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Abstract 

A study of the neutrally-stratified flow within and over an array of three-dimensional (3-D) 
buildings (cubes) was undertaken using simple Reynolds-averaged Navier-Stokes (RANS) 
flow models. These models consist of a general solution of the ensemble-averaged, steady- 
state, three-dimensional Navier-Stokes equations, where the k-e turbulence model (A: is 
turbulence kinetic energy and e is viscous dissipation rate) has been used to close the 
system of equations. Two turbulence closure models were tested; namely, the standard and 
Kato-Launder k-e models. The latter model is a modified k-e model designed specifically to 
overcome the stagnation point anomaly in fiows past a bluff body where the standard k-e 
model overpredicts the production of turbulence kinetic energy near the stagnation point. 
Results of a detailed comparison between a wind tunnel experiment and the RANS flow 
model predictions are presented. More specifically, vertical profiles of the predicted mean 
streamwise velocity, mean vertical velocity, and turbulence kinetic energy at a number of 
streamwise locations that extend from the impingement zone upstream of the array, through 
the array interior, to the exit region downstream of the array are presented and compared 
to those measured in the wind tunnel experiment. Generally, the numerical predictions 
show good agreement for the mean flow velocities. The turbulence kinetic energy was 
underestimated by the two different closure models. After validation, the results of the 
high-resolution RANS flow model predictions were used to diagnose the dispersive stress, 
within and above the building array. The importance of dispersive stresses, which arise from 
point-to-point variations in the mean flow field, relative to the spatially-averaged Reynolds 
stresses are assessed for the building array. 
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Resume       ___^  

Une etude des ecoulements d'air a stratification neutre a Finterieur et par-dessus une ma- 
trice de batiments (cubes) tridimensionnelle (3-D) a ete entreprise a I'aide de modeles 
d'ecoulements simples Navier-Stokes de Reynolds moyens (RANS). Ces modeles consistent 
en une solution generate de la moyenne de I'ensemble des equations Navier-Stokes tridimen- 
sionnelles, en etat d'equilibre. ou le schema de turbulence k-e (k est I'energie cinetique de 
la turbulence et e est le taux de dissipation visqueuse) a ete utilise pour conclure le systeme 
des equations. Deux schemes de fermeture de turbulences out ete testes: le schema stan- 
dard et le schema k-e Kato-Launder. Ce dernier schema est un schema fc-e modifie, congu 
specifiquement pour surmonter I'anomalie du point d'arret des ecoulements a contourner 
les corps non profiles ou le schema standard k-e prevoit des valeurs superieures aux chiffres 
observes de la production de I'energie cinetique de la turbulence pres du point d'arret. 
Des resultats d'une comparaison detaillee entre un essai de la soufflerie aerodynamique 
et les predictions du modele d'ecoulement RANS sont presentes. Plus exactement, les 
profils verticaux de la velocite longitudinale moyenne, de la velocite verticale moyenne 
et de I'energie cinetique de la turbulence, prevus a un certain nombre d'endroits longi- 
tudinaux qui s'etendent a partir de la zone d'impaction du secteur en amont, a travers 
la matrice interieure, jusqu'a la region de la sortie en aval de la matrice, sont presentees 
et comparees a celles mesurees dans I'essai de la soufflerie aerodynamique, Normalement, 
les previsions numeriques correspondent bien avec les velocites moyennes des ecoulements. 
L'energie cinetique de la turbulence avait ete sous-estimee par deux schemas differents de 
fermeture. Apres validation, les resultats des previsions du modele d'ecoulement RANS de 
haute resolution ont ete utilises pour diagnostiquer la contrainte dispersive, a Finterieur et 
au-dessus de la matrice de batiments. L'importance de ces contraintes dispersives qui se 
produisent a partir de variations de points a points dans le champ d'ecoulement moyen, 
relatives a la moyenne spatiale des nombres Reynolds sont evaluees pour la matrice de 
batiments. 
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Executive summary 

Introduction: It is anticipated that Canadian Forces (CF) in the foreseeable future will 
have to fight in or protect urban areas, whether in battle, peace-making, peacekeeping, 
or counter-terrorist operations. The increased awareness and importance accorded by the 
public worldwide and their governments to maintain appropriate defences against chemical 
and biological warfare (CBW) agents in an urban (built-up) environment, the prediction 
of casualties and human performance degradation resulting from such releases, and the 
development of operational procedures and regulations to control, mitigate, and monitor the 
fate of CBW agents in urban areas with high population densities, will require mathematical 
modeling of urban wind flows and dispersion. In this regard, it should be noted that the 
prediction of flows in the urban environment is in principle pre-requisite to or co-requisite 
with the prediction of contaminant (e.g.. CBW agent) dispersion within a cityscape. 

Results: A study of the neutrally-stratified flow in and over an array of three-dimensional 
(3-D) buildings (cubes) was undertaken using Reynolds-averaged Navier-Stokes (RANS) 
flow models. These models consist of a general solution of the ensemble-averaged, steady- 
state, three-dimensional Navier-Stokes equations, where the k-e turbulence model {k is 
turbulence kinetic energy and e is viscous dissipation rate) has been used to close the 
system of equations. Two turbulence closure models were tested; namely, the standard and 
Kato-Launder k-e models. The latter model is a modified k-e model designed specifically to 
overcome the stagnation point anomaly in flows past a bluff body where the standard k-e 
model overpredicts the production of turbulence kinetic energy near the stagnation point. 
Results of a detailed comparison between a wind tunnel experiment and the RANS flow 
model predictions are presented. More specifically, vertical profiles of the predicted mean 
streamwise velocity, mean vertical velocity, and turbulence kinetic energy at a number of 
streamwise locations that extend from the impingement zone upstream of the array, through 
the array interior, to the exit region downstream of the array are presented and compared 
to those measured in the wind tunnel experiment. Generally, the numerical predictions 
show good agreement for the mean flow velocities. The turbulence kinetic energy was 
underestimated by the two different closure models. After validation, the results of the 
high-resolution RANS fiow model predictions were used to diagnose the dispersive stress, 
within and above the building array. The importance of dispersive stresses, which arise from 
point-to-point variations in the mean flow field, relative to the spatially-averaged Reynolds 
stresses are assessed for the building array. 

Significance and Future Plans: The k-e turbulence closure model with an isotropic, 
Hnear eddy viscosity is the simplest complete turbulence model (viz., no advance knowl- 
edge of any property of the turbulence is required for the simulation other than the initial 
and/or boundary conditions for the problem) that is available currently, and its moderately 
good predictive performance of the developing flow through an array of three-dimensional 
buildings without the need to adjust any closure constants is encouraging. This model 
may be useful as a general-purpose simulator of urban flows since it is simple enough to be 
tractable numerically and, hence, not require excessive computing time. However, before 
this model (or, variants of it) can- be used for this purpose, it needs to be validated against 
more experimental data for flow in various obstacle arrays. From this perspective, the 
availability of extensive and accurate experimental data for flow through various obstacle 
arrays is urgently required.   Finally, the accurate prediction of urban dispersion requires 
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knowledge of the mean wind and turbulence through the urban area. The utility of the 
urban flow simulation models investigated here for provision of the disturbed %\-ind held 
statistics required for a physically-based dispersion model needs further investigation. 

Yee E. and Lien, F.S. (2004). Numerical Simulation of the Disturbed Flow Through a 
Three-Dimensional Building Array. (DRDC Suffield TR 2004-108). Defence RkD Canada 
- Suffield. 
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Sommaire 

Introduction: On prevoit que les Forces canadiennes (FC), auront, dans un avenir assez 
rapproche, a combattre a I'interieur de zones urbaines ou a proteger ces dernieres, du- 
rant des operations de combat, de maintien de la paix ou antiterroristes. Une prise de 
conscience accrue ainsi que I'importance que le monde entier et ses gouvernements accor- 
dent au maintien de moyens de defense appropries contre les agents de guerre chimiques 
et biologiques (CB) dans les milieux urbains (construits), a la prevision des blesses et la 
degradation de la performance humaine resultant de telles emissions ainsi qu'a la mise au 
point de procedures operationnelles et reglements de controle pour attenuer et surveiller le 
sort des agents CB dans les zones urbaines comprenant des hautes densites de population, 
exigeront des modelisations mathematiques des ecoulements eoliens urbains et de leur dis- 
persion. A cet egard, il faut noter que la prevision des ecoulements dans un milieu urbain 
est en principe pre-requise ou co-requise avec la prevision de la dispersion du contaminant 
(par ex.: agent CB), dans un paysage urbain. 

Resuitats: Une etude des ecoulements d'air a stratification neutre a I'interieur et par-dessus 
une matrice de batiments (cubes) tridimensionnelle (3-D) a ete entreprise a I'aide de modeles 
d'ecoulements simples Navier-Stokes de Reynolds moyens (RANS). Ces modeles consistent 
en une solution generale de la moyenne de I'ensemble des equations Navier-Stokes tridimen- 
sionnelles, en etat d'equilibre, oii le schema de turbulence k-e (k est I'energie cinetique de la 
turbulence et e est le taux de la dissipation visqueuse) a ete utilise pour conclure le systeme 
des equations. Deux schemas de fermeture de turbulences ont ete testes : le schema stan- 
dard et le schema k-e Kato-Launder. Ce dernier schema est un schema k-e modifie, congu 
specifiquement pour surmonter I'anomalie du point d'arret des ecoulements a contourner 
les corps non profiles oil le schema standard k-e prevoit des valeurs superieures aux chiffres 
observes de la production de I'energie cinetique de la turbulence pres du point d'arret. 
Des resuitats d'une comparaison detaillee entre un essai de la soufflerie aerodynamique 
et les predictions du modele d'ecoulement RANS sont presentes. Plus exactement. les 
profils verticaux de la velocite longitudinale moyenne, de la velocite verticale moyenne 
et de I'energie cinetique de la turbulence prevus a un certain nombre d'endroits longitu- 
dinaux qui s'etendent a partir de la zone d'impaction du secteur en amont, a travers la 
matrice interieure, jusqu'a la region de la sortie en aval de la matrice, sont presentees et 
comparees a celles mesurees dans I'essai de la soufHerie aerodynamique. Normalement. 
les previsions numeriques correspondent bien avec les velocites moyennes des ecoulements. 
L'energie cinetique de la turbulence avait ete sous-estimee par deux schemas differents de 
fermeture. Apres validation, les resuitats des previsions du modele d'ecoulement RANS de 
haute resolution ont ete utilises pour diagnostiquer la contrainte dispersive, a I'interieur et 
au-dessus de la matrice de batiments. L'importance de ces contraintes dispersives qui se 
produisent a partir de variations de points a points dans le champ d'ecoulement moyen, 
relatives a la moyenne spatiale des nombres Re\Tiolds sont evaluees pour la matrice de 
batiments. 

La Portee des Resuitats et les Plans Futurs: Le schema de fermeture de la turbulence 
k-e avec une viscosite turbulente hneaire isotrope est le modele de turbulence complet le 
plus simple (ziv., n'exigeant aucune connaissance prealable des proprietes de la turbulence 
pour la simulation autre que celle des conditions aux limites et/ou initiales du probleme) qui 
est actuellement disponible; de plus, sa performance de prevision moderement bonne en ce 
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qui concerne le developpement de I'ecoulement a travers la matrice des batiments tridimen- 
sionnels, sans avoir besoin d'ajuster aucune constante de fermeture, eat encourageante. Ce 
modele pourrait etre utile comme simulateur pohn-alent des ecoulements urbains puisqu'il 
est assez simple pour etre tractable numeriquement et n'exige pas ainsi de temps excessif de 
calcul. Cependant, avant que ce modle (ou uiie de ses variantes) puisse etre utilise dans ce 
but, il doit etre valide par des donnees experiment ales supplementaires pour Tecoulement 
dans des matrices variees d'obstacles. Dans cette perspective, il est urgent de trouver des 
donn^ experimentales etendues et exactes pour lecoulement a travers des matrices variees 
d'obstacles. Enfin, la prevision exacte de la dispersion en milieu urbain exige une connais- 
sance du vent moyen et de la turbulence a travers ce milieu urbain. L'utilite des modeles de 
simulation de I'ecoulement en milieu urbain examines ici pour alimenter les statistiques des 
champs de wnt perturbe requis pour le modele de dispersion d'apres les criteres physiques, 
exige d'etre examinee plus longuement. 

Yee, E. and Lien, F.S. (2004). Numerical Simulation of the Disturbed Flow Through a 
Three-Dimensional Building Array. (DRDC Suffield TR 2004-108). Defence R&D Canada 
- Suffield. 
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introduction 

The sxirface of the Earth is covered with roughness elements that form a patchwork mosaic 
of varying surface roughness such as crops, forests, and urban areas. This wide range of 
complex surfaces disturbs the turbulent flow over the surface and influences the processes 
that govern the exchange of momentum, heat, and mass between the 'complex' surface and 
the atmosphere. In recent years, demographic evolution, cultural and technological devel- 
opmeHts, and economic activity have accelerated the phenomenon of city formation. Huge 
urban centres that consist of agglomerations of buildings, often with irregular geometry 
and spacing, present some of the most 'complex' surfaces for which an understanding of the 
surface-atmosphere interaction and the nature of the flow between the obstacles themselves 
are not currently available. 

An urban canopy consists of a large collection of buildings and other obstacles (e.g., cars 
Uning a street, treed areas in city green spaces, etc.) that are aggregated into complex 
structures. When this rough surface interacts with the atmospheric flow within and above 
it, the disturbed flow field can become extremely complex. Curved mean streamlines, large 
velocity gradients, sharp velocity discontinuities, flow separations and reattachments, cavity 
regions, recirculation zones, and strongly inhomogeneous turbulence can result depending 
on the obstacle geometry and spacing. The variety of mean and turbulent flow regimes that 
result from the flow within and over an arbitrary arrangement of non-uniform obstacles 
is too large to be catalogued. It would be naive to expect a universal pattern to exist 
in these complex disturbed flows and, as a consequence, a comprehensive physically-based 
theory for these flows does not exist currently. Nevertheless, the prediction of turbulent 
flows tftirough an urban canopy is required for a number of important applications (e.g., 
the estimation of wind loads on urban structures and the inodelling of the dispersion of 
pollutants in or near an urban area). Given the complexity of the flow and turbulence 
structrare over an urban surface, where flow and turbulence lengthscales and timescales can 
change dramatically from one obstacle configuration to the next, it seems reasonable to 
suggest that given increases in both computing speed and memory of afi'ordable computers 
that Kumerical simulations of these flows might provide valuable insights that could make 
the stady of these intractable flows easier and more effective. 

Computational fluid dynamics (CFD) has been applied to the problem of predicting tur- 
bulent flows around an isolated building or obstacle. To this purpose, two methods have 
been used to predict the complex flow around a single obstacle; namely, large-eddy simu- 
lation (LES) in which the large eddies are computed and the smallest, subgrid-scale eddies 
are modelled and Reynolds-averaged Navier-Stokes (RANS) equations in which the flow is 
modeled through suitable averaged quantities for both the mean and turbulent motion. Pa- 
terson and Apelt ([1], [2]) used a RANS model (with k-e turbulence closure) to calculate the 
mean velocity and pressure in the flow around a single prismatic building on a flat surface. 
Zhang et al. [3] studied the effects of wind shear and turbulence in the upstream flow on 
the de^-elopment of the flow field around an isolated cuboid (building) using the standard 
k-e model. Yamada [4] applied RANS modelling (using a higher-order turbulence closure) 
to sinmlate the flow around a single square-based building on complex terrain. Ferzinger 
and Peric [5] describe the application of LES, using the mixed Smagorinsky scale-similarity 
model as the subgrid-scale model, for an investigation of the unsteady flow over a cube 
mounted on one wall of a channel. 
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More recently, CFD has been applied to simulate the flow within and over clusters of 
buildings. Certainly, a true building cluster, made up of a group of buildings of roughly 
comparable size, is expected to provide the most complicated flow problem for CFD because 
mutual flow interferences between buildings need to be taken into account [6]. Much of the 
early %vork in this area focussed on the application of RANS modeUing to the investigation of 
the three-dimensional characteristics of flow regimes within an urban canyon (e.g., Dawson 
et al., [7]: Hunter et al., [8]; Baik and Kim, [9]). More recently, Liu and Barth [10] and 
Walton and Cheng [11] have apphed LES to study flow and pollutant dispersion in an 
idealized street canyon, Hanna et al, [12] used LES with the Smagorinsky subgrid closure 
model to simulate the mean flow and turbulence within some simple obstacle arrays, Cheng 
et al. [13] applied both RANS (fc-e model) and LES with a dynamic Smagorinsky subgrid 
model to predict the fully-developed flow over a matrix of cubes immersed in a plane channel 
flow. Lien et al, [14] apphed a k-e turbulence closure model in conjunction with linear and 
nonlinear eddy-viscosity formulations to predict the developing flow over an array of two- 
dimensional (2-D) buildings. Smith and Brown [15] applied LES with a Smagorinsky-type 
subgrid closure to compute the complex 3-D flow patterns around building arrangements 
in a 2 km X 2 km section of Lower Manhattan, DeCroix [16] applied LES to simulate the 
wind field in a small region in downtown Salt Lake City, 

The present paper considers the predictive performance of two high-Reynolds number k- 
€ models when applied to the complex developing flow over and within an array of 3- 
D buildings. In consequence, comparisons of model predictions with experimental data 
obtained from a very detailed wind tunnel experiment will be undertaken, with primary 
emphasis on evaluation of the predictive accuracy of the model for the mean velocity and 
turbulence upstream, within, and downstream of the 3-D building array. The work reported 
here is an extension of an earUer effort in which the performance of variants of the fe-e model 
with both linear and nonlinear eddy-viscosity formulations was investigated for the flow 
within and over an array of 2-D buildings [14]. Finally, the high-resolution CFD simulations 
undertaken here will be used to diagnose the dispersive stresses in the urban-type roughness 
array. The importance of the dispersive stresses, which arise from the spatial inhomogeneity 
in the mean flow, in relation to the spatially-averaged Reynolds stresses within an urban- 
type roughness array will be assessed. 

High-resolution RANS modelling 

The equations 

The governing equations for a steady, incompressible, and neutrally-stratified (adiabatic) 
fluid flow based on the Reynolds-averaged Navier-Stokes (RANS) approach are 

|Si = 0. (1) 
OXi 

where the Raynolds averaging of a quantity is denoted by drawing a bar ovex the quantity. 
Here, ut and u'^ are the mean and fluctuating velocities in the Sj-direction, respectively, 
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with i == 1, 2, or 3 representing the streamwise x, spanwise y, or vertical z directions; 
Xi = {x,y,z) = x: Uj — {u,v,w); ut = {u,v,'w) = (U.V.W); v is the kinematic viscosity 
and p is the kinematic pressure. 

Reynolds-averaging the Navier-Stokes equation gives rise to the so-called kinematic Rey- 
nolds stresses which are defined as the tensor u^it'-. The Reynolds stresses depend on the 
velocity fluctuations u^, and introduce new unknown quantities in the RANS equations, 
and therefore these equations no longer constitute a closed system. In order to close the 
system of equations, we need further equations describing the relationship between u\u'^ 
and the quantities Uj and p that we seek to determine. This is known as the closure 
problem in turbulence modelling. One of the simplest turbulence models for u'(u!, involves 
approximating the Reynolds stress components by analog}- with a Newtonian type of hnear 
constitutive relationship between the turbulence stress and the mean strain-rate tensor. 
This model uses the Boussinesq eddy-viscosity approximation given by 

^i^i = 3^'^ij vt 
dui      duj 
 1 - 
dxj     dxi (3) 

where ut is the kinematic eddy viscosity, k = \u[u^ is the turbulence kinetic energy (TKE), 
and 5ij is the Kronecker delta function. 

Dimensional analysis dictates that the eddy viscosity vt be determined by the product of 
a turbulence velocity scale and a turbulence length scale. In the k-e model (where e is the 
rate at which TKE is converted into thermal internal energy), the turbulence velocity and 
length scales are chosen to be proportional to A;^/^ and /c'^^^/e, respectively. Hence, in the 
k-e modelling framework at high-Reynolds (high-Re) numbers, the eddy viscosity is given 
by 

^t^C,^, (4) 

where C^ is a closure constant. 

The modelled transport equations for the turbulence kinetic energy and the viscous dissi- 
pation rate are given by 

dujk 
dx-i 

d 
dx-i \       akj dxj 

+ P-e, 

and 
duje 
dx-i dxi 

i't\ de 
Uf ) dxj 

respectively. Here, P is the production of A; defined as 

+ -(C,iP-C,2€), 

(5) 

(6) 

(7) 

Two different high-Re number k-e models are considered here, which diff'er primarily in 
the manner in which the production term P [viz.. Equation (7)] is approximated. In the 
standard (STD) k-e model, the production term P is simply modelled as [17] 

P^ut 
duj 
dxi 

+ 
dxi 

duj 
dxj 

- C,e\S\' (8) 
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where 
k 

S\ — —\2SijSij) 
1/2 

Sij - 2 
du;       dUj —L -I 1 
dxj     dxi 

(9) 

Here, Sy is the mean rate-of-strain tensor (or, eqiiivalently, the symmetric part of the 
mean velocity gradient tensor). The Kato-Launder (K-L) k-e model [18] was designed 
to circumvent the stagnation point anomaly. The standard k-e model predicts excessive 
levels for k and Vt near the stagnation point of flows impinging on walls and other solid 
surfaces (e.g., leading edge of an airfoil). To suppress the excessive turbulence energy 
production in the stagnation zone, the strategy adopted in the K-L k-e model is to modify 
the approximation for the production P in Equation (8) as follows: 

P = C'„elS||n|, (10) 

where 

101 I iJs^jafe^j I 5 0« ^ 2 
1 fdui 

dxj 
9uj 
dxi (11) 

with Oy being the mean rate-of-rotation (vorticity) tensor (or, equivalently, the antisym- 
metric part of the mean velocity gradient tensor). This simple modification in essence 
equates TKE production to zero in irrotational flows. Consequently, in zones of irrotational 
straining such as near a stagnation point |n| w 0 which eliminates the excessive production 
of k here, Howewr, it should be borne in mind that the Kato-Launder modification of 
P introduces an inconsistency between the approximation of the Reynolds stresses in the 
fc-equation and the Iteynolds-averaged Navier-Stokes equation [the latter of which uses the 
Boussinesq linear stress-strain relationship of Equation (3) to approximate the Reynolds 
stresses]. 

Together, the transport equations for k and c contain fi%-e closure constants (C^, ak, o^e, 
Cei, and C7e2) which must be determined before the equations can be solved. The k-e model 
(standard and Kato-Launder) employs values for the closure coefficients that have been 
arrived at by comprehensive data fitting over a wide range of canonical turbulent flows. 
The closure coefficients for the k-e model are 

C^ = 0,09,   tTfc = l,   (Te = 1.3,   ai = l,44,   C,2 = l-92, (12) 

A closed-form solution for the k-e model can be obtained for the neutral wall shear layer. 
The solution gives 

«* 
17 = 7^ log ^-I-B,        k = (13) 

where u. = {-u'w')      is the friction velocity and B is a constant of integration. For this 
analytical solution, we find an implied value for the von Karman constant, A^,, of 

fc? = yCpi{C(,2 — Ca)<yf (14) 

Using the closure coefficient values for the k-e model, k^. assumes a value of 0.43.   The 
experimental values for k^ are mostly in the range 0.41 ± 0,2, so the imphed value of fc„ in 
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the k-e model is consistent with these measurements. The stress-intensity ratio, ul/k, is 
predicted to be 0.3 (using C^ — 0.09) which agrees well with experimental measurements 
of this quantity in many shear flows [19]. 

Numerical framework 

The coupled, nonhnear system of six partial differential equations which models the steady- 
state, three-dimensional turbulent flow field was solved using the STREAM code [20]. The 
algorithm implemented in this code employs a fully-collocated, cell-centred storage arrange- 
ment for all transported properties. Within an arbitrary, but structured, non-orthogonal 
finite-volume system, the velocity vector is decomposed into its Cartesian components to 
which the momentum equations relate. Diffusive volume-face fluxes are discretized using a 
second-order central differencing scheme. The higher-order quadratic upwind interpolation 
for convective kinematics (QUICK) scheme, described by Leonard [21], is used to approx- 
imate the convective volume-face fluxes. This second-order scheme for the discretization 
of the net convective flux through a control volume combines the second-order accuracy of 
a central differencing scheme with the stability inherent in an upwind differencing scheme 
by using in each direction separately a quadratic upstream interpolation. The second-order 
accuracy of the QUICK scheme minimizes numerical diffusion errors that are characteristic 
of first-order accurate discretization schemes such as the hybrid differencing scheme or the 
power-law differencing scheme [22]. 

Mass conservation is enforced indirectly by solving a pressure-correction equation which, as 
part of the iterative sequence, steers the pressure towards a state in which all mass residuals 
in the cells are negligibly small. The iterative scheme used here to enforce mass conservation 
is the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) described in detail 
by Patankar [22]. The SIMPLE algorithm provides a method for connecting the discretized 
forms of the momentum and continuity equations to give an equation linking the pressure 
correction at a node to its neighboring nodes. In this iterative solution sequence, Ui {i = 
1,2,3) are initially obtained with an estimated pressure field. This is continuously updated 
by reference to the local mass residuals, which are used to steer the pressure field towards 
the correct level. Within this scheme, the transport equations for ui {i = 1,2,3), k, and 
e and the pressure-correction equation are solved sequentially and iterated to convergence, 
defined by reference to LI residual norms for the mass and momentum components. Here, 
the LI residual norm is defined as the sum of absolute residuals over all grid points of 
the flow domain. The residual norm provides a quantitative measure of how perfectly the 
discretization equations are satisfied by the current values of the dependent variables. The 
LI residual norms for the mass and momentum components were normahzed by the mass 
and momentum fluxes at the inflow plane. A convergent solution was assumed after each 
normahzed LI residual norm decreased below 0.001. 

A fully collocated variable storage, in combination with a central differencing for pressure, 
is known to provoke checkerboard oscillations, reflecting the pressure-velocity decoupling. 
To avoid this, the widely used interpolation practice of Rhie and Chow [23] is adopted 
to interpolate cell-face velocities from the nodal values. This method for interpolation 
essentially introduces a fourth-order smoothing term based on the pressure, and prevents 
the occurrence of spurious pressure modes. 
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The wind tunnel experiment 

The wind tunnel experiment is fully described in Brown at al. [24], and only the important 
details of the experiment will be presented here. The experiments were conducted in an 
open-return type wind tunnel at the US Environmental Protection Agency's (EPA) Fluid 
Modelling Facihty (FMC), This wind tunnel has a working test section of length 18,3 m, 
width 3,7 m, and an adjustable roof of height approximately 2,1 m to eliminate streamwise 
pressure gradients and allow for a non-accelerating free stream flow. 

The wind tunnel experiment considered in this paper simulated a neutrally-stratified atmo- 
spheric boundary layer flow over an array of 3-D buildings, A schematic of the 3-D building 
array used for the wind tunnel experiment is shown in Figure 1 (top). This array consisted 
of sharp-edged cubes with a characteristic dimension of L - W = H = 0,15 m, where £, 
W, and H are the length, width, and height of the obstacle, A total of 77 cubes was placed 
in an aligned array consisting of 7 rows of 11 cubes. The array filled the entire spanwise 
dimension (width) of the wind tunnel. The streamwise and spanwise spacing between cubes 
was H, giving a frontal area index of Xp = 0.25, where Xp = WHl{Sx + L){Sy + W) {S^ 
and Sy denote the streamwise face-to-face spacing and spanwise face-to-face spacing of the 
obstacles, respectively). The building array was immersed in a simulated neutral atmo- 
spheric boundary layer which was created in the tunnel using spires and floor roughness 
with a roughness length of approximately 0,001 m. This combination produced a simulated 
boundary layer with a depth of 1.8 m and a friction velocity u, w 0,24 ms~^. The mean 
streamwise velocity in the upstream approach flow can be approximated by the following 
power-law form 

Mf) = f ±f •" (15) 

where MH = 3 ms~^ is the reference velocity of the upstream flow at z = H. The Reynolds 
number, based on the building height H and the reference velocity UH, is 30,000.   This 

• reference Reynolds number is larger than the lower limit of 4,000 required for Reynolds 
number independence in a shear flow around surface-mounted obstacles [25], 

The three velocity components were measured with a pulsed-wire anemometer (PWA) using 
a pulsing rate of 10 Hz and an averaging time of 120 seconds at each measurement loca- 
tion. The velocity measurements consisted of 81 vertical profiles of the mean velocity and 
turbulence velocity variance in the three coordinate directions, and the turbulence kinetic 
energy. These profiles were measured in the vertical centre (symmetric) plane of the 3-D 
building array (i,e,, in the vertical x-z plane at y/H = 0), The profiles extended from 3.5if 
upstream of the windward face of the first row of cubes to 7.5H downstream of the leeward 
face of the last row of cubes. All streamwise distances are referenced relative to the location 
of the upstream edge of the first row of cubes at x/H = 0, 

Flow domain discretization and boundary conditions 

For the simulations to be reported, the model domain used to simulate the flow within and 
over the 3-D building array spanned -5 < x/H < 28 with the windward face of the first 
row of buildings placed at x/H = 0. The height of the domain is BH. Simulations were 
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conducted also with a domain height of 10^ and 12H, but we found that these alternative 
domain heights had a negligible effect on the solution. Our simulations are focused on flow 
changes within and above the urban canopy (to a height of about 3H). A domain depth of 
8H was sufficiently deep to provide an appropriate domain within which the flow changes 
near the surface can occur without being moulded by the boundary conditions imposed at 
the outer boundary-layer. 

The discretization of the flow domain is exhibited in Figure 1 (middle and bottom). The 
geometry possesses a two-fold symmetry in the spanwise direction. More specifically, since 
the geometry is symmetric about the vertical x-z centre plane at y/H = 0 and the vertical 
x-z plane at y/H — 1 (i.e., vertical x-z plane centred in the streamwise oriented street 
canyon), only one-half of the full geometry in the spanwise direction need to be included 
in the computational domain, so 0 < y/H < 1. The simulation was carried out in a 
three-dimensional Cartesian framework. 

To investigate the sensitivity of the flow solution to the discretization of the flow domain, 
two different grids were used. In particular, a coarse grid of 135 x 22 x 40 cells (in the 
streamwise, spanwise, and vertical directions) and a fine grid of 202 x 32 x 60 cells (in the 
streamwise, spanwise, and vertical directions) were employed for the simulations. The grid 
arrangement adopted for the fine mesh is shown in Figure 1 (middle and bottom), which 
shows the calculation grid in the x-z (middle) and x-y (bottom) planes. The grid lines were 
preferentially concentrated near the solid surfaces (ground, rooftop, and building walls) 
where the gradients in the flow properties are expected to be greatest, and the spacing 
between the grid lines was gently stretched with increasing distance from the solid surfaces. 
In particular, the grid spacing in the upstream and downstream blocks (viz., blocks upstream 
of the windward face of the first row of buildings and downstream of the leeward face of the 
last row of buildings) were expanded in the streamwise direction away from the building 
faces by constant factors of 1.1 and 1.05, respectively. The grid spacing for the block above 
the top of the array (viz., for z/H > 1) was stretched in the vertical direction away from 
the top of the buildings by a constant factor of 1.1. 

The dependence of the flow solutions on grid resolution was investigated using the coarse 
and fine grids. Figure 2 shows an example of the prediction of the vertical profiles of mean 
streamwise velocity U and turbulence kinetic energy k obtained with the coarse and fine 
mesh. These profiles were calculated at a; = 1425 mm {x/H = 9.5) in the vertical centre 
plane {y/H = 0) of the array. This x-location is centred in the spanwise oriented street 
canyon between the 5th and 6th rows of cubes. The agreement between the coarse- and 
fine-grid solutions is very good, and generally results for U were found to display negligible 
grid sensitivity for the two sets of grids identified above. However, the results for k showed a 
sensitivity (albeit relatively small) to the coarse- and fine-grid resolutions. Generally, these 
results imply that the simulations that will be presented in the following section using the 
fine mesh can be regarded as essentially grid-independent. 

Since the computational domain is chosen to be large compared with the 3-D array of 
obstacles, the flow at its boundary is far removed from the region affected by the obstacle 
array. Hence, free boundary conditions are imposed at all air-to-air boundaries in the flow 
domain. At the inflow (inlet) boundary, the measured profiles of undisturbed streamwise 
mean velocity, u = ui, and turbulence kinetic energy, k, are used. The vertical mean 
velocity w = U3 = 0 at the inflow plane at x/H — —5. Unfortunately, the dissipation rate e 
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was not measured and, consequently, was estimated by assuming an equilibrium turbulent 
flow in which the rates of production and destruction of turbulence are in near balance, so 
e « C^^k^l"^l{kyz) where fc„ w 0.4 is von Karman's constant and z is the normal distance 
from the wall. 

At the lateral (spanwise) boundaries, a symmetry boundary condition (i.e., no flow across 
the boundary and no scalar flux across the boundary) was imposed along the vertical x-z 
(symmetry) planes at yjH ^ 0 and y/H = 1 (cf. Figure 1). Far downstream, at the outflow 
boundary, the flow was assumed to reach a fully-developed state where no changes occur 
in the flow direction. Hence, at the outflow boundary, the gradients of all flow variables 
are assumed to be zero in the flow direction; viz., du/dx = dvjdx = diB/dx = dk/dx = 
de/dx = 0. At the upper boundarj', we used free-slip conditions for all flow variables. 

At all the sohd boundaries (ground, obstacle walls, obstacle roofs), standard wall functions 
are applied for the mean velocities and turbulence quantities. Wall functions are used 
to reduce the computational cost associated with the alternative of using a low-Reynolds 
number turbulence model to numerically integrate the solution through the entire near- 
wall region including the viscous sublayer up to the wall where no-sHp and impermeability 
conditions can be applied. Typicallj-, this will require a very fine grid near the wall because 
spatial variations in near-wall turbulence structure are large here due to the combined 
influence of viscosity and wall-induced anisotropy. Log-law based 'wall laws' are adopted in 
conjunction with high-Reynolds number turbulence models to bridge the viscous sublayer. 
Basically, the flow quantities at the first grid point above the sohd surface, which is located 
outside the viscous sublayer, are related to the wall friction velocity based on the assumption 
of a semi-logarithmic velocity distribution, A local equilibrium of turbulence (where the 
production and dissipation of turbulence are in balance) is assumed to prevail near the wall. 
When these 'law of the wall' tj-pe boundary conditions are applied, the diffusive flux of k 
through the wall is zero, yielding a boundary condition that the normal deriwtive of k is 
zero at the wall. The particular specification and implementation of optimum near-wall 
relationships, for use with the ^--e model (obtained from extensive computing trials), have 
been described by Versteeg and Malalasekera [26]. 

Results and discussion 

Plots of the mean flow streamfines (curves whose tangent is parallel to the mean velocity 
vector projected into the given plane at each point in this plane) in the impingement zone 
upstream of the building array and through the first three building rows are displayed in 
Figure 3 for the STD and K-L k-e models. Similarly, the mean streamline patterns of 
airflow in the exit region downstream of the last row of buildings obtained with the STD 
and K-L k-e models are exhibited in Figure 4. These mean flow patterns were obtained 
along the vertical centre plane of the array at y/H = 0. In addition, isopleths of turbulence 
kinetic energy k have been superimposed on the mean flow streamlines in Figures 3 and 
4, The mean flow streamline plots are particularly useful for determining the shape of 
the recirculation regions, and helpful for identifying the location of primary and secondary 
eddies in the complex, 3-D flow considered here. 

It is informative to contrast these results for the 3-D building array with those for the 2-D 
building array reported in our previous study [14], We recall that the 2-D building array 

» DRDC Suffield TR 2004-108 



consisted of rectangular blocks of equal height and length {H = L = 0.15 m) with each 
block extending from wall-to-wall in the spanwise direction across the wind tunnel. In the 
3-D building array, the high levels turbulence energy are confined in the region extending 
from the windward rooftop edge of the first row of buildings to about the windward rooftop 
edge of the second row of buildings (see Figure 3).   This is markedly different than the 
2-D building array, where high levels of turbulence energy were observed near and above 
the top of the array resulting in a 'plume' of increased turbulence energy extending from 
the windward edge of the first building to about the leeward edge of the third building 
in the array, with the centreline of the TKE 'plume' at z/H ^ 1.25.  The reason for this 
difference arises from the fact that the displacement of streamlines around the individual 
buildings in the first row of the 3-D array reduces the production of k in the stagnation 
region upstream of the windward face of the array In contrast, in the 2-D building array, 
the lateral displacement of streamlines is not possible and the flow in the impact region is 
necessarily forced over the first building.  In addition, lateral displacement of streamlines 
by the individual buildings in the 3-D array also suppresses the formation of a separation 
zone on the rooftops of the buildings in the first row. However, the deflection of streamlines 
upward over the first building in the 2-D array is much more severe than in the 3-D array 
with a greater streamline compression over the top of the first building. Hence, in the 2-D 
array, a leading-edge separation bubble on the roof emananting from the windward rooftop 
edge {x/H = 0) of the first building is evident, with a reattachment point at x/H ^ 0.8. 
The prediction of these qualitative features of the flow over and through the 2-D and 3-D 
building arrays by the k-e models is consistent with measurements of the velocity field in 
these two arrays conducted by Brown et al. ([24], [27]). 

The standing vortex recirculation pattern in the street canyons of the 2-D array is markedly 
different than that in the 3-D array In the 2-D array, the stagnation point (vortex core) 
of the standing vortex is approximately located at half canopy height {z/H ^ 0.5) and 
half-way between two consecutive rows of buildings in the spanwise oriented street canyon. 
In contrast, for the 3-D array, the centre of the recirculation zone between two consecutive 
rows of buildings is located closer towards the leeward wall of the upstream building and 
upwards towards the rooftop level to about z/H ^ 0.75. This prediction is consistent with 
velocity vector plots of the vortex recirculation flow in the 3-D array presented bv Brown 
et al. [24]. 

The displacement of the vortex core in the recirculation that develops within the street 
canyons of the 3-D array appears to be the result of two zones of swirUng flow originating 
from the ground surface in the large separation region that develops behind a cube of the 
array as exhibited in Figure 5. Here, a pair of counter-rotating vortices in the horizontal 
x-y plane at z/H = 0.75 can be seen, corresponding to two areas of swirling flow which are 
the 'footprints' of an arch-shaped vortex that forms in the recirculating flow behind a 3-D 
building. This arch vortex has been elucidated in flow visuahzation studies and detailed 
Laser Doppler Anemometry measurements of the velocity field around an isolated cube [28]. 
A pictoral depiction of the complex nature of the flow around an isolated cube is given in 
Hosker [6]. 

The topology of the flow pattern of the recirculation zone behind the last row of buildings 
in the 3-D array is different than that in the 2-D array. More specifically, the trailing 
recirculation zone in the 2-D building array does not include the presence of a spiral saddle 
point observed in the trailing recirculation zone of the 3-D building array (see, Figure 4). 

DRDC Suffield TR 2004-108 n 



The reader is referred to Hunt et al. [29], Tobak and Peake [30], and Globus at al. [31] for 
further information on the application of topologically based kinematical concepts to the 
study of complex flow patterns. In addition, the recirculating bubble that forms downstream 
of the last building in the 2-D array is larger than that in the 3-D array. The measured 
reattachment point occurs at x/H « 3.8 downstream of the leeward face of the last building 
in the 2-D array, whereas in the 3-D array the measured reattachment point occurs at 
x/H Ki 1.5 downstream of the leeward face of the last row of buildings. Interestingly, this 
measured reattachment length for the recirculation zone behind a building in the last row of 
the 3-D array is almost exactly equal to that measured for flow over an isolated cube where 
the reattachment length of the separation zone behind the cube was found to be x/H « 1.6 
[28]. Both the STD and K-L k-e models predict a reattachment length (cf. Figure 4) for 
the recirculation zone in the exit region of x/H w 2.5, returning a reattachment length 
that overpredicts the experimental value by about l.OF. Furthermore, the wind shear that 
develops in the thin layer that borders the separation Hne emanating from tRe leeward 
rooftop edge of the last building in the 2-D array is larger than that in the 3-D array. As 
a result of higher shear straining here and, hence, greater production of turbulence kinetic 
energj-, the peak values of k in the exit region from 15 < x/H < 18 at z/H « 0.75 are 
larger in the 2-D array [14] than in the 3-D array. 

Finally. Figures 3 and 4 provide a comparison of the predicted levels of the turbulence 
energj' in the building array for the STD and K-L k-e models. As expected, the large level 
of production of turbulence energy near the stagnation point just upstream of the windward 
face of the array (impact region) predicted by the STD model has been suppressed in the 
K-L model. In the exit region, however, the differences in the levels of turbulence energj^ 
predicted by the STD and K-L k-e models are negUgible. 

In the following sub-sections, the vertical profiles of the horizontal wind component Uiz), 
the vertical wind component W{z), and the turbulence kinetic energy k computed within 
and over the 3-D building array using the standard and Kato-Launder k-e models will be 
compared with experimental profiles at a number of streamwise locations. These longitudi- 
nal locations extend from the impingement zone upstream of the array, through the array 
interior, to the exit region downstream of the array. 

Mean streamwise velocity 

The vertical profiles of mean streamwise velocity, u = U, in the vertical centre plane at 
12 selected a;-locations upstream, through, and downstream of the 3-D building array are 
displayed in Figures 6-8. Agreement of the predictions provided by the STD and K-L 
ifc-e models with the experimental data is excellent at almost all the a;-locations. Both 
turbulence closure models provide virtually identical predictions for u. 

At a: = -75 mm (x/H = -0.5) in the impact region upstream of the windward array face, 
the wind speed reduction below and the wind speed increase above the level z/H ^ 4/3 
relative to the undisturbed upstream mean wind is reproduced well (cf. Figure 6). The 
speed-up of the flow over the roof of a building in the first row [i.e, at a; = 75 mm (x/H = 
0.5)] and the absence of a separation zone with flow reversal on the roof here agrees well 
with the experimental data. At a; = 225 mm (x/H = 1.5), which is at the centre of the 
first street canyon, the magnitude of the very strong wind shear at or near canopy height 
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and the magnitude of the reverse flow in the canyon below about zjH K. 2/3 are correctly 
predicted by the model simulations. 

The vertical profiles of both predicted and measured u shown in Figure 7 (for the array 
interior) correspond to the fully-developed flow within and over the array. Note that the 
measured (predicted) u at x = 1125 mm [xjE. — 7.5) in the fourth street canyon is almost 
the same as that measured (predicted) at x = 1425 mm {xjH = 9.5) in the fifth street 
canyon. Also, u measured and predicted at x = 1275 mm {x/H — 8.5) over the rooftop of a 
building in the fifth row is almost the same as that measured and predicted at x = 1575 mm 
{x/H = 10.5) over the rooftop of a building in the sixth row. In particular, the measured 
u in the fourth street canyon and over the rooftop of a building in the fifth row differ by 
less than about 1% (which is within the measurement uncertainties) from the measured 
u in a comparable position in the fifth street canyon and over the rooftop of a building 
in the sixth row. Consequently, vertical profiles of u appear to be fully-developed (viz., 
longitudinal modulations in u from one street canyon to the next appear to have reached 
an approximate streamwise equilibrium) by about the fourth street canyon, with the result 
that the flow in the array interior downstream of the fourth street canyon could have been 
modelled by simply imposing periodic boundary conditions in the streamwise direction for a 
flow domain that consists of a single row of buildings and the associated downstream street 
canyon. 

In the exit region downstream of the leeward face of the array, the mean streamwise velocity 
below the level z/H ^ 2/3 is underpredicted by the flow models [cf. Figure 8 where it is 
seen that the models predict a larger reverse mean velocity than what is actually observed 
at X = 2175 mm (or, x/H = 14.5) implying an elongation of the recirculation zone, and 
underpredict u at x = 2475 mm (or, x/H = 16.5)]. This defect may be the result of 
the inability of the models to capture the subtle interactions between the curvature strain 
and turbulent stresses in the curved shear layer bordering the recirculation zone (i.e., an 
underprediction of the shear stress in this layer would elongate the recirculation zone). The 
latter discrepancy provokes another weakness in the solutions—namely, an insufficient rate 
of momentum recovery in the far wake region following reattachment. 

Mean vertical velocity 

The vertical profiles of mean vertical velocity, w = W,m the vertical centre plane {y/H = 0) 
at 12 selected x-locations upstream, through, and downstream of the 3-D building array 
are displayed in Figures 9-11. The predicted results generally agree fairly well with the 
measurements in a quahtative sense, but the conformance between predictions and mea- 
surements is not as good as those for the mean streamwise velocity. 

As the front face of a building in the first row is approached, the vertical velocity is positive 
as air is forced up and over the rooftop of the building. This qualitative feature in the 
observations is reproduced quite well by the modelled results, as is the vertical position of 
the maximum positive mean vertical velocity at or near the top of the building {z/H ra 1) [cf. 
measured and predicted mean vertical velocities at x = -75 mm {x/H — -0.5) in Figure 9]. 
However, the magnitude of the maximum positive vertical velocity is overpredicted by about 
25% here. Indeed, upstream of the windward face of a building in the first row, the model 
predicts that there is a vertical pressure gradient with a high pressure region centred at 
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about z/H « 2/3 that forces the air over the rooftop of the building above this level 
and down towards the ground below this level. We note that the streamline curvature 
over a building rooftop in the first row as -well as immediately upstream of this rooftop is 
concave upwards (cf. Figure 3), implying a destabihzing (exchange-enhancing) influence on 
the turbulence. 

The upward motion of air above the rooftop of a building in the first row predicted by the 
models is in conformance with the wind tunnel results, but the magnitude of the positive 
mean vertical velocity is overpredicted here by about 205c [cf. the vertical profiles of W 
measured and predicted at a: = 75 mm {x/H = 0.5)]. The negative vertical velocity close 
to the rooftop surface is captured in the numerical simulation (albeit, negative W here is 
underpredicted). The prediction of the downward (negative) vertical velocity at a; == 225 
mm (or, x/H = 1.5 which is at the centre of the first street canyon) is in good conformance 
with the observations. 

Vertical profiles of computed and measured mean vertical velocity W within the fourth street 
canyon and over the rooftop of a building in the fifth row are identical (approximately or 
better) to the profiles obtained, respectively, within the fifth street canyon and rooftop of 
a building in the sixth row. Hence, consistent with the behaviour of U, the mean vertical 
velocity appears to be fully developed by the fourth street canyon in the array. Figure 10 
exhibits W in the array interior where the mean flow is fully developed. 

Figure 11 compares computed and measured profiles of W in the last street canyon and in 
the exit region of the array. Generally speaking, computed and measured W in the exit 
region {x/H > 13.0) are largely reproduced by the model predictions with the discrepancies 
between the predictions and observations being less than about 5%, except within the 
recirculation bubble in the near wake region. For example, at a: = 2175 mm (x/H — 14.5, or 
1.5H downstream of the leeward face of the array), the magnitude of the downward vertical 
velocity at z/H « 1 is underpredicted by about 60%. However, the prediction of the weak 
upward motion below about z/H « 1/3 here is in good conformance with the measurements. 
The rate of recovery of the mean vertical momentum beyond the reattachment point in the 
far wake region to its far upstream reference state is reproduced accurately. 

Turbulence kinetic energy 

Vertical profiles of turbulence kinetic energy, k, at the same a;-locations as those for the 
mean streamwise and vertical velocities are displayed in Figures 12 to 14. Solutions for 
turbulence energy deri%'ed from the standard and Kato-Launder fc-6 models differ primarily 
in the impact region upstream of the windward face of the array and over the rooftop of 
a building in the first row. In particular, consistent with the results exhibited earlier in 
Figure 3, the fc-profiles in Figure 12 at a; = -75 mm {x/H = -0.5) and at a; = 75 mm 
{x/H = 0.5) show lower turbulence energy levels for the K-L model predictions than for 
the STD model predictions. The excessive turbulence kinetic energy just upstream of a 
building in the first row is absent in the K-L model results, so there is less turbulence 
energy swept downstream into the region over the rooftop of this building. In consequence, 
at both a;-stations, the K-L model predictions are seen to be in better conformance with 
the measurements than the STD model predictions. 
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Although the predicted u- and uJ-profiles in the street canyons and over the building rooftops 
of the array agree quite well with the experimental data, the conformance between the pre- 
dicted fc-profiles and the measurements is not so satisfactory. In general, a weakness shared 
by both the STD and K-L k-e models is that they underpredict the levels of turbulence 
energy in the street canyons and at the rooftops of the buildings in the array interior. The 
peak value of k [which occurs at or near the canopy top {z/H Ri 1)] decreases monotonically 
in the streamwise direction from the first street canyon and reaches a near constant value 
by the about the fourth street canyon. Here, the predicted peak value of k is about 65% of 
the measured value. 

This is in conformance with the expected performance of the standard k-e model for pre- 
diction of a boundary-layer flow over a flat plate as reported by Patel et al. [32] in their 
review article. Here, it was remarked that the peak value of k predicted by the standard k-e 
model for a fully-developed flow over a flat plate is about 70% of the experimentally mea- 
sured value. Patel et al. [32] suggest that this deficiency is associated with the fundamental 
weakness of the linear (Boussinesq) stress-strain relationship related to the single-scale 
assumption and the omission of any anisotropic eddy-viscosity effects. In principle, this 
deficiency can be circumvented by either using a Reynolds stress transport model (Launder 
et al., [33]) or, as an effective compromise between the full second-moment closure and the 
two-equation model using an algebraic stress model [34] or Durbin's k-e-v"^ model [35]. In 
the latter model, ut in Equation (4) is replaced by 

i^t = C^-^v\ (16) 

with v"^ (defined to be the Reynolds stress component normal to the mean flow streamline) 
obtained from its own transport equation. The essential purpose of Durbin's k-e-v^ model 
is to represent the tendency of a solid surface to suppress the turbulent fluctuations in 
the direction normal to the surface without having to resort to the full complexity of the 
Reynolds stress transport equations. 

The streamw'ise evolution of k is dominated by the vertical spreading of the strong shear 
layer that develops at or near the top of the urban canopy {z/H « 1). At the centre of this 
layer lying just above the building height H, the peak values of A- attenuate downstream, 
with the turbulence energy at the central core of the layer being "exported" to regions below 
and above the core by turbulent and/or pressure diffusion, causing the turbulence energy 
to increase iji these regions. 

The shape of the A;-profiles and the position of maximum k in the exit region [i.e., at a; = 2175 
and 2475 mm (or, x/H = 14.5 and 16.5) in Figure 14] appear to be correctly predicted. 
The quantitative agreement of turbulence energy levels with the experimental data is also 
fairly good here [e.g., the peak value of A; at x = 2475 mm {x/H — 16.5) is underestimated 
only by about 25%]. Also, the vertical fc-proflle at a; = 2475 mm {x/H = 16.5) has the 
appearance of a detached mixing layer in spite of the fact that the mean flow has reattached 
at x/H « 1.5 downstream of the leeward face of the array. This profile form is a residue 
of the strong shear layer that detaches from a building in the last row of the array and 
spreads vertically outward by pressure and turbulent diffusion until this "mixing" layer 
makes contact with the ground surface. 
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Diagnosis of dispersive stresses 

After validation, the model can be used to diagnose and to evaluate the importance of the 
dispersive stresses relative to the usual spatially-averaged Reynolds stresses within and over 
the urban-type roughness array studied here. The dispersive stresses arise from the spatial 
inhomogeneity of the mean velocity field in the building array, and can be inferred directly 
firom the predicted flow quantities obtained from the model simulations. 

The available experimental evidence suggests that in fine-scaled plant canopies, the dis- 
persive stress is negligible in comparison to the spatially-averaged Reynolds stresses near 
and above the canopy top (Raupach at al., [36]). However, Bohm et al. [37] recently 
demonstrated that in a model plant canopy, the dispersive stress is comparable to the 
spatially-averaged Reynolds stresses near the bottom of the canopy {z,'H < 0.5), but both 
stresses were found to be small here owing to the decay of these stresses with depth from the 
top of the canopy, Cheng and Castro [38] measured the dispersive stress above urban-Hke 
roughness arrays (coarse-scaled cuboid arrays) and found them to be negligible compared 
to the spatially-averaged Reynolds stresses for z/H > 1, which is consistent with the re- 
sults of Raupach et al, [36] and Bohm et al. [37] for plant canopies. However, owing to 
experimental difficulties, Cheng and Castro were not able to measure the dispersive stresses 
within an urban-type canopy and concluded that whether the dispersive stress is very small 
compared to the spatially-a%-eraged Reynolds stress here "remains an open question" that 
"requires very extensive and technically difficult measurements before a conclusive answer 
is possible", 

Let us define the spatial average of a flow quantity <j> as 

0)(x.t) = i / #dF = ^ J ^(x -t- r,<) dr, (17) 

where V = Vf + Vs is the a%-eraging volume consisting of both a fluid subvolume Vf and a 
solid subvolume V^. In the following, V will be taken to be a thin horizontal slab (chosen to 
resolve the characteristic variation of the flow property 4> in the vertical) that encompasses 
one or more obstacles in the array Given the spatial averaging operation in Equation (17), 
the flow quantity ^ can be decomposed into its spatial average and a departure therefrom 
to give 

<t> = {4,)+4>", (18) 

where the departure satisfies {o") = 0. In a multiply connected space (e.g., urban canopy), 
spatial differentiation and spatial averaging do not commute, so 

^\ = M + 1   / ^,iS, (19) 
Xi I       dxi       V Js 

where S is the part of the averaging volume V that coincides with the obstacle surfaces and 
Tii is the unit normal vector pointing from V into S (Raupach et al., [36]). 

If we apply the spatial averaging operator of Equation (17) to the Reynolds-averaged Navier- 
Stokes equation [cf. Equation (2)] and %ise Equation (18), we get 

!%)M = _M + ^(,..) + /, (20) 
dxj axi      oxj 
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where 

r,, = -(^)-(i2^'i2;0+^^, (21) 
dxj 

and 

f'-vJM''-vLf"""- p^) 
viscous drag form drag 

The form (pressure) and viscous drag terms, defined in Equation (22), arise directly as a 
consequence of the non-commutation of spatial differentiation and spatial averaging. The 
spatially-averaged total stress tensor in Equation (21) includes a spatially-averaged kine- 
matic Reynolds stress (u-u^) and a kinematic dispersive stress {u'{u'-) that arises from the 
spatial correlations in the mean velocity field caused by horizontal heterogeneity of the 
canopy. 

In this section, the kinematic dispersive normal and shear stresses, {u"u") and {u"w"), will 
be diagnosed for a coarse-scaled array of cubes (cf. Figure 1) using the high-resolution RANS 
results presented in Section 5 and their importance relative to the associated kinematic 
spatially-averaged Reynolds stresses {u'u') and {u'w') will be evaluated. To this purpose, 
the 3-D building array described earlier is first decomposed into seven 'averaging units', each 
unit having a streamwise length L^ = 2H that encompasses a row of buildings in the array 
and the associated downstream spanwise oriented street canyon as shown in Figure 15(a). 
Each 'averaging unit' is further decomposed into a number thin horizontal slabs of constant 
volume V that are stacked in the vertical (or z-) direction as shown in Figure 15(b) (each of 
which constitutes an averaging volume V that will be used to define the spatial averages for 
the flow quantities in the array). Hence, by reference to Figure 15(b), the spatial average 
of a (time-averaged) flow variable (/> will be calculated explicitly as 

m^) = 7pFH / <l^dxdy (23) 
^n.    Jy-o     Jx=xo 

with the understanding that 4> = 0 within the building. In Equation (23), periodicity of 
the flow in the array in the spanwise direction has been used. Finally, XQ — 2(i — 1)H 
(i = 1,2,..., 7) for 'averaging unit' #2. 

First, let us consider the mean streamwise and vertical velocities, <f) = u and w, respec- 
tively. There are 720 vertical profiles of u and u) calculated in each 'averaging unit' for the 
simulations reported earlier. As an example, the vertical profiles of u and w and their corre- 
sponding spatial averages {u) and (w) for averaging unit #5 are exhibited in Figures 16(a) 
and (c), respectively. The flow in the array is fully developed in averaging unit #5 (ar- 
ray interior), implying that d{u)/dx = 0 and d{w)/dz = 0 (by the continuity equation), 
so {w){z) = 0 (since {w){z = 0) = 0 by the impermeability condition at the ground sur- 
face). The expected vanishing of {w) in averaging unit #5 (where the canopy flow is fully 
developed) is consistent with the result shown in Figure 16(c). 

Figures 16(b) and (d) show vertical profiles of the fluctuating velocities (i.e., departures of 
the time-averaged velocities from their spatial averages) u" and w" and their corresponding 
spatial averages {u") and (u)"), respectively. As seen, both {u") and {w") are zero, which 
is consistent with the fact that for the choice of the averaging volume V in Equation (15), 
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(p") = 0. From the results displayed in Figures 16(b) and (d), vertical profiles of u"u" and 
u"w" can be constructed and are given in Figures 16(e) and (f), respectively, which include 
also the spatial averages of these profiles over the ^averaging unit'. The latter quantities 
correspond to the kinematic dispersive normal stress, {u"u"), and shear stress. {u"w"), 
respectively. 

Comparison of vertical profiles of the kinematic dispersive normal stress, {u"u"). and the 
spatial average of the kinematic Reynolds normal stress, (u'u'), for 'averaging units' #1 to 
#6 in the building array are shown in Figures 17-19. Consistent with Cheng and Castro's 
experimental observations [38], {u"u") is negligibly small compared to (u'u') above the 
canopy height (z/H > 1). Below the canopy height, however, {«"«") is approximately 
3-6 times larger than {u'u'), implying that the dispersive stresses are significant within an 
urban-type roughness array (e.g., the coarse-scaled cuboid array considered here). However, 
this comparison assumes that the predictions of u'u' provided by the k-e model (which is 
based on the Boussinesq eddy-viscosity hypothesis) are correct. The k-e model %vas shown 
earher to underpredict the turbulence energy levels, by as much as a factor of two. implying 
that uhF could be underestimated by as much as a factor of two. Even so, the results of 
Figures 17-19 would still imply that (u"u") is comparable in magnitude to lu'u') within 
this urban-type roughness array. 

Vertical profiles of the spatially-averaged Reynolds shear stress {u'w') and the dispersive 
shear stress («"#") for the first 6 'averaging units' in the array are displayed in Figure 20- 
22. The results here clearly demonstrate that although the dispersive shear stress is very 
small compared to the spatially-averaged Reynolds shear stress at and above the canopy 
top (consistent with measurements made by Cheng and Castro [38] in this region), the 
magnitude of the dispersive shear stress is comparable to that of the spatially-averaged 
Reynolds shear stress below the canopy top. Again, it should be emphasized that this 
conclusion implicitly assumes that the values of u'w' predicted by the k-e model are correct 
for this building array. Unfortunately, no data for the shear stress are available firom the 
wind timnel experiment to test this assumption. However, the use of the Hnear (Boussinesq) 
relationship between stresses and strains is adequate for the prediction of shear stresses in 
thin shear flows, and even if \u'w'\ is underpredicted by a factor of two in our case, the 
conclusion here would still be valid. 

Interestingly, we found that {u"w") and jlTw') are of opposite sign for z/H < 1. and the 
magnitude of {u"w") is larger than that of (u'w') for the first three 'averaging units' (i.e., 
units #1 to #3). For the succeeding three 'averaging units' (i.e., units #4 to #6), the 
magnitude of both stresses are comparable. Furthermore, the shape of \{u'w'y\ is different 
than that of \(u"w'% This is an interesting and important observation, because it is 
^{u"w"), not («"#"), that directly affects the momentum flux. As an example, let us focus 
on {¥u/) and {u"w") diagnosed for 'averaging unit' #5 where the flow is fully-developed 
(approximately or better). Note that here the vertical gradients of these two stresses for 
0 < z/H < 0.5 are of opposite sign and of similar magnitude, implying that gz{u"w") is 
'destructive' relative to §^(u'w') (viz., the momentum flux arising from the turbulent shear 
stress is reduced by the dispersive shear stress). On the other hand, for 0.5 < z/H < 1, 
^(u"iB") has the same sign as ^{u/w'), and the dispersive shear stress here is -comtructive' 
in nature (i.e., the momentum flux arising from the turbulent and dispersive shear stresses 
reinforce each other). 
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Conclusions 

Two variants of k-e turbulence closure schemes (namely, the standard and Kato-Launder 
models) were used to simulate the flow over a 3-D building array, with a plan and frontal area 
density of 0.25. corresponding to the 'skimming flow" regime. The predictions from these two 
models were compared with available data obtained from a wind tunnel experiment. The 
agreement between the predicted mean streamwise velocity profiles and the experimental 
data is generally very good, with the greatest discrepancy in u occurring in the recirculation 
zone immediately downstream of the leeward face of the array. Qualitatative features in 
the mean vertical velocity have been reproduced well, and the quantitative agreement of 
predicted u) with the experimental data is also fairly good throughout most of the flow 
domain, with the largest discrepancy between measured and predicted values of w being 
about 25%. 

The peak values of the turbulence kinetic energy within the building array (i.e., over the 
rooftops of the buildings and the tops of the street canyons in the array) are generally 
underpredicted. Although the turbulence kinetic energy does not match the experimental 
data to quite the same degree as the mean streamwise and vertical velocities, we note that 
the quantitative agreement between predicted and measured k is within a factor of two at 
worst, but more usually within about 50%. Fortunately, the prediction of the mean velocity 
field ([/, v. W) appears to be relatively insensitive to the inaccuracies in the predicted value 
oik. 

The comparison of predicted and observed flow quantities in the building array indicates 
that a simple RANS model (k-e turbulence closure) of the complex mean flow through a 
regular building array is accurate enough to warrant its application to the prediction of 
mean flows within and over other more complex urban-type roughness arrays. However, 
if a more accurate prediction of turbulence quantities is needed, then more sophisticated 
RANS models based on the transport of Reynolds stresses may be required. It is expected 
that the latter class of models would be able to predict the effects of streamHne curvature, 
separation, recirculation, and reattachment on normal stress anisotropy better, albeit at a 
substantially increased level of mathematical and computational complexity. 

The high-resolution RANS simulation results, after careful vahdation against the wind tun- 
nel experiment, were subsequently used to diagnose the dispersive stresses within and over 
the building array. In conformance with Cheng and Castro's [38] experimental observations 
over urban-type roughness arrays, the dispersive stresses were found to be neghgibly small 
(i.e., insignificant) in comparison to the associated spatially-averaged Reynolds stresses 
above the canopy height (i.e., z/H > 1). However, although Cheng and Castro were unable 
to measure the dispersive stresses within their urban-type roughness arrays, we have applied 
our numerical simulations to evaluate the importance of dispersive stresses within a building 
array consisting of coarse-scaled cuboids. It was found that the dispersive stresses (arising 
from the spatial inhomogeneity in the mean flow) are comparable to the spatially-averaged 
Reynolds stresses within the building array (i.e., z/H < 1). Interestingly, the vertical gra- 
dients of the dispersive shear stress in the array interior where the flow is fully developed 
have opposite and similar parity to the vertical gradients of the spatially-averaged Reynolds 
shear stress, respectively, for z/H < 0.5 and z/H > 0.5. This implies that the kinematic 
momentum fluxes contributed by the dispersive shear stress act destructively relative to 
that contributed by the spatially-averaged Reynolds shear stress in the bottom half of the 
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canopy, whereas in the top half both shear stresses act constructively to determine the total 
momentum fluxes. 

Given that dispersive stresses are comparable to spatially-averaged Reynolds stresses within 
an urban-type roughness array (coarse-scaled urban canopy), the problem that needs to be 
confronted is the construction of a physically-based model for the dispersive stress tensor 
rf- = {u'lu") that can be used to predict the spatially-averaged time-mean velocity in the 
canopy [cf.^Equations (20) and (21)]. A number of important, rigorous properties wjU need 
to be taken into account in specifying an appropriate model for T|. Certainly, Ty needs 
to be positive semi-definite (viz., r^ needs to be realizable, so that the dispersive kinetic 
energy jfc'' = |r|f is a positive quantity). Because the dynamics represented by Equation (20) 
is Galilean invariant, the dispersive stress gradients drfjldxj which, physically, are forces 
acting on the spatially-averaged time-mean flow need to be Galilean invariant also (and, 
hence, a model for these dispersive stress gradients should at least maintain the Galilean 
invariance). The dispersive stress tensor must depend explicitly on the dxaracteristic filter 
width A = V^l^ [cf. Equation (17)] used to spatially average the flow (and, certainly, we 
expect rf. ^ 0 as A -^ 0+). Finally, the modelling of the dispersive stresses is compHcated 
by the fact that r| can locally be either diffusive (dissipative) in nature [implying an energy 
drain from the resolved scales to the sub-filter scales (i.e., scales smaller than the filter width 
A)] or reactii^e (dispersive) in nature [implying a backward scatter of energy from the sub- 
filter scales to the resolved scales]. In particular, note for the specific case shown in Figure 22 
that rfa = {u"w") has an opposite sign to («'w') so that Tf^d{u)/dz > 0.^ In other words, 
the shear production term which converts resoh^ed-scale kinetic energy ^Miui) to sub- 
filter scale kinetic energy |(uf «'/> would correspond here to a backscatter of energy from 
the sub-filter scales to the resolved scales (i.e., scales greater than A). 
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Grid size: 202x32x60 nodes 
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Figure 1. A three-dimensional perspective view (top) showing the geometry of the aligned 
array of cubes (7 rows of cubes with 11 cubes in each row) and the Cartesian coordinate 
system used. Here, x is in the streamwise direction, y is in the spanwise direction, and z is 
in the vertical direction. The x-z view (middle) at y = 0 and x-y view (bottom) at z — 0 
of the computational grid used for the prediction of flow over the aligned array of cubes are 
shown. This Cartesian grid arrangement corresponds to the 202 x 32 x 60 (fine) grid. 
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Figure 2. Grid-sensitivity analysis: vertical profiles of the mean streamwise velocity V 
and the turbulence kinetic energy k obtained at a; = 1425 mm {xjE = 9.5) between 5th 
and 6th rows of cubes in the array for the coarse and fine grids. 
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Figure 3. Mean flow streamlines in the impingement zone upstream of and through the 
first three rows of buildings of the array obtained with the standard and Kato-Launder k-e 
turbulence closure models. Turbulence kinetic energy isopleths have been superimposed 
on the mean streamline pattern of airflow. The flow patterns and k were obtained in the 
vertical centre plane of the array at y/H — 0. 
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Figure 4. Mean flow streamlines in the exit region downstream of the last row of buildings 
of the array obtained with the standard and Kato-Launder k-e turbulence closure models. 
Turbulence kinetic energy isopleths have been superimposed on the mean streamline pattern 
of airflow. The flow patterns and k were obtained in the vertical centre plane of the array 
at y/H = 0. 
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6th Building ^  X 

Figure 5. Velocity vector plot in the horizontal x-y plane at z/H — 0.75 obtained in the 
vicinity of a building in the 6th row of the 3-D building array. This plot shows two areas 
of swirling flow near the two side edges of the building which are the footprints of an arch 
vortex. 
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Figure 6. Vertical profiles of the mean streamwise velocity u = [/ at four x-locations 
(x = -75, 75, 225 and 375 mm), obtained from a high-resolution numerical simulation 
using two different /c-e turbulence closure models, are compared with time-averaged wind 
tunnel measurements at the same locations. 
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Figure 7. Vertical profiles of the mean streamwise velocity u = U a.t four a;-locations 
(a; = 1125, 1275, 1425 and 1575 mm), obtained from a high-resolution numerical simulation 
using two different fc-e turbulence closure models, are compared with time-averaged wind 
tunnel measurements at the same locations. 
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Figure 8. Vertical profiles of the mean streamwise velocity u = U at four x-locations 
{x ^ 1725, 1875, 2175 and 2475 mm), obtained from a high-resolution numerical simulation 
using two different k-e turbulence closure models, are compared with time-averaged wind 
tunnel measurements at the same locations. 
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Figure 9. Vertical profiles of the mean vertical velocity iD = W at four a;-locations {x = 
-75, 75, 225 and 375 mm), obtained from a high-resolution numerical simulation using 
two different k-e turbulence closure models, are compared with time-averaged wind tunnel 
measurements at the same locations. 
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Figure 10. Vertical profiles of the mean vertical velocity w = W ai, four x-locations 
{x = 1125, 1275, 1425 and 1575 mm), obtained from a high-resolution numerical simulation 
using two different k-e turbulence closure models, are compared with time-averaged wind 
tunnel measurements at the same locations. 
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Figure 11. Vertical profiles of the mean vertical velocity w = W at four a;-locations 
(x = 1725, 1875, 2175 and 2475 mm), obtained from a high-resolution numerical simulation 
using two different k-e turbulence closure models, are compared with time-averaged wind 
tunnel measurements at the same locations. 
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Figure 12. Vertical profiles of the turbulence kinetic energy k at four x-locations {x = 
-75, 75, 225 and 375 mm), obtained from a high-resolution numerical simulation using 
two different k-e turbulence closure models, are compared with time-averaged wind tunnel 
measurements at the same locations. 

DRDC Suffield TR 2004-108 33 



1000 

900 

800 

700 

600 
f 
1.500 
N 
400 

300 

200 

100 

0 

p- 

- X=1125mm 

; 
•       &j^% 

„, ,.,    ^TTS If-r- 

- -■ K-Lk-E 

r 

!• 
" \- 
-         \» %* 

'    >*• f^^ 

0.S 

1000 

900 

800 

700 

600 
? 
0.500 
N 

400 

300 

200 

100 

0 

X= 1275 mm 

0 0.5 
k (m= 8'^) 

1000 

900 

800 

700 

600 
1" 
1.500 
IM 

400 

300 

200 

100 

0 

X= 1425 mm 

0.5 

1000 

900 

800 

700 

600 
f 
J.500 
N 

400 

300 

200 

100 

0 

X= 1576 mm 

0.5 

Figure 13. Vertical profiles of the turbulence kinetic energy k at four i-locations (:r = 1125, 
1275, 1425 and 1575 mm), obtained from a high-resolution numerical simulation using 
two different k-e turbulence closure models, are compared with time-averaged wind tunnel 
measurements at the same locations. 
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Figure 14. Vertical profiles of the turbulence kinetic energy k at four x-locations {x = 1725, 
1875, 2175 and 2475 mm), obtained from a high-resolution numerical simulation using 
two different k-e turbulence closure models, are compared with time-averaged wind tunnel 
measurements at the same locations. 
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Figure 15. Decomposition of the building array into (a) seven 'averaging units', each unit 
of which consists of a row of buildings and the associated downstream spanwise oriented 
street canyon (top); (b) an 'averaging unit' is further decomposed into thin horizontal slabs 
at a number of different levels z (middle and bottom). 
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Figure 16. Vertical profiles of (a) u, {u), and (b) u", {u") for 'averaging unit' #5 within 
and over the building array. Other parts of this figure are continued on the next page. 

DRDC Suffield TR 2004-108 37 



1000 

900 

800 

700 

600 
■f 
£.500 
N 
400 

300 

200 

100 

0 

(c) 

Unit #5 

  w 
----- *m> 

-1    -0.5    0 

lOOOr- 

900 - 

800 

700 

600 
1" 
£500 
N 
400 

300 

200 

100 

0 

(d) 

Unit #5 

  w" 

-0.5    0 

Figure 16. Vertical profiles of (c) w, (to), and (d) w", {w") for 'averaging unit' #5 within 
and over the building array. Other parts of this figure are continued on the next page. 
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Figure 16. Vertical profiles of (e) u"u", {u"u"), and (f) u"w", {u"w") for 'averaging unit' 
#5 within and over the building array. 
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Figure 17. Vertical profiles of the spatially-averaged Reynolds normal stress {«'«') and 
the dispersive normal stress {u"u") in 'averaging units' #1 and #2 in the building array. 
Farther parts of this figure for other 'averaging units' are continued on the next page. 
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Figure 18. Vertical profiles of the spatially-averaged Reynolds normal stress (tTt?) and 
the dispersive normal stress {u"u") in 'averaging units' #3 and #4 in the building array. 
Further parts of this figure for other 'averaging units' are continued on the next page. 
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Figure 19. Vertical profiles of the spatially-averaged Reynolds normal stress {«'«') and 
the dispersive normal stress (u"u") in 'averaging units' #5 and #6 in the building array. 
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Figure 20. Vertical profiles of the spatially-averaged Reynolds normal stress {v/w') and 
the dispersive normal stress {u"iv") in 'averaging units' #1 to #6 in the building array. 
Further parts of this figure for other 'averaging units' are continued on the next page. 
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Figure 21. Vertical profiles of the spatially-averaged Reynolds normal stress {«%') and 
the dispersive normal stress («"#") in 'averaging units' #3 to #4 in the building array. 
Rirther parts of this figure for other 'averaging units' are continued on the next page. 
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Figure 22.  Vertical profiles of the spatially-averaged Reynolds normal stress {u'w') and 
the dispersive normal stress {u"w") in 'averaging units' #5 to #6 in the building array. 
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