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Sliort Abstract 
Flow separation limits the efficiency of low-pressure turbines (LPTs) in aircraft engines. 
Recent experiments with vortex generator jets (VGJs), conducted in AFRL's low-speed 
cascade at Wright-Patterson AFB, have demonstrated dramatic reductions in separation 
losses. The critical science that will enable this design innovation to reach its potential is 
a comprehensive understanding of the effect of VGJs on a s eparating boundary layer. 
Experiments are underway at BYU to better understand the basic physics of the 
separation control phenomenon and establish the quantitative links between the 
underlying flow physics and LPT performance. Two-component velocity measurements 
of VGJ evolution have been made along a flat wall with no freestream pressure gradient 
and at pressure gradient conditions typical of a low pressure turbine suction surface. 
Initial measurements are also being taken in a linear cascade for comparison with the flat 
wall studies. Data clearly show the presence of streamwise vortices which provide the 
necessary boundary layer mixing to inhibit separation. Vortex development is modified 
when jet injection occurs in an adverse pressure gradient. The effects of freestream 
turbulence will also be considered. These detailed flow measurements are suitable for 
code validation. 

Main Abstract 
Objectives: Flow separation limits the efficiency of modem low-pressure turbines in 
aircraft gas turbine engines. Recent experiments with vortex generator jets, conducted in 
AFRL's cascade at Wright-Patterson AFB, demonstrated reductions in separation losses 
at low Reynolds numbers [1]. This was followed by demonstrations of VGJ separation 
control at higher Reynolds numbers but with increased blade pitch (ie.. .fewer blades) [2]. 
This proof-of-concept demonstrated the potential to design highly-loaded, compact, LPTs 
with integrated flow control using VGJs. The objective of this research is to understand 
the fundamental p hysics o f t his i nteraction s o t hat V GJ m odels c an b e developed and 
incorporated into existing LPT design codes. To achieve the required level of flow 
understanding will require the coupling of experimental, computational, and analytical 
design studies. As such, detailed flow measurements accomplished at BYU as part of 
this research are available for code validation elsewhere. The combination of experiment 



and computation will form the building blocks for understanding the basic physics of the 
separation control phenomenon, with the results feeding directly into the continuing 
AFOSR design task of Drs. Rolf Sondergaard and Richard Rivir at AFRL/PRTT. 
Approach: Experimental measurements are underway in a modular wind tunnel facility at 
Brigham Young University. The wind tunnel can be operated in any of four 
configurations: flat wall no pressure gradient, flat wall with pressure gradient, curved 
wall no pressure gradient, full LPT cascade with wall curvature and pressure gradient. 
This sequence allows the independent evaluation of streamwise pressure gradient and 
wall curvature and their effects on VGJs. A 3-axis traverse system mounted atop the 
tunnel is used to make two-component velocity measurements using split-film 
anemometry. Planes of velocity measurements before and after jet injection chart the jet 
evolution and modifications to the boundary layer. The data format is suitable for 
comparisons with CFD simulations. 

Progress: During this reporting period, initial flow quality assessments were conducted in 
the new wind tunnel facility. Excellent flow uniformity (within ±2%) was achieved in 
the tunnel with a background fi-eestream turbulence level below 0.3%. This freestream 
turbulence level can be augmented using a blown grid to levels from 3% (passive) to 12% 
(active). When operated with low freestream turbulence and no streamwise pressure 
gradient, the boundary layer development follows the classical Blasius profile. Testing 
has been completed with the flat wall no pressure gradient configuration. The test matrix 
included 3 blowing ratios (B = VjetA^oo = 0, 2,& 4), 3 Reynolds numbers (equivalent to 
cascade Re = 25000, 50000, and 75000 - based on blade axial chord, Q, and inlet 
conditions), and 2 boundary layer states (laminar and tripped turbulent). The second 
configuration studied was the flat wall with pressure gradient. A wedge with aft suction 
(Figure 1) was inserted into the straight wind tunnel test section to provide a streamwise 
pressure distribution matching that found in the AFRL Pak-B cascade facility (Figure 2). 
The test matrix thus far has included 3 blowing ratios, 2 Reynolds numbers, and 2 VGJ 
locations (equivalent Cx = 61% and 69%) with a laminar boundary layer. 
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Figure 1: Wedge Schematic 
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Figure 2: Comparison of cp for variable 
pressure gradient tunnel with Pak-B calculation. 



Finally, the 3-blade cascade configuration (Figure 3) has been completed and testing is 
underway. 

Figure 3: Schematic of 3-blade cascade configuration with photo of installed blades. 

Results: One of the primary motivations for these experiments is the limited access in the 
large AFRL cascade facility. The 1.2m x 0.85m, 9-blade cascade and small VGJ hole 
diameter (1mm) make detailed flow studies difficult. The success of the VGJs has been 
attributed to the creation of streamwise vortices that enhance mixing between the 
freestream and boundary layer [1], but no evidence of vortices was ever produced. As 
such, boundary layer transition could not be altogether ruled out as a possible 
mechanism. There was some evidence that the jets are not simply a boundary layer trip 
since the resultant boundary layer looked different and a passive trip was not effective at 
increased blade pitch while the VGJs were [2]. However, streamwise vortices were never 
measured. As such, the first data from the straight tunnel configuration documents the 
formation of streamwise vortices, one per VGJ hole, as shown in Figure 5. 

(c) v/Ue, x/d=l 0 (d) vAJe, x/d=40 
Figures 4a-d: Contour maps of streamwise (u/Ue) and wall normal (v/Ue) velocity 

components at x/d = 10 and 40. Data is shovm looking upstream at the jets, injected at 
z/d = 0. VGJ pitch is 30deg from horizontal in the direction of+z/d (jet skew angle is 



90deg from the freestream direction). Equivalent Re = 50000 and B = 4 into a laminar 
boundary layer with flat wall and zero pressure gradient. 

The uAJe contour maps clearly show the location of VGJ fluid, which has a lower 
velocity than the freestream due to its skewed injection (vwth zero streamwise 
momentum). The jet is coherent well downstream of the injection point in this 
configuration. The v/Ue maps clearly show the existence of the streamwise vortex near 
the VGJ fluid residue. By plotting u/Ue and v/Ue along a horizontal line through the core 
of the jet fluid, the relative position of the vortex and jet centers can be shown (Figure 5). 
The jet core position slightly to the right of the vortex center is consistent with the 
schematic depicting jet injection and vortex formation. The small vortex under the jet 
injection is visible at x/d=10 for B=2 but is quickly consumed in the boundary layer. 

1.2-1 

Figure 5: Plot of streamwise (u/Ue) and wall normal (v/Ue) velocity components vs. z/d 
at x/d = 10 and 40. Data is taken at constant y/d through the center of the jet cores in 

Figure 4. Schematic shows the VGJ injection and vortex development. 

That this vortex performs the desired function of moving boundary layer fluid away from 
the wall and replacing it with freestream fluid is evident from contour maps of the 
Reynolds stress term, uV (Figure 6). 

Figure 6: Contour maps of Reynolds stress (u'v'/unnsVmis) at x/d = 10 and 40. Data is 
shown looking upstream at the jets, injected at z/d = 0. Identical conditions to Figure 5. 

This Reynolds stress has a negative sign in the boundary layer where du/dy > 0. Figure 7 
clearly shows this negative Reynolds stress fluid being drawn by the vortex away from 
the wall.   The net result is a reenergized boundary layer, as shown in the ensemble- 



averaged boundary layer profiles of Figure 7a. Incidentally, this plot is similar to data 
acquired at a single location downstream of VGJs in the AFRL cascade. Due to the small 
hole size (1mm) and relatively large hot-wire sensor (~2mm), the measured velocity at 
AFRL was a n a rea a verage a cross t he j et. T he 4 mm h ole d iameter u sed i n t he B YU 
tunnel permits detailed flow measurement with the split-film probe as shown here. 
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Figure 7a&b: Plot of u/Ue vs. y/d at x/d = 10 and 40. Data is ensemble average of 17 
boundary layer profiles across 2 hole pitches for (a) Figure 4 flow conditions with no 
pressure gradient and (b) comparable flow conditions with adverse pressure gradient. 

In the adverse pressure gradient (flat wall) configuration, the VGJs have a similar 
ensemble-average effect on the boundary layer (Figure 7b). This figure also contains 
profiles without blowing to highlight the separating boundary layer obtained with adverse 
pressure gradient conditions. Though the bulk effect on the boundary layer is similar, 
subtle differences exist in the jet trajectory and lateral diffusion when the flow is 
decelerating. Figure 8 i s a c omparison o f t he j et c ore t rajectory w ith x /d for t he t wo 
configurations studied. The diffusion of the fi-eestream flow carries the B=4 trajectory 
further from the wall while the B=2 trajectory is returned. This may signal jet blow-off at 
high B values in an LPT application. 
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Figure 8: Plot of jet core location vs. x/d for B = 2 & 4 and two flow configurations (no 
pressure gradient and diffusing flow). Re = 50000. 



At the same time, the jet diffuses more rapidly in the cross-stream direction creating a 
more spanwise uniform boundary layer signature (Figure 9) compared to no pressure 
gradient (Figure 4). 

2/d 

(a) (b) 
Figure 9: Contour maps of (a) streamwise (u/Ue) and (b) wall normal (v/Ue) velocity 

components at x/d = 40. Re = 50000 and B = 4 into a laminar boundary layer with flat 
wall and adverse pressure gradient. Compare with Figure 4 data (and colorbars). 

The subtle differences created with an adverse pressure gradient suggest that accurately 
modeling the surface curvature of the LPT suction surface may have a more dramatic 
effect on jet development. Results to this end are forthcoming. 

Future Plans: Testing is currently underway with the wind tunnel in its cascade 
configuration. The final configuration with suction surface curvature and no pressure 
gradient will be accomplished subsequently. Following this final configuration, testing 
will be conducted with elevated freestream turbulence levels. Follow-on research is 
being planned to investigate unsteady VGJs with a new 3-component PIV system. 
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