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ABSTRACT

Short, high intensity laser pulses induce nonlinear optical effects in the atmosphere

that have the potential to make them propagate for long distances. Applications for

long distance propagation of short pulses include active spectral remote sensing and

laser lightning control. Much of the work in this field has been done with infrared

pulses; however, it has been proposed that ultraviolet pulses have the advantage that

longer pulse lengths can be used, thereby delivering more energy. Long pulse lengths

lead to a simplified instantaneous model for the plasma response, which has been

shown by Schwarz and Diels to admit steady state or oscillatory solutions corre-

sponding to beam propagation. We have verified this model and have adjusted it to

achieve closer agreement with numerical results.

In this work we investigate the effects of transient behavior, and the stability

of these solutions. Analysis of the modulational instability is done from the plane

wave level to a full three dimensional model of the propagation. It is shown that

both the transient behavior arising from the finite pulse length, and the modulational

instability cause pulses to fragment over lengths on the scale of meters. We present

results showing the growth of unstable modes in various propagation regimes. We

discuss the pertinent length scales for ultraviolet pulses, as well as the impact of the

instability and transient effects on theory and experiment. The results imply that

continuous-wave models are very limited when used to predict dynamical properties

of pulse propagation.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The study of short light pulses in the atmosphere is motivated by the variety

of nonlinear processes that affect short pulses. Low intensity, spatially wide laser

beams diffract, and are adversely affected by scattering and atmospheric turbulence.

However, short pulses that are intense enough to induce several nonlinear optical

effects in the air may be able to propagate for long distances, by changing the optical

properties of the air.

The primary nonlinear effect is self-focusing, which is caused by the intensity

dependent refractive index induced by the optical Kerr effect [1]. If the peak power

exceeds a certain critical power, this self-focusing overcomes diffraction and causes

the beam to focus tighter as it propagates, which in turn intensifies the nonlinear

effects. At some point, the field becomes strong enough to ionize the molecules in the

air, and higher order effects such as multi-photon absorption, plasma absorption, and

plasma defocusing stop the collapse [2, 3]. The propagation of a light pulse depends

on the interaction between self-focusing and the various collapse arrest mechanisms.

If there is a stable balance between these effects, the beam may become self-trapped

and form a filament [2, 4]. If the balance is unstable, the pulse may split into multiple

filaments in both space and time [5].

Tightly focused light filaments have the potential to pass through atmospheric tur-
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bulence and scattering media such as clouds [6] with less distortion than a continuous-

wave (CW) beam encounters. This opens up applications in remote sensing. As an

ultrashort pulse compresses temporally, it can generate a broad spectrum, or “white

light supercontinuum” [7, 8, 9]. This might be used in future Lidar (LIght Detection

And Ranging) remote sensing techniques for spectral analysis of pollutants or mali-

cious compounds in the atmosphere [10, 11]. The plasma channels generated by light

filaments may also have the ability to enable laser induced lightning [12, 13]. With the

development of high peak power pulsed lasers, experiments are now being done with

atmospheric propagation of ultrashort pulses [6, 9, 11, 14]. Propagation distances as

long as 2 km vertical in the atmosphere [14] and 200 m horizontal in air [15] have

been claimed; however, questions remain as to what conditions are optimal for long

distance propagation.

1.2 Ultraviolet Filaments

Much of the theoretical and experimental work on filaments has been done in the

infrared, typically with wavelengths near 800 nm and pulse lengths on the order of

hundreds of fs. However, some researchers are investigating the possibility of creating

self-trapped pulses in the ultraviolet wavelength region, near 248 nm. UV filaments

have been studied and contrasted with those in the IR [3]. In the ultraviolet, the

critical power for self-focusing in air is smaller than the critical power in the infrared.

It has been proposed that one may be able to scale the length of a propagating

filament up in time, to longer pulses on the order of hundreds of picoseconds to
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nanoseconds, instead of ultrashort pulses on the order of femtoseconds [16, 17]. This

was proposed because it was observed that the balance of self-focusing and plasma

defocusing appears to depend only on the intensity of the field [16]. Additionally, the

reduced contribution from avalanche ionization in the ultraviolet extends the upper

limit on the pulse duration up to tens of nanoseconds, four orders of magnitude larger

than in the infrared [17]. Scaling up to longer pulses could increase the amount of

energy delivered.

This has been investigated by Schwarz and Diels, who have developed an analytical

approximation to the problem of propagating longer pulses in the UV [17]. The term

“long pulse” depends on reference scale. For UV pulses, a long pulse is one that is

approximated by a beam that is independent of time, because the scale of the pulse,

on the order of nanoseconds, is much longer than the time scale of the nonlinear

response of the air. In their semi-analytical approach, a Gaussian ansatz for the

spatial beam profile converts the partial differential equation for beam propagation

into an ordinary differential equation for the evolution of the beam waist size. Their

steady state approximation forces the nonlinear response due to the plasma to act as

an effective χ(4) nonlinearity. This approximation should be valid for pulses that are

long enough for the generated plasma density to reach a steady state value. Their

model predicts trapped solutions which oscillate in width, depending on the initial

conditions.

In Chapter 3, we numerically verify the Schwarz-Diels semi-analytical results, by

using a split-step Fourier method of beam propagation. We have also been able to

adjust some of their approximations, to make the model predictions quantitatively
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agree better with numerical simulations. We then obtain idealized steady state CW

beam solutions to the nonlinear propagation equation. However, this model, which

contains no time dependence, cannot represent transient effects, such as how the beam

solution is created in time, or whether the beam solution is stable.

1.3 Experimental Status

Many experiments have been done to study infrared filaments, often near 800 nm,

and using short pulse lengths [6, 8, 9, 14, 15, 18-25]. Experiments range from labora-

tory studies of filament formation in various media to atmospheric propagation tests.

One project of note is the Teramobile, which is a mobile terawatt-femtosecond class

laser operated by a joint French-German team [11, 14]. This laser generates 5 TW

peak power pulses with 70 fs duration at 790 nm. It fits in a cargo container, and is

being used to demonstrate atmospheric Lidar applications.

Fewer experiments have been done to demonstrate UV filaments. The pulse

lengths involved in current UV experiments, while typically longer than those con-

sidered ultrashort in the IR, are shorter than those that will be discussed in this

dissertation. For example, Schwarz et al. have performed experiments using a fre-

quency tripled Ti:Sapphire laser to obtain filaments at 248 nm. They created pulse

widths between 600 fs and several ps, and observed filaments that propagated for

12 m, much longer than the Rayleigh range of 12.5 cm for their pulses [16, 26].

Tzortzakis et al. performed experiments for both 450 fs and 5 ps pulses. They have

observed ultraviolet filaments at 248 nm that propagate stably for 4 m. They noted
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that their filaments are more stable than corresponding filaments in the infrared [4].

An unanswered question is what experiments will tell us about longer ultraviolet

pulses, such as lengths from hundreds of picoseconds to nanoseconds. It has been pro-

posed that the results for ultraviolet filaments should scale with respect to increasing

the pulse length [16, 26], resulting in long distance propagation of long duration UV

filaments. However, experimental evidence for this is not yet available. The exam-

ination of the theory for longer UV filaments, on the order of hundreds of ps, will

occupy much of the following chapters.

1.4 Filament Stability

The semi-analytical solution for long pulses, developed by Schwarz and Diels, can

be related to variational methods that have been developed for nonlinear optical prop-

agation. These variational methods have been used [27, 28, 29] to provide analytical

or semi-analytical solutions to difficult problems, while retaining physical insight into

the nature of the solutions. They are often used in conjunction with a model in

which the temporal response of the plasma is assumed to be instantaneous. This is

accomplished by either using a long pulse approximation [17], or, for shorter pulses,

by examining the integrated contribution of the plasma at an arbitrary central time

slice of the pulse [15, 30, 31]. However, we will see that the problem of temporal sta-

bility is critically important, and may be overlooked by using such approximations.

We will investigate the behavior of the UV filament solutions by moving beyond the

steady state model.
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To investigate this question of stability, we develop a linear perturbation analysis

that allows numerical simulation of oscillatory perturbations to a proposed zeroth

order solution. We also use a three dimensional numerical code that includes the

time domain and two transverse spatial dimensions. By first using periodic boundary

conditions for the time domain, we isolate the fundamental instability from effects

caused by the edges of the pulse. The results indicate that these pulses do suffer

from a modulational instability. In Chapters 4 and 6, further analysis and simulation

results detail the nature of the instability: its growth rate, frequency structure, and

spatial form.

We will also consider the relationship between the pulse length and the length

scales of the various effects. Schwarz and Diels established that the pulse length must

satisfy certain conditions in order to use their long pulse approximation [17]. If a

pulse is too short, the steady state plasma approximation becomes invalid [17]. If

a pulse is too long, avalanche ionization begins to become important and must be

added to the plasma model [17]. Since the growth rate of the instability depends

on the frequency of the perturbation, in general the pulse length can play a role

in stability. If a pulse is long enough to contain the strongest unstable periodic

variations, it will be most strongly affected. In Chapter 7, we examine these length

scales, and the experimental and theoretical implications of this instability and other

effects for long ultraviolet pulses in air. We will also briefly examine the impact of

stimulated Raman scattering [1], as it can produce instabilities, based on the time

delayed nonlinear response [32, 33].
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CHAPTER 2

REVIEW OF THEORY

2.1 Propagation Equation

This section briefly reviews the equations for propagation of a light field under the

relevant nonlinear effects and approximations of interest. This will also help establish

notational conventions and units. We will use MKS units throughout, unless stated

otherwise. Start with the Maxwell wave equation in a nonmagnetic material with no

free currents or charges [1]:

∇×∇× E +
1

c2

∂2E

∂t2
= − 1

ε0c2

∂2P

∂t2
. (2.1.1)

Assuming that ∇ · E = 0, use the relation ∇×∇× E = ∇(∇ · E)−∇2E to obtain

∇2E − 1

c2

∂2E

∂t2
=

1

ε0c2

∂2P

∂t2
, (2.1.2)

assuming a scalar field E and scalar polarization P . This reduces to

∇2E − n2
0

c2

∂2E

∂t2
=

1

ε0c2

∂2PNL

∂t2
, (2.1.3)

where n0 is the background linear index of refraction, if the material is assumed to

be isotropic. In the quasi-monochromatic approximation, the real electric field E for
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a wave propagating along the z-axis is then represented by a complex amplitude E :

E(x, y, z, t) =
1

2
E(x, y, z, t)ei(kz−ωt) + c.c. (2.1.4)

Note that the exponential term is sometimes defined with the opposite sign, as in

Schwarz and Diels [17]. With this particular complex representation, in the SI system

of units, the field intensity is

I =
n0

2

(
ε0

µ0

)1/2

|E|2 =
n0ε0c

2
|E|2, (2.1.5)

where n0 is the linear refractive index, ε0 = 8.85× 10−12 F/m is the permittivity of

free space, µ0 = 4π×10−7 H/m is the permeability of free space [1], and c2 = (ε0µ0)
−1.

Some authors omit the factor of 1/2 from Equation (2.1.4). This alternate convention

changes Equation (2.1.5) by a factor of four.

Since we use scalar fields, we treat the nonlinear susceptibilities as scalars. A

complete treatment for the general case of tensor susceptibilities and how they con-

tribute to the nonlinear refractive indices can be found in the literature [1, 34]. The

nonlinear polarization may be expressed as

PNL = f(|E|2)E = ε0∆χE. (2.1.6)

If the nonlinear response is instantaneous, ∆χ will be a simple function of |E|2. The

quantity ∆χ may depend on time through the plasma density, which gives it a mem-

ory based on the previous field history, which makes it non-instantaneous. The self-
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focusing term χ(3) (or n2) will also be non-instantaneous if the Raman effect is consid-

ered; for now, let it be instantaneous. In this case, the simple nonlinear polarization

term PNL for self-focusing can be written as

PNL = ε0χ
(3)|E|2E. (2.1.7)

The full nonlinear polarization will contain terms from self-focusing, plasma defocus-

ing and absorption, and multi-photon ionization losses.

Following Schwarz and Diels [17], insert Equation (2.1.4) for the electric field into

the wave equation in Equation (2.1.3), to obtain

(
∇2
⊥ +

∂2

∂z2
− n2

0

c2

∂2

∂t2

)
Eei(kz−ωt) =

1

c2

∂2

∂t2
[
∆χEei(kz−ωt)

]
, (2.1.8)

where ∇2
⊥ is the transverse Laplacian. Next perform the z and t derivatives above.

Assume that E(x, y, z, t) and ∆χ(x, y, z, t) are slowly varying in z and t compared to

exp[i(kz − ωt)]; neglect the second derivatives in z and t. This gives

[
∇2
⊥E + 2ik

(
∂E
∂z

+
n0

c

∂E
∂t

)
+

(
ω2n2

0

c2
− k2

)
E
]

ei(kz−ωt) =

1

c2

[
−2iω

∂(∆χE)

∂t
− ω2∆χE

]
ei(kz−ωt). (2.1.9)

Here we have used k = n0ω/c and are neglecting any dispersion effects, such as group

velocity dispersion (GVD). This allows cancellation of the last term in brackets in the

above equation, and we group the ∂E/∂z and ∂E/∂t terms together. GVD and other
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correction terms, which account for chromatic dispersion, are introduced through a

series expansion [35] in studies of ultrashort pulses. However, we will either study

the case of CW beams, in which there is no time dependence, or long pulses on the

order of hundreds of picoseconds, for which neglecting dispersion is a very appropriate

approximation due to their small spectral width. We will also neglect the ∂(∆χE)/∂t

term on the right hand side. This correction to the nonlinear response is small for

fields that are slowly varying compared to the optical frequency. Cancelling the

exponential dependence gives

∇2
⊥E + 2ik

(
∂E
∂z

+
n0

c

∂E
∂t

)
= −ω2

c2
∆χE . (2.1.10)

For a CW beam, the time derivative of the field envelope is zero. However, if the

field envelope is a pulse, we can use the transformation t′ = t− (n0/c)z, keeping the

same z, to eliminate the time derivative. In both cases, rearranging terms gives

∂E
∂z

=
i

2k
∇2
⊥E +

ik

2n2
0

∆χE . (2.1.11)

For simple self-focusing, ∆χ = χ(3)|E|2. Using the relationship χ(3) = 2n0n2 [17], this

gives the self-focusing nonlinear Schrödinger equation

∂E
∂z

=
i

2k
∇2
⊥E + ik0n2|E|2E , (2.1.12)

where n2 is the self-focusing index. Here χ(3), n2, and |E|2 can all be in intensity or

amplitude units, as long as one is consistent; see Appendix A for details.
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If the nonlinear polarization includes the effect of the generated plasma, the prop-

agation equation that we use is [16]

∂E
∂z

=
i

2k
∇2
⊥E + ik0n2|E|2E −

β(K)

2
|E|2K−2E − σ

2
(1 + iωτ)ρE . (2.1.13)

Here, the third term on the right hand side is a loss term corresponding to multi-

photon ionization (MPI) generation, where β(K) is the coefficient for MPI at order K.

The plasma term is derived from the Drude model [36]. In this term, σ is the cross

section for inverse bremsstrahlung, ω is the optical reference frequency of the light, τ

is the characteristic electron collision time, and ρ is the electron plasma density.

Note: In the paper by Schwarz and Diels [17], to which we often refer, there

are some minor errors in units, discussed in Appendix A, that do not affect their

conclusions, but can cause confusion when comparing results. For simplicity, we use

intensity units for all quantities such as E , χ(3), and n2. Thus n2I or n2|E|2 is the

unitless quantity representing the refractive index change induced by the optical Kerr

effect.

2.2 Self-Focusing and Other Nonlinear Effects

Some of the earliest work on self-focusing was motivated by the observation of thin

damage streaks in materials in which an intense laser beam had been focused [37].

The diameter of these damage tracks was smaller, by up to two orders of magnitude,

than the corresponding diameter of a linearly focused Gaussian beam; the length of

the tracks extended over several centimeters, indicating the presence of an intense
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filament in which the light is tightly guided over many Rayleigh ranges [37, 38].

The self-focusing is accounted for by the n2 term in the polarization, which de-

scribes the optical Kerr effect [38]. This term is an intensity-dependent refractive

index [1]. If n2 is positive, a sufficiently strong field generates a region of higher index

of refraction in the center of the beam, which acts as a focusing lens. The focusing

further intensifies the field, which in turn increases the self-focusing effect [39]. For

most of this dissertation, the n2 term will be assumed to describe an instantaneous

response; in Section 7.4, we will discuss how including the Raman effect introduces a

memory into this response, and the implications of this for filaments.

When a beam contains more power than a certain critical power, it will undergo

self-focusing collapse. As the beam intensifies, it begins to ionize the molecules in the

air through multi-photon ionization (MPI). Collapse will continue until some physical

effect, such as defocusing or losses from the plasma, acts to stop the collapse. The

critical power for self-focusing of a Gaussian beam with wavelength λ is

Pcr ≈
λ2

2πn0n2

, (2.2.1)

where n0 is the background index and n2 is in intensity units [27, 40]. In the ultraviolet

at λ = 248 nm, n2 is 7.8×10−23 m2/W, and the critical power in air is approximately

125 MW. In the near-infrared, the critical power is somewhat larger, due to smaller

n2 and larger λ. At 775 nm, for example, the critical power in air is 1.7 GW [40]. For

pure self-focusing of a beam, the behavior only depends on the power in the beam,

not its size or intensity. Beams with multiple critical powers present can break up
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into multiple filaments due to modulational instability [5, 34, 2, 41].

Other relevant nonlinear effects appear as higher order terms, such as n3|E|3,

n4|E|4, . . . , which can act as defocusing terms if their sign is negative. However,

terms that are odd in the electric field, such as the n3 term, only generally have

nonzero coefficients in non-centrosymmetric media [1, page 41].

Intense light pulses generate plasma through multi-photon ionization of the mol-

ecules in the air. This adds a nonlinear loss for the electric field. The plasma also in-

duces nonlinear effects; this nonlinear response from the plasma, in Equation (2.1.13),

includes both a plasma defocusing term and a plasma absorption term [17, 36]. For

the special case of the long UV pulses discussed by Schwarz and Diels [17], the plasma

defocusing was shown to act as an effective n3 term, even though air does not have an

n3 response. They also assume that the plasma response is instantaneous, compared

to the time scales of long pulses.

The balance between self-focusing, diffraction, and the other nonlinear effects has

been the subject of many theoretical studies. One debate was whether the observa-

tion of light filaments, which are extended in space, was due to the creation of an

effective waveguide (self-guiding) or a the self-focusing of the various parts of a pulse

(moving focus model). In the self-guiding model, a pulse is assumed to propagate

stably under the influence of a wave guide created by the balance between the ion-

ized plasma and the Kerr effect [20, 42]. The moving focus model applies to finite

duration pulses: it assumes that different time slices of a pulse will contain different

peak powers, and thus focus at different distances, explaining the observation of an

extended filament [24, 43]. In a third approach, the propagation of a short pulse
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is described by a dynamic spatial replenishment model, where the pulse undergoes

multiple collapses in time as it decays and is replenished by a new pulse [5, 40, 2].

When we consider long ultraviolet filaments, we will first assume that they can

be treated as sections of CW beams, and apply the long pulse model that will be

described in Section 2.4. In this context self-guiding is the applicable model.

More detailed discussions on the theory of self-focusing can be found in Boyd [1]

and Marburger [34]. Another, recent review of self-focusing in the context of wave

collapse is provided by Bergé [44].

2.3 Variational Techniques

The equations for nonlinear beam or pulse propagation must in general be solved

numerically, even when the approximations in Section 2.1 are made. An alternative

approach is to use a variational method. One first casts the propagation equation in

a Lagrangian form, and makes an ansatz for the form of a solution to the propagation

equation. Then the Rayleigh-Ritz method or Kantorovich method [44, 45, 46], is

used to determine the evolution of the parameters present in the ansatz. If the ansatz

captures the physics of the solution well, it provides a simplified analytical or semi-

analytical approach to solving a complicated problem.

For example, Anderson and Bonnedal developed a variational treatment for non-

linear self-focusing of Gaussian beams with a general nonlinear refractive index [28].

Their treatment includes a discussion of non-steady propagation, such as the oscil-

latory solutions that Schwarz and Diels find. Wright et al. used their method to
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study propagation of a CW beam in a medium with a cubic-quintic nonlinearity [27].

Anderson and Bonnedal start with the equation

2ik
∂E
∂z

+∇2
⊥E + Q(|E|2)E = 0, (2.3.1)

where Q represents a general nonlinearity. They present variational results for three

forms of Q, the most applicable here being the series

Q(|E|2) =
∞∑

n=1

C2n|E|2n. (2.3.2)

By using the trial function

E(r, z) = E0(z) exp[−r2/2a2(z) + ir2b(z)], (2.3.3)

they obtain the variational result for the functional evolution of the beam radius [28]:

d2a

dz2
=

1

k2a3

[
1−H(a2)

]
, (2.3.4)

where for the above form of Q,

H(a2) =
∞∑

n=1

nC2n

(n + 1)2

(|E0|a0)
2n

a2n−2
. (2.3.5)

In this fashion, the partial differential equation for the evolution of the field E is

reduced to an ordinary differential equation for the evolution of the variational pa-

rameter a. We will use their result later in Section 3.2, and compare it with the results
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of Schwarz and Diels [17]. Their method is not formally presented as a variational

approach, but its results are nearly equivalent to other Gaussian beam variational

approaches [27, 28, 29].

We show in Section 3.2 that using the variational method for UV filaments in-

dicates that the characteristics of the balance depend on the peak intensity, which

agrees with existing treatments [16, 17]. With just n2 self-focusing present, the fo-

cusing characteristics depend only on the power, for a Gaussian beam [34]. However,

when the balance between n2 and n3 is analyzed, we find that the peak intensity of

the beam is a more suitable indicator of its characteristics. For trapped solutions,

the peak intensity, once chosen, determines the width and thus the peak power of the

steady state solution, as well as its stability characteristics. This intensity dependence

motivated the proposition that scaling to higher pulse energies and longer pulses in

the UV might be possible [16, 17].

Other authors have applied variational methods to pulse propagation, with in-

creasing levels of detail. Aközbek et al. have studied femtosecond pulse propagation

using a variational method similar to that discussed above [29]. They include the

nonlinear loss terms through a dissipative modification of the standard variational

treatment [45, 47].

2.4 Long Pulse Model

In the long pulse model, or near steady state approximation, used by Schwarz and

Diels, the action of the plasma on the light field is reduced to a simple instantaneous
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nonlinearity. During the middle section of the pulse, the time dependence of the

plasma is removed, by assuming it has had enough time to reach a steady state value.

This will be a good approximation if the plasma generation rise time is much shorter

than the time scales of the pulses of interest. The plasma term in the propagation

equation is then replaced by an effective nonlinear index term. In the case of UV

filaments at 248 nm, the plasma acts as an effective n3 term. The advantage of such

a model is that if it is accurate, one no longer needs to consider the time dimension

when doing a simulation, which becomes difficult for long pulses.

However, as applied to the UV problem, the long pulse model also places an upper

limit on the length of the pulse. The upper limit is set by inverse bremsstrahlung,

which causes avalanche ionization, and in the Schwarz-Diels analysis comes out to

4-60 ns. The lower limit, as mentioned, is set by the time it takes for the plasma to

build up to its steady state value, and is is roughly 30-200 ps [17, 26]. These limits

depend on the strength of the multi-photon absorption rate, which is a value that is

known with very poor accuracy, within only two or three orders of magnitude. As the

MPI rate decreases, the upper limit decreases and the lower limit increases, narrowing

the width of the region of pulse lengths that satisfy the model.

Schwarz and Diels derive their semi-analytical solution for propagation of pulses

with lengths that satisfy these limits. In the introduction to their paper, however,

they mention that their results do not address the stability of the solution nor the

transient evolution to steady state [17]. In the following chapters, these issues will be

shown to present a critical weakness of using a long pulse model for UV filaments.
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CHAPTER 3

STEADY STATE SOLUTIONS

3.1 Application of the Long Pulse Model

In this chapter, we review and extend the method of Schwarz and Diels [17],

and cite their primary results to provide a foundation for the investigation into the

stability and transient effects. Start with the following equation for propagation [16]

of the electric field envelope E(x, y, z, t) :

∂E
∂z

=
i

2k
∇2
⊥E + ik0n2|E|2E −

β(K)

2
|E|2K−2E − σ

2
(1 + iωτ)ρE . (3.1.1)

The electron density ρ of the plasma is described by

∂ρ

∂t
= Cρ|E|2 +

β(K)|E|2K

K~ω
− αρ2 + D∇2

⊥ρ, (3.1.2)

where C is a coefficient for avalanche ionization, α is an electron-positive ion recom-

bination coefficient [17], and D is a diffusion strength. In steady state, the left hand

side of Equation (3.1.2) is zero. If there is no diffusion (D = 0), the steady state

plasma density is the solution of a quadratic equation at each point in space.

Note that Schwarz and Diels [17] use a different form for the multi-photon ioniza-

tion source term in their equation for the plasma. Their MPI source term is σ(3)I3N0,

where σ(3) is the three-photon MPI cross section, I is the intensity, and N0 is the
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density of oxygen in the air. Using the values in Table 3.1, note that

β(3)

3~ω
= σ(3)N0 ≡ b = 1.6× 10−16 m3

W3 s
. (3.1.3)

This consistency is achieved by using the values in Ref. [17] for σ(3) and N0 to derive

the value of β(3), rather than using the value from Ref. [16]. We will use the shorthand

notation that b represents the overall MPI coefficient for the plasma.

In the model used by Schwarz and Diels, the steady state ansatz allows one to

express the plasma density ρ as a power of the field strength or intensity. This is

only true for certain pulse lengths [17]. First, if the pulses are short enough, less

than tens of nanoseconds, the avalanche term in Equation (3.1.2) can be neglected.

If the pulses are long enough so that the plasma has time to reach steady state,

they set ∂ρ/∂t = 0. This rise time is on the order of 30-200 ps, depending on the

publication [17, 26]. They also neglect the diffusion term. Thus, solving for ρ,

ρ =
√

b/α|E|K , (3.1.4)

where b ≡ β(K)/K~ω. Given the light frequency of interest, which tells us the MPI

order K, under this approximation the plasma density is proportional to |E|K . Thus

the plasma response term can be replaced by an effective nK |E|KE nonlinear index

term. For UV pulses at 248 nm, K = 3, and ρ ∝ |E|3, so Schwarz and Diels replace
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the plasma term by an effective n3 term. They derive the value of this term as

n3 = −
√

σ(3)N0

α

e2

2n0ω2meε0

, (3.1.5)

where e and me are the charge and mass of the electron, using a model for the electron

plasma [17]. To reach the simplest case, neglect losses in the propagation equation,

and consider them later once the solution is understood. Equation (3.1.1) reduces to

∂E
∂z

=
i

2k
∇2
⊥E + ik0n2|E|2E + ik0n3|E|3E . (3.1.6)

Note that the plasma defocusing coefficient σωτρ/2 from Equation (3.1.1) is equal

to k0n3|E|3, given the steady state dependence of ρ on |E|3, for the parameters in

Table 3.1.

Schwarz and Diels use a semi-analytical approach with a Gaussian beam ansatz to

convert this equation to one for an imaginary particle representing the beam width,

moving on a potential surface. Their result is an ordinary differential equation that

can be solved with a straightforward integration. If the particle is trapped in a

potential well, the beam will oscillate in width as it propagates. They illustrate these

oscillatory solutions in their paper [17]; the size of the oscillations depends on how

steep or shallow the well in the effective potential is.

There is a question as to how the beam width oscillations are to be interpreted.

Schwarz and Diels suggest [17] that they correspond to a steady state analog of the

dynamic replenishment phenomenon [40]. However, this model explains the propa-

gation of short pulses in air by time-dependent interactions between the leading and
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Table 3.1: Parameters used in propagation

Parameter Name Value Units
Background index n0 1 —
Self focusing index n2 7.8× 10−23 m2/W
Plasma nonlinear index n3 −3.3× 10−31 m3/W3/2

MPI order K 3 —
Wavelength λ 248 nm
MPI coefficient β(3) 3.9× 10−34 m3/W2

Recombination loss α 1.1× 10−12 m3/s
Inverse bremsstrahlung cross section σ 5.2× 10−25 m2

Electron collision time τ 3.5× 10−13 s
Density of oxygen N0 5.4× 1024 m−3

3-photon absorption cross section σ(3) 3× 10−41 m6s2/J3

Linear absorption loss αL 2.5× 10−4 m−1

trailing edges of the pulse and the generated plasma; the pulse splits in time, and

power from the trailing edge replenishes the pulse. The oscillations that we consider

are for a time independent beam that can be characterized by a single width as a

function of time. Additionally, any spatial pulse shaping, such as ring formation,

cannot be described by the Gaussian beam ansatz.

The parameters that we use in simulations are presented in Table 3.1. Many of

these are from Schwarz and Diels [17], so that we can compare and verify the results.

Additional parameters are taken from Ref. [16]. Some of the values in the table are

not well known, in particular the MPI coefficient which determines the MPI rate.

This MPI coefficient is difficult to measure [48], and may change by two orders of

magnitude up or down, depending on the publication [16, 17, 26, 48]. The numbers

from Schwarz and Diels [17], are values that will allow comparison to previous work,

as well as give physically interesting insights into the application of the steady state
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model. The following sections discuss details of the oscillatory solutions, and how

the approximation in the Schwarz-Diels approach can be modified to give better

agreement with numerical simulation.

3.2 Improving the Aberrationless Approximation

In Schwarz and Diels [17], the electric field amplitude E(r, z) is assumed to be a

Gaussian. Then, they make the following parabolic “aberrationless” approximation

for powers of the electric field [17, Equation 30],

|E(z, r)|a =
(w0

w
E0e

−r2/w2
)a

≈
(w0

w
E0

)a
(

1− a
r2

w2

)
. (3.2.1)

This approximation is substituted into the |E|2 and |E|3 terms in the nonlinear po-

larization, and terms are matched based on their order in r2/w2. One consequence

of this Taylor series approximation is that the critical power obtained using their

analysis is one-fourth the critical power that is normally obtained in theories of self-

focusing [27, 40]. The factor of four comes from the difference between the true

Gaussian beam and the parabolic approximation.

However, other authors make a different aberrationless approximation, based on

minimizing the mean square error

∫ ∞

0

(c1 + c2r
2 − |E|2)2 |E|2 2πr dr (3.2.2)

in the polynomial approximation c1+c2r
2 of the exponential [49]. With their method,
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the aberrationless approximation for |E|2 becomes [49]

e−2r2/w2 ≈
(

3

4
− 1

2

r2

w2

)
. (3.2.3)

This approximation will change the critical power to the accepted value. This form

of the aberrationless approximation was used by Cerullo et al. to study space-time

coupling effects in the collapse of femtosecond pulses [50]. The weighting function for

the mean square error should remain |E|2, independent of which power of |E| is being

approximated. When this is done for the plasma term, which depends on |E|3, the

approximation becomes

e−3r2/w2 ≈
(

16

25
− 12

25

r2

w2

)
. (3.2.4)

The main results of the Schwarz-Diels analysis are the equations for the evolution

of the beam width. We present these results here, with the above modification to

their approximation. If we apply the new approximations to their analysis, beginning

with Equation 32 of their paper [17], their Equation 37, which we will show describes

the potential surface, becomes

(
dw

dz

)2

=
4

k2

[
P

P ′
cr

− 1

] [
1

w2
− 1

w2
0

]
− 16

25

l

n0

β4

[
1

w3
− 1

w3
0

]
P 3/2 +

w2
0

R2
0

, (3.2.5)

and their Equation 38, which is the differential equation for the evolution of the field
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width, becomes

d2w

dz2
= − 4

k2

(
P

P ′
cr

− 1

)
1

w3
+

24

25

l

n0

β4
1

w4
P 3/2. (3.2.6)

where P ′
cr = λ2/(2πn0n2) is four times the Pcr in Schwarz and Diels [17]. This gives a

more accurate estimate of the true critical power for a Gaussian beam, which is very

close to P ′
cr but not exactly equal [27, 34, 40]. The quantity β4 is defined in Schwarz

and Diels as

lβ4 = −
(

2

π

)3/2

n3, (3.2.7)

where n3 = −3.3×10−31 m2/W3/2 is the nonlinear index contribution from the plasma,

in intensity units, and l = 8.9 mm is the mean free path length of the electrons in

the plasma [17].

This ordinary differential equation can be solved numerically, given the input

beam width and curvature. Schwarz and Diels present results detailing the oscillatory

solutions to this equation [17]. In Section 3.3, we will compare the solutions of this

modified equation to results obtained in a numerical propagation of the beam.

However, we can arrive at this same result with a different approach. Wright et

al. [27] applied the general variational result of Anderson and Bonnedal [28], discussed

in Section 2.3, to the problem of beam propagation under cubic-quintic (n2 and

n4) nonlinearity. This variational model assumes that the beam is described by the

trial function in Equation (2.3.3). Following their notation, we can apply the same

result to the Schwarz-Diels case of a cubic-quartic nonlinearity. In Anderson and

Bonnedal [28], the nonlinear index terms only contain even powers of |E|2. However,
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their variational analysis is still valid for odd powers, by letting their series index

take half-integer values. By considering the n3|E|3 term, we find that the equation of

motion for the beam width in the case of the UV filaments is

d2a

dz2
=

1

k2a3

(
1− Pin

Pcr

+
24

25

√
Ip

I0

Pin

Pcr

a0

a

)
. (3.2.8)

Here a is the beam width, and a0 the initial beam width. Note that there are two

different definitions of the beam width; w =
√

2a, where w is the width that Schwarz

and Diels use. Pin is the input beam power; Pcr is the critical power as defined in

Equation (2.2.1). Ip is the peak input intensity, and I0 is a reference intensity defined

by I0 = (n2/n3)
2. At I = I0, the total nonlinear refractive index change for a plane

wave is zero.

For the numbers in Schwarz and Diels, I0 = 5.5×1016 W/m2. Following Ref. [27],

we obtain a self-trapping power for a collimated Gaussian input beam

PST = Pcr

(
1− 24

25

√
Ip

I0

)−1

(3.2.9)

This self-trapping power depends on the input intensity. If Ip > (25/24)2 I0, then

there will be no self-trapped solution, since power cannot be negative. For UV

propagation, this predicts that there will be no self-trapped solution for Ip > 6.0 ×

1016 W/m2. The self-trapped power, however, can be arbitrarily large, as the beam

width may increase as intensity approaches the cutoff.

If we convert the equation of motion from a to w and to the notation that Schwarz
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and Diels use, we find

d2w

dz2
= − 4

k2

(
Pin

Pcr

− 1

)
1

w3
+

24

25

lβ4

n0

P
3/2
in

w4
(3.2.10)

Here we must note that Pcr is the more accurate critical power, which is four times

larger than that referenced in Schwarz and Diels. This result is exactly identical

to that in Equation (3.2.6), which was obtained by modifying the aberrationless

approximation, although it was obtained from a Gaussian beam variational ansatz.

3.3 Verification of Oscillatory Solutions

Schwarz and Diels used an analytical approximate approach to convert the partial

differential equation for field propagation into an ordinary differential equation for

an effective particle in a potential. They then numerically integrated the ordinary

differential equation. We directly solve the numerical partial differential equation for

propagation, using a split-step Fourier method, which is detailed in Appendix B.

In Ref. [17], the field is described by its Gaussian beam width, which oscillates in

an effective potential well. The potential well model for nonlinear beam propagation is

often used and is a direct consequence of using a variational technique [27, 34, 45, 46].

To understand the analogy of the potential well, recognize that

1

2

(
dw

dz

)2

+ U(w) = E (3.3.1)

is the equation for the position w of the particle with total energy E as a function of
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the coordinate z, which acts as a classical time, as it evolves in the potential U(w).

Equation (3.2.5) can then be written in the form

(
dw

dz

)2

= 2 [E − U(w)] , (3.3.2)

where

U(w) = − 2

k2

(
P

Pcr

− 1

)
1

w2
+

8

25

lβ4

n0

P 3/2

w3
(3.3.3)

is the effective potential and

E = U(w0) +
w2

0

2R2
0

(3.3.4)

is the total energy, which is conserved. The initial width w0 of the beam gives the

particle’s initial location; the initial width of the beam divided by its initial radius of

curvature gives its initial velocity. This can also be seen from Equation 37 of Schwarz

and Diels [17], or Equation (3.2.5) of this dissertation, by setting w = w0. Thus the

initial velocity corresponds to any initial linear focusing or defocusing with which the

beam is prepared.

If the initial conditions are near the bottom of the well, the oscillations in the

width are small. However, if the initial conditions displace the particle far from the

well minimum, there are larger oscillations. The potential U(w) approaches zero as

w → ∞. If the particle has total energy E greater than zero, it is not bound and

the beam will diffract. This can be caused by the initial beam being too narrow, or

having too much initial curvature.
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We use the Schwarz-Diels semi-analytical solution with improved aberrationless

approximation described earlier, to achieve closer agreement between the direct nu-

merical simulation and their predictions. As an example, Figure 3.1 shows the poten-

tial surfaces corresponding to beam powers of 100 MW, 200 MW, and 500 MW. The
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Figure 3.1: Potential wells for beam powers at 100, 200, and 500 MW.

surface for 200 MW is shallower than the surface for 500 MW. The 200 MW surface

represents states which are more weakly bound. The 100 MW surface is for a power

below the critical power of 125 MW, so the potential surface no longer supports a

bound state. The location of the bound state minimum depends on the power as well,

according to Equation (3.3.5). Since the binding strength of the potential depends

on the power in the beam, absorption losses will cause the potential to change, and

we will observe this in the oscillatory solution.

To solve the modified evolution described in Equation (3.2.5), we use the ODE
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solver in Mathematica. The initial condition for the radius of curvature of the beam

is dw/dz|z=0 = w0/R0. For simplicity, start with a flat beam (R0 = ∞), so the initial

width is also the waist. The location of the equilibrium, or steady state, beam waist

in Equation (3.2.5), which is the modified version of Equation 37 of Schwarz and

Diels, depends on power as

weq(P ) =
0.24k2lβ4

n0

P 3/2

P/Pcr − 1
. (3.3.5)

In the case that we wish to model absorption, the evolution of the beam power, in

Equation 18 of Schwarz and Diels, is unchanged by the modification, so we reproduce

it here: [17]

1

P

dP

dz
= −β3

P 2

w4
− β4

P 3/2

w3
. (3.3.6)

During the split-step numerical simulation, we characterize the beam width by a

second moment computation, described in Equation (5.5.1). An example of the case

where the initial conditions are near the bottom of the well is shown in Figure 3.2.

Here the power was 500 MW and the initial width 100 µm, with no absorption.

The frequency of the simulated oscillations roughly matches that of the predicted

oscillations, but the prediction does not account for the observed decay in amplitude.

For other values, such as those shown in Figure 3.3, the initial conditions lead to

larger oscillations. In the second case the initial width was chosen to be 200 µm. In

the field history plot, Figure 3.3(b), the beam grows in intensity and decreases its

width, while shedding rings during the oscillations. Figure 3.4 shows the evolution of

a beam where the power is 200 MW and initial width is 100 µm. Here there are fairly



39

consistent, larger amplitude oscillations, but again they are not constant. For starting

powers larger than 1 GW, the beam quickly sheds much of its power into rings, so

that the peak intensity is reduced. This is consistent with the existence of a maximum

trapping intensity, although the observed value for this maximum trapping intensity

is roughly 4 × 1016 W/m2, instead of 6 × 1016 W/m2 as predicted in Section 3.2.

The variational approach provides an estimate for the order of magnitude of such a

quantity, but cannot capture the details of features such as rings.

The oscillations appear to either dampen in amplitude or change chaotically for

these cases. The predictions, however, are based on a potential model with no loss

terms, in which the particle should oscillate with a constant amplitude between two

extremes. The apparent loss in the potential model should not be confused with

nonlinear propagation losses, which we have not yet considered. The damping is

caused by the fact that the evolving solution has to adjust itself, possibly by shedding

power into rings, to fit the nonlinear response and match a solution of the propagation

equation. If the initial condition is far from the equilibrium solution, the Gaussian

beam approximation will be temporarily violated as the beam changes form. Any

power that is diffracted in a ring will be absorbed by absorbing boundary conditions

at the edges of the grid. After some propagation, the damping reduces, as the evolving

solution changes from an initial Gaussian to a solution that oscillates in an stable

fashion. The oscillatory propagation in these results is similar to that observed in

studies of a medium with cubic-quintic nonlinearity [27, 45].

If propagation losses are present, the power in the beam is reduced, which leads to

a shallower potential. If the power loss is not extreme, it should act as an adiabatic
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(b) Predicted beam oscillations using modified Schwarz-Diels model

Figure 3.2: Beam evolution for power of 500 MW, initial width of 100 µm,
and no absorption. This set of initial conditions corresponds to a near
steady state solution.
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(b) Early portion of field history using split-step evo-
lution. The plot shows a cross section of the field
amplitude, as a function of propagation distance.

Figure 3.3: Beam evolution for power of 500 MW, initial width of 200 µm,
and no absorption. In this case the initial width is far from steady state,
leading to nonlinear oscillations.
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(b) Predicted beam oscillations using modified Schwarz-Diels model

Figure 3.4: Beam evolution for power of 200 MW, initial width of 100 µm,
and no absorption.
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change in the potential surface. The oscillations should become larger in amplitude,

but lower in frequency, as power is lost. This is shown for one case in Figure 3.5.

For this simulation, we included MPI losses and plasma absorption using the values

from Table 3.1. The beam power appears to decay roughly exponentially, but since

the loss is nonlinear, the loss rate decreases as less power remains. As power is lost,

the effective potential becomes shallower; one might expect the oscillations to thus

increase in amplitude. However, they do not do this; they are instead somewhat

chaotic. They will disappear once the beam power drops below the critical power;

then the potential is unbound, and the beam width continues to increase as it diffracts.

The particular nature of the oscillations in this figure may be influenced by numerical

effects such as reflections from the absorbing boundary conditions. However, the

important point is that the beam width follows a general trend dictated by the slowly

decreasing power in the beam.

Recall that starting with a 500 MW Gaussian beam that is 100 µm wide, for

the n2 and n3 parameters in Schwarz and Diels [17], we find that the beam is close

to an exact steady state solution. The location of this initial condition is near the

bottom of the well on the potential surface for 500 MW shown in Figure 3.1. However,

even choosing an initial condition with the beam width at the precise bottom of the

potential well will not yield us an exact steady solution, because the potential picture

is approximate, based on a Gaussian ansatz; the exact solution is not a Gaussian.
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Figure 3.5: Beam evolution for 500 MW initial power, initial width
of 100 µm, and absorption losses. The beam width oscillates around a
changing equilibrium position. The loss rate decreases for longer distances,
due to the nonlinear nature of the absorption.
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3.4 Construction of Exact Steady State Solution

For completeness, and for diagnostics that will be a part of the stability analysis

discussed later, we wish to construct exact steady state trapped beam solutions to

the propagation equation, within numerical precision limitations. Let a steady state

solution be denoted by E0(r, z).

To accurately find E0, we investigate the solution of the eigenvalue equation that

corresponds to the steady state solution. The exact solutions will be characterized

by their peak intensity. By solving this boundary value problem with the shooting

method, we obtain a radial profile of E0. This radial profile is then extended to a

full x-y grid using interpolation. We look for a steady state solution to the simplified

propagation equation

∂E
∂z

=
i

2k
∇2
⊥E + ik0(n2|E|2 + n3|E|3)E . (3.4.1)

Let

E(r, z) = E(r)eiβz. (3.4.2)

with E(r) real. Then,

iβE(r)eiβz =
i

2k
∇2
⊥E(r)eiβz + ik0

[
n2E(r)2 + n3E(r)3

]
E(r)eiβz, (3.4.3)

and

∇2
⊥E(r) = 2kβE(r)− ik0

[
n2E(r)2 + n3E(r)3

]
E(r) ≡ f(E). (3.4.4)
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Recall that we are using intensity units for E , so E2 is an intensity. In polar coordinates

∂2E
∂r2

+
1

r

∂E
∂r

= f(E). (3.4.5)

For a given peak amplitude A0, the solution will have the initial conditions that

E(r = 0) = A0, and that ∂E/∂r|r=0 = 0. Then, given a guess is for β, we solve the

ordinary differential equation, starting at r = 0 and running until r is several times

larger than the extent of the expected solution.

This equation caused difficulty for the numerical integration routine in Mathe-

matica, due to the singularity in the equation at r = 0. However, a finite difference

approach can be used to handle the singularity. We represent the value of E(r) by

values on a discrete uniform grid a0, a1, . . . , aN . The am are values of E(r) at the

points r = m∆, where ∆ is the grid spacing in r.

The ∇2
⊥ operator is approximated by the following difference formula:

∇2
⊥E
∣∣
n

=
∂2E
∂r2

+
1

r

∂E
∂r

∣∣∣∣
n

=
an+1 − 2an + an−1

∆2
+

1

n∆

an+1 − an−1

2∆
(3.4.6)

=
(2n + 1)an+1 − 4nan + (2n− 1)an−1

2n∆2
. (3.4.7)

Thus, at point n,

(2n + 1)an+1 − 4nan + (2n− 1)an−1

2n∆2
= f(an), (3.4.8)
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and we then derive an relation which can be iterated:

an+1 =
4n

2n + 1
an −

2n− 1

2n + 1
an−1 +

2n

2n + 1
∆2f(an). (3.4.9)

This iteration equation is valid for n ≥ 1. The initial conditions present a slight

difficulty. We know that a0 = A0, but we need to know a value for a1. The second

derivative at n = 0 must be handled with care. To represent ∇2
⊥, which is a 2D

operator, on a 2D spatial (XY) grid using a finite difference technique, the value for

∇2
⊥ is approximated by

∇2
⊥E
∣∣
0,0

=
a1,0 − 2a0,0 + a−1,0

∆2
+

a0,1 − 2a0,0 + a0,−1

∆2
, (3.4.10)

where now the two indices for a represent the X and Y directions on the grid. We do

not define this function on a full XY grid, but we can approximate this difference as

∇2
⊥E
∣∣
0

=
4a1 − 4a0

∆2
, (3.4.11)

since, due to the azimuthal symmetry, the four nearest neighbors all have the value

a1. Then we can get the condition for a1:

∇2
⊥E
∣∣
0

=
4a1 − 4a0

∆2
= f(A0), (3.4.12)

a1 = a0 +
∆2

4
f(A0). (3.4.13)
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With the initial values for a0 and a1 now set, we guess an initial value for β and then

use the “shooting” method to adjust β until the value of the solution E(r) for large

r approaches zero. In practice, once the guess for β is good, the solution will decay

to zero at some distance, but for sufficiently large r, the solution then diverges from

zero due to lack of precision. However, if the distance for which the solution diverges

is larger than the grid we need in propagation, we can truncate the solution earlier.

This approach gives the solution for E(r) on a uniform grid in r. Then the solution

is interpolated from the radial grid to a 2D grid to generate E(x, y). This solution is

saved, and will be used as the steady state field E0 in the stability analysis and three

dimensional propagation in later chapters. This exact steady state beam solution for

a peak intensity of 3.2× 1016 W/m2 is shown in Figure 3.6. We chose this value for

the intensity because 3.2 × 1016 W/m2 is also the approximate peak intensity for a

Gaussian beam with power 500 MW. The value of β for this solution is approximately

8.11 m−1.

We first test the generated E0 solution by propagating it in the 2D propagation

code with the correct conditions for n2 and n3. The code has two ways of handling

the plasma term, either by using an effective n3, or the term −σωτρ/2. Recall that

we chose the values for the the effective n3 and the rates used to generate ρ (the

β(3) value) to be consistent. When the correct solution for E0 is loaded, the field

stays constant in the propagation code, up to one part in 105 over a distance scale of

several meters, if no losses are present. Thus the steady state solution also provides

a verification of the propagation code, as well as the two different approaches to

handling the plasma term in the code.
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Figure 3.6: Example of numerically constructed steady state solution.
This solution contains a power of roughly 470 MW, and the beam width
is roughly 97 µm. The peak intensity, which defines this solution, is
3.2× 1016 W/m2 in this example. Also shown is a Gaussian profile, with
the same peak intensity and width.

The steady state solution for this power is visually close to a Gaussian, but not an

exact match. For pure self-focusing, the self-similar collapse solution is the Townes

profile [34, 51, 52]; in that case the difference between the Gaussian and Townes

profiles is important, due to the unstable nature of the solution. For the UV problem

under the Schwarz-Diels model, an initial Gaussian may be nearly steady state if

chosen correctly. This indicates that the Gaussian ansatz in the Schwarz-Diels model

can be a good guess, when describing steady state or near steady state solutions. As

we saw, it is not as appropriate when describing non-equilibrium solutions.

The results from this section confirm the oscillatory solutions predicted by Schwarz

and Diels, and demonstrate that the simplified propagation equation has exact steady
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state solutions for CW beams, up to a phase change as the beam propagates.

The next question is whether long ultraviolet pulses can be sent through air,

maintaining their shape over long propagation distances, and whether the current long

pulse model can describe this. To answer this question, we must further scrutinize

the steady state model representation of long laser pulses. As mentioned earlier,

Schwarz and Diels impose upper and lower limits on the pulse length to make the

approximation valid, so first the pulse must satisfy these constraints. The steady

state model also assumes that the plasma responds instantaneously to changes in the

electric field. Thus it has no way to incorporate any temporal transient effects or

instabilities that may arise from the finite response time of the plasma to the electric

field, and this is mentioned in the analysis [17]. In the following chapters, we develop

a stability model, and simulate the propagation of long pulses to investigate these

effects.
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CHAPTER 4

STABILITY

4.1 Introduction

The stability of solutions to nonlinear optical propagation equations has been

studied for many cases. The question of stability has been considered for the mathe-

matical balance in a beam solution between self-focusing and diffraction, and this is

known to be an unstable situation [1, 35, 34, 2, 53]. Only the mathematically exact

solution with precisely one critical power will propagate unchanged; any deviation

of the beam power from the critical power results in the beam solution collapsing or

diffracting indefinitely.

More detailed models consider the spatiotemporal instability of the solutions to the

nonlinear Schrödinger equation (NLSE) [5, 54, 55]. Liou et al. studied the spatiotem-

poral instability of an NLSE that only contained GVD and self-focusing terms [53].

They found that under self-focusing conditions, the interaction of spatial and tempo-

ral modulations led to an instability for either normal or anomalous GVD, which led

to spatiotemporal chaos developing in the solution.

The addition of some form of saturation, such as the generation of plasma, stops

filaments from collapsing indefinitely. The balance between the self-focusing collapse

and saturation has been thought to explain the long life of the observed light filaments,

or “bullets” that are created in beams with power equal to several critical powers [56].

However, the delayed responses of the Kerr effect and the plasma defocusing have
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been shown to create instabilities in short (single picosecond scale) pulses [32]. Kan-

didov et al. attributed the filamentation or breakup of short pulses to these instabil-

ities [32].

Bian et al. studied the instability of plasmas generated by laser pulses [57], which

they denote the ionization scattering instability. They identified a dispersion relation

for the growth of unstable modes. Our analysis in Sections 4.3 and 4.4 is similar to

their approach; however, they consider the impact of this instability for short (less

than a picosecond) pulses.

Since many of these investigations are done for short time scales, the instabilities

are identified as the breakup mechanism for a short pulse into filaments [21, 32, 34, 58].

However, this raises the question of the stability of the UV long pulse solutions, which

are based on an instantaneous Kerr and instantaneous plasma defocusing response.

Additionally, the Schwarz-Diels model assumes that the leading edge of the pulse

can develop into the steady state middle region. This requires that the steady state

solution be stable, since the leading edge, which deviates from steady state, has

to eventually adjust itself into a steady state solution for the model to be valid.

Our analysis will first use a linear perturbation model to investigate this question of

stability.

4.2 Purely Spatial Perturbations

In general, we would like to understand the growth of unstable modes as a func-

tion of both spatial frequency k⊥ and temporal frequency, which we denote by Ω.
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First, examine the instability for zero temporal frequency, that is, a purely spatial

modulational instability for a CW solution. We use an approach similar to that of

Cerda [45]. Consider the propagation equation

∂E
∂z

=
i

2k
∇2
⊥E + ik0∆n(|E|2)E , (4.2.1)

where ∆n(|E|2) is a general instantaneous nonlinear index change. For the long pulse

UV problem

∆n(|E|2) = n2|E|2 + n3(|E|2)3/2. (4.2.2)

An exact plane wave solution is

E0(x, y, z) = E0e
ik0∆nz, (4.2.3)

where ∆n = ∆n(|E0|2). For the cubic-quartic nonlinearity in the UV problem, the

propagation constant, denoted k̄, for the exact plane wave solution is then

k̄ = k0∆n = k0n2|E0|2 + k0n3|E0|3. (4.2.4)

For a beam solution, this plane wave value provides a magnitude estimate, but not

an exact prediction, for the value of the propagation constant k̄.

Consider a perturbed solution

E(x, y, z) = E0e
ik0∆nz (1 + ε+(x, y, z) + ε−(x, y, z)) , (4.2.5)
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where ε+ and ε− are small perturbation fields. Note that to first order

|E|2 ≈ |E0|2 + |E0|2(ε+ + ε− + c.c), (4.2.6)

so to first order, we can approximate

∆n(|E|2) ≈ ∆n(|E0|2) + |E0|2(ε+ + ε− + c.c)
∂∆n

∂|E|2
. (4.2.7)

Insert the expression for E into Equation (4.2.1) for the propagation. After collecting

terms, we obtain equations for the evolution of the perturbations:

∂ε+

∂z
=

i

2k
∇2
⊥ε+ + ik0

∂∆n

∂|E|2
|E0|2(ε+ + ε∗−)

∂ε∗−
∂z

= − i

2k
∇2
⊥ε+ − ik0

∂∆n

∂|E|2
|E0|2(ε+ + ε∗−).

(4.2.8)

Assume that the perturbation fields are plane waves such that

ε+(x, y, z) = u+ exp(λz + ik⊥ · r)

ε−(x, y, z) = u− exp(λ∗z − ik⊥ · r).
(4.2.9)

This ansatz for the form of the fields, when inserted into the coupled evolution equa-

tions above, gives a matrix equation:

i

 −T + V V

−V T − V


u+

u∗−

 = λ

u+

u∗−

 , (4.2.10)
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where

T = k2
⊥/2k, V = k0

∂∆n

∂|E|2
|E0|2. (4.2.11)

The eigenvalues λ satisfy

λ2 = 2TV − T 2 = T (2V − T ). (4.2.12)

Note that T and V are both real, and T ≥ 0. If V < 0, then λ2 < 0, so λ is

imaginary, and the system is stable. But if V > 0, λ2 > 0, so it is unstable for

T < 2V . T corresponds to the transverse wave vector of the instability, and V

corresponds to the relative strength of the self-focusing versus defocusing. Figure 4.1

shows this for the case of positive V . For our UV problem

V = k0
∂∆n

∂|E|2
|E0|2 = k0n2|E0|2 +

3

2
k0n3|E0|3, (4.2.13)

so if n2 + 1.5 n3|E0| > 0, there is an instability for certain values of k⊥. For the n2

and n3 that describe UV propagation in air, this cutoff value corresponds to a peak

intensity of 2.4× 1016 W/m2. The form of this result is similar to that of Cerda [45],

but with our nonlinear response containing both n2 and n3 terms. The combination

of the two terms allows the possibility that the system is stable for Ω = 0, unlike the

result for n2 only. In the next section, we will examine the stability for nonzero Ω,

and we will obtain the above results as a limiting case.
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Figure 4.1: Growth rate Re λ for spatial perturbations. The growth rate
is plotted as a function of the spatial frequency parameter T , for the case
of positive V . For spatial frequencies that correspond to T < 2V , the
plane wave solution is unstable.

4.3 Linear Stability Analysis

To model the stability of long filaments with respect to fluctuations in time and

space, we abandon the approximation that the plasma density depends only on a

power of the electric field, and return to using a time dependent evolution equation

for the plasma. Consider the propagation equation, neglecting losses, combined with

a simple model for the plasma:

∂E
∂z

=
i

2k
∇2
⊥E + ik0n2|E|2E − i

σωτ

2
ρE , (4.3.1)

∂ρ

∂t
= b|E|2K − aρ2. (4.3.2)
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Assume that a steady state solution can be found with E0(r, z) = u(r)eik̄z. The steady

state value for the plasma density will be

ρ0(r) =

√
b

a
|u(r)|K . (4.3.3)

Let us investigate a time-perturbed solution consisting of

E(r, z, t) = E0(r, z) + E+(r, z)e−iΩt + E−(r, z)eiΩt, (4.3.4)

ρ(r, z, t) = ρ0(r) + ρ+(r, z)e−iΩt + ρ∗+(r, z)eiΩt, (4.3.5)

where E+, E−, and ρ+ are small compared to E and ρ respectively. Since the plasma

density ρ is real, we must use ρ+ and ρ∗+ as the perturbation coefficients for the

plasma.

First, we solve the plasma equation to find ρ+(r, z), by inserting the perturbed

solution for ρ, and keeping only terms linear in the perturbations. We find that

∂ρ

∂t
= −iΩρ+e−iΩt + iΩρ∗+eiΩt

= b|E0|2k + bK|E0|2K−2
[(
E∗0E+ + E0E∗−

)
e−iΩt + c.c.

]
− aρ2

0 − 2aρ0

(
ρ+e−iΩt + c.c.

)
.

(4.3.6)

The zero order terms cancel, by the definition of ρ0. Equating terms that oscillate as

e−iΩt gives

−iΩρ+ = −2aρ0ρ+ + Kb|E0|2K−2
(
E∗0E+ + E0E∗−

)
, (4.3.7)
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and we find

ρ+ =
Kb|E0|2K−2

(
E∗0E+ + E0E∗−

)
2aρ0 − iΩ

. (4.3.8)

With the terms oscillating as eiΩt, we obtain the complex conjugate of this equation.

Next, we take this solution for ρ+ and the full form for E , insert them into the

propagation equation (4.3.1), and expand terms, keeping only linear perturbation

terms. For the zero order terms we obtain

∂E0

∂z
= ∇2

⊥E0 + ik0n2|E0|2E0 − i
σωτ

2
ρ0E0, (4.3.9)

where we assume by construction that E0 and ρ0 satisfy this equation. For the terms

oscillating as e−iΩt we obtain

∂E+

∂z
=

i

2k
∇2
⊥E+ + ik0n2

[
2|E0|2E+ + E2

0E∗−
]

− i
σωτ

2

(
ρ0E+ +

Kb|E0|2K−2

2aρ0 − iΩ

[
|E0|2E+ + E2

0E∗−
])

, (4.3.10)

and for the terms oscillating as eiΩt we obtain

∂E−
∂z

=
i

2k
∇2
⊥E− + ik0n2

[
2|E0|2E− + E2

0E∗+
]

− i
σωτ

2

(
ρ0E− +

Kb|E0|2K−2

2aρ0 + iΩ

[
|E0|2E− + E2

0E∗+
])

. (4.3.11)

These two equations give the evolution of the coupled perturbation fields E+ and E−.
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4.4 Plane Wave Perturbations

Let us first solve these equations by using an ansatz for the form of E+ and E−

that separates the dependence in z from the dependence in the transverse spatial

coordinate. Recall that E0(r, z) has the form u(r)eik̄z. If we use the ansatz

E+(r, z) = u+(r)eλz E−(r, z) = u−(r)eλ∗z, (4.4.1)

the exp(2ik̄z) dependence of the E2
0 terms will not be cancelled. However, if we

modify the ansatz so that the z dependence of E2
0E∗− matches that of E+, we will get

cancellation. To do this, we first make the simplifying assumption that E0, u+, and

u− are independent of transverse coordinate. We thus treat the case for which the

steady state solution is a plane wave, as in the previous section. Let the perturbation

fields also be plane waves, with the same propagation constant as the E0 solution:

E+(r, z) = u+ exp(λ z + ik̄z + ik⊥ · r)

E−(r, z) = u− exp(λ∗z + ik̄z − ik⊥ · r),
(4.4.2)

where k⊥ is the transverse wave vector kxx̂ + kyŷ and r is the transverse coordinate

xx̂ + yŷ. When we insert these forms into the above equations for E+ and E− and

cancel the exponential dependence, we find

(ik̄ + ik̄⊥ + λ)u+ = iB
[
2u+ + u∗−

]
− iC

(
ρ0u+ + A(Ω)

[
u+ + u∗−

])
, (4.4.3)

(ik̄ + ik̄⊥ + λ∗)u− = iB
[
2u− + u∗+

]
− iC

(
ρ0u− + A∗(Ω)

[
u− + u∗+

])
, (4.4.4)
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where

A(Ω) ≡ Kb|E0|2K

2aρ0 − iΩ
B ≡ k0n2|E0|2 C ≡ σωτ

2
, (4.4.5)

and the quantity k̄⊥, from the contribution from the ∇2
⊥ term, is defined by

i

2k
∇2
⊥E+ =

i

2k
∇2
⊥E− = −i

k2
⊥

2k
≡ −ik̄⊥, (4.4.6)

Equation (4.4.3), combined with the complex conjugate of Equation (4.4.4), gives

a matrix equation

M

u+

u∗−

 =

 ik̄ + ik̄⊥ + λ

−ik̄ − ik̄⊥ + λ


u+

u∗−

 , (4.4.7)

where

M = i

 2B − C(ρ0 + A) B − AC

AC −B C(ρ0 + A)− 2B

 ≡ i

 X Y

−Y −X

 . (4.4.8)

A nontrivial solution to this is only possible if

λ2 = Y 2 − (X − k̄ − k̄⊥)2. (4.4.9)

Since k̄ and k2
⊥ are both positive, they cannot cancel. As long as λ 6= 0, there will be

both positive and negative solutions for Re λ. The above result for λ2 factors as

λ2 = −(B − Cρ0 − k̄ − k̄⊥)(3B − C(ρ0 + 2A)− k̄ − k̄⊥). (4.4.10)
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Recall that in the previous section, the propagation constant k̄ for the plane wave

solution was k0∆n = k0n2|E0|2 + k0n3|E0|3. Observe from the definitions of B and C,

combined with the steady state result for the value of n3, that this is also equal to

B − Cρ0 for a plane wave solution. Thus we can simplify the result, and present the

equation for the eigenvalues in terms of k̄⊥ and Ω. Now we can rewrite

λ2 = k̄⊥[2(B − AC)− k̄⊥]

= k̄⊥(2Y − k̄⊥)

= 2 Y (Ω) k̄⊥ − k̄2
⊥.

(4.4.11)

Note that the quantity T from Section 4.2 is equal to k̄⊥, and Y (0) is equal to V .

The form of the growth rate is identical to that in Section 4.2, but with V , which

was a real number, replaced by Y , which is in general a complex function of Ω. This

implies positive and negative roots, and thus unstable growth, for all frequencies Ω,

except where λ = 0.

Figure 4.2 shows an example of the growth rate Re(λ) plotted against k̄⊥ and

Ω. Note that the growth rate is everywhere positive, except for k̄⊥ = 0 or Ω = 0,

since we must choose the positive root of λ2. We expect zero growth for k̄⊥ = 0,

since this corresponds to a uniform plane wave intensity correction. Additionally, we

have chosen an intensity large enough such that the plane wave solution is stable for

Ω = 0. The form of this growth rate is similar to that obtained by Bian et al. [57] for

a comparable propagation equation.

To investigate the behavior for large values of k̄⊥, let Y = Y ′+ iY ′′, and make the
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Figure 4.2: Growth rate vs. k̄⊥ and Ω, for intensity 3.2× 1016 W/m2.

following approximation:

λ2 = k̄⊥(2Y − k̄⊥) = k̄2
⊥

(
2Y ′ + 2iY ′′

k̄⊥
− 1

)
λ = ±ik̄⊥

(
1− 2Y ′

k̄⊥
− 2iY ′′

k̄⊥

)1/2

≈ ±ik̄⊥

(
1− Y ′

k̄⊥
− iY ′′

k̄⊥

)
Re(λ) ≈ ±Y ′′ = ±Im(Y ). (4.4.12)

From this, observe that the value of Re(λ) approaches Im(Y ) as k̄⊥ →∞. For larger

values of Ω, there will be a k̄⊥ corresponding to peak growth rate. However, for small

values of Ω, the peak growth rate is at k̄ →∞. The value of k̄⊥ is effectively limited
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by its relationship to k⊥, the transverse wave vector, which is assumed to be small

compared to kz in the paraxial approximation. For a grid with ∆x = 0.8 µm, the

maximum value of k̄⊥ is approximately 3000 m−1.

4.5 Response for Infinite Temporal Frequency

As Ω → ∞, the instability growth rate does not die off, nor is there an upper

cutoff, as in some cases for modulational instability that only consider self-focusing

and GVD [35, 53]. As Ω →∞, Y (Ω) → B, so λ2 → k̄⊥(2B− k̄⊥). This limit is shown

in Figure 4.3. For values of k̄⊥ within the unstable range 0 < k̄⊥ < 2B, the solutions

are unstable even as Ω →∞. For the 3.2× 1016 W/m2 solution used to generate the

previous figure for the eigenvalues, the value of 2B is 126 m−1.

This result is at first puzzling, but it can be explained by examining what happens

to the equations in the stability analysis. If we take Ω →∞, we remove all the effects

of the stabilizing n3 or plasma term from the coupled equations, and we are left with

the stability of the Kerr medium, which is known to be spatially unstable [54, 34, 45].

We also expect difficulty for any numerical analysis of this instability, since the

frequency response to the instability is unbounded. This means that all frequencies

present in the numerical model will experience growth, and the growing field will

not be bandwidth limited, as is desired for a spectral code. However, we will see in

Chapters 5 and 6 that we can still observe the initial behavior of the instability by

using a bandwidth-limited noise seed.
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Figure 4.3: Growth rate in the limit of Ω →∞, for the E0 solution with
peak intensity 3.2× 1016 W/m2.

4.6 Analyzing the Stability of UV Filaments

The analysis so far suggests three ways to approach the stability problem for UV

filaments. We have done a plane wave stability analysis, which predicts the growth

rate as a function of a single transverse wave vector k⊥ and temporal perturbation

frequency Ω. This analysis predicts unstable growth for all frequencies Ω.

Next, we can solve the equations for the coupled perturbation fields in the linear

stability analysis, given by Equations (4.3.10) and (4.3.11). Section 5.3 describes the

numerical propagation approach to solve these coupled equations. In this case, we will

obtain results for all transverse wave vectors k⊥ that are represented by the numerical

grid, instead of a single transverse wave vector. However, we are still limited to a

single temporal frequency Ω. The coupled equations can be solved for an arbitrary
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steady state solution E0. If we use a plane wave solution for E0, we obtain a way to

verify this propagation scheme against the plane wave analysis.

Finally, we can model the full three dimensional propagation, by including the

time dimension of a pulse as the third transverse dimension in the split-operator

propagation, which will be described in Section 5.4. This will allow observation of

unstable growth for all frequencies Ω and k⊥ that we can numerically represent.

Chapter 5 presents details of the numerical approach taken to propagating the

wave equation for the single and uncoupled 2D field case, as well as the full 3D case.

Chapter 6 presents the results of these computations. For consistency, throughout

the stability results, we will use the steady state solution E0 that corresponds to a

peak intensity of 3.2× 1016 W/m2. This solution has roughly 470 MW of power.

We choose this solution because, as discussed above, in the plane wave analysis,

its intensity is above the cutoff described in Section 4.2, and thus it is theoretically

stable for all k⊥ at Ω = 0, unlike the 200 MW solution. We will find, however, that

the general conclusion—that the long pulses suffer from modulational instability, does

not depend on the specific power chosen.
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CHAPTER 5

NUMERICAL MODEL

5.1 Introduction

In Chapter 3, we discussed 2D propagation results that verify the form of the

predicted oscillatory beam solutions for the case of time-independent beam propaga-

tion. To study the stability results from Chapter 4, we need to run the coupled 2D

and full 3D propagations described in Section 4.6. This chapter discusses how these

numerical propagations are prepared and performed in each case, and some of the

pertinent numerical issues.

The propagation code is written in Fortran 90, and uses the OpenGL graphics

library to provide real time 3D graphics feedback as the propagation runs. There are

three different choices for the form of the field to be propagated. All three choices

use the split-operator method of propagation, which is detailed in Appendix B. The

first choice uses a single 2D spatial field, on a grid with two space dimensions, which

we call an XY grid. This models a CW beam with an arbitrary spatial profile, and is

used to produce the results in Chapter 3. The second option propagates two coupled

2D fields with the same XY grid, and is used to evolve the two perturbation fields in

the stability analysis. The third option defines a 3D field over a grid with two space

dimensions and one time dimension (labeled XYT). Full 3D simulations are run using

either the case of periodic boundary conditions in time, or a pulse of finite length.

The temporal periodic boundary condition case is intended to model a section of a
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long pulse or CW beam. In this scenario, we are interested in the initial growth of the

modulational instability over a section of the pulse. In the finite duration pulse case,

we examine the combined effects of everything in the model, including the instability,

losses, and pulse edge effects.

5.2 Propagating a Single 2D Field

The single 2D field code solves the problem of CW propagation of the equation

∂E
∂z

=
i

2k
∇2
⊥E + ik0n2|E|2E + ik0n3|E|3E + ik0n4|E|4E

− β(K)

2
|E|2K−2E − σ

2
(1 + iωτ)ρE . (5.2.1)

The n3 and n4 terms are present for testing and generality. By using the n3 term the

plasma density ρ can be set to zero, and that term ignored, resulting in a simpler

calculation, if we are working under the approximation that the plasma acts as an

effective n3 term. Alternatively, if we wish to use a different plasma model we can

use the plasma term and set n3 to zero. The plasma evolution equation is

∂ρ

∂t
= b|E|2K − aρ2 + cρ|E|2, (5.2.2)

where b ≡ β(K)/K~ω. The third term, which describes avalanche ionization, did not

significantly affect the results when included. This agrees with the Schwarz-Diels

prediction that its importance is small for sufficiently short pulses.

The initial condition for the single 2D field case is a Gaussian beam. This field
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Ein is defined on a rectangular grid. The user specifies the grid spacings ∆x and ∆y

and the number of points in each direction Nx and Ny. In practice, we always use

a square grid (Nx = Ny, ∆x = ∆y). The initial beam is characterized by its width,

and either the maximum intensity or total beam power. The equation for the beam

is

Ein(x, y) = E0 exp(−(x2 + y2)/w2
0). (5.2.3)

The beam is initially defined with no curvature, so it is at a waist. From the definition

in Schwarz and Diels [17], for a Gaussian beam profile I = I0 exp(−2r2/w2), the beam

power is P = πw2I0/2. Thus if we choose to characterize the beam by its power, the

initial value of E0 is chosen by setting

E0 =
√

I0 =

√
2P

πw2
0

. (5.2.4)

By defining E0 in this manner, we use intensity units, which is consistent with the

treatment in Chapter 2 and Appendix A. The code stores the field amplitude E as

a quantity relative to the initial peak value of E0. The initial peak intensity is then

used as a normalization factor to compute the field intensity |E|2 when needed.

The details of the split-operator method, which is used to propagate the field, can

be found in Appendix B. In addition, we use absorbing boundary conditions (ABC)

for the edges of the numerical grid. This helps prevent spurious contributions from

field energy “wrapping around” the edges of the grid, due to the periodic nature of

the Fourier transform. The absorbing boundary conditions take the form of a loss

term in the potential, described by a Gaussian centered at the edges of the grid, so
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that the absorption is smooth. However, the conditions are not perfect, and there is

always a small amount of energy that reflects from them, which can crop up in long

distance propagations.

5.3 Evolving Coupled Perturbation Fields

For the case of the linear perturbation analysis, we need to solve the coupled

equations from Section 4.3:

∂E+

∂z
=

i

2k
∇2
⊥E+ + ik0n2

[
2|E0|2E+ + E2

0E∗−
]

− i
σωτ

2

(
ρ0E+ +

Kb|E0|2K−2

2aρ0 − iΩ

[
|E0|2E+ + E2

0E∗−
])

, (5.3.1)

∂E∗−
∂z

= − i

2k
∇2
⊥E∗− − ik0n2

[
2|E0|2E∗− + E2

0E+

]
+ i

σωτ

2

(
ρ0E∗− +

Kb|E0|2K−2

2aρ0 − iΩ

[
|E0|2E∗− + E2

0E+

])
. (5.3.2)

for E+(x, y, z) and E∗−(x, y, z). These two fields represent perturbation amplitudes

for a possible modulational instability of the “steady state” field E0, at temporal

frequency Ω. The plane wave analysis gives an idea of the growth rate as a function

of Ω and the transverse wave vector k⊥, but with these equations we hope to observe

the spatial dependence of the perturbation, for one particular frequency Ω.

The same basic split-operator approach from Appendix B is used for the coupled

equations. We will define T̂ and V̂ to be matrix operators obtained from the coupled
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equations. However, we make one simplification first. Note that the value E2
0 is

present in the growth equations for the perturbation fields. We know that E0 has

the form u(r) exp(ik̄z), where k̄ is the eigenvalue of the steady state problem. In the

terms with |E0|2, the phase factor is no longer present, but it still appears in the E2
0

terms. As we did in the linear perturbation analysis, we modify the form of the fields

to include the k̄ dependence: Let

E+(r, z) = u+(r, z)eik̄z E−(r, z) = u−(r, z)eik̄z. (5.3.3)

When we substitute the new fields into the growth equations, the phase from E2
0 is

cancelled by the phase from E∗−, and we cancel an overall phase exp(ik̄z). We are only

left with terms involving |E0|2, which will simplify the numerical evaluation. There is

also a new term ik̄u+, which comes from the z derivative.

∂u+

∂z
= −ik̄u+ +

i

2k
∇2
⊥u+ + iB

[
2u+ + u∗−

]
− iC

(
ρ0u+ + A

[
u+ + u∗−

])
, (5.3.4)

∂u∗−
∂z

= ik̄u∗− −
i

2k
∇2
⊥u∗− − iB

[
u+ + 2u∗−

]
+ iC

(
ρ0u

∗
− + A

[
u+ + u∗−

])
. (5.3.5)

where A, B, and C are defined as in Equation (4.4.8). Thus the evolution of

U ≡

u+

u∗−

 (5.3.6)

is given by

∂U

∂z
= iT̂U + iV̂ U, (5.3.7)
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where

T̂ =

∇2
⊥/2k

−∇2
⊥/2k

 , (5.3.8)

and

V̂ =

2B − C(ρ0 + A)− k̄ B − AC

−(B − AC) −(2B − C(ρ0 + A)− k̄)

 ≡
 X Y

−Y −X

 . (5.3.9)

Here we have modified the definition of X to be 2B−C(ρ0 +A)− k̄. In the code, the

fields u+ and u− are stored in a 3D array with size 2 along the third dimension. To

apply the exp(iT̂∆z/2) term, we transform to the spectral representation, multiply

the u+ component by the precomputed linear propagator array, and multiply u−∗ by

the complex conjugate of the linear propagator array. The linear propagator array is

the same as that for the case of the single 2D field in Appendix B. This is possible

because the T̂ term is diagonal in the spectral representation of the {u+, u∗−} space

that we defined.

However, the exp(iV̂ ∆z) term is not diagonal with respect to {u+, u∗−}. The

matrix V̂ is not Hermitian, so we cannot use a unitary basis transformation approach.

Instead, we directly compute the matrix exponential, using the spatial representation

for the fields. This is done for every point in the (x, y) grid; note that X and Y

depend on the coordinates x and y through E0. Additionally, X depends on Ω, the

temporal frequency of the perturbation. Fortunately, we only need to compute this

matrix exponential once, before the propagation begins, since it does not change; this
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is another advantage of factoring the k̄ dependence out of the perturbation fields.

To compute the matrix exponentials, we use a result derived with Mathematica.

The special form of the matrix makes the result simpler than the general case of a

2× 2 matrix exponential. If

m =

 a b

−b −a

 , (5.3.10)

then

exp(m) =

 1
2s

[(a + s)es − (a− s)e−s] b
2s

(es − e−s)

− b
2s

(es − e−s) 1
2s

[(a + s)e−s − (a− s)es]

 . (5.3.11)

Here s ≡
√

a2 − b2. To obtain the result we need, we let a ≡ iX∆z, b ≡ iY ∆z. We

then store this 2× 2 matrix exponential at every spatial grid point. During the split-

operator propagation, the action of exp(iV̂ ∆z) is obtained by matrix multiplication

for every point on the spatial grid.

To perform the propagation, we need to know the value of the the propagation

constant k̄ for a given solution E0. We can use the definition of the steady state field

to get a numerical value for k̄. We know that

∂E0

∂z
= ik̄E0 = GE0, (5.3.12)

where G is the evolution operator G = i∇2
⊥/2k + ik0n2|E|2 + · · · . Multiply both sides
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of the equation by E∗0 and integrate to find

ik̄

∫
|E0|2 =

∫
(GE0)E∗0 . (5.3.13)

We can evaluate both integrals numerically, and thus find the value of k̄ from the field

itself. This provides a numerical check for the value of k̄, since it can be compared to

the value that was used to numerically generate the solution for E0 in Section 3.4.

The initial condition for the 2D coupled case is to set E+ and E∗− to fields of random

noise. The spatial noise field is defined as

E+ = N0(1 + RA), (5.3.14)

where A is a uniform complex random value with real and imaginary parts between

+1 and −1, and N0 and R are amplitudes. The same process is used to generate

E−. We apply a hyperbolic tangent window to the spatial noise field, then Fourier

transform the noise to apply a similar spectral window. The spectral window should

be relatively smooth, so that sharp edges do not contribute to any sharp structures

in the field, thereby inducing numerical instability.

When the program is run, we watch for a shape to grow out of the noise. The

program keeps track of the maximum amplitude of the perturbation field, and plots

it on a log scale plot. Once the shape has settled down, this log plot approaches a



74

line, and the code estimates the slope of the line, which is the growth rate Re(λ):

|E+| ∝ exp(Re(λ)z) (5.3.15)

log |E+| = const + Re(λ)z. (5.3.16)

To test the validity of the coupled perturbation code, we try solving the coupled

equations for the case of a plane wave E0 as well as a plane wave seed. Using a plane

wave E0 means that |E0|2 is effectively a constant over the field. The plane wave

seed confines the initial perturbation to one value of k̄⊥. The growth rate obtained

numerically in the code matched the growth rate Re[λ(Ω, k̄⊥)] predicted by the plane

wave analysis in Section 4.3 to within a few percent, for several test values of Ω and

k̄⊥. We included the case of Ω = 0 for intensities both above and below the stability

cutoff in Section 4.2. This confirmed that the coupled field code correctly modeled

the plane wave limit.

5.4 Propagating the Full 3D Field

For the case of the 3D XYT field, we need to solve the equations

∂E
∂z

=
i

2k
∇2
⊥E + ik0n2|E|2E −

β(K)

2
|E|2K−2E − σ

2
(1 + iωτ)ρE . (5.4.1)

∂ρ

∂t
= b|E|2K − aρ2, (5.4.2)

where E = E(x, y, z, t) and ρ = ρ(x, y, z, t). We proceed in the same manner as for

the 2D XY case, except that now we need to calculate the plasma density by solving
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the differential equation, instead of using an effective n3 or the quadratic solution for

the steady state plasma.

We use the split-operator approach with

T̂ =
∇2
⊥

2k0

, (5.4.3)

V̂ = k0n2|E|2 −
β(K)

2
|E|2K−2 − σ

2
(1 + iωτ)ρ. (5.4.4)

The field E is Fourier transformed to spectral space, where half of the T̂ operator is

applied, then Fourier transformed back to real space, where the V̂ nonlinear index

change and loss terms, as well as any spatial absorbing boundary conditions, are

applied. Finally, we transform to spectral space for the second half of the linear

propagator. The T̂ operator contains no time dependence, so it is independent of

time slice in the full grid, and it is applied in parallel to the different time slices.

To compute the plasma density at a given z position, we numerically integrate

the plasma equation. One approach is to use a modified Euler method:

ρ′n+1 = ρn + ∆t b|E|2K (5.4.5)

ρn+1 =
ρ′n+1

1 + a∆tρ′n+1

. (5.4.6)

However, this sequence does not converge to the steady state value

ρ =
√

b/a|E|K , (5.4.7)
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unless the product ab |E|2K∆t2 << 1. This effect was observed when we started with

the numerically constructed E0 solution from Section 3.4. The plasma generated by

this method was roughly one-third of what it should have been, for ∆t = 3 × 10−11

seconds. To obtain an accurate value for the generated plasma within a few percent

requires ∆t = 3× 10−13 seconds. Alternatively, one could try the sequence

ρn+1 =
ρn + ∆t b|E|2K

1 + a∆tρn

. (5.4.8)

This converges to the correct value. This may also be generalized to include the

case of avalanche ionization, though in the computations presented here, we neglect

avalanche ionization. It remains to be tested whether larger time steps can be used

with this method. One might also consider higher order, but explicit, numerical

methods.

The code uses a third method, based on the exact solution to the differential

equation describing the plasma. This exact solution applies to the case where the

source term is constant in time, that is, |E|2 is constant in time. The exact solution is

then combined with a piecewise constant approximation for the field. For each step

let the source term be constant over the duration of the step. Here we will change

notation, and temporarily redefine b ≡ b|E|2K for simplicity. The equation

∂ρ

∂t
= b− aρ2 (5.4.9)
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has the exact solution

ρ(t) =

√
b

a
tanh[

√
ab(t− t0)], (5.4.10)

where t0 is a constant of integration. Define ρ0 ≡
√

b/a; this is the steady state

plasma density. If we impose the condition that ρ(tn) = ρn, we find that

ρ(tn+1) = ρ0 tanh

[√
ab (tn+1 − tn) + tanh−1

(
ρn

ρ0

)]
. (5.4.11)

This scheme presents difficulty if ρn > ρ0 for some n during the iterated solution,

since the tanh−1 function then becomes complex. However, we can use an identity to

expand this expression:

tanh(tanh−1 x + tanh−1 y) =
x + y

1 + xy
. (5.4.12)

Then define ∆t = tn+1 − tn. We have

ρ(tn+1) = ρ0 tanh

[
tanh−1

(
tanh

√
ab ∆t

)
+ tanh−1

(
ρn

ρ0

)]
, (5.4.13)

= ρn+1 = ρ0

tanh
(√

ab ∆t
)

+ ρn/ρ0

1 + tanh
(√

ab ∆t
)

ρn/ρ0

. (5.4.14)

This approach removes the need to use any inverse hyperbolic tangents, and allows

the perturbed ρn to be larger than ρ0.

Given the above scheme to compute the plasma density, we then solve it for
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each value of x and y over time. For this reason this portion of the code is easily

made parallel, since there is no interaction, such as diffusion, between the plasma for

different values of x and y. If the pulse is confined in time, so that the field is zero at

the boundaries, then we solve the equation from the low boundary of the time grid

to the high boundary. However, if we are running the temporal periodic boundary

conditions case, we iterate the solution, wrapping back around the time boundary

several times, to ensure that the plasma is continuous over the boundary. In practice,

three or four iterations are sufficient to verify this.

For the case of periodic boundary conditions in time, the initial condition is con-

structed by first loading in the numerically generated E0 spatial profile described

earlier. Each time slice in the full XYT array is initialized with this profile. Random

multiplicative amplitude noise is then added to this full field. Finally the noise is

filtered in the frequency domain, both spatially and temporally. The upper limit

for the temporal noise frequency is given as an input parameter. It is important to

ensure that this upper limit is an absolute value and does not depend on the grid

spacing, or frequency grid size. Otherwise, the observed growth will depend on these

grid parameters. This is due to the presence of unstable growth for all frequencies Ω.

5.5 Numerical Considerations and Diagnostics

For the case of XY propagation, one quantity that is measured for each step is

an estimate of the beam width. This can be done with a second moment technique

as follows: Take a 1D slice of the beam through the origin. Define the width of the
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Gaussian by w in the expression g(x) = exp(−x2/w2). For this form of g(x),

∫∞
−∞ x2g(x)2∫∞
−∞ g(x)2

=
w2

4
(5.5.1)

w = 2

√∫
x2g(x)2∫
g(x)2

. (5.5.2)

Both of these integrals are easily performed as numerical summations, and the width

estimate w is updated for each step of the propagation. The code also updates the

user with the peak field intensity, and an update of the what the width would be for

a Gaussian beam propagation under diffraction only.

Diagnostic tests for the 3D propagation case included initializing the spatial field

with the numerically constructed eigensolution of the propagation, and starting with

a perfectly flat temporal profile. For this we imposed periodic boundary conditions

in time. When this is run, we observe that its amplitude remains stationary, at least

for the initial few meters, before tiny numerical errors begin to seed unstable growth.

Another general test for the 3D code involves using only n2 and n3 nonlinearities

rather than modeling the plasma. This results in the beam or pulse being uncoupled

in time, since all the time slices act independently, but gives a test that can be

compared to the 2D code.

The grid spacings are chosen to minimize computational effort while best repre-

senting the numerical fields. During the testing and generation of results for 2D and

3D propagation, the results were verified for different values of ∆x, ∆t, and ∆z to

check the convergence. Section B.2 in Appendix B discusses the relationship between

the grid spacings and propagation step when using a split-operator method. Table 5.1
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provides the parameters for the numerical grids used in most of the simulations in

this work.

Table 5.1: Typical numerical grid parameters. Those used to generate the
results in this dissertation are given in bold.

Parameter Name Value Units

Number of X or Y points Nx, Ny 128 or 256 —
Number of T points Nt 128 - 1024 —
X or Y spacing ∆x, ∆y 5.0, 8.0 ,10.0 µm
Z step ∆z 0.5, 1.0 mm
Time spacing ∆t 0.5, 1, 2 10−12 s
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CHAPTER 6

NUMERICAL RESULTS

6.1 Coupled Perturbation Fields

This chapter presents the numerical results of the latter two methods outlined in

Section 4.6: the coupled field propagation, and the full 3D propagations. We first

examine the results for the propagation of the coupled perturbation fields E+ and E−

described in the linear analysis in Section 4.3. The coupled field propagation requires

less computational effort than full 3D propagation, since it involves 2D fields. The

results tell us about the shape and growth rate of the perturbation fields. However,

the trade-off is that these results are linear approximations, and we must choose one

particular temporal frequency Ω for which we investigate the instability. We seed

the perturbation fields with random noise, and propagate them using the method

described in Section 5.3.

We must choose the steady state field E0 as an input for the computation. This

is done by using the computed exact steady state solution from Section 3.4 corre-

sponding to the given peak intensity or beam power of interest. Alternatively, we can

choose E0 to be a plane wave with a specific intensity, for a verification of the coupled

field propagation code, discussed in Chapter 5. In this case, the perturbation field is

initialized with a single value of k⊥.

For the case of using a steady state beam solution E0, the results indicate a

growing instability for all frequencies Ω > 0, as predicted. The growth rates do
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not exactly correspond to the plane wave prediction, because the E0 beam solution

contains a combination of plane waves with differing k̄⊥ values. The intensities of these

plane wave components are lower than the peak intensity of the beam solution; lower

intensities tend to correspond to lower growth rates. Depending on the frequency

Ω that is considered, as well as the power of the steady state solution, the growing

instability fields take different shapes. We discuss the results here for Ω = 0, 1011,

and 1012 s−1. We use the steady state solution E0 computed in Section 3.4 with a

peak intensity of 3.2× 1016 W/m2, corresponding to a power of roughly 470 MW.

For Ω = 0, one might not expect any instability growth, since we chose the peak

intensity of the steady state solution to be above the stability cutoff in Section 4.2.

However, an unstable mode still grows for Ω = 0, no matter how carefully we choose

the steady state solution or adjust the grid sizes or spacings. The unstable mode was

circularly symmetric, with a growth rate λ on the order of 10−2 m−1. The explanation

for this unstable growth is that the solution for E0 is composed of plane waves that

can have a lower intensity than the cutoff. Thus a small portion of the field seeds

growth at Ω = 0.

Since the original stability analysis is linear, there is no dependence on amplitude,

and the mode will grow without bound as the coupled fields evolve. This is true for

all frequencies Ω; the perturbation fields grow to magnitudes well beyond the validity

of the small perturbation approximation. However, this approach provides a tool to

discern the shape of the most unstable mode, as this mode will grow fastest, and

eventually dominate, as the fields propagate.

Figure 6.1 shows the form of the perturbation fields for Ω = 1011 s−1, and the exact
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steady state E0 field with peak intensity 3.2 × 1016 W/m2, which is our standard

solution. Figures 6.1(a) and 6.1(b) show the absolute value and real part of the

growing perturbation field E+. The field E− has a nearly identical shape and is not

shown. The fields take the form of two lobes; When they initially develop, the two

lobes may not have the same height, depending on the initial noise seed. However, as

this strongest mode grows, the two lobes become symmetrical. The early asymmetry

is due to the presence of other, slower growing modes, from the initial noise seed.

However, the shape of the fastest growing mode eventually dominates. Since there

is azimuthal symmetry in the propagation equations, the choice of orientation of the

two lobes is determined by the initial conditions. The rough textured background

in these figures is the initial noise seed. These figures show the growing solution at

z = 0.78 m.

Figure 6.1(c) shows the combination E0 + E+ + E−. At this distance, E+ still has

a somewhat smaller magnitude than E0. As mentioned, the perturbation will grow

without bound, but we can perform this example summation while the magnitudes

are comparable. Note that we have arbitrarily chosen a time origin t = 0 such that

the full equation for the field plus perturbation, Equation (4.3.4), gives just the sum

of the fields. As the perturbation evolves, the absolute value approaches a fixed

shape, but the real and imaginary parts continuously change phase. This makes the

beam become lopsided, and oscillate in the manner of a “snake” instability. After

the initial growth of the strongest unstable mode from the noise, the growth rate

of the perturbation fields is exponential. The growth rate for this nontrivial E0 at

Ω = 1011 s−1 is approximately 13 m−1, which, as discussed and seen from Figure 4.2
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is lower than the general neighborhood of linear growth rates, given this value of Ω.

The peak plane wave growth rate for Ω = 1011 s−1 is roughly 35 m−1.

Figure 6.2 shows the form of the perturbation fields for the case of Ω = 1012 s−1.

For this frequency, the growing field initially appeared to have the two-lobe structure

that was observed for Ω = 1011 s−1. However, as the field is propagated, the structure

changes into the symmetrical form shown in the figures. Thus for Ω = 1012 s−1, the

growth rate for the symmetric mode is faster than the rate for the asymmetric mode.

This growth rate is approximately 40 m−1, while the peak plane wave growth rate for

this frequency is roughly 60 m−1,

For lower frequencies, the shape of the perturbation appears to be a two-lobed

structure, while for higher frequencies, the shape of the perturbation begins as a two-

lobed structure, but then evolves into a circularly symmetric form. In both cases the

initial form shows some asymmetry, as a combination of modes of varying growth

rates develops. The asymmetric structure at low Ω leads to a “snake” instability,

while the symmetric structure at higher Ω causes a “neck” instability. The cutoff

value where the mode shape changes from two lobes to azimuthally symmetric is

not known exactly, but will depend on the peak intensity that defines the zero order

solution.
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(a) Absolute value of E+

(b) Real part of E+

(c) Absolute value of E0 + E+ + E−

Figure 6.1: Coupled perturbation fields for Ω = 1011 s−1. In (a) and
(b) the absolute value and real part of E+ are shown. Part (c) shows an
example of combining E+ + E− with E0, which results in a lopsided beam.
Here the noise seed is visible as the rough texture of the background in
the figures.
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(a) Absolute value of E+

(b) Real part of E+

(c) Imaginary part of E+

Figure 6.2: Coupled perturbation field for Ω = 1012 s−1. At this fre-
quency, the fields are circularly symmetric. Here the fields have been
evolved for several meters and have grown far beyond the noise seed.
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6.2 Periodic Boundary Conditions in Time

We now turn to the case in which the time domain is fully resolved, and we use the

three dimensional propagator. For the first study of full three dimensional results, we

propagate using periodic boundary conditions in time, using the method described

in Section 5.4. This allows investigation of the stability of the central region of a

hypothetical long pulse, without needing to resolve or consider any transient effects

based on the pulse edges. We initialize the temporal profile as flat, but possibly with

some small modulation or random noise. We can initialize the spatial profile to a

steady state solution or a Gaussian beam. Additionally, we can introduce random

noise over the full 3D spatiotemporal grid.

The effect of noise depends on the bandwidth of the noise seed. Recall that the

stability analysis in Chapter 4 indicates that unstable modes are expected to grow

for all temporal frequencies. Thus, if the noise seed contains all available frequency

components, the noise will grow for all frequencies allowable on the grid. If the noise is

spectrally limited to lower frequency components, the spectrum of the growing noise

will be approximately cut off at this limit; however, higher frequency components

eventually appear, due to the coupling between space and time in the plasma response.

As an example, we initialize the field with the steady state solution for E0 shown in

Figure 3.6, with peak intensity 3.2× 1016 W/m2. The noise is set to be random noise

with 1 percent amplitude, bandwidth limited to |Ω| < 1012 s−1 and k⊥ < 2×105 m−1.

The results of the propagation for three different distances are shown in Figure 6.3.

The subfigures show plots of the absolute value of the field amplitude taken in cross
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section, for the central (y = 0) two dimensional slice of the full three dimensional

field. The initial condition and early evolution are not shown, as the amplitude of

the noise is initially too small to see. Figure 6.4 shows the spectral representation of

the state reached in Figure 6.3(b). The central peak of the spectral representation,

which is the zero frequency component, has been cropped in the figure, to show

the spectrum of the growing perturbations. The spectrum grows strongly within the

region bounded by |Ω| < 2×1012 s−1. This value was the upper limit for the temporal

frequencies present in the noise seed. Both symmetric and antisymmetric (neck and

snake) modulations are observed.

As mentioned, a problem with simulating the growth of unstable modes on the

full 3D grid is that we can never represent all the temporal frequencies involved,

since, as seen in Section 4.5, the growth rate is positive for all frequencies. We can

only demonstrate the growth for a limited range of frequencies. Additionally, as the

field evolves, the noise grows until it becomes so strong that it exceeds the numerical

capabilities of a grid; the time or length scales of the features of the noise peaks can

approach the grid spacing in space or time. However, this analysis provides a useful

look at the initial growth of a modulational instability. For the UV filaments studied

here, it is apparent from these results that the fundamental steady state solution

suffers from the instability and will fragment in time. Thus, for a pulse with finite

duration, we expect that the transient leading edge of the pulse will not be able to

converge to the steady state solution that represents the central flat temporal region

of the pulse in the Schwarz-Diels model. We model such a pulse in the next section.
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(a) z = 10 cm

(b) z = 15 cm

(c) z = 17.5 cm

Figure 6.3: Growth of instability for periodic boundary conditions in time.
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Figure 6.4: Growth of instability for periodic boundary conditions in
time, in the spectral domain, at z = 15 cm. The central zero frequency
component has been cropped for clarity. The growing noise stays largely
confined to the area bounded by the noise seed cutoff.

6.3 Full 3D Model

To simulate a finite duration pulse, we must prepare the field with a temporal

pulse profile that resolves the edges of the pulse. We remove the explicit periodic

boundary conditions in time, by only using one iteration to compute the plasma

density. In many of the runs, the initial temporal profile is chosen as a supergaussian,

defined as follows:

E(t) ∝ exp

(
−
[
(t− t0)

2

t2p

]M
)

, (6.3.1)

where M is the supergaussian order. This allows examination of a pulse that con-

tains both transient effects at the edges and a central flat region. Such “flat-top”

temporal profiles have been used in experiments [59] and numerical simulations [33]
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to study both the edges and the center of a pulse. However, UV pulses of hundreds

of picoseconds in length, such as those we consider, have not yet been produced. We

can initialize the spatial profile to match the exact computed stationary solution, for

diagnostics, or to a Gaussian beam profile, to represent what might be experimen-

tally generated. We can also set the temporal profile to a Gaussian, by setting the

supergaussian order M to unity.

As a first example, consider the evolution of the pulse shown in Figures 6.5–6.6.

The figures show an XT cross section of the full 3D XYT field. It was initialized

with the exact steady state spatial solution, as constructed in Section 3.4, with peak

intensity 3.2 × 1016 W/m2. The temporal supergaussian was of order M = 10, with

tp = 200 ps, giving a pulse of roughly 400 ps in length. As the pulse propagates, it

develops a series of collapse events on the leading edge. These collapses are seeded by

the transient shape of the edge, which does not match a steady solution. During each

collapse, the intense plasma causes the field to dip in amplitude and temporarily form

a ring, which then seeds the next collapse. The trailing edge independently breaks

apart into a ring, but does not cause any collapse events. These self-focusing collapse

events appear to consume the pulse at a roughly linear rate; for the power in the

example, this rate is roughly 200 ps/m.

If we initialize the spatial profile of the pulse to a Gaussian profile, which makes

it differ from the exact spatial solution, the beam sheds a small ring in the central

region, as observed in the 2D results. The overall structure of the collapses, however,

is not significantly different from the previous case. Figure 6.7 shows an intermediate

step in such a propagation, and the ring is visible as a bump along the side of the



92

(a) Initial condition, z = 0

(b) z = 5 cm

(c) z = 10 cm

Figure 6.5: Propagation of a finite duration pulse with no noise seed.
Note the beginning of the collapse of the leading edge of the pulse.
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(a) z = 25 cm

(b) z = 50 cm (rotated to show trailing edge)

(c) z = 75 cm

Figure 6.6: Propagation of a finite duration pulse, continued. Note the
series of collapse events that consumes the pulse.
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pulse. The initial condition was a spatial Gaussian with width 120 µm.

Figure 6.7: Propagation of a spatially Gaussian pulse, at z = 25 cm.
Note the small ring that is generated, as the field sheds power to move
toward an equilibrium solution of the 2D propagation equation.

This consumption of the pulse by collapse, while it arises from the transient be-

havior at the beginning of the pulse, does not appear to be itself a transient effect.

That is, it does not decay—it maintains a steady rate of consumption of the pulse.

It is unclear exactly what shape the collapsed peaks take. They tend to collapse

to dimensions comparable to the grid spacing in time. With no loss, there are only

numerical dispersion effects induced by the finite spectral bandwidth of the grid that

act to limit the collapse [34]. The simulation has been done with multiple values of ∆t

to check the convergence, and in all cases the overall result is consistent with respect

to the spacing of the pulses and the consumption rate. An example of this comparison

is shown for the on-axis amplitude at z = 25 cm in Figure 6.8. Losses or other physical
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effects such as GVD will stop the temporal collapse; however, numerically resolving

these effects requires shorter (femtosecond) time grid intervals, making it impractical

to model a long pulse. Our result is not the precise shape of the collapse events, but

their presence, which confirms the unstable nature of the leading edge of a pulse.
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Figure 6.8: Comparison of collapse events for multiple values of ∆t. The
plot shows the on-axis amplitude of the field at z = 25 cm during the
initial portion of the pulse, for three different values of ∆t.

At the farthest propagation distance shown, in Figure 6.6(c), there is noise growing

on the trailing edge of the pulse. This is evidence of the growth of the modulational

instability predicted in Chapter 4 and observed in Section 6.2. The instability has

grown from numerical noise to a magnitude large enough to be visible in the figure.

In the next section, we further examine the instability by seeding the initial pulse

with controlled noise.
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6.4 Full 3D Pulses with Noise Seed

Figure 6.9 shows the propagation of a pulse with the same initial characteristics of

that in the previous section, but now with a noise seed added to the initial condition.

The initial condition is not shown, since the initial noise amplitude is small enough

that one cannot see it initially. The initial noise amplitude was 0.01 percent, limited to

|Ω| < 1012 s−1. The edge-induced collapse events proceed identically at first, but after

a few centimeters the noise growth appears, and around z = 35 cm, it overwhelms

the pulse. The noise growth destroys the pulse in a global fashion, as opposed to the

collapse events, which consume the pulse from start to finish.

One might ask if the impact of the modulational instability depends on the tem-

poral shape of the pulse. Does it require a flat, steady-state region? To answer this,

Figure 6.10 shows one step in the propagation a pulse with Gaussian initial temporal

profile. Here the width was tp = 160 ps, and the initial noise amplitude 0.04 percent.

The spatial profile was initialized to a Gaussian with peak power 500 MW and width

120 µm. This example demonstrates that the Gaussian pulse still suffers from front-

edge collapse, as well as the growth of the modulational instability. The particular

shape of the input pulse does not appear to have a significant effect on the collapse

or instability.
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(a) z = 25 cm

(b) z = 30 cm

(c) z = 35 cm

Figure 6.9: Propagation of a finite duration pulse with a noise seed. The
beginning of the collapse of the leading edge of the pulse is overwhelmed
by the exponential growth of the noise.
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(a) z = 0 cm

(b) z = 25 cm

Figure 6.10: Propagation of a temporally Gaussian pulse. The collapse
events and noise growth take place in the same fashion as for a flat-top
pulse.
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6.5 Complete Pulse with Noise and Loss

The previous sections considered the propagation of pulses under simplified condi-

tions, to isolate the different effects. Let us now prepare a pulse with Gaussian initial

spatial shape, a noise seed included, and absorption losses included in the model. We

will retain the flat-top supergaussian shape in time. These conditions are intended to

be a better representation of what one might be able to generate in the laboratory.

The initial condition was a spatial Gaussian defined with peak power exactly

500 MW, with width 120 µm, and a temporal supergaussian of order 10 and width

tp = 200 ps. This corresponds to roughly a 400 ps pulse. The noise seed was 0.01

percent, bandwidth limited to |Ω| < 1012 s−1. Figures 6.11–6.12 show the propagation

of the pulse. Additionally, Figure 6.13 shows the induced plasma density at certain

propagation distances. The characteristic decay time of the plasma can be seen on

the trailing edge. The plasma density does not need to decay to zero at the time grid

boundary, because it is an input to the nonlinear response, and is multiplied by the

field, which is zero at the boundary.

In all the simulations presented in this dissertation, we use the same base steady

state solution with power of 470 MW, or a Gaussian beam cross section with power

500 MW, both of which give a peak intensity of 3.2×1016 W/m2. As discussed earlier,

these powers were chosen so that this peak intensity is greater than the plane wave

cutoff for stability in the Ω = 0 analysis in Section 4.2. The specific power, however,

is arbitrary. The instability and pulse consumption shown here are examples of the

effects which occur for any power level that supports a self-trapped beam.
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(a) Initial condition, z = 0

(b) z = 5 cm

(c) z = 10 cm

Figure 6.11: Propagation of a finite duration pulse with noise seed and
absorption.
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(a) z = 25 cm

(b) z = 30 cm

(c) z = 40 cm

Figure 6.12: Propagation of a finite duration pulse with noise seed and
absorption, continued.
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(a) z = 0 cm

(b) z = 20 cm

(c) z = 30 cm

Figure 6.13: Generated plasma density for the realistic pulse. Plot scales
are different due to creation of sharp peaks.
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6.6 Fluence

In experiments it is difficult to resolve the temporal profile of a fast, high intensity

pulse. Instead, often the fluence is estimated, for example by measuring the profile

of a laser burn spot [4] or with a CCD camera [19]. For a given propagation distance

z, the fluence is:

F (x, y, z) =

∫ ∞

−∞
|E(x, y, z, t)|2 dt , (6.6.1)

where |E|2 is in units of intensity. The units of fluence are J/m2, and it corresponds to

the energy density delivered by the pulse. By calculating the fluence for a simulated

pulse, we can obtain a quantity than can be experimentally observed. We can also

compute the width of the fluence profile, using the second moment method, and use

it as a measure of how confined the beam remains as it propagates. To determine

the combined effect of the linear consumption and the exponential growth of the

instability, we examine the plots of the fluence, and the width of the fluence.

Figure 6.14 shows the fluence profiles corresponding to the propagation in the

previous section of the 470 MW peak power pulse propagated with noise and loss.

The impact of the pulse collapse on the fluence depends on the fraction of the pulse’s

temporal width that has collapsed. For this example, at roughly 30 cm, the noise has

begun to dominate, which begins to significantly affect the fluence profile. Up to that

point, the fluence profile is not significantly affected by the collapsing front edge.

Figure 6.15 shows the width of the fluence profile as a function of propagation
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(a) z = 5 cm (b) z = 10 cm

(c) z = 15 cm (d) z = 20 cm

(e) z = 25 cm (f) z = 30 cm

(g) z = 35 cm (h) z = 40 cm

Figure 6.14: Fluence profiles for the realistic pulse, at several propagation
distances.
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distance for the same case. The fluence width initially decreases, since the initial

condition was chosen to have a spatial width larger than the corresponding stationary

solution. This is in agreement with the oscillations predicted by the Schwarz-Diels

model in Chapter 3. Then the pulse stays confined as the width is maintained, until

about 30 cm. During this phase, the leading edge of the pulse is consumed by transient

collapse. The effect that this has on the width of the total fluence is dependent on

the length of the pulse; for a longer initial pulse, a given consumption rate in ps/m

affects a smaller fraction of the pulse, and has less of an impact on the fluence profile.

However, once the exponentially growing instability becomes significant, in this case

around 30 cm, it quickly spreads the beam width. The noise is seeded uniformly

along the pulse, and thus acts as a global effect, and its exponential growth quickly

dominates. After 60 cm, the fluence width stops increasing because it is numerically

confined by the absorbing boundary conditions.

If one is only interested in the fluence at the target, the claim could be made that

the pulse propagates successfully up to the point where the noise growth dominates.

This point is determined by the initial amplitude of the noise and the growth rate

of the noise, which is is roughly 10-20 cm−1, corresponding to a growth length of

5-10 cm. For this example, the fluence width stays confined until about 40 cm,

somewhat more than the Rayleigh range on the order of 10 cm. A pulse could be

prepared to propagate farther in a confined fashion if the intensities were lower and

the initial noise was controlled, but not for distances on the order of kilometers, as

was desired.
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Figure 6.15: Width of fluence profile for the realistic pulse. The initial
decrease in width is characteristic of the oscillations predicted by the
Schwarz-Diels model. This pulse travels roughly four Rayleigh ranges
before being destroyed by the modulational instability.
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CHAPTER 7

IMPLICATIONS FOR UV PROPAGATION

7.1 Length Scales

To best understand the impact of the various effects, it will help to consider the

dominant length scales, and determine which are the most significant. The fundamen-

tal length scale for a Gaussian beam is the Rayleigh range, defined as πw2
0/λ, where

w0 is the beam waist radius. ‘Long distance propagation’ is relative to this scale; if a

beam does not diffract over many Rayleigh ranges, then it can be considered to have

propagated a long distance. For most of the example beams that we have considered,

the waist size w0 is on the order of 100 µm. Combined with working in the ultraviolet

at 248 nm, this gives a Rayleigh range on the order of 10 cm.

The length scale for linear (Rayleigh scattering) loss is given by

1

αl

=
1

5× 10−4
m = 2 km (7.1.1)

in the ultraviolet at 248 nm [26]. This length is the power 1/e length for linear

loss. There are also length scales for nonlinear absorption, which depend on the

field intensity. This can be seen from the results of propagating the 2D beams in

Section 3.3, where the power in the beam drops roughly exponentially down to below

200 MW, but the loss rate then slows, because the absorption is nonlinear. This

scale therefore depends on the power in the beam. Given the power loss shown in
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Figure 3.5(b), a rough estimate for the nonlinear absorption 1/e length for power is

20 meters.

We have both predicted and observed the length scale for instability growth. The

growth rate λ is an exponential growth rate, and so 1/λ gives a length scale for e1

growth. Typical values for this growth rate are between 10 and 20 m−1, making the

growth length scale roughly 5-10 cm. These growth rates become smaller as beam

power decreases.

The transient collapse of the beam observed in Section 6.3 takes place on a roughly

linear scale. For the power in the example, this consumption rate was 200 ps/m. This

means that, neglecting instabilities, for a pulse on the order of 1 ns, the propagation

distance before complete consumption and collapse is roughly 5 m. Section 6.6 ex-

amined the impact these effects had on the fluence profiles.

Table 7.1 summarizes some of the pertinent length scales for ultraviolet propa-

gation. Note that, not counting the large uncertainty in the Raman growth, the

instability growth occurs over the shortest distances. The instability growth scale is

comparable to the Rayleigh range. The absorption, both linear and nonlinear, is not

strong enough to counter this instability before it fragments the pulse.

7.2 Experimental Implications

Given the numerical results from Chapter 6, we expect that this instability and

transient consumption of the pulse will have a significant effect on the propagation

of ultraviolet filaments.



109

Table 7.1: Typical length scales for 470 MW peak power UV filaments

Name Value Units
Rayleigh range 10 cm
Linear loss length 2000 m
Nonlinear absorption length ≈ 20 m
Instability growth length ≈ 5− 10 cm
Pulse consumption distance tp/(200 ps/m) m
Raman scattering 0.01-10 m
Upper limit (Avalanche ionization) ≈ 4-60 ns
Lower limit (Plasma rise time) ≈ 30-200 ps

For our example case, a UV filament of length on the order of a nanosecond may

propagate for distances on the order of a meter before it is consumed by collapse

events. As discussed in the previous section, this still may be described as long

distance propagation, as it is many Rayleigh ranges, given the spatial width of the

filament. However, the results do not support hopes that kilometer scale atmospheric

propagation of a stable pulse in the ultraviolet will be feasible; the proposal that

simple UV pulse results can scale to longer durations is not supported. For the

purposes of energy delivery, one may not be concerned with fragmentation of the pulse

in the time direction, as long as the fluence profile is confined; these results do not

rule out the propagation of some complicated dynamic mode over longer distances.

However, as we have seen in Section 6.6, the modulational instability also affects

the fluence profile by spreading it. The rate at which the modulational instability

fragments the main body of the pulse is faster than the transient consumption. The

point at which this fragmentation occurs depends on how much noise is initially

present, but due to the exponential growth rate, it cannot be realistically suppressed
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for long distances.

As mentioned in the Introduction, experimental generation of ultraviolet pulses

of sufficient length to compare with these results has not yet taken place. However,

if such pulses were to be generated in laboratory conditions and measured, we would

expect to be able to compare the qualitative behavior of the width of the observed

fluence profile with our predictions.

7.3 Theoretical Implications

A steady state or long pulse model may simplify theoretical predictions, but if

the physics of the problem admit the effects of modulational instability combined

with other transient effects, it is dangerous to apply such a model. The presence of

such modulational instabilities or transient effects, which we have demonstrated for

the case of UV filament propagation, violate the basic steady state beam assumption

that is used in the long pulse model.

We have shown that UV filaments should suffer from these effects, limiting their

effective propagation range to meters. This will prevent the steady state theory from

scaling to longer UV pulses as desired [17, 16]. One might ask if there are other

regimes for which we may be able to reduce the impact of these problems. However,

an initial advantage of choosing the UV was that the effect of avalanche ionization

was greatly reduced, and thus could be ignored, up to certain pulse lengths. Moving

to longer wavelengths drastically shortens this upper limit [17].

Section 2.3 mentioned that there are many applications of variational methods to
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nonlinear optical propagation problems. The method of Schwarz and Diels [17], when

modified, was found to give the same results as the variational method of Anderson

and Bonnedal [28]. The drawback of a variational method is that it mathematically

confines the solution to fit the variational ansatz. If this ansatz does not capture

a mode of a physical instability that is present, the variational method will not be

able to model the instability. In the case of UV filaments, the current method is

unfortunately an oversimplification of the dynamics of long pulse propagation.

In general, caution must be used when describing soliton solutions of reduced 2D

time-independent versions of full 3D equations. For example, the treatment by Skarka

et al. of vortex solitons [30] relies on considering the evolution of a single time slice of

a pulse, which simplifies the propagation to a time-independent form [15]. This allows

the use of a variational technique to describe the spatial form of the vortices. They

emphasize the spatial stability of the vortex solutions, but do not consider the full

temporal dynamics or stability of the pulse. This time-independent method limits the

applicability of the claim that such solitons will be able to propagate for appreciable

distances in air, until a full temporal analysis is performed.

Similarly, the time-integrated approach of Bergé et al. to multiple filamenta-

tion [31] cannot describe effects such as dynamic replenishment [5, 40] and the col-

lapses in both space and time. The complicated dynamic nature of the problem may

mean that ”long-range” filaments qualitatively describe the results, but the most

convincing theory must account for the time dependent characteristics.
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7.4 Raman Scattering

The application of a long pulse model to realistic ultraviolet filaments raises the

question of the impact of Raman scattering. The Raman effect is observed when a

material scatters light to frequencies different from that of the source, through virtual

energy level transitions [1]. The new lower shifted frequencies are labeled Stokes lines,

while the higher shifted frequency components are anti-Stokes lines. Spontaneous

Raman scattering is usually weak, but stimulated Raman scattering, which can occur

for intense laser beams, can convert a large fraction of the incident energy to the

Stokes frequency, in a conical emission pattern [1]. In air, the dominant process is

stimulated rotational Raman scattering (SRRS) in nitrogen [33, 59], for which the

particular rotational transition gives a shift of roughly 1.4× 1013 s−1 [33].

The total nonlinear index n2 in the Kerr effect for a CW beam includes contri-

butions from bound electrons as well as vibrational and rotational terms. Each of

these contributions is due to the response of a material mode (electronic, vibrational,

or rotational) to a driving electric field. This response is proportional to the field

intensity. For long pulses, the time scale of the material responses is fast, so their

time dependence averages out, and the total contribution can be included in a single

effective instantaneous value for n2. For shorter pulses, the time scale may be compa-

rable to the rotational response, so the time dependence, or memory, of this portion

of n2 must be considered.

To include SRRS in a propagation model, the n2 term is split into time dependent
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and time independent parts [16, 40, 2]:

ik0n2|E|2E → ik0(1− f)n2|E|2E + ik0fn2

[∫ ∞

−∞
dt′R(t− t′)|E(t′)|2

]
E . (7.4.1)

Here f is the fraction of the nonlinear response that comes from the time-dependent

component, in this case SRRS. The function R(t) is the impulse response of the

rotational mode.

This impulse response is often modeled as a sinusoidal oscillation multiplied by a

decaying exponential [16, 33, 40]. The decay models the dephasing due to the fact

that the true response is due to multiple states in a rotational manifold, each with a

slightly different frequency. However, this simplified model does not take into account

the recurrences which occur over longer time periods, on the picosecond scale [60].

For femtosecond pulses, these recurrences might be neglected, by using the simple

exponential decay. However, for picosecond-nanosecond scale pulses, they may need

to be included.

Peñano et al. modeled SRRS in air for long laser pulses. Their model considers

propagation of pulses under the instantaneous (Kerr) term and the delayed (Raman)

term. They performed a linear stability analysis to find the growth rates for Stokes

and anti-Stokes fields. Their result is that the Raman gain coefficient for a CW pump

is [33]

g0 =
nRΩ0ω0

2Γ2c
. (7.4.2)

Here nR is equivalent to fn2, the rotational contribution to the total value of n2 in

the CW limit. Ω0 = ω2
R + Γ2

2, where ωR is the Raman transition frequency; ω0 is
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the pump optical frequency. Γ2 is the damping rate of the exponential in the model

described above, and is labeled the dipole dephasing rate in Peñano et al. [33]

The experimental value of this gain coefficient, for long pulses at 1 µm wavelength,

is 2.5 cm/TW [59]. This value is multiplied by the intensity to obtain a growth rate.

From the dependence on ω0, we expect roughly a factor of four increase when working

in the UV, or 10 cm/TW. Given the intensities in this dissertation, on the order of

1016 W/m2, this predicts a growth rate on the order of 10 cm−1. This corresponds

to e1000 growth over one meter, which contradicts experimental results [4]. For the

current picosecond scale UV pulse experiments, the Raman contribution to n2 was

not found to be significant; there was little growth, due to the lack of significant

spectral broadening before the pulses ionized [16, 4].

This basic result is modified by the coupling between Stokes and anti-Stokes waves

which occurs for small values of the phase mismatch between the two waves. For

perfect phase matching, there is zero growth; for small values of the mismatch, the

growth rate is reduced [33]. The phase mismatch depends on the propagation angle,

or equivalently the value of k⊥. For k⊥ = 0, Peñano et al. find the peak growth

rate to be roughly one-third of the full g0 value; it decreases to zero for a particular

angle, and then rises to approach g0 for large angles. Thus in general, for a beam

constructed of a continuum of propagation angles, their analysis predicts unstable

growth on the order of g0.

The central question is whether or not the simplified model of the Raman impulse

response is useful when considering long pulses. The recurrences may be too impor-

tant to ignore; they affect any characterization of the response by a time scale. The
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fast oscillations in the SRRS for N2 take place at ωR ≈ 1.4 × 1013 s−1. This implies

that temporal grid resolution roughly ten times finer than we have used may be ade-

quate to numerically model the Raman scattering. However, we need to understand

how to treat the Raman response before performing this calculation.
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CHAPTER 8

CONCLUSION

8.1 Summary

We have considered the propagation of long filaments in air, primarily in the ultra-

violet. It had been speculated that previous successful demonstrations of ultraviolet

filaments would scale to longer pulse durations [17, 16], allowing the propagation of

long filaments and delivery of higher energies over long distances through the atmo-

sphere. However, the existing theoretical model for long ultraviolet filaments did not

address their stability, or how they are created [17].

To address these issues, we have considered and extended a long pulse model for

ultraviolet filaments [17]. We have numerically shown that while it is mathemati-

cally valid for the domain of pulse lengths that it claims, the pulse instability and

transient effects cannot be neglected. We investigated the question of stability using

three levels of approximation: the plane wave stability results, the evolution of the

linearized coupled perturbation fields, and the simulation of full 3D pulses using a

time-dependent plasma model. The results were consistent on all three levels, and

showed that the modulational instability ultimately results in the fragmentation of

the pulse. We also demonstrated that the transient shape of the front edge of the

pulse induces a series of collapse events, which also tend to consume a long pulse.

Since the long pulse model can no longer be used for a pulse that is fragmented in

time, a new model will be needed.
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In the case of ultraviolet filaments, we still predict that propagation over several

Rayleigh ranges can be achieved, depending on conditions. The transient collapse

consumes on the order of hundreds of picoseconds of the pulse per meter of propaga-

tion, but keeps the fluence profile relatively confined. The modulational instability,

however, destroys the entire pulse as it grows, with a gain length on the order of tens

of centimeters, depending on how it is seeded. The values of these consumption rates

depend on the model parameters in Table 3.1, which are not accurately known, but

the above detrimental effects will still be present even for alternate values. The the

propagation of long stable pulses described by a steady state model over kilometer-

scale distances does not appear feasible, given the effects that we have considered.

As discussed in Section 7.3, the long pulse model and other methods that eliminate

the time dimension have limited prediction power when temporal stability effects are

not considered. A steady state model is not suitable for the description of a highly

fragmented pulse. However, there are still open questions as to other effects that may

be relevant to the propagation of UV filaments.

8.2 Future Work

The stability results point to unstable growth for all temporal frequencies, inde-

pendent of the physical parameters such as the wavelength and plasma generation

rates. We have applied the results to the UV filament regime, but the specific nu-

merical results are only as accurate as the input parameters. The MPI rate needs

significantly more study before a more certain value can be obtained; this value affects
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the effective n3 as well as the time scales of the upper and lower limits in the original

model [17]. The wavelength dependence also invites more detailed study; one would

like to know how if there is a laser wavelength for which the pulse consumption rate,

as well as the growth rates of modulational and Raman instability, can be reduced,

but a long pulse model still applied.

More sophisticated models of the plasma may be incorporated, including such

effects as plasma diffusion, or variable MPI rates depending on intensity, or pulse

length. More study on the impact of stimulated Raman scattering for long pulses

is needed, including how to describe the Raman response for long times. When this

is understood, the Raman effect could be added to the numerical model, given an

order of magnitude increase in computation time or power to accommodate a finer

temporal grid.

If one wishes to work with long pulses that will fragment as described, is there a

way to model the collapse events with an approximate theory or suitable variational

method? The specific structure of the instability modes may also be investigated.

Is there some way to prepare a pulse so that the transient collapse effects at the

pulse front are avoided? Alternatively, is there an acceptable level of fragmentation

of pulses? Could a collection of multiple filaments, interacting in space and time,

propagate by replenishing the pulse in time after breakup, as has been seen for spatial

filaments [41]?

Study could be done on the impact of temporal instabilities to other cases; for

example, optical vortex solitons [30]. One may examine directed energy beam appli-

cations, which may not use such small waists and such high intensity fields, following
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the example of the case of Raman instability [33]. For such atmospheric applications,

the seeding of modulational instability from scattering or turbulence may be impor-

tant. Finally, a comparison with experiment is needed for the 3D stability results;

long UV pulses in the hundreds of picoseconds need to be generated in the laboratory.

Then a comparison between prediction and experiment can be made for the fluence

profiles, and propagation distances.
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APPENDIX A

COMMENT ON UNITS

The problem of multiple systems of units must be addressed. In this dissertation,

we use MKS units; a thorough discussion of how quantities in nonlinear optics relate

in MKS and CGS (Gaussian) units can be found in Boyd [1, 34]. The convention for

the nonlinear index terms can be bewildering; Marburger [34] lists twelve different

conventions for the index change term n2|E|2. To avoid unnecessary confusion, this

Appendix provides some additional clarifications to the units used in this dissertation

and how they relate to those used in the paper by Schwarz and Diels [17]. We use

many of the parameters from their paper in our numerical simulations.

In section IV.B of Schwarz and Diels [17], the authors convert the evolution equa-

tion for the beam width from using amplitude units to intensity and then power

units, to write the results conveniently in terms of the critical power. To do this, they

convert χ(4) to n̄3 and finally the plasma absorption coefficient β4. The equations

they obtain are correct, but there is an error in the assertion below equation (10) in

their paper, which states that nm−1 = ε0cn0n̄m−1/2 is the relationship between the

amplitude and intensity refractive indices. The correct relation can be derived from

the following: The index of refraction of air is expanded in terms of intensity as

n = n0 + n̄2I + n̄3I
1.5. (A.1)
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Keeping this form in mind, expand the susceptibility in terms of amplitude:

n2 = 1 + χ (A.2a)

= 1 + χ(1) + χ(3)|E|2 + χ(4)|E|3 (A.2b)

= n2
0 + χ(3)|E|2 + χ(4)|E|3 (A.2c)

= n2
0

(
1 +

χ(3)|E|2

n2
0

+
χ(4)|E|3

n2
0

)
. (A.2d)

Thus, for small nonlinearities,

n ≈ n0

(
1 +

χ(3)|E|2

2n2
0

+
χ(4)|E|3

2n2
0

)
(A.3a)

= n0 +
χ(3)|E|2

2n0

+
χ(4)|E|3

2n0

(A.3b)

= n0 + n2|E|2 + n3|E|3. (A.3c)

where, by equation (10) of Schwarz and Diels [17], χ(m) = 2n0n(m−1) defines nm−1.

Next use the relationship between intensity and field amplitude:

I =
n0ε0c

2
|E|2 (A.4)

to write

n ≈ n0 +
2

ε0cn0

n2I +

(
2

ε0cn0

)1.5

n3I
1.5. (A.5)
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By comparing this with Equation (A.1), we find

n2 =
ε0cn0

2
n̄2, (A.6)

n3 =
(ε0cn0

2

)1.5

n̄3, (A.7)

nm =
(ε0cn0

2

)m/2

n̄m. (A.8)

This differs from the assertion below Equation (10) in Schwarz and Diels [17] by

the addition of the exponent on the prefactor, which depends on the order of the

nonlinearity.

To simplify computations, one can use either intensity or field units for the quan-

tities E , n2, n3, . . . , and χ(3), χ(4), . . . , as long as the units are consistent. Intensity

units for E are defined such that |E|2 is the intensity. Thus n2|E|2 represents the same

unitless quantity as long as both factors are measured consistently in intensity or field

units.

Note that under strict radiometric convention, the quantity with the units W/m2

is denoted irradiance, while intensity is reserved for the quantity measured in W/sr.

However, many authors in this field use intensity for W/m2, so we will do the same.

Schwarz and Diels [17] use the notation n̄2 for the nonlinear self-focusing index

in intensity units, and n2 for the same quantity in field units. For simplicity, in the

body of this dissertation, we use only intensity units, and use n2, n3, . . . to denote

the self-focusing index and higher order indices in these units.

Next consider the equation for the nonlinear attenuation of the beam. Equa-
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tion (17) in the Schwarz-Diels paper [17] gives this as

dI

dz
= −3~ωN0σ

(3)I3 +
1

l
n̄3I

1.5 − 2I0
w2

0

w(z)4

d(w2)

dz
. (A.9)

Here I is the on-axis intensity, ~ω is the energy per photon, N0 is the density of

oxygen, σ(3) is the three-photon absorption cross section, n̄3 is the plasma nonlinear

index in intensity units, l is the mean free path length of the electrons in the plasma,

I0 is the initial intensity, and w0 and w are the initial and evolving beam width.

There are a few corrections that need to made to this equation. In the first term,

which describes MPI loss, the units of σ(3) are listed incorrectly in Table I of their

paper; the correct units are m6s2/J3. These correct units are used in section II.B of

the paper.

The second term describes plasma absorption, but the intensity I should be raised

to the power 2.5. This makes it agree with equation (16) of the paper, which states

that the coefficient for plasma absorption scales as I1.5. The units of n̄3 are also listed

incorrectly in the table; they are m3/W3/2.

The third term represents the change in intensity due to the change in beam

width. It is apparently obtained by differentiating I(z) = (w2
0/w

2)I0, but there is a

factor of two present in the equation in the paper that should not be there. Thus the

correct equation should read

dI

dz
= −3~ωN0σ

(3)I3 +
1

l
n̄3I

2.5 − I0
w2

0

w(z)4

d(w2)

dz
. (A.10)
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Next, they convert the equation for the on-axis intensity to an equation for the

attenuation of the beam power, using the relation that for a Gaussian beam with

I(r, z) = I(z) exp(−2r2/w2) the power is P = πw2I0/2. The result is

1

P

dP

dz
= −β3

1

w4
P 2 − β4

1

w3
P 3/2, (A.11)

where

β3 =

(
2

π

)2

3~ωN0σ
(3) =

(
2

π

)2

βMPI and β4 = −
(

2

π

)3/2
n̄3

l
(A.12)

are respectively called the three-photon power attenuation coefficient and the non-

linear plasma absorption coefficient [17]. This result can be derived from Equa-

tion (A.10), so the errors in Equation (A.9) do not affect the results in the remainder

of their paper, other than requiring some corrections to the units in Table I of their

paper. Table A.1 summarizes these corrections to the units.

Table A.1: Corrections to units in Schwarz-Diels paper

Description Name Corrected Units

Plasma nonlinear index (intensity) n̄3 m3/W3/2

Three-photon absorption cross section σ(3) m6s2/J3

Plasma nonlinear absorption (intensity) βMPI m3/W2

Plasma nonlinear absorption (power) β4 m2/W3/2

Three-photon absorption (power) β3 m3/W2
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APPENDIX B

SPLIT-OPERATOR METHOD

B.1 Split-Operator Propagation

For all three grid types that are considered in this dissertation, we use the split-

operator method to propagate the fields. In the split-operator propagation scheme, we

define the propagator as a combination of a linear diffraction piece T̂ , and a nonlinear

index change piece V̂ . Let

∂E
∂z

= iT̂E + iV̂ E , (B.1)

where for the example of single 2D field propagation,

T̂ =
∇2
⊥

2k0

(B.2)

V̂ = k0n2|E|2 + k0n3|E|3 + k0n4|E|4 −
β(K)

2
|E|2K−2 − σ

2
(1 + iωτ)ρ. (B.3)

Note that T̂ will be diagonal in the spectral (k) representation, while V̂ is diagonal

in the spatial (x) representation for E , and V̂ acts as a changing potential. The

split-operator method represents the incremental step propagator exp[i(T̂ + V̂ )∆z] as

exp

(
i
T̂∆z

2

)
exp

(
iV̂ ∆z

)
exp

(
i
T̂∆z

2

)
+O(∆z3). (B.4)
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For the T̂ piece, we use the spectral representation:

exp(i
T̂∆z

2
)E(kx, ky) = exp(i(−k2

⊥/4k0)∆z)E(kx, ky). (B.5)

Fourier transform E to the k representation before multiplying it by the exponential

exp(−ik2
⊥∆z/4k0). This exponential factor can be precomputed for each point on the

k grid, that is, each value of k⊥. Thus the application of the two linear diffraction half-

steps is reduced to applying an FFT to get to the spectral representation, multiplying

the array by the precomputed linear propagator array, and inverse FFT to return to

the spatial representation.

The exponential with V̂ , the nonlinear response, is applied in the spatial repre-

sentation:

exp(iV̂ ∆z)E(x, y) = exp(iV (|E|2)∆z)E(x, y). (B.6)

First we compute the value of V (|E|2), using the value of E at the previous z step,

then compute the exponential factor, and multiply the field in real space by this piece

of the propagator. The computation of V can be simple if it only involves n2 and

n3, or complicated if a more complete model is used where the plasma density ρ is

needed.

In the code, the field is initially defined in the spatial representation. An initial

FFT step is performed to transform to the spectral representation before entering

the main loop. The main loop consists of applying half the linear propagator, trans-

forming back to x space, applying the nonlinear response, transforming to k space,

and applying the second half of the linear propagator. The two halves of the linear
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propagation step can be combined in a practical code, but for rigorous accuracy one

must keep track of where one is in the propagation and make sure for the final step

that the full propagator is completed.

The initial field is defined over a space grid of Nx by Ny points with uniform grid

spacing ∆x and ∆y. The space grid is defined so that the point with space coordinates

(x = 0, y = 0) is stored at location (Nx/2, Ny/2) in memory. For optimal FFT speed

Nx and Ny are chosen as powers of 2. This spatial grid defines a spectral (k-space)

grid where ∆kx = 2π/(Nx∆x) and similarly for ∆ky. The maximum value of kx is

given roughly by π/∆x. Recall that the common convention for FFT storage is to

locate the point (kx = 0, ky = 0) as the first element in the FFT array, and that the

array wraps around near the Nyquist frequency [61].

B.2 Numerical Issues

When using the split-operator spectral method, one must choose the numerical

grid sizes wisely. Both the spatial and spectral grids must contain adequate resolution

and extent to represent the full field. If the field begins to collapse to scales that are

too small spatially, the spectral representation will flow off the spectral grid boundary.

The interactive graphical implementation used in our code significantly aids the user

in avoiding bad choices of grid parameters.

For split-operator propagation, there are approximate relationships between the

propagation step size and the grid sizes to ensure accuracy in the method. This can

be seen by considering the linear diffraction piece of the split-operator formula in



128

Equation (B.4). The individual portions of the split exponential should be small, and

thus the arguments of the exponential phase factors should be smaller than unity,

if the approximation is to be good. Except in the case of extreme self-focusing, the

T̂ term is usually larger than the V̂ term. For our UV propagation example, take

self-focusing only to get an upper limit; the value of V̂ on axis is

V̂ = k0n2|E|2 ≈ 60 m−1. (B.1)

The maximum absolute value of T̂ for a given grid is given, in the spectral represen-

tation, by

|T̂ | = k2
max

2k0

=
(π/∆x)2

2k0

, (B.2)

which gives roughly 3000 m−1 for 248 nm and ∆x = 8 µm. The maximum argument

in the exponential is then

|T̂ |∆z

2
=

π2∆z

4k0∆x2
. (B.3)

Setting this to be less than unity gives

∆z .
4k0

π2
∆x2 (B.4)

as the condition for ∆z. For ∆x = 8 µm (see Table 5.1), we find that ∆z . 0.66

mm is the condition, which is just satisfied by our choice of ∆z = 0.5 mm. If this

condition is not well satisfied, artificial numerical instabilities can arise. However, if in

practice the spectral representation of the field does not sample the outer edges of the
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spectral grid, one can effectively use a larger propagation step. But when studying

stability, noise on the entire grid becomes important. This was observed in the case

of propagating the coupled perturbation fields for Ω = 0; if the value for ∆z was too

large, unstable artificial numerical growth occurred. A more sophisticated study of

the split-operator beam propagation method for the case of a fixed potential term V̂

was done by Thylén, who also found that the condition on the step size ∆z could be

relaxed in practice [62].
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