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FOREWORD 

Army personnel managers and school house proponents frequently need to make 
tradeoffs between Soldier numbers, quality, and training to establish and defend 
minimum enlistment standards for entry-level military occupational specialties (MOS). 
The standards must be set to reconcile the difficulty of recruiting qualified individuals 
with the effort required for training Soldiers to perform successfully in their assigned job. 
When the standards are too stringent, then it will be difficult to identify a sufficient pool 
of quaUfied recruits. Conversely, if the standards are relaxed too far, then Soldiers may 
not perform adequately in training or in their jobs. Often, data pertaining to the tradeoffs 
required to establish enlistment standards exist but are not integrated into the decision 
process because they are not readily accessible. 

This study addresses the above need by developing and evaluating a method for 
estimating the effects of changes in minimum enlistment standards on academic attrition 
rates. The proposed method can be appUed to assess the practical implications of 
proposed changes in enlistment standards on academic attrition from technical training. 
Results of a large-scale simulation demonstrate the utility of the proposed method across 
several different operational scenarios. Recommendations and materials for applying the 
method, so as to ensure optimal decisions about where best to set enlistment standards for 
technical training, are provided in the report. 

Both this study (utihzing simulation methodology) as well as other on-going ARI 
research (drawing on actual training performance data) were undertaken to assist 
managers and proponents with enlistment standards issues. The results and 
recommendations have been provided to the Human Resources Command staff, and 
deemed useful in understanding the standards setting process. 

'hat 6mu:LJ/[h6iuAJ 
BARBARA A. BLACK 
Acting Technical Director 
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ESTIMATING ACADEMIC ATTRITION FROM TECHNICAL TRAINING SCHOOL 
DATA: METHOD AND SIMULATION RESULTS 

EXECUTIVE SUMMARY 

Research Requirement: 

Army personnel managers frequently need to make tradeoffs between Soldier numbers, 
quality, training effectiveness, and a host of other factors when making personnel management 
and training decisions. The purpose of the present study was to propose and demonstrate a 
logistic regression-based approach for estimating academic attrition rates. This approach enables 
Army personnel managers and strategic planners to evaluate the aforementioned tradeoffs when 
making decisions about where to set minimum enlistment standards. 

Method: 

This study applies a logistic regression-based framework to modeling academic attrition 
from technical training school data. This attrition model estimates the percentage of Soldiers 
meeting the minimum enlistment standards that are not expected to complete technical training 
for academic reasons. Data requirements of the model are simple and involve Soldier aptitude 
scores and training outcome data (i.e., pass or fail). The initial model estimation and subsequent 
attrition rate prediction analyses are packaged in a ready-to-use statistical program, making it 
possible for Army managers to apply the approach proposed in this study. 

We conducted a large-scale simulation study to demonstrate and assess the performance 
of the logistic regression-based approach. Actual training school data from a selected MOS were 
employed to derive an initial set of realistic training performance parameters. We then 
alternately modified a subset of these parameters to represent different training school scenarios 
Army managers are likely to encounter on the job. Using known training requirements and 
policy in MOS schools, we repeatedly generated samples of synthetic pass/fail training outcome 
data from Soldier aptitude scores and training performance data simulated under the different 
scenarios and using different sample sizes. The logistic regression-based model was then 
separately applied to the replicated samples of synthetic training outcome and aptitude score data 
to estimate attrition rates under a range of minimum enlistment standards. 

The simulation-based analysis that was carried out provided a cost-effective approach for 
evaluating the performance of the proposed logistic regression-based attrition model under 
different operational school scenarios. Equally important, the replicated simulation design 
enabled us to assess the sampling error associated with the attrition rate estimates under different 
sample sizes and scenarios. Given real-world sample size constraints, simulation provides a 
more reliable assessment of the unknown underlying sampling error compared to those based on 
statistical formulas, which typically assume very large sample sizes. 

Findings: 

The major findings of our simulation are threefold. First, a simple approach based on the 
logistic regression using only cognitive aptitude information is adequate for the purpose of 
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evaluating the impact of changes in minimum enlistment standards on academic attrition for 
MOS with medium complexity/validity or greater. Second, the sample size on which academic 
attrition estimates are based can significantly impact the quality of the decisions made based on 
these estimates. The results indicated that a sufficiently large analysis sample size allows 
smaller changes in minimum enlistment standards to achieve a targeted attrition with high 
confidence, which in turn translates to potential savings in terms of the size of the eligible 
applicant pool. Third, related personnel and training decisions could be greatly improved by 
extending the current model to incorporate information in addition to cognitive aptitude. This is 
particularly true for MOS whei« aptitude does not significantly predict performance. 

Utilization of Findings: 

A number of practical recommendations for performing and interpreting this analysis that 
could aid operational decisions are presented. In particular, the sample size analyses and 
simulation programs are directly useful for planning MOS training school data collection in the 
future. The simulation methodology used in this study is also valuable for assessing the impact 
of alternative training or testing requirements that may be under consideration for managing 
academic attrition. This study concludes with suggestions for future research that could greatly 
extend the proposed approach and further assist Army managers when making the personnel and 
training decisions that motivated this study. 

vui 
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INTRODUCTION 

Background 

Army personnel managers frequently need to make tradeoffs between Soldier numbers, 
quality, training effectiveness, and a host of other factors when making personnel management 
and training decisions. However, often neither the data nor methods for effectively evaluating 
the data are easily available to inform manager's decisions. This is problematic given the 
importance of the personnel decisions managers must make in an increasingly dynamic and 
complex operating environment, such as the Army. There are several reasons why these 
decisions are critical to Army managers and the Army as a whole. 

First, personnel decisions ultimately determine the placement and quality of the training 
tens of thousands of Soldiers receive each year, which impacts future performance and morale. 
This is especially significant given the time and investment the Army makes in advanced 
individual training (AIT) of recruits, roughly $6,100 to $16,300 per enhstee (U.S. General 
Accounting Office, 1997), in addition to the cost of basic training. Second, these decisions are 
associated with major tradeoffs between one or more of the Army's operational objectives. For 
example, while raising minimum enlistment standards is likely to produce higher levels of 
(overall) Soldier performance, doing so makes it substantially more difficult to meet accession 
goals, as more Soldiers would fail the standards. Likewise, while lowering enlistment standards 
makes it easier to fulfill accession goals, overall training quality and subsequent performance 
may suffer, as the average quality of students would be lower. Further, the tradeoffs associated 
with these decisions are often complicated by shifts in the Army's recruiting environment or 
public policy, over which Army personnel managers exert little control. 

hi summary, understanding the impact of changes in minimum enlistment standards on 
training attrition (and other personnel outcomes) is important for: (a) maintaining (or improving) 
overall Soldier performance and morale; (b) effectively managing Army jobs or military 
occupational specialties (MOS) and the larger recruiting and training mission; and (c) identifying 
the best solution for resolving the critical tradeoffs managers face when making key personnel 
decisions. 

Purpose of Report 

This report serves the following purposes: 

1. To propose and describe an approach for estimating academic attrition rates under different 
operational scenarios. Note that this report deals exclusively with modeling academic attrition. 
Training attrition due to non-academic reasons (e.g., health) is not addressed by the approach 
proposed and described in this report. 

2. To discuss the effects of lowering (or raising) minimum enlistment standards on academic 
attrition rates estimated using the proposed approach. Note that "minimum enlistment 
standards" and "cut scores" are used interchangeably throughout this report. For those 
unfamiliar with the terminology, "cut scores'.', are defined as the minimum score a Soldier can 
achieve on a screening test (or other assessment) to be eligible for technical training in a 
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particular MOS. In particular, we discuss issues (e.g., practical, methodological, and statistical) 
related to interpreting the effects of raising (lowering) cut scores. 

3.   To provide practical recommendations for conducting an attrition rate analysis using the 
proposed approach. Specifically, we present recommendations regarding: (a) collecting data for 
analysis; (b) specifying and estimating the model; and (c) inferring the effects of changes in 
enlistment standards on academic attrition. 

METHOD 

This study applied a logistic regression-based approach to modeling academic attrition. 
Using a simulation-based analysis strategy based on real-world data, we estimated attrition rates 
under different operational conditions Army personnel managers are likely to encounter. As an 
overview, this section is organized as follows. First, we describe and propose a logistic 
regression-based model for estimating academic attrition. Additionally, we consider its 
advantages and disadvantages relative to a model predicting individual test scores (or a 
composite of these scores). Second, we describe data quahty issues and practical constraints 
encountered with existing Army data. These issues provide the basis for the current study's 
implementation of a simulation-based approach for investigating the effects of changes in Army 
enlistment standards on academic attrition. Third, we describe the simulation-based approach 
employed in this study. Specifically, we discuss its advantages and detail the procedures used 
for estimating key parameters and attrition rates. Additionally, we describe the selection of 
factors used to represent the different operational scenarios Army managers are likely to 
encounter when making decisions about enlistment standards and academic attrition rates, A 
mathematical description of the structure of training school data used in the simulations is 
provided in Appendix A. Tables and charts simimarizing the results of the simulation are 
presented in Appendices B and C, Accompanying Statistical Analysis System (SAS) code for 
repUcating our simulation and applying the proposed logistic regression-based model 
operationally to training school data can be found in Appendices D and E, 

Modeling Approach 

The analysis of the impact of changes in minimum enlistment standards (i.e,, cut scores) 
on academic attrition, viewed simply, involves the ratio of the number of apphcants who are not 
expected to successfully complete the training to the total number in the relevant applicant pool 
that are eligible for the target MOS. Since cut scores are based on aptitude area (AA)' scores 
that are positively correlated to training (and job) performance, raising the cut score is expected 
to leave fewer but higher quality eligible applicants. This is expected to yield a lower training 

Aptitude area (AA) composite scores are estimates of future success in entry-level training and job performance in 
an MOS. AA scores are used operationally by the Army to assign recruits to an MOS, AA composites and the 
Armed Forces Vocational Aptitude Battery (ASVAB) subtests which comprise them are described in many sources 
(Greenston, 2002; Diaz et al., 2004). 



attrition rate because applicants who continue to meet the new cut score are more likely to 
successfully complete the training compared to applicants who no longer meet the new cut score 
and are dropped from the eligible pool. 

Mathematically, there are two key components in evaluating the impact of changes in cut 
scores on academic attrition rates. The first component is a model describing the relationship 
between the AA score of an applicant and the probability that he or she will not successfully 
complete the training. The second component is the density or distribution of the number of 
applicants at various levels of AA scores in the relevant applicant pool. These ideas are 
represented in the equation below, which describes the attrition rate A(C) for the eligible 
apphcant pool as function of the cut score C. 

00 

lP{x)f(x)dx 

^f{x)dx 
c 

The first component, represented by the function P(X), and the second component, represented 
by the density f(X), together determine the numerator, which corresponds to the count of 
applicants that are expected to not successfully complete the training for a given cut score. The 
denominator, which corresponds to the total number of eligible applicants, is determined entirely 
by the density f(X) for a given cut score. This equation can be interpreted as the average of the 
probability of attrition weighted by the density of the AA scores that are above the minimum cut 
score C. The density f(X) representing the applicant pool and P(X) are described in the next two 
sections. 

Applicant Pool Density 

The two natural choices for the applicant pool that are relevant to the analysis of the 
relationship between cut score and training attrition are the youth population and the Army 
accession (or input) population. Technically, the choice of reference population matters as the 
shape of the density f(X) determines the underlying weights employed in the computation of the 
attrition rate. For practical purposes, however, it does not appear that the choice between these 
two reference populations substantially impacts the overall attrition rates on the range of cut 
scores that are likely of interest to Army managers. The rationale for this is as follows. 

The Army accession distribution is truncated on the lower end and, to lesser extent, on 
the upper end relative to the youth population distribution. The form of the attrition formula 
A(C) above, however, ignores the part of the distribution to the left of the cut score C. Cut 
scores that are operationally important are expected to be within one standard deviation of the 
youth population average (see following section for a discussion of cut score range). Practically, 
this means that the left end of the distribution where the youth population and Army accession 
distributions differ is ignored in the computation of the attrition rates. This is not the case with 
the upper end, which is included in the computation of attrition rates. However, differences in 
the upper range of the youth and Army accession populations are not expected to adversely 
impact computed attrition fates because these differences are not as large as those in the lower 



range. Additionally, this is the part of the distribution where the density f(X) is small, and hence, 
does not carry significant weight in the computation of the attrition. In summary, differences in ' 
the youth and Army accession populations will not affect attrition rate computations to a 
meaningful extent. 

Because of the small impact of differences between the youth and Axmy accession 
populations on the expected attrition rate, the choice between them is best guided by practical 
considerations. For example, changes in the Army's recruiting environment could make the 
truncation on the high end of the youth population more substantial than typically observed. 
This would be the case when the economy is strong and the job market easily absorbs greater 
numbers of high quality youth. In this case, an Army accession reference population might be 
tailored using data from previous recruiting years that would be representative of a strong job 
market. Using this particular reference population, one would obtain shghtly higher attrition 
rates, as high quality recruits would be less represented (i.e., carry less weight) in the 
computation of training attrition. Therefore, there may be cases where one population is 
preferable because modeling that specific population produces estimates of attrition that more 
strongly reflect the current operational environment in which decisions about where to set 
enlistment standards will be made. 

In our approach, we use a youth population-based normal distribution for f(X) m the 
simulation for convenience and because there was not a particular operational environment of 
special interest. The approach and computer program for estimating attrition rates operationally 
(see Appendix D) can easily be adapted using any reference population.^ 

Probability of Training Attrition 

The second component in the computation of A(C) is a fimction P(X) describing the 
relationship between training attrition rate and AA score of an apphcant. The function P(X) is 
the probability that an apphcant vdth AA score equal to X will not successfully complete 
training. That is, P(X) evaluates to a value bety^een zero and one that represents the percentage 
of individuals with AA score X that are expected to academically attrit. 

Note that in our overall framework, the complete "cut score attrition model" is A(C) and 
not P(X). The latter is the conditional probability of attrition given the applicant's AA score. On 
the other hand, the cut score attrition rate A(C) averages the conditional probabilities P(X) 
evaluated in the AA score range above the cut score C, using the appropriate apphcant pool 
density f(X) as weights. The fiinction A(C) evaluates to the probability that applicants with AA 
score equal-to or better than G will not successfully complete training. 

^-The averaging used in the computation of attrition in the SAS program is based on apphcant pool quantiles rather 
than a numerical integration based on the specific form of ^X), for example. The quantile-based approach is flexible 
as these may be computed from a large enough data base representing the "target" applicant pool; the exact form of 
f(X) need not be known. 



Training Outcome Variable 

The exact form of P(X) is dependent on the type of "outcome" variable used in modehng 
attrition. The traditional outcome variable used in this type of analysis is the simple "dummy" or 
binary variable taking the value "1" to indicate that the applicant did not complete training or "0" 
to indicate that the applicant completed training. In the MOS school data that we used in this 
study, this dummy variable v^^as constructed from a "student output" code that indicates whether 
or not the student graduated from training. There is also a "reason" code in the data that can be 
used to classify non-completion into academic or non-academic attrition. Students that were 
classified as non-academic attritions were excluded from our analysis data. 

In this study, we also learned about the structure of MOS school training requirements 
and testing process that are relevant in determining applicant passing or failing. A more detailed 
technical description of the process is provided in Appendix A. Generally, students take a series 
of tests that can be characterized as a multiple hurdle system. The scores on the tests that a 
student took represent a multivariate outcome variable that provides more detailed information 
relevant to attrition analysis. This multivariate outcome vector of test scores and the knowledge 
of the underlying attrition "generation mechanism" is useful in defining a form of P(X) that is 
directly related to the underlying process. However, it is a more involved approach using a 
muhivariate type of analysis that we believe is not suitable for routine calculations. The amount 
and costs in terms of data quality requirements in a multivariate test scores-based approach are 
also far greater than the binary attrition variable approach. 

The approach to modehng P(X) employed in this study is based on the binary or dummy 
pass/fail outcome variable. However, for the simulation experiments that were carried out, we 
generated the pass/fail outcome observations using a test score-based pass/fail mechanism 
implementing known school testing pohcy relevant to training attrition. 

Logistic Regression Model of Attrition ..    ,. 

We used the logistic regression of the pass/fail outcome observation on applicant AA 
score to specify P(X). Formally, the relationship between applicant attrition probability and AA 
score that is equal to X is 

l + exp(a + 6X) 

:which.is-parameterized by.some unknown constants a and.i.: the function P(X) is defined 
between zero and one and is inversely related to the AA score. The value of P(X) decreases to 
zero as AA score increases and it increases to one as AA score decreases. 

There are several advantages to a logistic regression-based approach. First, logistic 
regression permits the modeling of nonlinear relationships between relevant predictor variables 
and the dependent variable of interest (Cohen, Cohen, West, & Aiken, 2003; Tabachnick & 
Fidell, 1996). From an operational perspective, it is not unreasonable to expect that many of the 
predictors of academic attrition (e.g., cognitive aptitude, education,-disciplinary.problems,.etc.) 
-are nonlinearly related to attrition. For example, for those high in cognitive aptitude the    - 



relationship betweto aptitude and attrition is likely to be flat as few high aptitude individuals fail 
to complete training and the expected probability for success is uniformly high. Conversely, for 
those low or average in cognitive aptitude the relationship is likely to be positive, particularly for 
those in the middle range of aptitude, as there is greater variability in the proportion of Soldiers 
failing to complete training and the probability of success varies measurably with level of 
cognitive aptitude (e.g., the higher one's standing on cognitive aptitude, the higher his/her 
probability of successfully completing training). 

An additional advantage to modeling potential nonhnear relationships is that a logistic 
regression approach will do a better job of predicting academic attrition across the foil range of 
cognitive aptitude, including those in the extremes (e.g., low or high in cognitive aptitude), 
compared to a linear probability model (LPM) obtained using ordinary least squares (OLS) 
regression. This is especially important since operationally, it is those individuals in the 
extremes, either the low or high end of cognitive aptitude, who will exhibit the greatest 
probability of attriting or not attriting, respectively. Under LPM, predictive accuracy is weakest 
for cases in the extremes (Cohen et al, 2003; Guion, 1998; Tabachnick & Fidell, 1996), 
precisely the cases the Army is most interested in. Therefore, the ability to model nonlinear 
relationships is important both for understanding the nature of the relationship between Soldier 
characteristics (e.g., cognitive aptitude, education, etc.) and academic attrition, and more 
operationally, for accurately predicting and estimating attrition rates. 

When compared to a multivariate test scores-based approach to modeling P(X), an 
advantage to the logistic regression approach is that it simpHfies interpretation by aggregating 
multiple test scores into a single, meaningful outcome variable of interest, academic attrition. 
From an operational perspective, the Army is ultimately interested in predicting and explaining 
attrition, not necessarily trainee performance on specific test(s), which vary from school to 
school. Having a single, overall outcome variable, as opposed to ten or more different variables, 
facilitates the analysis. Importantly, it increases the ease with which Army personnel managers' 
can successfully implement any proposed methodology for assessing changes m enlistment 
standards on attrition rates in the field. 

hi summary, the advantages of a logistic regression approach recommend it over a model 
focused on individual test scores. Because of the model's advantages, and its fit with the Army's 
operational goals, it is the preferred approach for modeling academic attrition. An alternative to 
the logistic model for specifying P(X) is the probit model. These two models, however, are 
practically equivalent. 

Issues Related to Modeling Attrition 

We have identified three potential issues related to our modeling of P(X), We describe 
each of these in tum. 

Criterion Contamination. The strongest advantage of the logistic model approach (or 
equivalent binary model) is its simphfication of the underlying attrition-generation process, in 
this case involving at least 10 to as many as 30 test scores, into a single, binary outcome variable 
indicating pass/fail. This simphfication of the underlying relevant outcome, however, has its 
pitfalls. Specifically, in working with the "student outpuf variable in our data, we came across 



cases where a student was classified as "graduate" (i.e., not attriting) but the test scores indicated 
that he or she failed at least one test twice. Technically, failing a test twice means that a person 
cannot complete training. We were informed that this type of "exemption," which is a form of 
criterion contamination, is in fact possible. For the purpose of this analysis, which is concerned 
specifically with academic attrition, an applicant was classified as an attrition if he or she did not 
pass a test after two attempts. Because "exemptions" failed a test twice, these cases were 
classified as attritions. This was done for two reasons. 

First, we did this to be consistent with official school policy. Officially, school sponsors 
and Army personnel managers define academic attritions as those recruits who do not 
successfully pass all tests required for technical training. According to school policy, recruits are 
permitted a maximum of two attempts to pass a required test. Should a recruit fail to pass a test 
on the second attempt, he or she technically cannot complete training without some form of 
remedial action. Therefore, the practice of classifying "exemptions" as attritions is consistent 
with official school policy and, more practically, will yield the most accurate assessments of the 
effects of changing enlistment standards on academic attritions. That is, while estimates may be 
higher than actual attrition rates, owing to the fact that "exemptions" were excluded during the 
estimation process, the estimates produced will more accurately reflect the actual relationship 
between enlistment standards and attrition. Classifying "exemptions" as not attriting, or 
excluding them from the analysis entirely, would produce inaccurate estimates of the effects of 
changing enlistment standards because doing so changes the underlying enlistment standards- 
attrition relationship. Put simply, classifying "exemptions" as attritions removes "noise" that 
would otherwise cloud the actual coimection between enlistment standards and academic 
attrition. It is that actual connection which guides and informs official school poHcy and 
personnel decision-making. 

The second reason for classifying "exemptions" as attritions, not unrelated to the first, is 
that there is hkely to be insufficient data to model "exemptions." Specifically, the reasons for an 
exemption are not recorded or easily accessible from technical training data. In addition, 
"exemptions" are not expected to be meaningfully related to enlistment standards or other 
variables (e.g., demographics) readily available to school sponsors and Army personnel 
managers running an attrition rates analysis. More importantly, the reasons for an "exemption" 
are not likely to be systematic, but random; varying between-recruits, between-classes, and 
probably both (e.g., between-recruits within the same class), in non-systematic ways. Taken 
together, this means that "exemptions" cannot be alternatively classified (or modeled) in reliable 
ways other than as "attritions" without introducing some amount of bias into the estimation 
process.. Tf interested, Army school proponents and persoimel managers may adjust estimated 
attrition rates after thfe fact to take into account expected^exemptions: However, we would 
generally advise against this practice, as meaningful data for making such adjustments is not 
likely to be easily accessible. 

Incidental Truncation. A second potential issue related to modeling P(X) is incidental 
truncation. This typically occurs in non-experimental studies (i.e., using non-randomized 
samples) where the underlying selection mechanism is not random with respect to the outcome 
variable. It ean be an issue in modeling P(X) as factors influencing a student's assignment 
(selection) into'anMOS, such as education, other demographics, orincentives,'canbe associated 
with academic attrition. For example, a student with at least high schooTdiploma might have an 



easier time adapting to the formal training environment in an MOS school. In the case of 
enlistment bonus incentive, which is typically tied to a recruit's completion of the term of 
service, a student who contracted to receive a high bonus might have an extra motivation to 
successfully complete the training. This hypothesis is significant as the bonus amount varies 
across MOS and is designed to partly influence an applicant's selection of MOS in a way 
consistent with Army priority. 

Note that the use of an AA cut score to determine eligibility is not a reason for incidental 
truncation in our problem as the model P(X) is already conditional on the AA score (X), Note 
also that in this issue we are concerned with the association between factors influencing 
assignment into an MOS versus the likelihood of attrition that is unexplained by the AA score 
(i.e., the "residual" attrition conditional on X). In particular, the more a factor is highly 
correlated with the AA score the less likely it is to contribute to incidental truncation. 

Formally, incidental truncation is generally handled by incorporating the selection 
process in the modeling of the outcome variable. For example, in the linear regression model 
case with continuous outcome variable, a two-step estimation procedure (Heckman, 1979) is 
commonly carried out to handle incidental truncation. In the first step, a probit model 
representing the selection process is estimated, while the second step carries out the least-squares 
estimation for the substantive model that incorporates a selection component (see also Greene, 
1997, pp. 975-978). This approach or an altemative maximum likelihood method involves 
jointly modehng a binary variable indicating selection and a continuous outcome variable that is 
essentially censored for individuals that are not selected. Note that the "full sample" used for 
carrying out the estimation in this method includes individuals excluded from the selection 
sample (i.e., entire sample before selection). 

In our problem, the potential incidental truncation issue is similar except that we are also 
deahng with a binary outcome variable that is observed only for individuals that are selected into 
the MOS. In this context, the estimation of P(X) can be carried out using a "censored bivariate 
probit" model (Boyes, Hoffinan, & Low, 1989) in which the binary outcome variable 
representing attrition is censored if the selection binary variable equals 0 (i.e., not selected into 
the MOS), Using this estimation framework requires switching fi-om the logit to the probit 
model for P(X).^ More importantly, however, the full sample required for carrying out estimation 
of P(X) that incorporates incidental truncation includes students not selected into the MOS under 
consideration. This full analysis sample can be Army accessions corresponding to the fiscal years 
represented by students in the MOS school. These data were not available in this study. Boyes et 
al. (1989) provide the maximum likelihood equations necessary for carrying out the estimation. 

Mixture of Old and New AA Scores. A third potential issue in the implementation of the 
proposed method is the mixture of old AA scores based on nine ASVAB subtests (prior to FY 
2002) and new AA scores based on seven ASVAB subtests. Although this may be less of an 
issue for MOS with large numbers of trainees, particularly as the Army moves past FY 2002, 
there are still likely to be cases where combining school data using old and new AA scores to 

^ An analog to the bivariate probit is the bivariate logistic model (McCuUagh & Nelder, 1983), where both the 
outcome and selection indicator variables are marginally represented by separate logistic model. 



achieve a desired sample size is necessary. Likewise, this conversion is definitely recommended 
if one is estimating rates from historical data for purposes of establishing baseline(s) by which to 
compare expected rates. For handling this issue we propose converting the old AA scores into 
the equivalent new AA scores. The new AA score should then be employed in the remainder of 
the analysis (e.g., for both P(X) and A(C) equations). Note that conversion of the old AA scores 
is only an issue if the original scores on nine ASVAB subtests are no longer available. The 
procedure for converting old AA to new AA scores is documented in Appendix A. For purposes 
of evaluating the proposed method, no conversions were necessary. 

Data Collection 

The Army Training Support Center (ATSC) at Ft. Eustis, VA provided ARI with training 
school data for building and testing a model of academic attrition. Data for four MOS roughly 
covering the last two fiscal years were extracted from ATSC'S Automated Instructional 
Management System (AIMS) database. The MOS selected and for which training performance 
data were available represent a variety of jobs found in the Army. The dataset for each MOS 
consisted of data from multiple classes. 

For the purposes of the present study, a simulation-based analysis strategy was adopted. 
In brief, this strategy uses actual MOS data to produce computer-generated or synthetic samples 
that serve as input to the estimation of attrition rates and the analysis of changes in these rates 
from adjustments in enlistment standards. It should be emphasized that simulations are not 
intended to be a substitute for real-world data. Operational decisions are best based on the 
analysis of real-world data. However, a simulation was preferable for purposes of testing and 
evaluating the proposed method, which was the primary goal of the current study, for the 
following reasons. 

First, as the primary goal of the current study is to propose and evaluate a method for 
estimating academic attrition rates, a simulation-based analysis strategy is preferred. Since the 
proposed method is intended for operational use, it is critical that the performance of the method 
be evaluated as comprehensively and accurately as possible. A simulation-based approach best 
meets these requirements. By taking a simulation-based approach, we could ensure that the 
results from evaluating the proposed method were not dependent on idiosyncrasies present in the 
available data. This enabled us to evaluate the performance of the proposed method as 
accurately as possible. For example, across three of the four MOS, the available sample size was 
generally small. Small sample size is problematic, as it is associated with higher levels of 
sampling error,, which adversely affects the accuracy and precision of estimates (Cohen et al., 
2003; Hunter & Schmidtv 1990). Because of this, using the available data Was likely to produce 
inaccurate and potentially biased estimates, thereby making it difficult to accurately evaluate the 
proposed method. 

Second, and more importantly, by using the available data, we would be unable to assess 
the impact of sampling error on estimates produced by the proposed method, information that 
would be extremely useful when applying the method in the field. A simulation-based approach 
would be advantageous in this regard, because it would permit us to model the adverse effects of 
sampling error on the.accuracy.of attrition rates computed operationally. With this information 
we could provide guidance on how best to interpret these estimates when making actual 



decisions. For example, with this information, we could offer recommendations regarding when 
to make adjustments to enlistment standards and the magnitude of the adjustment needed to 
achieve a desired level of attrition. While there are computational formulas for estimating 
samphng error, these formulas typically assume very large sample sizes, sample sizes greater 
than those of the available MOS, Therefore, a simulation-based approach would provide the 
most effective means for assessing the impact of sampling error on attrition rates estimated under 
the proposed method, and its implications for decision-making. 

From an operational perspective, a simulation-based approach would be advantageous for 
twoMditional reasons. First, a simulation-based approach would permit the estimation of 
attrition rates under different operational scenarios; estimates that would be impossible to model 
given that the existing data were not collected with these particular scenarios in mind. Second, 
when done right and in operational enviroimients hke the Army's, simulations provide a cost- 
effective means for studying different combinations of variables that might otherwise take 
multiple, individual studies (and a large amount of Army resources) to compile. Conducting 
simulations saves valuable time and critical operational resources. More importantly, the 
information collected from simulations can greatly optimize the design of follow-up studies 
using real-world data. By identifying the variables most relevant to the outcome(s) of interest, 
researchers can best maximize the gains, while minimizing the costs, of ftiture research efforts. 

Simulation-Based Analysis Strategy 

Overview and General Description 

To assess the proposed approach for evaluating changes in minimum enhstment 
standards on academic attrition, we employed a simulation-based analysis strategy that involved 
the following three major steps. 

1. To ensure that our findings would approximate results from real-world data, we 
selected an actual MOS whose empirically estimated parameters would serve as input 
for constructing the computer-generated samples for use in the simulation, hi 
selecting the MOS, care was taken to identify the MOS: (a) whose data would 
provide the most accurate estimates; and (b) whose estimated attrition rate was 
comparable to the attrition rate typically observed in the Army (e.g., between 10% 
and 20%). After identifying the MOS that best met these criteria, we computed the 
relevant parameters from which the computer-generated samples would be based. 

2. Based on these real-world parameters, we generated synthetic samples of varying 
sample sizes (N) that approximated relevant properties of the different MOS found in 
the Army. Each sample consisted of synthetic AA composite and training 
performance data for N trainees. To simulate samples that reflected the different 
operational scenarios Army personnel managers were likely to encounter in the field, 
we varied the parameters from which the synthetic samples were generated. 
Technical notes on how AA composite and training performance data were simulated 
can be found in Appendix A, From the synthetic training performance data, we 
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computed a dichotomous attrition variable indicating if a trainee did or did not pass 
training.'' 

3.   Using the synthetic samples generated in Step 2, we estimated academic attrition rates 
(and their corresponding standard errors) associated with varying cut scores. These 
estimates were based on regression parameters obtained by applying the logistic 
regression-based model to the synthetic AA composite-attrition data (produced in 
Step 2), and aggregating estimates across samples representing the same N and 
operational scenario. From this, we were able to infer the effects of changing 
-enlistment standards on academic attrition under the different operational scenarios 
Army personnel managers were likely to encounter on the job. 

Simulations based on real-worid parameters, such as the approach employed in the current study, 
have been widely used in Army research and other social sciences, such as applied psychology, 
economics, and public policy. For example, comparable simulation-based approaches have been 
successfully used to identify strategies for maximizing the efficiency of Army classification 
(e.g., Johnson, Zeidner, & Leaman, 1992; Scholarios, Johnson, & Zeidner, 1994; Statman, 1993; 
Zeidner, Johnson, Vladimirsky, & Weldon, 2000) and within applied psychology, to identify 
combinations of different predictors that maximize both job (or training) performance and 
demographic representation (e.g., Bobko, Roth, & Potosky, 1999; Sackett & Roth, 1996; 
Schmitt, Rogers, Chan, Sheppard, & Jennings, 1997). While simulations, including that of the 
current study, are not intended to be substitutes for real-worid data, as mentioned in the previous 
section they do offer advantages, particularly when evaluating an estimation method. 

This section is organized as follows. First, we detail the selection of the MOS used for 
producing the computer-generated samples for the simulation, and the procedure for obtaining 
the real-world parameters on which these samples were based. Second, we discuss the 
construction of the different operational scenarios under which attrition rates would be estimated 
and the procedure; for generating the synthetic samples for use in estimating academic attrition. 
Third,„wedescribe-the procedure for estimating academic attrition rates (and accompanying 
standard errors) under varying cut scores across the different operational scenarios. SAS 
programs, and accompanying technical documentation, for replicating the simulation are 
available in Appendix D. 

Selection of MOS and Procedure for Estimating Parameters for Computer-Generated Samples 

— Selecting an MOS. PAXhovi^ a simulation-based analytic strategy was selected, steps 
•were taken to ensure that findings from our simulation approximated those of the real-world. To 
do this, a single MOS was selected to provide the parameters on which the computer-generated 
samples would be based. The MOS selected was meant to reflect the typical MOS. 

While multiple MOS were available and could have been aggregated to form the typical 
(or average) MOS, we did not follow this approach for two reasons. First, different MOS use 

Attrition, was not simulated directly, but based oa simulated performance across a battery of training tests. Details 
on how this was done appear later in the Method section. 
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different AA composites to determine eligibility and require a different number of tests to 
complete training with different passing grades, which makes simple aggregation difficult. 
Second, the sample of MOS available was small (4) and generally reflected a convenience 
sample. Therefore, the available MOS may not have been representative of the full population of 
Army jobs, making it unlikely that aggregating across MOS would have produced the typical 
MOS. 

When selecting the MOS to serve as input for constructing the computer-generated 
samples, care was taken to identify the MOS from those available: (a) with the fewest data 
quality issues (e.g., data entry errors); and (b) whose estimated academic attrition rate was 
comparable to that typically found in the Army (between 10% and 20%). Extensive diagnostic 
and screening procedures were conducted on all MOS. After reviewing the available MOS, we 
identified 55D (Explosive Ordnance Disposal) which best met these criteria and, thereby, was 
chosen for estimating the real-world parameters on which the computer-generated samples 
would be based. Specifically, this particular MOS was selected because: (a) there were a 
reasonable number of cases with complete training performance data; (b) its cases exhibited the 
least criterion contamination; and (c) its observed attrition rate, taking into account retests, best 
approximated that of the typical MOS. 

Procedure for estimating parameters. Before constructing the computer-generated 
samples, we selected and estimated the parameters on which these samples would be based. The 
following parameters were selected: (a) mean, variance, and distribution of AA composites; (b) 
mean, variance, and distribution of test scores (e.g., training performance); (c) AA composite- 
training performance vahdities; (d) error correlation matrix of the test scores; and (e) regression 
parameters (e.g., intercept and slope) fi-om regressing test scores onto AA composite scores. As 
a brief overview, the following steps were taken in estimating the parameters on which the 
computer-generated samples would be based: 

1. The dataset for the selected MOS was cleaned and prepared for analysis. 

2. Relevant parameters were computed empirically using the cleaned dataset. 

3. Our procedure (and accompanying SAS program) for generating synthetic training 
performance data was verified. Specifically, we checked that the parameters (listed 
above) of the synthetic samples approximated those of the selected MOS. 

Each of these steps is detailed below. 

First, after the MOS was selected, the dataset containing data for that MOS was prepared 
for analysis. The available data were cleaned and the integrity checked. More specifically, in 
preparing the dataset we: (a) merged multiple records for a single participant into a single record; 
(b) screened data for coding errors, such as checking to ensure that the minimum and maximum 
values for test scores, AA composite scores, and other relevant variables were within the 
legitimate range; and c) deleted problem cases (e.g., participants having AA composite scores 
below the operational cut score) fi-om the dataset, so as not to bias empirically estimated 
parameters. 
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Second, using the dataset cleaned in the preceding step, key parameters were computed 
empirically from the available data. Key parameters computed included: (a) mean and variance 
of AA composite scores^; (b) mean and variance of test scores (e.g., training performance); (c) 
AA composite-training performance validities; (d) error correlation matrix of the test scores; and 
(e) regression parameters (e.g., intercept and slope) from regressing test scores onto AA 
composite scores . These parameters became the real-world data from which the computer- 
generated samples would be constructed. This is important, as one of our goals was to simulate 
computer-generated samples whose properties (e.g., training performance) would approximate 
those of operational MOS as closely as possible. Only data on cognitive aptitude (as reflected in 
AA composite score) were incorporated into the; model. Therefore, properties (e.g., 
demographics) other than cognitive aptitude are not (directly) reflected in the synthetic samples. 
This procedure was followed because the focus of the current study is on changes in enlistment 
standards, and cognitive aptitude is directly tied to the setting and application of those standards. 

For the third (and final) step, after computing relevant parameters empirically for the 
selected MOS, we checked the integrity of the procedure (and accompanying SAS program) for 
generating the samples of synthetic data. Specifically, we verified that the parameters (listed 
above) estimated empirically from the selected MOS would approximate the same parameters 
obtained from pilot samples of synthetic data. Technical details related to our simulation 
procedure are documented in Appendix D. In brief, the procedure is regression-based using 
empirically derived intercepts and weights. These regression parameters were then used to 
simulate samples of synthetic data that closely reflect the properties of the selected MOS (e.g., 
AA composite-test score validities) on which the samples are based. 

To verify the integrity of the procedure and accompanying SAS program for producing 
the computer-generated samples, we conducted a series of pilot simulations. For the pilot 
simulations, we constructed four synthetic samples (A^=l 0,000) based on the real-world 
parameters computed for the selected MOS. Each sample contained synthetic AA composite and 
training performance data for an MOS school. For each synthetic sample, we compared: (a) the 
simulated AA composite scores to real-world AA scores; and (b) the properties of the simulated 
training performance data to those of the real-world performance data. 

First, to verify the simulated AA composite scores, we computed the mean and variance 
of these scores and compared them to those of real-worid AA scores. Additionally, we checked 

■  Since only a single AA composite is used operationally to set minimum enlistment'standards for most MOS, data 
(e.g., mean, SD, and AA composite-training performance validities) f6r a single AA composite, specifically the 
composite most relevant to the MOS in question, were computed. 

Based on the data available, recruits were required to pass 17 tests to complete technical training for MOS 55D. 
The following are the observed regression parameters (in parentheses-constants first, unstandardized regression 
weights second) for each of these 17 tests: Testl (63.56, .24); Test2 (86.83, .06); Test3 (62.56, .24); Test4 (82 93 
.10); Test5 (74.32, .18); Test6 (80.10, .11); Test7 (75.46, .11); Test8 (39.49, .43); Test9 (68.84, .17); TestlO (63 04 
.23); Testl 1 (60.04, .25); Testl2 (68.74, .18); Testl3 (85.61, .02); Testl4 (69.99, .22); Testl5 (62.45, .24); Testl6 ' 
(86.41, .03); Testl7 (79.77, .13). Note, these and other key parameters computed from the MOS 55D sample, which 
became the basic input to the simulation, can be found in Appendix D. 
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the distribution (divided into quartiles) of simulated AA scores to that of the real-world scores. 
Both within each sample and averaged across all four samples, the mean, variance, and 
distribution of synthetic AA composite scores closely matched that of the real-world AA 
composite data. 

Second, to verify the simulated training performance data, we did the following. Using 
the synthetic samples, we computed the mean, variance, and distribution of training performance 
(or test) scores and compared these descriptives to those of the real-world parameters. Both 
within each sample and across all samples, the mean, variance, and distribution of synthetic test 
scores closely approximated their corresponding real-world parameters. Next, we calculated the 
AA composite-training performance validities. As with the basic descriptives, validities 
estimated for the synthetic samples were comparable to real-world validities, across all training 
tests. We then estimated the error correlation matrix^ for the training performance tests (i.e., 
correlations among the residuals for the different tests). Consistent with other parameters, the 
error correlation matrix of the synthetic samples matched the matrix used to simulate the 
synthetic data. Finally, we regressed simulated training performance scores onto AA composite 
scores (for each of the tests required to complete training for the selected MOS). We then 
compared the regression parameters (i.e., intercepts and regression weights) computed for the 
synthetic samples to those estimated using the real-world data. Within each sample and across 
all samples, the regression parameters obtained for the synthetic samples were comparable to the 
corresponding real-world parameters, across the full battery of training tests. 

As an additional pilot, we varied key parameters (e.g., mean and variance of AA 
composite scores) to see if these changes would be reflected in subsequent synthetic samples. 
Multiple synthetic samples (iV=l 0,000) were generated based on these modifications. Results 
from this additional pilot further verified the integrity of the procedure and accompanying SAS 
program, as changes in selected parameters were accurately reflected in the updated synthetic 
samples. 

In summary, both the procedure and program for generating synthetic samples for use in 
the simulation were satisfactorily verified. Taken together, the findings from the pilot showed 
that our procedure successfiiUy repHcated and approximated real-world data, producing samples 
that closely reflected the properties of an actual MOS. 

Selection of Operational Scenarios for Assessing Effects of Changes in Enlistment Standards on 
Attrition Rates 

Toplace the effects of changing enMstment standards on attrition rates in context, we 
sought to identify operational scenarios Army personnel managers are likely to encounter on the 

Note, the error correlation matrix computed empirically for the real-world MOS contained negatively correlated 
residuals. Prior to running the fiiU simulation, we compared results from our pilot modeling negatively correlated 
residuals versus not modeling negatively correlated residuals, and there were no substantial differences in the 
estimates produced. Therefore, to simplify the simulation, and because we did not have sufficient data to fully 
investigate these issues, negatively correlated residuals and residuals close to zero were set to zero for purposes of 
generating the synthetic data used for our simulation. 
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job. Doing so would assist Anny managers in understanding the implications of changes in 
enlistment standards on academic attrition across a variety of different operational environments. 
To this end, we identified factors (and levels to these factors) that would meaningfully impact the 
interpretations Army managers make about proposed changes in enlistment standards and 
attrition rates. The specific factors included and the rationale for including each are described 
below. 

School sample size. Operationally, MOS differ in size; some MOS are larger than others. 
Therefore, the number of Soldiers receiving training for a particular MOS will also vary. When 
making decisions about raising (or lowering) enlistment standards, the school sample size {N) on 
which attrition rates are based will meaningfully impact these decisions. When attrition rates are 
based on school sample sizes that are small (e.g., A^<100), the error associated with these 
estimates will be larger. Practically, this means the "true" attrition rate could vary considerably, 
and may be quite different than the rate observed. For example, while the observed rate may be 
15%, due to error the "true" attrition rate could actually be anywhere from 9% to 21%. Because 
of this, Army personnel managers need to be careful when deciding whether to change current 
enlistment standards and how big of a change is necessary to achieve operational objectives. To 
illustrate the potential impact of error (associated with school size) on attrition rate estimates and 
the decisions based on these estimates, we varied school sample size (A^=100, 200, 400, 800, 
1600, 3200) when estimating academic attrition. The sample sizes selected represented levels at 
which we expect substantial, and practically meaningful, differences in the amount of error 
associated with estimated attrition rates. 

Range of minimum enlistment standards or cut scores. Because of differences in the 
criticality of the job or accession goals, minimum enUstment standards will vary across MOS. In 
general, as enlistment standards are raised (lowered), attrition rates are expected to dechne 
(increase). The attrition rates may also vary with enlistment standards, such that the rate by 
which attrition decreases will be steeper when standards are in the low to medium range, but 
gradually flattens out when standards are high. Attrition rates were estimated across a range of 
minimum enlistment standards (or cut scores) to provide Army personnel managers with 
information about these effects. Specifically, we estimated attrition rates for cut scores ranging 
from 80 to 120. This particular range of cut scores was selected for two reasons. First, the range 
selected is comparable to the range of cut scores currently employed by the Army operationally 
(84 to 110). Second, Army accession policy limits the percentage of accessions falling below 
AFQT category IIIB who are eligible for military service; presently, around 2%. Because of this, 
setting the minimum cut score at 80 ensures that information pertinent to all enlisted Soldiers in 
AFQT categories IIIB and above is represented in ih& simulation. Doing so accurately reflects 
the Army's current operational environment, where the overwhelming majority (98%) of its 
Soldiers fall into these categories. 

Type of MOS. MOS meaningfully differ in the nature and complexity of the tasks 
required for effective performance. Because of this, academic attrition rates will vary by MOS, 
such that attrition rates will tend to be higher (or lower) for some MOS than others. To show the 
effects of changes in enlistment standards on academic attrition across the full range of Army 
MOS, we estimated attrition rates by varying key parameters that reflected operational 
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differences in MOS, Specifically, we varied parameters reflecting differences in training 
difficulty and job complexity.* A brief description of each appears below. 

1) Training difficulty. Operationally, training for some MOS is more difficult than others 
because of the standards, length or content of its training program. To reflect 
substantive differences in training difficulty, we varied a regression parameter (the 
intercept) for predicting test scores. Higher intercepts reflect less difficult MOS, 
whereas lower intercepts reflect more difficult MOS. Conceptually, the level of the 
intercept represents how well people would be expected to perform independent of 
cognitive aptitude. In other words, it reflects average training performance as a 
function of training difficulty. Training difficulty is expected to be positively related 
to attrition rates, such that higher levels of difficulty produce higher attrition rates. 

2) Job complexity. Like civilian jobs, the occupational requirements of MOS vary in 
their complexity. To reflect substantive differences in job complexity, we varied AA 
composite-training performance validities, as performance vaUdities will vary by 
MOS (e.g., Scholarios et al, 1994; Statman, 1993). These differences reflect 
meaningfiil differences in the content of the job (Guion, 1998; Schmitt & Chan, 1998; 
Zeidner, Johnson, & Scholarios, 1997). For example, past research has shown that 
lower validities between aptitude tests and training performance are associated with 
jobs low in cognitive complexity, whereas higher validities are associated with more 
cognitively demanding jobs (Hunter & Hunter, 1984). Job complexity is expected to 
contribute to attrition rates, such that jobs high in cognitive complexity produce lower 
attrition rates, while jobs low in cognitive complexity disproportionately produce 
higher attrition rates. Conceptually, this comes about because applicants scoring 
higher on an aptitude test are more likely to be selected into or attracted to more 
complex jobs, owing to larger aptitude-performance validities. As cognitive aptitude 
is positively related to training performance (Carretta & Ree, 2000; Earles & Ree, 
1992; Hunter & Hunter, 1984; Olea & Ree, 1994; Ree, Carretta, & Teachout, 1995; 
Ree & Earles, 1991; Schmidt & Hunter, 1998), more cognitively complex jobs, by 
having a larger proportion of high aptitude trainees, should display lower overall 
levels of academic attrition. 

Two points should be emphasized regarding our handling of job complexity in the 
simulation. First, for our simulation, we did not model the aforementioned selection / 
classification process. Therefore, for purposes of our simulation the relationship 

—between aptitude-performance validities and.attrition is direct and represents a 
mathematical construction: This means that our simulation results do not reflect the 

* In varying these parameters, we kept other parameters (e.g., regression weights) fixed. An advantage to this 
approach is that it simplifies estimation and interpretation. A disadvantage is that operationally, the fixed parameters 
will change as a fimction of differences in the parameters we varied. Therefore, readers should focus on the pattern 
of estimated attrition rates as a function of the variables selected, and not the/evefa of the attrition rates. 
Additionally, while the number of tests required to complete training will vary across MOS, this parameter was kept 
fixed to the number of tests required for the particular MOS on which the computer-generated samples were based. 
This was done to simplify inteipretation of results related to training difficulty and job complexity. 
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actual aptitude distribution of trainees within an MOS, which is technically fixed 
within the simulation. Nevertheless, the function of that relationship in our 
simulation is entirely consistent with the underlying selection / classification 
mechanism not modeled. Second, readers should note that our results for job 
complexity could be interpreted in one of two ways. They can be interpreted as 
reflecting differences in attrition rates for MOS that vary in levels of job complexity, 
as complexity is meaningful associated with differences in aptitude-performance 
validities, which is our primary intention. Alternatively, results can be interpreted as 
reflecting operational differences in aptitude-training performance validities (e.g., 
differences in validities given a fixed MOS). Either interpretation is technically 
correct. As the primary aim of the study is to inform policy, however, we will 
emphasize the first interpretation in discussing the results and their implications. 

In summary, the simulation conducted reflected a mixed design, with school size (N) and 
minimum enlistment standards as within-group (or repeated) factors, and training difficulty and 
job complexity as between-group factors. This information is summarized in Table 1. 

Table 1 
Design of Simulation 

Training Difficulty 

Job Complexity 

Low Medium High 

Low 
• Af(100,200,400, 

800, 1600, 3200) 

• Cut Score (i0-l20) 

• iV(100,200,400,800, 
1600, 3200) 

• CM? ^core (80-120) 

• iV(100,200,400,800, 
1600, 3200) 

• CM/5core (80-120) 

Medium 
• A^(100,200,400, 

800, 1600, 3200) 

• Cut Score (80-120) 

• iV(100,200,400,800, 
1600, 3200) 

• CM/-Score (80-120) 

• A^(100,200,400,800, 
1600,3200) 

• CM/^ore (80-120) 

High 
• 7V(100,200,400, 

800,1600,3200) 

• Cut Score (?,0-l20) 

• A^(100,200,400, 800, 
1600, 3200) 

• CM/5'core (80-120) 

• A^(100,200,400,800, 
1600, 3200) 

• CM/5core (80-120) 

Procedure for Simulating Attrition Rates under Different Operational Scenarios 

After identifying the operational scenarios of interest to Army personnel managers, we 
simulated academic attrition rates under these different scenarios. This section is organized as 
follows. First, we briefly describe how attrition data for the computer-generated samples were 
constructed from synthetic training performance data. Second, we briefly outline the procedure 
for simulating attrition rates under the different operational scenarios described in the previous 
secfion. 

Constructing Attrition Data from Synthetic Training Performance Scores. We created a 
dichotomous outcome variable reflecting academic attrition of simulated trainees based on their 
synthetic training performance scores. The values for this variable were assigned as follows. If 
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a simulated trainee did not score above the specified minimum passing score^ (after two   • 
attempts) for one or more of the training tests, he or she was coded as an academic attrition 
("1"); if all tests were passed, the trainee was coded as not attriting ("0"). Because information 
on retests could not reliably be reconstructed from existing data, we simulated trainee retest 
behavior by assimiing that the two test attempts were statistically independent. Given that 
retraining of applicants who failed the first attempt is likely designed to give them a better 
chance of passing the second attempt, the assumption of independence between two'attempts is 
expected to lead to shghtly more conservative (i.e., higher) attrition estimates. 

Prior to running the full simulation, we calculated overall attrition rates for the synthetic 
samples generated during the pilot simulation by counting the number of simulated trainees who 
failed to pass a test (after a second attempt) divided by the total number of trainees (e.g., total 
sample size). We also computed these rates for a simulation modeUng a single attempt. These 
simulated attrition rates were then compared to the observed attrition rate from our real-world 
data. 

The simulated attrition rates from modeling two attempts ranged from 12-13%. These 
rates were comparable to the real world attrition rate of roughly 12%. Interestingly, there was a 
substantial difference in the simulated versus real world attrition rates when simulated trainees 
were only allowed a single attempt to pass each test (e.g., no retests) versus two attempts. 
Modeling the two attempts resulted in an attrition rate significantly closer (12-13% versus 40- 
45% when modeling a single attempt) to the actual, real world rate. Additionally, the simulated 
rates from modeling two attempts were somewhat higher (about 1%) than the actual attrition 
rate. This is consistent with our expectation that assuming independence would produce more 
conservative (higher) estimates, although materially the difference does not appear substantial. 
Most likely, this is due to the fact that the percentage of trainees requiring more than a single 
attempt for at least one test is generally small. Taken together, these findings lend confidence to 
the rehability of our procedure for simulating retest behavior, assuming independence across re- 
tests. :    -  

Simulating Attrition Rates under Different Operational Scenarios. As discussed earher, a 
major advantage of our simulation-based approach is the ability to assess error in estimated 
attrition rates and to demonstrate its impact on the operational decisions Army personnel 
managers make about where to set minimum enlistment standards. This was accomplished by 
generating multiple synthetic samples at varying sample sizes based on parameters that reflected 
different operational conditions Army managers are likely to encounter in the field. Simply put, 
while the synthetic samples reflect the properties of the MOS used to generate them, they are not 
exact replicas of that MOS. The parameters used to generate the synthetic samples represent 
population-level information, whereas each synthetic sample reflects the characteristics of a 
particular sample randomly drawn from that population. Because error is built into these 
estimations, there is sample-to-sample variability in the properties of the synthetic samples. 
Therefore, the samples behave in much the same way that randomly selected samples would 

All tests were fixed at the same passing score. This was done for two reasons: first, to simplify estimation; and 
second, because this information could not be reliably obtained fl-om available data. 
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behave in the real world. The larger its sample size, the more a synthetic sample will 
approximate the properties of the corresponding population (e.g., the parameters on which the 
sample was based). The smaller its sample size, the less a synthetic sample will approximate the 
properties of the corresponding population. By generating multiple synthetic samples, we were 
able to model the adverse effects of error on estimated attrition rates, so as to provide practical 
recommendations on these effects when making critical operational decisions. 

As reflected in Table 1 above, there were a total of nine conditions (e.g., Low Difficulty, 
Low Complexity) in our simulation, hi estimating academic attrition rates, the same levels of 
sample size and range of cut scores were used for all conditions (see Table 1). For technical 
documentation and accompanying SAS programs, see Appendix D. hi brief, for each condition, 
we conducted the following activities: 

1. Using the parameters relevant to a given condition, we replicated 2,000 samples at 6 
different sample sizes (e.g., 100, 200, 400, 800, 1600, and 3200); each sample 
containing synthetic training performance and attrition data. This means that for each 
condition, we simulated a total of 12,000 samples (6 x 2,000 = 12,000). The 
properties of these samples approximated the parameters specified, which were meant 
to reflect the operational conditions Army personnel managers were likely to see on 
the job. Prior to the simulation, the integrity of the procedure and SAS program for 
generating the synthetic samples had been successfully verified (see pages 13 - 14). 

2. For each of the 2,000 computer-generated samples, we estimated the recommended 
logistic regression model, by regressing attrition (a dichotomous dependent variable) 
onto synthetic AA composite scores. These regression parameters became the input 
for estimating attrition rates. 

3. For each of the 2,000 replications, we estimated academic attrition rates, using the 
 regression parameters computed (from Step 2), for a range of cut scores. This was 

done by sample size (N). As discussed previously, the differing sample sizes (AO 
reflected operational differences in school size. The range of cut scores reflected 
operational differences in minimum enlistment standards. 

4. We then averaged the estimated attrition rates across all 2,000 repUcations for the full 
range of cut scores by A^. hi the process of averaging attrition rates, we estimated the 
corresponding standard errors (SEs). When done, average attrition rates and 
corresponding SEs were compiled and outputted. For each condition, the final output 

... consisted of a single table summarizing average attrition rates (and standard errors) 
by AA composite cut score and A'^ (see Appendix B). The composite utilized in the 
simulations is General Maintenance (GM). 
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RESULTS 

Results are organized by the factors (school size, range of enlistment standards, training 
difficulty, job complexity) we varied to reflect the different operational scenarios Army 
personnel managers were likely to encounter on the job. Tables and Figures referenced in this 
section can be found in Appendices B and C, Readers should note that the attrition rates reported 
are estimates based on simulated data and are not associated with a particular MOS, Because of 
this, the rates reported should not be used to make operational decisions for a given MOS, as 
they do not represent actual MOS school attrition rates. For operational usage, readers are 
advised to apply the proposed methodology of the current study to available real-world data for 
the MOS of interest. Recommendations for doing so are detailed in the Discussion section. The 
SAS program (with documentation) for running an attrition rates analysis using actual MOS 
school data appears in Appendix E. 

School Sample Size (N) 

School sample size (iV) reflects operational differences in the number of Soldiers trained 
for a selected MOS. We varied school sample size (iV=100; 200; 400; 800; 1600; 3200) to 
represent levels at which we expected to see substantial, and practically meaningful, differences 
in the amount of error associated with estimated attrition rates. 

As evident from Tables 1 to 9 (see Appendix B)'°, attrition rates do not vary significantly 
as a function ofN. For any given cut score, the estimated attrition rate is generally the same 
irrespective of iV. This trend is most apparent when looking at Figures 1 to 9 (see Appendix C). 
For example, when viewing Figure 1, one sees that across the full range of cut scores, the 
estimated attrition rates for the varying levels of iV substantially overlap, such that there is 
basically a single line showing the trend in attrition rates by cut score. Because of the amount of 
overlap, the lines reflecting the different levels otN cannot be meaningfiiUy differentiated. 
There are small differences (about .01) in attrition rates by iV for some of the lower cut scores, 
but overall, attrition rates do not vary significantly as a function of iV^ These findings are not 
surprising given the large number of synthetic samples (2,000) generated for the simulation. 
Because of the large number of synthetic samples, the average attrition rate reported in Tables 1 
to 9 should approximate that of the corresponding population (or "true") attrition rate. 

The above findings should not be interpreted to mean that iV will not impact the observed 
attrition rate estimated fi-om a sample of MOS school data, as would be the case when this 
analysis is performed operationally. .Rather, these findings suggest that estimated attrition rates 
are not expected to be systematically biased in one direction or another (e.g., estimated attrition 
rates will always be higher or lower than the "true" attrition rate). The impact oiNon school 

Please note that when the cut score was high for some of the conditions (e.g., low difficulty, high complexity) so 
that the estimated attrition rate is close to zero, several of the 2,00Q replications for the smaller sample sizes (JV=100 
or 200) were not included in the estimation of the average attrition rate (and SE) because there was no attrition on 
which to base estimates. Because the percentage of replications dropped (out of the total) was generally small and 
zero attrition is practically not going to be a concern to Army managers, we did not correct this. 
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attrition rates (estimated from sample data) is best examined with the standard error (SE), which 
measures the variabihty of these estimates from sample to sample. Operationally, the amount of 
SE matters because it speaks to the precision of estimated attrition rates. For example, if the 
observed attrition rate is .13 (or 13%) and the SE is .04, then the^"tme" attrition rate could be 
anywhere from .05 (5%) to .21 (21%) within generally accepted levels of statistical confidence 
(about 95%). Clearly, the decision made about where to set enlistment standards would vary 
considerably depending on which of these values (i.e., 5% vs. 13% vs. 21%) most accurately 
reflects the "true" attrition rate. 

As can be seen from Tables 1 to 9, it is apparent that as A^ increases, the precision (as 
reflected in the SEs) of the estimates increases, as expected. More specifically, looking at 
Figures 10 to 18, one sees two notable trends regarding the behavior of SE. First, SE is inversely 
related to A^, such that as TV increases, SE decreases. From TV = 100 to 200, SE is large and the 
reduction in SE (from 7V= lOO to 200) is modest, roughly 26 - 35%, (see Figures 19 - 27). 
Moving to iV= 400 further reduces SE (about 48 - 55% from A^= 100), but the resulting SE is 
still large relative to the attrition rate. Starting at iV= 800, we start to see a meaningfiil reduction 
in SE (about 62 - 69%), that progressively levels off as iV doubles from 800 to 1600 (74 - 79%) 
and then again to 3200 (81 - 83%). 

The second frend evident from Figures 10 to 18, is the relationship between SE and cut 
score. Specifically, as the cut score is raised, SE decreases. However, this decrease in SE is 
largely a consequence of the corresponding decrease in the magnitude of attrition rates. That is, 
smaller absolute standard errors are expected when estimating the lower attrition rates associated 
with higher cut scores. This is more visible when looking at Figures 28 to 36. As can be seen 
from these figures, the amount of SE relative to the magnitude of the attrition rate (reflected in 
the coefficient of variation) appears to be uniform across the cut score range except at the 
highest, most exfreme score in the range (where AA = 120). 

In summary, school size significantly impacts the level and accuracy of attrition rates 
estimated from sample school data. Most importantly, these estimates are likely to be less biased 
and more precise with larger A^. This relationship can have major implications for the 
operational decisions Army personnel managers must make regarding where to set minimum 
enlistment standards. 

Range of Minimum Enlistment Standards 

The range of minimum enlistment standards reflects operational differences in the 
criticality of the job or accession goals associated with a targeted MOS. We simulated attrition 
rates across a range of cut scores (80 to 120) Army personnel managers are likely to use 
operationally when setting enlistment standards. 

As expected, the raising (or lowering) of cut scores is meaningftilly associated with 
academic attrition, such that attrition rates are higher when cut scores are lower. Referring back 
to Tables 1 to 9, and Figures 1 to 9, and ignoring other factors (e.g., training difficulty, job 
complexity), one sees that attrition rates steadily decline as the cut score increases. This trend 
holds for all levels of A^. For example, looking at Figure 5, the attrition rate (with corresponding 
cut score in parentheses) drops from .30 (80) to .15 (100) to .05 (120). Likewise, as the cut score 
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increases, the SE decreases (see Figures 10 to 18); although, as reported in the preceding section, 
the size of SE relative to the imderlying attrition rate generally appears to be uniform. 

hi summary, estimated attrition rates are related to cut scores, such that higher cut scores 
are associated with lower attrition rates. However, the relative precision of these estimated 
attrition rates appears constant across cut score. At an operational level, this means that the 
accuracy of sample-based attrition rates is expected to be about the same iirespective of cut 
score. 

Training Difficulty 

Operationally, the training difficulty of MOS will vary because of differences in the 
standards, length, or content of training. We varied a regression parameter (the intercept) for 
predicting test scores to reflect low, medium, and high training difficulty. This enabled us to 
project academic attrition across a range of MOS that varied in training difficulty, just as MOS 
would in the field. 

As expected, academic attrition meaningfiiUy varies as a ftmction of training difficulty. 
As can be seen in Tables 1 to 9 and Figures 37 to 40, and ignoring other factors (e.g., job 
complexity), attrition rates are higher when training difficulty is high, and lower when difficulty 
is low. For example, looking at Figures 37 to 40, one sees that attrition rates are consistently 
related to training difficulty, irrespective of iVand cut score, such that greater training difficulty 
is associated with higher attrition rates. However, the differences in attrition rates by training 
difficulty progressively get smaller as the cut score increases. For example, where iV= 400 (see 
Figure 38), estimated attrition rates differ, on average, about .15 (15%) for a cut score of 80, 
about .12 (12%) for a cut score of 100, and .05 (5%) for a cut score of 120. 

There are two trends to note related to the estimated SE (precision) of observed attrition 
rates (see Figures 41 to 43). First, SE varies by N, irrespective of cut score. Consistent with 
earlier findings, and as expected, the SE drops as iV increases. This trend holds for all levels of 
training difficulty. The second trend of note is that the SE, on average, is smaller when training 
difficulty is high, except for the upper cut score range (e.g., 100 - 105). Likewise, except for the 
lower cut score range (e.g., 80 - 85), SE is hi^er, on average, when training difficulty is low. 
This is unusual, as we expect SE to reflect differences in the magnitude of the attrition rates 
between difficulty levels (e.g., lower attrition rates should be associated with lower SE, and 
higher rates with higher SE). 

In summary, consistent witkour predictions, attrition rates are substantively related to 
training difficulty, such that the more difficult the training the lower the attrition. The relative 
precision of the attrition rate estimates (reflected by SE) appears to be relatively equivalent 
across difficulty level, particularly at higher levels ofN. Practically, this means that sample- 
based attrition rates are expected to exhibit similar levels of imprecision irrespective of the 
difficulty level of the targeted MOS, We consider the practical implications of these findings 
fiirther in the Discussion section. 
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Job Complexity 

Like civilian occupations, Army MOS vary in their complexity. To reflect substantive 
differences in job complexity, we varied AA composite-training performance validities to reflect 
meaningful differences in the content of the job. Specifically, past research has shown that lower 
validities between aptitude tests and training performance are associated with jobs low in 
cognitive complexity, whereas higher validities are associated with more cognitively demanding 
jobs (Hunter & Hunter, 1984). As with training difficulty (see above), varying performance 
validities enabled us to simulate attrition rates for the full range of MOS Army personnel 
managers will encounter operationally. 

As predicted, academic attrition is meaningfully related to job complexity, although there 
are some patterns related to SE that we thought were unusual. As can be seen in Tables 1 to 9 
and Figures 44 to 47, and ignoring other factors (e.g., training difficulty), attrition rates are 
generally higher when cognitive complexity is low, and lower when cognitive complexity is 
high. As a specific example, looking at Figures 44 to 47, one sees that attrition rates are 
meaningfully associated with cognitive complexity, irrespective of A'^ and cut score, such that 
greater cognitive complexity tends to correspond to lower attrition rates. Unlike training 
difficulty, the relative drop in attrition rates across the cut score range is substantially greater 
when job complexity is higher. For example, in the middle cut score range fromi 90 through 110, 
the 17-point drop (from 49% to 32%) represents a 35% relative decrease in attrition. In contrast, 
the 14-point drop (from 23% to 9%) and 16-point drop (from 18% to 2%) for medium and high 
job complexity, while not too different in comparison to the 17-point drop for low complexity, 
represent, respectively, 61% and 89% decrease in attrition. These observations are consistent' 
with the higher discrimination power possible with higher validities. 

Comparable to the findings for training difficulty, there are two trends worth noting with 
respect to the estimated SE (precision) of observed attrition rates (see Figures 48 to 50). First, as 
expected, the SE decreases as A^ increases irrespective of cut score. This trend holds for all 
levels of cognitive complexity. A second trend that was quite unusual is that the SE is greater 
for high complexity compared to low complexity jobs in the lower cut score range (e.g., 80 - 85), 
but is lower in the higher cut score range (e.g., 100 - 105). This trend holds even though the 
attrition rate for high complexity jobs is consistently lower compared to low complexity jobs. 
This is unusual in that we typically associate lower SE with the lower magnitudes of attrition 
rate. 

In summary, there is a significant relationship between job complexity and attrition rates, 
such that (generally) themore complex the job the lower the proportion of Soldiers failing to 
successfully complete training requirements. Equally important is that the relative drop in 
attrition associated with increasing the cut score is substantially greater for higher vahdities or 
job complexity. Please note that operationally all these findings can also be interpreted as 
applying to differences in AA composite-training performance validities (low, medium, and 
high), as validities will likely vary across MOS within the same level of complexity. 
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DISCUSSION 

To facilitate our discussion, this section is organized into three main parts. First, we 
place the results of our simulation in context, by integrating our findings on the effects of raising 
(or lowering) enlistment standards on academic attrition. In particular, we consider the practical 
implications of these findings. Second, we provide concrete recommendations for conducting 
analyses of attrition rates operationally. Specifically, we make recommendations regarding: (a) 
the collection and identification of requisite data for analysis; (b) planning an attrition rates 
analysis; and (c) interpretation of the effects of adjusted cut scores on attrition. These 
recommendations are meant to serve as a guide to Army researchers and personnel managers 
responsible for performing attrition rates analysis for decision-making purposes. Finally, we 
conclude our discussion by making suggestions for future research. 

Effects of Changing Minimum Enlistment Standards on Academic Attrition 

Results fi-om our simulation showed that, consistent with previous research (e.g., Carretta 
& Ree, 2000; Earles & Ree, 1992; Hunter & Hunter, 1984; Olea & Ree, 1994; Ree et al., 1995; 
Ree & Earles, 1991; Schmidt & Hunter, 1998), cognitive aptitude is a good predictor of training 
performance. This finding extends recent Army research on the validity of the new AA 
composites (e.g., Zeidner et al, 2000) by using an updated database and a criterion specific to 
training success. Therefore, knowledge of enhsted Soldiers' cognitive aptitude, reflected 
operationally in AA composite scores, is a useful tool for informing training decisions. 
Practically, this means that the setting of minimum enhstment standards can (and should) impact 
the level of academic attrition. Consistent with this, our results confirmed that, in general, 
raising enlistment standards decreases academic attrition, while lowering these standards 
increases attrition. However, when interpreting this tendency, decision-makers should be 
cautious, as it depends on several factors. These factors could significantly impact how the 
effects of raising (or lowering) enlistment standards on attrition rates are interpreted and, 
thereby, what decision is best for achieving a desired level of attrition. These factors and their 
practical implications are as follows. 

First, the level and rate of change in attrition is dependent on the MOS. Specifically, 
MOS vary in training difficulty and job complexity. (Readers are reminded that statements made 
about job complexity apply equally to AA composite-training performance validities.) These 
characteristics impact academic attrition. For example, attrition rates will be higher for MOS 
whose training is more difficult (apart from cognitive requirements); and attrition rates will 
hkely be higher for MOS whose job requirements are less cognitively demanding (as discussed 
earlier). This means that for some MOS reducing academic attrition, by way of enhstment 
standards, may be operationally difficult. For these MOS achieving targeted levels of attrition 
rates may be infeasible, as they would require a substantial raise (or drop) in enhstment standards 
that would not be feasible for operational reasons (e.g., accession goals). For example, for MOS 
where training difficulty is high, reducing attrition rates by 50% would necessitate a roughly 20 
to 25-point adjustment in the requisite cut score; reductions of 33% (one-third) would require a 
10 to 15-point adjustment. While major reductions (e.g., 10% or more) in attrition rates require 
significant changes in enlistment standards for all MOS, for some MOS reaching a particular 
(low) level of attrition or achieving a substantial drop in attrition is especially problematic. One 
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potential explanation of why academic attrition is higher in some of the simulated MOS than 
others, specifically those low in joh complexity, is that cognitive aptitude appears to carry 
limited utility as a predictor of training success. Operationally, this also leads to a greater 
percentage of person-job mismatching between trainees and MOS, which could additionally 
contribute to attrition. 

In practical terms, these findings suggest tha:t reducing or reaching a desired level of 
academic attrition in some MOS (e.g., those with high training difficulty, those with low job 
complexity) may be best achieved by methods other than adjustments in minimum enlistment 
standards, fi-om which it follows that training decisions could be greatly improved, particularly 
for some MOS, by incorporating information other than cognitive aptitude into personnel and 
assignment decisions. _   _■ ;: :   ■   ;   .    ^ 

A second factor that substantially impacts the interpretation of attrition rates is school 
sample size (AO- Operationally, MOS attrition rates observed and reported to Army managers for 
making personnel decisions, such as setting minimum enlistment standards, are sample-based 
estimates, as opposed to the population attrition rates, and therefore, contain error. For instance, 
looking at Table 5, A/^ = 200 and a cut score of 95, one sees that the estimated attrition rate is .19 
(19%). However, treating this as the sample-based estimate it is, when we take into account 
error (measured by the standard deviation of the estimated attrition rate), the true attrition rate is 
really anywhere fi-om .11(11%) to .27 (27%). This is extremely important fi-om an operational 
perspective. 

To illustrate, consider that an Army personnel manager's goal is to achieve an academic 
attrition rate of 15%. The observed attrition rate, based on available sample data (A^=200), is 
presently around 19%. On its face, this means that attrition is currently off by about 4% fi-om the 
designated target. To reach his/her specified goal (15%), the manager will most likely need to 
increase the cut score, so as to reduce attrition by the desired amount (4%). This translates into a 
5 or 6-point increase in the current cut score.-However, if error is taken into account, we see that 
the "true" attrition rate is actually somewhere between 1 l%.and 27%. This suggests that attrition 
could already be at the targeted level (15%)), in which case an increase in the current cut score is 
not needed. On the other hand, it also suggests that attrition is potentially worse than it appears 
(over 19%)), in which case a bigger increase in the cut score is needed to reach the manager's 
operational goal with confidence. The course of action the Army manager should take depends 
on which of these scenarios is "correct." However, it is difficult to tell which scenario is most 
"correct", given the level of error (and inaccuracy) in the observed attrition rate. This is not 
trivial, since raising the cut score (ID lower attrition) comes with, a.potential tradeoff in meeting 
accession goals. If MOS attrition is already^t its targeted level, then increasing the cut score 
could adversely, and unnecessarily, impact accession goals; a tradeoff, which in this case, a 
manager did not have to make. More precise estimates of these rates would ultimately make this 
decision-making process easier and would avoid forcing managers to make poor decisions. 

The point raised in the example above is that we can never be 100%) sure about the "true" 
attrition rate for a given cut score from sample data. Consequently, what changes in the cut 
score are needed to achieve a targeted attrition rate is never certain. Fortunately, however, the 
level of uncertainty associated with cut scorechanges^goes down-as the sample size is increased. 
To illustrate, we continue the example above by referring to Figures 51 and 52. The points on 
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ihe curve represent the "trae" attrition rate that is unknown and unobservable from sample data. 
The vertical bars represent the likely range of attrition rate estimates that we are going to 
actually observe using sample sizes of 200 or 800. (Note that the end points of the vertical bars 
are two SE from the center; approximately, there is 95 percent probability that the estimated 
attrition rates fall within the interval.) The potential observed rates represented by the vertical 
bars will become the basis of cut score decisions. Using a sample size of 200, an Army manager 
will have to raise the cut score to 115 in order to be statistically confident that the attrition rate 
will be no more than 10%. The interval from 107 to 114 represents "missed opportimities" to set 
a lower cut score that can achieve the 10% target; this is due to imperfect sample information. 
Using a sample size of 800, the manager can set the cut score to a lower value of 1H and be 

. equally confident that the attrition rate would be 10% or below. In this case, the interval of 
missed opportunities is much shorter, from 107 to 110. In other words, increasing the sample 
size minimizes the missed opportunities to adjust the cut score to the minimum required to 
achieve a targeted attrition with confidence. Operationally, this means preserving as much of the 
eligible applicant pool as possible. 

In summary, the preceding examples highlight how error can complicate operational 
decisions: (a) about whether to adjust current enlistment standards; and (b) how much to adjust 
these standards to achieve desired objectives. 

Results from our simulation show that the amount of error in sample-based attrition rates 
is strongly related to school sample size (N). Specifically, the smaller the sample size, the more 
inaccurate (and potentially misleading) is the estimated attrition rate based on sample data. The 
bigger the sample size, the more accurate (and less misleading) is the estimated attrition rate. In 
practical terms, our findings suggest that the accuracy of sample-based attrition rates is positively 
related to school sample size (N), and decision-making will be greatly improved by taking into 
account sample size when estimating MOS attrition rates. 

Recbmmendations for Analyzing Academic Attrition Rates 

In this section, we detail recommendations for analyzing academic attrition rates 
estimated from MOS school sample data. Specifically, we make recommendations pertaining to 
the: (a) collection and identification of data prior to analysis; (b) specification and estimation of a 
regression model; and (c) interpretation of adjusted cut score effects on attrition rates. 

Data Collection 

As evident 'from the preceding discussion (and earlier sections of this report), issues 
related to the identification and collection of data for these analyses are critical, as the proposed 
methodology will only be as good as the available data. Our recommendations are divided into 
two parts. First, we make recommendations deaUng with planning an attrition rates analysis 
(e.g., prior to actually collecting or identifying requisite data). Second, we make 
recommendations related to the collection and/or identification of data for analysis. 

Planning an Attrition Rates Analysis. Prior to collecting or identifying data for analysis, it 
is important to carefully consider school sample size (iV) and magnitude of desired change 
(increase or decrease) in attrition. It is strongly recommended that (any) analyses not take place 
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without addressing these issues. Considering school sample size and magnitude of the desired 
change in attrition will minimize error and maximize the relative precision of estimated attrition 
rates. Operationally, this will enhance the decisions made by Army persoimel managers and 
strategic plarmers. 

With respect to school sample size (AO, our simulations show that small sample sizes 
(A^<200) are problematic because estimated attrition rates based on these sample sizes are 
associated with a large amount of error. As a result, we recommend that, where possible, 
analyses not be conducted on N's less than 400. For best results, we recommend an TV of 800. 
There are two reasons why we prefer an iV of 800. First, an while A^ of 400 reduces error by 
about 50% (from an A'^ = 100), an N of 800 cuts error, on average, by two-thirds (see Figures 19 
to 27). That represents a considerable gain imprecision, ovenand above that expected for an A'^of 
400. Second, and related to this first point, there is a tradeoff between A'^ and practical data 
collection and quality control (QC) issues. Although, the bigger the A^, the smaller the error, 
larger sample sizes are not always practically feasible, due to limited time and resources. In 
addition, larger sample sizes are associated with increased data management and QC issues (e.g., 
more time spent managing data, greater percentages of missing or inaccurate data). For these 
reasons, there is a point of diminishing returns, where a higher A^^ does not yield substantially new 
information. For example, for sample sizes from 100 to 800, every increase in A'^ by 100 
produces an (average) reduction in error of about 8%. From sample size 800 to 1600, the 
(average) reduction drops to 1-2%. For sample sizes from 1600 to 3200, the (average) reduction 
drops even further to less than 1% (for every increase in TV^of 100). This trend is visible in 
Figures 19 to 27. As evident from these figures, doubling the sample size results in 
progressively smaller reductions in error, going from roughly 30%) (A^= 100 to 200) to 20%) (A^ = 
200 to 400) to 15% (A^= 400 to 800) to 10% (A^= 800 to 1600) to 7% (A^= 1600 to 3200). In 
summary, there is a point where the costs of greater A'^ (e.g., time collecting data) outweigh the 
benefits (e.g., smaller error), and that point appears to be around an A" of 800. 

Having made the above recommendations; we acknowledge that an A'' of 800 (or even 
400) may not always be feasible, particularly for MOS that train small numbers of recruits (A^< 
50) per year. For those MOS, we suggest the following. First, we advise combining data from 
multiple fiscal years (FYs) to achieve a preferred level of A^. Second, if combining multiple FYs 
is not practical, we suggest combining data from comparable MOS (e.g., similar training and job 
requirements). The procedures for identifying comparable MOS are beyond the scope of the 
present study, but procedures are available within the applied personnel psychology literature for 
synthesizing data from multiple jobs for purposes of making personnel decisions. This particular 
suggestion holds for MOS that are,new and for which there is little to no historical data from 
previous FYs. Third and finally, should less than preferred levels t)fA^ be available, we 
recommend that school proponents and Army personnel managers be conservative when 
interpreting estimated attrition rates. 

The second factor to consider prior to performing an attrition rates analysis is the desired 
change (increase or decrease) in the attrition rate. We recommend not targeting a change in 
attrition arbitrarily. This is important because the magnitude of the desired change (large or 
small) will impact how high or low the cut score should be adjusted to achieve the desired 
attrition rate. The size of the prospective traitiing pool is impacted the more one has to adjust the 
cut score to be reasonably confident that a targeted change in attrition wHl be achieved. From an 
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operational perspective, this is not trivial since inadvertently excluding enlistees from an MOS's 
training pool could decrease the number of eligible enlistees in the pool and adversely impact 
one's accession goals. For instance, using the earlier example, the cut score needed to be 
adjusted to 115 or 111 if using samples sizes 200 or 800, respectively, to be confident that the 
true attrition rate is not more than 10 percent. Suppose the current cut score is 104, for which 
approximately 42% of the youth population is eligible." Then the percentage of the eligible pool 
will drop by 19 percentage points (from 42% to 23%) if the cut score is adjusted to 115, but will 
only drop by 13 percentage points (from 42% to 29%) if it is adjusted to 111. The latter is closer 
to the minimum possible drop of six percentage points (from 42% to 36%) if we have perfect 
information and are able to adjust the cut score to 107, which would yield the 10%o targeted 
attrition rate. 

In summary, given a fixed target attrition rate, the sample size (N) chosen for analysis 
represents a frade-off between the short-term costs associated with data collection and 
management versus the long-term savings related to recruiting, that is generally made possible 
by not having to substafitially increase the cut score. 

Collecting or Identifying Requisite Data. Once the school sample size and desired change 
in attrition have been addressed, data can be collected, or alternatively, existing data may be 
identified for performing the attrition rate analysis. The issues to be considered at this stage are: 
(a) the number of fraining classes to include in the analysis; (b) accuracy of data; (c) missing 
data; and (d) criterion contamination. 

First, regarding the number of classes to include in the analysis, most likely data will 
need to be collected from multiple classes to reach recommended levels of iV(e.g., 400 - 800). 
Practically, classes currentiy in session should be excluded from the analysis. An important 
statistical issue related to multiple classes is the non-independence of observations from trainees 
belonging to the same class, and potentially, across classes. This non-independence could be due 
to a variety of factors, such as multiple classes having the same instructor. Non-independence, if 
not addressed, could underestimate error. The present methodology does not take this into 
account, but fixture research on this issue is highly recommended. 

Second, with respect to the accuracy of collected or existing data, there are several steps 
that can be taken to ensure data integrity. These steps are extremely important, as the quality of 
the data will significantly impact the results of any analyses, and operationally, decisions made 
based on the results. Prior to data collection, it is recommended that efforts be made to 
standardize data collection and minimize potential data entry errors. These could include 
standardizing data entry protocols, the development of a single database to which all data will be 
entered, or the creation of fields for screening data for errors upon entry (where the distance 
between the original data source and the recorded data is shortest). Post-data collection, it is 
highly recommended to perform a set of data screening (or QC) procedures. These procedures 

This approximation is based on a normally distributed AA score with mean equal to 100 and standard deviation of 
20. 
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would include checking for out-of-range values and missing data.^^ If data screening identifies 
significant problems, additional data collection may be warranted. In general, it is best if these 
problems can be avoided up front by taking steps (see above) to minimize potential problems as 
data are collected. In the long run, doing so will substantially reduce the time and resources 
expended in collecting data. 

Third, specific to missing data, those performing attrition rates analysis are advised to 
check the percentage of cases missing data and to examine the nature of missing data (e.g., 
random versus not random). Sizeable percentages of missing data are problematic because they 
could contribute to estimation problems when running the analysis. Likewise, data not missing 
at random could seriously bias results, as the cases with complete data may differ significantly 
from those missing data.'^ Where possible, and the accuracy of doing so can be verified using 
available data, it is recommended that missing data be filled in prior to analysis. This may not 
always be possible, but can be done when necessary data are available. For example, if data on 
output codes are missing for some cases but complete training performance data is available, the 
correct output code can be imputed based on the existing data and knowledge of the cut scores 
for the different training tests (e.g., a failing grade on at least one of the tests results in the trainee 
being classified as "attrit"). Generally, it is preferable if missing data can be avoided by taking 
steps to minimize incomplete records when data are collected. 

Fourth, those performing an attrition rates analysis are likely to encounter possible 
criterion contamination. This occurs when a trainee's output code is inconsistent with training 
performance data (e.g., trainee failed one or more tests, but output code indicates that the student 
graduated). There are several reasons why criterion contamination may be present (e.g., data 
entry error, trainee warrants special exemptions). Irrespective of the reason, criterion 
contamination is problematic in that it biases results. To reduce the potential bias resulting from 
criterion contamination, it is recommended that: (a) non-academic attritions be excluded from 
the analysis; and (b) the aUgnment between output codes and training performance data be 
checked for discrepancies (e.g., output code indicates trainee graduated, but training performance 
data shows that he/she did not pass one or more tests). When verifying the integrity of the output 
codes, check if the percentage of discrepancies matches what is to be expected, as most MOS 
will probably contain some percentage of trainees passed for special exemptions. If the 
percentage of cases with discrepancies is within the expected percentage (of total cases), these 
problem cases can simply be aligned to make the output code reflect the "true" academic ti-aining 
outcome. If the percentage of cases is greater than expected, the integrity of this information is 
suspect and additional data collection may be warranted. 

Interpreting the Effects of Adjusted Cut Scores on Attrition Rates 

There are several issues that should be considered when interpreting the effects of 
adjusted cut scores on attrition rates. 

See Tabachnick and Fidell (1996) for a practical and comprehensive overview of data screening procedures. 

" See Roth (1998) or Switzerand Roth (2002) for guidelines and suggestions on dealing with missing data. 
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First, as evident from the results of our simulation, interpretation must account for the 
impact of school sample size (N) on the accuracy and precision of observed attrition rates. It is 
strongly recommended that this factor be considered when interpreting the results of an attrition 
rates analysis, as it could substantially influence the operational decisions made by Army 
personnel managers and strategic planners. Accuracy and precision considerations also apply 
when contemplating adjusted cut score effects on persormel outcomes other than attrition rates 
(e.g., demographic representation). For example, when examining other personnel outcomes in 
conjunction with attrition rates, the same issues (e.g., error, magnitude of expected change) are 
pertinent and should be taken into account when interpreting these effects. 

Second, it should be noted that not all attrition is intrinsically "bad." This is why a 0% 
attrition rate is not a meaningful (or practically feasible) operational goal. To some degree, the 
seriousness of attrition rates depends on who is failing to complete training. For example, if 
those failing to complete training are poor quaHty recruits not hkely to complete their first-term 
enlistment or satisfactorily meet minimum performance standards, then attrition is serving a 
functional, healthy puipose. It is possible that there is a level at which attrition is positively 
contributing to overall mission performance (as a whole). We recommend that this point be 
considered when both determining the expected change in attrition and when interpreting 
adjusted cut score effects. 

Finally, it is advisable to consider if changing cut score is always the best available 
means for managing academic attrition. Operationally, altering MOS cut score is just one of 
several strategies (e.g., adjusting passing grades, revising content and delivery of training, 
shortening the number of tests required to graduate, etc.) for minimizing attrition. As seen from 
our simulation, substantial reductions (e.g., 33%-50%) in attrition are practically not feasible 
without major adjustments in minimum enUstment standards. Therefore, to achieve desired 
levels of attrition, it is recommended that Army personnel managers and strategic planners 
consider combining cut score adjustments with other personnel management strategies. This 
may be particularly advantageous when lowering the cut score to meet accession goals, as 
decreases in enlistment standards are associated with increases in attrition rates. It may be 
possible to mitigate these increases by implementing proposed cut score adjustments in 
combination with other strategies. 

Suggestions for Future Research 

The following are suggestions for future research that would further enhance our 
understanding of training attrition and the effects of changing minimum enlistment standards for 
the Army (as a whole). These suggestions would greatly contribute to our knowledge of factors 
contributing to attrition, and more practically, improve the decision-making of Army personnel 
managers and strategic planners. 

Expanding the Model for Informing Related Personnel and Training Decisions 

For the present study, the primary goal was to model the effects of changes in enlistment 
standards on academic attrition for purposes of informing the setting of these standards. 
However, Army school proponents, personnel managers, and strategic planners may be 
interested in extending the current model to inform other related personnel and training 
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decisions. For example, as evident from our results, for some MOS, understanding the effects of 
enlistment standards on attrition may not be especially informative for determining how best to 
minimize attrition. Therefore, school proponents of those MOS may be interested in 
understanding the effects on attrition when qualification standards other than cognitive aptitude 
(e.g., medical status) are adjusted. Likewise, strategic planners may be interested in assessing 
the effects of changes in enlistment standards on accession goals for different demographic 
groups. Both of these examples, along with others, could be addressed by extending the current 
model to include variables other than cognitive aptitude. The following are variables that could 
be added to the current model for purposes of supporting personnel and training decisions related 
to the current model's purpose. 

While cognitive aptitude is a good predictor of training performance (e.g., Earles & Ree, 
1992; Hunter & Hunter, 1984; Olea & Ree, 1994; Ree & Earles, 1991), in many cases failure to 
complete training is not a function of lack of abihty (Ree & Carretta, 1999). One candidate that 
might account for attrition beyond cognitive aptitude is educational status. Historically, military 
studies show that educational status, specifically high school completion status, is the single best 
predictor of first-term attrition, even after controlling for age, cognitive aptitude, and other 
personal characteristics (Laurence, 1984, 1987; Laurence, Naughton, & Harris, 1995). There are 
two possible explanations for this. 

First, the types of competencies and skills necessary to complete a regular high school 
diploma (or two full years of college) maybe similar to the skills predictive of training success. 
By earning a regular high school diploma, or other educational credential requiring a similar 
degree of discipline and persistence (e.g., college), an individual has demonstrated the ability to 
learn in a formalized and highly structured environment, an environment comparable to that of 
Army training programs. 

A second potential explanation for the relationship between educational status and 
attrition is that educational completion status is a surrogate for attributes besides cognitive 
aptitude, such as motivation or personality. An extensive body of research shows that these 
characteristics are predictive of job and training performance across a variety of occupations 
(Barrick & Mount, 1991; Barrick, Mount, & Judge, 2001; Hough & Fumham, 2003; Judge & 
Hies, 2002). In addition, there is strong evidence that these characteristics meaningfully add to 
the prediction of job and training performance over and above cognitive aptitude (Hough & 
Fumham, 2003; McHenry, Hough, Toquam, Hanson, & Ashworth, 1990; Schmidt & Hunter, 
1998). These findings suggest that assessing characteristics beyond cognitive aptitude could 
greatly contribute to predicting training performance. 

Medical and health-related factors constitute another potential candidate for inclusion in 
models of training attrition (Laurence et al., 1995). For example, in a recent study with Navy 
recruits, researchers found that self-reported medical and health-related factors were stronger 
predictors of first-term attrition than educational status or cognitive aptitude (Larson, Booth- 
Kewley, & Ryan, 2002). This finding is consistent with recent U.S. government reports on 
military screening practices emphasizing the role of medical and health-related factors in attrition 
(U.S. General Accounting Office, 1997; 1998; 2000). These factors may be especially pertinent 
to predicting success in-MOS requiring high levels of physical and mental endurance, and for 
predicting attrition during training due to non-academic reasons. 
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In summary, expanding the current model to include factors beyond cognitive aptitude as 
predictors could greatly benefit Army personnel managers and strategic planners. Extending the 
model will aid decisions on how best to reduce attrition, particularly when changes in enlistment 
standards may be insufficient for achieving a targeted level of attrition. 

Predicting Trainee Re-Test Performance 

Operationally, trainees have the opportunity to retake tests that they failed to pass on the 
first attempt. Specifically, trainees are permitted a second attempt for all required tests not 
passed when first administered. The present study simulated retest behavior assuming 
independent test attempt, as we were unable to examine the factors contributing to retest 
performance. Knowledge of factors explaining retest performance could be incorporated into the 
attrition model and, consequently, improve its predictive performance. 

Possible factors that account for retest success, include those factors mentioned above 
(eg,, education, motivation, personality, medical/health-related variables), plus variables such as 
self-efficacy. Self-efficacy reflects an individual's beUefs about his/her task capabilities, and has 
been shown to be a powerfiil predictor of learning and training performance (Cannon-Bowers, 
Sal^, Tannenbaum, & Mathieu, 1995; Gist, Schwoerer, & Rosen, 1989; Martocchio, 1994; 
Mathieu, Martineau, & Tannenbaum, 1993; Salas & Cannon-Bowers, 2001), Research shows 
that features of the training environment (e.g., method, content, instructor), in particular the 
feedback trainees receive, can contribute to a trainee's self-efficacy and subsequent performance 
(Cannon-Bowers et al,, 1995; Eden & Ravid, 1982; Gist et al,, 1989; Mathieu et al, 1993), 
Practically, this is valuable to know, since in the long run, it may be more cost-efficient for the 
Army to develop and implement guidelines for delivering effective training feedback Army-wide 
(and thereby, benefit the Army as a whole), as opposed to instituting changes in minimum 
enlistment standards for individual MOS. Further, as self-efficacy has been identified as a means 
for reducing group differences in test performance (e.g., Hough, Oswald, & Ployhart, 2001; 
Sackett, Schmitt, EUingson, & Kabin, 2001), these strategies may prove beneficial in achieving 
the demographic representation Army personnel managers seek for targeted MOS, without 
sacrificing overall performance. 

Modeling Adjustments to Minimum Enlistment Standards from a Multiple Job Context 

Most training research, the present study included, produce results that are fi-amed in a 
single job context. How well these findings apply to a multiple job context (e.g., Zeidner et al., 
1997), such as the Army's, is less clear. Future research would benefit from investigating and 
modeling issues of interest to Army personnel managers (e.g., setting minimum enlistment 
standards) from a multiple job context. In particular, fiiture research that examines these issues 
fi-om a more macro perspective, like that evident in classification research (e.g,, Johnson et al, 
1992; Zeidner et al., 2000), would be informative. For example, future research should consider 
how adjustments in cut scores for one MOS impact the attrition rates of other MOS, Related to 
this work would be the development and vaMdation of methodologies for maximizing a criterion, 
comparable to overall performance (e,g,, MPP) that characterizes military classification research. 
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Modeling the Relationship between Training and On-the-Job Performance 

Future research might consider the potential tradeoffs between training attrition and 
subsequent job performance for the Army as a whole. These tradeoffs (and their effects) are 
presently missing in both Army training and classification research. For instance, setting high 
enlistment standards will likely increase the percentage of rejected applicants (for the Army as a 
whole), but will also likely increase overall job performance, as the more capable Soldiers are 
retained and receive high quality training. Alternatively, lowering enlistment standards may 
reduce the percentage of rejection, but at the same time negatively impact overall performance, 
by increasing the retention of poor performers and reducing the overall quality of training that all 
recruits receive. 

Methodologies that model these potential tradeoffs could greatly assist decision-makers 
in identifying strategies that satisfy operational goals associated with both (e.g., training and 
solder performance on the job). For example, by lengthening or altering the content of its 
training programs, it might be possible for the Army to both control attrition, while maximizing 
overall job performance. Practically, this could also translate into lower enlistment standards 
making it possible for the Army to increase the eligible accession pool and meet accession goals 
without the associated trade-offs (e.g.. Soldier performance). From an operational perspective, 
these methodologies would be especially important when changes in the Army's recruiting 
environment make it seem that potential tradeoffs between training effectiveness and Soldier 
performance cannot be avoided. 

Conclusion 

Army personnel managers frequently need to make tradeoffs between Soldier numbers, 
quality, training effectiveness, and a host of other factors when making personnel management 
and training decisions. The purpose of the present study was to propose and demonstrate a 
logistic regression-based approach for estimating academic attrition rates from technical training 
school. This approach enables Army personnel managers and strategic planners to evaluate the 
aforementioned tradeoffs when making decisions about where to set minimum enlistment 
standards. To demonstrate the approach, we conducted a large-scale simulation study that 
simulated attrition rates under different operational scenarios Army managers are likely to 
encounter on the job. SAS programs (with documentation) for running an attrition rates analysis 
on MOS school data using the proposed approach are available in Appendix E. 

The major findings of our simulation are threefold. First, a simple approach based on 
logistic regression using only cognitive aptitude information is adequate for evaluating the 
impact of changes in minimum enlistment standards on academic attrition for MOS with medium 
complexity/validity or greater. For some MOS, especially those with low difficulty or low 
complexity/validity, reducing or reaching a desired level of academic attrition may be best 
achieved by methods other than adjustments in minimum enlistment standards. 

Second, school sample size (AO, on which academic attrition estimates are based, can 
significantly impact the quality of the decisions made based on these estimates. Operationally, 
this has implications about whether io diud how much to adjust enlistment standards to achieve 
desired objectives. A cost-benefit analysis indicated that a sufficiently large sample size allows 
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smaller changes in minimum enlistment standards in order to achieve a targeted attrition rate 
with high confidence, which in turn translates to potential savings in terms of the size of the 
eligible apphcant pool. Specifically, we observed that larger sample size (N > 400) is more 
likely to produce more accurate estimates and thereby, better quality decisions. 

Third, personnel management and training decisions could be greatly improved in some 
cases by incorporating information other than cognitive aptitude. For example, as evident from 
our results, for some MOS, understanding the effects of enlistment standards on attrition may not 
be especially infonnative for determining what strategy is best for minimizing attrition. 
Therefore, school proponents of those MOS may be interested in understanding the effects on 
attrition from adjusting enhstment standards (e,g,, educational requirements) other than cognitive 
aptitude. In particular, MOS with low difficulty or low complexity/vaKdity could benefit from 
extending the current model with this additional information. 

There are a number of practical recommendations for performing and interpreting this 
analysis that would aid operational decisions. We presented these recommendations and 
suggested several areas for future research that could greatly extend the proposed approach. 
Research in these suggested areas would further enhance the effectiveness of the difficult, but 
strategically important, decisions Army managers must make. 

34 



REFERENCES 

Barrick, M.R., & Mount, M.K. (1991). The Big Five personality dimensions and job 
performance: A meta-analysis. Personnel Psychology, 44, 1-26. 

Barrick, M.R., Mount, M.K., & Judge, T.A. (2001). Personality and performance at the 
beginning of the new millennium: What do we know and where do we go next. 
InternationalJournal of Selection & Assessment, 9, 9-30. 

Boyes, J.W., Hoffman, D.L., & Low, S.A. (1989). An econometric analysis of the bank credit 
scoring problem. Journal of Econometrics, 40, 3-14. 

Bobko, P., Roth, P.L., & Potosky, D. (1999). Derivation and implications of a meta-analysis 
matrix incorporating cognitive ability, alternative predictors, and job performance. 
Personnel Psychology, 52, 561-589. 

Cannon-Bowers, J.A., Salas, E., Tannenbaum, S.I., & Mathieu, J.E. (1995). Toward theoretically 
based principles of training effectiveness: A model and initial empirical investigation. 
Military Psychology, 7, 141-164. 

Carretta, T.R., & Ree, M.J. (2000). General and specific cognitive and psychomotor abilities in 
personnel selection: The prediction of training and job performance. International 
Journal of Selection & Assessment, 8, 227-236. 

Cohen, J., Cohen, P., West, S.G., & Aiken, L.S. (2003). Applied multiple regression/correlation 
analysis for the behavioral sciences {^^ ed.). Mahwah, NJ: Lawrence Erlbaum 
Associates. 

Diaz,T,, Ingerick,M, & Lightfoot,M. (2004). Replication ofZeidner, Johnson, and Colleagues' 
Method for Estimating Army Aptitude (AA) Composites (ARI Study Report, in 
preparation). Arlington, VA: U.S. Army Research Institute for the Behavioral and Social 
Sciences. 

Earles, J.A., & Ree, M.J. (1992). The predictive validity of the ASVAB for training grades. 
Educational & Psychological Measurement, 52, 721-725. 

Eden, D.; & Ravid, G. (1982). Pygmalion versus self-expectancy: Effects of instructor- and self- 
expectancy on trainee performance. Organizational Behavior and Human Performance, 
50,351-364. 

Gist, M.E., Schwoerer, C, & Rosen, B. (1989). Effects of alternative training methods on self- 
efficacy and performance in computer software training. Journal of Applied Psychology, 
74,884-891. 

Greene, W.H. (1997). Econometric analysis (3'^ ed.). Upper Saddle River, NJ: Prentice-Hall. 

35 



Greenston, P.M. (2002). Proposed New Army Aptitude Area Composites: A Summary of 
Research Results (SR 2002 - 03). Alexandria, VA: U.S. Army Research Institute for the 
Behavioral and Social Sciences. 

Guion, R.M. {\99%). Assessment, measurement, and prediction for personnel decisions. 
Mahwah, NJ: Lawrence Erlbaum Associates. 

Heckman, J. (1979). Sample selection bias as a specification error. Econometrica, 47, 153-161, 

Hough, L.M., & Fumham, A. (2003). Use of personality variables in work settings. In W.C. 
Borman, D.R. Ilgen, & R.J. Klimoski (Eds.), Hardhook of psychology: Industrial and 
organizational psychology (Vol. 12, pp. 131-169). New York: John Wiley & Sons. 

Hough, L.M., Oswald, F.L., & Ployhart, R.E. (2001). Determinants, detection and amelioration 
of adverse impact in personnel selection procedures: Issues, evidence and lessons 
learned. International Journal of Selection & Assessment, 9,152-194. 

Hunter, I.E., & Hunter, R.F. (1984). Validity and utility of alternative predictors of job 
performance. Psychological Bulletin, 96,72-98. 

Hunter, J.E., & Schmidt, F.L. (1990). Methods ofmeta-analysis: Correcting error and bias in 
research findings. Newbury Park, CA: Sage Publications. 

Johnson, CD., Zeidner, CD., & Leaman, J.A. (1992). Improving classification efficiency by 
restructuring Army Job families (TR-947). Alexandria, VA: U.S. Army Research Institute 
for the Behavioral and Social Sciences. 

Judge, T.A., & Hies, R. (2002). Relationship of personality to performance motivation: A meta- 
analytic review. Journal of Applied Psychology, 87,797-807. 

Larson, G.E., Booth-Kewley, S., & Ryan, M.A.K. (2002). Predictors of Navy attrition: II. A 
demonstration of potential usefulness for screening. Military Medicine, 167, 770-776. 

Laurence, J.H. (1984). Education standards for military enlistment and the search for successfid 
recruits (FR-PRD-84-4). Alexandria, VA: Human Resources Research Organization. 

Laurence, J.H. (1987). Military enlistment policy and education credentials: Evaluation and 
improvement (VR-^My-%1-33). Alexandria, VA: Human Resources Research 
Organization. 

Laurence, J.H., Naughton, J., & Harris, D.A. (1995). Attrition revisited: Identifying the problem 
and its solutions (FR-PRD-95-01). Alexandria, VA: Human Resources Research 
Organization. 

Martocchio, J.J. (1994), Effects of conceptions of ability on anxiety, self-efficacy and learning in 
training. Journal of Applied Psychology, 79, 819-825. 

36 



Mathieu, J.E., Martineau, J., & Tannenbaum, S.I. (1993). Individual and situational influences on 
the development of self-efficacy: Implications for training effectiveness. Personnel 
Psychology, 46, 125-147. 

McCuUagh, P., & Nelder, J. (1983). Generalized linear models. New^ York, NY: Chapman and 
Hall. 

McHenry, J.J., Hough, L.M., Toquam, J.L., Hanson, M., & Ashv^orth, S. (1990). Project A 
validity results: The relationship betv^een predictor and criterion domains. Personnel 
Psychology, 43, 335-354. 

Olea, M.M., & Ree, M.J. (1994). Predicting pilot and navigator criteria: Not much more than g. 
Journal of Applied Psychology, 79, 845-851. 

Ree, M.J., & Carretta, T.R. (1999). Lack of ability is not always the problem. Journal of 
Business & Psychology, 14, 165-171. 

Ree, M.J., Carretta, T.R., & Teachout, M.S. (1995). Role of ability and prior knowledge in 
complex training performance. Journal of Applied Psychology, 80, 721-730. 

Ree, M.J., & Earles, J.A. (1991). Predicting training success: Not much more than g. Personnel 
Psychology, 44, 321-332. 

Roth, P.L. (1994). Missing data: A conceptual review for applied psychologists. Personnel 
Psychology, 47, 537-560. 

Sackett, P.R., & Roth, L. (1996). Multi-stage selection strategies: A Monte Carlo investigation of 
effects on performance and minority hiring. Personnel Psychology, 49, 549-572. 

Sackett, P.R., Schmitt, N., EUingson, J.E., & Kabin, M.B. (2001). High-stakes testing in 
employment, credentialing, and higher education: Prospects in a post-affirmative-action 
world. American Psychologist, 5d, 3 02-318. 

Salas, E., & Cannon-Bowers, J.A. (2001). The science of training: A decade of progress. Annual 
Review of Psychology, 52, 471-499. 

Schmidt, F.L., & Hunter, J.E. (1998). The validity and utility of selection methods in personnel 
psychology: Practical and theoretical implications of 85 years of research findings. 
Psychological Bulletin, 124, 262-274. 

Schmitt, N., 8c Chan, D. (1998). Personnel selection: A theoretical approach. Thousand Oaks, 
CA: Sage Publications. 

Schmitt, N., Rogers, W., Chan, D., Sheppard, L., &. Jennings, D. (1997). Adverse impact and 
predictive efficiency of various predictor combinations. Journal of Applied Psychology, 
82, 719-730. 

37 



Scholarios, D., Johnson, CD., & Zeidner, J. (1994). Selecting predictors for maximizing the 
classification efficiency of a battery. Journal of Applied Psychology, 79,412-424. 

Statman, M.A. (1993). Improving the effectiveness of employment testing through classification: 
Alternative methods of developing test composites for optimal job assignment and 
vocational counseling. Unpublished doctoral dissertation. 

Switzer, F.S., & Roth, P.L. (2002). Coping with missing data. In S.G, Rogelberg (Ed.), 
Handbook of research methods in industrial and organizational psychology (pp. 310- 
323). Maiden, MA: Blackwell Publishers. 

Tabachnick, B.G., & Fidell, L.S. (1996). Using multivariate statistics (3"* ed.). New York: 
HarperCollins Publishers. 

U.S. Department of Defense (1990). Conversion tables: Armed Services Vocational Aptitude 
Battery (ASVAB) Forms 8-19 (DOD 1304.12W1). Washington, DC: U.S. Department of 
Defense. 

U.S. General Accounting Office (1997). Military attrition: DoD could save millions by better 
screening enlisted personnel (GAO/NSIAD-97-39). Washington, DC: U.S. General 
Accounting Office. 

U.S. General Accounting Office (1998). Military attrition: DoD needs to better analyze reasons 
for separation and improve recruiting systems (GAO/NSIAD-98-117). Washington, DC: 
U.S. General Accounting Office. 

U.S. General Accounting Office (2000). Military attrition: First-term recruiting and attrition 
continue to require focused attention (GAO/NSIAD-00-102). Washington, DC: U.S. 
General Accounting Office. 

Zeidner, J., Johnson, CD., & Scholarios, D. (1997). Evaluating military selection and 
classification systems in the multiple job context. Military Psychology, 9,169-186. 

Zeidner, J., Johnson, CD., Vladimirsky, Y., & Weldon, S. (2000). Specifications for an 
operational two-tiered classification system for the Army, Vol. 1 (TR-1108-VOL-1). 
Alexandria, VA: U.S. Army Research Institute for the Behavioral and Social Sciences. 

38 



APPENDIX A: NOTES ON SIMULATING AA COMPOSITE AND TRAINING 

PERFORMANCE DATA 

A-1 



Notes on Simulating AA Composite and Training Performance Data 

Converting OldAA to New AA Scores 

Note that conversion of old AA scores is only an issue if the original scores on the nine 
ASVAB subtests are no longer available. If original scores for the ASVAB subtests are 
otherwise unavailable, conversion from old to new AA scores can be carried out using the matrix 
expression 

In the expression above, XOM is the vector of nine old AA scores; X„e^v is the vector of nine new 
AA scores; Uou is the 9x9 matrix whose rows are the vectors of conversion weights and KOM is a 
9x1 vector of constants for the old unit weighted AA score; Unew is the 9x7 matrix whose rows 
are the vectors of conversion weights and Knew is a 9x1 vector of constants for the new AA 
composites; finally D is the 7x9 matrix constructed by deleting the rows in the 9x9 identity 
matrix corresponding to Numerical Operation (NO) and Coding Speed (CS) subtests." Note that 
the expression inside the parentheses is just the vector of seven ASVAB subtests (with NO and 
CS dropped). 

Conceptually, this formula is essentially de-standardizing the old unit-weighted AA 
(standard) scores to the original sum of ASVAB subtest scores, then applying the new 
conversion weights and constants to those scores to obtain the new AA (standard) scores 
currently in operational use by the Army (Zeidner et al., 2000). To verify the accuracy of this 
procedure and of the conversion weights for moving from the old unit-weighted A A standard 
cores to the sum of ASVAB subtest scores, we did the following. 

First, we obtained historical information for converting the sum of ASVAB subtest scores 
to the old unit-weighted AA standard scores (U.S. Department of Defense, 1990). Second, we 
regressed unit-weighted AA scores, excluding the lowest and highest possible values of 40 and 
160, onto their respective sum of ASVAB subtest scores (based on the conversion information) 
for all 9 AA composites.   The resulting regression parameters (intercepts, regression weights) 
represented the conversion weights and constants (e.g., Uou and Kou) for converting from the old 
unit-weighted AA standard scores to the sum of ASVAB subtest scores for all 9 AA composites. 
These values are reported in Table 1 (at end of Appendix A). For convenience. Table 2 contains 
the conversion weights (f/„e,„) and constants (^«„,) for generating the newAA standard scores. 

" For example, if NO and CS correspond to the third and fourth subtests in X^^^ then delete the third and fourth 
rows in the 9x9 identity matrix to obtain the 7x9 matrix D. 

We excluded 40 and 160 as these values reflect the minimum and maximum conversion values for converting 
ASVAB subtest scores to unit-weighted A A scores, and effectively represent all AA scores below or above 40 and 
160 respectively. 
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Third, upon having generated the conversion weights, we validated the weights by 
comparing the predicted AA standard score (using the previously generated regression 
parameters) to the corresponding AA standard score from which the predicted scores were based. 
Across all 9 composites, only 7 cases exhibited residuals greater than 0.5. Of these 7 cases, the 
difference between the tabulated A A scores and A A scores estimated using our procedure,' 
rounded to the nearest integer, was no greater than 1.0. In summary, for the purposes of 
estimating attrition rates, there is strong support'for the accuracy of our procedure and of the 
obtained conversion weights and constants (see Table 1) for converting old unit-weighted AA 
standard scores to new AA standard scores. 

Procedure for Generating Synthetic AA and Training Performance Data 

When simulating AA composite and training performance data, our uhimate goal was to 
generate synthetic data consistent with training requirements and testing process of the typical 
MOS. In brief, the testing process in the typical MOS school can be characterized as a multiple 
hurdle system. Students are required to pass each test in the sequence before they can move on 
to the next test. Passing a test means obtaining a grade that is equal to or better than the 
minimum passing grade for the test, which could (and does) vary from one test to another. 
Generally, a student who fails a given test is allowed one opportunity to retrain and retake the 
test. Therefore, according to Army policy, students have at most two attempts to pass each test 
in the sequence. If they fail a test in a sequence (i.e., scoring below the passing grade on the 
second attempt), then the student is dropped from the class.'^ 

To model these features we did the following. Let Tbe equal to the total number of tests 
that trainees must pass to successfully complete the training. Using / andy to respectively index 
the trainee and test, the vector of test scores for the /th trainee is represented hy {Y\\,YQ, ..., Yyi). 
The relationship between the test score Y\^ on one attempt and the AA score X\ is assumed to be 
given by regression 

Y^=aj+b^X,+s^ 

Conditional on the AA score X\, the regression errors Sy are assumed to be independent across 

trainee given the jth test, but are correlated across tests for a particular trainee. That is, 
cor (f., e,.j.) equals zero if / 9^ /' for any j and j', but is possibly non-zero for / = /'. 

The above specification completely describes the mean and covariance structure of the 
test scores indicative of trainee performance. The overall structure of the multivariate outcome 
variable of test scores conditional on the AA score can be described in terms"of the regression 
parameters, the intercept and coefficient (aj,bj), validities r^. = cor{Y.j,Xj) and intra-person error 

correlation cor(£-. ,£-,,^,). The different operational scenarios used in our simulation experiments 

represent different combinations of these three sets of parameters. In our simulation, we 

-  When dropped from a class, the student may be recycled into the same MOS school, an alternative MOS school, 
or discharged from the Army. 
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included trainee re-test behavior (from being allowed two attempts to pass a test), by assuming 
that the two attempts for given applicant are independent,'* 

Given that retraining of applicants who failed the first attempt likely is designed to give them a better chance of 
passing the second attempt, the assumption of independence between two attempts would tend to lead to slightly 
more conservative attrition estimates. Note that estimation of the between-attempts correlation would require test 
scores from both attempts. Adequate sample size may be difficult to achieve for this purpose. 
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Table 1. Average (AVG) Attrition Rates and Standard Errors (STD) by Cut Score 
and N for Low Difficulty, Low Complexity Condition 

Cut 
Scores 

,. ,^,.^ 

100 N = 

Alternative Sample Sixes 

N = 200 N = 400 N = 800 N-I600 3200 

AVG STB AVG STB AVG STD AVG STD AVG STD AVG STD 

GM= 80 

GM= SI 

0.48 0.078 0,49 0.057 0.49 0.041 0.49 0.029 0.49 0.020 0.49 0.015 

0.48 0.077 0.48 0.057 0.48 0.040 0.48 0.029 0.48 0.020 0.48 0.014 

GM= 82 0.47 0.076 0.48 0.056 0.48 0.040 0.48 0.028 0.48 0.020 0.48 0.014 

GM= 83 

GM= 84 

0.47 0.075 0.47 0.055 0.48 0.039 0.47 0.028 0.47 0,019 0.47 0.014 

0.47 0.074 0.47 0.054 0.47 0.039 0.47 0.028 0.47 0.019 0,47 0.014 

GM^ 85 0.46 0.073 0.46 0.053 0.47 0.038 0.46 0.027 0.46 0.019 0.46 0.013 

GM=86 0.46 0.071 0.46 0.052 0.46 0.037 0.46 0.027 0.46 0.018 0,46 0.013 

GM=87 0.45 0.070 0.45 0.051 0.45 0.037 0.45 0.D26 0.45 0.018 0.45 0.013 

GM=88 0.45 0.068 0.45 0.050 0.45 0.036 0.45 0.025 0.45 0.018 0.45 0.013 

GM= 89 

GM=90 

0.44 0.067 0.44 0.049 0.44 0.035 0.44 0.025 0.44 0.017 0.44 0,012 

0.43 0.065 0.44 0.048 0.44 0.034 0.43 0.024 0.43 0.017 0.43 0,012 

GM= 91 0.43 0.064 0.43 0.046 0.43 0.033 0.43 0.024 0.43 0.016 0,43 0,012 

GM= 92 0.42 0.062 0.42 0.045 0.42 0.033 0.42 0.023 0.42 0.016 0.42 0.011 

GM=93 0.41 0.061 0.42 0.044 0.42 0.032 0.41 0.022 0.42 0.016 0,42 0.011 

GM-94 0.41 0.059 0.41 0.042 0.41 0.031 0.41 0.022 0.41 0.015 0.41 0.011 

GM=95 0.40 0.057 0.40 0.041 0.40 0.030 0.40 0.021 0.40 0.015 0.40 0.010 

GM= 96 0.39 0.056 0.39 0.040 0.40 0.029 0.39 0.020 0.39 0.014 0,39 0.010 

GM=97 0.39 0.054 0.39 0.039 0.39 0.028 0.39 0.020 0.39 0.014 0,39 0.010 

GM=98 0.38 0.052 0.38 0.037 0.38 0.027 0.38 0.019 0.38 0.013 0.38 0.009 

GM=99 0.37 0.051 0.37 0.036 0.37 0.027 0.37 0.018 0.37 0.013 0.37 0.009 

GM=IOO 

GM=101 

GM=102 

GM=103 

GM=104 

0.36 0.050 0.36 0.035 0.37 0.026 0.36 0.018 0.36 0.012 0.36 0.009 

0.36 0.049 0.36 0.034 0.36 0.025 0.36 0.017 0.36 0.012 0,36 0,009 

0.35 0.048 0.35 0.033 0.35 0.025 0.35 0.017 0.35 0.012 0.35 0.008 

0.34 0.047 0.34 0.033 0.34 0.024 0.34 0.016 0.34 0.012 0.34 0.008 

0.33 0.046 0.33 0.032 0.33 0.024 0.33 0.016 0.33 0.011 0,33 0.008 

GM=105 

GM=106 

0.33 0.046 0.33 0.032 0.33 0.024 0.32 0.016 0.32 0.011 0.32 0.008 

0.32 0.046 0.32 0.032 0.32 0.023 0.32 0.016 0.32 0.011 0,32 0.008 

GM=107 0.31 0.046 0.31 0.032 0.31 0.023 0.31 0.016 0.31 0.011 0,31 0.008 

GM-108 0.30 0.046 0.30 0.032 0.30 0.024 0.30 0.016 0.30 0.011 0.30   0.008 

GM=109 0.29 0.047 0.29 0.032 0.29 0.024 0.29 0.016 0.29 0.011 0.29   0.008 
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Table L Average (AVG) Attrition Rates and Standard Errors (STD) by Cut Score 
and N for Low Difficulty, Low Complexity Condition 

Cul 
Scores 

GM=ilO 

Alteraatlve. Sam{>ie Sizes 

N = 100 . N = 200 N»400 N = 800 N = 1600 M = 3200. 

AVG  STD AVG STD AVG STD AV(i STD AVG STD AVG ,STD 

0.29 0.048 0.28 0.033 0.28 0.024 0.28 0.016 0.28 0.012 0.28 0.008 

0.28 0.049 0.28 0.034 0.28 0.025 0.28 0.016 0.28 0.012 0.28 0.008 

GM=n3 

GM=I14 

«M«U5 

GM=iU 

Ci!Vl=117 

GM-1I8 

0.27 0.050 0.27 0.034 0.27 0.025 0.27 0.017 0.27 0.012 0.27 0.008 

0.26 0.051 0.26 0.035 0.26 0.026 0.26 0.017 0.26 0.012 0.26 0.009 

0.25 0.053 0.25 0.036 0.25 0.026 0.25 0.018 0.25 0.013 0.25 0.009 

0.25 0.054 0.25 0.037 0.25 0.027 0.25 0.018 0.25 0.013 0.24 0.009 

0.24 0.056 0.24 0.038 0.24 0.027 0.24 0.019 0.24 0.013 0.24 0.009 

0.23 0.057 0.23 0.040 0.23 0.028 0.23 0.019 0.23 0.014 0.23 0.009 

0.23 0.058 0.22 0.041 0.22 0.029 0.22 0.020 0.22 0.014 0.22 0.010 

GM=119 0.22 0.060 0.22 0.042 0.22 0.029 0.22 0.020 0.22 0.014 0.21 0.010 

GM=I20 0.21 
  

0.061 0.21 0.043 0.21 0.030 0.21 0.021 0.21 0.015 0.21 0.010 
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Table 2, Average (AVG) Attrition Rates and Standard Errors (STD) by Cut Score 
and N for Low Difficulty, Medium Complexity Condition 

Cut 
Scores 

Alternative Saiupie Sizes 

N = 100 N = 200 N = 400 N = 800 N=1600 N = 3200 

AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD 

GM- 80 0.19 0.108 0.18 0.080 0.18 0.058 0.17 0.043 0.17 0.031 0.17 0,023 

GM=81 0.18 0.105 0.17 0.078 0,17 0.056 0.17 0.041 0.17 0.030 0.17 0.022 

GM= 82 0.18 0.102 0.17 0.075 0,16 0.054 0.16 0.040 0.16 0.028 0.16 0.021 

CJM== 83 0.17 0.098 0.16 0,072 0.16 0.052 0.16 0.038 0.16 0.027 0.15 0.020 

GM= 84 0.17 0.095 0.16 0,069 0.15 0,050 0.15 0,036 0.15 0.026 0,15 0.019 

GM= 8S 0.16 0.091 0.15 0,066 0.15 0.047 0.15 0,034 0,15 0.025 0.14 0.018 

GM= 86 0.15 0.087 0,15 0.063 0.14 0.045 0.14 0,033 0.14 0,023 0.14 0.017 

GM=87 

GM= 88 

0.15 0.083 0.14 0,060 0.14 0,042 0.13 0,031 0.13 0,022 0.13 0.016 

0.14 0.079 0.13 0,056 0.13 0,040 0.13 0,029 0.13 0,020 0.13 0.015 

GM= 89 

GM=90 

0.14 0.075 0.13 0,053 0.13 0,037 0.12 0,027 0.12 0,019 0.12 0.014 

0.13 0.070 0.12 0.050 0.12 0.035 0.12 0,025 0.12 0.018 0.12 0.013 

GM=91 0.12 0.066 0.12 0.046 0.11 0.032 0.11 0,023 0.11 0.016 0.11 0.012 

GM=92 0.12 0.061 0.11 0.043 0.11 0.030 0.11 0.022 0.11 0.015 0,11 0.011 

GM= 93 0.11 0.057 0.11 0.040 0.10 0.028 0.10 0.020 0.10 0.014 0.10 0.010 

GM=94 0.10 0.052 0.10 0.037 0.10 0.025 0.10 0.018 0.10 0,013 0.10 0.009 

GM= 95 0.10 0.048 0,09 0.034 0.09 0,023 0.09 0.017 0.09 0,012 0.09 0.009 

GM=96 0.09 0.044 0.09 0.031 0.09 0.021 0.09 0.015 0.09 0.011 0.09 0,008 

GM= 97 0.09 0.040 0.08 0.028 0.08 0,019 0.08 0.014 0.08 0.010 0.08 0.007 

GM=98 0.08 0.036 0.08 0.026 0.08 0,018 0.08 0.013 0,08 0.009 0,08 0.007 

GM=99 0.08 0.033 0.07 0.024 0,07 0.016 0.07 0.012 0.07 0,008 0.07 0.006 

GM=IOO 0.07 0.030 0.07 0.022 0,07 0.015 0.07 0,011 0.07 0,007 0.07 0.005 

GM-101 0.07 0.028 0.07 0.020 0.07 0,014 0.07 0.010 0.07 0.007 0.07 0.005 

GM=102 0.06 0.026 0.06 0.019 0.06 0,013 0.06 0,009 0.06 0,006 0.06 0.005 

GM=103 0.06 0.024 0.06 0.018 0.06 0,012 0.06 0.008 0.06 0.006 0.06 0.004 

GM=104 0.03 0.023 0.05 0.017 0.05 0.011 0.05 0.008 0.05 0,006 0.05 0.004 

GM=105 0.05 0.022 0.05 0.016 0.05 0.011 0.05 0.007 0.05 0.005 0.05 0.004 

GM=106 0.05 0.022 0.05   0.015 0.05 0.010 0,05 0.007 0.05 0.005 0.05 0.004 

GM=107 0.04 0.021 0.04   0.015 0.04 0.010 0.04 0.007 0.04 0.005 0.04 0.004 

GM=108 0.04 0.021 0.04   0.014 0.04 0.010 0.04 0.007 0.04 0,005 0.04 0.004 

GM=109 0.04 0.020 0.04   0.014 0.04 0.009 0.04 0,007 0.04 0,005 0,04 0.004 
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Table 2. Average (AVG) Attrition Rates and Standard Errors (STD) by Cut Score 
and N for Low Difficult>', Medium Complexity Condition 

Cut 
Scores 

 _ 

- AItcrnati\e Sample Sizes 

N = 100 N = 200 N' = 400 N = 800 N = J()00 N = 3200 

W'C, STD AVG STD AVG STD AVG STD AVG STD Avc; STD 

0.01 0.020 0.04 0.014 0.04 0.009 0.04 0.007 0.04 0.005 ,    0.04 0.003 

GM==:iii: 0.03 0.020 0.03 0.014 0.03 0.009 0.03 0.006 0.03 0.005 0.03 0.003 

GM=M2 

GM=113 

0.03 0.020 0.03 0.014 0.03 0.009 0.03 0.006 0.03 0.005 0.03 0.003 

0.03 0.020 0.03 0.013 0.03 0.009 0.03 0.006 0.03 0.005 0.03 0.003 

GM~IU 0.03 0.020 0.03 0.013 0.03 0.009 0.03 0.006 0.03 0.005 0.03 0.003 

0.03 0.021 0.03 0.013 0.03 0.009 0.03 0.006 0.03 0.005 0.03 0.003 

0.03 0.021 0.03 0.013 0.02 0.009 0.02 0.006 0.02 0.004 0.02 0.003 

GM~117 0.03 0.021 0.02 0.013 0.02 0.009 0.02 0.006 0.02 0.004 0.02 0.003 

;GM=II8 0.02 0.022 0.02 0.013 0.02 0.009 0.02 0.006 0.02 0.004 0.02 0.003 

:G!vPll9... 0.02 0.022 0.02 0.013 0.02 0.009 0.02 0.006 0.02 0.004 0.02 0.003 

GM=*I20 0.02 0.022 0.02 0.013 0.02 0.008 0.02 0.006 0.02 0.004 0.02 0.003 
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Table 3. Average (AVG) Attrition Rates and Standard Errors (STD) by Cut Score 
and N for Low Difficulty, High Complexity Condition 

Cut 
Scores 

Alteriiathc Sample i Sixes 
 -1 

N- 100 N = 200 N = 400 N = 800 N = 1600 N-3200 

AVG STD .4VG STI> AVG STD AVG STD AVG STD AVG STD 

GM= 80 0.23 0.117 0.20 0.096 0.20 0.074 0.19 0.052 0,19 0.037 0.19 0,027 

GM= 81 0.22 0.114 0.19 0.094 0.19 0.072 0.18 0.051 0.18 0.036 0.18 0.027 

GM- 82 0.22 0.112 0.19 0.091 0.18 0.070 0,17 0.050 0.17 0.035 0.17 0.026 

GM- 83 0.21 0.109 0.18 0.088 0.17 0.068 0,16 0.048 0.16 0.034 0.16 0.025 

GM= 84 0.20 0.106 0.17 0.085 0.16 0.065 0,15 0.046 0.15 0.033 0,15 0.024 

GM=85 0.19 0.102 0.16 0.082 0.15 0.062 0.14 0,044 0.14 0.031 0.14 0,023 

GM= 86 

GM= 87 

0.18 0.099 0.15 0.078 0,14 0,059 0.13 0.041 0.13 0,029 0.13 0,022 

0.16 0,094 0.14 0.074 0.13 0.055 0.12 0,039 0,12 0.027 0.12 0,020 

GM- 88 0.15 0.090 0.12 0.069 0.12 0.052 0,11 0.036 0.11 0.025 0.11 0.019 

GM=89 0.14 0.085 O.Il 0,064 0.11 0.048 O.IO 0.033 0.10 0.023 0,10 0.017 

GM= 90 0.13 0.080 0.10 0.059 0.09 0.043 0.09 0.030 0.09 0.021 0,09 0.015 

GM= 91 0.12 0.074 0.09 0.054 0.08 0.039 0.08 0.027 0.08 0.019 0,08 0.014 

GM= 92 0.11 0.069 0.08 0.049 0.07 0.034 0.07 0.023 0.07 0.016 0,07 0.012 

GM=93 0.09 0.063 0.07 0.043 0,07 0.030 0.06 0,020 0,06 0.014 0.06 0,010 

GM=94 0.08 0.056 0.06 0.038 0.06 0.026 0.05 0.018 0.05 0.012 0.05 0.009 

GM=95 0.07 0.050 0.05 0.033 0.05 0.022 0.05 0,015 0.05 0.010 0.05 0.008 

GM=96 0.06 0.043 0.05 0.028 0.04 0,019 0.04 0.013 0.04 0.009 0.04 0.006 

GM= 97 0.05 0.037 0.04 0.024 0.04 0,016 0.04 0.011 0.04 0.008 0.04 0.005 

GM=98 0.04 0.031 0.03 0.020 0.03 0.013 0,03 0.009 0.03 0.006 0.03 0.005 

GM= 99 0.03 0.026 0.03 0.016 0.03 0.011 0.03 0,008 0,03 0.005 0.03 0,004 

GM=100 0.03 0.021 0.02 0.014 0.02 0.009 0.02 0.006 0,02 0.005 0.02 0,003 

GIVI=I01 0.02 0.018 0.02 0.012 0.02 0.008 0.02 0.006 0,02 0,004 0.02 0.003 

GM=I02 0.02 0.014 0.02 0.010 0.02 0.007 0.02 0.005 0.02 0.003 0.02 0.002 

GJM=103 

GM=104 

0.02 0.012 0.01 0.008 0.01 0.006 0.01 0,004 0.01 0.003 O.OI 0,002 

0.01 0.010 0.01 0.007 0.01 0.005 0.01 0.004 0.01 0.003 0.01 0.002 

GM-105 0.01 0.009 0.01 0.006 0.01 0.005 0.01 0.003 0.0 i 0.002 0.01 0.002 

GM=106 0.01 0.008 0.01 0.006 0.01 0.004 0.01 0.003 0.01 0.002 0.01 0.002 

GM=107 0.01 0.007 0.01 0.005 0.01 0.004 0.01 0.003 0.01 0.002 0.01 0.001 

GM=108 0.01 0.007 0.01 0.005 0.01 0.003 0.01 0.002 0.01 0.002 0.01 0.001 

GM=I09 0.01 0.006 0.01 0.004 0.00 0.003 0.00 0.002 0.00 0.002 0,00 0.001 
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Table 3. Average (AVG) Attrition Rates and Standard Errors (STD) by Cut Score 
and N for Low Difficulty, High Complexity Condition 

Cut 
Scores 

GM=110 

GM=ni 

Aiteriiative Simiplc Sizes 

N=100 N = 20« N = 400 N=800 N = t600 N = 3200 

AVG HTl) AVG SID AVG STU 
■, 

AVCi STD AVG STD AVG STD 

0.01 0.006 0.00 0.004 0.00 0.003 0.00 0.002 0.00 0.001 0.00 O.OOl 

0.00 0.005 0.00 0.003 0.00 0.002 0.00 0.002 0.00 0.001 0.00 0.001 

GM=n2 

GM=113 

GM=114 

GM-1I5 

GM»116 

GM=1I7 

0.00 0.005 o.oo 0.003 0.00 0.002 0.00 0.002 0.00 0.001 0.00 0.001 

0.00 0.005 0.00 0.003 0.00 0.002 0.00 0,001 0.00 0.001 0.00 0.001 

0.00 0.005 0.00 0.003 0.00 0.002 0.00 0.001 0.00 0.001 0.00 0.001 

0.00 0.005 0.00 
1   

0.002 0.00 0.002 0.00 0.001 0.00 0.001 0.00 0.001 

0.00 0.005 0.00 0.002 0.00 0.001 0.00 0.001 0.00 0.001 0.00 0.000 

0.00 0.005 0.00 0.002 0.00 0.001 0.00 0.001 0.00 0.001 0.00 0.000 

GM=118 

GM=119 

0.00 0.005 0.00 0.002 0.00 0.001 0.00 0.001 0.00 0.001 0.00 0.000 

0.00 0.005 0.00 0.002 0.00 0.001 0.00 0.001 0.00 0.000 0.00 0.000 

GM=120 0.00 0.005 0.00 0.002 0.00 0.001 0.00 0.001 0.00 0.000 0.00 0.000 
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Table 4. Average (AVG) Attrition Rates and Standard Errors (STD) by Cut Score 
and N for Medium Difficulty, Low Complexity Condition 

Cut 
Score's 200 

Alternative Sample Sizes 

N = 1«0 N = N = 400 N = 800 N=1600 N = 3200 

AVG STB AVG STD AVG STD AVG STD AVG STD AVG STD 

GM=80 

GM= 81 

0.54 0.072 0.55 0.051 0.55 0.037 0.55 0.026 0.55 0.018 0.55 0.013 

0.54 0.071 0.54 0.051 0.54 0.037 0.54 0.026 0.54 0.018 0.54 0.013 

GM=- 82 0.53 0.070 0.54 0.050 0.54 0.036 0.54 0,025 0.54 0.018 0.54 0.013 

GM= 83 

GM=84 

0.53 0.070 0.53 0.050 0.53 0.036 0.53 0.025 0.53 0.018 0.53 0.013 

0.52 0.069 0.53 0.049 0.53 0.036 0.53 0.025 0.53 0.017 0.53 0.013 

GM- 85 0.52 0.068 0.52 0.049 0.52 0.035 0.52 0.024 0.52 0.017 0.52 0.012 

GM= 86 0.51 0.067 0.52 0.048 0.52 0.035 0.52 0.024 0.52 0.017 0.52 0.012 

GM= 87 

GM= 88 

0.51 0.066 0.51 0.047 0.51 0.034 0.51 0.024 0.51 0.017 0.51 0.012 

0.50 0.065 0.51 0.046 0.51 0.034 0.50 0.023 0.50 0.016 0.50 0.012 

GM=89 0.50 0.064 0.50 0.046 0.50 0.033 0.50 0.023 0.50 0.016 0.50 0.012 

GM= 90 0.49 0.062 0.49 0.045 0.49 0.033 0.49 0.023 0.49 0.016 0.49 0.011 

GM= 91 0.48 0.061 0.49 0.044 0.49 0.032 0.48 0.022 0.48 0.016 0.48 0.011 

GM=92 0.48 0.060 0.48 0.043 0.48 0.031 0.48 0.022 0.48 0.015 0.48 0.011 

GM=93 0.47 0.058 0.47 0.042 0.47 0.031 0.47 0.021 0.47 0.015 0.47 0.011 

GM=94 0.46 0.057 0.46 0.041 0.46 0.030 0.46 0.021 0.46 0.015 0.46 0.010 

GM= 95 0.46 0.056 0.46 0.040 0.46 0.029 0.45 0.020 0.46 0.014 0.45 0.010 

GM= 96 0.45 0.054 0.45 0.039 0.45 0.029 0.45 0.020 0.45 0.014 0.45 0.010 

GM= 97 0.44 0.053 0.44 0.038 0.44 0.028 0.44 0.019 0.44 0.013 0.44 0.009 

GM=98 0.43 0.052 0.43 0.037 0.43 0.027 0.43 0.018 0.43 0.013 0.43 0.009 

GM= 99 0.42 0.051 0.42 0.036 0.42 0.027 0.42 0.018 0.42 0.013 0.42 0.009 

GM=100 0.42 0.050 0.41 0.035 0.41 0.026 0.41 0.018 0.41 0.012 0.41 0.009 

GM=101 0.41 0.049 0.41 0.035 0.41 0.025 0.40 0.017 0.40 0.012 0.40 0.008 

GM-I02 0.40 0.048 0.40 0.034 0.40 0.025 0.40 0.017 0.40 0.012 0.40 0.008 

GM=103 0.39 0.047 0.39 0.034 0.39 0.025 0.39 0.016 0.39 0.012 0.39 0.008 

GM=104 0.38 0.047 0.38 0.033 0.38 0.024 0.38 0.016 0.38 0.012 0.38 0.008 

GM=105 0.37 0.047 0.37 0.033 0.37 0.024 0.37 0.016 0.37 0.012 0.37 0.008 

GM-J06 0.36 0.047 0.36 0.033 0.36 0.024 0.36 0.016 0.36 0.012 0.36 0.008 

GM=107 0.35 0.047 0.35 0.033 0.35 0.024 0.35 0.016 0.35 0.012 0.35 0.008 

GM=I08 0.34 0.047 0.34 0.033 0.34 0.024 0.34 0.016 0.34 0.012 0.34 0.008 

GM=109 0.33 0.048 0.33 0.034 0.33 0.024 0.33 0.016 0.33 0.012 0.33 0.008 
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Table 4. Average (AVG) Attrition Rates and Standard Errors (STD) by Cut Score 
and N for Medium Difficulty, Low Complexity Condition 

Cut 
Scores 

GM-llO 

GM-1I2 

Alferuathe •maniple Sizes 

N=IOO N - 200 N = 400 N = 800 N = 1600 N,= 3200 

AVG STI) AVG STD AVC^ STI) AV(; STD AVG STD AVG STI) 

0.32 0.049 0.32 0.034 0.32 0.025 0.32 0.016 0.32 0.012 0.32 0.008 

0.31 0.050 0.31 0.035 0.31 0.025 0.31 0.017 0.31 0.012 0.31 0.008 

0.30 0.052 0.30 0.036 0.30 0.026 0.30 0.017 0.30 0.013 0.30 0.008 

GM-IU 0.30 0.053 0.29 0.037 0.29 0.026 0.29 0.018 0.29 0.013 0.29 0.009 

GM=1f4 0.29 0.054 0.28 0.038 0.28 0.027 0.28 0.018 0.28 0.013 0.28 0.009 

GM-H5 

GM=116 

GM-117 

GM=]t8 

GM-11<) 

GM=120 

0.28 0.056 0.28 0.039 0.28 0.028 0.28 0.018 0.28 0.014 0.28 0.009 

0.27 0.058 0.27 0.040 0.27 0.028 0.27 0.019 0.27 0.014 0.27 0.009 

0.26 0.059 0.26 0.041 0.26 0.029 0.26 0.019 0.26 0.014 0.26 0.010 

0.25 0.061 0.25 0.042 0.25 0.030 0.25 0.020 0.25 0.015 0.25 0.010 

0.24 0.062 0.24 0.043 0.24 0.030 0.24 0.021 0.24 0.015 0.24 0.010 

0.23 0.064 0.23 0.044 0.23 0.031 0.23 0.021 0.23 0.015 0.23 0.010 
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Table 5. Average (AVG) Attrition Rates and Standard Errors (STD) by Cut Score 
and N for Medium Difficulty, Medium Complexit}^ Condition 

Cut 
Scores 

Alternative Sample Bims 

N = 100 1   N = 200 N = 400 N = 800 N = 1600 N = 3200 

AVG STD AVG STI> AVG STD AVG STD AVG Bin AVG STD 

GM-80 0.30 0.099 0.31 0.073 0.30 0.052 0.30 0.038 0.31 0.026 0.31 0.019 

GM- 81 0.30 0.097 0.30 0.072 0.30 0.051 0.30 0.037 0.30 0.026 0.30 0.019 

GM= 82 0.29 0.095 0.30 0.070 0.29 0.050 0.29 0.036 0.29 0.025 0.29 0,018 

GM= 83 0.28 0.093 0.29 0.069 0.29 0.049 0.28 0.035 0.29 0.025 0,29 0.018 

GM=84 0.28 0.091 0.28 0.067 0.28 0.047 0.28 0.034 0.28 0.024 0.28 0.017 

GM=85 0.27 0.088 0.27 0,065 0.27 0.046 0.27 0.033 0.27 0.023 0.27 0.017 

GM=8() 0.26 0.085 0.27 0.063 0.26 0.045 0.26 0,032 0.26 0.023 0,26 0.016 

GM= 87 0.26 0.083 0.26 0.061 0.26 0.043 0.26 0.031 0.26 0.022 0,26 0.016 

GM=88 

GM=89 

0.25 0.080 0.25 0.059 0.25 0.041 0.25 0.030 0,25 0.021 0,25 0.015 

0.24 0.077 0.24 0.056 0.24 0.040 0.24 0.029 0.24 0,020 0.24 0.014 

GM=90 0.23 0.073 0.24 0.054 0.23 0.038 0.23 0,027 0.23 0.019 0.23 0.014 

GM= 91 0.23 0.070 0.23 0.051 0.22 0.036 0.22 0.026 0.23 0.018 0.23 0.013 

GM=92 0.22 0.067 0.22 0.049 0.22 0,034 0.22 0.025 0.22 0.017 0.22 0.012 

GM=93 0.21 0.063 0.21 0.046 0.21 0.032 0.21 0.023 0.21 0.016 0.21 0.012 

GM=94 0.20 0.060 0.20 0.044 0.20 0.030 0.20 0.022 0.20 0.015 0.20 0.011 

GM= 95 o;i9 0.056 0.19 0.041 0.19 0.029 0.19 0.021 0,19 0.014 0.19 0,010 

GM-96 0.19 0.053 0.19 0.038 0.18 0.027 0.18 0.019 0.18 0.013 0.18 0.010 

GM= 97 0.18 0.050 0.18 0.036 0.18 0.025 0.18 0.018 0.18 0.013 0.18 0,009 

GM=98 0.17 0.047 0.17 0.034 0.17 0.023 0.17 0.017 0.17 0,012 0.17 0.008 

GM=99 0.16 0.044 0.16 0.031 0.16 0.022 0.16 0.016 0,16 0,011 0.16 0.008 

GM=IOO 0.15 0.041 0.15 0.029 0.15 0.020 0.15 0.015 0.15 0.010 0.15 0.007 

GM=I01 0.15 0.038 0.15 0.027 0.14 0.019 0.15 0.014 0.15 0.010 0.15 0.007 

GM=102 0.14 0.036 0.14 0.026 0.14 0.018 0.14 0.013 0.14 0.009 0,14 0.006 

GM=103 0.13 0.034 0.13 0.024 0.13 0.017 0,13 0.012 0.13 0,008 0.13 0.006 

GM=104 0.12 0.032 0.12 0.023 0.12 0.016 0,12 0.011 0,12 0,008 0.12 0.006 

GM=105 0.12 0.031 0.12 0.022 0.12 0.016 0,12 0.011 0,12 0,008 0.12 0.006 

GM=I06 0.11 0.030 0.11 0.022 0.11 0.015 0,11 0.010 0.11 0,007 0.11 0.005 

GM=I07 0.10 0.029 0.10 0.021 0.10 0,015 0,10 0.010 0.10 0,007 O.IO 0.005 

GM=I08 0.10 0.029 0.10 0.021 0.10 0.014 0.10 0.010 0.10 0.007 0.10 0.005 
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Table 5. Average (AVG) Attrition Rates and Standard Errors (STD) by Cut Score 
and N for Medium Difficulty, Medium Complexity Condition 

Cut 
SctJres 

Alleittsfive Sample Sizes 

N = 100 N = 200 N =- 400 N = 800 N = 1600 N = 3200 

AV(i STD AVG STD AVG STD AVG STD AVG .STD AVG STD 
GM=109 0.09 0.029 0.09 0.020 0.09 0.014 0.09 0.010 0.09 0.007 0.09 0.005 

■GM^IW 0.09 0.028 0.09 0.020 0.09 0.014 0.09 0.010 0.09 0.007 0.09 0.005 

GM=11! 

GM=I12 

GM=113 

0.08 0.028 0.08 0.020 0.08 0.014 0.08 0.010 0.08 0.007 0.08 0.005 

0.08 0.028 0.08 0.020 0.08 0.014 0.08 0.009 0.08 0.007 0.08 0.005 

0.07 0.028 0.07 0.020 0.07 0.014 0.07 0.009 0.07 0.007 0.07 0.005 

GM=114 

GM^US 

0.07 0.028 0.07 0.020 0.07 0.014 0.07 0.009 0.07 0.007 0.07 0.005 

0.06 0.028 0.06 0.020 0.06 0.014 0.06 0.009 0.06 0.007 0.06 0.005 

GM=!16 

GM«117 

0.06 0.029 0.06 0.020 0.06 0.014 0.06 0.009 0.06 0.007 0.06 0.005 

0.06 0.029 0.06 0.020 0.06 0.014 0.06 0.009 0.06 0.007 0.06 0.005 

«M=H8 0.05 0.029 0.05 0.019 0.05 0.013 0.05 0.009 0.05 0.007 0.05 0.005 

GM=I19 

GM=120 

0.05 0.029 0.05 0.019 0.05 0.013 0.05 0.009 0.05 0.007 0.05 0.005 

0.05 0.029 0.05 0.019 0.05 0.013 0.05 0.009 0.05 0.006 0.05 0.005 
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Table 6. Average (AVG) Attrition Rates and Standard Errors (STD) by Cut Score 
and N for Medium Difficulty, High Complexit>' Condition 

Cut 
Scores 20(1 

AMcrnafive Sample Sizes 

N=100 N = N = 400 N = 800 N~1600 N = 3200 

AVG STD AVG STD AVG SID AVG STD AVG SiD AVG STD 

GM- 80 0.30 0.108 0.29 0.080 0.30 0.055 0.30 0.039 0.30 0.027 0.30 0.019 

GM= 81 0.29 0.106 0.28 0.079 0.29 0.055 0.29 0.039 0.29 0.027 0.29 0.019 

GM=^82 0.28 0.105 0.28 0.078 0.28 0.054 0.28 0.039 0.28 0.027 0.28 0.019 

GM- 83 

GM= 84 

0.27 0.103 0.27 0.077 0.27 0.054 0.27 0.038 0.27 0.026 0.27 0.019 

0.26 0.101 0.26 0.076 0.26 0.053 0.25 0.038 0.26 0.026 0.26 0.019 

GM= 85 

GM=86 

0.25 0.099 0.24 0.074 0.25 0.052 0.24 0.037 0.25 0,026 0.25 0.018 

0.24 0.096 0.23 0.072 0.23 0.050 0.23 0.036 0.23 0.025 0.23 0.018 

GM=87 0.23 0.093 0.22 0.070 0.22 0.049 0.22 0.035 0.22 0.024 0,22 0.018 

GM=88 0.22 0.090 0.21 0.067 0.21 0.047 0.21 0.034 0.21 0.024 0.21 0.017 

GM=89 0.21 0.087 0.20 0.064 0.20 0.045 0.19 0.032 0.20 0.023 0.20 0.016 

GM=90 0.19 0.083 0.18 0.061 0.18 0.043 0.18 0.031 0.18 0.021 0.18 0.015 

GM=9I 0.18 0.079 0.17 0.058 0.17 0.041 0.17 0.029 0.17 0.020 0.17 0.015 

GM=92 0.17 0.075 0.16 0.054 0.16 0.038 0.16 0.027 0.16 0.019 0.16 0.014 

GM=93 0.15 0.070 0.15 0.051 0.14 0.035 0.14 0.025 0.14 0.018 0.14 0.013 

GM=94 0.14 0.065 0.13 0.047 0.13 0.032 0.13 0.023 0.13 0.016 0.13 0.011 

GM=95 

GM= 96 

0.13 0.060 0.12 0.042 0.12 0.029 0.12 0.021 0.12 0.015 0.12 0.010 

0.11 0.054 0.11 0.038 0.11 0.026 0.11 0.019 0.11 0.013 0.11 0.009 

GM=97 0.10 0.049 0.10 0.034 0.10 0.023 0.10 0.017 0.10 0.012 0.10 0.008 

GM=98 0.09 0.044 0.09 0.030 0.09 0.021 0.08 0.015 0.09 0.010 0.09 0.007 

GM=99 0.08 0.039 0.08 0.027 0.08 0.018 0.08 0.013 0.08 0.009 0.08 0.006 

GM==100 0.07 0.034 0.07 0.023 0.07 0.016 0.07 0.011 0.07 0.008 0.07 0,006 

GM=101 0.06 0.030 0.06 0.021 0.06 0.014 0.06 0.010 0.06 0.007 0.06 0.005 

GM=H)2 0.05 0.026 0.05 0.018 0.05 0.012 0.05 0.009 0.05 0.006 0.05 0.004 

GM=103 0.04 0.023 0.04 0.016 0.04 0.011 0.04 0.008 0.04 0.006 0.04 0.004 

GM=1(M 

GM=I05 

0.04 0.020 0.04 0.014: 0.04 0.010 0.04 0.007 0.04 0.005 0.04 0.003 

0.03 0.018 0.03 0.013 0.03 0.009 0.03 0.006 0.03 0.005 0.03 0.003 

GM=106 0.03 0.016 0.03 0.011 0.03 0.008 0.03 0.006 0.03 0.004 0.03 0.003 

GM=107 0.02 0.015 0.02 0.010 0.02 0.007 0.02 0.005 0.03 0.004 0.03 0.003 

GM=U)8 0.02 0.013 0.02 0.010 0.02 0.007 0.02 0.005 0.02 0.003 0.02 0.002 

GM=109 0.02 0.012 0.02 0.009 0.02 0.006 0.02 0.004 0.02 0.003 0.02   0.002 
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Table 6. Average (AVG) Attrition Rates and Standard Errors (STD) by Cut Score 
and N for Medium Difficulty, High Complexity Condition 

Cut 
Scort's 

(J.VT=1I0 

i-     - ~    - 
Alternative Sample Sizes 

N = 10(1 N = 200 N = 400 N = 800 N = 1600 N = 3200 

AV(J SlI) AVG STl) AVG^STl) AVG! STl) 
.  j 

AVG SFD AVii STD 

0.02 O.OII 0.02 0.008 0.02 0.006 0.02 0.004 0.02 0.003 0.02 0.002 

GM=1» 0.01 0.010 0.01 0.007 0.01 0.005 0.01 0.004 0.01 0.003 0.01 0.002 

im-^im 0.01 0.009 0.01 0.007 0.01 0.005 0.01- 0.003 0.01 0.002 0.01 0.002 

^|GM=113' 0.01 0.008 0.01 0.006 0.01 0.004 0.01 0.003 0.01 0.002 0.01 0.002 

GM=1M 0.01 0.008 0.01 0.006 0.01 0.004 0.01 0.003 0.01 0.002 0.01 0.001 

teM=n5 0.01 0.007 0.01 0.005 0.01 0.004 0.01 0.003 0.01 0.002 0.01 0.001 

GM«116: 0.01 0.007 0.01 0.005 0.01 0.003 0.01 0.002 0.01 0.002 0.01 0.001 

.GM=117 0.01 0.006 0.01 0.004 0.01 0.003 0.01 0.002 0.01 0.001 0.01 0.001 

,GM-=n8. 0.01 0.006 0.01 0.004 0.00 0.003 0.00 0.002 0.00 0.001 0.00 0.001 

GM=|I9;: 0.00 0.006 0.00 0.004 0.00 0.002 0.00 0.002 0.00 0.001 0.00 0.001 

(smtm: 0.00 0.005 0.00 0.003 0.00 0.002 0.00 0.002 0.00 0.001 0.00 0.001 
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Table 7. Average (AVG) Attrition Rates and Standard Errors (STD) by Cut Score 
and N for High Difficulty, Low Complexity Condition 

Cut 
Scores 

GM=80 

Alternative Sample Sizm 

N = 100 N = 200 N-40(» N«800 1  N = 1600 N = 3200 

AVG STD A%'G STD AVG STD AVG SITJ AVG STD AVG STD 

0.66 0.058 0.66 0.040 0.67 0.029 0.66 0.020 0.66 0.014 0.66 0.010 

GM= 81 0.66 0.057 0.66 0.040 0.66 0.029 0.66 0.020 0.66 0.014 0.66 O.OIO 

GM=82 0.65 0.057 0.65 0.040 0.66 0.029 0.66 0.020 0.66 0.014 0.66 0.010 

GM=83 0.65 0.057 0.65 0.039 0.65 0.029 0.65 0.020 0.65 0.014 0.65 0.010 

GM=84 0.64 0.056 0.65 0.039 0.65 0.029 0.65 0.020 0.65 0,014 0.65 0,010 

GM=85 0.64 0.056 0.64 0,039 0.64 0.029 0.64 0,020 0.64 0.014 0.64 0.010 

CM=86 0.63 0.055 0.64 0.039 0.64 0.029 0.64 0.020 0.64 0.014 0,64 0.010 

GM=87 0.63 0.055 0.63 0.038 0.63 0,028 0.63 0,020 0.63 0.014 0.63 0,010 

GM= 88 0.62 0.055 0.63 0.038 0.63 0.028 
■ 

0.63 0.019 0,63 0.014 0.63 0,010 

GM= 89 0.62 0.054 0.62 0.038 0.62 0.028 0.62 0.019 0.62 0.014 0,62 0,010 

GM= 90 0.61 0.053 0.62 0.037 0.62 0.028 0.62 0.019 0.62 0.013 0.62 0.010 

GM= 91 0.61 0.053 0.61 0.037 0.61 0.027 0.61 0.019 0.61 0.013 0.61 0.009 

GM= 92 0.60 0.052 0.60 0.037 0.61 0.027 0.60 0.019 0.60 0.013 0.60 0.009 

GM= 93 0.60 0.052 0.60 0.036 0.60 0.027 0.60 0.018 0.60 0.013 0.60 0.009 

GM=94 0.59 0.051 0.59 0.036 0.59 0.027 0.59 0.018 0.59 0.013 0.59 0.009 

GM=95 0.58 0.050 0.58 0.036 0.59 0.026 0.58 0.018 0.58 0.013 0.58 0.009 

GM=96 0.58 0.050 0.58 0.035 0.58 0.026 0.58 0.018 0.58 0.012 0.58 0.009 

GM= 97 0.57 0.049 0.57 0.035 0.57 0.026 0.57 0.017 0.57 0.012 0,57 0.009 

GM= 98 0.56 0.049 0.56 0.034 0.56 0.025 0.56 0.017 0.56 0,012 0,56 0.009 

GM=99 0.55 0.048 0.55 0.034 0.55 0.025 0.55 0.017 0,55 0.012 0.55 0.009 

GM=100 0.54 0.048 0.54 0.034 0.55 0.025 0.54 0.017 0.54 0.012 0.54 0.008 

GM=101 0.54 0.048 0.54 0.034 0.54 0.025 0.54 0.017 0.54 0.012 0.54 0.008 

GM=I02 0.53 0.048 0.53 0.034 0.53 0.024 0.53 0.017 0.53 0.012 0.53 0.008 

GM=103 0.52 0.048 0.52 0.034 0.52 0.024 0.52 0,016 0.52 0.012 0.52 0.008 

GM=104 0.51 0.048 0.51 0.034 0.51 0.024 0.51 0.016 0.51 0.012 0.51 0.008 

GM-105 0.50 0.048 0.50 0.034 0.50 0.024 0.50 0.016 0.50 0.012 0.50 0.008 

GM=106 0.49 0.049 0.49 0.034 0.49 0.025 0.49 0.017 0.49 0.012 0.49 0.008 

GM«107 0.48 0.050 0.48 0.035 0.48 0.025 0.48 0.017 0.48 0.012 0.48 0.008 

GM=U>8 0.47 0.051 0.47 0.035 0.47 0.025 0.47 0.017 0.47 0.012 0.47 0.009 

GM=109 0.46 0.052 0.46 0.036 0.46 0.026 0.46 0.017 0.46 0.012 0.46 0.009 
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Table 7. Average (AVG) Attrition Rates and Standard Errors (STD) by Cut Score 
and N for High Difficulty, Low Complexit}- Condition 

Cut 
Scores 

Alternative. 'Mimiile Sizes 

N = IO» N = 200 N = 400 N = 800 N-1600 N = 3200 

AVG 
 V   

STD AVG STD AVG mv AVG STD AVG STD AVG STD 

0.45 0.053 0.45 0.037 0.45 0.026 0.45 0.018 0.45 0.013 0.45 0.009 

GM=lli; 0.44 0.055 0.44 0.038 0.44 0.027 0.44 0.018 0.44 0.013 0.44 0.009 

GM=1I2. 0.43 0.057 0.43 0.039 0.43 0.028 0.43 0.019 0.43 0.013 0.43 0.009 

GM=n3 0.42 0.059 0.42 0.040 0.42 0.029 0.42 0.020 0.42 0.014 0.42 0.010 

GM=114 0.41 0.061 0.41 0.042 0.41 0.030 0.41 0.020 0.41^ 0.014 0.41 0,010 

GMMtS 0.40 0.063 0.40 0.043 0.40 0.03! 0.39 0.021 0.40 0.015 0.39 0.011 

G%116 0.39 0.066 0.38 0.044 0.38 0.032 0.38 0.022 0.38 0.015 0.38 0.011 

GM^n 0.38 0.068 0.37 0.046 0.37 0.033 0.37 0.023 0.37 0.016 0.37 0.011 

GM*118 0.37 0.070 0.36 0.048 0.36 0.034 0.36 0.023 0.36 0.017 0.36 0.012 

GM=119 0.35 0.073 0.35 0.049 0.35 0.035 0.35 0.024 0.35 0.017 0.35 0.012 

mmM 0.34 0.075 0.34 0.051 0.34 0.036 0.34 0.025 0.34 0.018 0.34 0.013 
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Table 8. Average (AVG) Attrition Rates and Standard Errors (STD) by Cut Score 
and N for High Difficulty, Medium Complexity Condition 

Scores N = 200. 

Alternative Sainpl 

N = 

B Sizes 

100 N = N = 400 800 N = 1600 N = 3200 

AVG STB AVG STD AVG ST1> AVG STI) AVG STD AVG STD 

GM= 80 0.47 0.078 0.47 0.055 0.48 0.039 0.47 0.027 0.48 0.019 0.48 0.014 

GM= 81 0.46 0.077 0.47 0.054 0.47 0.039 0.47 0.027 0.47 0.019 0.47 0.014 

GM- 82 0.46 0.076 0.46 0.054 0.46 0.039 0.46 0.027 0.46 0.019 0.46 0.014 

GM=83 

GM= 84 

0.45 0.075 0.46 0.053 0.46 0.038 0.45 0.027 0.46 0.019 0,46 0.013 

0.44 0.075 0.45 0.053 0.45 0.038 0.45 0.026 0.45 0.019 0.45 0.013 

GM= 85 0.44 0.074 0.44 0.052 0.44 0.037 0.44 0.026 0.44 0.019 0.44 0.013 

GM=86 0.43 0.072 0.43 0.051 0.43 0.037 0.43 0.026 0.43 0.018 0.43 0.013 

GM=^87 0.42 0.071 0.43 0.051 0.43 0.036 0.42 0.025 0.43 0.018 0.43 0.013 

GM= 88 0.41 0.070 0.42 0.050 0.42 0.036 0.42 0.025 0.42 0.018 0.42 0.013 

GM= 89 0.41 0.068 0.41 0.049 0.41 0.035 0.41 0.024 0.41 0.017 0,41 0,012 

GM=90 

GM=9l 

0.40 0.067 0.40 0.048 0.40 0.034 0.40 0.024 0.40 0.017 0.40 0.012 

0.39 0.065 0.39 0.046 0.39 0.033 0.39 0.023 0.39 0.017 0.39 0.012 

GM=92 0.38 0.063 0.38 0.045 0.38 0.033 0.38 0.023 0.38 0.016 0.38 0.011 

GM= 93 0.37 0.062 0.37 0.044 0.37 0.032 0.37 0.022 0.37 0.016 0.37 0.011 

GM=94 0.36 0.060 0.36 0.043 0.36 0.031 0.36 0.021 0.36 0.015 0.36 0.011 

GM=95 0.35 0.058 0.35 0.041 0,35 0.030 0.35 0.020 0.35 0.015 0,35 0.010 

GM= 96 0.34 0.056 0.34 0.040 0.34 0.029 0.34 0.020 0.34 0.014 0.34 0.010 

GM=97 0.33 0.054 0.33 0.038 0.33 0.028 0.33 0.019 0.33 0.014 0.33 0.010 

GM=98 0.32 0.052 0.32 0.037 0.32 0.027 0.32 0.018 0.32 0.013 0.32 0.009 

GM=99 0.31 0.050 0.31 0.035 0.31 0.026 0.31 0.018 0.31 0.012 0.31 0.009 

GM=100 0.30 0.048 0.30 0.034 0.30 0.025 0.30 0.017 0.30 0.012 0,30 0.009 

GM=101 0.29 0.046 0.29 0.033 0.29 0.024 0.28 0.016 0.29 0.011 0,29 0,008 

GM=102 

GM=103 

0.27 0.044 0.27 0.032 0.27 0.023 0.27 0.015 0.27 0.011 0.27 0,008 

0.26 0.043 0.26 0.031 0.26 0.022 0.26 0.015 0.26 0.011 0.26 0.008 

GM=I04 0.25 0.042 0.25 0.030 0.25 0.022 0.25 0.014 0.25 0.010 0.25 0.007 

GM=1CI5 0.24 0.041 0.24 0.029 0.24 0.021 0.24 0.014 0.24 0.010 0.24 0.007 

GM=i06 0.23 0.040 0.23 0.028 0.23 0.021 0.23 0.014 0.23 0.010 0.23 0.007 

GM=107 0.22 0.039 0.22 0.028 0.22 0.020 0.22 0.013 0.22 0.010 0.22 0.007 

GM=108 0.21 0.039 0.21 0.028 1 0.21 0.020 0.21 0.013 0.21 0.010 0.21 0.007 

GM=109 0.20 0.039 0.20 0.028 0.20   0.020 0.20 0.013 0.20 0.010 0.20 0.007 
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Table 8. Average (AVG) Attrition Rates and Standard EiTors (STD) by Cut Score 
and N for High Difficulty, Medium Complexit)' Condition 

Alternative Sample Sizes 
Cut 

Scores- N = JOO N -• 2(H) N :- 400    =    N - 800 N = K>00      N = 3200 

AVG STl) AV(; STI> AVG STD 1 AV(i STD AVG STD AVG STD 
(JM-IK) 0.19 0.039 0.19 0.028 0.19 0.020 0.19 0.013 0.19 0.010 0.19 0.007 

.GM=iir 0.18 0.039 0.18 0.02S 0.18 0.020 0.18 0.013 0.18 0.010 0.18 0.007 

GM=l:13 

GM-114 

0.17 0.040 0.17 0.028 0.17 0.020 0.17 0.013 0.17 0.010 0.17 0.007 

0.16 0.040 0.16 0.028 0.16 0.020 0.16 0.013 0.16 0.010 0.16 0.007 

0.15 0.041 0.15 0.028 0.15 0.020 0.15 0.014 0.15 0.010 0.15 0.007 

GM^llS. 0.14 0.041 0.14 0.029 0.14 0.020 0.14 0.014 0.14 0.010 0.14 0.007 

GMfIi.6. 0.14 0.041 . 0.13 0.029 0.13 0.021 0.13 0.014 0.13 0.010 0.13 0.007 

GM«l,n 0.13 0.042 0.13 0.029 0.13 0.021 0.13 0.014 0.13 0.010 0.13 0.007 

GM=118 0.12 0.042 0.12 0.029 0.12 0.021 0.12 0.014 0.12 0.010 0.12 0.007 

^M-l:19 0.11 0.042 0.11 0.029 0.11 0.021 0.11 0.014 0.11 0.010 0.11 0.007 

GM=^120. 0.11 0.042 0.11 0.029 0.11 0.021 0.11 0.014 0.11 0.010 0.10 0.007 
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Table 9. Average (AVG) Attrition Rates and Standard Errors (STD) by Cut Score 
and N for High Difficulty, High Complexity Condition 

Cut 
Scores 

Alternative Sample Saes 

N = 100 N = 200 N = 400 N«800 N=*1600 N = 3200 

AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD 

GM= 80 0.42 0.080 0.43 0.055 0.43 0.037 0.43 0.026 0.43 0.019 0.43 0.013 

GM=8I 

GM- 82 

0.41 0.080 0.42 0.055 0.42 0.038 0.42 0.026 0.42 0.019 0.42 0.013 

0.40 0.079 0.41 0.055 0.41 0.038 0.41 0.026 0.41 0.019 0.41 0.013 

GM-83 0.39 0.079 0.40 0.055 0.40 0.038 0.40 0.027 0.40 0.019 0.40 0.013 

GM= 84 0.38 0.079 0.39 0,055 0.39 0.038 0.39 0.027 0.39 0.019 0.39 0.013 

GM= 85 

GM= 86 

0.37 0.078 0.38 0.055 0.38 0.038 0.38 0.027 0.38 0.019 0.38 0.013 

0.36 0.077 0.37 0.054 0.37 0.038 0.37 0.027 0.37 0.019 0.37 0.013 

GM= 87 0.35 0.076 0.36 0.054 0.36 0.038 0.36 0.026 0.36 0.019 0.36 0.013 

GM=88 0.34 0.075 0.35 0.053 0.35 0.037 0.35 0.026 0.35 0.019 0.35 0.013 

GM=89 0.33 0.074 0.33 0.053 0.33 0.037 0.33 0.026 0.33 0.019 0.33 0.013 

GM=90 0.32 0.073 0.32 0.052 0.32 0,036 0.32 0.026 0.32 0.018 0.32 0.013 

GM- 91 0.30 0.071 0.31 0.051 0,31 0.036 0.31 0.025 0.31 0.018 0.31 0.013 

GM=92 0.29 0.069 0.29 0.049 0.29 0.035 0.29 0.025 0.29 0.017 0.29 0.012 

GM= 93 0.27 0.067 0.28 0.048 0.28 0.034 0.28 0.024 0.28 0.017 0.28 0.012 

GM= 94 0.26 0.064 0.26 0.046 0.26 0.032 0.26 0.023 0.26 0.016 0.26 0.011 

GM= 95 0.24 0.061 0.25 0.044 0.25 0.031 0.24 0.022 0.25 0.016 0.25 0.011 

GM= 96 0.23 0.058 0.23 0.042 0.23 0.030 0.23 0.021 0.23 0.015 0.23 0.010 

GM=97 0.21 0.055 0.22 0.040 0.21 0.028 0.21 0.020 0.21 0.014 0.21 0.010 

GM= 98 0.20 0.052 0.20 0.037 0.20 0.026 0.20 0.019 0.20 0.013 0.20 0.009 

GM= 99 0.18 0.048 0.18 0.035 0.18 0.024 0.18 0.017 0.18 0.012 0.18 0.009 

GM=100 0.17 0.044 0.17 0.032 0.17 0.023 0.17 0.016 0.17 0.011 0.17 0.008 

GM=10I 0.15 0.041 0.15 0.030 0.15 0.021 0.15 0.015 0.15 0.010 0.15 0.007 

GM=102 0.14 0.037 0.14 0,027 0.14 0.019 0.14 0.014 0.14 0.009 0.14 0.007 

GM=I03 0.12 0.034 0.13 0.025 0.12 0.017 0.12 0.013 0.13 0.009 0.13 0.006 

GM=104 0.11 0.032 0.11 0.023 0.11 0.016 0.11 0.012 0.11 0.008 0.11 0.006 

GM=105 0.10 0.029 0.10 0.021 0.10 0.015 0.10 0.011 O.IO 0.007 0.10 0.005 

GM=106 0.09 0.027 0.09 0.019 0.09 0.014 0.09 0.010 0.09 0.007 0.09 0.005 

GM=107 0.08 0.025 0.08 0.018 0.08 0.013 0.08 0.009 0.08 0.006 0.08 0.005 

GM=I08 0.07 0.024 0.07 0.017 0.07 0.012 0.07 0.009 0.07   0.006 0.07 0.004 

GM=109 0.06 0.022 0.06 0.016 0.06 0.011 0.06 0.008 0.06   0.005 0.06 0.004 
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Table 9. Average (AVG) Attrition Rates and Standard Errors (STD) by Cut Score 
and N for High Difficulty, High Complexity Condition 

Cut 
Scores 

GM=110 

GM=Ii] 

GM-1I2 

GM=I13 

GM=I14 

Altt-rnutive Sample Sizc> 

is = 100 N=20U N = 400 N = SOO ■N;=1,600 N>=320() 

AVG 8TI) AVG STD AVG Sll) AVG SID AVG^ :iTD AVG STD 

0.05 0.021 0.05 0.015 0.05 0.011 0.05 0.008 0.05 0.005 0.05 0.004 

0.05 0.020 0.05 0.014 0.05 0.010 0.05 0.007 0.05 0.005 0.05 0.004 

0.04 0.018 0.04 0.013 0.04 0.009 0.04 0.007 0.04 0.005 0.04 0.003 

0.04 0.017 0.04 0.012 0.04 0.009 0.04 0.006 0.04 0.004 0.04 0.003 

0.03 0.016 0.03 0.012 0.03 0.008 0.03 0.006 0.03 0.004 0.03 0.003 

GM=115 

GM==I16 

0.03 0.015 0.03 0.011 0.03 0.008 0.03 0.005 0.03 0.004 0.03 0.003 

0.02 0.014 0.02 0.010 0.02 0.007 0.02 0.005 0.02 0.003 0.02 0.003 

GM=117 

GM=118 

0.02 0.013 0.02 0.009 0.02 0.007 0.02 0.005 0.02 0.003 0.02 0.002 

0.02 0.013 0.02 0.009 0.02 0.006 0.02 0.004 0.02 0.003 0.02 0.002 

GM=>119 0.02 0.012 0.02 0.008 0.02 0.006 0.02 0.004 0.02 0.003 0.02 0.002 

GM-=120 0.01 0.011 0.01 0.008 0.01 0.005 0.01 0.004 0.01 0.003 0.01 0.002 
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APPENDIX C: FIGURES 
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Average Attrition Rates by Cut Score and Sample Size (N) 

Figure 1. Resulte for Low Difficulty, Low Complexity Condition 
Atta-ition Rates by Cut Score and N 
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Figure 2. Resulte for Low Difficulty, Medium Complexity Condition 
Attrition Rates by Cut Score and N 
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Average Attrition Rates by Cut Score and Sample Size (N) 

Figure 3. Results for Low Difficulty, High Complexity Condition 
Attrition Rates by Cut Score and N 
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Figure 4. Results for Medium Difficulty, Low Complexity Condition 
Attrition Rates by Cut Score and N 
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Average Attrition Rates by Cut Score and Sample Size (N) 

Figure 5. Results for Medium Difficulty, Medium Complexity Condition 
Attrition Rates by Cut Score and N 

-N=100 
-N=200 

N=400 

N=800 
-N=1600 

-N=3200 

80    82    84    86 88    90    92    94    96    98    100  102  104  106  108  110  112  114   116  118  120 

AA Composite Cut Score 

Figure 6. Results for Medium Difficulty, High Complexity Condition 
Attrition Rates by Cut Score and N 
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Average Attrition Rates by Cut Score and Sample Size (N) 

0.70 

Figure 7. Results for High Difficulty, Low Complexity Condition 
Attrition Rates by Cut Score and N 
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Figure 8. Results for High Difficulty, Medium Complexity Condition 
Attrition Rates by Cut Score and N 
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Average Attrition Rates by Cut Score and Sample Size (N) 

Figure 9. Results for High Difficulty, High Complexity Condition 
AtWflon Rates by Cut Score and N 
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standard Errors (SEs) by Cut Score and Sample Size (N) 

Figure 10. Results for Low Difficulty, Low Complexity Condition 
Standard Errors (SEs) by Cut Score and N 
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Figure 11. Results for Low Difficulty, Medium Complexity Condition 
Standard Errors (SEs) by Cut Score and N 
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Standard Errors (SEs) by Cut Score and Sample Size (N) 

Figure 12. Results for Low Difficulty, High Complexity Condition 
Standard Errore (SEs) by Cut Score and N 
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Figure 13. Results for Medium Difficulty, Low Complexity Condition 
Standard Errors (SEs) by Cut Score and N 
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standard Errors (SEs) by Cut Score and Sample Size (N) 

Figure 14. Results for Medium Difficulty, Medium Complexity Condition 
Standard Errors (SEs) by Cut Score and N 
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Figure 15. Results for Medium Difficulty, High Complexity Condition 
Standard Errors (SEs) by Cut Score and N 
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Standard Errors (SEs) by Cut Score and Sample Size (N) 

Figure 16. Results for High Difficulty, Low Complexity Condition 
Standard ErroiB (SEs) by Cut Score and N 
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Figure 17. Results for High Difficulty, Medium Complexity Condition 
Standard Errors (SEs) by Cut Score and N 
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standard Errors (SEs) by Cut Score and Sample Size (N) 

Figure 18. Results for High Difficulty, High Complexity Condition 
Standard Errors (SEs) by Cut Score and N 
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Percent Reduction in Standard Error (SE) by Cut Score and Sample Size (N) 

Figure IS. Results for Low Dfffloulty, Low Complexity Condftion 
Percent Reduction In Standard Error (SE) by Cut Score and N 
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Figure 20. Results for Low Difficulty, Medium Complexity Condition 
Percent Reduction in Standa^ Eiror (SE) by Cut Score and N 
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Percent Reduction in Standard Error (SE) by Cut Score and Sample Size (N) 

Figure 21. Results for Low Difficulty, High Complexity Condition 
Percent Reduction in Standard Error (SE) by Cut Score and N 
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Figure 22. Results for Medium Difficulty, Low Complexity Condition 
Percent Reduction in Standard Error (SE) by Cut Score and N 
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Percent Reduction in Standard Error (SE) by Cut Score and Sample Size (N) 

Figure 23. Results for Medium Difficulty, Medium Complexity Condition 
Percent Reduction in Standard Error (SE) by Cut Score and N 
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Figure 24. Results for Medium Difficulty, High Complexity Condition 
Percent Reduction in Standard Error (SE) by Cut Score and N 
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Percent Reduction In Standard Error (SE) by Ciit Score and Sample Size (N) 

Figure 25. Results for High Difficulty, Low Complexity Condition 
Percent Reduction in Standard Error fSE) by Cut Score and N 
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Figure 26. Results for High Difficulty, Medium Complexity Condition 
Percent Reduction in Standard Error (SE) by Cut Score and N 
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Percent Reduction in Standard Error (SE) by Cut Score and Sample Size (N) 

Figure 27. Resulte for High Difficulty, High Complexity Condition 
Percent Reduction in Standard Eiror (SE) by Cut Score and N 
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Coefficient of Variation by Cut Score and Sample Size (N) 

Figure 28. Results for Low Difficulty, Low Complexity Condition 
Coefficient of Variation by Cut Score and U 
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Figure 29. Results for Low Difficulty, Medium Complexity Condition 
Coefficient of Variation by Cut Score and N 
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Coefficient of Variation by Cut Score and Sample Size (N) 

Figure 30. Results for Low Difficulty, High Complexity Condition 
Coefficient of Variation by Cut Score and N 
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Figure 31. Results for Medium Difficulty, Low Complexity Condition 
Coefficient of Variation by Cut Score and N 
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Coefficient of Variation by Cut Score and Sample Size (N) 

Figure 32. Results for Medium Difficulty, iVlediym Complexity Condition 
Coefficient of Variation by Cut Score and N 
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Figure 33. Results for Medium Difficulty, High Complexity Condition 
Coefficient of Variation by Cut Score and N 
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Coefficient of Variation by Cut Score and Sample Size (N) 

Figure 34. Results for High Difficulty, Low Complexity Condition 
Coefficient of Variation by Cut Score and N 
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Figure 35. Results for High Difficulty, Medium Complexity Condition 
Coefficient of Variation by Cut Score and N 
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Coefficient of Variation by Cut Score and Sample Size (N) 

Figure 36. Results for High Difficulty, High Complexity Condition 
Coefficient of Variation by Cut Score and N 
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Results for Training Difficulty (Low, Medium, High) 
Average Attrition Rates by Cut Score and Sample Size (N) 

Figure 37. Results for Training Difficulty |Low, IMedium, High) 
Attrition Rates by Cut Score for N=100 

-High 

■Medium 

-Low 

90    92    94    96    98    100 102   104   1C»   108   110   112  114   116   118   120 

AA Composite Cut Score 

Figure 38. Results for Training Difficulty (Low, Medium, High) 
Attrition Rates by Cut Score for N=400 
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Results for Training Difficulty (Low, Medium, High) 
Average Attrition Rates by Cut Score and Sample Size (N) 

Figure 39. Results for Training Difficulty (Low, Medium, High) 
Attrition Rates by Cut Score for N=800 
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Figure 40. Results for Training Difficulty (Low, Medium, High) 
Attrition Rates by Cut Score for N=3200 
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Results for Training Difficulty (Low, Medium, High) 
Standard Error (SE) by Sample Size (N) and Cut Score 

Figure 41. Results for Training DHflcuIfy (Low, Medium, HighJ 
Standard Errors (SEs) by N for Gia=85 
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Figure 42. Resulte for Training DifTicuKy (Low, Medium, High) 
Standard Errors (SEs) by N for GM=9S 
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Figure 43. Results for Training Difficult (Low, Medium, High) 
Standard Errors (SEs) by N for GM=10S 
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Results for Job Complexity (Low, Medium, High) 
Average Attrition Rates by Cut Score and Sample Size (N) 

Figure 44. Results for Job Complexity (Low, Medium, High) 
Attrition Rates by Cut Score for N=100 
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Figure 45. Results for Job Complexity (Low, Medium, High) 
Attrition Rates by Cut Score for NN400 
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Results for Job Complexity (Low, Medium, High) 
Average Attrition Rates by Cut Score and Sample Size (N) 

Figure 46. Resulte for Job Complexity (Low, Medium, High) 
Attrition Rates by Cut Score for N=800 
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Figure 47. Resulte for Job Complexity (Low, Medium, High) 
Attrition Rates by Cut Score for N=3200 
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Results for Job Complexity (Low, Medium, High) 
Standard Error (SE) by Sample Size (N) and Cut Score 

Figure 48. Results for Job ComplexKy (Low, Medium, High) 
Standard Errors (SEs) by N for GIVI=85 
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Figure 49. Results for Job Complexity (Low, IVIedium, High) 
Standard Errors (SEs) by N for GM=95 
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Figure 50. Results for Job Complexity (Low, Medium, High) 
Standard Errors (SEs) by N for GM=105 
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Attrition Rates with Standard Errors (SE) 
by Cut Score and N 

Figure 51. Attrition Rates with Standard Errors (SEs) 
by Cut Score for N=200 
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Figure 52. Attrition Rates with Standard Errors (SEs) 
by Cut Score for N=800 
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APPENDIX D: SAS PROGRAMS AND TECHNICAL DOCUMENTATION FOR 

SIMULATION 
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Overview and Steps for Running SAS Programs for Simulation 

There are five SAS programs associated with running the simulation used in the current 
study. The names of these SAS programs, with a brief description of what each does, are as 
follows (hard copies of all programs appear on the proceeding pages): 

• Run_Create_TabIe,sas. Main program for running the simulation. All other programs 
operate off of this program. This is where the configurations to run, location of other 
programs for running the simulation, plus location for outputting SAS datasets and 
tables, are specified. 

• Create_Table,sas. Compiles estimated regression parameters and activates the other 
programs in the simulation to generate the Word table containing average attrition 
rates (and SEs) by sample size (JV) and cut score. 

• Simulate_Test_Score_Data_TwoAttempts.sas. Program for generating synthetic 
training performance and attrition data. Sample size (N) and number of samples to be 
replicated are based on configuration specifications. 

• Estimate_Parameter.sas. Estimates regression parameters to be used as input for 
computing average attrition rates (and SEs) at varying cut scores and sample sizes 
(N). 

• Tabulate_FailRates_FromNormal.sas, Estimates average attrition rate (and SE), then 
creates and outputs this information to Word table for each configuration. 

Each program contains documentation on the procedures and computations performed by the 
program. To run the simulation, follow these steps: 

1. On the computer's hard drive, create a folder (e.g., "SAS Simulation") to store the 
programs. Copy all programs to this folder. There are no constraints on the folder's 
name, as the programs are flexible enough to incorporate any name the user specifies, 

2. Within the newly created folder add a subfolder (e.g., "Data"). This subfolder will 
contain the SAS datasets and tables outputted by the simulation. There are no 
constraints on the subfolder's name, as the programs are flexible enough to 
incorporate any name the user specifies. 

3. Copy all configuration files representing the different conditions into the subfolder 
created in Step 2. Do not alter the names of configuration files, unless running a 
simulation different than the one conducted in the current study. 

4. Start SAS. From the "Editor" window, go to File>Open. Locate the folder 
containing the SAS programs (created in Step 1), and select "Run_Create_Table.sas". 
When selected, hit "OK". 
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5. Follow the documentation contained in the program. At a minimum, users will need 
to specify the location (folder) containing the SAS programs (from Step 1) and the 
folder to which the SAS datasets and tables are to be outputted (from Step 2). 
Double-check that the location and names of these folders match those specified in 
the first two steps. 

6. Run the program. To replicate the simulation, no other programs besides 
"Run_Create_Table.sas" need to be modified. All information required by other 
programs to successfully run the simulation is contained in the 
"Run_Create_Table.sas" program. Do not make modifications to the other programs. 

Please note that replicating this simulation "as is", and for all conditions (in a single run), 
requires significant computer resources. Do not open other programs when the simulation is 
running. Users are advised to plan on running the simulation when computer resources, and the 
time it required to run it, can be dedicated (exclusively) to running the simulation. 

D-3 



Example of Configuration File (for Medium Difficulty, 
Medium Complexity Condition) 

[SIMULATION CONFIGURATION] 
Sample Size 
5000 
Simulation Repetitions 
1 
[TEST   CONFIGURATION] 
Number  of  Test 
17 
Minimum Passing Score 
80.75 80.75 80.75 80.75 80.75 80.75 80.75 80.75 80.75 80.75 80.75 80.75 80.75 80.75 
80.75 80.75 80.75 
Test Score Validities 
.29 .08 .37 .15 .32 .15 .17 .55 .24 .32 .26 .34 .02 .39 .29 .07 .24 
Error Correlations 
1.00 0.41 0.24 0.21 0.00 0.00 

41 1.00 0.00 0.24 0.34 0.22 
24 0.00 1.00 0.00 0.00 0.31 
21 0.24 0.00 1.00 0.18 0,23 
00 0.34 0.00 0.18 1,00 0.18 
00 0.22 0.31 0.23 0.18 1.00 
00 0.00 0.00 0.16 0,00 0.17 
00 0.00 0.00 0.00 0,00 0.21 
00 0.22 0.00 0.00 0.00 0.00 
00 0.00 0.00 0.00 0.00 0.00 
00 0,00 0.00 0.00 0.20 0.00 
00 0.00 0.00 0.32 0.00 0.00 
38 0.39 0.00 0.00 0.21 0,00 
00 0.00 0.00 0.00 0.00 0.00 
00 0.00 0.00 0.00 0.00 0.00 

0 ,00 0 00 0 .00 0 ,00 0 .00 0.00 0 38 0 00 0.00 0 00 0 .00 
0 ,00 0 ,00 0 .22 0 .00 0 ,00 0.00 0 ,39 0 .00 0.00 0 ,30 0 .00 
0 .00 0 00 0 00 0 ,00 0 00 0.00 0 00 0 00 0.00 0 00 0 .00 
0 .16 0 00 0 00 0 .00 0 00 0,32 0 .00 0 00 0,00 0 00 0 .39 
0 .00 0 00 0 00 0 .00 0 20 0,00 0 21 0 00 0.00 0 24 0 .00 
0 .17 0 21 0 00 0 00 0 00 0.00 0 00 0 00 0,00 0 00 0 00 
1 00 0 29 0 00 0 00 0 00 0.30 0 00 0 00 0.00 0 00 0 00 
0 29 1 00 0 00 0 00 0 00 0.18 0 00 0 00 0.00 0 00 0 00 
0 00 0 00 1 00 0 00 0 00 0.00 0 00 0 00 0.00 0 00 0 00 
0 00 0 00 0 00 1 00 0 19 0.23 0 00 0 00 0.21 0 00 0 00 
0 00 0 00 0 00 0 19 1 00 0.22 0 29 0 00 0.00 0 00 0 40 
0 30 0 18 0 00 0 23 0 22 1.00 0 00 0. 00 0.00 0 00 0 26 
0 00 0 00 0 00 0 00 0 29 0.00 1 00 0 00 0.00 0 22 0 00 
0 00 0. 00 0, 00 0 00 0 00 0.00 0 00 1. 00 0,00 0 00 0 39 
0 00 0. 00 0. 00 0 21 0 00 0.00 0. 00 0. 00 1.00 0 00 0 00 
0 00 0. 00 0. 00 0 00 0. 00 0.00 0. 22 0, 00 0.00 1 00 0 00 
0. 00 0. 00 0. 00 0. 00 0. 40 0.26 0. 00 0. 39 0.00 0. 00 1 00 

0.00 0.30 0.00 0.00 0,24 0.00 
0.00 0.00 0.00 0.39 0.00 0.00 
Number of X 
1 
Mean of X 
118 
Variance of X 
81 

Regression Weights 
63.56   86.83   62.56  82.93   74.32   80.10  75.46   39.49   68.84   63.04   60.04   68,74   85.61   69.99 
62.45   86.41   79.77 
,24   .06   .24   .10   .18   .11   .11   .43   .17   ,23   .25   .18   .02   .22   .24   .03   ,13 
Test Score Variances 
56.59 46,73 33.03 38.71 24.31 39.04 33.98 49.15 40.34 41.64 74.09 25.77 74.13 25.77 
56.31 21,68 21.65 
Simulation Random Number Seed 
1001 
[REFERENCE POPULATION] 
Number of X 
1 
Mean of X 
100 
Variance of X 
400 
Alternative Cut Score Range: LOW, HIGH, STEPSIZE 
80 120 1 
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Example of Configuration File (for Medium Difficulty, 
Medium Complexity Condition) 

FILENAME: AvgDiff_MedB.Param.txt 

DESCRIPTION: Test score parameters for MOS XX with "problem" data points (e.g., 
recruits below cut score, plus outlier on TestXX) excluded from parameter estimation. 

NOTE: Error structure does not include negatively correlated errors. 

(1) Training Difficulty 

*Y-intercepts are empirical estimates meant to reflect MOS "average" in training 
difficulty {12-13% attrit rate). 

(2) Test Validities 

*Test validities average to .25 {"average") to reflect medium complexity MOS. 
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Program A: Run_Create_Table.sas 

FILENAME: Run_Create_Table.sas 

t 

DESCRIPTION: 

This program creates a table with MEAN and STANDARD ERROR estimates of 
expected attrition/failure rates at alternative cut scores for specified 
sample sizes. 

* ROW = Cut Scores 
* COLUMN = Sample Size 
* CELL = MEAN & STANDARD ERROR 

NOTE:          
(1), Table-configuration is specified in the input text file. 
(2) Parameter estimates are stored separately by sample size and replication. 
********i,^,*■k^r****■k***^,i,i,^■■k******^c■k**^r^t*****•k^,******^r■k*^,^,*iti■i^,^,^c^c^e*^,^,■k*^,*********^ 

r 

STEP 1: SET GENERAL PARAMETERS 
* mDataDir specifies location of directory containing parameter configuration 
files and to which SAS datasets, output & log files, and tables are outputted. 

* SET mDropTest=yES to drop Test Score and only keep ATTRIT. Else, set to NO. 

%let mDataDir=D:\SAS Simulation\Data; 
%let mDropTest=YES; 

STEP 2: SET PROGRAMS DIRECTORY LOCATION 
* mProgDir specifies location of directory containing SAS programs. 

%let mProgDir=D:\SAS Simulation; 

******************************************************************************** 
STEP 3: SET TITLE OF OUTPUT TABLE (OPTIONAL). 
********************************************************************************. 
Ilet titlelinel "This is title line #1"; 
%let titleline2 "This is title line #2"; 
%let titlelineS "This is title line #3"; 

******************************************************************************** 
STEP 4: RUN PROGRAM 
* mDataFile specifies name of all configuration files, SAS datasets, and RTF 
files read by and outputted by the simulation. NOTE: This name reflects key 
configuration parameters (i.e., level of difficulty and complexity). 

*************************************** *■* ***************************************. 

options formchar='I-++++++' nodate noniomber mprint; 

/**Medium Difficulty, Medium Complexity Condition**/ 
%let mDataFile=AvgDiff_MedR; 
% include "&mProgDir\Create_Table.sas"; 

/**Medium Difficulty, High Complexity Condition**/ 
Ilet mDataFile=AvgDiff_HighR; 
%include "&mProgDir\Create_Table.sas"; 
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Program A: Run_Create_Table.sas 

/*.*Medium Difficulty, iow Complexity Condition**/ 
%let mDataFile=AvgDiff_LowR; 
%include "&mProgDir\Create_Table.sas"; 

/**Low Difficulty, Medium Complexity Condition**/ 
%let mDataFile=LowDiff_MedR; 
%include "&mProgDir\Create_Table.sas"; 

/**Low Difficulty, High Complexity Condition**/ 
%let mDataFile=LowDiff_HighR; 
%include "&mProgDir\Create_Table.sas"; 

/**Low Difficulty, Low Complexity Condition**/ 
%let mDataFile=LowDiff_LowR; 
%include "&mProgDir\Create_Table.sas"; 

/**High Difficulty, Medium Complexity Condition**/ 
%let mDataFile=HighDiff_MedR; 
%include "&mProgDir\Create_Table.sas"; 

/**High Difficulty, High Complexity Condition**/ 
%let mDataFile=HighDiff_HighR; 
%include "&mProgDir\Create_Table.sas"; 

/**High Difficulty, Low Complexity Condition**/ 
%let mDataFile=HighDiff_LowR; 
%include "&mProgDir\Create Table.sas"; 
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Program B: Create Table.sas 

FILENAME: Create_Table,sas 

f 

*********i'^ ************** ******^ci,^,**^,■k*^,^,^.**^,^c*****i,^,^,^,*■^,■k^,i,^,^,^^,^,^,^,^,^,^^,^i^,^,^,^^,^^,^ 

DESCRIPTION: Compiles estimated regression parameters and activates other 
programs {e.g., Simulate_Test_Score_Data_TwoAttempts.sas, Estimate_Parameter.sas) 
for generating Word table reporting the estimated average attrition rate (and 
standard error) by cut score and sample size. 
NOTE: Run this program through RUN_CREATE_TABLE.SAS. Do NOT modify this program. 

f 

* mColFile specifies name of SAS dataset containing logistic regression 
parameters by sample size across replications; NOTE: Name of file reflects 
mDataFile- specification from Run__Create_Table.sas. 

*:mOutFile specifies name of SAS dataset containing attrition rates by cut scores 
across replications, NOTE: This file is written in mDataDir directory. Name of 
file reflects mDataFile specification from Run_Create_Table.sas. 

* mRtfFile specifies name of the RTF file version of the OUTPUT TABLE. This file 
can be imported directly to MS Word. NOTE: This file is written in mDataDir 
directory. Name of file reflects mDataFile specification from 
Run_Create_Table.sas. 

%let mColFile=&mDataFile._LogistParam; 
%let mOutFile=&mDataFile._Table; 
%let mRtfFile=&mDataFile..rtf; 
proc printto print="{cmDataDir\&mDataFile._Output.txt" 
log="&mDataDir\&mDataFile..log";run; 

**************************************vif****************** ******** 

(1) Reads in parameters from configuration file. 

data _null_; 
■file- print; 
length strTmp $ 100; 
infile "SmDataDir.X&mOataFile..Param.txt" lrecl=100 TRUNCOVER; 
do until (trim(strTmp)="[SIMULATION CONFIGURATION]"); 

input StrTmp $100.; 
put StrTmp; 

end; 

nNumSize =0; 
input StrTmp $100,; 

'do 1=1 to 10 until(nSlze=.); 
input nSize @; 
put "NSIZE = " nSlze; 

nNumSize = nNumSize + 1; 
if (nSize^=.) then 

call symput(compress("mSize"||put(i,2.)J,left(put{nSize,5.))); 
end; 
nNumSize = nNumSize - 1; 
put "Number of Sample Sizes = " nNumSize; 
call symput("mNumSize",put(nNumSize, 2.)); 

Input / "StrTmp $100.; 
input nReps; 
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Program B: Create_Table.sas 

put "NREPS = " nReps; 

call .symput ( "mNumRep", put (nReps, 5 . ) ) ; 

stop; 
run ; 

%macro MacroCreateTable; 

(2) Creates the simulated test score data. 

%do iSize = 1 %to &mNumSize; 
%let mNumSSN = &&mSize&iSize; 

%include "&mProgDir\Simulate_Test_Score_Data_TwoAttempts.sas"; 
%end; 

(3) Computes the parameter estimates across replications. 

■%include "&mProgDir\Estimate_Parameter.sas"; 

(4) Generates the attrition table. 

%include "&mProgDir\Tabulate_FailRates_FromNormal.sas"; 

%mend; 

%MacroCreateTable; 

* 
END OF PROGRAM. 
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Program C: Simulate_Test_Score_Data_TwoAttempts.sas 

FILENAME: Simulate_Test_Score_Data_TwoAttempts.sas 
*****************************j,****^*^ + *j^^^^^^^^j,^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ^ 

0 

******************■)r*■k****^,*^r**^r***i■k***ir■^*****i,*^,i,i,i,^,^r**i.i*^,■ir*■k■kiri.*^,i,*■k*■k^^r*^,^ri* 

DESCRIPTION: Program for generating synthetic training performance and attrition 
data. 

NOTE: Run this program through RUN_CREATE_TABLE.SAS. Do NOT modify this program. 
*********************************^****^^t********************** + ******i*^^ni,*^^^^^^. 

f 

libname DataDir "&mDataDir"; 
filename ParFile "SmDataDirX&mDataFile. .Param.Txt'S- 

proc iml; 

******************* ***ir*-k*-k-i-k***^i,-k-k-k-M*i, 4, ^,^,^,^,^,^^,^^i^^^^,^,^,^,^^^^^^^.^^^^.^^^^^^^^^^^ 

READING IN TEST CONFIGURATION INFORMATION FROM INPUT PARAMETER FILE, 
* macro variable = SmParFile 

(1) Test score data dimension. 
* nNumTest - scalar number of tests 
* nNumSSN - scalar number of SSNs (Sample Size) 
* nNumRep - scalar number of simulation repetitions 

(2) Minimum passing scores for school tests, which can vary across tests. 
* fMinPassScore - vector of nNumberTest elements 

(3) "Restricted" test validities. 
* fRxy - vector of nNumberTest validities. Equals corr (X, Y[ImNumberTest]) 

(4) Intra-person test score "error" correlations. Allow unequal correlations. 
* fRho - symmetric matrix. nNumberTest*nNumberTest intra-person error 

correlations. 
(5) Mean and variance of predictor matrix X. 

* nNumX - scalar number of predictors, including constant 
* fMuX - test score means 
* fVarX - test score variances 

(5) Regression constants and coefficients for test score means conditional on X. 
* fBeta - {p+D by (nNumberTest) matrix. Columns represent tests. Note that 

E{y[j]|Xvec} = t(Xvec)*fBeta[,j] 
(6) Variance of tests (restricted to MOS school sample) 

* fVarY - 1 X nNumTest vector of test variances 
******************************■k■i,**■k■k*■k■k■k■ki,■i■i,^,^,*^,■k**^,■k*****^^^,^,^^^,^^,^,i,^^^,^,^,^,^,^.^^^^ 

infile ParFile; 

nNumSSN = SmNumSSN; 
print nNumSSN[label="Sample Size"]; 
'nNumRep = SmNumRep; -   .      , 
print nNumRep[label="Number of Repetitions"]; 

do until (trim(strLabel)="[TEST CONFIGURATION]"); 
input strLabel $RECORD.; 

end;   

input StrLabel $RECORD. / nNumTest; 
print nNumTest[label=strLabel]; 

input StrLabel $RECORD..; -   ._.  
fMinPassScore = repeat(0,1,nNumTest); 
do j=l to nNumTest; 
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Program C: Simulate_Test_Score_Data_TwoAttempts.sas 

input tmpVal @; 
- -fMinPassScore[j] = tmpVal; 

end; 
print fMinPassScore[label=strLabel]; 

input; 
input strLabel $RECORD.; 
f Rxy = repeat (0,1, nNuniTest) ; 
do j=l to nNumTest; 

input tmpVal @; 
fRxy[j] = tmpVal; 

end; 
print fRxy[label=strLabel]; 

-input; 
■input strLabel $RECORD.; 
-fRho = repeat(0,nNumTest,nNumTest); 
do i=l to nNumTest; 

do j=l to nNumTest; 
input tmpVal @; 

fRho[i,j] = tmpVal; 
end; 

input; 
end; 
print fRho[label=strLabel]; 

input StrLabel $RECORD. / nNumX; 
print nNumX[label=strLabel]; 

input StrLabel $RECORD.; 
fMuX = repeat(0,l,nNumX); 
do j=l to nNumX; 

input tmpVal @; 
fMux[j] = tmpVal; 

end; 
print -fMuX[label=strLabel] ; 

input; 
input StrLabel $RECORD.; 
fVarX = repeat(0,nNumX,nNumX); 
do i=l to nNumX; 

do j=l to nNumX; 
input tmpVal @; 
-fVarX[i,j] = tmpVal; 

' end; 
input; 

end; 
print fVarX[label=strLabel]; 

■input StrLabel $RECORD.; 
fBeta = repeat(0,nNumX+1,nNumTest); 
do i=l to nNumX+1; 

do j=l to nNumTest; 
. input tmpVal @; 
 fBeta [ i, j ] -.= tmpVal; 
end; 

input; 
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Program C: Simulate_Test_Score_Data_TwoAttempts.sas 

end; 
print fBeta[label=strLabel]; 

input strLabel $RECORD,; 
fVarY = repeat(0,1,nNumTest); 
do j=l to nNumTest; 

input tmpVal @; 
fVarYIj] = tmpVal; 

end; 
print fVarY[label=strLabel]; 

input / StrLabel $RECORD. / nRandSeed; 
print nRandSeed[label=strLabel]; 

*************** ****■k■k*■k*^r^,i■k■^,■^,****^,*^r^,^,^,m,^^^,^,i,^,i,^^,^^,^,^,^^^^^^,^^^^^^^^^^^^^^^^^^^ 

CREATING OUTPUT FILE FOR SYNTHETIC- TRAINING PERFORMANCE AND ATTRITION DATA. 
* FILEREF = DataDir.DataFile 

*****************************^k■k^k■k■ir■k^,■k■i*^,^,ir^,^,^:^,^,^^^,^,^,^,^,^,^^,^,^^^^^^^^^^^^^^^^^^:^^^_^^^ 

strColNames = compress (concat {"X", char (OmNumX) )); 
if ("&mDropTest"'^="YES") then do; 
StrColNames = strColNames| 1 compress(concat{"SC0RE1_", char(1:nNumTest))); 
StrColNames = strColNames I | compress (concat ("SC0RE2_", char (1:nNumTest)) ); 

end; 
StrColNames = strColNames||"ATTRIT"; 
create DataDir.&mDataFile._N&mNumSSN var ("REP"|IstrColNames); 

*******************************•k■k*^k^r^r*^,^r■k****^■l,■k^,^,■k^,■^,■k■k^,^,*^,^,*■tr^r■)r■),■k^^r■l,***■k*^,i,^,i,*^, 

GENERATING SYNTHETIC DATA THAT REFLECTS CONFIGURATION PARAMETERS (e.g., MEAN, 
VARIANCE, etc.) 
*******************************-k*-k-k**-k^ii,i,^i,^^■ki,.i,i,i,i,i,i,i,i,i,^,i,i,^i,^,^^^^,^^^^^^^^^^^^^ ^ 

/*  Cholesky of variance of X */ 
rootVarX = root(fVarX); 
/* "n XI" unit vector */ 
oneXVec = repeat(l,nNumSSN, 1); 

/* Root of error variances */ 
mseScore = ((l-fRxy##2)#fVarY)##.5; 
/* Error covariance */ 
errorVar = dlag(mseScore)*fRho*diag(mseScore); 
/* Cholesky of error covariance */ 
rootVarError = root(errorVar); 

do iRep=l to nNumRep; 
"/* Simulating training performance over two attempts */ 

/* Simulating samples of AA composite scores of N size (i.e., nNumSSN) with 
. mean and variance approximately equal to mean and variance of real-world data 

*/ 
fXmat = oneXVec || oneXVec*fMuX + rannor(repeat(l,nNumSSN,nNumX))*rootVarx; 

/* Testl and Test2 are samples of simulated test scores with mean, variance, 
validities, etc., approximately equal to real-world estimates. */ 
fTestl = fXmat*fBeta + 

rannor (repeat (nRandSeed, nNumSSN, nNumTest) ^trootVarError; 
fTest2 = fXmat*fBeta + 

rannor(repeat(nRandSeed, nNumSSN, nNumTest))*rootVarError; 
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Program C: Simulate_Test_Score_Data_TwoAttempts.sas 

 /* Identifying max test score across two attempts to compute attrition */ 
fTestMax = fTestl<>fTest2; 

/* If mDropTest set to "Yes", dropping test score data, but keeping attrition 
. data to minimize file size. Otherwise, all data (test scores, attrition) 
outputted to SAS dataset. */ 

• -if {"&mDropTest"'^="YES") then do;         -^ -  ■-  . 
OUTMAT = repeat(iRep,nNumSSN,1) M 

fXmat  I I 
fTestl I I 

•" fTest2 I I 
/* Computing attrition (1="ATTRIT", 0="NO ATTRIT") based on max test 
score and minimum passing scores */ 

(fTestMax < oneXVec*fMinPassScore)[,<>]; 
end; .  .          
else do; 
OUTMAT = repeat(iRep,nNumSSN,l) I I 

fXmat  I I 
/* Computing attrition (1="ATTRIT", 0="NO ATTRIT") based on max test 
score and minimum passing scores */ 
(fTestMax < oneXVec*fMinPassScore)[,<>]; 

end; 

append from OUTMAT; 

end; 

close DataDir.&mDataFile._N&mNumSSN; 

quit; 
run; 

END OF PROGRAM.' "  

r 
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Program D: Estimate_Parameter.sas 

**************■it***■k■k***■^i**■ii,^,^:^,**i^^c■k******ic^**i,^,■k^**i*^c*i,^i,i■k***■k^,******^***■k*■lr■^ 

-FILENAME: Estimate_Parameter.sas 
t 

DESCRIPTION: Program for estimating regression parameters, which become input 
for estimating average attrition rates and standard errors by sample size and 
cut score. 
NOTE: Run this program through RUN_CREATE_TABLE.SAS. Do NOT modify this program. 

t 

/* Macro for compiling individual SAS datasets containing synthetic data for a 
given sample size (across X replications). */ 
%macro SetFiles;   

%do iSize = 1 %to SmNumSize; 
DataDir.&mDataFile._N&&mSize&iSize (in=In&&mSize&iSize) 

lend; 
%mend; 

/* Macro for computing sample sizes to be included in TestScoreData. */ 
%macro NSizes; 

In&mSizel*&mSizel 
%do iSize = 2 %to SmNumSize; 

+ In&&mSize&iSize*&&mSize&iSize 
%end; 

%mend; 

/* Merging individual SAS datasets containing synthetic data for a given sample 
size (across X replications) into single, omnibus dataset with variable NSIZE. */ 
data TestScoreData /view=TestScoreData; 

length NSIZE 4; 
set %SetFiles; 
NSIZE = %NSizes; 

run; 

/* Estimating regression parameters for each replication (EEP) by sample size 
(NSIZE). Outputting parameters to specified SAS dataset. */ 
proc logistic data=TestScoreData 

outest=datadir.&mColFile (keep=NSIZE REP Intercept XI) 
descending noprint; 
model attrit = K1; 
by NSIZE rep; 

quit; 
run; 

************************************************************************* 
END OF PROGRAM. 
************************************************^ti.*ii.vi.^j.<.*****.^i^t^^jt^t.jfe^^j^^^jt^^.j.^^ ^ 
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Program E: Tabulate_FailRates_FromNormal.sas 

FILENAME:- Tabulate_FailRate,s_FromNormal.sas 

*************** *-**********************i,*.^i,*i,-^i,^^i,i,i,^^^^i,i,^^^^,^,^^^^^^^^^^^^^_^^^^^^ 

DESCRIPTION: Estimates average attrition rate (and standard error) by sample size 
and cut score, then creates table and outputs this information to RTF file. 
•NOTE: Run this- program through RUN_CREATE_TABLE.SAS. Do NOT modify this program 
*******************************************i,*i,i,^i,^i,i,i,i,^,^,i,^^^^^^^^^^^^^^^^^^_^^_^^_^^_ 

libname DataDir "SmDataDir"; 

•filename RdwFile "&mDataDir\&mDataFile..Param.Txt"; 

^proc iml; 

****************************************i,^r*■^■^,■^,^,i,^,^,^,^,^,,^^,i,^^^,^^,^^^,^,^^^^^^^:^^^^^^^^^ 

** 

READING IN POPULATION PARAMETERS AND CUT SCORE RANGE FOR ESTIMATING ATTRITION 
•RATES. 

* macro variable = SmRowFile 

(1) Mean and variance of predictor matrix X in REFERENCE POPULATION. 
* nNumX - scalar number of predictors, including constant. 
* fMuX - reference population mean for AA composite. 
* fVarX - reference population variance for AA composite. 

(2) Alternative Cut Scores along the row dimension. 
* nNumCut - total number of cut scores. 

* fXCut - list of cut scores for which attrition rates {and SEs) will be 
estimated. 

*****************************************i,***i,^i,i,i,i,^,i,^,^^,i,^^^^i,^^^^^^^^^^^^^^^^^^^ 

*. 
infile RowFile; 

do until (trim(strLabel)="[REFERENCE POPULATION]"); 
input strLabel'$RECORD.; 

end; 

input StrLabel $RECORD. / nNumX; 
print nNumX[label=strLabel]; 

/* Reading in reference population mean. */ 
input StrLabel $RECORD.; 
fMuX = repeat(0,1,nNumX); 
do j=l to nNumX; 

input'tmpVal @; 
fMuX[j] = tmpVal; 

-. end; 

print fMuX[label=strLabel] ; 

/* Reading in reference population variance.*/ 
input; 
input StrLabel $RECORD.; 
fVarX = repeat(0,nNumX,nNumX); 
do i=l -to nNumX; 

., . do - j ^1 . to... nNumX; 
input tmpVal @; 

fVarX[i,j] = tmpVal; 
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end; 
 input; 
end; 
print fVarX[label=strLabel]; 

/* Reading in specified cut score range. */ 
input strLabel $RECORD.; 
input fCutLO fCutHI fCutSTEP; 
print fCutLO fCutHI fCutSTEP; 
nNumCut = floor((fCutHI-fCutLO)/fCutSTEP) + 1; 
print nNumCut[label="Number of Cut Scores"]; 
fXCut = repeat(0,1, nNumCut); 
do j=l to nNumCut; 

fXCuttj] = fCutLO + (j-l)*fCutSTEP; 
end; 
print fXCut[label=strLabel]; 

/* Copy LO, HI, STEP to macro variables for later processing. */ 
call symput("mCutLO",compress(char(fCutLO))); 
call symput("mCutHI",compress(char(fCutHI))); 
call symput("mCutSTEP",compress(char(fCutSTEP))); 

CREATING OUTPUT DATASET CONTAINING ESTIMATED ATTRITION RATES BY SAMPLE SIZE AND 
CUT SCORE, 

* FILEREF = DataDir.&mOutFile; 
********** *******************t*************4***jtjtVk***************************** 

t 

strColNames = compress(concat("PATTRIT",char(fXCut))); 
create DataDir.&mOutFile var ({"NSIZE" "REP"} || strColNames); 

**■k*■k*^c*****■k*■k***■k^,****^t*^r*^,*i!•k************^e*•k*it*^,■k*^e**^e■k■k***^,**ir***^,**^,**^:*^,** 

ESTIMATING ATTRITION RATES BY SAMPLE SIZE AND CUT SCORE. 
* FILEREF = DataDir.&mColFile; 

************************************.************* -kir-k-k ***** * * * * * * ***** ***********. 

nNumQuant = 5000; 
/* Generating quantiles based on reference population mean and variance */ 
quantX = probit((1:(nNumQuant-1))/nNumQuant)*sqrt(fVarX[1,1]) + f MuX; 
/* Creating nNumQuant BY nNumCut matrix of 0 and 1 to denote pass cut score */ 
aboveCut = repeat (t (quantX), l,ncol (fXcut) ) > repeat (fXcut,ncol(quantX), 1); 

strBetaNames = "Intercept" || compress(concat("X", char(1:nNumX))); 

u'se DataDir.&taCblFile; 

/* Looping through sample size and replications */ 
do data; 

read next var {"NSIZE" "REP"); 
- read current var (strBetaNames) into fBeta; 

/* Estimating probability that recruits within a quantile would not 
complete training */ 
quantProbAttrit = 1/(1 + exp(-fBeta[1] - quantX*fBeta|2]) ) ; 

7* Calculating attrition rate for each alternative cut score in specified 
range. For given alternative cut score, the attrition rate is the simple 
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arithmetic average of probabilities of not completing (i.e., 
quantProbAttrit) associated with AA quantiles above the cut score. This is 
equivalent to average of probability of not completing weighted by density 
of AA. */ 

cutProbAttrit = NSIZE || REP || (quantProbAttrit*aboveCut)/aboveCut[+,]; 

append from cutProbAttrit; 
end; 

close DataDir.&mColFile; 

quit; 
run; 

CREATING AND OUTPUTTING RTF FILE CONTAINING TABLE WITH ESTIMATED ATTRITION 
RATES BY SAMPLE SIZE AND CUT SCORE. 
* FILEREF = DataDir.SmOutFile AND &mDataDir\&mRtfFile; 

/* Macro for creating sample size labels for table. */ 
%macro SizeLabel; 

%do iSize=l %to SmNumSize; 
&&mSize&iSize="N = &&mSize&iSize" 

%end; 
%mend; 

/* Macro for creating cut score variables needed to build table. */ 
%macro CutScoreVars; 

%do i=&mCutLO %to &mCutHI %by &mCutSTEP; 
PATTRIT&i 

%end; 
%mend; 

/* Macro for creating cut score labels for table. */ 
%macro CutScoreLabel; 

%do i=&mCutLO %to 100 %by SmCutSTEP; 
PATTRIT&i:= "GM= &i" 

%end; 
%do i=100 %to &mCutHI %by &mCutSTEP; 
PATTRIT&i = "GM=&i" 

lend; 
%mend; 

proc format; 
value nsizefmt %SizeLabel; 

run; 

/* Creating and outputting table containing average (AVG) attrition rates and 
standard errors (STD) by sample size and cut score. */ 
ods rtf file="&mDataDir\&mRtfFile"; 
proc tabulate data=DataDir.SmOutFile; 

titlel stitlelinel, 
title2 &titleline2; 
titles &titleline3; 
class NSIZE; 
format NSIZE nsizefmt.; 
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var %CutScoreVars; 
table %CutScoreVars,  

NSI2E*(MEAN*F=6.2 STD*F=6.3) 
/box="Cut Scores" rts=20; 

keylabel inean="AVG" 
•std ="STD"; 

label NSIZE="Alternative Sample Sizes" 
" iCutScoreLabel; ^ 

run; ; 
ods rtf close; 

END OF PROGRAM. 
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Overviewand Steps for Running SAS Programs for Attrition Rates Analysis 

Only a single SAS program is needed to perform an attrition rates analysis, 
Tabulate_Attrit Rates_ForSchool.sas (a hard copy of this program appears on the proceeding 
pages). The program contains documentation on the procedures and computations performed by 
the program, plus the specifications users need to make in order to run it. The program was 
designed to minimize the number of specifications users must make in order to run the program. 
Users can easily customize these specifications to fit their analysis needs. In general, to run an 
attrition rates analysis, follow these steps: 

1. On the computer's hard drive, create a folder (e.g., "SAS Simulation"). This folder 
will contaiii the SAS program, and all dat^ets and tables outputted by the program. 
There are no constraints oil the folder's name, as the program is flexible enough to 
incorporate any name the user specifies. 

2. Copy the program (Tabulate_Attrit Rates_ForSchool.sas) and the SAS dataset 
containing the MOS school data to be analyzed to this folder. Prior to running the 
analyses, be sure that the integrity of the MOS school data has been verified; 
suggestions for doing so were made in the "Discussion" section of this report. At a 
minimum check the integrity of AA composite scores and attrition data, as the 
attrition rates analysis primarily utilizes diese data. Note, that the variable containing 
attrition data should be a dichotomous, numeric variable (e.g., l="attrit", 0="no 
attrit"), with non-academic attritions classified as "missing." It is important that all 
non-academic attritions are excluded fi-om the analysis. 

3. Start SAS. From the "Editor" window, go to File>Open. Locate the folder created in 
Step 1, and select "Tabulate_Attrit RatesForSchool.sas." When file has been 
selected, click "OK". 

4. Follow the documentation contained in the program. At a minimum, users will need 
to specify: 

•   The location (folder) containing the SAS program and dataset with MOS 
school data (created in Step 1); 

, •. i JJie name of the-SAS-dataset containing the MOS school data to be 
'       analyzed; 

• The variables nmies (in the SAS dataset) for the AA composite and 
attrition data; 

The mean and variance of the AA composite (applicable to the MOS to be 
analyzed) for the appropriate reference population; and 

The range of out scores for which attrition rates should be estimated. 
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5.   After the above have been specified (and any additional options, such as titles for the 
table), run the program. All information required to successfully perform the attrition 
rates analysis is contained at the top of the "Tabulate_Attrit Rates_ForSchool.sas" 
program. Users do not need to make modifications to the rest of the program. 

The table outputted by the program is comparable to the table produced by the simulation, except 
the table is composed of only two columns. The first column ("Cut Scores") lists the range of 
alternative cut scores, as specified by the user. The second column ("Attrit") reports the 
corresponding estimated attrition rates. An example table appears after the copy of the program. 
The program outputs the table to an .RTF file that can be easily opened in MS Word. 
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Tabulate AttritRates ForSchool.sas 

FILENAME: Tabulate_AttritRates_ForSchool.sas 

****************************************+*******i******************^ 

DESCRIPTION: Program for estimating attrition rates by cut score using available 
MOS school data. 
************************************************** ****^Hfc*^t*^jl,^i.^i,^^tjf^^^^^^^^i^j|.^ . 

t 

STEP lA: SET FILE LOCATIONS. 
The following parameters are required. They must be modified in order to run the 
program successfully. 
* mDataDir specifies location of directory containing SAS datasets, 
configuration files, etc., used by program, and to which all SAS datasets and 
tables generated by program are outputted. 

* mDataFile specifies name of SAS dataset containing MOS school data. NOTE: By 
default, name of dataset becomes first part of filename for all files 
generated by the program.■SEE mColFile, mOutFile, and mRtfFile. 

**************** * * * * * * *-* * * ******************** ******************************^^.*^^. 
%let mDataDir=D:\SAS Simulation\Data; 
%let mDataFile=MOS55d; 

*****************************************************i.**jtjt**ji.ji.^ji,i.^^^i^j.^^^^^^j.^^^ji, 

STEP IB: SET FILE LOCATIONS (con.) 
NOTE: The following parameters are optional. They do not have to be modified 
unless desired by the user. 
* mColFile specifies name of SAS dataset containing logistic regression 
parameters. NOTE: The default filename is mDataFile + "._LogistParam". 

* mOutFile specifies name of SAS dataset containing attrition rates by cut 
scores. The file becomes input to the Word table produced by this program. 
NOTE: The default filename is mDataFile + "._Table". 

* mRtfFile specifies name of the RTF file version of the table containing 
estimated attrition rates by cut score. This file can be imported opened in 
Word. NOTE: The default filename is mDataFile + ".rtf". 

***********************************************************^t*******************. 

%let mColFile=&mDataFile._LogistParam; 
%let mOutFile=&mDataFlle._Table; 
%let mRtfFile=&mDataFile..rtf; 

************************************************************^***i^^^^^.^^.^^^i^^^^J^^ 

STEP 2: SPECIFY VARIABLE NAMES IN SCHOOL DATASET. 
* mAAComp specifies the variable name of the AA composite (e.g., AR, GM, MK, AS, 
etc.) used to determine enlistment eligibility. NOTE: This information will 
a:iso be used to label ciSt'sddres in the'outputted table (e.g., GM=80, GM=82, 
GM=84, etc, j '      ' ■■"■'-     -  -  - 

* mAttrit specifies the variable name containing academic attrition information. 
****************************************************** ******^i.**i.*jm.ji.^^^^t^m^ + ^ji.^, 

%let mAAComp=GM; 
%let mAttrit=attrit; 

******************************************************************************** 

STEP 3: SET REFERENCE POPULATION PARAMETERS AND CUT SCORE RANGE. 
* fMuX specifies the reference population mean for the AA composite. 
* fVarX specifies the reference population variance for the AA composite. 
* fCutLO defines the lower bound of the range of cut scores for which attrition 
rates will be estimated. 
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^ * fCutHI defines the upper bound of the range of cut scores for which attrition 
rates will be estimated. 

* fCutSTEP specifies which cut scores within the defined range of cut scores 
(see fCutLO and fCutHI) attrition rates will be estimated for (and will appear 
in the outputted table). The value specified here defines the increment in the 
cut score range. 

.. .%let fMuX=100; 
%let fVarX=400; 
%let fCutLO=80; 
%let fCutHI=120; 

; %let fCutSTEP=l; 

"^'STEP 4: SET TITLE OF OUTPUT TABLE (OPTIONAL). 
***->'*************************************************************^^i,^i,^,^^i,^,^^^,^,, 

%let. titlelinel "This is title line #1"; 
%let titleline2 "This is title line #2"; 

..%let titleline3 "This is title line #3"; 

************************************************************ *■***i,i,^,^^^^^,^,^,^^^^^ 

START OF PROGRAM. DO NOT MODIFY SAS CODE BEYOND THIS POINT. 
****************************************************************^^^^^^^^^^^^^^^, 

i 

libname DataDir "SmDataDir"; 

************* ************************************************^*^,^^^,^^^i,^^^^^,^,^^^ 

COMPUTING REGRESSION PARAMETERS TO ESTIMATE ATTRITION RATES AT DIFFERENT AA 
COMPOSITE CUT SCORES. 

* FILEREF = DataDir.SmDataFile AND Datadir.SmColFile; 
********************************************************^^*^^^i,^^^^^^^^^^^^^^^^^ 

r 

proc-logistic data=DataDir.SmDataFile 
outest=Datadir.&mColFile (keep= Intercept SmAAComp) 
descending noprint; 
model SmAttrit = SmAAComp; 

quit; 
run; 

***************************************************************i^*i,^i,^i,i,i,^^^^^^^ 

READING   IN   POPULATION  PARAMETERS  AND  CUT   SCORE  RANGE   FOR  ESTIMATING  ATTRITION 
RATES. 

> -1^*^-*-***-*^*^-*-*.**.******************^****^^,^^,i,./,.^^^^*****************.***************. 

proc  iml; 

/* Reading in reference population parameters and cut score range from macro 
above. */ 

fMuX=&fMuX; 
fVarX=&fVarX; 
fCutLO=&fCutLO; 
fCUtHI=&fCutHI; 

■fCutSTEP=&fCutSTEP; 

print fMuX[label="Population Mean of AA Composite"]; 
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print fVarX[label="Population Variance pf hh  Composite"]; 
print fCutLO fCutHI fCutSTEP; 

nNumCut = floor((fCutHI-fCutLO)/fCutSTEP) + 1; 
print nNumCut[label="Number of Gut Scores"]; 
fXCut = repeat(0,1,nNumCut); 
do j=l to nNumCut; 

fXCut[j] = fCutLO,+ lj-l)*fCutSTEP; 
end; 
print fXCut[label="Alternative Cut Scores"]; 

/* Copy LO, HI, STEP to macro variables for later processing, */ 
call symput("mCutLO", compress(char(fCutLO))); 
call symput ("mCutHI", compre'ss (char ('fCutHI)) ); 
call symput("mCutSTEP",compress(char(fCutSTEP))); 

*********■k***********^^^c*•k^,***■k■k^r**■k****■k***i,*■k**^r*^c***^r^,*^,*ir*■k*■k*■k■k■k■k*■k*^,*^,^■^■k■k 

CREATING OUTPUT DATASET CONTAINING ESTIMATED ATTRITION RATES BY CUT SCORE. 
* FILEREF = DataDir.&mOutFile; 

*********************************** *_^j,*j,^t*************************jt***i*******i. 

strColNames = compress(concat("PATTRIT",char(fXCut))); 
create DataDir.&mOutFile var (strColNames); 

********************************************** * * * ****************************** 

ESTIMATING ATTRITION RATES BY CUT SCORE 
* FILEREF = DataDir.&mColFile; 

***********************************************************^************^**^***^ 
nNumQuant =5000; 
/* Generating quantiles based on reference population mean and variance */ 
quantX = probit((1:(nNumQuant-1))/nNumQuant)*sqrt(fVarX[l,1]) + fMuX; 
/* Creating nNumQuant BY nNumCut matrix of 0 and 1 to denote pass cut score */ 
aboveCut = repeat(t(quantX),1,ncol(fXcut)) > repeat(fXcut,ncol(quantX),1); 

strBetaNames = "Intercept" || "SmAAComp"; 

use DataDir.&mColFile; 
read var (strBetaNames) into fBeta; 

/* Estimating probability that recruits within a quantile would not 
complete training */ 
quantProbAttrit = 1/(1 + exp(-fBeta [1] - quantX*fBeta[2])); 

/* Calculating attrition rate for each alternative cut score in specified 
range. For given alternative cut score, the attrition rate is the simple 

'  arithmetic average of-probabilities of not-.completing (i.e., 
- • quantProbAttrit) associated with AA quantiles above the cut score. This is 

equivalent to average of probability of not completing weighted by density 
of AA.*/ 
cutProbAttrit = (quantProbAttrit*aboveCut)/aboveCut[ + ,] ; 

append from cutProbAttrit; 

close DataDir.&mColFile; 

quit; 
run; 
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******************************* ***-k***-i,*-i.**^.k**i.*^,*^,i,i,^^^^,^^^,^,^,^^^^^^^^^^^^^^^^ 

CREATING AND OUTPUTTING RTF FILE CONTAINING TABLE WITH ESTIMATED ATTRITION RATES 
BY CUT SCORE. 
* FILEREF = DataDir.SmOutFile AND &mDataDir\&mRtfFile; 

*************************************************i,^i,^^^^^^^^^^^^^^^^^^^^_^^^_^^^_^^ 
f 

I*  Macro for creating cut score variables needed to build table. */ 
Imacro CutScoreVars; 

%do i=&mCutLO %to SmCutHI %by SmCutSTEP; 
PATTRIT&i 

%end; 
%mend; 

/* Macro for creating cut score labels for table. */ 
%macro CutScoreLabel; 

%do i=&mCutLO %to 100 %by SmCutSTEP; 
PATTRIT&i = "&mAAComp= &i" 

%end; 
%do i=100 %to &mCutHI %by SmCutSTEP; 

PATTRIT&i = "&mAAComp=&i" 
lend; 

%mend; 

/* Creating and outputting table containing estimated attrition rates by cut 
score. */ 
ods rtf file="&mDataDir\&mRtfFile"; 
proc tabulate data=DataDir.&mOutFile; 

titlel &titlelinel; 
title2 &titleline2; 
titles &titleline3; 
var %CutScoreVars; 
table ICutScoreVars, 

MEAN*F=6.2 
/box="Cut Scores" rts=20; 

keylabel mean="Attrit"; 
label %CutScoreLabel; 

run; 
ods rtf close; 

******** **************************************^i,i,^i,i,^i,i,^^^^^^^^^^^^^^^^^^^^^_^_^_^^ 

END OF PROGRAM. 
******************************************************^,^^^,^^^^,^^^^^^^^^^^^^^^^^^_ 
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Example of Table Produced by Attrition Rates Analysis 

Table 1. Estimated Attrition Rates by Cut Score for MOS XX (N=XXX) 

■i 

Cut 
^ Scores Attrtt 

:GM=85 0.27 
t 

ieM=86 0.26 

«M=87 0.25 

feM=88 0.25 

feM=»89 0.24 

1, 
0.23 

pMf9t 0.22 

I^NW/ 0.21 

1^^^ 0.21 

PIMNM' 0.20 

|aM=95 0.19 

m/^9i 0.18 

^Mf?7, 0.18 

teM?=98^ 0.17 

»M=99 0.16 

IGM=108 0.15 

PM=101 0.15 

ifM=?iQa 0.14 

few|^<0~ 0.13 

!cak»i04 0.13 

JGM=IO5 0.12 
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