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ABSTRACT 

This report discusses the implementation of the Radon transform in the An- 
alysts' Detection Support System (ADSS) environment using non-equispaced 
Discrete Fourier Transforms (DFTs). It provides an analysis and experimen- 
tal results for discretisation error and the use of matched filtering to enhance 
peaks in the transform. 
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Implementation of the Radon Transform Using 
Non-equispaced Discrete Fourier Transforms 

EXECUTIVE SUMMARY 

The Radon transform may be used to identify linear features in an image and has 
proven to be a useful tool for extracting roads and faint trails in Synethetic Aperture 
Radar (SAR) imagery. In particular, it is robust to the large amount of background 
clutter and speckle noise associated with such images. This document reports on an 
implementation of the Radon transform within the Analyst's Detection Support System 
(ADSS). In particular, a novel implementation method has been used that is based on 
non-equispaced discrete fourier transforms, which are leading edge. The report offers an 
analysis and experimental results for two paths of study: the discretisation errors that 
arise from the approach and a matched filtering method that may be used to enhance 
detection results. 
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1    Introduction 

The Radon transform may be used to extract the parameters of hnear features in 
an image [1]. Lines in the input image are reahsed as peaks in the Radon transform 
image at positions corresponding to the parameters of the hne. In this way, the Radon 
transform can render a difficult global linear detection problem into a more easily solved 
peak detection problem. This report details our implementation of a Radon module in the 
Analysts' Detection Support System (ADSS) framework [7] using non-equispaced DFTs. 
We describe efforts to control discretisation effects and apply matched filtering to enhance 
peaks. 

An example of the Radon transform is shown in Fig. 1 using the ADSS module radon. 
At the top, a sample of a SAR image is shown with two faint horizontal trails, one light 
and one dark. With no prior assumptions of width, length and direction, detecting these 
trails reliably in the image domain is a difficult task. The bottom left of the figure shows 
a portion of the result for the Radon transform. A bright peak corresponding to the light 
trail is clearly visible at the top of the image, along with a similar dark object representing 
the dark trail in the image. A number of peak detection algorithms might be used to 
extract these objects in a straight forward manner. For example, the absolute value of 
the radial derivative of the Radon transform (RDRT; see Section 2.3) has proven effective 
at finding the edges of roads and trails in noisy SAR images. It is also handy because a 
single threshold can be used to pull out both light and dark trails. The bottom right of 
the figure shows a portion of the result for the RDRT which may now be thresholded to 
extract the line parameter information. 

This report will proceed as follows. In the following section, we provide some back- 
ground theory on the Radon transform before detailing our Radon transform implemen- 
tation using non-equispaced DFTs. We then look at discretisation errors in Section 3, an 
issue that has been the focus of a lot of attention and work. In Section 4 we look at the 
analytical form of a matched filter that may be used to accentuate peaks in noisy Radon 
transforms. We conclude with some remarks regarding future work in Section 5. 

2    Background Theory and Implementation 

The Radon transform of the function f{x,y),x,y € R is typically defined as a path 
integral along a straight line of the function, 

/     f{x,y)S{p-xcose-ysm9)dxdy, 
-OO J —OO 

where 6{.) is the Dirac delta function and (p, 9) are the parameters of a normal equation 
for the line of integration. The Projection Slice Theorem [1] states that the 1-D transform 
of any projection pe{p) = {TZf){p,9) is equal to the 2-D FFT of the image f{x,y) with 
respect to polar coordinates, i.e. 

{nf){p,9) = T-^[{T^f){u,9)]. (1) 



DSTO-TR-1576 

Figure 1: Example Radon transform of SAR image. Top: Sample of input image showing 
faint light and dark horizontal trails. Bottom Left: Result from standard Radon transform. 
Bottom Right: Result from RDRT. 

Here Ttf denotes the Radon transform of /, T~^ denote the 1-D inverse PFT with respect 
to the variable w (the frequency counterpart to p) and J^x/ denotes the standard 2-D PFT 
of the image / with respect to the (2-D) variable x. 

2.1    Implementation using Non-equispaced FFTs 

The relationship in Eq. (1) allows a comparatively fast and direct implementation of 
the Radon transform by utilising non-equispaced DPT algorithms [6]. All variants of non- 
equispaced Pourier algorithms utiUse normal equispaced DFTs. As detailed in [6], the 
input image is first scaled and zero padded before the 2-D DPT is applied. Illustrated 
in Fig. 2 is the result J^x/j represented by a square with extent Q. The non-equispaced 
algorithm uses this result to calculate the DPT at the non-equispaced polar coordinates 
{upCosdq^UpSmOq)^ where 

9q = 9^/0, 0,...,0-1 

Wp =pQ/N, p = 0,...,JV-l (2) 
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Figure 2: Implementation of Radon transform, using a non-equispaced Fourier transform. 

From here, it is a simple matter to compute the Radon transform result {'R,f){p,9q) for 
each angle 9q by applying a 1-D inverse DFT to the set of points (^x/) (wp cos 6q, ujp sin 9q), 
where p = 0,..., A^ — 1. In our implementation, this yields a rectangular image where 9 
is in the y direction and p is in the x direction. 

Note that as shown the set of polar coordinates {oOp cos 9q, ujp sin 9q) does not cover the 
entire extent of the transform image J-'xf', high frequency components in the corners of 
the image are not sampled. Moreover, points near the centre of the image will be more 
densely sampled than points out towards the edges. This sampling strategy was necessary 
in order to generate a Radon transform on a grid. However, there are certainly other 
possibilities, some of which are discussed in Section 3. 

2.2    Interpreting the Radon Transform Image 

Figure 3 shows an example result illustrating the coordinate system of the Radon 
transform. A single point, parameterised by (p, 9) and of greylevel one, shown on the left 
of Fig. 3, yields the expected sinusoidal curve in the Radon domain, shown on the right. 
The angle 9, in the vertical direction of the image, has a range [0,180), where 0 is at the 
top of the image and the number of rows in the vertical direction is specified by the Radon 
parameter theta-resolution. The length p, in the horizontal direction, has a range 
{—N/2,N/2), where N is specified by the Radon parameter rho-resolution and p = 0 
at the pixel location rho-resolution / 2. Negative values for p occur for points that lie 
in the lower half of the input image, as this is where 9 values in the range [180,360) wrap 
into the range [0,180). The amplitude of the sinusoidal curve is given by p, the distance 
from the origin to the point. 

Note that the parameter rho-resolution is actually the number of points N that 
are sampled in the frequency domain along the line at each angle 9q, as per Eq. (2). 
Increasing iV, for example, will reduce the distance Aw between points in the frequency 
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Figure S: Example illustrating Radon domain coordinate system. Left: Input image with 
single point pammeterised by {p,9). Right: Resulting Radon transform with p in the 
horizontal direction and 0 in the vertical direction. 

domain while the distance Ax in the spatial domain remains constant. Thus the range of 
p increases but the spatial resolution remains the same. Values of p that range outside 
the rho-resolution specified will wrap to the other side of the Radon transform. It is 
important to avoid this wrap around in peak detection, so the parameter rho-resolution 
should be chosen so as to cover the total range of possible values for p in the image. This 
can be achieved by setting rho-resolution to the length of the diagonal of the input 
image. 

Figure 4 shows an example using a Hne parameterised by the same values of p and 0 used 
for the point in the example above. The resulting Radon transform, shown in the middle 
of the figure, is a superposition of sinusoids that reinforce at coordinates corresponding to 
the parameters (p, 0) for the line. A coordinate (p', ff) representing a peak in the Radon 
transform image will correspond to a hne in the image domain with parameters 

p = p'- 
rho-resolution 

e = im.9' 
theta-resolution 

The characteristic peak, which we will refer to as a butterfly shape, is shown magnified on 
the right of the figure. Curvilinear detection using the Radon transform seeks to locate 
such shap^ in order to yield parameters for curvilinear features. In Section 4 we look at 
efforts to enhance this feature using a matched filter. 

2.3    The Radial Derivative of the Radon Transform 

In our current implementation, the radial derivative of the Radon transform (RDRT) 
is carried out in accordance with its original implementation in [2]: A simple pointwise 
difference in the horizontal direction (corresponding to p) of the Radon transform. This 
generates positive and negative edges at locations corresponding to line edges in the input 
image. We use the absolute value of the RDRT in order to turn (negative) valleys into 
(positive) peafa and thus be able to apply a single threshold to extract peak locations. The 
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Figure 4- Radon Transform for a line showing characteristic peak or "butterfly" shape. 

use of the absolute value has consequences however when it comes to applying a matched 
filter, as discussed in Section 4. 

As pointed out in [5], using pointwise subtraction is known to be numerically unstable 
and it is desirable to implement the derivative in the Fourier domain if possible, where 
the derivative is realised as a simple multiplication, i. e. 

^,(2(M(a^) = 2,i.f („,,). 

Consequently, the derivative could be achieved by applying the multiplication factor to 
the 2D Fourier transformed data before the final Fourier Transform of the Projection Slice 
Theorem. However, for our purposes we found that this led to a number of problems 
that emerged when we used the Radon transform as the basis for a curvilinear feature 
extractor [2]. In particular, for practical implementations, it is important to normalise the 
Radon transform to remove bias towards the longer lines that pass through the centre of 
the image. A normalised Radon transform TZNf is constructed by pointwise dividing the 
original transform TZf by a Radon transform TZI that captures the distance bias, 

7^Ar/ = 7^/ / ni. 

Here 7 is an image that has the same domain as the input image / but with values all 
set to one. Importantly, it is only after this normalisation step that the radial derivative 
is taken. The problem with applying the derivative in the Fourier domain is that the 
derivative is necessarily applied before normalisation can be carried out. 

In order to reconcile this problem, a partial derivative approach was investigated that 
combined the partial derivatives of both the regular Radon transform and the transform 
TZI used for normalisation. 

djuj^f)    mf-^-jnfY- dp 

dp {niy 

Unfortunately, we found the approach in practice did not work very well, as it seemed to 
introduce new errors that outweighed any potential benefit gained from using differentia- 
tion in the Fourier domain. Moreover, it reduced speed and increased memory usage each 
by a factor of two. 
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3    Discretisation Considerations 

In certain situations, the result for the Radon transform can exhibit strong evidence of 
"noise". Examples are shown in Pig, 5 taken from the sinusoidal Radon transform result 
in Fig, 3, Points along the line are of greylevel approximately 1.0, which corresponds 
to the greylevel of the single point in the input image. The noise on either side of the 
line is of order ±0.1 and fades to a background value of less than ±0.001. The noise 
oscillates regularly between positive and negative values, hence generating a noticeable 
"checkerboard" pattern. At certain key values for 9, for example zero or ninety degrees 
(the top row in the image on the left), the noise reduces to zero. It was important for us 
to find out the reason for this noise, as it seemed too large to be merely rounding errors, 
or some other acceptably small error. We should note here however that this example is 
quite a stringent test for the Radon transform because the input image consists of just a 
single point. When applying the Radon transform to any typically image such as a SAR 
image, the noise would be not be noticeable at all (it would tend to be reduced in variance 
by the square root of the number of neighbouring non-zero points in the image). 

Figure 5: Examples of noise in the Radon transform. 

Newsam [5] notes that the Radon transform in the continuous domain is approximated 
in the discrete domain by the following formulation, 

In order to minimise discretisation error, the task is to choose the quadrature points ujp 
and associated weights Wp so as to minimise the error in the approximation. A solution for 
the weights Wp is proposed and properties for the underlying grid points uip recommended. 
However, as the noise seems highly structured and dependent on the amplitude of the 
signal (the noise is much diminished in the background), we sought another (perhaps 
related) explanation for the noise. We thought the quadrature errors must play a part in 
generating noise, but perhaps at some more acceptable low level. We detail our approach 
in this section. 
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3.1    Convolution by Sine Function 

We propose that the noise so obvious in Fig. 5 may in fact be due to the finite extent 
O of the 1-D slice through the frequency image Ty^f (as shown in Fig. 2). The finite slice 
extent could be considered as a multiplication of the actual underlying data .7^x/ by a box 
car function '^^{yS) of width fi. The inverse Fourier transform .F~^, which operates on 
1-D slices through .?-"x/, is then given by 

T~'^\^Q,.T^{u), d)\ = n sine {Q-irp) * F{p) = sine {irp) * F{p). 

So, our desired result F{p) in the spatial domain is effectively convolved by the function 
sine {irp) (note that in our implementation, the spatial extent A = N, the number of 
sample points, and so the reciprocity relationship AQ, = N dictates that f) = 1). 

On the left of Fig. 6 is shown a plot of the sine function that is centered on a pixel. If 
a point in the Radon transform that is also centered directly on pixel is convolved by this 
function, we would expect the contribution from the sine function to disappear. This is 
because the zero crossings of the sine function, at integral values of p, coincide with the 
grid of points in p. On the other hand, if a point in the Radon transform is not centered 
on a pixel, we would expect the contribution from the sine function to emerge, as shown 
to the right of Fig. 6. 

Figure 6: Sine function and underlying grid spacings. Left: Sine function is centered on 
a pixel; effectively the contribution is nullified. Right: Since function is not centered and 
contribution becomes apparent. 

We consider that the sine function is always present in our result for the Radon trans- 
form, but only becomes apparent when values in the continuous Radon transform are not 
centered on points in the discrete grid of the Radon transform. For angles such as zero 
and ninety degrees, the results in the Radon transform are always centered on the grid, 
because the distance p in the input image is always integral in the x {6 = 0) and y {0 = 90) 
direction. Hence, we see no evidence of the sine function for these angles. In contrast, 
when 0 = 45 or 135 degrees for example, distance in the input image is measured in steps 
of 1/A/2 and the results in the Radon transform are never centered on the grid. However, 
scaling fi by a factor of v^ sets the size in the spatial domain to 1/V^. Thus the results 
in the Radon transform will be centered on the grid at 45 degrees and evidence of the sine 
function will disappear. At the same time though, it will emerge at 0 and 90 degrees. This 
was borne out by experimental results and would seem to support our theory regarding 
the sine function. 
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3.2    Different Sampling Strategies 

We have experimented with the two sampling strategies shown in Pig. 7, amongst 
others. The sampUng strategy on the left was obtained through a scaling of 0 by the 
factor \J2 discussed above. In order to obtain values for T-s^f outside its domain, we tried 
both zero padding and periodic repetition of data (in x and y directions). Both sets of 
results showed the expected shift in noise patterns; the noise was present for all angles 
except 45 and 135 degrees. We note here that though we are utilising the entire domain 
of .Fx/ (including the corners that were hitherto ignored), this does not seem to improve 
the noise in the rest of the Radon transform appreciably. 

D 

Figure 7: Different sampling strategies used in the Radon transform. Left: Sampling over 
a circle with diameter equal to the diagonal of the image. Right: Sampling up to the border 
of the domain of^jcf- 

The sampHng strategy on the right of Fig. 7 was obtained by scaling fl to the borders 
of the domain of Txf using the fiinction: 

,^. ^ r 1/ cos(7r/2 - 0)    for 0 > v/4 and 0 < 37r/4 
\l/cos(|^|) otherwise. 

The results show that for a point placed at random in the input image, the scaling removes 
the sine function for the angles 0, 45, 90 and 135, but not for any other angles. From a 
number of experiments we have performed, it does not seem possible to choose a simple 
and practical angle-dependent scaling measure in order to make the sine function disappear 
over the entire Radon transform. 

3.3    The Manning Window 

A technique that has worked well is to apply a weighting fiinction in the fi-equency 
domain to remove the effect of the sine function. Specifically, we define a Banning window 

Hnw) = 2(1 -cos(27rnw/iV)),  n^ = 0,1,...iV- 1, 



DSTO-TR-1576 

and apply it as a multiplication to the set of points {J^-x,f){ui.,9) before the inverse 1-D 
DFT it taken. An example is shown in Fig. 8, where we get a visually pleasing image 
with no noise evident. The Hanning window does however have the unavoidable effect 
of smoothing out or broadening the response, as is evident in this example with the line 
spreading out over several pixels. 

Figure 8:  Hanning window used in the frequency domain to dampen effects of box car 
function. Left: Shape of curve used. Right: Result using window. 

Another simple technique that worked well, at least visually, is to take the intensity 
(square root of the magnitude) of the (complex) Radon transform, rather than just the 
real component. We expect the Radon transform to be purely real, but there is a small 
contribution from the imaginary component which would normally be of value around 
the noise level. Taking the intensity flips negative contributions from the sine function 
to positive, thus producing an apparently smoother result. One drawback however is 
that we lose genuinely negative information in the Radon transform; although the Radon 
transform should be real there is no requirement that it should be positive valued (negative 
values would come from negative values in the input image). An example result is shown 
in Fig. 9. The result now looks much more acceptable: the sine noise normally present at 
points that do not fall on the discrete grid now appears to be an acceptable smoothing of 
values into adjacent bins. 

4    Matched Filtering 

In this section, we describe the use of matched filtering [4] to accentuate the charac- 
teristic butterfly shape that represents a line in the input image (as previously shown in 
Fig. 4). In its simplest form, matched filtering is given by the correlation / between an 
image g and filter h: 

/oo 
g{u — x)h{u)du. (3) 

-CX) 

This section details an analytic form for a discrete version of h which is derived from the 
expected shape of the butterfly in the discrete Radon transform. A similar analysis of the 
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Figure 9: Left: Radon transform without using intensity. Right: Radon transform using 
intensity. 

distribution of line peaks was detailed in [3], for the continuous domain Hough IVansform 
(qualitatively very similar to the Radon transform). Our analysis differs in that we study 
Mnes passing right through the image and we are interested in working in the discrete 
domain where we have noticed marked digitisation effects. 

4.1    Matched Filter Shape 

We begin by looking at the form of the Radon transform for single points in the image, 
as we can study the bounds of the butterfly shape by examining the two end points of 
the line. We can simplify the study somewhat because we are ultimately interested in 
detecting long lines that pass right through the image under study (i.e. parts of long 
curviHnear trails). Figure 10 shows how the points are restricted. We consider points 
lying on the circle with radius pM shown in the figure, where a pair of points A and B 
separated by an angle A on the circle define the extremes of a line passing through the 
image. 

Figure 10: Generating butterfly shape in Radon transform. Left: Three points in the image 
space. Middle: corresponding Radon transform. Right: Actual result for line between two 
points A and B shown. 

10 
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The Radon transform for the three points A, B and C is shown in the middle of the 
figure. We can consider the two curves A and B as the extremes of the butterfly shape 
generated for the line AB, because all points along the line generate a sinusoid that falls 
within their bounds (for example line C). We know this is true because all points along 
the line generate a sinusoid that is coincident with the point X indicated (the point we 
wish to detect in order to extract the line parameters) with magniture less than pM- An 
actual experimental result for all the points along the line is shown to the right of the 
figure; this result is zero except between the two extreme sinusoidal curves. 

So, a line passing through the image may be represented by its two extreme points 
that cross a circle of radius p and these points are separated by A. In the Radon space, 
this line will have a butterfly shape bounded by two sinusoidal curves of ampUtude pM 
and separated in phase by A. This situation is represented in Fig. 11 (here the axes 
have been inverted because for the time being we wish to consider p as a function of 
6). It is immediately clear then that the butterfly shape is not constant but will change 
shape depending on the value of A, which in turn is proportional to the amount of line 
visible within the circle. As our matched filtering approach is based on the use of a single 
representative filter, we must accept then that there will be a degree of inherent mis-match 
error due to variations in the amount of visible line. In the figure, curve A is represented 
by the sinusoid p = pMCOs{9) and curve B by p = pMCos{9 - A). If A is measured in 
radians, at the point of intersection the slope of A is given by m^ = —pmax sin(A/2) and 
the slope of B is given by IUB = pmaxsin(A/2). On the right of Fig. 11 is plotted the 
slope TUB as a function of A. 

'BH 

Figure 11: Left: Ideal butterfly shape in Radon transform, corresponding to a line that 
passes through the centre of the image. Right: Graph of slope TUB versus A. 

For simplicity, we have decided to set A to TT radians, which corresponds to a line that 
passes directly through the centre of the image (this produces the "ideal" butterfly shape 
shown to the left of Fig. 11). Other values for A could be used, for example the "most 
likely" value could be derived based on the probability distribution for lines in the window. 
We note that in practical implementations, we can put a lower limit Aj^^j^ (as shown on 
the right) on the range of A by acknowledging the use of overlapping windows to detect 
lines. Any matched filter we define that is insensitive to lines with A < A^^^ would be 

11 
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picked up by the next overlapping window. In order to implement this, we can show that 
the spacing between windows must be less than equal to 2pMCOs(Ajjjjjj/2), where pM is 
the radius of the circular window used. 

For practical purposes, we are only interested in defining the matched filter in a small 
region focussed around the peak of the butterfly shape. If this region is small enough 
we may reasonably approximate the bounds of the matched filter with straight lines, as 
shown to the left of Pig. 12. The actual slope values may be derived by setting A = TT 

in the derivative formulations ±pmaxsin(A/2), yielding slopes of ±pmax- In our discrete 
setting, 0 = [0, TT) is distributed over theta pixels and the slope is therefore given by 
PmaxTr/theta. We are at liberty to set pmax and theta however we choose, and by 
setting theta/pmax = TT, the slope becomes one (or 45 degrees). R-om now one, we 
assume that the slope has been set to this value because it simplifies the discussion with 
no loss of generality. 

Figure 12: Left: Approximation of butterfly shape in central region using straight lines. 
Right: Actual data fwm image showing butterfly shape in central region. 

4.2    Matched Filter Kernel Values 

Using the bounds of the butterfly shape as suggested above, the next step is to compute 
the actual kernel values for the matched filter. To the right of Fig. 12 is shown some actual 
data where the slope at the central region is ±45 degrees (through appropriate choice of 
theta and pmax)- This was generated fi-om an input image consisting of a single line 
of width one and intensity 128 passing through the centre of the image. As discussed in 
Section 3, the checkerboard pattern of noise is present (we have not applied a Banning 
window or used intensity as the output), but we shall ignore it in the following discussion. 
As expected, the central pixel value is 128, corresponding to the length of the line, and 
pixels outside the butterfly shape are zero. For other phcels within the butterfly shape, we 
find the value 128, or line length, has been distributed over the pixels in each row of the 
butterfly shape. That is, the sum of values in any given row is equal to the length of the 
line. This observation accords with what we expect from the Radon transform (which is 
in essence a line integral formulation). 

12 
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However, an interesting feature we also observe is that for any given row of values in 
the butterfly shape, the end points have half the value of the central points in the row. 
Figure 13 illustrates how this comes about, for three separate cases. The line in the input 
image is represented by the horizontal rectangular box and the black circles represent 
(p, 9) points where the line is sampled. The top case represents the situation when the 
angle 9 coincides with the orientation of the line. Here the entire volume of the line is 
put into a single bin (p, 9); this is the central location of the butterfly shape. In the next 
case, the volume of the line is divided into three samples. Recall that we have set up our 
butterfly shape so that we have a sample point at either end of the line. We can see then 
that because the two end samples are at the very ends of the line, only a quarter of the 
volume of the line will be attributed to these points, whereas the central point will be get 
half the volume. The same follows for the third case, where there are five samples along 
the line. Here we have the end points are attributed with half as much line volume as afl 
the other samples in the line. 

M{x,y)= < 

Figure 13: Division of line weight over {p, 9) in discrete setting. Top: Entire line volume 
goes to single value of {p, 9). Middle: Line volume is distributed over three {p, 9) values. 
Bottom: Line volume is distributed over five values of {p, 9). pixels. 

To formalise the above observations, we consider first the bottom right hand side of 
the match window, where the centre of the match window is at coordinates (0,0). By 
considering x^y >= 0 we have the matched filter M{x,y) kernel values given by: 

1 for X = y and y = 0 
l/4y for X = 2/ and y > 0 
l/2y iov X < y 
0 for X > y. 

To get the full window M{x,y), we simply reflect this result in the x and y axes. The 
final result is shown in Fig. 14, where the end points of each row have exactly half the 
value of the central points (apart from the central row). In practice, the match window 
can be normalised by subtracting off the mean value, so that the sum is zero, or dividing 
by the mean value, so that the sum is one. We currently implement the former of these 
normalisations. It should be pointed out that we do not use the more sophisticated 
normalised correlation function [4], because the resulting filter is non-linear and we would 
not be able to use any linearity assumptions (as we do below). 

The actual extent of the matched filter is limited by our approximation of the bounds of 
the filter with straight lines, as this approximation breaks down as the extent increases. A 
simple measure of the limit of the extent can be defined as the point where the straight line 
approximation departs significantly, say one pixel, from the underlying sinusoidal form. 
This point depends on the dimensions theta and pmax specified; for our purposes we have 
found a matched filter of extent 11 by 11 to be suitable. 
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1/12 1/6 1/6 1/6 1/6 1/6 1/12 

1/8 1/4 1/4 1/4 

1/4 1/2 1/4 

1/4 1/2 1/4 

1/8 1/4 1/4 1/4 1/8 

1/12 1/6 1/6 1/6 1/6 1/6 1/12 

Figure 14: Values defined within the match window. 

Finally, we should point out that the above observations hold for a butterfly shape that 
is actually centered on a pixel, i.e. for which the parameters (p, 0) fall on the discrete grid. 
Naturally most lines will not have this convenient form. Moreover, as pointed out before, 
the visible line length in the window is variable and this varies the bounding sinusoids 
of the butterfly shape as parameterised by A. Ultimately, we are really relying on the 
inherent robustness of the matched fllter to allow for these variations in shape while still 
providing sufiicient matching power. 

4.3    Lines of Arbitrary width 

When considering lines of arbitrary width, we are fortunate in that the Radon trans- 
form and matched filter (in its simple unnormalised form, as in Eq. 3) are both linear 
operators. We consider the simple scenario that a line of width w can be represented as a 
sum of parallel lines of width one. The Radon transform for the whole line is then simply 
the sum of Radon transforms for the individual lines. As each individual line is manifest 
as a butterfly shape in the Radon transform, the result for the line of width w is simply 
a sum of these butterfly shapes. Moreover, we can apply a matched filter to this resulting 
shape and expect the result to be simply a sum of matched filters. An example is shown 
in Fig. 15, where the input image on the left contains a line of width 10 and the Radon 
transform on the right is a sum of adjacent butterfly shapes for a single line. 

An example illustrating the application of the matched filter is shown in Fig. 16. 
Here the input image is a faint vertical line of width 3 and intensity of one added to a 
distribution of random Gaussian noise. The middle figure shows the result for the Radon 
transform. The peak corresponding to the line is faintly visible in the centre of the figure. 
The peak has an intensity of approximately 16 greylevels and the background ranges from 
approximately 14 to 15 grey levels. Shown on the right is the result for the matched filter. 
Here the peak has a value of approximately 5, all other peaks have a value of approximately 
3 and the background value is less than zero. So clearly for this example, the convolution 
filter has managed to bring out the peak from the background values. 
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Figure 15: Radon transform of wide line. Left: input image. Right: Radon transform. 

Figure 16: Applying a matched filter to test image. Left: Input image with strong Gaussian 
noise. Middle: Result from Radon transform. Right: Result from matched filter. 

The matched filter discussed above was derived for the case of a Ught Une on a dark 
background, yielding a butterfly shape that is of value greater than the background. Fig- 
ure 17 shows a counter example. Here the image has a dark line on light background, 
and the corresponding Radon transform shows the dark butterfly shape that is produced. 
Applying the positive valued matched fllter produces the result to the right of the figure, 
which is essentially the inverse of the result shown in Fig. 16. The bright peak in the radon 
transform has now become a dark hole of value around -10. This too can be thresholded 
to find the parameters (p, 9) for the Une. Both light and dark lines can be detected by 
combining threshold results using two thresholds. Alternatively, the results for two sep- 
arate matched filters, one with positive kernel values and one negative kernel values, can 
be combined using, for example, a maximum operator. 
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Figure 17: Applying a positive matched filter to image with dark line. Left: Input image. 
Middle: Result from Radon transform. Right: Result from matched filter. 

4.4    Matched Filtering the RDRT 

A matched filter may also be applied to the RDRT to enhance peak detection. As we 
might expect, a suitable matched filter for RDRT is given by the derivative of the matched 
filter defined above. Use of the RDRT would seem to circumvent any inconvenience in 
dealing with both light and dark lines, because the RDRT takes the absolute value of 
the radial derivative. In this case, light and dark lines look qualitatively the same in the 
RDRT and we can use a single matched filter to perform matching. However, we note 
here that the use of the absolute value renders the RDRT a non-linear operator, as in 
general \f + g\ ^ |/| + \g\. Therefore, we can not use a linearity property to generalise 
the treatment of the RDRT to lines of arbitrary width as we have done for the Radon 
transform. In practical terms, what this means is that there is not a single consistent 
shape we can use to match the RDRT for lines of arbitrary width; in Fig. 18 is shown 
RDRT butterfly shape results for lines of width 1, 3 and 5, shown left to right respectively. 
One matching process we have tried is to match each side of the RDRT butterfly shape 
with separate matched filters while ignoring the central region. This process finds the 
leading and trailing edge of lines in the image and is independent of line width. However, 
the results we obtained were somewhat disappointing. 

Figure 18: RDRT for lines of varying width. Left to Right: Line width 1, 3 and 5. 

An alternative approach is to omit the absolute value in the calculation of the RDRT. 
We can show that the result for the RDRT then consists of the sum of two butterfly 
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shapes of opposite phase, one corresponding to the leading edge and one to the traiUng 
edge of the Une. Figure 19 shows an example, where the RDRT result without the absolute 
value is shown in the middle for the input image on the left. The matching process must 
now either combine two matched filters with opposite phase or two thresholds in order to 
enhance and locate the peaks. We note here that the use of the RDRT has the advantage 
of yielding both of the edges of the line. In contrast, the Radon transform, shown to the 
right of the figure, will yield only a single central peak for the line. 

Figure 19: RDRT results for light line. Left: Input image with line of width 5. Middle: 
RDRT without absolute value, showing leading and trailing edges. Right: Standard Radon 
transform result. 

A final method we have looked at is to apply the radial derivative after matched 
filtering of the Radon transform. This approach offers the edge detecting ability of the 
RDRT while still allowing the use of the absolute value to yield positive and negative 
phases simultaneously. An example is presented in the following section. 

4.5    Some Examples 

Shown in Fig. 20 is a result for the image previously shown in Fig. 1. Here the Radon 
transform, at top, shows the expected evidence of Unes in the image. The peak has a value 
of approximately 0.6, the dark hole approximately 0.2 and the background varies in the 
range 0.3 to 0.5. The result from the matched filtering, using a positive value matched 
filter, is shown at the bottom of the figure. Here, the peak now has a value around 0.37, 
the hole (which is not visible against the dark background) has a value around -0.35 {i.e. 
opposite in phase to the peak) and the background now sits in the range ±0.1. From 
this example at least we can see that the matched filter is able to enhance peaks in the 
Radon transform (and holes using a second threshold). It could perhaps best be described 
as a mechanism for background normalisation that sets the background to zero and hfts 
brights peaks up while pushing dark peaks down in value. 

Shown in Fig. 21 is a more challenging example. A portion of the 512 by 512 image 
used is shown at the top, where the background noise is stronger and larger in size and the 
road edges are more diffuse. Directly below the image is shown the result for the Radon 
transform. The result shows two large responses corresponding to the two obvious linear 
objects in the input image. Interestingly, the features in the Radon transform look rather 
like edge responses, with light then dark features side by side. This is because each line 
in the image consists of a bright line of several pixels wide followed by a much wider dark 
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Figure 80: Applying the matched filter to real image data. Top: Result from, Radon trans- 
form. Bottom: Results after applying matched filter. 

line that fades into the background; effectively two linear features of opposite phase side 
by side. Shown below the Radon transform is the RDRT, where we have used the absolute 
value. The use of the absolute value has the visual effect of fortifying peaks by combining 
strongly positive and strongly negative values into a single strong peak; without using the 
absolute value the result would be (visually at least) unsatisfactory. Below this is shown 
the matching result on the RDRT^ and we can see here that the matched filter has not 
really improved the situation, but rather seems to have made it worse. We have found 
matching results to be generally unsatisfactory when used on the absolute value of the 
RDRT. Finally, at the bottom of the figure is the absolute value of the radial derivative 
applied to the matched filtering of the Radon transform. When compared to the RDRT, 
we have a better result with background noise much reduce and peaks highlighted as 
desired. 

4.6    Analysis 

To measure the effectiveness of the matched filter technique for detecting curvilinear 
features, a quantitative measure of signal to noise was used, based on a two-parameter 
adaptive threshold prescreener for detecting targets in SAR imagery. This filter measures 
target signal to noise using the formula 

k = H)/a 

where x is the intensity of the point being tested, and /i and a are the estimated mean and 
standard deviation of the background pixels. This quantity k was calculated for both of 
the curvilinear features seen at the top of Fig. 21 for five different methods of processing 
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Figure 21:  Top to Bottom: Portion of input image, Radon transform, RDRT, Matched 
filter applied to RDRT, radial derivative of matched filter applied to Radon transform. 
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Method SNR Feature 1 SNR Feature 2 

Standard RDRT 7.72 10.5 
RD of matched filtered RT (37 x 9) 13.5 30.1 
RD of mean filtered RT (37 x 9) 6.68 29.5 
RD of median filtered RT .  19.7 29.8 
Median filtered RD of median filtered RT    26.8 53.9 

Table 1: Signal to noise ratios for five different methods of processing the RDRT, 

the RDRT. The first method was the default RDRT as shown in Figure 21, while the 
second included the matched filtering stage prior to the calculation of the derivative, as 
shown at the bottom of Fig. 21. Since the matched filter acts as a smoothing operator, it 
is also usefiil to determine what the effect of the butterfly shape of the filter has on the 
detection SNR, as opposed to a filter of the same size with uniform values. To do this, 
a filter of the same size (37 x 9) with equal pixel weights was used to smooth the radon 
transform, and then first differences were calculated. The SNR results are shown in the 
third line of Table 4.6. 

The above table shows that the matched filter (in the second row) is doing a better 
job of detecting curvilinear features than a uniformly weighted filter (third row). For a 
second comparison, the matched filter result was compared against that using a standard 
image processing noise reduction technique; the median filter. In this case, the median 
filter was applied prior to the calculation of the radial derivative. Since the derivative was 
required only in the radial direction, a ID median filter was applied in this direction. The 
performance of the median filter was found to increase with window size, and the results 
for a 20 pixel median filter are shown in the fourth row of Table 4.6 (although higher 
SNRs were obtained for even larger window sizes). Here, the weaker linear feature had 
an improved SNR, while the strong feature's SNR was mostly unaffected, which indicates 
that the median filter may be more useM than the matched filter for faint trail detection. 
It should be pointed out however that this is only a single image, and that statistically 
meaningful results would require a larger set of images to be tested. This, however, is 
outside the scope of this report. 

The matched filter method produced a more blurry estimate for the RDRT than did 
the median filter, which tends to preserve edges. As a quick test whether the SNR could 
be further improved by blurring the RDRT, a 2D median filter (chosen to be 6 x 6, since 
this gave blurring visually similar to the matched filter) was applied to the RDRT estimate 
used in line 4 of the table. As expected, the SNR was significantly increased and appears to 
be much better than that achieved for the matched filter, although again, the result is only 
anecdotal. It is speculated that the matched filter method could be farther improved by 
applying it to a median filtered Radon transform. Again, testing of this nature is outside 
the scope of the report, although more detailed testing may be attempted in follow-up 
work. 
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5    Conclusion 

This report has discussed the ADSS implementation radon of the Radon transform, 
which uses non-equispaced DFTs to provide a relatively quick and direct implementation 
of the transform. 

The report has offered an analysis and experimental results for two paths of study: 
discretisation errors and matched filtering. In terms of future work, there is much that 
could be done. The most obvious direction in terms of discretisation errors, or more 
particularly the "checkerboard" noise we observe, is to pursue the recommendations in [5]. 
The perspective our report has taken is that the noise is inherent to the implementation 
we are using and can only be ameliorated but not removed altogether. Our most successful 
approach was to use a Hanning window of weights in the frequency domain. The approach 
discussed in [5] provides a rigorous framework for quantifying and controlling discretisation 
errors. Control over the errors is captured in the value and placement of quadrature 
weights applied in the frequency domain. The use of the Hanning window involves a similar 
implementation, though our choice of Hanning weights and placements could be considered 
suboptimal. However, pursuing the approach further could prove quite a challenging 
project. For example, the choice of weighting placements is still an outstanding theoretical 
problem. 

The matched filter we have proposed in this report would also benefit from further 
work. The matched filter has only been applied to a few images and, while the results 
have been encouraging, a validation process is required to determine to what extent the 
filter improves peak detection. The filter proposed is static and a number of assumptions 
were made in order to derive a simple form. These could be relaxed in order to provide a 
more generalised and robust matched filter. Another more challenging direction would be 
to explore a dynamic matched filtering approach, which might capture variations such as 
line width in the RDRT and shape variations arising from variable line position. 

References 

1. Bracewell R. N. The Fourier Transform and its Applications, Third Edition. McGraw 
Hill, 2000. 

2. Cooke T. A Radon Transform Derivative Method for Faint Trail Detection in SAR 
Imagery, pages 31-34, Perth, AustraUa, 1999. DICTA '99. 

3. Purukawa Y. and Shingagawa Y. Accurate and Robust Line Segment Extraction by 
Analysing Distribution around Peaks in Hough Space. Computer Vision and Image 
Understanding, 92 (2003), pages 1-25. 

4. Gonzalez R. C. and Woods R. E. Digital Image Processing. Addison Wesley, 1993. 

5. Newsam G. N. Controlling Errors when Calculating the Radon Transform by Discrete 
Fourier Transforms on Non-Uniform Grids, DSTO Note, August 2003. 

21 



DSTO-TR-1576 

6. Potts D., Steidle G. and Tasche M. Past Pourier transforms for nonequispaced data: A 
tutorial, In Modem Sampling Theory: Mathematics and Applications, J.J. Benedetto 
and P. Ferreira (Eds.), pages 249-274, 2000. 

7. Redding N. J. Design of the Analysts' Detection Support System for Broad Area Aerial 
Surveillance. Technical Report DSTO-TR-0746, DSTO Technical Report, 1998. 

22 



DISTRIBUTION LIST 

Implementation of the Radon Transform Using Non-equispaced Discrete Fourier 
Transforms 

Ronald Jones, Tristrom Cooke and Nicholas J. Redding 

Number of Copies 

DEFENCE ORGANISATION 

Task Sponsor 

DGISREW 1 

S&T Program 

Chief Defence Scientist 

FAS Science Policy 

AS Science Corporate Management 

Director General Science Policy Development 

Counsellor, Defence Science, London 

Counsellor, Defence Science, Washington 

Scientific Adviser to MRDC, Thailand 

Scientific Adviser Joint 

Navy Scientific Adviser 

Scientific Adviser, Army 

Air Force Scientific Adviser 

Scientific Adviser to the DM0 M&A 

Scientific Adviser to the DM0 ELL 

Director of Trials 

Information Sciences Laboratory 

Chief, Intelligence, Surveillance and Reconnaissance Division 

Research Leader, Imagery Systems 

Head, Image Analysis & Exploitation 

Guy Blucher 

Dr David Booth 

David I. Kettler 

Dr Nicholas J. Redding 

Merrilyn Fiebig 

Dr Vittala Shettigara 

Ray Oermann 

Doc Data Sheet 

Doc Data Sheet 

Doc Data Sheet 

1 

Doc Data Sheet 
and Dist List 

Doc Data Sheet 
and Dist List 

1 

Doc Data Sheet 
and Dist List 

Doc Data Sheet 
and Dist List 

1 

1 

1 

1 

1 

1 

1 

4 

1 

1 

1 



Bob Whatmough 1 

Head, Imaging Radar Systems 1 

Dr David Crisp 1 

Rodney Smith 1 

Dr Mark Williams 1 

DSTO Library and Archives 

Library Edinburgh 1 
and Doc Data Sheet 

Australian Archives 1 

Capability Systems Division 

Director General Maritime Development Doc Data Sheet 

Director General Land Development 1 

Director General Aerospace Development 1 

Director General Information Capability Development Doc Data Sheet 

Office of the Chief Information Officer 

Deputy Chief Information Officer Doc Data Sheet 

Director General Information Policy and Plans Doc Data Sheet 

AS Information Structures and Futures Doc Data Sheet 

AS Information Architecture and Management Doc Data Sheet 

Director General Australian Defence Simulation Office Doc Data Sheet 

Strategy Group 

Director General Military Strategy Doc Data Sheet 

Director General Preparedness Doc Data Sheet 

HQAST 

SO (Science) ASJIC Doc Data Sheet 

Navy 

SO (SCIENCE), COMAUSNAVSURFGRP, NSW Doc Data Sheet 
and Dist List 

Director General Navy Capability, Performance and Plans,        Doc Data Sheet 
Navy Headquarters 

Director General Navy Strategic Policy and Futures, Navy        Doc Data Sheet 
Headquarters 

Army 

ABCA National Standardisation Officer, Land Warfare Devel-        Doc Data Sheet 
opment Sector, Puckapunyal (pdf format) 

SO (Science), Deployable Joint Force Headquarters (DJFHQ)(L),    Doc Data Sheet 
Enoggera QLD 



so (Science), Land Headquarters (LHQ), Victoria Barracks, 
NSW 

Air Force 

SO (Science), Headquarters Air Combat Group, RAAF Base, 
Williamtown 

Intelligence Program 

DGSTA, Defence Intelligence Organisation 

Manager, Information Centre, Defence Intelligence Organisa- 
tion 

Assistant Secretary Corporate, Defence Imagery and Geospa- 
tial Organisation 

Defence Materiel Organisation 

Head Airborne Surveillance and Control 

Head Aerospace Systems Division 

Head Electronic Systems Division 

Head Maritime Systems Division 

Head Land Systems Division 

Head Industry Division 

Chief Joint Logistics Command 

Management Information Systems Division 

Head Materiel Finance 

Defence Libraries 

Library Manager, DLS-Canberra 

Library Manager, DLS-Sydney West 

UNIVERSITIES AND COLLEGES 

Australian Defence Force Academy Library 

Head of Aerospace and Mechanical Engineering, ADFA 

Deakin University Library, Serials Section (M List), Geelong, 
Vic 

Hargrave Library, Monash University 

Librarian, Flinders University 

OTHER ORGANISATIONS 

National Library of Australia 

NASA (Canberra) 

Government Publications Librarian, State Library of New South 
Wales 

Doc Data Sheet 
and Exec Summ 

Doc Data Sheet 
and Exec Summ 

1   (pdf format) 

1 

Doc Data Sheet 

Doc Data Sheet 

Doc Data Sheet 

Doc Data Sheet 

Doc Data Sheet 

Doc Data Sheet 

Doc Data Sheet 

Doc Data Sheet 

Doc Data Sheet 

Doc Data Sheet 

Doc Data Sheet 

1 

1 

1 

Doc Data Sheet 

1 

1 

1 

Doc Data Sheet 



INTERNATIONAL DEFENCE INFORMATION CENTRES 

US Defense Technical Information Center 2 

UK Defence Research Information Centre 2 

Canada Defence Scientific Information Service 1   (pdf format) 

NZ Defence Information Centre 1 

ABSTRACTING AND INFORMATION ORGANISATIONS 

Library, Chemical Abstracts Reference Service 1 

Engineering Societies Library, US 1 

Materials Information, Cambridge Scientific Abstracts, US 1 

Documents Librarian, The Center for Research Libraries, US 1 

INFORMATION EXCHANGE AGREEMENT PARTNERS 

National Aerospace Laboratory, Japan Doc Data Sheet 

National Aerospace Laboratory, Netherlands Doc Data Sheet 

SPARES 

DSTO Edinburgh Library 5 

Total number of copies: 52 



Page classification: UNCLASSIFIED 

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION 
DOCUMENT CONTROL DATA 

1. CAVEAT/PRIVACY MARKING 

2. TITLE 

Implementation of the Radon Transform Using 
Non-equispaced Discrete Fourier Transforms 

3. SECURITY CLASSIFICATION 

Document (U) 
Title (U) 
Abstract (U) 

4. AUTHORS 

Ronald Jones, 
Nicholas J. Redding 

Tristrom Cooke and 

5. CORPORATE AUTHOR 

Information Sciences Laboratory 
PO Box 1500 
Edinburgh, South AustraUa, Australia 5111 

6a. DSTO NUMBER 

DSTO-TR-1576 
6b. AR NUMBER 

013-091 
6c. TYPE OF REPORT 

Technical Report 
7. DOCUMENT DATE 

April, 2004 
8. FILE NUMBER 

DSTO-E-IN- 
2004-69  

9. TASK NUMBER 

JTW 01/218 
10. SPONSOR 

DGISREW 
11. No OF PAGES 

22 
12. No OF REFS 

7 

13. URL OF ELECTRONIC VERSION 

http://www.dsto.defence.gov.au/corporate/ 
reports/DSTO-TR-1576.pdf 

14. RELEASE AUTHORITY 

Chief, Intelligence,  Surveillance and Reconnais- 
sance Division 

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT 

Approved For Public Release 

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, 
EDINBURGH, SOUTH AUSTRALIA 5111 

16. DELIBERATE ANNOUNCEMENT 

No Limitations 
17. CITATION IN OTHER DOCUMENTS 

No Limitations 
18. DEFTEST DESCRIPTORS 

synthetic aperture radar 
image analysis 
radon transform 
19. ABSTRACT 

This report discusses the implementation of the Radon transform in the Analysts' Detection Support 
System (ADSS) environment using non-equispaced Discrete Fourier Transforms (DFTs). It provides 
an analysis and experimental results for discretisation error and the use of matched filtering to enhance 
peaks in the transform. 

Page classification: UNCLASSIFIED 


