STRUCTURAL METALLIC MATERIALS BY INFILTRATION

Jean-François Despois, Randoald Müller, Ali Miserez, Ludger Weber, Andreas Rossoll, Andreas Mortensen

Swiss Federal Institute of Technology in Lausanne
Institute of Materials
Laboratory for Mechanical Metallurgy
<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 MAR 2004</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

4. TITLE AND SUBTITLE

Structural Metallic Materials By Infiltration

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Swiss Federal Institute of Technology in Lausanne Institute of Materials Laboratory for Mechanical Metallurgy

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

See also ADM001672, The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NATO/unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT

UU

18. NUMBER OF PAGES

102

19a. NAME OF RESPONSIBLE PERSON

<table>
<thead>
<tr>
<th>Security Classification</th>
<th>Limitation</th>
<th>Number of Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>NATO</td>
<td>102</td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td>unclassified</td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td>unclassified</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UU</td>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Infiltration
The Infiltration Process

Fluid Matrix

Reinforcement Preform
The Infiltration Process

General Characteristics for metals:
- high capillary forces

<table>
<thead>
<tr>
<th>Material</th>
<th>Temperature (°C)</th>
<th>Surface Tension (N/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polypropylene (PP)</td>
<td>180</td>
<td>0.0208</td>
</tr>
<tr>
<td>Polyethylene (PE)</td>
<td>180</td>
<td>0.0265</td>
</tr>
<tr>
<td>Polyethylene oxide (PEO)</td>
<td>180</td>
<td>0.0307</td>
</tr>
<tr>
<td>Nylon 6.6</td>
<td>270</td>
<td>0.0303</td>
</tr>
<tr>
<td>PE I</td>
<td>220</td>
<td>0.0357</td>
</tr>
<tr>
<td>PA 12</td>
<td>-</td>
<td>0.039</td>
</tr>
<tr>
<td>Epoxy, unreacted</td>
<td>-</td>
<td>0.03 to 0.04</td>
</tr>
<tr>
<td>Ethanol</td>
<td>20</td>
<td>0.022</td>
</tr>
<tr>
<td>Water</td>
<td>20</td>
<td>0.073</td>
</tr>
<tr>
<td>SiO₂</td>
<td>1800</td>
<td>0.31</td>
</tr>
<tr>
<td>Na₂SiO₃</td>
<td>1088</td>
<td>0.30</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>2050</td>
<td>0.63</td>
</tr>
<tr>
<td>CaSiO₃</td>
<td>1540</td>
<td>0.35</td>
</tr>
<tr>
<td>Al</td>
<td>700</td>
<td>0.87</td>
</tr>
<tr>
<td>Cu</td>
<td>1120</td>
<td>1.2</td>
</tr>
<tr>
<td>Ti</td>
<td>1670</td>
<td>1.53</td>
</tr>
<tr>
<td>Ag</td>
<td>970</td>
<td>0.92</td>
</tr>
<tr>
<td>Au</td>
<td>1070</td>
<td>1.13</td>
</tr>
</tbody>
</table>
The Infiltration Process

General Characteristics for metals:
- high capillary forces
- low viscosity
The Infiltration Process: Spontaneous Infiltration

Place preform and metal in a furnace. Infiltration proceeds. Composite is solidified. The infiltrated composite.
The Infiltration Process: *Squeeze Casting*

1. **Preform preheating and placement**
2. **Metal pouring**
3. **Ram movement initiation**
4. **Infiltration**
5. **Solidification**

The infiltrated selectively reinforced cast composite component
The Infiltration Process: Pressure Infiltration

(a) (b)
The infiltration Process

IN GENERAL

• Net-shape, rapid.

• Produces defect-free material if well engineered...

• ...with considerable flexibility in the material choice if pressure is used to drive the metal.

• Hence, well suited for the production of model multiphase materials.
50% ceramic in 50% metal
A few good reasons to add ceramic to a metal or an alloy
A few good reasons to add ceramic to a metal or an alloy

• Increase wear and abrasion resistance;

• Increase the specific elastic modulus \((E/\rho) \) above 26 MJ·kg\(^{-1}\);

• Tailor certain physical properties: thermal conductivity, coefficient of thermal expansion, ...

• Increase the tensile strength (with ceramic fibers)
A few good reasons NOT to add ceramic to a metal or an alloy

• Lower ductility;

• Lower toughness;

(...frequently with consequences on strength.)

The volume fraction ceramic V_f is therefore generally kept below 25-30% in structural particle reinforced metals.
Why a high volume fraction ceramic might be desirable
Why a high volume fraction ceramic might be desirable

- The incremental benefit increases with the fraction ceramic;
According to Christensen’s 3-phase self-consistent model ($E = 70$ GPa and $\nu = 0.345$ for Al, and $E = 390$ GPa and $\nu = 0.22$ for Al$_2$O$_3$).
Why a high volume fraction ceramic might be desirable

• The incremental benefit increases with the fraction ceramic;

• Particle clustering.
Influence of Particle Clustering:

...a somewhat extreme example, but a real one.

Gravity cast Al-356 / SiCp
Particle Reinforced Aluminium by Infiltration
Particle Reinforced Aluminium by Infiltration

Ceramic particles and a cast metal ingot are packed, in that order, into an alumina crucible.
Particle Reinforced Aluminium by Infiltration

Pressure infiltration then combines the two into an ingot of composite
Three Matrices

• 99.99% pure Al

• Al-2wt.% Cu
 (as-cast, T4 and T6)

• Al-4.5wt.% Cu
 (as-cast, T4 and T6)
Three Reinforcement Types

Angular Al_2O_3
Polygonal Al_2O_3
Angular B_4C
Infiltrated Particle Reinforced Aluminium

Angular Al_2O_3

Polygonal Al_2O_3

B_4C
Tensile Behaviour
Tensile Behaviour

Effect of reinforcement chemistry

Boron carbide

Angular alumina

Pure Al matrix

σ (MPa)

ε
Effect of reinforcement chemistry (for equal volume fractions)

Tensile Behaviour

Effect of particle size

Pure Al/angular alumina)
Comparing Al_2O_3 with B_4C:
- ΔCTE is 1.3 times higher for B_4C;
- the experimental slope is 1.25 times higher.

$\left(\frac{\sigma_m}{\alpha \mu b}\right)^2$ vs $\frac{1}{\lambda}$

The Size Effect
Tensile Behaviour

Effect of reinforcement shape and quality

Pure Al matrix; 10µm Al₂O₃
Tensile behaviour

Illustrating the influence of particle type

Al-Cu 4.5% wt. alloy reinforced by about 50% Al$_2$O$_3$ particles

![Graph showing tensile behavior with stress vs. strain for Al-Cu alloy with different particle types]
Damage
Damage

1 - Particle fracture followed by void nucleation in the matrix at particle cracks
Damage

2 - Matrix voiding at sites of high stress triaxiality
Damage

Measurement:
- Young’s modulus evolution with strain
- Derived damage parameter: $D_E = 1 - \frac{E}{E_0}$
Damage

Measuring the rate of damage accumulation
Link between Damage and Tensile Ductility

\[\varepsilon_f = \frac{n}{d \ln(D_E)} \left(1 - \frac{d \ln(D_E)}{d\varepsilon} \right) \]
Fracture Toughness
Toughness

• J_R method for pure Al composites using precracked CT specimens (ASTM E-1737);
• Unloading compliance method used to monitor crack growth

Partial unloading used to measure specimen compliance and compute crack extension
Toughness

- Construction line
- Region of qualified data
- 1.5 mm exclusion line
- 0.2 mm offset line
- J_{GT}
- $J_{0.2mm}$

Crack extension Δa
J_{GT} corresponds to the onset of marked crack advance

(pure Al/25 μm Al_2O_3 polyg. composites)

Crack front marked by fatigue, specimen #2

Crack front marked by fatigue, specimen #3
Toughness

Polygonal Al$_2$O$_3$ particles/pure Al: influence of particle size
Toughness

B_4C particles/pure Al: influence of particle size

![Graph showing the influence of particle size on toughness](image)
Toughness

Equal size: influence of reinforcement nature and quality
Toughness

Alloyed matrix composites were characterized in small-scale yielding using chevron-notched specimens (ASTM E-1304)

Consistency: J-integral test data for Al-Cu matrix composites are between 2 and 27% lower than chevron-notched test data.
Toughness

Solution-treated condition

Particle size [μm]

K_{Iv} [MPa m$^{1/2}$]

Al-Cu 2% / angular Al$_2$O$_3$

Al-Cu 4.5% / angular Al$_2$O$_3$

Al-Cu 2% / polygonal Al$_2$O$_3$

Al-Cu 4.5% / polygonal Al$_2$O$_3$
Strength/Toughness Combination
Overall summary of data:

Strength/Toughness Combination

- Pure Al matrix
- Al-Cu2% matrix (T6)
- Al-Cu4.5% matrix (T6)

Graph showing:
- K_{IV} or K_{eq-GT} [MPa m$^{1/2}$]
- UTS [MPa]

Data points:
- 25 μm, polyg.
- 15 μm, polyg.
- 35 μm, ang.
- 5 μm, ang.
Strength/Toughness Combination

- Pure Al matrix
- Al-Cu2% matrix
- Al-Cu4.5% matrix

UTS [MPa]

K_{lc}, K_{Jeq} [MPa m$^{1/2}$]

Materials:
- 25 µm polygonal Al$_2$O$_3$
- 15 µm polygonal Al$_2$O$_3$
- 35 µm angular Al$_2$O$_3$
- 5 µm angular Al$_2$O$_3$
- Pure Al matrix
- Al-Cu2% matrix
- Al-Cu4.5% matrix

Types:
- 7175-T73
- 7075-T73
- 2024-T8
- 2124-T8
- 7075-T73
- 2024-T8

Graphical representation showing the relationship between strength (UTS) and toughness (K_{lc}, K_{Jeq}) for various aluminum materials and their combinations.
Toughening mechanisms
Toughening mechanisms

What makes these composites tough?

• A first very simple mechanism: $K \propto \sqrt{(G.E)}$
 and E is 2.5 times higher than for Al alloys.

• Still, corresponding $G/(J)$ values near 10 kJ/m2 are high.

• There is significant R-curve behaviour: these K values are for near-steady crack advance.
Fracture micromechanisms
Fracture micromechanisms

Particle fracture

Pure Al/ 30 µm angular Al₂O₃
Fracture micromechanisms

Particle fracture

Pure Al/ 30 µm angular Al₂O₃
Matrix void growth

Fracture micromechanisms

Pure Al/10 μm polygonal Al_2O_3
Fracture micromechanisms

- Voids nucleate between particles
- Final void size scales with average particle size
Local fracture energy estimation
Local fracture energy estimation

Pure Al composites: 3-D fracture surface topography measurement
Local vs. total fracture energy

Global fracture energy, J_{GT} [kJ/m²]

Local fracture energy, $2\gamma_{pz}$ [kJ/m²]

Pure Al matrix composites
Toughening mechanisms

Observation of crack tip plasticity using a photoelastic coating:

\[\varepsilon_1 - \varepsilon_2 \approx 0.2\%: \]

pale yellow - orange fringes
Toughening mechanisms

(Al/35 µm ang. Al₂O₃)
In other words, the total fracture energy:
\[J = 2\gamma_{pz} + W_p \gg 2\gamma_{pz} \]

- \(2\gamma_{pz} \) is the local « process zone » or « cohesive law » fracture energy;

- \(W_p \) is the energy dissipated in the surrounding macroscopic plastic zone
Toughening mechanisms

Tvergaard and Hutchinson (JMP$ vol. 40 (1992) 1377)
Cohesive Zone Model :

\[\Gamma_0 = \int_0^{\delta_c} \sigma d\delta \]

Fig. 1. Traction–separation relation for fracture process.
Toughening mechanisms

Tvergaard and Hutchinson (JMP volume 40 (1992) 1377):

\(\Gamma_{ss} \): steady-state toughness
\(\Gamma_0 \): local fracture energy \((2\gamma_{pz})\)
\(\sigma_y \): composite yield strength
\(\tilde{\sigma} \): peak-stress of the cohesive law
\(N \): strain-hardening coefficient

\(\frac{\Gamma_{ss}}{\Gamma_0} \) vs. \(\frac{\tilde{\sigma}}{\sigma_y} \)
Toughening mechanisms

Fig. 7a,b. Meshes at two stages of deformation for \(\sigma_y/E = 0.003, n = 10, H_0/B_0 = 0.25, R_0/B_0 = 0.01 \). a Initial mesh; b \(\varepsilon_1 = 0.522 \) and \(V/V_0 = 2.50 \cdot 10^5 \).

Fig. 8. Average true stress and void volume growth vs. average logarithmic strain, for \(H_0/B_0 = 1 \) and \(R_0/B_0 = 0.01 \). With remeshing.
Metal sponge
The replication process

- Molten metal
- Open-cell pattern
- Gas pressure
- Composite
- Open-cell foam
- Pattern removal
- Machining
The replication process

Cold Isostatic Pressing (CIP) + sintering for 40 µm (32-45 µm) powder: 45 min. at 750°C.
The replication process

1. **Al ingot**
2. **Al₂O₃ crucible**
3. **NaCl preform**
4. **Al – NaCl composite**

Diagram components:
- Thermocouple
- Pressure-Vacuum
- Cooling coils
- Molten metal
- Preform
- Furnace
- Insulation
- Pressure vessel
- Chill
The replication process

Machining:
conducted prior to salt removal by dissolution on the (brittle) NaCl-Al composite;

Dissolution:
- in distilled water.
- below 50 µm, degassed water with forming gas (H₂ + N₂) bubbling (to minimize corrosion problems)
Commercial NaCl powder, sieved to:

- 32-45 µm (40 µm);
- 63-90 µm (75 µm);
- >250 µm (ave. 400µm).
Replicated Foams

$\text{NaCl \ 400 \ \mu m ,} \ \ V_f \ \text{Al} = 16 \ %$
Replicated Foams

75 µm, Vf Al = 16 % (fracture surface)
Replicated Foams

NaCl 20-32 µm, Vf Al = 18% (fracture surface)
Mechanical Properties
Mechanical Properties

Compression; microcellular AA1199, 400 µm NaCl

Engineering Compressive Stress (MPa) vs. Engineering Compressive Strain

Compression curves for microcellular AA1199 with 400 µm NaCl, showing stress-strain behavior at different densities: 0.670 g·cm⁻³, 0.672 g·cm⁻³, and 0.680 g·cm⁻³.
Influence of Density

Compression; microcellular AA1199, 400 µm NaCl
Influence of Density

Tension; microcellular AA1199, 400 µm NaCl

Engineering strain [%]

Engineering stress [MPa]

- Vf = 30%
- Vf = 21%
- Vf = 13%
Influence of Density

Evolution of E_0 with Vf_{Al}, 400 μm NaCl

Compression:

$E = 33 Vf^2$

Influence of Density

Evolution of $\sigma_{2\%}$ with Vf_{Al}, 400 μm NaCl

Size Effect

$\Phi_{\text{NaCl}} = 40\mu m$

$\Phi_{\text{NaCl}} = 75\mu m$

$\Phi_{\text{NaCl}} = 400\mu m$

$\Phi_{\text{NaCl}} = \text{Average NaCl grain size in the preform}$

$V_{\text{Al}} = 30\%$

Engineering stress [MPa] vs. Engineering strain [-]
Sources of hardening at small cell sizes:

• Geometrically necessary dislocations when cooling after infiltration
 $\text{CTE}_{\text{Al}} = 23.6 \cdot 10^{-6} \ [\text{K}^{-1}]$
 $\text{CTE}_{\text{NaCl}} = 44 \cdot 10^{-6} \ [\text{K}^{-1}]$

• Oxidation during salt dissolution (hydroxide formation)
Damage

Al foam 16%, made with NaCl 63-90 µm
Damage

Before necking, E decreases with e while R increases linearly with e.

This implies **damage build-up** during foam tensile deformation:
(the modulus would otherwise increase),

taking the form of **foam strut tensile deformation and failure**
(since the resistance increases linearly with strain before the peak).
Damage

Visualisation by X-Ray Microtomography:

At ESRF, in collaboration with:

- Ariane Marmottant, Luc Salvo, Rémy Dendiével
 (INPG Grenoble, France)

- Eric Maire
 (INSA Lyon, France)
Tensile test coupled with X-ray Microtomography

466_3

Stress axis (Z)

Salt: 400 µm
Vf preform = 75 %
Pinfiltration = 155 bars
Tensile test coupled with X-ray Microtomography

466_4

Stress axis (Z)

Salt: 400 µm
Vf preform = 75 %
Pinfiltration = 155 bars
Tensile test

467_0

Salt: > 250 µm
Vf preform = 75 %
Pinfiltration = 1 bar
Tensile test

467_1

Stress axis

Salt: > 250 µm
Vf preform = 75 %
Pinfiltration = 1 bar
Tensile test

467_2

Stress axis

Salt: > 250 µm
Vf preform = 75 %
Pinfiltration = 1 bar
Tensile test
467_3

Stress axis

Salt: > 250 µm
Vf preform = 75 %
Pinfiltration = 1 bar
Tensile test

467_0

Salt: > 250 µm
Vf preform = 75 %, Pinfiltration = 1 bar
Tensile test

Salt: > 250 µm
Vf preform = 75 %, Pinfiltration = 1 bar
Tensile test
467_2

Salt: > 250 µm
Vf preform = 75 %, Pinfiltration = 1 bar
Tensile test

Salt: > 250 µm
Vf preform = 75 %, Pinfiltration = 1 bar
Damage as seen in the SEM

Far from fracture zone

Fracture surface

NaCl 75µm, VfAl = 31% NaCl 75µm, VfAl = 28% NaCl 400µm, VfAl = 25%

NaCl 75µm, VfAl = 28%
Microstructural tailoring
Microstructural tailoring

Influence of NaCl Sintering:
T sintering = 755 °C; V_f = 66%; particle size: 63-90 µm

$t = 0$ [h]

$t = 2$ [h]

$t = 9$ [h]

$t = 25$ [h]
Microstructural tailoring

Influence of NaCl sintering

NaCl 63-90 µm, no sintering
Vf Al = 18%

NaCl 63-90 µm, sintered 24h@750°C
Vf Al = 18%
Microstructural tailoring

Commercial powders

Precipitated powders

Sieving 63 - 90 µm

Sieving > 250 µm

(a few µm in diameter)
Microstructural tailoring

Influence of Infiltration Pressure (preform 75% dense)
Conclusion

Infiltration: definition, engineering advantages, usefulness in research;

High V_f ceramic particle reinforced metal: can be made relatively tough, strong and ductile.

Open-cell aluminium foams (sponges): exploration of processing/microstructure/property relations for this class of materials.
Acknowledgement

This research program is supported by the Swiss National Science Foundation, Projects No. 200020-100287 and 200020-100179