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ABSTRACT 

Maritime Platforms Division within DSTO is ciirrently studying the science and technology of 
autonomous underwater vehicles for defence applications. Part of this work involves a study of 
the hydrodynamics and manoeuvrability of these vehicles and the development of methods to 
determine the hydrodynamic coefficients of submerged bodies as a function of their shape. 
This report describes the application of the FIDAP Computational Fluid Dynamics package to 
the calculation of lift and drag forces on relatively simple underwater vehicle shapes including 
cylinders, spheres, flat plates and wing profiles. The degree to which FIDAP accurately 
reproduces known experimental data on these shapes is described and the applicability of other 
Computational Fluid Dynamics packages is discussed. 
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An Evaluation of the FIDAP Computational 
Fluid Dynamics Code for the Calculation of 

Hydrodynamic Forces on Underwater 
Platforms 

Executive Summary 

Maritime Platforms Division (MPD) within DSTO is currently studying the science and 
technology of autonomous imderwater vehicles for defence applications. Part of this 
work involves a study of the hydrodynamics and manoeuvrabiUty of these vehicles 
and the development of methods to determine the hydrodynamic coefficients of 
submerged bodies as a function of their shape. These coefficients are specific to the 
vehicle and provide the description of the hydrodynamic forces and moments acting 
on the vehicle in its underwater environment. 

The calculation of these hydrodynamic coefficients has previously been performed 
using methods adapted from the aeronautical literature. These methods are satisfactory 
when applied to axisymmetric xmderwater vehicle shapes but provide poor estimates 
of the coefficients when applied to flatfish type bodies such as the DSTO concept 
demoristrator vehicle Wayamba. There is a distinct need for a more widely applicable 
method for the calculation of hydrodynamic coefficients for non-genericaUy shaped 
vehicles, in particular those with non-axisymmetric body shapes. One alternative 
approach, currently imder investigation in MPD, is to combine experimental 
techniques with current Computational Fluid Dynamics (CFD) capabUities. 

The purpose of this report is to document and describe the appUcabihty of the FIDAP 
(Fluid Dynamics Analysis Package) finite-element CFD code to the calculation of lift 
and drag forces on relatively simple underwater vehicle shapes such as cylinders, 
spheres, flat plates, and wing profiles. The results indicate that the FIDAP code has 
several problems with regard to accurate simulations of turbulent flow aroimd 
xinderwater bodies. The main problem appears to be the inability of the turbulence 
models incorporated in the code to fuUy capture the relevant physics required to 
simulate flow separation effects at high Reynolds numbers. The results showed tihat the 
models were unable to accurately calculate drag coefficients for two-dimensional 
cylinders and three-dimensional spheres. In particular, the models were imable to 
reproduce the stiong variation of drag coefficient for each of these shapes in the critical 
region just after tiansition from laminar to turbulent flow in the boundary layers. 

A further problem with the code was the difficulty in obtaining converged solutions on 
unstiuctured hybrid grids containing mixtures of quadrilateral and tiiangular elements 
(in two-dimensions), or hexahedral and tetrahedral elements (in three-dimensional 
flows). Because of these, and other problems, it is recommended that FIDAP should be 
replaced by a CFD code containing both more advanced turbulence models, as well as 
the ability to more easily obtain converged solutions on hybrid unstructured meshes. 
The finite-volume code Fluent, which is used in Air Operations Division for 
aeronautical applications and in Airfiames and Engines Division for the simulation of 
combustion flows, is the recommended alternative. 
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1. Introduction 

Maritime Platforms Division (MPD) is currently studying the use of autonomous 
tinderwater vehicles for defence applications. Part of this study involves the 
development of a capability to model the hydrodynamic coefficients of submerged 
bodies as a function of their shape. These coefficients are specific to the vehicle and 
provide the description of the hydrodynamic forces and moments acting on the vehicle 
in its underwater environment, and hence determine the stability and manoeuvrability 
of these vehicles. 

A recent report by Jones et al. [1] presented a detailed discussion and evaluation of 
several methods previously used for the calculation of these hydrodynamic 
coefficients. Sample calculations were presented, and the accuracy and applicability of 
these methods to the xmderwater vehicles of interest to the DSTO were described. For 
axisymmetric bodies they provide a reasonable first estimate of the magnitude of these 
coefficients and a software suite, known as HYGUESS, has been written based on some 
of the algorithms described in reference [1]. HYGUESS calculates the linear 
hydrodynamic coefficients of axisymmetric underwater vehicles, as well as the total 
(non-Unear) lift and drag coefficients for the complete vehicle. The code is written in 
the C++ programming language and a description of the overall structure of the code, 
including the table handling software and detailed class information, is contained in 
the report by Clarke et al. [2]. 

None of these methods have the necessary generality to model non-axisymmetric 
shapes of particular interest to MPD however, such as the flatfish type bodies of the 
autonomous underwater vehicle Marius [3], and the DSTO concept demonstrator 
vehicle Wayamba [4]. Also, as clearly demonstrated by Peterson [5], the hydrodynamic 
coefficients predicted by the empirical methods used in software packages such as 
HYGUESS, and the HYCOF subroutine in Peterson's HYSUB system [6], often display 
appreciable errors when applied to vehicle shapes displaying only minor physical 
differences from those on which the empirical methods were developed. There is a 
distinct need for a more widely applicable method for the calculation of hydrod)niamic 
coefficients for non-generically shaped vehicles, and in particular tiiose witii non- 
axisymmetric body shapes. One alternative approach, currently under investigation in 
MPD, is to combine experimental techniques with current Computational Fluid 
Djmamics (CFD) capabilities. In the last two decades both the sophistication of CFD 
codes and the computing power of standard desk top workstations have increased 
significantly, and the possibility of using CFD to determine hydrodynamic derivatives 
is now just becoming feasible [7]. 

The current program on unmanned underwater vehicles in MPD wiU use a 
combination of both experimental and computational techniques to determine 
hydrodynamic coefficients for underwater vehicles of interest. The experimental 
facihties at the Australian Maritime Engineering College in Launceston have been used 
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to measure hydrodynamic coefficients on scale models of selected underwater vehicle 
shapes. These results will be used to benchmark simulation results for these scale 
models obtained from calculations using a commercial CFD software package. Once 
the simulation results have been tuned to tiie experimental results the CFD code can 
then he used to perform a parametric study on related imderwater vehicle shapes to 
determine the manoeuvrability characteristics of each of these vehicles. 

The purpose of this report is to docmnent and describe the appHcabiHty of the FIDAP 
(Fluid Dynamics Analysis Package) finite-element CFD code to the calculation of lift 
and drag forces on relatively simple underwater vehicle shapes such as cyHnders, 
spheres, flat plates, and wing profiles. FIDAP is one of several commercially available 
software packages with the potential capability to perform these calculations [8]. Other 
CFD codes currently in use within MPD include the finite-volume codes Fluent [9] and 
CFX [10]. FIDAP was chosen initially because it was ttie only code which had the 
capability to model free surface effects with some degree of accuracy, and this aspect of 
the code was of interest to MPD because of its work on surface platforms. This report 
discusses in detail the application of the FIDAP code to the calculation of the 
hydrod5fnamic flow aroimd the above mentioned simple shapes. A comparison is 
made between the simulated results and experimental data, and the degree to which 
FIDAP accurately reproduces the experimental data is discussed. Some shortcomings 
in the code are noted, particularly with respect to the type of turbulence models 
available to the user, and an alternative software package is recommended for future 
use. 

2. The FIDAP Code 

FIDAP was ttie first commercial CFD code based on the finite-element method and has 
teen commercially available since 1983. It was developed by Fluid Dynamics 
International Inc. in the USA and is now owned by Fluent Inc., Lebanon, NH, USA. 
One advantage of the finite-element method over either the finite-difference or finite- 
volimne metiiods in their early stages of development was that it allowed any model 
vehicle within the flow to be arbitrarily complex in shape and cormectivity. In recent 
years however new unstructured grid methods have allowed both finite-difference and 
finite-volume codes to deal with complex geometrical domains as readily as finite- 
element schemes, so that finite-element schemes no longer have an inherent advantage 
in this area, FIDAP solves the equations of mass, momentum and energy cor^ervation 
for bofli compressible and incompressible viscous fluids for both laminar and turbulent 
flows and offers Ae user a multitude of choices with regard to both problem set-up 
and solution procedure. One of the reasons for briefly reviewing the code and its 
capabilities here is to point out which of the many model options and solution 
strategies were foimd to be appropriate for obtaining accurate solutions for flows 
around typical underwater shapes at realistic Reynolds number values, which for tiie 
flows considered here are of the order of 1.0x10*. 
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2.1 Basic Fluid Equations 

The basic equations governing the flow of an isothermal viscous fluid are derived from 
the conservation of mass and momentum and are described in many standard texts 
[11]. The mathematical representation of the equation for the conservation of mass is 
known as the continuity equation and has the form 

^ + V-(pu) = 0 (1) 

In equation (1) u represents the flow velocity, p the density, and t the time. If the fluid 
is incompressible (which is assumed here) then the density is constant and equation (1) 
has the simpler form 

dxj (2) 

where m and Xi represent the components of the velocity and position vectors, and the 
summation convention for indices has been used. 

The equation representing the conservation of linear momentum has the following 
form 

r 
duj 
—- + Ui 
dt     J 

duj 

dx 
J J 

dp di 
+ ■ U 

dxj     dx I 
(3) 

where x,y is the viscous stiess tensor and p is the dynamic pressure. For a Newtonian 
fluid (which is also assumed here) the viscous stiess tensor can be written in the form 

Vj=li 
^^j     dui ^ 
—— + —- 
dxj     dx j 

(4) 

where ^ is known as the coefficient of viscosity of the fluid. Equation (3) can then be 
written 

duj dui 

J dx \ 
dt V 

dp d 

dxf       dx I 

duj     dui 

dxf     dxj J 
(5) 

which is known as the Navier-Stokes equation. 



DSTO-TR-1494 

2.2 Finite-Element Method of Solution 

Equalioiw (2) and (5) form a set of partial differential equations for the variables p and 
Ui over a continuous domain representing an infinite number of degrees of freedom. To 
solve ihese equations computationally they first need to be transformed into a discrete 
domain representing a finite number of degrees of freedom. In the Finite-Element 
Method thfe is done by first dividing the continuum region of interest into a nmnber of 
simply shaped regions called elements. FIDAP allows both quadrilateral and triangular 
elemente for two-dimensional (2D) problems, and brick (hexahedral), tetrahedron, and 
wedge (triangular prism) elements for tihree-dimensional (3D) problems. Within each 
of ihese elements the dependent variables «, and p are approximated by interpolating 
functions (also known as basfe functions or shape functions), so tiiat title problem 
reduces to finding the unknown values of the variables at the node points of the 
elements. 

In FIDAP the method used to transform the continuum equations into a finite set of 
equations for these unknown nodal values k the Galerkin fonn of the Method of 
Weighted Residuals [12]. This minimizes tihe errors (tiie residuals) in equations (2) and 
(5) in a weighted sense by requiring that the residuals be orthogonal to tiie 
interpolation functions within each element. The orthogonaHiy conditions are 
expressed by forming integrals of the assumed solution with the interpolation 
functions for each element, and this results in a set of matrix equations for the 
unknown values at the nodal points. 

FIDAP allows the user considerable choice in the combination of basis functions, 
element types, and pressure approximations. For example, the two-dimerKional 
quadrilateral element can be either a 4-node linear element or an 8 or 9-node quadratic 
element. If the 4-node linear element is chosen then the velocity componente «, are 
approximated using bilinear interpolation functions, but two pressure approximations 
are possible; a bilinear continuous approximation with the pressure degrees of freedom 
located at the four nodes, or a piecewise constant discontinuous pressure 
approximation with the pressure degree of freedom associated witti the pressure 
centroid. If a 9-node quadrilateral element is chosen then the velocity is approximated 
using biquadratic interpolation functiorw, and three different forms of the basis 
functions for pressure are available. If the domain is meshed using triangular elements 
then the user has a choice of either a 3-node triangle using linear basis functions for the 
velocity and two different types of pressure discretization, or 6 or 7-node triangle 
elements using biquadratic basis functions for the velocities and either linear or 
quadratic basis functions for the pressure. 

In three dimensiorw there are also a large number of choices. Brick elements can be 
either 8-node linear elements or 27-node quadratic elemente, wifli a choice of two 
possible pressure dfecretizations for the 8-node element, or three possible pressure 
discretizations for the 27-node element. Tetrahedron elements are either 4-node linear 
elemente or 10 node quadratic elemente, with different pressure approximations 
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similar to those for the corresponding triangles. Wedge elements are available as either 
6-node linear elements or 18-node quadratic elements, and two pressure discretizations 
are possible with each of these elements. 

The element type (eg. quadratic or triangle in 2D) and element order (eg. 4-node, 8- 
node or 9-node for a quadratic element) are set in the GAMBIT preprocessor software 
when the initial meshing of the problem is performed. The choice of element order 
fixes the order of the basis functions for the velocity (linear or quadratic), but the 
specific pressure discretisation method used with the element is specified in the 
PRESSURE command in the FIDAP software. 

FIDAP was originally written to use quadrilateral elements for 2-D problems and 
hexahedral elements for 3-D problems. The use of these element shapes resvdts in 
structured grids and gives the user much greater control over the quality of the entire 
finite element mesh. They are particularly easy and appropriate to use when the objects 
to be meshed have relatively simple geometiies. For more complicated geometries the 
use of triangular and tetrahedral elements often allows the initial meshing of the 
problem to be considerably simplified. These elements are also particularly useful 
when the boimdaries are required to be placed at a considerable distance from any 
object located in the flow. The unstiuctured nature of the resulting grid allows the 
problem^ to be meshed with considerably fewer elements than would be the case if a 
structured grid using hexahedral elements was employed. 

FIDAP has previously been used by Givler et al. [13] for three-dimensional modelling 
of flow past a prolate spheroid and two model submarine huUs, and by WiUiams et al. 
[14] and Hajiloo et al. [15] to model flow around car-like shapes. In each of these 
applications the finite-element mesh was generated using hexahedral elements and the 
coniputed results, such as the value of the drag coefficient and wake velocities, 
compared favoiu'ably with experimental values. Equivalent benchmark calculations 
using triangular and tetiahedral elements do not appear in the literature however. One 
of the objectives of this work is to investigate the ease of use, and the resulting 
simulation accuracy, when FIDAP is run using these element shapes. 

2.3 Turbulence IVlodels 

The dimensions and velocities of typical underwater vehicles are such that the 
Reynold's number wiU normally be greater than 1.0 xlO^, indicating that there wiU be 
considerable turbulence in the flow field. In turbulent flow the fluid motion is highly 
random, uiisteady, and three-dimensional. In principle such flows can be described by 
direct application of the time-dependent equations described in the preceding section, 
an approach which is known as Direct Numerical Simulation (DNS) of turbulence. This 
approach is impractical in most situations however because turbulent flows contain 
information on scales which are many orders of magnitude smaller than the extent of 
the flow domain. To resolve these scales requires very fine meshing, which in turn 
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requires very small time steps. Calculations of this type for realistic tinderwater 
vehicles are currently beyond the capabilities of current computers. 

To overcome these problenw and create a useable numerical model of a turbulent flow 
field FIDAP describes the turbulent motion by separating each variable into a mean 
component and a fluctuating component, and then averaging the flow equations over a 
time scale which is long compared to that of the fluctuating components. This is a 
standard approach in turbulence modelling [16]. Each of the field variables is therefore 
written in the form 

Tl = Ti+ii (6) 

where r\ and r\' represent the mean and fluctuating components respectively. If ttiis 
approach is applied to the variables in equations (2) and (5) and the equations are then 
time averaged the following equations for the mean components are obtained 

duj 
= 0 (7) 

/■ 

duf    _   duj 

JdXj & 

dp d 

Sxri        dx 

^5M/     dut 

J dxj     dx f 
-p^^(ulu'f)   (8) 

dx J 

Equation (7) has the same form as equation (2), only now the components of the fluid 
velocity Uf represent the average componente of the velocity. Equation (8) is also 

almost identical to equation (5), except for the presence of the new term 

dx 
-(u'iu'j), 

which represents the correlation between velocity fluctuatioiK in the turbident flow 
field. Physically, these correlatiorw represent the net transport of momentum due to the 

fluctuatioiw. The expression — pu\u'j represents the i* component of momentum in the 

/* direction (or vice-versa) and is known as the Reynolds stress tensor. To solve 
equatioite (7) and (8) the Reynolds stress tensor must be expressed in terms of the 
mean-flow quantities. This is known as a constitutive relationship, and FIDAP allows 
the user to choose fromi one of three constitutive relations; Boussinesq, Speziale, and 
Launder. The simplest of these is the Boussinesq relation, which assumes that the 
turbulence is isotropic. The Speziale and Launder relations are exter^iorK of the 
Boussinesq relation which are designed to model anisotropic turbulent flows. 
The Boussinesq relation assumes that the components of the Reynolds stress tensor are 
proportional to the mean velocity gradients, ie. 
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f 
pujUj = Hf 

du 

dx i dx 
fp*8 y (9) 

In the above equation 5ij is the Kroecker Delta, and the parameter fx^ is known as the 

eddy-viscosity. It depends on the turbulence in the flow field and is therefore a 
function of position. The parameter fc is the turbulent kinetic energy per vmit mass and 
is also a function of position. The definition of k is 

l' 
(10) 

Subtraction of the turbulent kinetic energy term on the right hand side of equation (9) 
is required because the trace (ie. the sum of the diagonal terms) of the first term is zero 
due to equation (7). Before equation (9) can be used an eddy-viscosity model needs to 

be defined to provide a means to estimate \if, and a transport equation needs to be 

derived to model the turbulent kinetic energy h 

FIDAP provides seven eddy-viscosity models. Two of these are zero equation models, 

in which algebraic equations are used to describe the relationship between \if and the 

flow variables. The particular algebraic model used by FIDAP is a mixing length 
model, and the user has the choice of an automatic mixing length computation or one 
calculated from a user supplied subroutine. These models will not be discussed further 
however as it is well known that algebraic models are quite unreliable for predicting 
flow separation effects [17]. 

The remaining turbulence models are known as two-equation models, and these 
include two extra partial differential equations to describe the relationship between 

\x.( and the flow variables. The default model employed in FIDAP is a two-equation 

eddy-viscosity model known as the standard fc-s model. In this model the turbulence 
field is characterised in terms of two variables, the turbulent specific kinetic energy k, 
and the viscous dissipation rate per unit mass of turbulent kinetic energy e, which is 
defined as 

8 = 
\x^du'i du'i 

vny dx T dx 
(11) 

J 

In the standard fc-s model k and s are obtained from the following semi-empirical 
coupled transport equation: 

dk      _ 
P- + PUJ 

dk 

dx r 
-pUjUj 

duj_ 

dx i 
ps + 

d 
dx 

|i + 
^k ^ J 

(12) 
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&        _ de TZr^i 
ax; k ox j k 

■ + ■ 
dx, 

IX + 
Hf   dk 

(13) 

Here   Ci   and   C2  are   empirical   constants   and    0^^and    Cgare   the   turbulent 

Prandtl/&:hinidt numbers for k and s respectively. The relationship between k and 8 
has the form 

Ht=c p- (14) 

where e„ is an empirical constant with a value of 0.09. 

The fc-8 model was developed by Jones and Latinder [18], and is described in somie 
detail by Wilcox [17]. The model has been widely tested for a variety of flows. For 
Kothermal flows with no mass transfer the recommended values of the various 
constants are as follows: 

<Jt = 1.00, CJE = 1.30, ci = 1.44, C2 = 1.92, c^ = 0.09 

These are the default values used in FIDAP, and are also the values which have been 
used in the applications of tihe k-z model described in this report. The advantages of the 
standard fc-s model are tiiat it is robust, economical, and reasonably acciu-ate for 
moderately difficult problems when used in conjunction with the Boussinesq eddy- 
viscosity constitutive relation. The disadvantage, however, is that it performs badly for 
complex flows involving severe presstu-e gradients or strong streamline ciuvature. 

FIDAP ako contains several improved versioiw of the standard k-z model, these being 
tihe RNG k-z model, the Extended k-z model, and the Anisotropic k-z model. Each of 
these modeb offers somie degree of imiprovement for modelling flows involving 
pressure gradients and strong streamline curvature. The RNG model was developed 
by Yakhot et al. [19] and is based on renormalised group theory arguments. It contains 
an additional sotirce/sink term in the s equation and takes better account of the 
physics. McKenzie has used the RNG fc-s model in the Fluent CFD code to model flow 
around submarine shapes and has noted that wlulst the standard fc-8 model performs 
badly in this application, in fliat it is imable to calculate the position of flow separation 
points accurately, the RNG fc-8 model gave quite acceptable resulte [20]. 

The Extended fc-e model used in FIDAP was developed by Chen and Kim [21], It is 
based on the assumption of a second time scale which beomes important when the 
turbxdence deviates from local equilibrium. This resulte in a modified equation for e 
and an additional empirical constant which must be fitted to experimental resulte. The 
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extended k-s model yields results similar to those of the standard model for simple 
flows, but is claimed to yield better predictions for complex flows involving 
recirculation and streamline curvature. 

The Anisotropic k-e model is a simple extension of the standard model which allows 
terms in the s equation to relate to the anisotropic nature of the turbulence field. The 
form of the k and s equations for the anisotropic model are identical to those of the 
standard k-e model, but the coefficient C2 is now a function of the second and third 
invariants of the anisotropy terisor. This approach allows improved predictions of 
anisotropy effects which are not strictly modelled by two-equation models. These 
effects can be significant for difficult flows involving strong streamline curvature. 

Both the standard k-e model and the three variants of the model used in FIDAP are 
only appropriate for high Reynolds number flows and hence cannot be used in the 
near-wall boxmdary layer regions where viscous effects dominate. To overcome this 
problem FIDAP uses specialised WALL elements, which use special velocity basis 
functions based on iiniversal experimental velocity profiles for fuUy turbulent 
boimdary layers. The WALL elements extend from the surface of the soHd wall into the 
bttffer region of the botmdary layer, and in this manner account for the rapid variation 
in flow properties which occur in the lower most part of the boimdary layer. Use of the 
WALL elements means that a very fine mesh is not required close to any soKd surfaces 
in the flow and the high Re5Tiolds number k-e models are not solved in inappropriate 
regions of the flow. A disadvantage of this approach is that, because the velocity is 
forced to have a particular profile close to the soHd surface, boundary layer separation 
is less hkely to be modelled accurately because the velocity profile near the separation 
point will be quite different to that used for the velocity basis functions. 

Better predictions of boundary layer separation would be obtained by avoiding the use 
of the WALL element approach and k-e models and instead using a more appropriate 
low Reynolds number turbulence model in conjunction with a very fine mesh through 
the boundary layer. In this way, more accurate simulation of the velocity profile in the 
boimdary layer would be obtained. One turbulence model available in FIDAP which 
has these properties is the Wilcox Low Rejmolds Number k-co model. In this model 
separate transport equations are solved for k and CD (where co is defined by £ = kco) over 
a fine near-wall mesh to model both the mean flow variables and the turbulence 
variables near the wall, and to resolve any geometric features which may be present in 
the viscous sub-layers. While the Wilcox Low Reynolds Number k-co model would 
seem to be flie best model to use if interest is centred on accurate evaluation of 
boundary layer separation points, it is unfortunately not appropriate for the 
applications considered here. It is primarily intended for simulating globally low 
Reynolds number internal flows where Re < 10,000, and is particularly unsuited for 
predicting external flows because the results are very sensitive to the free-stieam value 
of ft) [22]. 
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The above discussion would seem to indicate that the standard k-e turbulence model 
might not be particularly appropriate for the applications considered here. 
Nevertheless, it is important to note that the model, as implemented in FIDAP, has 
been used by Givler et al. [13] to model flow past three-dimer^ional submarine modek, 
and by Williams et al. [14] and Hajiloo et al. [15] to model flow around car-like shapes. 
Givler et al. [13] used FIDAP with the standard k-z model to simulate flow around a 6:1 
prolate spheroid and two model submarine hulls with an attached fairwater and 
stemfins. For the prolate spheroid comparisons were made between computed and 
experimental results and good agreement was obtained for some of the date. For 
example, computed axial velocity profiles at four locations within the wake were in 
excellent agreement with flie experitnentel measurements. The computed separation 
streamline behind the body was poorly predicted however, with the numerical model 
underpredicting the length of tiie recirculation eddy by a factor of four. This lead to 
overprediction of the pressure in the near wake, but excellent agreement was obtained 
between simulated and experimental pressure values further downstream. Although 
the separation streamline was poorly predicted, surprisingly, the computed drag 
coefficient of 0.064 was in excellent agreement with the experimental value of 0.06. 
WiUiams et al. [14] used FIDAP with the standard fc-e turbulence model to simulate the 
flow around two car-like shapes without performing any grid convergence studies and 
found that they were able to quaHtatively simulate all significant flow structures, as 
well as obteining excellent agreement between calculated and measured centreline 
pressure distributions. The calculated drag coefficients agreed with the measured vales 
to within 5% and 15% respectively. Hajiloo et al. [15] performed a limited mesh 
refinement study for one of these car-like shapes, again using FIDAP and the standard 
fc-s turbulence model, and found that their finest mesh gave a simulated drag 
coefficient which agreed with ihe measured value to within 2%, 

The success of the standard k-z turbulence model in calculating reasonably accurate 
drag coefficiente for car-like shapes is not surprteing as these bodies have 
comparatively blunt rear ends, and the location of any separation point is relatively 
easy to predict. For more streamlined shapes such as 6:1 spheroids, submarines, or 
flatfish UUVs, it would be expected that the standard k-e model would have less 
success, and this was indeed experienced by Givler et al. [13] for the 6:1 spheroid and 
McKenzie for submarine shapes [20] where, in both cases, the location of the separation 
points were poorly predicted. For these more streamlined shapes the RNG k-z model 
would be expected to provide improved simulation results. 

2.4 Boundary and Initial Conditions 

The solution of any fluid flow problem in a finite domain reqtiires specification of 
appropriate boundary and initial conditions. All the problems considered here are 
external, unconfined flows of turbulent fluid, so the variables of interest are the 
pressure, the three componente of velocity (for a 3D problem), as well as the turbulent 
kinetic energy k and the dissipation function 8. As well as boimdary conditions for each 
of these variables, initial conditiorw must also be stipulated. In a transient simulation 
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these values prescribe the state of the system at the initial time, whereas in steady-state 
simulations, such as those considered here, these values serve as initial guesses for the 
iterative solution procedure. 

AH the simulations described in this report are effectively numerical wind tunnel or 
cavitation tunnel experiments. There is an inlet boundary, typically on the left side of 
the grid, through which the xmdisturbed flow enters the computational domain. The 
centre of the grid contains the soKd body of interest, and there is an outlet boundary on 
the right side of the grid. The remaining boundaries can either be solid, representing 
the real walls of either the wind tunnel or the cavitation tunnel, or they can be 
entrainment boundaries, which allow fluid to enter or leave the computational domain 
and hence simulate an unbounded region of flow. For computational convenience, and 
also to minimise memory requirements, there may also be one or more symmetry 
boxmdaries along the computational domain. 

Appropriate boundary conditions for M„ k and s on the inlet boundary are Dirichlet, or 
prescribed, boxmdary conditions. Values for M, are easily defined; the flow is typically 
in the x direction and so Ux has a finite value, while Uy and Uz are set to zero. The inlet 
boundary value for k is calculated by first assuming a particular value for the intensity 
of the turbulence in the fiee stream. The intensity I is defined as 

1 = ^ ^— (15) 
u 

00 

where ««, is the undisturbed free stream velocity. Once a value for I has been decided 
upon, k is then calculated from 

k = L5{lu^f (16) 

The value for the dissipation ftmction s is then calculated from equation (14), ie. 

pc k^ 

where R,j is the ratio of turbulent to laminar viscosity. The value of R,, depends to a 
great extent on the nature of the flow and is difficult to specify exactiy. For flows of the 
type considered in this report R,, typically lies somewhere in a range between 100 and 
500 [23]. The exact value of both I and R^ should not be critical to the calculation. 
Although the location of the separation point, and hence the drag coefficient, has been 
found to depend on the level of free stieam turbulence this is a small effect, and the 
nature of the turbulence models employed within FIDAP are not expected to be able to 
accurately reproduce this dependence. In practice, solutions obtained from FIDAP are 
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expected to be independent of the assumed values of I and J?^, provided that Ihese lie 
within appropriate limits. 

The appropriate boundary condition for aU variables on a symmetry boundary is that 
(he gradient of the variable in the direction perpendicular to the boundary should be 
zero. TMs is also the appropriate condition on an outflow boimdary, provided that the 
boundary is sufficiently removed from any object within the flow. This is alwrays true 
for all of the simulations reported here. The zero gradient boundary condition is 
known as a Neumann totindary condition and FIDAP automatically assigns Neumann 
boundary conditions to all flow variables on computational boundaries which have not 
been expHcifly given Dirichlet boundary conditions. Neumann boundary conditions 
are abo appropriate on entrainment boundaries, provided that the velocity component 
normal to the boundary plane is small relative to the tangential velocity component. 
This is typically the case in all the simulatiorw considered here. 

The appropriate boundary condition for the velocity at a solid boundary is the no-slip 
condition, ie. the normal and tangential components of the velocity should be zero on 
any solid (non-moving) boundary. Implementation of this boundary condition raises 
several problems however. AU viscous fluids form a boundary layer near the surface of 
a solid wall and the flow variables change very rapidly within fltis boundary layer. To 
accurately model this botindary layer would require a very fine mesh ^th a 
disproportionately large ntunber of grid points in the immediate vicinity of flie solid 
boimdary, and this would significantly reduce the size of the mesh which could be 
used for the rest of the flowfield. A further complication, as mentioned in the previous 
section, is that the standard k-e models used in FIDAP are only valid for high Reynolds 
number flows and cannot be used in near-wall regions. 

FIDAP overcomes these problems by using specialised WALL elements. In this 
approach, as described in section 2.3, the computational domain is extended to (he 
physical boimdary and the problem of resolving the boundary layer is removed by 
using special WALL elements in the near-waU region between the fuUy turbulent outer 
flow field and the physical boundary. These elements use special shape functions to 
accurately capture the sharp variations of the mean flow variables in the boundary 
layer. Because flie k-e model is invalid in the boundary layer the k and s equations are 
only solved in the region outside the WALL elements, and flie spatial variation of the 
turbulent momentum diffusivity within the boundary layer is modelled using van 
Driest's mixing length approach [12]. 

The shape functioiw in the special elements are constructed using products of one- 
dimensional basis functions. In the local coordinate direction along the wall these basis 
functiorK are identical to those used in the coi^truction of shape functioiw for the 
regular elements, hi flie local coordinate direction normal to the wall however special 
one-dimensional basis functions are used which are based on universal flow profiles in 
the near-wall region. These functions depend on the number of nodes in the element 
along the local coordinate direction which points away from the wall, but each is just a 
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sKght variation of the Reichardt law, which describes the dimensionless flow velocity 
normal to the wall, u*, as a function of the dimensionless normal distance from the 
waU, y+. Reichardt's law has the form 

K 

where 

w+ =-ln(l + K);+)+7.8 l-exp|-^i-^exp(-0.33j+) (18) 

Li f     y     — f    U^ — 

y2 
w (19) 

Tw is the shear stress on the wall and K is an experimentally determined constant 
having a value of approximately 0.40. In equation (19) the subscript w denotes a wall 
value, M* is the friction velocity, and 5 is the normal distance from the wall. Equation 
(18) accurately reproduces known experimental data for the velocity profile within the 
turbulent botmdary layer along a flat plate. For values of y+ less than 5 the flow is 
predominantly laminar and has a linear velocity profile, while for values of y* greater 
than 30 the flow is fully turbulent with a logarithmic velocity profile. For y+ values 
between 5 and 30 the flow is transitional and intermittent, with a log-linear velocity 
profile, and equation (18) provides a smooth transition between the three regions. 

As explained above, the computational domain for the k and s equations extends only 
to the "top" of the special near-wall elements. Hence appropriate boundary conditions 
are needed at these locations for the k and s equations. FIDAP automatically applies the 
following boxmdary conditions for k and s 

The boundary conditions defined in equation (20) are representative of the equilibrium 
conditions in the near-wall regions. 

When using the above scheme to model turbulent flow around objects in the flow field 
it is important to ensure that the first layer of elements is thick enough to completely 
contain the viscous sub-layer and transition region. This is done by plotting the y+ 
values at the position of the WALL boimdaries after the simulation has converged. 
Provided the i/+ values are greater than 30 for all elements then the elements have been 
chosen thick enough so that they completely contain the boimdary layer. If the y+ 
values are significantiy lower than 30 then the solution of the k and s equations will 
extend into the boundary layer and could result in inaccurate predictions. If this occurs 
the simulation needs to be re-run with a coarser grid in the direction normal to the 
w^aU. 
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2.5 Solution Algorithms 

FIDAP offers a choice of two quite different solution strategies for the full set of 
coupled nonlinear equations describing the flow. For small 2D problems the fatty 
coupled approach is the most appropriate. In this method the discretised equations are 
assembled into one large global matrix system and the equations are then solved 
simultaneously using direct Gaussian elimination. This approach fe the most efficient, 
but can only be implemented when the global matrix system fits within available 
computer memory. For large 2D problems, and most 3D problems, particularly fliose 
involving turbulent flow where an additional two transport equations need to be 
solved (for k and e), the most appropriate method is the segregated approach. This 
method substantially reduces disk storage requirements compared to the fuUy coupled 
solver because the global matrix system is never directiy constructed, hi the segregated 
approach each conservation equation is solved separately in a sequential manner. Each 
of the nonlinear flow equatioiK is linearised using the fixed-point Picard method (also 
known as the successive substitution meihod) and the resulting linear equations are 
then solved using eitiier direct Gaussian elimination or iterative solvers. 

Linearisation using the fixed-point Picard method can be Ulustiated as follows; 
application of the Galerkin form of the Method of Weighted Residuals to the stationary 
Navier-Stokes equations results in a set of non-linear algebraic equatioiw which have 
the following form 

K (u) u = F (21) 

hi equation (21) K is the global system matrbc, u is the global vector of unknowns 
(velocities and pressures), and F is a vector which includes the effects of body forces 
and boundary conditions. Picard iteration solves equation (21) using the following 
method 

K(u,)uM = F (22) 

This algorithm evaluates the nonlinear tetms at the currentiy known values of the 
variables u, and then solves the simple linear equation (22) to calculate new values of 
the variables, u,+i, at the next iteration level. The convergence rate of this scheme is 
slow (asymptotically linear), but the method converges for a fair range of Re5molds 
number. The rate of convergence can often be improved, or instabihiy in the 
convergence process can be avoided, by tiie use of a relaxation factor a. This is done by 
writing the solution of equation (21) at tiie {i+l)th iterate as 

u,+] = au, + (l-a)u* (23) 

where u* satisfies the equation 

K (Ui) u* = F (24) 
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The optimum values of relaxation factors are flow dependent and are usually chosen 
by trial and error. In FIDAP, relaxation factors can be entered selectively for each 
primary flow variable, and they can either be fixed in value or expressed as a function 
of the level of convergence of the solution. 

When using the segregated solution approach the default relaxation scheme is Hybrid 
Relaxation. This scheme employs a combination of four different relaxation factors for 
each degree of freedom, and these are denoted as foUows: 

a - explicit relaxation factor 
Pa implicit advection relaxation factor 
Pd -implicit diffusion relaxation parameter 
y - impHcit source-based relaxation factor 

Apart from y, which is computed d)Tiamically by FIDAP for every nodal unknown, the 
three factors a. Pa, and Pd are subject to user contiol and can be changed by using the 
FIDAP command RELAXATION (HYBRID). The default values for tiirbulent flows of 
the type considered here are shown in Table 1: 

Table 1: Default values for the relaxation parameters for the relevant flow variables. 

Factor Type Ux Uy Mz P k £ 
ExpHcit 0.3 0.3 0.3 0.6 0.3 0.3 
Implicit: Advection 0.1 0.1 0.1 0.0 0.05 0.05 
Implicit: Diffusion 0.01 0.01 0.01 0.0 0.01 0.01 

In a three-dimensional, turbulent, iso-thermal Navier-Stokes calculation the variables 
to be solved for are the three velocity components, tiie pressure, the turbulent kinetic 
energy, and the energy dissipation. The equations to be solved are the three 
components of the momentum equation, the continuity equation, and equations for the 
turbulent kinetic energy and energy dissipation. Before this set of equations can be 
solved using a segregated solution approach it is necessary to combine the three 
components of the momentum equation with the continuity equation to obtain an 
explicit equation for the pressure. This is easily done, but the restdting explicit matiix 
equation for the pressure is prohibitively expensive (in terms of computer memory) to 
constiuct and solve, and so simplified forms of the pressure equation need to be foxmd 
which require less memory to solve. 

FIDAP provides a choice of three different approximations for the solution of the 
pressure equation; the pressure correction (PC) algorithm, the pressure projection (PP) 
algorithm, and the pressure update (PU) algorithm. Each of these algorithms solves a 
sHghtly simplified form of the pressure equation either directiy for the pressure p, or 
indirectly for a pressure increment Ap. The PC algoritiun is a direct finite element 
counterpart of the SIMPLE algorithm, which is a well estabKshed and successful 
algorithm for solving the explicit pressure equation in finite-volume CFD codes [24]. 
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The PP algorithm is a consistent finite-element comiterpart of tiie SIMPLER algorithm, 
which is an im^provem^ent of the SIMPLE algorithm, while the PU algorithm is similar 
to a penalty function method [25]. Haroutunian et al. [26] have presented results from a 
ntimber of numerical tests which show conclusively ttiat the PP algorithm is the most 
efficient solution method. 

The segregated algorithm requires the solution of multiple linear equation systems at 
each iteration for the update of each of the variables m, p, k and e (this is known as the 
"outer" loop). Each of these equations involves non-symmetric coefficient matrices, 
except for the pressure equation, which involves solution of a symmetric coefficient 
system. The default method in FIDAP for solving these equations is direct Gaussian 
elimination. The only problem with this meihod is that it uses excessive amounts of 
computer memory and disk storage space when large 3D problems are solved. To 
overcome this problem FIDAP has a number of iterative methods available for the 
solution of linear equation systems. Conjugate gradient (GG) andxonjugate residual 
(CR) algorithms are available for the solution of linear equations with symmetric 
coefficient matrices, while conjugate gradient squared (GGS) and generalised minimal 
residual (GMRK) algorithms are available for the solution of equations with non- 
symmetric coefficient matrices. Each of these iterative methods uses considerably less 
computer memory than direct Gaussian elimination. 

To be effective however each of these iterative solvers requires preconditioning of the 
coefficient matrices before the solution algorithms are applied. In FIDAP this 
preconditioning is done in two different ways; implicit preconditioning and 
conventional preconditioning. The impHcit preconditioning is achieved by using 
implicit relaxation of the non-symmetric advection-diffusion type linear equation 
systems and explicit relaxation of the pressure in eadi of the solution algorithms for the 
pressure equation. This relaxation provides a form of preconditioning which is applied 
to the original linear equation systems before conventional preconditioning is applied. 
Conventional preconditioning of a linear equation system such as Ax=b is achieved by 
replacing the original system with the following equivalent system 

[Pf^AP-^][P,x] = Pfh (25) 

and flien attempting to make ttie transformed matrix Pf AP^ as dose as possible to 

the identity matrix. In FIDAP two types of conventional preconditioning are available; 
diagonal and ffiOR. In diagonal preconditioning the matrix P is chosen to be diagonal, 
and in FIDAP appUcations it has the form P=diag(A), ffiOR preconditioning is more 
involved. If ttie matrix A has the following decomposition 

A = L + D + U (26) 

where L and U are lower and upper matrices, and D = diag(A), then P is given by 
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P = (U + D)-l D (L + D)-l (27) 

In FIDAP, both diagonal preconditioning and SSOR preconditioning can be used in the 
iterative solution of both symmetric and non-symmetric equation systems. 

Haroutimian et al. [26] have presented results from a number of numerical tests which 
studied the relative effectiveness of each of the four iterative solution methods (CG and 
CR for symmetric coefficient matrices, CGS and GMRES for non-symmetric coefficient 
matrices), as well as the two conventional preconditioning metihods (diagonal and 
SSOR, within the context of the FIDAP code. Through a number of extensive mmierical 
tests it was shown that the CR solver with SSOR preconditioning was the optimal 
choice for solving symmetric equation systems, and the CGS solver with diagonal 
preconditioning was the optimal choice for non-symmetric equation systems. 

The segregated approach requires the iterative solution of Hnear systems of equations 
at two different levels (if iterative solvers are used to replace the direct Gaussian solver 
in the "inner loop"), and appropriate convergence criteria are required for each of these 
levels. For the "outer loop", which provides an estimate of the solution variables U, (at 
iteration f) from the variables U ,-3 (at iteration i-1) this has the form 

Ui-Ui_i 

Ui 
<DTOL (28) 

where the norm | x | is a root mean square norm summed over all the equations for 

the model. The norm is computed separately for each degree of freedom in the 
problem. For example, in a three-dimensional, isothermal, turbulent problem this 
would mean the tihree components of velocity, pressure, turbtdent kinetic energy and 
dissipation. Convergence is considered to be obtained when all of these norms are 
simultaneously less than the specified DTOL tolerance. For the segregated solver the 
default value of DTOL is 0.001, although this can be changed by specifying a different 
value for the VELCONV keyword in the SOLUTION command. 

The iterative solvers which replace the default Gaussian solution method in the "inner 
loop" also require convergence criterion to terminate the iterative procedure. For the 
CGS and GMRES methods the tolerance is specified using the NCGCONV keyword, 
while for the CR and CG methods it is specified using the SCGCONV keyword. The 
default value for each of these is 0.0001, indicating that good convergence of these 
"inner loop" iterative solvers is required before attempting convergence of the non- 
linear iterations in the "outer loop". 

AH CFD codes, whether finite-difference, finite-volume, or finite-element, suffer from 
the problem of numerical tmdershoots and overshoots in the flow variables caused by 
discretization of the convection terms in the flow conservation equations. These 
problems typically occur when sharp gradients in the flow variables are encoimtered 
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on the computational grid. The common solution to this problem is to add varying 
amounts of artificial numerical diffiision to the solution algorithm to stabilise the 
overall convection scheme. The diffusion has the effect of weighting the convection 
towards the upwind regions of the flow^ hence the algorithms are referred to 
genericaUy as "upwinding schemes". FIDAP allows the user the choice of three 
different upwinding schemes - Streamline, First-Order, or Hybrid. Detailed 
descriptiorK of each of these schemes is provided in the FIDAP Theory Manual [12]. 
For turbulent problems the default scheme is Streamline upwinding. This explicitly 
adds nimierical diffusion only along the flow direction. Hence it reduces accuracy to 
first order in the streamwise direction, but preserves the higher order accuracy of the 
Galerkin scheme in tiie cross-wise stream direction where no numerical diffusion is 
added. FIDAP allows the user to set different streamline upwinding factors for each of 
the flow variables, and ttiis is done using the OPTIONS (UPWINDING) command. 
Preliminary sample calculations showed that computed results, such as lift and drag 
coefficients, were insensitive to changes in the upwinding factor however and so the 
default value, 1.0, has been used in all the calculations reported here. 

As most of the FIDAP simulations which will be undertaken in the future to calculate 
hydrodynamic coefficients for imderwater vehicles will involve large scale three- 
dimensional turbulent simulations, all tiie calculations reported here have used the 
segregated solution approach with the PP algorithm for the pressure equation, and the 
recommended iterative solvers for the linear equation systems. 

3. Drag on a Cylinder - Introduction 

The flow around a smoofli, infinitely long circular cylinder with ite axis perpendicular 
to ttie flow is well described by Massey [27]. The flow is approximately two- 
dimensional, and the nature of the flow is governed by tiie value of the Reynolds 
number. For very low values (eg. Re < 0.5) the inertia forces are negligible and the flow 
is laminar. As the Reynolds number increases (2< Re < 30) the laminar boundary layer 
separates symmetrically from the downstream side of the cylinder and two eddies are 
formed which rotate in opposite directions. At a Reynolds number of about 90 these 
eddies break off from the cylinder and then eddies are continuously shed from each 
side of the cylinder, forming what is known as a Von Karman vortex street. 

At higher Reynolds numbers the individual vortices disintegrate into random 
turbulence close to tiie cylinder and a regular vortex street can no longer be observed. 
For Reynolds niunbers between approximately Re = 2,000 and Re = 2.0 xlO^ flie wake 
has a width approximately equal to the diameter of the cylinder, the boundary layer is 
laminar, and the drag coefficient Co is approximately constant and has a value between 
0,9 and 1.2. At a Reynolds number slightiy greater than 2x10^ the botuidary layer 
becomes turbulent. As turbulent botmdary layers are better able to withstand an 
adverse pressure gradient the separation point now moves further dowr^tream and 
the wake narrows. Tkm leads to better pressure recovery on the downstream side of the 
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cylinder and therefore a reduction in drag, which is now determined almost totally by 
the pressure imbalance on the front and rear of the cylinder. 

Between Re = 2.0 xlO^ and Re = 5.0 xlO^ the drag coefficient drops from a value of 1.2 to 
0.3. According to Massey [27], over the range 5.0 xl05< Re < 3.0 xlO^ CD then rises again 
from 0.3 to approximately 0.7, and has a value of 0.40 at Re = 2.0x10^. Delany and 
Soresen [28] present much more detailed data for CD as a function of Re for circular 
cylinders but their data is multivalued, with CD lying in the range 0.2 to 0.3 at Re = 
5.0x105, and having a value of 0.5 at Re = 2.0x10^. There is very little experimental data 
on values of the drag coefficient for smooth cylinders in the Reynolds number range 
106< Re <107. The most detailed set of data is given by Roshko [29]. His experiments 
show that CD increases in the range 1.0 xl06< Re < 3.5 xlO^ from a value of about 0.3 to 
about 0.7, and then levels off at the latter value. 

All of the k-e turbulence models in FIDAP assume that the flow in the boundary layer 
has already undergone a transition from laminar to turbulent flow. Hence our 
simulation of turbulent flow around a cylinder using FIDAP is restricted to Reynolds 
numbers greater than 2.0x10^ . In the next section we present drag coefficients 
calculated at flow speeds of 0.25 m/s and 1.0 m/s for several different turbulence 
models. These speeds correspond to Rejmolds numbers of 5.0x10^ and 2.0x10^ 
respectively. Hence we expect to obtain drag coefficients in a range between 0.20 and 
0.30 at 0.25 m/s, and in the range 0.40 to 0.50 at 1.0 m/s. 

3.1 Calculations using Quadrilateral Elements 

The cylinder is located at the origin of a rectangular mesh and has a radius of 1.0 m. 
The working fluid is water and is assumed to be incompressible. The far-field 
boundaries are located equidistant from the cylinder in the + x and ± y directions. It is 
important that these are placed far enough away from the cylinder so that their 
location has a negligible effect on the calculated value of CD. Hence a number of runs 
were performed in which the far-field boundaries were progressively moved further 
away from the cylinder until further changes in their location produced less than a 
1.0% change in CD. The results from these TODS are shown in Table 2. 

The automatic Paving algorithm within GAMBIT was used to mesh the grid with first- 
order quadrilateral elements and the size of the elements in the direction normal to the 
surface of the cylinder was controlled using the Botmdary Layer function within 
GAMBIT. The thickness of the first row of elements was 1.5 mm and the growth rate in 
the normal direction was typically 1.15 for the first 20 to 30 rows. The circumference of 
the cylinder was divided into 240 intervals of equal length and the angular resolution 
aroxmd the cylinder was kept fixed during the first series of riins. The fluid had a 
velocity of 1.0 m/s, or a Reynolds number of Re = 2.0x10^ based on diameter. The 
initial assumed free stream turbulent intensity was 5.0% and the standard k-s 
turbulence model was used with the Boussinesq constitutive relationship. The initial 
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values for k and 8 were 0.004 and 0.006 respectively. The segregated solution algorithm 
with the recommended combination of iterative solvers was used for each of the runs. 

The results in Table 2 indicate that the location of the far-field boundaries does have a 
significant effect on the calculated value of the drag coefficient. These need to be at 
least 7 to 8 cylinder diameters from the cylinder before their effect on the numerical 
value falls below flie 1% level. This is consistent with the experience found by other 
code users [30], who routinely ensure that boimdaries are at least 10 to 20 chord 
lengths distant from objects of interest in the flow. At these distances the assumed 
boimdary condition on each of the variables also had negligible effect on the calculated 
drag coefficient. The far field boimdary conditions for all the runs listed in Table 2 for 
example were performed without imposing prescribed boundary conditions on either 
the pressure, or the two velocity components Ux and Uy. Hence, as described in Section 
2.4, Neumaim boundary conditiorK are automatically imposed (i.e. the gradient of the 
variable in the direction perpendicular to the boimdary is set to zero). It was found that 
imposing the condition Ux = 1.0 on the top and bottom of the grid had no effect on the 
computed value of Co when the far field boundaries where located at +16 cylinder 
radii, while imposing the condition Uy = 0.0 on the top and bottom of the grid changed 
CD by no more than 0.5% at these distances. 

Table 2: Drag coefficient CD as a function of the location of the outer boundaries. 

Grid Size Number of 
elements 

VELCON CD 
+ 

y min 
+ 

y max 

8m X 8m 17188 1.0 X 10"^ 0.4100 33.89 111.18 

12m X 12m 20944 1.0 X 10'^ 0.3150 31.31 104.82 

16m X 16m 22691 1.0x10"^ 0.2984 30.38 102.34 

20m X 20m 23545 1.0 X 10'^ 0.2862 30.22 101.18 

24m X 24m 23923 1.0x10"^ 0.2814 29.94 100.39 

28m X 28m 24159 1.0 X 10"^ 0.2781 29.66 99.84 

32m X 32m 24391 1.0 X 10"^ 0.2760 29.99 99.78 

32m X 32m 24391 1.0 X 10"* 0.2743 30.13 99.90 

Flow speed = 1.0 m/s 

Table 2 also lists the maximum and minimum y""" values around the circumference of 
tiie cylinder. These values depend on the height of the first element above the cylinder 
surface, as described in Section 2.4, and tiiese are estimated and re-adjusted as required 
to ensure that the elements have been chosen thick enough to completely contain the 
viscous sub-layer and transition region. According to the FIDAP Tutorial Manual [31], 
"hi Kothermal flows, the predicted velocity field is generally insensitive to y+ values in 
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the range 10 < y+ < 1000 for most wall boundaries where the flow remains attached to 
the wall". However, "In flow problems involving subtle separation phenomena, such 
as separation occurring on gently sloping surfaces or on curved surfaces, the predicted 
flow field wiU be sensitive to the y+ values upstream of the separation point. In these 
situations the most accurate predictions will be obtained if the y+ values upstream of 
potential flow separation are kept in the range 30 < y+ < 100." 

The height of the first element (denoted by Ah) for the rxms in Table 2 and Table 3 was 

1.5 mm, which resulted in acceptable y"*" values, as shown. This value was determined 
from several trial ruiis on a 4.0 m x 4.0 m sized grid using Ah values of 1.0 mm, 1.5 mm 
and 2.0 mm. The minimum y+ values around the circumference of the cylinder for each 
of these rtms was 20.69,32.73 and 46.25 respectively, with the corresponding maximum 
y+ values being 73.77,107.21, and 142.04, indicating that a first element height of 1.5 
mm was optimal. It is interesting to note that the calculated drag coefficient for each of 
these runs was 0.416, 0.414, and 0.397 respectively, indicating that the height of the first 
element, at least in this range, has Httle effect on the computed value of CD. This was 
foxmd to be true in general for the standard k-s turbulence model when used with the 
Boussinesq constitutive relationship. However, when the standard k-s model was used 
with the non-hnear constitutive relationships there was found to be quite a sensitive 
dependence of CD on Ah. 

Table 3: Drag coefficient CD as a function of angular resolution. 

Number of 
intervals 

Number of 
elements 

CD I   mm 1   max 

240 24,391 0.2743 30.14 99.90 

280 26,920 0.2668 30.08 99.99 

320 31,507 0.2611 29.93 100.07 

360 36,383 0.2569 29.90 100.22 

400 42,070 0.2534 29.85 100.30 

440 48,729 0.2505 29.83 100.42 

480 64,298 0.2481 29.81 100.51 

Flow speed = 1.0 m/s 

Having established a suitable distance for the location of the far-field boxmdaries and a 
reasonable thickness for the first layer of elements on the cylinder, the angular 
resolution around the cylinder was then increased by performing a number of nms 
with increasing numbers of intervals arovmd the circumference of the cylinder. The 
results are shown in Table 3. The increased angular resolution also had a significant 
effect on the drag coefficient, doubling the resolution from 240 to 480 intervals for 
example produced a 10% drop in the value of CD. This is perhaps not surprising as the 
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drag coefficient is very much dependent on the location of the separation poinfs on the 
downstream side of the cylinder, and the increased angular resolution around the 
cylinder allows these to be more accurately determined, 

3.2 Effect of Ttirbulence Model 

From the results given in Tables 2 and 3 we can conclude that the standard k-e 
turbulence model in FIDAP predicts a value for tiie drag coefficient of approximately 
0.25 at a Reynolds niunber of 2.0x106. The experimental results in section 3.0 indicate 
that the true value Hes somewhere in the range 0.4 - 0.5. The disagreement is not 
surprising however as it is weU known that the standard k-e turbulence miodel is 
unable to accurately calculate tiie position of separation points in the presence of strong 
adverse pressure gradients. As discussed in section 2.3, the relevant turbulence modeb 
within FIDAP which can be reasonably applied to the flows considered here are the 
Standard k-s model, the Extended k-s model, the RNG fc-£-model, and the Anisotropic 
k-s model. Each of these two-equation models can be utilteed with either the 
Boussinesq, Speziale or Launder constitutive relationships (although the Boussinesq 
constitutive relationship is obviously not appropriate for the Anisotropic k-s model). 
Table 4 shows the results of applying each of these models and constitutive 
relationships to the flow around a smootii cylinder at a flow velocity of 1.0 m/s. The 
far field boundaries were located at +16 cylinder radii, the angular resolution around 
the circtimference of the cylinder was 360 elements, VELCON was set to 10-3, a^tj 
Neumann boundary conditions were appHed at the far-field entrainment boimdaries. 

Table 4: Drag coefficient Co for each of the applicahle turbulencx models. 

Standard k-e Extended k-s m^Gk-s Anisotropic k-s 

Boussinesq 0.2569 0.2625 0.2683 - 

Speziale 0.2419 0.2320 0.2321 0.2457 

Launder 0.2978 0.2994 0.3010 - 

Flow speed = 1.0 m/s 

As Table 4 shows, neither the Extended k-s model nor the RNG fc-f model offers much 
improvement when used witti the Boussinesq constitutive relationship. The Extended 
k-s model increases the computed value by 2.2%, while the RNG model shows a 4.4% 
increase. When used with the Laimder constitutive model each of the k-s models does 
provide a sHghtiy more realistic value for Co, with the average value teing 
approximately 0.30, which is a 16% increase on the value calculated using the standard 
k-s model and the Boussinesq constitutive relationship. The height of the first element 
had to be adjusted sUghtly to 1.25 mm when using the Launder constitutive 
relationship to erwure that the y+ remained within the appropriate range, and it was 
more difficult to obtain convergence using this constitutive relationship. 
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When used with the Speziale constitutive relationship each of the variants of the k-s 
model resulted in slightly lower values for CD, varying between 5% and 10% lower. In 
each of these cases the height of the first element also had to be altered considerably, 
from 1.5 mm to 5.5 mm, and convergence was again more difficult to obtain than with 
the Boussinesq constitutive relationship. It was also noted that CD varied more 
markedly with Ah than with either of the other constitutive relationships, and that 
these variations occurred in a non-uniform manner. 

3.3  Variation of Drag Coefficient with Flow Speed 

As noted in section 3.0, the value of CD varies significantly in the Reynolds number 
range between 5.0x105 and 2.0x10^ (ie. at flow speeds between 0.25 m/s and 1.0 m/s 
respectively). To test the ability of the turbulence models considered here to capture 
this variation with flow speed several runs were performed using the Boussinesq 
constitutive relationship with the Standard k-s model, the Extended k-s model, and 
the RNG fc-f model at a flow speed of 0.25 m/s. The results are shown in Table 5. As is 
clearly evident, each of these models is completely incapable of capturing the 
experimental variation with flow speed. Over the considered range the experimental 
value of CD changes by approximately 50%, while the maximum change for any of the 
k-s models is less than 2%. 

Table 5: Drag coefficient CD for each of the applicable turbulence models for the Boussinesq 
constitutive relationship at different flow speeds. 

Standard k-s Extended k-s RNG k-s Experiment 

Ux= 1.0 m/s 0.2569 0.2625 0.2683 0.4 -0.5 

Ux = 0.25 m/s 0.2567 0.2670 0.2684 0.2-0.3 

The effect of the initial assumed free stream turbulence intensity on these calculations 
was checked for many of these runs and was found to have negligible effect on the 
calculated value of CD (although it did sometimes have a considerable effect on the 
convergence rate of the calculation). For example. Table 6 presents the results from a 
model calculation -performed at initial intensity levels of 0.5%, 1.0% and 5.0%. As is 
clearly evident, the initial free stream intensity level has almost no effect on the 
calculated drag coefficient, a 10% change in free stream turbulence level making less 
than a 1 % change in the drag coefficient. 

Table 6. Drag coefficient CD as a function of assumed free stream turbulence intensity. 

Turbulent Intensity Level 0.5% 1.0% 5.0% 

k value 0.00004 0.00015 0.004 

s value 0.000001 0.00001 0.006 

Drag coefficient 0.339 0.340 0.342 
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3.4 Calculation using Triangular Elements 

As discussed in section 2.2, FIDAP users can chose between quadrilateral or triangular 
elements to mesh two-dimei^ional problenw, and can also combine both ^pes of 
elements to create a hybrid uiwtructured mesh. This offers some advantages for the 
types of problems coraidered here as it has already been noted that the boundaries 
must be placed at considerable distances from the objects of interest in the flow. This 
constraint causes problems when the grid is meshed purely with quadrilateral 
elements as it was found that the automatic paving algorithm wiflun GAMBIT gave the 
user very little control over the size of the elements as they covered the grid. The 
elements are required to have small dimeiKions near the surface of the object to 
capture boxmdary layer detaib, but ideally they should then increase in size, in a 
uiuform manner, as the far-field boundaries are approached. The automatic paving 
algorithm usually produced a uniformly fine mesh near the stirface of the body and a 
uniformly coarse mesh near the far-field boundaries, but was not particularly 
successfiil at grading the element sizes in the regions where the two meshes combined. 
Thfe often resulted in bofli very irregularly shaped elements in certain regions of the 
grid, which led to convergence problems when trying to solve the underlying 
equations, as well as to an unacceptably large number of elements on the grid. Th^e 
problems can be overcome by dividing the mesh into a number of sub-spaces and 
using appropriately spaced nodes along the boundaries of these sub-spaces to control 
the size of the quadrilateral elements, but the process can become exceedingly tedious 
and time consuming when complicated geometries are involved. Triangular elemente 
however can grow uniformly from millimetre dimerwions near siufaces to metre 
dimensions near totmdaries. When combined with the GAMBIT paving algorithm it 
was found that fliey gave much greater flexibility in meshing more complex shapes on 
grids covering several orders of magnitude of spatial dimensions. 

It should he noted however that the triangular elemente employed in commercial codes 
such as FIDAP have proven to be particularly inappropriate at modelling flows near 
surfaces [32]. This is due to the very rapid variation in flow speed througji the 
boundary layer normal to the siurface compared with the relatively slower variation in 
speed in the streamwise direction. Thte problem can be overcome in specialised non- 
commercial codes by using local stretching. When this option is tirtavailable then the 
most appropriate approach is to use are quadrilateral elemente with high aspect ratios. 
Hence the most appropriate mesh is a hybrid grid consisting of quadrilateral elemente 
near the surfaces and triangular elements elsewhere. FIDAP allows the use of such 
unstructured hybrid meshes, but it was found that extra effort was required to obtain 
solutions on these types of grids. Initially, convergence was foimd to be much miore 
difficult to obtain than on structured meshes using just quadrilateral elemente. After 
much experimentation it was found that convergence could usually be obtained on 
hybrid meshes if the continuous pressure approximation was implemented and the 
relaxation parameters were considerably increased. 
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Table 7 shows results from a number of different runs calculated on a hybrid mesh for 
a smooth 1.0 m diameter cylinder immersed in a flow of 1.0 m/s. The Standard k-s 
model with the Boussinesq constitutive relationship was used for each of these 
calculations. The first rtm on a 20mx20m grid using 33,702 first-order triangular 
elements gave CD = 0.3122. The corresponding result using 23,545 first-order 
quadrilateral elements was (from Table 2) CD = 0.2862. Increasing tihe convergence limit 
from 10-3 to 10^ dropped the value to 0.3102, but there is still an 8% difference from the 
result calculated using quadrilateral elements. This may be due to the difference in grid 
resolution, ie. the number of elements in each calculation. On a 32mx32m grid using 
34,890 elements the calculated value is 0.3001, while the comparable value calculated 
using 24,391 quadrilateral elements (from Table 2) is 0.2760, which again shows an 8% 
difference. Repeating this nm using 11,754 second order elements gave a calculated 
value of 0.3458, although the y+nun value was a little too low. Increasing Ah from 1.5 
mm to 2.0 mm increased y+min to 34.37, but this had almost negHgible effect on the value 
of CD, which changed from 0.3458 to 0.3459. 

Table 7: Drag coejficient calculated using triangular elements. 

Order Grid Size 
(m') 

Angular 
resolution 

+ 
y min 

+ 
y max Velcon Ah 

(mm) 
CD 

jSt 20x20 240 28.73 100.68 10-^ 1.5 0.3122 
jSt 20x20 240 28.98 100.82 10-^ 1.5 0.3102 
jSt 32x32 240 28.05 98.81 10-^ 1.5 0.3001 

^nd 32x32 240 24.42 92.62 10-^ 1.5 0.3458 
^nd 32x32 240 34.37 121.75 10-^ 2.0 0.3459 

4. Lift on a Flat Plate at 5° angle of incidence 

The subject of classical aerofoil theory is treated in many texts on elementary fluid 
dynamics. Acheson [33] for example derives the standard Kutta-Joukowski Lift 
Theorem. If a two-dimensional body with a cross-section described by a simple closed 
curve C is located in a tmiform flow with speed Ux in the x direction, then the forces on 
the body in the directions parallel and perpendicular to the flow (Fx and Fy 
respectively) are given by: 

Fx = 0.0, Fy = pUxT (29) 

where T is the circulation around the body. The first expression is simply D'Alembert's 
paradox, which states that the steady uniform flow of an ideal fluid past a fixed body 
gives no drag on the body. The second expression gives a formula for the lift on the 
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body. To use this expression we first have to evaluate the circulation. Acheson fiirther 
proves that for uniform irrotational flow past an aerofoil with a sharp trailing edge 
there K just one value of the circulation T for which the velocity is finite everywhere. 
This is the standard Kutta-Joukowski condition, hi the case of a thin symmetrical 
aerofoil of length I making an angle of attack a wiih the oncoming stream the value of 
r is given by 

r = - 71 Ux I sin a (30) 

Combining equation (30) with equation (29) results in the following expression for the 
lift force on the wing 

L = Fy= Tipux^lsina (31) 

In terms of the lift coefficient CL this is simply 

CL=27i;sina (32) 

Equation (32) is applicable to either a thin symmetric wing or a flat plate. At a 5° angle 
of incidence equation (32) results in a value for the lift coefficient of 0.5476, Equation 
(32) is only valid of course for small angles of attack where the boimdary layer flow 
around the wing remains attached and the flow can be described by ideal potential 
flow theory. At angles of attack near 10° the boundary layer begins to separate and the 
flow must be described by the Navier-Stokes equation, 

4.1 Calculation using quadrilateral elements 

To check the ability of FIDAP to accurately calculate the Hft coefficient for simple 
aerodynamic shapes a number of runs were performed to calculate the lift coefficient 
for a flat plate at a 5" angle of incidence. The plate was 1.0 m long and 50 mm thick and 
the ends of the plate consisted of semi-circular segments. The plate was placed at the 
centre of a rectangular computational grid initially having a length of 4,0 m and a 
height of 2,0 m. The flow velocity was 1,0 m/s and the Reynolds number was 1.0 x 10*. 

The mesh was constructed by dividing the semi-circular end segments into 60 equally 
spaced intervals and the 1.0 m long straight sections of the plate into 300 intervals. A 
spacing ratio of 1.05 w^ used so the interval spacing near the ends of the plate were 
similar to those on the ciuved ends. The GAMBIT boundary layer function was used to 
ensure a uniform mesh of quadrilateral elements near the surface of the plate. The 
height of the first row of elements was 1,5 mm, the growth factor was 1.05, and the 
boundary layer extended for 20 rows. To ensure the continuation of a tmiform mesh 
outeide this limited boundary layer region the computational domain was divided into 
separate areas by constructing boundaries on the grid corresponding to plates having 
slighfly longer lengths and greater thicknesses. These areas were then meshed using 
the GAMBIT MAPPING function to erwure that a high quality grid (low EquiAngle 

26 



DSTO-TR-1494 

Skew values) was obtained in close proximity to the plate. The remaining area was 
meshed using the GAMBIT automatic PAVING algorithm. This resulted in a grid 
having 54,019 first order quadrilateral elements. Less than 0.11% of these elements had 
an EquiAngle Skew value greater than 0.5. An illustration of the way in which the grid 
was divided into a number of separate areas to control the quality of the nieshing is 
shown in Figure 1 below.The results from calculations on this grid (or an extended 
version of the grid) are shown in Table 8. The initial assumed free stream turbulent 
intensity was 5.0% and the standard k-s turbulence model w^as used. 

Figure 1: Schematic of the way the grid for the flat plate is divided into separate areas to control 
the quality of the meshing. 

Table 8: Lift coefficient for aflat plate. Dirichlet boundary conditions with Ux=1.0 and Uy=0.0 
on the top & bottom far field boundaries. 

Grid Size Number of 
elements 

VELCON 
CL Y^ • i   mm Y^ ^   max Boundary 

conditions 

4x2 55,099 1.0x10"^ 0.4670 26.35 155.6 Dirichlet 

6x4 61,761 1.0x10"^ 0.4369 26.39 155.96 Dirichlet 

8x6 65,434 1.0x10"^ 0.4307 26.83 157.13 Dirichlet 

8x6 65,434 1.0x10"^ 0.5059 28.14 160.03 Dirichlet 

8x6 65,434 1.0x10"^ 0.5064 28.14 160.05 Dirichlet 
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The first three runs in Table 8 show the effect of increasing the size of the grid by 
moving the far-field boundaries further away from the plate. As can be seen^ the 
calculated lift coefficient is in error by 15%, and the disagreement increases as the 
boimdaries are moved furtiier away. Improved agreement with the theoretical value is 
obtained by increasing the convergence criterion from VELCON = l.OxlO-^ to VELCON 
= 1,0x10-6, but there is stiU an 8% error. From the discussion in section 3.1 it is obvious 
that the boundaries of the grid are located too close to the plate, but Table 8 shows a 
trend away from the correct result as the boundaries of tiie grid are moved further 
away from the plate. Believing tihat this may have been caused by a poor quality grid, a 
number of nms were also made on a sHghily different grid. This had a greater 
resolution near the curved ends of the plate (80 node points) and lower resolution 
along the length of the plate (200 node points). In addition, the area of the grid near the 
external boundaries was further sub-divided into separate areas and node spacing 
along the edges of these areas was used to ensure a more uniform meshing of the grid. 
The resulting mesh contained 61,620 first order quadrilateral elements. The results 
from calculations on this mesh are shown in Table 9. 

Although the new grid had much better resolution near the leading edge of the plate 
ttie results were virtually identical. On an Bm x 6m grid wifh VELCON = l.OxlO-s the 
calculation using tiie first grid gave a value for the lift coefficient of 0.5059, while the 
calculation on the second grid gave a value of 0.5061. Increasing the location of the far 
field boundaries to distances of 10 to 20 chord lengttis from tiie plate, which are more 
realistic dfetances for the outer edges of ihe grid, gave conflicting residts. On a 10m x 
10m grid the calculated value was lower, ie. 0.4963, while on a 20m x 20m grid the 
value was slightly higher, ie. 0.4978. These values are still approximately 9% too low 
however. It is also interesting to note that even on a 20m^ x 20m grid the boundary 
conditions are having a non-negligible effect on the results. Imposing the conditions Ux 
= 1.0 and Uy = 0.0 on the top and bottom of the grid results in CL = 0.4978, while 
imposing Neumann botmdary conditiorw on the top and bottom of the grid results in 
the value CL = 0.4701, ie. a 6% difference in the calculated value. Increasing the size of 
the grid to 40m x 40m and employing Neumann boundary conditioiw resulte in CL = 
0,4832, but this is still in error by 12%. In an attempt to resolve this problem 
calculations were then made on a standard NACA wing section having a well defined 
profile and a sharp trailing edge. These calculatiorw are described in the next section. 
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-1.0 and Uy=0.0 

Grid Size Number of 
elements 

VELCON 
CL 1   mm I   max 

Boundary 
conditions 

4x2 62,618 1.0x10"^ 0.5640 27.92 160.45 Dirichlet 

6x4 72,687 1.0x10'^ 0.5162 27.86 160.37 Dirichlet 

8x6 85,248 1.0x10"^ 0.5061 27.82 161.74 Dirichlet 

10x10 86,752 1.0x10"^ 0.4105 26.21 158.06 Dirichlet 

10x10 86,752 1.0x10'^ 0.4963 27.80 162.21 Dirichlet 

20x20 94,271 1.0x10'^ 0.4978 27.79 165.79 Dirichlet 

20x20 94,271 1.0x10"^ 0.4701 27.83 163.80 Neumann 

40x40 97,321 1.0x10"^ 0.4832 27.84 169.02 Neumann 

5. Lift on a NACA Wing Profile at 5" angle of 
incidence 

The wing chosen was the NACA 0006 wing section. The numbering system for tihe 
NACA wing see^ons in the four digit series is based on section geometry. The first 
integer indicates the maximum value of the mean-line ordinate as a percentage of the 
chord length. The second integer indicates the distance from the leading edge to the 
location of the maximum camber in tenths of the chord. The last two digits indicate the 
section thickness as a percentage of the chord length. Thus the 0006 wing section has 
zero camber, ie. is symmetrical, and has a maximum tiiickness of 6% of the chord 
length. Geometry data for the 0006 wing section was obtained from Abbott and Von 
Doenhoff [34]. This reference also contains a large compilation of lift, drag and moment 
coefficient data for many different wing types, and the experimental data for the lift 
coefficient for a NACA 0006 wing section at a 5° angle of incidence agrees within 
experimental error with the theoretical value for a thin wing or flat plate of CL = 2 TI sin 
a, or CL = 0.5476 at a = 5o. 

5.1 Calculations using quadrilateral elements 

Table 10 shows the calculated lift coefficient CLfor a number of rtms on different sized 
grids. For the smaller sized grids the mesh was constructed in a similar manner to 
those for the flat plate in the previous section, ie. close to the plate the mesh consisted 
of mapped first order quadrilateral elements, while the far-field region was meshed 
using the automatic PAVING algorithm. For the larger sized grids, ie.l2.5m xlOm and 
above, the entire grid was meshed using the  MAPPING algorithm.  This took 
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coiKiderably more time and effort, but resulted in a better quality mesh. Neumann 
boimdary conditions were employed at the top and bottom of the grid. 

The value for CL calculated on the smaller sized grids is considerably below the 
theoretical value of 0.5476. As the boundaries of the grid are moved further away from 
the wing section the calculated value moves closer to the theoretical value (when 
Neumann boundary conditions are used), and further improvement is obtained by 
increasing the convergence criterion from VELCON = 1.0x10-3 to VELCON = l.OxlO-^. 
Even on the 24,5m x40,5m grid however the calculated value of 0.4882 is still 11% 
lower than the theoretical value. It is also noticeable that even on this relatively large 
grid the boundary conditions are still having a significant effect on the calculated 
value. 

Table 10: Lift coefficknt for NACA 0006 - Neumann boundary conditions 

Grid Size Number of 
elements 

VELCON 
CL 1  mm i  max 

Boimdary 
conditions 

4x2 24,305 1.0x10'^ 0,2625 17.742 196.38 Neumann 

6x4 32,445 1.0x10"^ 0.3663 17.415 222.76 Neumann 

8x6 39,854 1.0x10"^ 0.4092 16.467 266.83 Neumann 

12.5x10 107,408 5.0x10"* 0.4513 35.6 273,5 Neumann 

24.5x40.5 361,460 1.0x10"^ 0.4946 - - Neumann 

24.5x40,5 485,784 5.0x10"* 0.4882 23.1 170.0 Neumann 

Table 11 shows the effect on Ct of different far-field boundary conditions. Similar runs 
to those shown in Table 10 were performed with the Neumann boundary conditions 
replaced by Dirichlet boundary conditions, ie. Ux = 1.0 and Uy = 0.0 on the top and 
bottom of tiie grid. On the smaller sized grids this has a dramatic effect on the value of 
CL, but this improvement does not reflect the true situation. Imposition of the Dirichlet 
boundary conditions on the smaller sized grids simply means that the calculation is 
simulating conditions similar to tiiose which cause the "wing in ground" effect, which 
is well known to increase the value of the lift coefficient. As the far-field boundaries are 
moved further away from the wing section tiie calculated value of CL drops until it 
appears to converge to a value of approximately 0.5100 at realistic boundary positiorw. 
This value is still approximately 7% lower than the theoretical value. 
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Table 11: Lift coefficient for NACA 0006 - Dirichlet boundary conditions 

Grid Size Number of 
elements 

VELCON 
CL 1   mm Y^ I   max 

Boundary 
conditions 

4x2 24,887 1.0x10"^ 0.5489 16.178 266.24 Dirichlet 

6x4 32,445 1.0x10'^ 0.5193 16.340 265.11 Dirichlet 

8x6 39,854 1.0x10"^ 0.5045 16.638 262.76 Dirichlet 

8x6 39,854 1.0x10"^ 0.5176 16.467 266.83 Dirichlet 

20x20 72,445 1.0x10"^ 0.5007 16.400 267.27 Dirichlet 

20x20 72,445 l.OxlO""^ 0.5100 16.421 268.64 Dirichlet 

20x20 72,445 1.0x10'^ 0.5100 16.441 270.00 Dirichlet 

24.5x40.5 488,992 1.0x10"^ 0.5022 22.2 178.00 Dirichlet 

5.2 Calculations using triangular elements 

In an attempt to improve the accuracy of the simulated value for CL a further series of 
nms was performed using first and second-order triangular elements. The results from 
these nms are shown in Table 12. As discussed in section 3.4 for the drag calculations 
on a smooth cylinder, convergence is much more difficult to obtain on xmstructured 
meshes using a combination of quadrilateral elements in the botmdary layer and 
triangular elements for the majority of the mesh. The calculations shown in Table 12 
were aU made to converge by implementing the continuous pressure approximation 
and increasing the relaxation parameters significantly over tiiose required for 
convergence on a regular grid constructed purely from mapped quadrilateral elements. 

The two runs using first-order triangular elements show results similar to those from 
calculations using first-order quadrilateral elements. On the 20mx20m grid with 
Dirichlet boxmdary conditions the calculated value of CL is 0.5114, which is comparable 
to the value of 0.5100 shown in Table 11. Using Neumann botmdary conditions the 
value is 0.4836, which is also consistent with the results shown in Table 8. Using 
second-order triangular elements and a convergence criterion of VELCON = 1.0x10^ 
produces an improvement in the result, ie. CL = 0.5310. This is the best simulated value 
obtained, but it is still 3% lower than the theoretical value. 
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Table 12: Lift coefficient for NACA 0006 - triangular elements. 

Grid Size Element 
order 

Number of 
elements 

VELCON CL I  mm Y^ I  max Boundary 
conditions 

20x20 1st 62,342 1.0x10"^ 0.4836 37.28 150.68 Neinnann 

20x20 1st 62,342 1.0x10"^ 0.5114 37.00 158.37 Dirichlet 

20x20 2nd 59,098 1.0x10"^ 0.5219 53.88 269.3 Dirichlet 

20x20 2nd 59,098 1.0x10'* 0.5310 54.00 273.12 Dirichlet 

6. Drag on a Sphere 

The drag coeffident for a sphere has a similar behaviour as a function of Reynolds 
numter as that of an infinitely long circular cylinder with its axis perpendicular to the 
flow. Being a three-ditneiKional body, however, the alternating vortices forming the 
Von Karman vortex street are replaced by the formation of a vortex ring. This forms at 
a Reynolds number of approximately Re =10 and moves further downstream of the 
body as the Reynolds number increases. For Reynolds numbers between 200 and 2000 
the vortex ring may become uiwtable and move dowiwtream, and its place is 
immediately taken by a new ring. Separation of the laminar boundary layer begirt at 
the downstream stagnation point and moves upstream as the Reynolds number 
increases. At approximately Re = 1000 a stable separation point is reached at about 80" 
from the front stagnation point. The drag coefficient then becomes approximately 
independent of Re until the boundary layer becomes turbulent before separation. This 
occurs at approximately Re = 3.0 xlQs. The separation point then moves further 
downstream, the wake narrows, and the drag coefficient drops corwiderably, from 
around 0.50 to approximately 0.08. A further increase in Re then leads to a slow 
increase in the drag coefficient again. The exact values are difficult to determine as 
these depend botti on the surface roughness of the sphere and the initial turbulence 
level in the free sfream. Data from Newman [35], Massey [27] and Rouse [36] are 
shown in Table 12. 

Table 13: Drag cmfficientfor a smooth sphere as a function of Reynolds number. 

Reynolds 
number 

0.4x10* 0.5x10* 0.6x10* 1.0x10* 2.0x10* 3.0x10* 4.0x10* 5.0x10* 

Newman 0.10 0.08 0.10 0.15 0.17 0.19 0.20 0.20 

Massey 0.08 0.08 0.10 0.10 0.15 0.16 0.18 0.20 

Rouse 0.08 0.10 0.10 0.12 - - - - 
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6.1 Calculations using hexahedral elements 

The sphere had a radius of 1.0 m and was initially located in the middle of a cube 
having sides of length 6.0 m. The region was meshed using first-order hexahedral 
elements using the GAMBIT volume meshing command Map. The Map scheme can 
only be applied to regions having the shape of a logical cube however and so to utilise 
this scheme for the current problem the region was first divided into six sub-volumes, 
each of which was logically equivalent to a cube. This was done by creating a second 
brick shaped volume having a length slightly greater, and a width slightly less, than 
the diameter of the sphere. The Boolean Split Real Volumes command was then used to 
intersect the two volumes, which created a four sided cap on the top and bottom of the 
sphere. The sphere was then intersected by two planes at right angles to each other 
which resulted in the formation of four further surfaces around the circumference of 
the sphere. This meant that the surface of the sphere was now divided into six separate 
areas, each of which was logically equivalent to a square, and each of which could be 
mapped to one of the six faces on the surrounding cube. 

The size of the hexahedral elements was determined by the number of nodes placed 
along the 12 curves defining the six separate surfaces on the surface of the sphere, the 
number of nodes placed along the 12 edges defining the cube containing the sphere, 
and the number of nodes placed along the 8 Unes joining the 8 corners of the cube to 
the 8 logical corners defined by the curves on the surface of the sphere. For the first run 
each of the 12 curves on the surface of the sphere was divided into 20 equally spaced 
intervals, each of the 12 edges of the coriftning cube was divided into 20 equally spaced 
intervals, and each of the 8 lines joining the comers of the cube to the logical comers on 
the surface of the sphere was divided into 45 intervals. The node spacing near tihe 
surface of the sphere was controlled using the Boundary Layer function within 
GAMBIT. The thickness of the first row of elements was chosen to be 2.0 mm and the 
growth rate used was 1.15 for the first 24 rows. The height of the remaining 20 rows 
was determined by the Mesh Edge command using a Successive Ratio Grading Scheme 
and a ratio of 1.1. 

To ensure that the sphere was far enough away from influences due to flow into and 
out of the computational domain the mesh was then expanded by adding 6.0 m^ cubes 
to both the inflow and outflow faces of the cube containing the sphere. Each of these 
cubes was meshed by dividing each of the cube edges into 20 equal intervals and filling 
the volumes with hexahedral elements using the GAMBIT Map command. A total 
number of 132,000 hexahedral elements was created using this particular meshing 
scheme. A schematic of the way in which the grid was divided into a number of 
separate volumes to contiol the quality of the meshing is shown in Figure 2 below. 
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t" 
Figure 2: Schematic of the way the grid for the mapped sphere is divided into xparate areas to 

control tlte quality of the meshing. 

The segregated solution algorithm with the recommended com.bination of iterative 
solvers was again used to solve the equations. The initial velocity had Ux = 1.0 m/s and 
Uy = Uz = 0.0, giving a Reynolds number 2.0x106. The initial assumed free stream 
turbulent intensity ^^as 5.0%, ihe initial values for k and s w^ere 0.004 and 0.006 
respectively and the default convergence criteria were used. The calculated drag 
coefficient had a value of 0.210, Table 13 shows that the approximate experimental 
value at this Reynolds ntunber is 0.16+0.01. 

To examine any dependency of this result on the flow speed the same sphere, with 
identical meshing, was then run with a free stream velocity of Ux = 0.25 m/s and Uy = Uz 
= 0.0, giving a Reynolds number of 0.5x10*. The data in Table 13 indicate an 
experimental value somewhere between 0.08 and 0.10 for this value of the Reynolds 
number. The free stream turbulence intensity was kept at 5.0%, which lead to k aad z 
values of 0.000234 and 0.00001 respectively. The calculated drag coefficient was only 
marginally lower and had a value of 0.20, indicating again, as in section 3.3, that the 
standard k-e model is incapable of capturing the changes in tihe drag coefficient as a 
function of flow speed in the critical region. 

To check the grid dependency of tiiis result a further run was made witti finer 
gridding. For this run each of the 12 curves on the surface of the sphere was divided 
into 30 equally spaced intervab, each of the 12 edges of the confining cube was divided 
into 30 equally spaced intervals, and each of the 8 lines joining the comers of the cube 
to the logical comers on the surface of the sphere was divided into 60 intervals. The 
thickness of the first row of elements on the surface of the sphere was 1.0 mm and the 
growth rate used was 1.15 for the first 30 rows. The height of the remaining 30 rows 
was controlled by the Mesh Edge command using a Successive Ratio Grading Scheme 
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and a ratio of 1.05. This resulted in a total of 396,000 elements, or three times the 
number used in the previous run. The calculated drag coefficient for this run was 0.15, 
which is much closer to the experimental value of 0.16+0.01. Hence a threefold 
increase in the number of elements has resulted in a 25% decrease in the value of the 
drag coefficient. The total time taken for solution on this relatively large mesh was 22 
hours on an SGI Octane using one of two R10,000 processors rxmning at 225 Mhz. 
Solution time for the runs using the more coarsely grided mesh was approximately 5.5 
hours. 

7. Discussion and Conclusion 

The simulation results presented here indicate that the FIDAP code has several 
problems with regard to accurate simulations of turbulent flow around xmderwater 
bodies. The main problem appears to be the inability of the turbulence models 
incorporated in the code to fuUy capture the relevant physics required to simulate flow 
separation effects at high Reynolds numbers. The simulation results showed that the 
models were tmable to acciirately calculate drag coefficients for two-dimensional 
cylinders and three-dimensional spheres. In particular, the models were unable to 
reproduce the strong variation of drag coefficient for each of these shapes in the critical 
region just after transition from laminar to turbulent flow in the boundary layers. There 
was also very little difference between the results calculated using the standard k-s 
model and the three variants of this model, ie. the RNG k-e model, the Extended k-e 
model, and the Anisotropic k-s model. 

Another problem with the code, tmrelated to the turbulence models, was the difficulty 
fovmd in calculating accurate values for the lift coefficient of a flat plate or a NACA 
wing profile. Modem CFD codes should be able to routinely calculate lift coefficients 
for wings at low angles of attack, where the flow is fuUy laminar, to within an accuracy 
of 1% [37]. The values calculated using FIDAP were consistently arotmd 8% too low, 
even when excessively large numbers of elements were used in the calculations. This 
problem, as well as the evident failure of the turbulence models to accurately predict 
flow separation effects, prevented us from pursuing more interesting calculations, such 
as the angle of stall for different wing shapes. This problem in particular is of current 
interest to MPD with regard to other problems related to tmderwater flow. 

A further problem with the code has been the difficulty in obtaining converged 
solutions on unstructured hybrid grids containing mixtures of quadrilateral and 
triangular elements (in two-dimensions), or hexahedral and tetrahedral elements (in 
three-dimensional flows). This problem has been noted by other FIDAP users [38], who 
were tmable to find acceptable solutions to these problems. As was noted in section 3.4, 
considerable effort was required to obtain convergence on unstructured grids 
containing both quadrilateral and triangular elements, and all efforts to obtain 
solutions on grids containing tetrahedral elements were unsuccessful. 
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Because of the above mentioned problen^ it is reconunended that FIDAP should be 
replaced by a CFD code containing both more advanced turbulence models, as well as 
the ability to more easily obtain converged solutions on hybrid urwtructured meshes. 
One such code which is currently used exteiwively in DSTO is the finite-voliune code 
Fluent [9], This code is used routinely in Air Operations Division for both standard and 
non-standard aeronautical applications, in Air Vehicles Engines Division for 
simulation of combustion flows, and also in Maritime Platforms Division for mtilti- 
phase fluid flow problems. 

Fluent would appear to be an excellent replacement for FIDAP for the class of 
problenK cor^idered here because it has been shown to have superior convergence 
properties on uratructured hybrid meshes [37], as well as a variety of advanced 
turbulence models [9], Fluent users are able to perform Large Eddy Simulations of 
turbulent flow using two subgrid-scale stress models (Smagorinsky-LiUy and an RNG- 
based subgrid scale model), as well as a Reynolds Stress Model (I^M), neither of which 
are available in FIDAP. 

Fluent also contains the standard, RNG, and realizable k-s models, but their 
implementation in Fluent is enhanced by more accurate near-wall treatments for wall- 
boxmded flows. Fluent uses both the standard wall functions, plus more advanced non- 
equilibrium wall functions which partly account for the effects of pressure gradients 
and give improved resulte in flows involving separation. The good agreement which 
McKenzie [20] has found using the RNG k-e model in the Fluent code to model flow 
separation around submarine shapes is probably due to the use of non-equilibrium 
wall functions with this model. 
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