between state machines designated by arrows point out the fact
that the upper state machine creates the bottom one (under the arrow) in one of its states. Connections
designated by the square with a “P” inside designate the delegation of control to the state machine that
has the square. The delegation may be done both ways, for example, like between the state machines R
and I.

 61

Tab.2.4.1. Description of state machines

Symbol Description
A Network Attack
ACE Access Commands Execution and connection closing
ABE Applications and Banners Enumeration
ABE_MSG Communication automat ABE
AVR Availability Violation Realization
CBD Creating Back Doors
CBD_MSG Communication automat CBD
CI Collecting of additional Information
CI_MSG Communication automat CI
CSS Combined IP spoofing on SunOS v.1.4.x
CT Covering Tracks
CT_MSG Communication automat CT
CVR Confidentiality Violation Realization
CVR_MSG Communication automat CVR
DCSR Direct Connection to Shared Resource
DS Denial of Service (DoS) attack
EKV Exploitation of Known server application Vu lnerabilities
ENS Enumerating NetBIOS Shares
ENS_MSG Communication automat ENS
EP Escalating Privilege
EP_MSG Communication automat EP
GAD Gaining Additional Data
GAD_MSG Communication automat GAD
GAR Getting Access to Resources
GAR_MSG Communication automat GAR
I Implantation and threat realization
IAUS Identifying Accounts with user2sid/sid2user
IBSD Installation of Backdoor Server Daemons and Trojans and access to a host
IH Identification of Hosts
IH_MSG Communication automat IH
IO Identification of Operating System
IO_MSG Communication automat IO
IS Identification of Services
IVR Integrity Violation Realization
IVR_MSG Communication automat IVR
PSA Password Stealing Attack and access to a host
R Reconnaissance
RCE Registry Content Enumeration
RE Resource Enumeration
RE_MSG Communication automat RE
RRM Remote Registry Manipulation and access to a host
SPIH Port Scanning during Host Identification
SPIS Port Scanning during Identification of Services
SPIS_MSG Communication automat SPIS
TR Threat Realization
UE Users and groups Enumeration
UE_MSG Communication automat UE
UFPS Use of File and Print Sharing

The latest state machines in sequences are communicational state machines.
The delegation occurs on the level of states of the state machine that has created these state

machines. In other words, the delegation of control on the state machine level (for example, between
state machines R and I) is a transition between the states of the state machine of a higher level (in this
case, state machine A), whose states R and I call the corresponding state machines R and I.

 62

A

R I

IH IO RE UE ABE

CI

IS

SPIH SPIS

IH_MSG

IAUS RCE

ABE_MSGUE_MSGRE_MSGCI_MSG

ENS

ENS_MSGSPIS_MSG IO_MSG

GAR EP GAD TR CT CBD

DCSR IBSD PSA CSS CVRAVR IVR

UFPS RRM EKV ACE DS

CT_MSG CBD_MSGIVR_MSGCVR_MSGGAR_MSG

EP_MSG GAD_MSG

P P

P

P

P

P

P
P P P

P

P P P

P

P P P

P P

P

P P

Fig.2.4.1. State machines interaction diagram

 63

In case of two-way delegation, like in case of R and I, in the parent state machine A, two
transitions occur between the states R and I: R => I and I => R.

States and transitions between states are the main elements of a state machine. Each state machine
has a single entry point and exit point.

The states are divided by their functional load into three types:
• non-terminal,
• terminal, and
• intermediate.
Non-terminal states are the ones in which the state machines are created (hereinafter the created

state machines are called nested state machines).
Terminal states are the ones in which concrete actions are performed to realize the attack on a

computer network (host).
Intermediate states are auxiliary linking and differentiating nodes, in which no actions to realize

attacks are performed and no nested state machines are created.
To each state machine, its own transition table is mapped. It is used for transition under the current

condition from one state into another. According to the Booch notation, only one unconditional
transition into the first meaningful state is possible from the state machine’s entry point. In order to
observe this rule in a case when several transitions have to be specified from the entry point,
depending on the essence of the attack, an auxiliary intermediate state is created as the first
meaningful state, from which several transitions are realized.

Three kinds of action are possible in each state of the state machine:
• Entry Action,
• Do Action,
• Exit Action.
Entry Action is performed upon entering the state, Do Action – within the state, and Exit Action –

upon exiting the state.
Actions are specified as collections of scripts performed by the component Engine. The scripts

describe the logic of a state machine’s behavior in each separate state (flexible behavior). MAS DK
Script language is used to describe behavior (for scripts representation).

A script interacts with the application domain ontology component by calling the notions (entities)
and their attributes, calls the predefined and unique methods of each of the functions and the global
functions, and also calls other scripts.

Scripts that describe the actions Do Action essentially form the logic of attack scenarios
implementation. Through complicating these scripts, the functionality of the attack simulator
prototype is developed, including the realization of the functions of analyzing the information received
from the attacked network (host) and the interaction with it.

Scripts that describe the actions Exit Action form the log of the realization trace of the current
attack scenario and the creation of nested state machines in non-terminal states.

The state machines model component is initialized in the state A of the basic state machine A, and
finishes its work in the state End of the same state machine. Upon completion of its work, each state
machine delegates control to the state of the state machine from which the machine that has just
finished work was called (created), and thus control is always returned to the basic state machine.

The examples of state machines are represented in Appendix 1. These are the following state
machines: functional state machines A (Network attack), R (Reconnaissance), I (Implantation and
threat realization), IH (Identif ication of Hosts), SPIH (Port Scanning) and communicational state
machine IH_MSG. The more detailed descriptions of all state machines (except for communicational
state machines) nave been presented in the Interim Report #3 [IntRep#3].

The scheme of description of each state machine is as follows:
1. Identifier of the node to which the state machine corresponds. The identifier reflects the

nestedness level in relation to the basic state machine, and the last number represents the sequence
number of the state machine’s state from which the state machine in question is created.

 64

2. State machine diagram. This diagram depicts the state machine’s rigid behavior. Here, all the
states of the state machine are listed (terminal, non-terminal, intermediate), as well as the transitions
between them.

3. Main parameters of the state machine. Here the conceptual part of the state machine diagram is
represented as a table, including the intentions this state machine realizes.

4. Parameters of transitions. Here, all the transitions between the states of the state machine are
recorded as a table, where:

N is the sequential number of the transition;
CS (Current State) – the state from which the transition is made;
Script Name – name of script (scripts) executed on this transaction (scripts can be common for

several transactions; as a rule, these transitions form a separate probabilistic group);
NS (Next State) – the state into which the transition is made;
Cond (Condition) – the sequential number of transition condition (may be absent); transitions with

the same CS and NS but with different conditions form different probabilistic groups;
Intentions – section in which the probability of each transition being chosen (in its probabilistic

group) is stated depending on the intention; the number of intentions actualized in the state machine is
recorded in item 3 of the state machine description outline (main parameters of the state machine); in a
case when the intention is not considered in the state machine, the column corresponding to that
intention will contain zeros; in the intentions section, the line with probability recalculation factors Kj
(j∈[1..12]) determined for each transition and depending on intentions is highlighted with yellow color
(these factors may be absent, which implies Kj = 1, where j is the number of intention); all
probabilities within the probabilistic group are recalculated after the choice of a transition with factor
k≠1 within that group, in order to increase (decrease) the probability of this and all the other
transitions within the probabilistic group being chosen; probabilistic group is a set of transitions whose
total probability of being chosen by each of the intentions equals 1 (both at the start of the
component’s operation and after the recalculation of probabilities); the probabilities recalculation
mechanism, as well as the probabilistic model and its implementation are considered in greater detail
in paragraph 2.4.4. The group of transitions may consist of one transition, and in this case, this
transition is considered unconditional – the probability P of this transition being chosen equals 1.

5. Transition conditions. Here, each logical condition specified in the section Cond among
parameters of transitions. This logical condition is present in the scripts that describe the actions Do
Action assigned to the states from which the transitions are performed by the specified condition
numbers (at least one transition is performed). If for all the transitions from the given state the section
Cond is empty, this means that only unconditional transitions and only based on the choice by
probability can be performed into all the states in the table of trans itions from the current state. It is
noteworthy that when choosing the transition, the logical condition has priority over the probabilistic
one. This means that before making the probabilistic choice, one first has to position oneself in
relation to the probabilistic group. As stated before, groups of transitions with the same NS and CS
states but with different logical transition conditions form different probabilistic groups (the absence
of logical transition conditions also distinguishes groups of such transitions from groups with logical
conditions). This table (SrcProb) is mapped into the hacker’s database (Hacker.mdb). At each
initialization of the component, all the recalculated probabilities are reset to the initial state. This is
done by introducing additional fields in the table, in which the current value of probability for each
intention and different variants of transitions is stored. Thus, at the initialization of the component all
the current probabilities are replaced with the corresponding values of initial probabilities that do not
change in the process of the prototype operation.

6. Scripts. Here, the full texts of scripts specified in the section Script Name in the transition
parameters table are represented. As noted above, scripts are codes written in the MAS DK Script
language compilable and executable in the process of the prototype operation. Scripts are represented
in a table template. One template can describe one state and include: Entry action; Do action; Exit
action; Transitions.

The component Transitions has the following fields:
• condition (the condition for transition from the current state to the next state). Do not confuse

with Cond from transition conditions. In this case, the condition indicates the instance of

 65

transition from state machine’s current state to the next state. Thus, rigid behavior of each
separate state machine in terms of MAS DK environment is specified;

• next state;
• action.
In all the templates of this state machine description scheme, there are no scripts describing

actions for transitions, because for the description in the MAS DK environment, they were not
necessary. The scripts describing Exit actions are used only in communicational state machines in
states, where the response information from the Network Agent is received. If the last message
received from the network contains a dialog completion marker, then the state machine finishes its
work.

The state machine descriptions contain descriptions of scripts that are not directly associated to
any state but are simply called from other scripts. Because of the congruence of the character of
actions performed, such common scripts are positioned in the template in the section Do action or Exit
action.

2.4.3. Component of the attack task specification

This component realizes a set of user interfaces for attack task specification by user (see paragraph
1.3.1).

The main elements of attack specification are as follows:
• Intention – malefactor’s intentions to realize the attack scenario;
• Hacker Configuration – configuration of the Hacker Agent;
• Known Information about attacked Networks, including its address;
• Object Of Attack – attack object defining the target of attack in more detail.
For the component’s initialization, it is necessary to choose the element “Hacker Agent” in the

window of the portal “AILab Agent Library :: Portal Component” after the loading of the Hacker
Agent and the Network Agent, and there to press the button . This action launches the user interface
of that agent.

Fig.2.4.2 shows the main window of the user interface of the attack task specification component,
which is displayed automatically after the Hacker Agent’s initialization.

This window is initialized from a pre-determined script Start_interface of the state machines
model of the Hacker Agent. This script serves for the initialization of the user interface of the applied
problem during run-time.

Let us describe the main elements of the main use interface window of the attack task
specification component.

1. Intention.
The intention is the high-level goal of the attack. The prototype uses 12 intentions in total, which

could be conditionally broken into 2 classes: (1) reconnaissance and (2) implantation and threat
realization.

The attacker’s intentions are described in more detail in paragraph 2.4.2, where the state machines
model operation is considered.

2. Hacker Configuration.
The settings of the Hacker Agent include the following elements:
§ Real IP-address – Hacker Agent’s real IP address. This field is mandatory. It is necessary

for determining the attack scenario on both macro-level and micro-level (for forming
network packets on the level of TCP/IP protocol stack);

§ Spoofed IP-address – Hacker Agent’s spoofed IP address. This field is not mandatory,
unless attacks have to be generated on micro-level;

§ Password file – path to the file with a list of words for guessing the password. This file is
used only in generating attacks “Password Guessing” (PG) and “Password Cracking” (PC)
on micro-level;

§ Save preceding attack realization – the tag that determines whether the results of the
previous attacks will be saved. When this parameter is initialized, the attack specified by

 66

this component will be executed using the knowledge base formed in the previous
realizations of attacks (not necessarily with the same intentions). All logs and traces are
also saved in this case;

§ Generate attacks on net protocol level – the tag that determines whether the attack will be
generated on macro-level. When this parameter is initialized, besides the simulation of
attack on macro-level, network packets are generated on the level of TCP/IP protocols
stack. The process of attack generation on macro-level is described in more detail in
paragraphs 2.4.5 and 2.6.2.

Fig.2.4.2. Example of main window of the user interface of the attack task specification

3. Known Information about attacked Networks.
Information specified in this section determines the Hacker Agent’s knowledge base about the

attacked network. The IP address of the attacked network (or host) is the attribute of this section,
which in the current version of the program prototype has to necessarily be specified on the attack task
specification stage. Besides the IP address, the Hacker Agent may have no additional information
about the attacked host (network). In the series of attack generation experiments, this situation is only
possible if the parameter “Save preceding attack realization” is turned off.

To specify additional information about the hacker’s knowledge of the attacked network (hosts),
the button “Define Known Information” should be pressed, after which a dialog window is displayed
(see example in Fig.2.4.3.) In this dialog window, the user is given an opportunity to load the network

 67

configuration from the database, to save the current configuration, and modify parameters of networks
or hosts by using the buttons Create, Modify and Delete.

Fig.2.4.3. Example of dialog window specifying the hacker’s knowledge of the attacked network (hosts)

Fig.2.4.4 shows an example of a dialog window initialized in modification of the information
about the host known to the hacker. It is noteworthy that the program module responsible for
configuring the information about the attacked network known to the hacker, is also used on the side
of the Network Agent for configuring the network to be attacked, itself (see paragraph 2.5.2). Here,
the sets of input data are different for the network and Hacker Agents. They specify the assumed
information about the attacked network for the Hacker Agent, and the real configuration of the
attacked network for the Network Agent.

Fig.2.4.4. Example of dialog window specifying the hacker’s knowledge of the attacked host

The following are the main elements of a single host configuration dialog window:

 68

1) Common Settings – common settings including IP address, name of the host, as well as the list
of active ports;

2) Security Settings – security settings for the host, including the following parameters:
§ Remote Registry;
§ Null Sessions – whether null sessions are allowed in the host registry (only for Windows

platforms);
§ Password Protected Login – a parameter that signifies presence of a password to enter the

system. By clicking on the “User Config” button, one can change the user settings (see
paragraph 2.5.2 for more detail);

§ Sharing Files and Printers – network configuration parameter responsible for the
possibility of sharing files and printers of this host in the local network (if the host is in a
network). By using the “Configure” button, one can additionally configure the sharing
parameters;

3) DNS settings – settings of DNS parameters. In this section, there should be:
§ Host is Domain Name Server – parameter indicating if the host is in fact, a DNS server or

not. If it is, its detailed configuration is available;
§ Domain Name – the host’s domain name (pertains to all hosts of a local network

organized by the domain principle);
4) Operating System – parameters of the host’s operating system, including platform

(Windows/Unix), type (name) and version of the OS;
5) Running Applications – information on the applications running on host;
6) Firewalls – list of firewalls used that are known to the hacker. In this section, firewalls are

only enumerated;
7) Shared Resources – list of shared resources, with resource name and path;
8) Trusted Hosts – trusted hosts for that specific host, with name and IP address.
The windows of the user interface used for configuring networks and hosts are represented in

greater detail in paragraph 2.5.2.
One should notice that after the information about the attacked network (hosts) that is known to

the Hacker Agent has been described, all information is stored in the Hacker Agent’s database in the
tables that are storage for instances of notions of the application domain ontology of the Hacker Agent
(see paragraph 2.4.1).

4. Object of Attack. This element of attack task specification serves for specialization of the
object of attack’s parameters, such as files, running applications, user accounts, etc. This element is
not implemented in the current version of the prototype.

After specification of data for the prototype’s operation, they are recorded in the table Objective of
the Hacker Agent’s database. Here, the attack task specification component terminates its operation,
and control is delegated to the Hacker Agent’s state machines model.

2.4.4. Component calculating probabilities of Hacker Agent’s actions

The component calculating probabilities of agent-hacker’s actions intend for modeling of
probabilistic (stochastic) behavior of Hacker Agent state machine model under decision-making
regarding further actions.

The input data for the component’s operation are entered into the table SrcProb of the hacker’s
database MainHack. Due to the table being too cumbersome, having about 40 fields and more than
550 records, we will describe the fields of this table below without specifying the concrete values.

Fields of the table SrcProb:
(1) ClassAuto – filed of the type string that contains the (abbreviated) name of the state machine,

in which the probabilistic transition occurs that corresponds to one record in the table;
(2) SrcState (source state) – the current state of the state machine ClassAuto , from which the

probabilistic transition occurs that corresponds to one record in the table;

 69

(3) DstState (destination state) – the state of the state machine ClassAuto, into which the
probabilistic transition occurs from the current state SrcState;

(4) Condition – number of the logical condition for the transition from the state SrcState into
DstState of the state machine ClassAuto ; the value Condition = 0 means the absence of a
logical condition for the transition that corresponds to the record in the table;

(5) Prob_1 – Prob_12 – fields of the type double, each one of which contains the probability of
transition from the state SrcState into the state DstState of the state machine ClassAuto when
the logical condition Condition is met for each of the 12 intentions of the attacker. If the value
of the field Prob_x, where x ∈ [1..12], equals 0, this means that for the intention number x
there are no transitions from the state SrcState into the state DstState in the state machine
ClassAuto when the Condition is met. On the state chart in the state machine descriptions in
this case there is no connection between the states that correspond to SrcState and DstState in
the table SrcProb;

(6) K_1 – K_12 – recalculation factors for current probabilities (xProb_1 – xProb_12) for all
transitions from the state SrcState of the state machine ClassAuto with the Condition being
met. These transitions (from one state of the state machine into all the other states, with the
Condition being met) form separate probabilistic groups divided by thick horizontal lines in
the transitions parameters tables of the state machines descriptions. The recalculation of
probabilities is performed after the transition from the state SrcState into the state DstState has
been chosen and performed. The role of the factors in modeling the probabilistic behavior of
the state machine model and the algorithm for probability recalculation are further considered
below. The factors, as well as probabilities, may assume any values between zero and one;

(7) xProb_1 – xProb_12 – current probabilities for each of the attacker’s 12 intentions. At the
launch of the state machine model, all Prob_j = xProb_j, where j ∈ [1..12]. In the process of
operation the current probabilities vary, but only in regard to the actualized intention j. One
can get an impression of the fields for the current probabilities being redundant. In fact, since
in the duration of one run the intention initially specified in the component TargetObjectiv
does not change, one field should be enough to store the current probabilities. The redundancy
is built in on purpose, in order to provide the possibility of restarting the prototype with the
parameters obtained at the previous stage. Thus, at the restart, the intentions can be either
repeated from the previous start, or made new. A variant with multiple intentions specif ication
may be realized.

Before we describe the component, let us define the notion of “probabilistic group” used by the

authors of this project. A probabilistic group is a group of transitions from the source state of the state
machine to all the other destination states, and the set of destination states may include the source
state, under the condition that all transitions are only possible if the certain Condition is fulfilled.

The sums of probabilities of all such transitions for each of the 12 intentions equal 1 or 0. The zero
sum implies that for this intention, there are no transitions from the source state into the destination
states represented in the probabilistic group. This also implies that for this intention, there are also no
transitions into the source state from any other states. Thus, a rigid behavior of the state machine
model is specified on the database level.

The following two basic algorithms have been realized in the component:
1) the algorithm for choosing the transition from the source state Throwing_dice;
2) the algorithm for recalculating (normalizing) the probabilities within a probabilistic group

Normalize_prob.

Transitions between states are deterministic and unique. The uniqueness of a transition is
determined by the following rule: “there are no two transitions within the same state machine from the
same source state into the same destination state with the same number of the logical condition of
transition”.

 70

Let us consider the possible variants of relationship between two different transitions A and B
within the same state machine:

SrcState (A) = SrcState (B), DstState (A) = DstState (B), Condition (A) ~= Condition (B) – the
transitions belong to different probabilistic groups;

SrcState (A) = SrcState (B), DstState (A) ~= DstState (B), Condition (A) ~= Condition (B) – the
transitions belong to different probabilistic groups;

SrcState (A) = SrcState (B), DstState (A) ~= DstState (B), Condition (A) = Condition (B) – the
transitions belong to the same probabilistic group;

SrcState (A) ~= SrcState (B) – the transitions belong to different probabilistic groups with any
values of DstState and Condition.

Thus, the uniqueness of the transition within a probabilistic group can be determined by the name
of the destination state.

The attributes m_Prob_limit_2 and m_Prob_limit_1 for the current transition (2) and the previous
transition (1) are sums of all probabilities of transitions including the probability of the transition itself
(2 – for the current one, 1 – for the previous one).

Let us clarify this by an example. Let us assume there are 3 transitions (1, 2, and 3) that form a
probabilistic group with the corresponding probabilities of 0.1, 0.3, and 0.6. For the transition 1,
attributes m_Prob_limit_2 and m_Prob_limit_1 will equal 0 and 0.1 accordingly, for the transition 2 –
0.1 and 0.4, for the transition 3 – 0.4 and 0.6. These probabilistic limits are used in the first algorithm
for the proportional “throwing of the dice” (choosing the range through the random number method
between 0 and 1).

A probabilistic group may consist of one transition. In this case, two variants are possible for the
probabilities and, accordingly, for the values of probabilistic limits for such transition:

• either all three attributes equal 0 (in this case, there is no such transition for this intention),
• or all three attributes equal 1 (the transition is probabilistically uncondit ional).
Attributes m_Obj, m_SM, m_xstate and m_condition correspond to the number of intention, the

abbreviated name of the state machine, the source state, and the number of the logical condition for the
transition (see a description of the notion Step of the application domain ontology). They are needed
for choosing the necessary probability from the table and the corresponding recalculation factor.

It is noteworthy to describe the functions Throwing_dice() and Normalize_prob(), which realize

the mechanism of the probabilistic choice and the normalization of transitions probabilities within a
probabilistic group, need to be considered in more detail.

The function Throwing_dice operates probabilistic limits m_Prob_limit_1 and m_Prob_limit_2 for
each of the transitions that form the probabilistic group. First, a random fractional number x between 0
and 1 is generated. Then, for each of the transitions, the condition for this number fitting within the
range [m_Prob_limit_1 .. m_Prob_limit_2] is checked. As soon as this condition is met for one of the
transitions from the probabilistic group, this transition is chosen.

Thus, for the example of three transitions considered above, in case the random number equals
0.3958, the transition with the lower and higher limits of 0.1 and 0.4 will be chosen, i.e. transition 2.

Probabilities reduction (normalization) function Normalize_prob(CString Trans_Name) is called
every time after the transition has been chosen. The normalization consists in multiplying the current
probability xProb_j of the chosen transition (for convenience, the variables here are represented by the
corresponding filed/record values in the table) by the corresponding factor K_j.

Later, all probabilities of the intention j for all transitions of the probabilistic group, including the
new probability of the chosen transition, are summed up.

After that, all probabilities of the intention j for all the summarized transitions are divided by that
sum. The resultant probabilities are updated in the table SrcProb. The resultant probabilities after this
procedure equal 1 in sum, and consequently, form a probabilistic group. Thus, we can consider the
probabilities of transitions for this probabilistic group normalized by the factor K_j of the chosen
transition for the intention j.

Let us consider an example of the normalization mechanism at work. Let us suppose there are the
following values of probabilities and factors:

 71

 1 2 3
P 0.1 0.3 0.6
K 0.5 0.4 0.5

Let us assume that transition 2 was chosen at the previous step. Let us calculate the new values:
1) P2=0.3*0.4 = 0.12.
2) ∑Pj = 0.1+0.12+0.6 = 0.82, j∈1..3.
3) P1=0.1/0.82=0.1220; P2=0.12/0.82=0.1463; P3=0.7317.
Thus, P1+P2+P3 = 1, which was to be proved.
If the factor K=1, then the current probability of the chosen transition does not change, and

consequently, the current probabilities of the rest of the transitions from the probabilistic group do not
change.

We have not clarified so far what is the purpose of probability recalculation factors within the
probabilistic groups. The thing is that in the course of the “unfolding” of an attack scenario, a state
machine model may be in the same state more than once.

This corresponds to the actions of a hacker who can use the same exploit several times in his
attack. Here, he either succeeds in realizing his intention (the exploit is effective) or discontinues
trying to realize the attack through using this exploit because he understands that it is not likely to
yield any results in this session. The exploit in question can be inappropriate for the specific scenario,
it can contain program errors, it can seldom work, etc. Depending on the circumstances, the hacker
may use this exploit very seldom or very often.

The probability of the hacker making the decision to stop using the exploit completely diminishes
with each new usage. At the same time, the probability of the hacker using another exploit from the
probabilistic group or abandoning these exploits increases proportionally. The diminishing (increase)
of probabilities is achieved through using the factor K.

2.4.5. Network traffic generator

This component is designed to realize the lower (“physical”) level of attack generation within the
attack simulator prototype.

In the current version of the prototype, the network traffic generation is only implemented for
certain network attacks. Those attacks are picked so that they represent different classes of attacks and
(or) malefactors’ intentions specified in the application domain ontology. The authors have not tasked
themselves with implementing all attack actions on lower level. The main emphasis has been made on
developing the general approach to generating the network traffic in using the attack simulator
prototype and assessing its feasibility and effectiveness.

To assess the prototype’s effectiveness, three different classes of attack have been chosen, for
which network packet generation was realized:

1) Port scanning, including subclasses “Port Scanning” (SPIH) and “Port Scanning during
Identification of Services” (SPIS). On the lower level of attack class “Port Scanning” (SPIH), attacks
“TCP connect scan” (STIH) and “TCP SYN scan” (SSIH) were implemented. On the
lower level of attack class “Port Scanning during Identification of Services” (SPIS), attacks TCP
connect scan” (ST), “TCP SYN scan” (SS), “TCP FIN scan” (SFI), “TCP
Xmas Tree scan” (SX), “TCP Null scan” (SN), “UDP scan” (SU), “Half
scan” were implemented;

2) Denial of service, based on the implementation of SYN flood (SF) attack;
3) Password cracking through guessing password, based on the implementation of attacks

“Password Guessing” (PG) and “Password Cracking” (PC).
Let us show the place of attacks implemented on lower level in the fragment of the domain

ontology “Computer network attacks”. The computer network attacks domain ontology represents
knowledge specified in terms of the basic notions of the computer network attacks domain. The shift
of the corresponding notion shows a dependence of a shifted notion from the situated above non-
shifted or less-shifted one. Each node of the ontology is identified in the following manner:

 72

<Node marker>: <Node name (interpretation)> (<Node identifier>)
(<Explanations (may be absent)>).

For example, the node “Network Attack” is identified like this: A: Network Attack (1),
where A is the node marker, Network Attack – the name (interpretation) of the node, (1) – the
node identifier.

The nodes of the ontology of different hierarchy levels have their own numeration, which is
performed at each level in sequence, left to right. The node identifier is set by placing in parenthesis
the numbers of the nodes of higher levels connected to this node and the number of this node separated
by space. These numbers are specified in the node identifier in sequence top to bottom in accordance
with the hierarchy of nodes of the ontology. E.g., a node specified “SPIH: Port Scanning (1 1
1 2)” has the identifier (1 1 1 2). This means that this node is connected top to bottom to the
nodes “A: Network Attack (1)”, “R: Reconnaissance (1 1)” , and “IH: Identification
of Hosts (1 1 1)”, and also possesses number 2 at its own level of the hierarchy.

The location of attacks “TCP connect scan” (STIH) and “TCP SYN scan” (SSIH) of
attack class “Port Scanning” (SPIH) is as follows:

A: Network Attack (1)
Part of

• R: Reconnaissance (1 1)
Part of

• IH: Identification of Hosts (1 1 1)
Kind of

• SPIH: Port Scanning (1 1 1 2)
(different hosts are scanned before detection of one “listening” port)

Kind of
• STIH: TCP connect scan (1 1 1 2 1)
• SSIH: TCP SYN scan (1 1 1 2 2)
• ...

The location of attacks “TCP connect scan” (ST), “TCP SYN scan” (SS), “TCP FIN

scan” (SFI), “TCP Xmas Tree scan” (SX), “TCP Null scan” (SN), “UDP scan”
(SU), “Half scan” of attack class “Port Scanning during Identification of Services” (SPIS) is as
follows:

A: Network Attack (1)
Part of

• R: Reconnaissance (1 1)
Part of

• IS: Identification of Services (1 1 2)
Kind of

• SPIS: Port Scanning during Identification of Services (1 1 2 1)
(as a rule, all significant for attacking ports are scanned)

Kind of
• ST: TCP connect scan (1 1 2 1 1)
• SS: TCP SYN scan (1 1 2 1 2)
• SFI: TCP FIN scan (1 1 2 1 3)
• SX: TCP Xmas Tree scan (1 1 2 1 4)
• SN: TCP Null scan (1 1 2 1 5)
• SU: UDP scan (1 1 2 1 6)
• HS: Half scan (1 1 2 1 7)
• ...

The attack SYN flood (SF) is located in the ontology in two places:

A: Network Attack (1)
Part of

• I: Implantation and threat realization (1 2)
Part of

 73

• GAR: Getting Access to Resources (1 2 1)
- For Unix / Linux
Kind of

• CSS: Combined IP spoofing on SunOS v.1.4.x (1 2 1 12)
Seq of
o DS: Denial of Service (DoS) attack (on trusted host) (1 2 1 12 1)
Kind of

• SF: SYN flood (storm of inquiries on installation of TCP-
connections) (1 2 1 12 1 1)

A: Network Attack (1)
Part of

• I: Implantation and threat realization (1 2)
Part of

• TR: Threat Realization (1 2 4)
Kind of

• AVR: Availability Violation Realization (1 2 4 3)
Kind of

• DS: Denial of Service (DoS) attack (1 2 4 3 1)
Kind of

• SF: SYN flood (storm of inquiries on installation of TCP-
connections) (1 2 4 3 1 1)

The location of attacks “Password Guessing” (PG) and “Password Cracking” (PC) is

as follows:

A: Network Attack (1)
Part of

• I: Implantation and threat realization (1 2)
Part of

• GAR: Getting Access to Resources (1 2 1)
- For Windows 9X, ME
Kind of

• DCSR: Direct Connection to a Shared Recourse (1 2 1 1)
Kind of

• UFPS: Use of File and Print Sharing (1 2 1 1 1)
Kind of

• PG: Password Guessing (for example, with BF tool of Legion) and
access realization (1 2 1 1 1 2)

A: Network Attack (1)
Part of

• I: Implantation and threat realization (1 2)
Part of

• EP: Escalating Privilege (1 2 2)
Kind of

• PC: Password Cracking (1 2 2 1)

Part of the necessary parameters for generating the network traffic is set at the attack task
specification stage. Those are the following parameters:

• hacker’s IP address;
• spoofed IP address;
• password file (for guessing password).
However, this is a very incomplete list of parameters. Such parameters as the port from which an

attack is realized, scanned ports range, timeouts, etc. are specified rigidly in the scripts of the state
machine model, from which the functions, which generate the corresponding traffic, are initialized.

The low-level attacks described above are implemented through three executable modules. The
library libnet-1.0.2f [Libnet] was used to implement these modules.

Let us consider the mechanism of parameterization of low-level attacks, as well as the order of
their initialization from the corresponding scripts.

 74

For each of the executable modules, three global exportable functions are provided in the kernel
component of the Hacker Agent. These are the functions _ScanPorts, _SYNflood and _FTPcrack.

Those functions are initialized from the scripts, in which the execution of the corresponding
attacks is stipulated. Parameters of all three functions are the input parameters, the result of the
functions’ operation is not checked, for it is not necessary – the traffic generated by he Hacker Agent
is not processed on the Network Agent side.

Let us describe the parameters of these functions.
1. The parameters of the function _ScanPorts(sType, sNetI, Objective_OwnIP, sHackerPort,

Objective_Host, sHostPorts, sTimeOut):
§ sType – scanning type;
§ sNetI – number of the network interface, which will be listened to in order to receive a

response from the scanned host. To obtain the numbers, one must use Windump –D . Usually
equals 2;

§ Objective_OwnIP – IP address and port of the host – source of packets, not used in TCP
connect scan;

§ sHackersPort – hacker’s port, from which the attack is executed;
§ Objective_Host – IP address of the scanned host;
§ sHackerPort – string of scanned ports enumeration (ports are separated by commas, dash “-”

denotes range of ports), for example: “1-23,80,143-1024”;
§ sTimeOuts – scanned host response waiting time (1 second by default).
2. The parameters of the function _SYNflood (Objective_ShamIP, Objective_Host, sHostPort):
§ Objective_ShamIP – spoofed IP address of the paskets’ “source”;
§ Objective_Host – IP address of the attacked host;
§ sHostPort – port of the attacked host, to which the packets are sent.
3. The parameters of the function _FTPcrack (Objective_Host, Objective_PSWfile, User_ID):
§ Objective_Host – IP address of the attacked ftp-server;
§ Objective_PSWfile – password dictionary file;
§ User_ID – name of one of the users of the attacked host, known to the hacker.
For each of the attack classes described let us consider examples of scripts used for initialization

of functions _ScanPorts, _SYNflood and _FTPcrack of network traffic generation (Tab.2.4.2,
Tab.2.4.3 and Tab.2.4.4).

Tab.2.4.1. Script of agent’s behavior in state SSIH of the state machine SPIH

Entry
Entry action

State action
Do action

SPIH_SSIH_Do

Step.xState="SSIH"; Step.Condition=0;
IF (Objective.LowLevel=1) THEN
 str="sS"; str1="2"; str2="1050"; str3="1-23,80,1000-1024"; str4="1";
 IF (Objective.Net!=1) THEN

 _ScanPorts (str, str1, Objective.OwnIP, str2, Objective.Host, str3, str4); ENDIF;
 IF (Objective.Net=1) THEN
 IF (KnownLANs.Exist(KnownLANs.IP=Objective.Host)) THEN
 REPEAT

 IF (KnownLANs.Exist(KnownLANs.HostIP!="") AND
 (KnownLANs.IP=Objective.Host)) THEN
 _ScanPorts (str, str1, Objective.OwnIP, str2, KnownLANs.HostIP, str3, str4);
 ENDIF;
 UNTIL (KnownLANs.Next());
 ENDIF;

 ENDIF;
ENDIF;
CALLSCRIPT (Do_script);

Transitions. Condition / Next state / Action

Exit action

 75

Tab.2.4.2. Script of agent’s behavior in state SF of the state machine DS

Entry
Entry action

State action
Do action

DS_SF_Do

Step.xState="SF"; Step.Condition=0;
IF (Objective.LowLevel=1) THEN
 str="21";
 IF (Objective.Net!=1) THEN
 _SYNflood (Objective.ShamIP, Objective.Host, str); ENDIF;
 IF (Objective.Net=1) THEN
 IF (KnownLANs.Exist(KnownLANs.IP=Objective.Host)) THEN
 REPEAT

 IF (KnownLANs.Exist(KnownLANs.HostIP!="") AND
 (KnownLANs.IP=Objective.Host)) THEN
 _SYNflood (Objective.ShamIP, KnownLANs.HostIP, str); ENDIF;
 UNTIL (KnownLANs.Next());
 ENDIF;

 ENDIF;
ENDIF;
CALLSCRIPT (Do_script);

Transitions. Condition / Next state / Action

Exit action

Tab.2.4.3. Script of agent’s behavior in state PC of the state machine EP

Entry
Entry action

State action
Do action

EP_PC_Do

Step.xState="PC"; Step.Condition=0;
IF (Objective.LowLevel=1) THEN
 IF (Objective.Net!=1) THEN
 IF (User.Exist(User.ID!=“”) THEN
 REPEAT
 _FTPcrack (Objective.Host, Objective.PSWfile, User.ID);
 UNTIL (User.Next());
 ENDIF;
 IF (Objective.Net=1) THEN
 IF (KnownLANs.Exist(KnownLANs.IP=Objective.Host)) THEN
 REPEAT

 IF (KnownLANs.Exist(KnownLANs.HostIP!="") AND
 (KnownLANs.HostIP=Objective.Host)) THEN
 IF ((User.Exist(User.IP= KnownLANs.HostIP)) AND (User.ID!=“”)) THEN
 REPEAT
 _FTPcrack (KnownLANs.HostIP, Objective.PSWfile, User.ID);
 UNTIL (User.Next());
 ENDIF;
 ENDIF;
 UNTIL (KnownLANs.Next());
 ENDIF;

 ENDIF;
ENDIF;
CALLSCRIPT (Do_script);

Transitions. Condition / Next state / Action

Exit action

Examples of parameters of network traffic generation programs, used to implement various

attacks, are shown in Tab.2.4.4. Examples of the source codes of these network traffic generation
programs are represented in Appendix 3. Logs of attack traces produced by calling these programs are
fixed in Appendix A4.2.

 76

Tab.2.4.4. Examples of parameters of network traffic generation programs
Attack
name Interpretation String of program calls

HS Half scan Scanports.exe –sS –i2 –h10.0.0.21.1050 –d10.0.0.12 –p”1-1024” –t3

SFI TCP FIN scan Scanports.exe –sF –i2 –h10.0.0.21.1050 –d10.0.0.12
–p”1-1024” –t3

SN TCP Null scan Scanports.exe –sN –i2 –h10.0.0.21.1050 –d10.0.0.12
–p”1-1024” –t3

SS TCP SYN scan Scanports.exe –sS –i2 –h10.0.0.21.1050 –d10.0.0.12
–p”1-1024” –t3

SSIH TCP SYN scan Scanports.exe –sS –i2 –h10.0.0.21.1050 –d10.0.0.12
–p”1-1024” –t3

ST TCP connect scan Scanports.exe –sT –i2 –h10.0.0.21.1050 –d10.0.0.12
–p”1-1024” –t3

STIH TCP connect scan Scanports.exe –sT –i2 –h10.0.0.21.1050 –d10.0.0.12
–p”1-1024” –t3

SU UDP scan

SX TCP Xmas Tree scan Scanports.exe –sX –i2 –h10.0.0.21.1050 –d10.0.0.12
–p”1-1024” –t3

SF SYN flood SYNflood.exe –s 11.0.0.21 –d 10.0.0.12.21
PG Password Guessing ftpcrack.exe –d 10.0.0.12.21 –f passwd.txt –u username
PC Password Cracking ftpcrack.exe –d 10.0.0.12.21 –f passwd.txt –u username

2.4.6. Visualization component of the attack scenario development

This component is used for the visualization of the attack generation process. The component
allows for graphic, “real-time” visualization of the “unfolding” of attack scenario.

Since there are some differences in implementation between attacks aimed at a network (all hosts
of a network) and at separate hosts, those attacks’ visualization logs are also different. Therefore,
below we will consider both variants of logs.

Fig.2.4.5. Example of visualization window of a single host attack scenario

jUDd HObriliB lulluaiin

(IhimJEJinj

M

■^rrnprrr^z
tn TiFFn4Dii
^n TiPFtiicr
Tt TrWCfTHi^iirdl^rtl .iniHd [v-iiPi
TE THD OiiinK-iiiimSI luiioil [i^iiii-i

FF ElfF^Ori in FTP HFI wmiWd'4 b■ll>^.
ME Q^ikud iitHinri iHnArhuiDME lUhr

n^ Ot-iJc^tf »ViT ■T-v'*>inn'CiHE-h"H
ME Q^ikrd •dBi'd riHT.ki'.riirDHEiii^

HE Dfcitiii'l aUii-4 iiiiifiOiiiiiiDHE .HhUi
ME lUuivd ■OTi'ii nHT-iiTiiiirCihE luhii
H^ Ofc'ic'■■*"* "■-■"1(^11 i^Ci"^ n^";
ME ILbni'.il .dri^i nHT-iiTiiiirCiM^ iph»|
H^ i:'**'^^^ "ip-^ "■-■«>■ 11 ■-■ OH^ tf^"
ME Qhcli'.d .lUli^d nnr-K^liuiDHE iphiij

M^ Ci^^'i'rnHmT ""T—>iii".i)H^ .mn|
HE Cifcimi'l otVi-id iiiiibK-iiiiiiDHE .□«□
ME Cdmrlvd .oruil nHT-KTiliUiCiHE iDhr'

ERE lillMl MFI l(IHH ihl'nFn

"K ''•fi U-^i El'"~Hk>i

FIE Iwnm UniiEiiniilFr

FH Fio"i "■'I'f rinr'Tm
TIBEi I H0CaiF-iHnBdih^ DI^IWJ

TIBB TdBCowKkmEnv Eiri4iq

FF OirWIiini FTP ■r'HfH riq "r«inn ||I|4 |4l«'l*vr'
FP l^irKlmm FTP ■■.« Hd KHWiainlllH a lUlnHki

Ir^F-i Puc Fi-lMttailB» 'EHh, Btat^ l(F vdiMinUEh
fl

T

Fhn Ef^-HvalZiiIICSI IE] HHI Hn i HoM IP Fto.hd ZIQ ^EB T
Fun Cd _.a|?l(l lUK IE] HnJ M«i ^ HmJ IF •ftlwm ?1lllSJS'
Fhn 1*^ >T.^|?l(i| £» 1^ HE-I Hn 4 H.U IP Dkn !\ i| 1^2?tfl
Fnn Ef^ ^dvmiDmn IE] Him Hdh A Hibl IP'ym ZIEIZZEir'
Fun E'^-_.a|^l(i I;:LA lUj Hul hMm i MiU ip irnii ^Hl^JSIfl

FTJ" E^ i-vypicii j;7n ifii H.<i Hj.. * H^i IP F»->fli jia IEH I

Fm Ef^ _-■ l^iOi^H ibj Mcii H«i ^ MiiJ IF MUn ilUI^S'
Fhi" E-rt ^■^ IZKii?; ^ 1^1 H..1 HK f HO HP Eii^a.Ji |ii£JtB
Fm E*^ jm-w[l\OI>:R \i\ Hill H«i ^ HQII IP inWa, ^IIIQSI?

Fm" [Tft-"*'|'ii) i ■; fi ihl Hwi -tr A Hnii iP al-n JHIIflflll
Fiiii E>A u^ I^IOI^n IE! HbliU. ViV uaid
Fm Era-HvalHEimS IE] L4iJ-Hr I^lr3i_

S

, , ■ HimtliUAdx i^rr-l dHQ^^EfJE^SrinE, HE EDL
■ HiiwiQ'nfeAn Wr* ihili^^KBli->DME,Ui|d

RlHVqdnAlfi^m.'M fH'l'^-'Hlf-:' DHE W«
T "-r^i.''! ' ' ' ''- L' iLT''iiliin DHEWId

:d" ,15 EDL EB_ r, EMHP-^n4nnil Rim
.NE EDL Bff r EHHP-mLh>i|l-C: «!"■•' R
^NBEDLBBHIEMXP^

DC N«.i*F%s ^-_ii ■ IP-rlli
T& TrWCmirrtnsrcli^lT .I™I«HI ri^i*"! I
HE Erfcitci'l atn-4 iiiiifiOiiiiiiDHE n.iH,
ME ELbiii'.il idri^i nHT-iiTiiiirEiM^ iphii.
HE E'fc'i^^^ mp 1^ "■-■v.^^ii.^EiHE f^" B Fm Erd-HvallKimS IE] HaD Ma_ 1 Hml IP F_d HDIQS Ij

R^E-rt —^sIZiCilEniBIH&"Hl-HH.MIP JM^ TimCfl.' IS

 77

Fig.2.4.6. Example of visualization window of a network attack scenario

This section does not deal with aspects of visualization of the network and hosts initial data
specification process; nor does it deal with the process of specifying the information about the network
(host) to be attacked that is known to the hacker. It contains only the description of attack visualization
windows.

The processes of macro-level attack generation experiments are considered in detail in paragraph
2.6.1, the network configuration processes – in paragraph 2.5.2, and the processes of entering the input
data about the attacked network into the Hacker Agent’s knowledge base – in paragraph 2.4.3.

The first example of the main demonstration window showing the development of attack on single
host is represented in Fig.2.4.5.

It depicts the fragment of attack development for the intention 7 (“Getting Access to Resources
(GAR)”), where the hacker’s IP -address is 161.43.201.148 and the host IP-address is 210.122.25.16.

The second example of the main demonstration window showing the development of attack on the
hole network is represented in Fig.2.4.6.

It depicts the fragment of attack development for the intention 8 (“Escalating Privileges (EP)”),
where the hacker’s IP-address is 161.43.201.148 and the host IP-address is 210.122.25.0.

In the indicated figures the attack information is divided on the following four groups:
(1) the attack task specification units are mapped in the left top of the screen;
(2) to the right of them the attack generation tree is visualized;
(3) the strings of generated malefactor’s actions are placed in the left part of the screen below the

attack task specification;
(4) on the right of each malefactor’s action a tag of success (failure) and data obtained from an

attacked host (a host response) are depicted.
The Attack task specification section contains the information generated by the component of the

attack task specification (see paragraph 2.4.3).

^HKlIl^hllH LVJ ri

TllE^^Kfc

Clh4mJEJin]

—^ V.>iUii^'^
K^isn-.^ PIT uiPi niBK mm i^

Ht FroB UHII EnniirFr

TIBB TiM (omtinBrnii Di.llivj
TEB& I'"'(im^iir.Hs'i^ OnO^
TIBE MknCiMitikiiiBaieiC\mmi
TIBB I HHCliwHikinflHwi* liiflO^

TIBB TitMCnwHinnflflWHi Iiid4ivj
TIB& THflCE-I^IIoriBD-^ Gira-^
TIBB TtMCOwBitanBrnii Di-Uivj
Trat 1 M—dm^^riH jwi^ Or«^
TH Pa..T4Hil^l[jM4l<jJi» l-iJiOiiiTUi :4 Thiui !■>■
IH FiiiFiidili.ai]'^.!! Qylr^Uiirm il Tiiin.
HP Ndkj DfikMHilnlid'--4] I--I

1^
|LIB7^ Id HimrvA^i.h'c An-i ibidK I BIIII: DH^ 11^ ^DI !■-■ 7 ETIIP I^- IIII[M»F^

[llS^S 1] Hin-ipfln^'""*™ «i limn- K^'"^^flU'tSr""-F-w Sk»J^-»H^
□137^ HuiiViUiKWQ Rnvc.bUh'^ lEI i] ^ 143 iL iiH libUii Fii« BbkUlrFK^
lLlSJE£^ RiiniQAl*ii>:n RxHiMitaullh 4lll]l Itf n p ■■ lUzOHi ^ ini, Ulilidl^ FH
D.I27Ma Hi-"<vM*lM(i- Uft-OkV- FTP.TVHM1. Ft^

ELIB^ES] Riiwwig^j^^n Rii« UIIIIE IEI 1^ I4fl a WIUIM liriskkii Fia^ BbUI I^Fir
|li;2Jt^ ninirciAltH*>K HfXpr^m. I» iQ3ll 14 ■ r h Htdtoi mice Bt44ilW Ft-

1
UP lUFhuks I
BBTH LirP" in E^if^ Inf^ Hnlir nkV-iili
Q" lUcf.. luPi.FVdFiE
>W ikmii iDpiiiFudfli
U^PF JM.^^'" *"^'^P^'-'>a"h
ViTlPF ^"■^«^ mil ili-bi li P.nhad Flp
HUD N'4iyT^< ^ "I^ m I
HUD ■liH^rni a IH ID
HUD M'4>:nn:"!« m '
HRF MQtl l4 IPUt?'^ IlIIIIVU Hu I Ii llFb
HRF 'U'rq U IP «■: dr riHhid Mil p IVFL liri
HRF M>I« U IP U»M '4 IITlW/4 H"H h' ■iP^ I"

[[Qi¥iKiir[br«
Bin dn:'!'in " la^H ikiP->li Uqp clilD
Ul LL^Q i4 luni EuU
END [I I-Q I^ (^f R ■

Tm
^DiaSIZ] Tl^i ittrft ■T'drn PHi-iii4ltal

7\D^zx.^a iP4KH-tf h n>:'id won i^ hAriim htqt n*

\l\aMiaii\ Cain

nliii¥ nl ^

 78

The graph showing the Attack generation tree represents a hierarchy of the malefactor’s intentions
and actions of different levels which correspond to non-terminal and terminal nodes. The non-terminal
high level nodes are depicted by white ellipses. The terminal nodes of the attack model correspond to
blue nodes. The brown node is the node of the current step of an attack scenario execution.

The transcriptions of the blue nodes can be seen in the section “Current non-terminal node”.
All non-terminal nodes are realized as state machines.
When the attack scenario is developing the strings with the following elements are appeared in the

white window:
• Braun strings in left part of the diagram are descriptions of the generated terminal

malefactor’s actions.
• The result of each malefactor’s action may be positive or negative. If the result is positive, the

square block (designating the tag of success) is green, and green comments are printed from
the right of the square block. The negative result means that the action was done
unsuccessfully. The negative result is possible in two cases: if the attack is blocked by a
firewall (in that case, the indicator and the comment are red); if the network response is
negative (the indicator is grey, the comment is absent). When the string “END: Attack is over”
is appeared, this means that a scenario realization is finished.

As shown in Fig.2.4.6, in the network attack implementation, each terminal action is performed on
each host of the network, and in case of success or the attack being blocked by the firewall, right after
the square block is the IP address of the host at which that terminal attack action was directed.

In case of success, the comment contains the decoding of the result obtained through that terminal
action of the Hacker Agent, and the information obtained from the Network Agent as a result of the
attacker’s action (that information may be absent).

In case of the hacker’s attack being blocked, the comment contains information on the reasons of
the attack being blocked (either an illegal IP address of sender or receiver was detected, or the
specified attack signature was detected), as well as the name of the firewall. If the attack was blocked
on the level of the network firewall, then the IP address of the network is placed at the start of the
comment.

After completion of the attack scenario the message “END: Attack is over” appears in the right
part of the white window.

It is possible to look through the scenario tree by moving between the strings on the diagram.
The current scenario realization can be finished by closing the main dialog window. After that it is

possible to begin another scenario.

2.5. Generic Network Agent

The generic Network Agent (NetAgent) consists of a set of component realized in MASDK, as
well as a number of external components realized in MS Visual C++.

The main components of the generic agent of the class NetAgent:
• a fragment of the general computer network attack application domain ontology that is used

by the Network Agent in its operation;
• state machines model that realizes Network Agent’s behavior scenarios;
• set of scripts for controlling the Network Agent in the process of forming a response to Hacker

Agent’s attack actions;
• a program module that realizes the necessary functions and user interfaces created outside

MASDK (including specification of computer network configuration).

2.5.1. Fragment of the ontology used by the Network Agent

Let us consider the basic notions of the computer network attack application domain ontology that
are used only by the “attacked computer network” agent. Let us introduce these notions by breaking
them into categories corresponding to the notions’ purpose.

1. Notions used for storing information about the network and each of its hosts:
1) LAN;
2) Host;

 79

3) TrusHosts;
4) SharedRes;
5) Domain;
6) DomHost;
7) DomLink;
8) DNS1;
9) DNS2;
10) User;
11) Security;
12) Service;
13) Appl.
Except for the notion LAN that contains network’s description (its IP address, subnet and
network name), all the other notions are utilized both by the Hacker Agent and the Network
Agent. The notion KnownLANs of Hacker Agent’s fragment of ontology unlike the notion
LAN, contains the only description of networks known to the hacker.

2. Notions that describe the model of potential hacker in terms of the application domain

(including the terms of the firewall model realization).
1) Attacks . Examples of this notion contain all the information necessary for the Network

Agent to form a response to each of the known attack actions (i.e. actions represented in
one of the examples of this notion). Attributes of the notion Attacks:
§ Appl – list of applications running on the host, for which the attack Name is executed.

For all the attributes of this notion, a rule is used in the program realization, in
accordance to which the attack Name is executed when only all the attributes assigned
in the example of this notion, which are conditions for the attack, are fulfilled. If the
attribute has not been assigned (is empty), then the condition related to that attribute is
not checked. This means, for example, that if for a certain example of the notion
Attacks the attribute OSplatform is not assigned, then the attack is executed on all
types of OS, provided all other conditions are met;

§ Class – class, to which the attack Name belongs. This attribute corresponds to the
attribute Class of the notion Attack ;

§ Name – name of the attack (attack action). This attribute is an abbreviation and
corresponds to the attribute Name of the notion Attack . This attribute is mandatory;

§ OSname – types of operating systems for which the attack Name is executed. Types
of operating systems are separated by commas in this attribute;

§ OSplatform – OS platforms for which the attack Name is executed. Operating system
platforms in this attribute are separated by commas (as noted above, this prototype
uses two platforms, Windows and Unix);

§ OSversion – OS versions for which the attack Name is executed; OS versions are
represented in a list and separated by commas;

§ Ports – numbers of open ports (1 through 65536) in a comma-separated list, for which
the attack Name is executed;

§ Prob – probability of execution of the attack Name if all other conditions are met.
This parameter is mandatory. If the attack is always executed with all the other
conditions fulfilled, then the value of this attribute is 1;

§ Security – the security parameters that are not related to the firewall settings. Values
of this attribute correspond to the names of the attributes of the notion Security (NS,
CFP, Psw, RR);

§ Service – network services and (or) protocols (protocol stack), for which the attack
Name is executed. The following protocols are used in the prototype: TCP, IP, UDP,
Telnet, NetBIOS and ICMP;

§ SubClass0 – 0th level subclass of the attack action Name;
§ SubClass1 – 1st level subclass of the attack action Name;

 80

§ SubClass2 – 2nd level subclass of the attack action Name. One of the attributes
SubClass0, SubClass1, SubClass 2 has to be assigned.

2) Firewall. This notion describes the firewall model. If one of the hosts of the network has a
firewall with the name that corresponds to the attribute Name of this notion, then in the
instance of the notion Host that corresponds to that host, or for the entire network LAN,
FirewallName = Firewall.Name. The following are the attributes of the notion Firewall:
§ Name – firewall name;
§ AttackName – abbreviated name of the attack in the firewall’s knowledge base;
§ Prob – probability of the execution of AttackName.

3) ForbiddenLocalAddr. Contains lists of forbidden local addresses and has the following
attributes:
§ FirewallName – firewall name;
§ LocalIP – forbidden local IP address for FirewallName;
§ LocalIPRange – range of forbidden local addresses for the firewall FirewallName.

4) ForbiddenRemoteAddr. Contains lists of forbidden remote addresses and has the
following attributes:
§ FirewallName – firewall name;
§ RemoteIP – forbidden remote IP address for FirewallName;
§ RemoteIPRange – range of forbidden remote addresses for the firewall

FirewallName.

The agent “attacked computer network”, upon receiving a message with the notion Attack
from the Hacker Agent, executes the following sequence of actions:
ü Checks the parameter ip of the incoming message (that specifies the address of the

attacked network or host) to see if that host has a firewall, or if there is a network
firewall (the notion Firewall). After that, if there is a firewall, it checks whether the
firewall blocks attacks whose signatures correspond to the attribute Name of the
incoming message, and checks the attribute HackerIP to see if it blocking messages
from the sender address of that message. If the first condition is fulfilled, then the
positive or negative response is formed according to the probability specified for that
attack. The negative response sites which firewall and from which host the attack was
blocked. This is done in order to ensure clarity of the attack trace for the user. If the
second condition is fulfilled, the attack is definitely blocked, and a notification of
deterred threat is sent. If neither condition is fulfilled (there is no firewall, or there is
no attack signature, or (and) the sender’s IP address is not forbidden), the agent
“attacked network” tries to form a positive response, for which it executes the second
action.

ü Checks for availability of the attack Name and, if the attack is found in the Network
Agent’s knowledge base (set of assigned examples of the notion Attack), checks the
conditions for the execution of that attack. If all the conditions are fulfilled, then the
probability of successful response is calculated, and, if successful, the response is
formed.

3. The notions used for exchange of information between the Hacker Agent and the Network

Agent through their attributes:
1) Attack. If a positive response is formed, the agent network duplicates all assigned

attributes of the incoming message in its response, and adds the attributes that are
presented in the model of the Network Agent’s reaction.

2.5.2. Component of specification of computer network configuration

This component is used for configuration of the attacked computer network through filing the
Network Agent’s knowledge base.

For the component’s initialization, it is necessary to choose the element “Network Agent” in the
window of the portal “AILab Agent Library :: Portal Component” after the loading of the Hacker

 81

Agent and the Network Agent, and there to press the button . This action launches the user interface
of that agent.

One should notice that the network should be configured (if necessary) before the state machine
model of the Hacker Agent is started. Moreover, the user interface of the Hacker Agent may already
be functioning (see paragraph 2.4.3), but the OK button has not been pressed. Otherwise, attack starts
generating on the network which has been configured previously.

Fig.2.5.1 shows the dialog window that appears immediately after the Network Agent’s user
interface has been started.

Fig.2.5.1. Example of initial dialog window for configuration of the network attacked

Fig.2.5.2. Example of dialog window for modification of the attacked network parameters

This dialog window is identical to the window shown in Fig.2.4.3 in the description of the Hacker
Agent; however, it is used for entering the information into the Network Agent’s knowledge base. In
this window, the user is given an opportunity to load the available network configuration from the
database, to save the current configuration, or to create or modify various parameters of networks or
separate hosts though the use of buttons Create, Modify and Delete .

Fig.2.5.2 shows an example of a dialog window displayed during the modification of network
information.

This window allows for specifying the main parameters of the computer network in general.
Configuring the network in general lies in specifying the IP address, the network domain name or
workgroup name, subnet mask, and the (network) firewalls used for the protection of the entire
network. By using the buttons “Add Existing”, “Add New” and “Delete”, on can initialize configuring
network firewalls (see Fig.2.5.6), their creation and deletion from this window.

Fig.2.5.3 shows an example if host configuration dialog window, which is started from the initial
configuration window for the attacked network.

 82

Fig.2.5.3. Example of dialog window for host parameters configuration

The following are the main elements of a single host configuration dialog window:
1) Common Settings – common settings including IP address, name of the host, as well as the list

of active ports;
2) Security Settings – security settings for the host, including the following parameters:
§ Remote Registry;
§ Null Sessions – whether null sessions are allowed in the host registry (only for Windows

platforms);
§ Password Protected Login – a parameter that signifies presence of a password to enter the

system. By clicking on the “User Config” button, one can change the user settings (see
Fig.2.5.4);

§ Sharing Files and Printers – network configuration parameter responsible for the
possibility of sharing files and printers of this host in the local network (if the host is in a
network). By using the “Configure” button, one can additionally configure the sharing
parameters;

3) DNS settings – settings of DNS parameters. In this section, there should be:
§ Host is Domain Name Server – parameter indicating if the host is in fact, a DNS server or

not. If it is, its detailed configuration is available (see Fig.2.5.5);
§ Domain Name – the host’s domain name (pertains to all hosts of a local network

organized by the domain principle);
4) Operating System – parameters of the host’s operating system, including platform

(Windows/Unix), type (name) and version of the OS;
5) Running Applications – information on the applications running on host;
6) Firewalls – list of firewalls used that are known to the hacker. In this section, firewalls are

only enumerated. Issues of firewall parameters specification are considered below;
7) Shared Resources – list of shared resources, with resource name and path;
8) Trusted Hosts – trusted hosts for that specific host, with name and IP address.
Fig.2.5.4. shows an example of the configuration dialog window for host’s user account.

 83

Fig.2.5.4. Example of the configuration dialog window for host’s user account

In accordance with the application domain ontology, besides the host’s IP address, a user is
identified by the following three attributes:
§ user name;
§ password to enter the system;
§ unique security ID (SID) (for Windows platform).
Fig.2.5.5 shows a configuration dialog window for a DNS server and its accounts.

Fig.2.5.5. Example of dialog window for DNS server parameters configuration

This dialog allows for modification of the main parameters of the DNS server, including the hosts’
accounts.

Fig.2.5.6 shows an example of a dialog window for firewall parameters configuration. This dialog
window may be started from both the network parameters specification window and the host
parameters specification window.

The firewall configuration dialog window “Firewalls Config” contains the following elements:
1) Firewalls – list of all firewalls described in the ontology fragment;
2) Prohibited Attacks – list of prohibited attacks whose signatures are detected with a specified

probability by the specified firewall (by a firewall selected in the list Firewalls);
3) Forbidden Local Addresses and Ranges – list of local IP addresses and their ranges, outgoing

connections from which are forbidden by the firewall;
4) Forbidden Remote Addresses and Ranges – list of remote IP addresses and their ranges,

outgoing connections from which are forbidden by the firewall.
It is noteworthy that after the attacked network has been configured, all information is stored in

the Network Agent’s database in the tables that are storages of examples of notions of the fragment of
Network Agent’s application domain ontology (see paragraph 2.5.1).

 84

Fig.2.5.6. Example of a dialog window for firewall parameters configuration

2.5.3. State machines model of the Network Agent operation

The Network Agent’s state machine model serves to describe the Network Agent’s behavior. It
specifies operations for processing incoming messages, forming the response, and sending the
response message to the Hacker Agent.

The state machine model of the Network Agent is represented by a single state machine N. The
presence of a single state machine is explained by the fact that the Network Agent is essentially a less
complex agent compared to the Hacker Agent, and there is no need to define its next steps. The
Network Agent only processes messages and forms the response.

Each of the states of the state machine model is correlated to one of the attack classes.
In the script that corresponds to that state, the following actions are executed:
• calling the firewall model;
• initialization of the network response generation methods;
• enumeration of all hosts of the network in case of a network attack (which is directed to all

hosts);
• generating the outgoing messages and sending them to the Hacker Agent.
The presence of several states is conditioned by a different logic to be used by the Network Agent

for processing different classes of messages that specify attack actions. The state machine N is
initialized when another incoming message is received by the Network Agent.

The following is the initialization condition: IF (NewAttack.Exist()).
The basic examples of the notions used in the Network Agent operation are NewAttack , Attack and

xAttack . All of them are instances of the notion Attack. NewAttack realizes the incoming message
(both on the hacker side and the network side), Attack is the outgoing message. xAttack specifies a
collection of examples of the outgoing message. The collection is used when a set of multiple
attributes, e.g., numbers of ports, needs to be sent from one of the hosts.

^^" U
r - Prohibiled A

Name

SFI
SX
SN
RF
RS
IS
IDOS
PF

Probl AILFirewall "1 Creale

1 00
1 00
1 00
0 35
0 35
0 35
0 35
0 35
0 35

1
==

Modilv

Creale
' '

Delele V Delele

1 1210122 2515 210122 25 2 210122 25 255

1 1 1 1 1

Creale Delele Creale Delete

1614^2011
161.43.2021

1G1.43.201.255
161 43.202.255 28

I 1 1
Create DeleTe Create Delete

] OK Cancel

 85

An example of the initialization of the method for sending the message containing a collection
(script Net_SPIH_Do) is as follows:

MESSAGE(xAttack(ALL),InformTemplate,InReplyWith=InMSG.ReplyWith);

If the connection between agents, which is always initiated by the Network Agent, is terminated,
the latter sends a message of the following type:

MESSAGE (0,ReplyTemplate,InReplyWith=InMSG.ReplyWith);

with zero context (message without content) or a message of the type:

MESSAGE (Attack, ReplyTemplate, InReplyWith=InMSG.ReplyWith);

where only one message is sent by the Network Agent in a single session.
The state machine N is communicational. Auxiliary (connecting) and non-terminal states are

absent in this state machine.
In each of the states, with the exception of a terminal state, the corresponding scripts are

initialized, that specify operations to process incoming messages, address the program implementation
of the firewall model and the network response model, and form the outgoing messages.

From the four types of scripts provided for by the MASDK state machines model (Entry Script,
Do Script, Exit Script and Transition Action), the state machine N uses only Do scripts. The other
scripts are simply not necessary. If there is a need in the future for increased complexity of the
Network Agent operation for enhancing the prototype’s possibilities, other types of scripts may also be
involved. Such expansion may be necessary if, for example, several Hacker Agents take part in the
attack realization, or if the Network Agent’s actions need to be logged.

The operation of the state machine N is synchronous in relation to the Hacker Agent. At each point
in time, only one incoming message from the Hacker Agent is processed. For each such message, the
state machine N is initialized. After the response has been sent and the session has been terminated,
this information is erased from RAM.

The diagram of the Network Agent’s state machine N is shown in Fig.2.5.7.

Start

End

IH IO

SPIS

RE

ENS

UECI ABE GAR EP GAD

CVRIVR

CT CBD

Fig.2.5.7. Diagram of the Network Agent’s state machine N

The scripts used in each of the states are described in Appendix 2.
In the state Start, the firewall (network or local) is checked, after which, if the firewall is absent or

does not block the hacker’s attack, control is delegated to one of the states of the set of states {IH,
SPIS, IO, CI, RE, ENS, UE, ABE, GAR, EP, GAD, IVR, CVR, CT, CBD}. The control delegation is

 86

performed depending on the attack signature and the attack belonging to one of the subclasses
SubClass0, SubClass1 and SubClass2.

The scripts use external functions IsFirewalled and AttRandom, which address the firewall model
and the model of network’s response to malefactor’s attack action, accordingly.

The following is the template for initializing the function IsFirewalled:

IsFirewalled (newAttack.Name, newAttack.ip,
newAttack.HackerIP, newAttack.IsNet, bX, str);

The input parameters of the function IsFirewalled are as follows:
§ Attack signature (NewAttack.Name);
§ IP address of the attacked network (newAttack.ip) or host (Host.IP);
§ Hacker’s IP address (newAttack.HackerIP);
§ Logical variable that determines whether this attack is a network attack (newAttack.IsNet).
The output parameters of the function IsFirewalled are as follows:
§ Logical variable bX that shows whether the attack is blocked by the firewall or not;
§ String variable str (in the outgoing message Attack.FailMessage); if bX=TRUE, this variable

contains the description of the reason the attack was blocked; if bX=FALSE, the variable
contains an empty value.

The following is the template for initializing the function AttRandom:

AttRandom (newAttack.Name, newAttack.SubClass0,
newAttack.SubClass1, newAttack.SubClass2, Host.IP, bX);

The input parameters of the function AttRandom are as follows:
§ attack signature (NewAttack.Name);
§ attack subclass of 0th level (newAttack.SubClass0) (if one subclass is sufficient for identifying

the attack by the network response generation model, other subclasses may be empty, e.g., as
in the script Net_IH_Do);

§ attack subclass of 1st level (newAttack.SubClass1);
§ attack subclass of 2nd level (newAttack.SubClass2);
§ IP address of the host where the response is formed – Host.IP.
The function AttRandom has only one output parameter – a logical variable bX that determines

whether the response message will be formed.

The network response generation algorithm is described in more detail in paragraph 2.5.4.

2.5.4. Component calculating the probabilities of Hacker Agent’s actions success and generating
network response

The program realization of the network response generation component operates with the
following notion of the ontology: Attack, LAN, Host, Firewall, ForbiddenLocalAddr,
ForbiddenRemoteAddr, Attacks.

The operation of the agent, or better to say, its state machine model, is initialized when a message
that specifies the attack action is received from the Hacker Agent. The general scheme of the Network
Agent’s operation upon the receipt of the message is shown in Fig.2.5.8.

The network response model implemented in the Network Agent provides for several firewalls in
the network (both network and local). The network response model addresses models of all assigned
firewalls consecutively (in the order of their location in the flow of network traffic). The algorithm of
Network Agent operation within the firewall model is shown in Fig.2.5.9.

If the condition of blocking the incoming message (attack action) is fulfilled for one of the
firewalls, then the check are not performed for the remaining firewalls. A situation is possible where
the network attack has successfully passed the network firewall and was later blocked by the firewall
on one of the hosts.

 87

Fig.2.5.8. General scheme of the Network Agent’s operation upon the message receipt

If the firewall name is not specified, i.e. there are no network or local firewalls, the Network
Agent proceeds immediately to check for the conditions for formulating a successful network
response.

Checking the network firewall of the attacked network (the value of the attribute
LAN.FirewallName) and the personal firewall of the attacked host (the value of the attribute
Host.FirewallName) begins with checking the sender’s address (the value of the attribute
Attack.HackerIP). Checking the address includes determining whether the address is local, as well as
looping up the list of forbidden addresses and the range of addresses for that host. Depending on
whether the sender’s address is local or remote, the notion ForbiddenLocalAddr or
ForbiddenRemoteAddr is used for these operations.

likpur

(bagm)

dvallBCflllr [TiecBInQ

n
PuncVDn

HI lor
ihi lEUcvta ninvorh

-Y«-

2

-HOT'

FgncBon
TBehvnH .;h«k|ng'

uiirw
in* ■EBckBd ham

Furicllon
'n™nnll ^he^klnq'

¥«■ -Vi8

Funclkn
■hf«r ™iily

lorrning I:BII

FuiKllon

haalrspv
mrnklng' fall

-No

end

 88

Fig.2.5.9. Algorithm of the Network Agent operation within the firewall model

If the address of the sender (Hacker Agent) is on the list or within the range of forbidden addresses
for that particular firewall, the Network Agent forms a message necessarily assigning the attribute
Attack.FailMessage the following content:

Local (Remote) Address: Attack.HackerIP is in the forbidden IP-range;
Blocked by Firewall LAN(Host).FirewallName.

or
Forbidden Local (Remote) Address: Attack.HackerIP;

Blocked by Firewall LAN(Host).FirewallName.

If the sender’s address for that firewall is not forbidden, the Network Agent checks the signature
of the attack in progress, which includes checking for that type of attacks in the firewall’s database.

If that particular type of attack is found in the firewall’s database, the probability of detecting the
attack’s signature is calculated. Based on the obtained probability value, it is determined whether the
attack is detected or not.

If the attack signature is considered detected, the response message is formed, where the attribute
Attack.FailMessage is assigned the following meaning:

Forbidden Attack Attack.Name; Blocked by Firewall LAN(Host).FirewallName.

I^
LdOl'MHrtb

Cifchlng

 89

Fig.2.5.10. Generalized algorithm for forming the host’s response to the Hacker Agent’s attack action

If the attack signature is not detected, then the processing for the firewall model is complete, and
the Network Agent’s further actions will be determined by checking all the other necessary conditions
for forming the network’s response. The Network Agent proceeds to these steps immediately if there
are no firewalls in the network.

Further, for all the hosts of the local area network, or for a single host, if the attack is directed at a
single host, the actions pertaining to forming the response are performed. Fig.2.5.10 shows a
generalized algorithm for forming the host’s response to the Hacker Agent’s attack action.

Let us consider in more detail the procedure for checking the conditions for forming the host’s
response to an attack. In all further actions, the notion Attacks is used, which is physically mapped into
the table Attacks of the Network Agent’s knowledge base in regards to attacks. A fragment of the table
is shown in Fig.2.5.11.

Initially, in the table Attacks, an attack Attack.Name with subclasses Attack.SubClass0,
Attack.SubClass1, Attack.SubClass2 (if available), specified in the incoming message, is searched. If
the attack is not found, then the message exchange session is terminated by the Network Agent, and no
messages are sent. The Hacker Agent classifie s this as failure.

If the attack is found in table Attacks (an instance of notion Attacks with the name Attack.Name
exists), then all the assigned conditions are checked. There may be a situation where none of the
conditions are present.

c bsgin
)

Ta&l oF condnions o'

hackaiE aclon

Reply

labcHjl
success}

c end
)

 90

Fig.2.5.11. Fragment of the Network Agent’s knowledge base about attacks

The conditions may put constraints on the operating system (OSplatform, OSname, OSversion),
the running applications (Appl), installed services (Service), active ports (Ports) and the security
parameters (Security).

If there is a condition for the host the attacker’s actions address, its knowledge base is checked
(notions Host, Appl, Security, Service, etc.), and if the corresponding attributes of these notions are
also present in the list of conditions, then the condition is considered fulfilled.

If all the conditions are fulfilled, then the probability of the attacker’s success is calculated (that
value is assigned to the attribute Prob). After that, either the corresponding message about the success
of the attack is sent, or the connection is terminated, and no response message is sent.

Depending on the information received from the Network Agent as a response message (or the
absence of a response message), the Hacker Agent makes the decision in regards to its further actions
to implement the threat.

2.6. Case-study Simulation: examples of Attack Simulator performance and its
evaluation

The main purpose of the experiments lead within the framework of the Project has consisted in
demonstration of the Attack Simulator prototype efficiency for various specifications of attacks and an
attacked network configuration.

m nila<:hf ' la«n>ilU -u^m
Njmr 1 Prnb 1 Cln^^ 1 SubClj^4] 1 ^ubCJj^^l 1 SubCb' ̂ ^1 D^ljll^mj QBnjmr j GS>rr^iDn j Ami 1 SrrFicr j PDFI^ \ ^rcurrli -

-

AffTH
AM
APF
AR
AR
ATh
BFP9
ED
BD
ED
CC
CL

0.71
09!
0,7 D
061

D6I
D3\
0.1 \
D&l
DJI
D=il
D^i

D.ri

|OAP
IQUP
jci

JGAR
jGAR
IQAR
|GAR
GAR
GAR
GDR
GAR
CT

1 FTP

C93 iiiii iBunce ^a v. Trlnd

i
,CS3
DC^R
DC^R

CSS

ACE
RPTU
RFJil

Uii. 1
I^MS ROIICCB RcgiEiiv S?Mca

Tslna
Wlnttwe
IvvinOJike

|j^£E_ fLiiii ISunCQ ,1JH TElna

E6, i'SE.ME
rjr,?[ni

1
IBSD WIndi-a
IBSD Wlndi-a
IBSD
CSS acE

^Lhii

|LhVi
Tuind

- CL D&l CT Wlndi-s hjr.Jini 1
O&R RE 'WnflThs INBIQIO& h6

—

CN= 05R lUE 1 ■ 1 1 1
CPF 051 GAP •m\\6ms ffi.S BE, ME
cnui
DETh'

DC
DFR
DH3
DhiC
DHWr
DUMP
EDC
EDFJU
EFE
EFE
ERD
ETH
EUE
FCJ

051
oei
051
05 R
OJI
O^R

061
D6FI

CBD
TR
TP
IH
TR
IB
GAB
UE

E6.«,BE,ME rjp Vif\n&m=
.rvp_ ^ndj?^_

r
'rvp
3PI3

EE.^.BE.ME .IBFifl Wiiikjiie
WIniKwe NalBlOS'

DSFI

DEFI
□.71
□;3I
□SR
D£l
□pR
D.7I

RE
RE

'E"3 WIniKwe NalBIDS,
NflBIGs'

'NflBIGS

r.G
WlnOJiiS

RE
GAR

IGAR
RE

Wlnilw^
EE S.BE.ME
rjr,?in]

IBSD Wlndi-a
IBSD WmOi-r.

CFP

'Windi-B NrlBIGS

NUIB'IQ^'

GDD ■Lhii
UE
GAR \bLsa 'UFFS

|Wlndj-a
■Wlndj-t"

' '
E6,ffl,£E,MEl 1 1

T 07R 10 IJlll 1 IFTP I
T 09R lABE IFTP
:|« 041 TR ICVR 1

-

HG
l-fT
I'S
IKS
IKS
IF
IFS

09 R
O.^R

OTR

06 R
06 R
06 P
OJl

JjJl 5

LIE
IB
CT
UE
10

l_ iU-lr iFinpe-
SPIS

1 .

IAU3 Wn6ys
S.W.BE.HE

NarBlOB NS
■Mndj^

10 ■^ndj^ rjT.Jiia
10

JGAn
7 ^ 1 'li*-

CS3 D3 FTP

if, l«y<: M

 91

Besides, the authors of the Project had the purpose to investigate the Attack Simulator prototype
opportunities for realization of the following tasks:

(1) Checking a computer network security policy at stages of conceptual and logic design of
network security system. This task can be solved by simulation of attacks at a macro-level and
researches of responding a being designed (analyzed) network model;

(2) Check ing security policy (including vulnerabilities recognition) of a real-life computer
network. This task can be solved by means of simulation of attacks at a micro-level, i.e. by generating
a network traffic corresponding to real activity of malefactors on realization of various security
threats.

Therefore all experiments have been divided into two classes:
(1) Experiments on simulation of attacks on macro-level. In these experiments, generation and

investigation of malicious actions against computer network model were carried out;
(2) Experiments on simulation of attacks on micro-level. In these experiments, generation

malicious network traffic against a real computer network was fulfilled.
The results of the lead experiments on simulation of attacks for the specified two classes of tasks

are described in paragraphs 2.6.1 and 2.6.2 accordingly.

2.6.1. Simulation of attacks on macro-level (generation malicious actions against computer
network model)

In the experiments on simulation of attacks on macro-level, explorations of attacks for all
malefactor's intentions implemented by the Attack Simulator have been carried out (Tab.2.6.1). These
experiments were carried out under various parameters of the attack task specification and an attacked
computer network configuration.

Tab.2.6.1. Malefactor's intentions

Number Designation Interpretation
Reconnaissance (R)

1 IH Identification of the running Hosts
2 IS Identification of the host Services
3 IO Identification of the host Operating system
4 RE Resource Enumeration
5 UE Users and groups Enumeration
6 ABE Applications and Banners Enumeration

Implantation and threat realization (I)
7 GAR Gaining Access to Resources
8 EP Escalating Privilege
9 CVR Confidentiality Violation Realization or Confidentiality destruction
10 IVR Integrity Violation Realization or Integrity Destruction
11 AVR Availability Violation Realization or Denial of Service
12 CBD Creating Back Doors

Besides malefactor’s intention, the influence of the following parameters on attacks efficacy was

investigated at carrying out of experiments:
• Protection degree of Network Firewall (PNF);
• Protection degree of attacked host (Personal) Firewall (PPF);
• Protection Parameters of attacked host (PP);
• degree of hacker’s Knowledge about a Network (KN).
For intention “Reconnaissance” we have investigated only influence of protection degree of

network firewall. Three values of this parameter were used:
1 – “Strong” (if firewall can protect from 60-90% of attacks);
2 – “Medium” (if firewall can protect from 20-50% of attacks);
3 – “None” (if firewall does not protect or is absent).

 92

For intention “Implantation and threat realization” we have used the following values of
parameters:

• For protection degree of (network or personal) firewalls:
1 – “Strong” (if firewall can protect from 60-90% of attacks);
2 – “None” (if firewall does not protect or is absent).

• For protection parameters of attacked host:
1 – “Strong” (60-90% of security parameters have secure values, for example, strong

password, absence of sharing files and printers, and other resources, absence of trusted
hosts, etc.);

2 – “Weak” (security parameters are weak).
• For degree of hacker’s knowledge about a network:

1– “Good” (hacker knows about 50-80% of information about network);
2 – “Nothing” (hacker knows nothing about network).

The assumption was accepted, that the probability of a firewall blockage for attacks which
signatures are available in the firewall base is equal 0,9.

Attacks were simulated on various configurations of a computer network.
To investigate the Attack Simulator possibilities, we have selected the following parameters of

attack realization outcome:
• NS (Number of attack Steps) – number of terminal level attack actions;
• PIR (Percentage of Intention Realization) – percentage of the hacker’s intentions realized

successfully (for “Reconnaissance” it is a percentage of objects about which the information
has been received; for “Implantation and threat realization” it is a percentage of successful
realizations of the common attack goal on all runs);

• PAR (Percentage of Attack Realization) – percentage of “positive” messages (responses) of
the Network Agent on attack actions (the “positive” messages are designated in attack
visualization window by green lines);

• PFB (Percentage of Firewall Blocking) – percentage of attack actions blockage by firewall
(red lines in attack visualization window);

• PRA (Percentage of Reply Absence) – percentage of “negative” messages (responses) of the
Network Agent on attack actions (gray lines in attack visualization window).

For each separate experiment, various realizations of attacks (runs) were carried out. In
experiments described in this paragraph, three realizations (runs) with identical init ial data were
carried out. The results received on each experiment, were averaged.

Taking into account limitation of the Report volume, we shall describe results of experiments only
for two classes of intentions concerning to each of the high-level intentions Reconnaissance (R) and
Implantation and threat realization (I).

For high-level intention R we shall present the results of experiments for intentions Identification
of the host Services (IS) and Applications and Banners Enumeration (ABE), and for high-level
intention I – the results of experiments for intentions Gaining Access to Resources (GAR) and
Confidentiality Violation Realization or Confidentiality destruction (CVR).

In described experiments it was supposed, that the researched computer network has “star”
structure and includes five hosts. Main parameters of hosts are submitted in Tab.2.6.2. Names of table
columns correspond to the attributes of the ontology notion Host.

Tab.2.6.2. Malefactor's intentions

DomName IP OSversion Mask SysTime IsDns OStype OSplatform
spiiran-erv.ail.net 192.168.130.135 SP3 255.255.255.224 12:25:16.7754 T 2000 Windows
Vladimir.lan3.net 192.168.130.138 SE 255.255.255.224 12:25:04.5891 F 98 Windows

Oleg.lan3.net 192.168.130.139 SP1 255.255.255.224 12:25:08.0126 F 2000 Windows
Victor.lan3.net 192.168.130.140 7 255.255.255.224 12:25:12.9800 F Linux

Mandrace
Unix

Igor.lan3.net 192.168.130.141 1.4.x 255.255.255.224 12:25:22.4511 F SunOS Unix

 93

1. Description of experiments for high-level intention Reconnaissance (R)

For all intentions of high-level intention R, attacks have been directed on all hosts of a network. It
was supposed, that the hacker knows only the IP-address of the attacked network.

Attacks were carried out for three gradation of protection degree of network firewall: 1 - "Strong";
2 - "Medium"; 3 - "None".

Results of the fulfilled experiments for intentions Identification of the host Services (IS) and
Applications and Banners Enumeration (ABE) are depicted in Tab.2.6.3.

1.1. Description of experiments for intention Identification of the host Services (IS)

At realization of intention IS the following terminal level attacks are generated:
ST, SS, SFI, SX, SN, SU, HS, SFB, DHS, PS,

where ST – “TCP connect scan”, SS – “TCP SYN scan”, SFI – “TCP FIN scan” , SX – “TCP
Xmas Tree scan”, SN – “TCP Null scan”, SU – “UDP scan”, HS – “Half scan”, SFB –
“Scanning “FTP Bounce””, DHS – “Dumb host scan”, PS – ““Proxy”-scanning”.

At carrying out the attacks realizing intention IS, it was supposed, that depending on its protection

degree a network firewall can block the following terminal level attacks:
1) For “Strong”: ST, SS, SFI, SX, SN, SU, SFB, PS;
2) For “Medium”: ST, SS, SFI, SX;
3) For “None”: - .

Examples of the screens displaying the attack generation processes under the intention IS

realization for various protection degrees of network firewall are submitted in Fig.2.6.1 and Fig.2.6.2.

Examples of the screens displaying the fragments of attack traces logs for intention IS under

“Strong” (1) and “Medium” (2) protection degree of network firewall, are depicted in Fig.2.6.3 and
Fig.2.6.4.

Fig.2.6.1. Example of the screen displaying the attack scenario generation processes of the intention IS

under “Strong” (1) protection degree of network firewall

~nr LI- r^i

KTFWtlM)

i- rLPU_ FHT

I& TIPElT4«»l
E^ TlP^htJiir
^B T[PEi*44ni
E^ TIPEhrinr
^ TlPtb TTC^IM

EFB ^mwi FfP tuD
Eb r[PBlT4'«l
in iirnniMi
En TIP RH Tin
in TirnHkifli
in IIPRHTir
in TEPnH^ir
En TIPRH-ni
in TIPnHdr
En TIPRMTSI

En TIP PR v*
En TIPRMir
En TIPHH^Mi
En TIPRll::r
En Tiril^. n.
in IIP I

ELUFria

^iU%.
11^ I It 1^ IE iu Fi P> : F EbilMi .ij H. ^'. H El- d U
|l'CIH13ll'fl0ndr^.l.^-»^.flpW K. HKIMIT
n<t||£|jLU,jl,l pf: FlIllMl.Jl] -.i^ llEl-dlF
^Wllfl1HflO"F^.^ F"l-»'-".i ^K^ nki"ll-
nVil£illl''[Fi Pr: FiinMiVii a^ Uii-dir
nECllEll n^o^. F^^ F^|.|»h.fli.l .^" B>.I"IIT
n%^ilbillU.<iiFi Pr: FD±nMi.<ji]'i.li Uididc
|iK mm nflo^i F^K F.^«»>.fli^ ..-ii- H-^^i.

liElrfHI U'-""-- P*' '■*ii*'iifl"M ^S^J H~i^r-
liuimiD n'lm r^: riinMi'U] vi> HKIUIT

llltiEFIII li^"" P<-i FoOn'i'Jr-^1 iHv-r^lT
nmUll] h'D'^ F.<1 IHOM.'bJ-31} DkJHIr
liEkilElJl «"" FT-T FrT*—"-? ■?!■ ""^■"W
llUIUin ban—F.<. FUdU.OlU -31} UbIHb
ll^^lEtld UPIIFI Pr-r Fi'Olr.'Ji] ifl> UlrkiHlr
n'ciFtmna^-HP^L F«**-fltyi ^^q^ n^i-^i-
|i^^ lUiU liiiEFi Pr: FiinMi.<jH. i/i^ Uii-dir
n't IFtm llflo-'F^. F^.l»h.fli.l 31>BI-I-II-
lllt^ llblU U.JIF1 Pf: FiUrlliT. iSH' BllidU
ni^iiFiB] i-nrFir-FK. mi ILS Ji.snEDiiii

Fii-ii iV FiiF-r

Fli-ri ILJvdi:

Fii-ri I^FIIFJI:
F.™^ I^_F.-,*1
r^ivd I. hindi
I.™* .I..F_** I
iii-ri l^ rHFdr
^'"^ i:.Fi-.*.

rii-j I' '.—^i'
^~^.|^.F_«.
F.--1I II Ffl-.4l|
iMHri I^Jll-dl
F.~^ I'.F*-*
FllHri li Fl>-dl
^'-4 1^ F^.41,
lii-ri <lb F>-di

nEl^miEfT If,l3l93?

 94

Fig.2.6.2. Example of the screen displaying the attack scenario generation processes of the intention IS

under “Medium” (2) protection degree of network firewall

The attributes of the logs are as follows (they correspond to the attributes of the ontology notions
Log and LogResult):

• ID – a unique number identifying the state of a state machine;
• A – state machine name;
• S – the used state of a state machine;
• Description – description of the state machine’s state (except for the intermediate states); if

the state is terminal, then the action description is specified; if it is non-terminal, then the
description of attack class is recorded;

• ResultComment – the description of the result that can be obtained in the used state S (if that
state is terminal);

• Result – information received from the host or message about the successful attack in the
terminal state;

• FailResult – information received from the attacked network in case the attacked is blocked
by a firewall.

Graphical representation of attack realization outcome parameters (NS, PIR, PAR, PFB, PRA)

values at realization of intention IS depending on values of protection degree of network firewall is
displayed in Fig.2.6.5.

The integral diagram showing the values of main outcome parameters at intention IS realization is

depicted in Fig.2.6.6.

Changes of parameters PIR, PAR, PFB, and PRA for various network firewall configurations are

represented in Fig.2.6.7 as graphic dependences.

fl&«>4li-rHlzV0^

l^llbi
PTFL^rnj

a' an tn
Ill^^llbl 11 LI^Fi P{-: FiinMi^il i'. HEl-dbr

|l■elFtl1lHflo-.^^^ !.*■*■.fli.I 5"Bi^"ll-
IIIECIIbiU li^li-i^iFnr ti,/\
[lEciHi^ inibin":T*. mi iLm m i^ i^ is

n'ciif m iii^»-="r nn n m Ji Tim Hrnir
In^'llbll] III |i-:~i=i^ fUill Mll^UfHI^

n't iptm I'l'^-'P^. m ^
Ijl^'lUlU llll-^ir-i^l'i IFPI ll ICl m 1^ I? IL

|i&'iui]iiij|b-_ET< 'I HI 'I nm i>i iiuin
|lii^iui^i'il^:~-i=i'i rrtf.<i/v./\ j^A ECiim
nUIUIDIll|b._c^l 1H|T II II IT :i n Z1 D

n?:iDIDb<Uh.rfb l.»ll_l^U. .31} UkJ-dbr

IIKIUin hU-. n^ IHUM.VU. ^^^ UkJ-dbr
I|l1ii||iiim"Dil"nF.^-*ripp:'.i^ H—™i*

|i?;imDi|'iiFi r<i riuiMi.<b] 3i^ niKi-aw
IliKlrilll ai-""-- '-'• ''«i»'i<UrF ^i^> H—1^1-
liuimiDii'iin rf I riinMi'U] vi> HKIULF

I|lECIE*IJl ftfliv-. FV*' F"l-»y".' ^i^^ H~I""T
\irz lumn'jm mi riUMiii] lan^ DiiiidbF
I|i'CllfiJIHflO"r^iF^ii*fifl'^ li^Hi^"!!-

|I?J lb& ID h'Jl^ r^: rDDDMlliJlT. 71} DIll-dbF
I|l|ClFH^l|lflo-'l^■^ P.**hifl'>:i ^ll^ H^i^iiT

|l^ III lU LT^Fl P>: FlinMl4H.'i^^ Ull-dbr
n't III 11 Kfloni r^. F.^-»hiflPW 1> BKK-IIT
n^^ ll^lUU^Fl FMI 'LIMMMII-IMI-.'^^ BKUOU

FiiFiri 1^ FrFHd
P.™* I'Ppi^J.

4eivisaubi7
TIB IT
lai III Ei^iUb uf

in "I uT-Bui I?

m III IID niB'^ili'
^,.H'l^.r-.,^
r..-j i'.r*-rii

r..-J l^_P_r.4i
r..^.i^.F_j.
riiHri l^_rwHdl

iiiHri l^ rHFdi
r.™^ i'.F-»*
iiiHri l^ rvidr
PI/TJ I' l|V-*
Fii-ri 1^ F>-.«
i^'-^I^F^-i*

1' FlP'i^ FiiEn
t. rip'ivH ^^■^■J^^"

FB Jim* FFP luu
FB ^u'^Prriun'
FB ^nniFFPtiiju
FB ^f*-^ prr P^i.^
FB ^im* F'P li^jvu

Pt i^ViV"-^
Ff PlVTSW^

En TEPBH'T
^n TEPnH^ir
in FEPRHTir
^n TirnH^r
in TEPBHT^T
^n TirnH^
in TIPBH^^
in TirnHkifli
in FIPBHTIII
in <irn-izMi
in FIPBH^in
in rcrnHnfli
in FIPBH^iTi
EFi FIPRHir
in TEPBHv*.
in Til' Rh -"
^■■141^ D'HIir

 95

Fig.2.6.3. Example of the screen showing the fragments of attack traces logs for intention IS

under “Strong” (1) protection degree of network firewall

 96

Fig.2.6.4. Example of the screen showing the fragments of attack traces logs for intention IS

under “Medium” (2) protection degree of network firewall

 97

Tab.2.6.3. Results of experiments for intentions IS and ABE
First run results Second run results Third run results Average results

Intention
Protection
degree of
Network
Firewall
(PNF)

NS PIR PAR PFB PRA NS PIR PAR PFB PRA NS PIR PAR PFB PRA NS PIR PAR PFB PRA

1 22 10 9 91 0 28 20 31 69 0 27 60 70 30 0 22 30 37 63 0
2 31 60 81 18 1 28 40 36 64 0 49 100 91 7 2 31 67 69 30 1

IS

3 115 100 97 0 3 122 100 99 0 1 101 100 98 0 2 115 100 98 0 2
1 52 80 46 23 31 47 60 38 36 26 43 100* 37 30 33 47 80 40 30 30
2 41 100 46 25 29 26 100 39 23 38 65 60 29 15 46 44 80 38 22 40

ABE

3 110 100 55 0 45 72 100 51 0 49 121 100 57 0 43 101 100 54 0 46

(a) NS

(b) PIR

(c) PAR

(d) PRA

(e) PFB

Fig.2.6.5. Graphical representation of experiments results for intention IS

1201

KO-

AO

10-

'A III

V

A

-

/
/* s^

jj
2? J .1 116

1DD

.m 20

AR .-"

1-
^8

1

37

2

 98

22

31

115

30

67

100

37

69

98

63

30

00 1 2

0

20

40

60

80

100

120

140

1 2 3

NS

PIR

PAR

PFB

PRA

Fig.2.6.6. Integral diagram of attack outcome parameters values for intention IS

Fig.2.6.7. Changes of parameters PIR, PAR, PFB, PRA values for various network firewall configurations

under realization of intention IS

1.2. Description of experiments for intention Applications and Banners Enumeration (ABE)

At realization of intention ABE the following terminal level attacks are generated:
TCBG, UNU, FP, UREG, UDUM,

where TCBG – “Telnet Connection Banner Grabbing”, UNU – “Use of netcat utility
for application enumeration”, FP – “FTP-server prompt”, UREG – “Use of regdmp”,
UDUM – “Use of DumpSec (DumpACL) for output of all services and drivers
executed on a host”.

At carrying out the attacks realizing intention ABE, it was supposed, that depending on its
protection degree a network firewall can block the following terminal level attacks:

1) For “Strong”: TCBG, UNU, UREG, UDUM;
2) For “Medium”: TCBG, UNU;
3) For “None”: - .

■PIR ■PAR ■PFB 'PRA

 99

Fig.2.6.8. Example of the screen displaying the attack scenario generation processes of the intention ABE

 under “Strong” (1) protection degree of network firewall

47
44

101

80 80

100

40 38

54

30

22

0

30

40

46

0

20

40

60

80

100

120

1 2 3

NS

PIR

PAR

PFB

PRA

Fig.2.6.9. Integral diagram of attack outcome parameters values for intention ABE

Example of the screen displaying the attack generation processes of the intention ABE realization

for “Strong” protection degree of network firewall is submitted in Fig.2.6.8.

fiWi>»Un-
hV_mirl"Ii llil Ell

HPUiHuliimi

hlFriHH)

r^ r^ ri~'m I' nn i^'^ irri iiirrHm 'lihi riTF hi irfc

F^ IOWEFDI hpFTPihi TII~P'TEI I'll* pniVlcn"

LIUH LlHilCudB

V m PIT OB FT 31 m d'

rrr IIM ".IFV^I

LI>JLH LU.a[MAll
UflV* LH-il&i^n
LI>JI- LU.ir[MAii

LIULH LHlll[in.H
LDJM LindCurix
LIULH LHllli:.n.H
LIhM Lhiil&n^n
ICUH LWiri>.i«r'

FP CawM^m kFTP Hhi nlHH<«iii iHili infhiHH
FP to-rJ"!'■FP "^h 3ill~—'H^i "ll* D"»l livyf.
FP QnflUn DFFP Bhi nliiHifm i|ih< nif hi.iH
FP [in"iri'■prp "'h i^~>—'H^i "ii" D"—!■->''
FP [nfldm kFFP Hhi nliiHifm i|ih< !!» hi.iH
FP [■""i^i'■prP "^h I^-^b'—'H^i ■'ilr &—W !■->''
FP iLnM^m kl IP Bhi nliuMfm i'ih< !■» hi.iH
FP IJJ'F'ih'i'■'IP IC't "Fl'-b'—'H^i ■'IIT D"»i lO''
FP [nfldm Uf IpHhi nlMHifm iHlli |in li-™
Lr(i> Li4:Ji^t»v
irrQ LiHiiiifiE
mii LMrJirtlu
IITQ UHlHl^ni
LFEU LK^IflU
ina LUiiJiitiK
LFei L-bCi^kU
imL LlniJlltni
L*lj iJ^rli-iH rjW.4i*>rv~Ei-iEi^

LUi u_u .<>_ dK u-^H^dii [_>■_-.
EHD ■iT-cm.EPH

luTwpitjt.^—FTFtrn

|l17IDia in|n.rV4UB^b. Dir.

nSF'If ilf H^"^-I"!". r*rt^i uV-I nii^ Fiv.Mhr,r.-j'HTJ—^t
IjI'O IIElJI liPU-Hi.'il-irr f<IHHi^P.il ^>|l^ EliiKlrFHFHd->!£ FIHA

pieiEfll^ nii—a m*3"ii r.^-™iM>nj1lf EVIMI^I'-'J "EEJiT4*
■ |l'GlE£l3QFUw^>afeBni FirimttallBl: Af£l<, EblKl(r_d tHEJWiA

I

n!? 11« I»I ^ F|—4 ^ Q*'-" F^ ■ MIF iTfh H«4 ^T'Hi-M^ F'M H rv4> ^ BkU
|l£ilf iUI4tjFu.wvj.jKHn h^u-nhi FFFIm H^Fi^

DiM|F|i.njaii^x.WI~iq-|r*T:NH.Frv i
n'Uil£i]li4ijFma.jK»n FIP^ IB^PUI*—'"^.Fiv
— nseiEei3 iI^ln.i-^flB**-" Dlft I

niCIE«im^ir*F/iUDW< FIF'vmtnV F^n^FLVr trfWH

I |ivirBi» h^i'^-'^H:'^!' r{mHi':-_i o-rfo- riiiMiriri—w ^'H.FIH*
IjliC ilfii 1UF.——^ i^,.>. F*rt".^>i -^Ifn E"i"jivi-^-T'.EtF-™*

livirpia hrF''^-'H-'iii r«UHiv.ii ^.f ^ ruLHCvruru-^n.r.nd
liSSIIWiXili lh---a'™'^—: F^--^^-^.^^ L"! HkrTrr^-^ 3K_Fp"vT*
111? imUh l>w<g-l|lL"l FUdB.-Ull {LUJ^BUlUa I—ll ■fajl-,'^
n«l<V<Xili I'l—Q ^u4rr>v: Fr^n^-^iFi'LHJ'Hhi^rQir i-Td I«.>>~TI
III^IH^Kb ll'V^-llU'—.L F{Ik±ll.-<^l {LIU} UUkUlk Fb.ll ^^HJ—^J

 100

Fig.2.6.10. Changes of parameters PIR, PAR, PFB, PRA values for various network firewall configurations

under realization of intention ABE

Graphical representation of attack realization outcome parameters (NS, PIR, PAR, PFB, PRA)
values at realization of intention ABE depending on values of protection degree of network firewall is
displayed in Fig.2.6.9.

Changes of parameters PIR, PAR, PFB, and PRA for various network firewall configurations are
represented in Fig.2.6.10 as graphic dependences.

2. Description of experiments for high-level intention “Implantation and threat realization” (I)

For all intentions of high-level intention I, attacks have been directed on single host of a network.
Attacks were carried out under the following varying conditions:
(1) for two protection degrees of network firewall (1 – “Strong”; 2 – “None”);
(2) for two protection degrees of personal firewall (1 – “Strong”; 2 – “None”);
(3) for two degrees of protection parameters of attacked host (1 – “Strong”; 2 – “ Weak”);
(4) for two degrees of hacker’s knowledge about a network (1 – “Good”; 2 – “Nothing”).
Results of the fulfilled experiments for intentions Gaining Access to Resources (GAR) and

Confidentiality Violation Realization (CVR) are depicted in Tab.2.6.4.

2.1. Description of experiments for intention Gaining Access to Resources (GAR)

Let us consider the input parameters which influence on efficacy of attacks was investigated at
carrying out experiments on intention GAR realization.

1. Firewall parameters.
At realization of intention GAR, besides intention GAR, some other intentions are used. These

additional intentions (IH, IS, IO, CI, RE, UE, ABE) are for getting information about an attacked
network to fulfill the attacks of class GAR.

Let us consider the terminal attacks which are generated at realization of all these intentions.
Terminal attacks of intention IH (Identification of the running Hosts):
STIH, SSIH, DC,

where STIH – “TCP connect scan”, SSIH – “TCP SYN scan”, DC – “Network Ping Sweeps”.

 101

Tab.2.6.4. Results of experiments for intentions GAR and CVR

First run results Second run results Third run results Average results
Intention

Protection
degree of
Network

Firewall (PNF)

Protection
degree of
Personal

Firewall (PPF)

Protection
Parameters
of attacked
host (PP)

Degree of hacker’s
Knowledge about
a Network (KN)

NS PIR PAR PFB PRA NS PIR PAR PFB PRA NS PIR PAR PFB PRA NS PIR PAR PFB PRA

1 139 0 5 36 59 112 0 5 35 60 120 0 4 40 56 124 0 5 37 58 1
2 152 0 3 35 62 84 0 4 33 63 136 0 5 38 57 124 0 4 35 61
1 141 0 7 36 57 148 0 5 49 46 130 0 3 49 48 140 0 5 45 50

1

2
2 149 0 2 38 60 168 0 1 48 51 155 0 3 51 46 157 0 2 46 52
1 101 0 21 26 53 120 100 17 25 58 125 0 4 30 66 85 33 14 27 59 1
2 136 0 2 27 71 167 0 2 26 72 167 100 5 28 67 157 33 3 27 70
1 135 0 12 37 51 144 100 17 33 50 129 0 21 37 42 136 33 17 35 48

1

2

2
2 139 0 12 39 49 175 100 28 31 41 123 0 7 49 44 146 33 16 39 45
1 102 100 18 20 62 56 0 27 22 51 61 0 36 24 40 73 33 27 22 51 1
2 70 0 29 21 50 25 100 16 16 68 70 0 32 20 48 55 33 26 19 55
1 133 100 31 30 39 147 100 23 29 48 111 0 20 25 55 130 67 25 28 47

1

2
2 140 0 29 31 40 142 100 6 32 62 125 100 19 28 53 136 67 18 30 52
1 193 100 36 0 64 119 0 48 0 52 87 100 40 0 60 133 67 41 0 69 1
2 99 0 38 0 62 131 100 45 0 55 93 100 37 0 63 108 67 40 0 60
1 130 100 71 0 29 124 100 62 0 38 105 100 66 0 34 120 100 66 0 34

GAR

2

2

2
2 128 100 62 0 38 144 100 64 0 36 119 100 57 0 43 130 100 61 0 39
1 106 0 4 25 71 89 100 5 36 59 127 0 6 39 55 107 33 5 33 62 1
2 101 0 2 27 7 107 0 1 33 66 133 0 3 40 57 114 0 2 33 65
1 99 0 5 27 68 139 0 7 34 59 131 100 8 45 47 123 33 7 35 58

1

2
2 115 0 3 33 64 128 0 5 31 64 144 0 3 29 68 129 0 4 31 65
1 63 100 21 19 60 98 100 25 27 48 92 0 24 33 43 85 67 23 27 50 1
2 81 0 20 22 56 77 0 14 30 56 109 100 22 35 43 89 33 19 29 52
1 89 100 20 34 46 100 0 24 39 37 122 100 29 30 41 104 67 24 34 42

1

2

2
2 121 0 19 29 52 98 100 27 27 46 117 0 25 41 34 112 33 24 32 44
1 131 100 24 13 63 127 100 31 20 49 119 100 22 21 57 126 100 26 18 56 1
2 144 100 24 17 59 130 100 27 17 56 149 0 24 20 56 141 67 25 18 57
1 133 0 28 16 56 137 100 33 12 55 128 100 29 20 51 133 67 30 16 54

1

2
2 140 0 27 17 56 140 0 29 23 52 132 100 22 19 59 137 33 26 20 54
1 94 100 32 0 68 146 100 36 0 64 131 100 31 0 69 124 100 33 0 67 1
2 159 100 29 0 71 99 100 35 0 65 144 100 27 0 73 134 100 30 0 70
1 142 100 75 0 25 131 100 60 0 40 155 100 65 0 35 143 100 67 0 33

CVR

2

2

2
2 133 100 63 0 37 144 100 61 0 39 138 100 59 0 41 138 100 61 0 39

 102

Terminal attacks of intention IS (Identification of the host Services):
ST, SS, SFI, SX, SN, SU, HS, SFB, DHS, PS,

where ST – “TCP connect scan”, SS – “TCP SYN scan”, SFI – “TCP FIN scan”, SX – “TCP
Xmas Tree scan”, SN – “TCP Null scan”, SU – “UDP scan”, HS – “Half scan”, SFB –
“Scanning “FTP Bounce””, DHS – “Dumb host scan”, PS – ““Proxy”-scanning”.

Terminal attacks of intention IO (Identification of the host Operating system):
TZ, TS, FF, RF, RS, II, IL, MD, IW, MA, IV, IF, IP, ISP, IDOS,

where TZ – “Connection on telnet and examination of the message header about
operating system”, TS – “Connection on telnet and execution of the SYST
command (for Unix/Linux)”, FF – “Connection on FTP and examination of bin-
files in the directory /bin/ls (for Unix/Linux)”, RF – “FIN Probe -
Exploration by the FIN package”, RS – “Bogus flag Probe - Exploration by the
package SYN with a false (unused) flag (BOGUS-flag)”, II – “ISN sampling -
Capture of initial sequential number ISN at response to a TCP SYN
connection request”, IL – “Definition of the law of the ISN change”, MD –
“Monitoring of the fragmentation prohibition bit DF”, IW – “Watching of an
initial size of the TCP window”, MA – “Watching of value of sequential number
used for a field ACK”, IV – “ICMP error message quenching”, IF – “ICMP message
quoting”, IP – “Examination of the answer for sending of the TCP packet with
certain values of a field “Options””, ISP – “Examination of possibility of
"struggle with a flooding" by SYN- packets”, IDOS – “Examination of response
for DoS attacks Ping of Death, WinNuke, Teardrop, Land for detection of a
Windows OS type (95/98/Me/NT/2000)”.

Terminal attacks of intention CI (Collecting of additional Information):
IST, AM, NS,

where IST – “Inquiry of system time”, AM – “Definition of the network adapter
mask”, NS – “Collection of the additional information from DNS-server”.

Terminal attacks of intention RE (Resource Enumeration):
EDNV, EDC, CNS, ERD, SRE, NV, RMT, SRVC, SRVI, DUMP, LEG, NAT, NETD, NETV,

where EDNV – “Enumerating NT/2000 Domains with net view”, EDC – “Enumerating
NT/2000 Domain Controllers with nltest”, CNS – “Connection “null sessions””,
ERD – “Enumerating NT/2000 related domains with nltest”, SRE – “Showmount
Resource Enumeration”, NV – “Enumerating NetBIOS Shares with net view”, RMT –
“Enumerating NetBIOS Shares with Rmtshare”, SRVC – “Enumerating NetBIOS
Shares with Srvcheck”, SRVI – “Enumerating NetBIOS Shares with Srvinfo –s”,
DUMP – “Enumerating NetBIOS Shares with DumpSec (DumpACL)”, LEG –
“Enumerating NetBIOS Shares with Legion”, NAT – “Enumerating NetBIOS Shares
with NetBIOS Auditing Tool (NAT)”, NETD – “Enumerating NetBIOS Shares with
Netdom”, NETV – “Enumerating NetBIOS Shares with Netviewx”.

Terminal attacks of intention UE (Users and groups Enumeration):
DNNT, SNMPE, CNS, FUE, UTFTP, EUE, PIUD, ISU, IAS,

where DNNT – “Dumping the NetBIOS Name Table with nbtstat and nbtscan”, SNMPE
– “SNMP Enumeration with snmputil or IP Network Browser”, CNS – “Connection
“null sessions””, FUE – “Finger Users Enumeration”, UTFTP – “Use of Trivial File
Transfer Protocol for Unix enumerating by stealing /etc/passwd and (or) /etc/hosts.equiv and
(or) ~/.rhosts”, EUE – “Enumerating Users with enum”, PIUD – “Providing Information
about Users with DumpSec (DumpACL)”, ISU – “Identifying SID with user2sid”, IAS
– “Identifying Account with sid2user using user’s RID”.

Terminal attacks of intention ABE (Applications and Banners Enumeration):
TCBG, UNU, FP, UREG, UDUM,

where TCBG – “Telnet Connection Banner Grabbing”, UNU – “Use of netcat utility
for application enumeration”, FP – “FTP-server prompt”, UREG – “Use of regdmp”,

 103

UDUM – “Use of DumpSec (DumpACL) for output of all services and drivers
executed on a host”.

Terminal attacks of intention GAR (Gaining Access to Resources):
CPF, AAF, BFPG, RAH, FCA, PG, AR, UDG, RAM, RA, DIMC, EFE, BO, MMC, UPWS, TH,

MP, ABTH, ATH, SF, LA, PF, SA, PD, UF, IFS, APF, WDPF, MUID, MRF, CC,
where CPF – “Cracking of PWL File and access to a host”, AAF – “Anonymity
Access to Ftp-server”, BFPG – “Brute Force Password Guessing and access to a host”,
RAH – “Replaying the Authentication Hash and access to a host”, FCA – “Free
Common Access”, PG – “Password Guessing (for example, with BF tool of Legion)
and access realization”, AR – “Access Realization with permission of
recording”, UDG – “User Data Guessing”, RAM – “Register Access and
Modification”, RA – “Access to resources”, DIMC – “Direct Implantation of
Malicious Code, providing access to resources of a host, in folder
%systemroot%\StartMenu\Programs\Startup and start them on execution at the
subsequent reboot of the system”, EFE – “External File Execution”, BO – “Buffer
Overflow with the subsequent implantation of hostile executed programs”,
MMC – “Usage of Malicious Mobile Code”, UPWS – “Usage of initial versions of
Personal Web Server (Microsoft) for gaining files contents and access to a
host”, TH – “Trojan horse implantation”, MP – “Mailing password and access to a
host”, ABTH – “Access on Behalf of Trusted Host to a host with SunOS v.1.4.x
(using the ISN change law)”, ATH – “Access to target host with rlogin”, SF –
“SYN flood (storm of inquiries on installation of TCP-connections)”, LA –
“Land attack”, PF – “Ping flooding (storm of echoes - inquiries on the ICMP
protocol)”, SA – “Smurf attack”, PD – “Ping of Death”, UF – “UDP flooding”, IFS –
“Storm of inquiries to FTP-server”, APF – “Access to Password File .passwd”,
WDPF – “Writing of Data with user ID to Password File”, MUID – “Modification
of user ID”, MRF – “Modification of Rhost File (writing of IP-address of an
attacking host)”, CC – “Connection Closing”.

The full set of attacks generated at realization of intention GAR (90 attacks) is as follows:
STIH, SSIH, DC, ST, SS, SFI, SX, SN, SU, HS, SFB, DHS, PS, TZ, TS, FF, RF, RS, II, IL, MD,

IW, MA, IV, IF, IP, ISP, IDOS, IST, AM, NS, EDNV, EDC, CNS, ERD, SRE, NV, RMT, SRVC,
SRVI, DUMP, LEG, NAT, NETD, NETV, DNNT, SNMPE, CNS, FUE, UTFTP, EUE, PIUD, ISU,
IAS, TCBG, UNU, FP, UREG, UDUM, CPF, AAF, BFPG, RAH, FCA, PG, AR, UDG, RAM, RA,
DIMC, EFE, BO, MMC, UPWS, TH, MP, ABTH, ATH, SF, LA, PF, SA, PD, UF, IFS, APF, WDPF,
MUID, MRF, CC.

The list of attacks removed from the full set of attacks (27 attacks (30 %)), intended for formation
of the list of the attacks forbidden by network firewall, is as follows:

SX, TS, FF, IDOS, IST, DNNT, SNMPE, AR, UDG, UREG, UDUM, FUE, UTFTP, EUE, PIUD,
ISU, IAS, RAM, RA, DIMC, MMC, UPWS, LA, PF, SA, MRF, CC.

The list of attacks removed from the full set of attacks (36 attacks (40 %)), intended for formation
of the list of the attacks forbidden by personal firewall, is as follows:

SSIH, DC, ST, RS, II, IL, MD, IW, MA, CNS, ERD, SRE, NV, RMT, NETV, CNS, TCBG,
UNU, FP, MP, ABTH, ATH, SF, PD, TH, UF, IFS, APF, SRVI, DUMP, LEG, NAT, NETD, CPF,
AAF, WDPF.

At carrying out the attacks realizing intention GAR, it was supposed, that depending on protection
degree a network firewall can block the following terminal level attacks:

1) For "Strong" protection degree from full set of the attacks generated at intention GAR
realization, the following 63 attacks (70 %) are chosen:

STIH, SSIH, DC, ST, SS, SFI, SN, SU, HS, SFB, DHS, PS, TZ, RF, RS, II, IL, MD, IW, MA, IV,
IF, IP, ISP, AM, NS, EDNV, EDC, CNS, ERD, SRE, NV, RMT, SRVC, SRVI, DUMP, LEG, NAT,

 104

NETD, NETV, CNS, TCBG, UNU, FP, CPF, AAF, BFPG, RAH, FCA, PG, EFE, BO, TH, MP,
ABTH, ATH, SF, PD, UF, IFS, APF, WDPF, MUID.

2) For “None”: - .
The protection degrees of personal firewall are as follows:
1) For “Strong” protection degree from full set of the attacks generated at intention GAR

realization, the following 54 attacks (60 %) are chosen:
STIH, SS, SFI, SN, SU, HS, SFB, DHS, PS, TZ, RF, IV, IF, IP, ISP, AM, NS, EDNV, EDC,

SRVC, BFPG, RAH, FCA, PG, EFE, BO, MUID, SX, TS, FF, IDOS, IST, DNNT, SNMPE, AR,
UDG, UREG, UDUM, FUE, UTFTP, EUE, PIUD, ISU, IAS, RAM, RA, DIMC, MMC, UPWS, LA,
PF, SA, MRF, CC.

2) For “None”: - .

2. Protection parameters of attacked host.
The host spiiran-erv, having IP-address 192.168.130.135, has been chosen as an attacked host

at intention GAR realization.
Experiments were fulfilled for two degrees of host protection parameters:
1 – “Strong”;
2 – “Weak”.
Main parameters of the host spiiran-erv at "Strong" protection parameters of host are

submitted in Tab.2.6.5.
Main parameters of the host spiiran-erv at "Weak" protection parameters of host are

submitted in Tab.2.6.6.
Base protection parameters, which values differ in a configuration "Strong" and "Weak", are

selected in tables with grey color.

Tab.2.6.5. Main parameters of the host spiiran-erv at “Strong” protection parameters of host
Parameter name Parameter value
IP-address 192.168.130.135
Name spiiran-erv
Active ports 21, 23, 80, 137, 136, 8080
Remote Registry Off
Null Sessions Off
Password Protected Login Yes

Name spiiran-erv
Password RtYrw_!@
SID 4-1-5-25-8378987-1494822062-1827838900-524

Sharing Files and Printers No
Host is Domain Name Server Yes
Domain Name spiiran-erv.lan3.net

Name lan3.net
Administrator Admin
Mail Alias mail.lan3.net

Name IP Post
Firewall 210.122.25.1
Vladimir 192.168.130.138 Vladimir.lan3.net
Oleg 192.168.130.139 Oleg.lan3.net
Victor 192.168.130.140 Victor.lan3.net
Igor 192.168.130.141 Igor.lan3.net

Hosts

OS platform Windows
OS name 2000
OS version SP3
Running Applications MS IIS, FTP-server, Mail-server, DNS-server, WINS-

server
Shared Resources No
Trusted Hosts No

 105

Tab.2.6.6. Main parameters of the host spiiran-erv at “Weak” protection parameters of host
Parameter name Parameter value
IP-address 192.168.130.135
Name spiiran-erv
Active ports 21, 23, 80, 137, 136, 8080
Remote Registry On
Null Sessions On
Password Protected Login Yes

Name spiiran-erv
Password RtYrw_!@
SID 4-1-5-25-8378987-1494822062-1827838900-524

Sharing Files and Printers Yes
Host is Domain Name Server Yes
Domain Name spiiran-erv.lan3.net

Name lan3.net
Administrator Admin
Mail Alias mail.lan3.net

Name IP Post
Firewall 210.122.25.1
Vladimir 192.168.130.138 Vladimir.lan3.net
Oleg 192.168.130.139 Oleg.lan3.net
Victor 192.168.130.140 Victor.lan3.net
Igor 192.168.130.141 Igor.lan3.net

Hosts

OS platform Windows
OS name 2000
OS version SP3
Running Applications MS IIS, FTP-server, Mail-server, DNS-server, MS

Remote Registry Service, WINS-server, MS SQL
Server 2000, PWS, SNMP-agent

Name Path
C \\ spiiran-erv \C

Shared Resources

D \\ spiiran-erv \D
Name IP

Vladimir 192.168.130.138
Oleg 192.168.130.139
Victor 192.168.130.140

Trusted Hosts

Igor 192.168.130.141

3. Parameters defining a hacker’s knowledge about a network.
Experiments were fulfilled for two degrees of a hacker’s knowledge about a network:
1 – “Good” (a hacker’s knowledge about the target host spiiran-erv is depicted in Tab.2.6.7);
2 – “Nothing” (a hacker knows nothing about network, except for the IP-address of an attacked

host).

Tab.2.6.7. Parameters of the host spiiran-erv,
about which a hacker knows (degree of knowledge is “Good”)

Parameter name Parameter value
IP-address 192.168.130.135
Name spiiran-erv
Active ports 21, 23, 80, 137, 136, 8080
Password Protected Login Yes

Name spiiran-erv
Host is Domain Name Server Yes
Domain Name spiiran-erv.lan3.net

Name lan3.net
Administrator Admin
Mail Alias mail.lan3.net

Name IP Post
Firewall 210.122.25.1

Hosts

Vladimir 192.168.130.138 Vladimir.lan3.net

 106

Parameter name Parameter value
Oleg 192.168.130.139 Oleg.lan3.net
Victor 192.168.130.140 Victor.lan3.net
Igor 192.168.130.141 Igor.lan3.net

OS platform Windows
OS name 2000
OS version SP3
Running Applications MS IIS, FTP-server, Mail-server, DNS-server, WINS-

server

Examples of the screens, displaying various stages of attack scenario generation for intention
GAR, are submitted in Fig.2.6.11 – Fig.2.6.13. The values of input parameters used for this attack
scenario are as follows:

(1) protection degree of network firewall is “None” (2);
(2) protection degree of personal firewall is “None” (2);
(3) protection degree of host parameters is “Weak” (2);
(4) degree of a hacker’s knowledge about a network is “Nothing” (2).
As we can see from attack scenario traces depicted in the figures, the majority of attack actions is

realized successfully owing to weak protection of an attacked network and a host (successful actions
are designated by green color).

Fig.2.6.11. Example of the screen displaying the attack scenario generation processes of the intention GAR

(an initial stage of attack scenario)

HTFriHH)

1 unrn i iirni'

npjM.Hi>|i4nr«r
isirpim?

■p-nz .m.iv
CB hiiLIUL>:r

^ T[PU_ fairxLk.

|iD1 E-i—M'^^-C~l<'l>l^ kll^F
DDE E^h^iUL/iLH Hq'^B'dferuCU^ ilKii

|iD1 Esv^^T MDr^liiL^ i<i7:
DDE EXA^IULVILJ Hr^B>drLriCU^ llALlb

LEE Eii_f r* MriPl^ liKi F4IL^

[HE O"'""' J-^ rt-
EHD Er.HHg Mf/UC RriM h_i

E"E l>"'l*' ■J:'- ""
EUE EimiiaoLHihili i-n

FP toy"!^!'■rrp ic-fl ■JOM^JMH HI*
^IIH TIP I null 11_
EIH r|P..iyjjir™
EC Mm-i^^-Hi
|ia^ E-o—""■■'h'i"r'nHi>^ ri"f"p
1^ CAdiTiU ■IHniIclnKrrbrE4l^ii'H

EDl llUfl.l'Cll jrOlllTHI VhiKlHH
ED* E--"~y:ll J"i"'->i rjr..<i.^i.
EDL El-niiavM<jM<L-lf LlTOflll «4llll
EDE El'-'V-'^lil .IIII^^. E^^Ih.-WtDtl
C)l^ Oniiu- idiiiip
EMf E--"'-vi'^r> il4~4<l>nEH

[i^f El—r~v-^'^ ^I>>'-<IE>I4EH

EHD Eo-^r-^Mr HI! HIITPI ^.-n.
FDIh riUfl_l«IIT.^>:CDHHu vhKl M
EDE El-—:v-?ii'D»ll~^ l^-p^i W-Hiil
ED[Dll»l_wlll'3in[^_A. [|-<<M| .tlllll
EDI-I ElTF"~^Hl)II|D~^ ~I.~H-IV I
IDC tl^-n-ul"':!**!!^!—I ['-'JMI Jlllnl
EH^ C~~.~ r^-in,™. '

^r^riiL u zi □ BB| ii?^iK
^™i=Hr in ^ aiCi IP iM
■ill riu m ^ z' Dm ii?^ia
.bit'Fiii 41 EI.JI D»l I1?.l
.Vli^EkU Z| E<0

ri ^-bbHllDT^

QllIV EWr^-bbH I

rr Hunc^DtWr h^hdHt^n-ME EDL E«-i On.L'llf^n E F»4»nW(r^im.lfi IE Fllivm

L

nh* V- - h *J'*: t ^h h^

L>i_illi_tai

r«1iiii'.Cmiiii F1I In uuiV*'
I^^"!!' -•"• '.i^iti i^'f AnriVliJi

^UH tlliuui 'VlHrih^'l<lBB»lD

I
i^h'tr^DtaV" ir£f I I

CvfMi Eo^xlfe^ 4AHI Hviv^r^ | |

nwtr^

