

RVis: The RIVA/MUVES Prototype Visualization Tool

by Jason L. Owens and Lee A. Butler

ARL-TN-223 August 2004

Approved for public release; distribution is unlimited.

ARMY RESEARCH LABORATORY

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5068

ARL-TN-223 August 2004

RVis: The RIVA/MUVES Prototype Visualization Tool

Jason L. Owens and Lee A. Butler
Survivability/Lethality Analysis Directorate, ARL

Approved for public release; distribution is unlimited.

 ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

August 2004
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

August 2003–December 2003
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

RVis: The RIVA/MUVES Prototype Visualization Tool

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

1L162618AH80
5e. TASK NUMBER

6. AUTHOR(S)

Jason L. Owens and Lee A. Butler

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRD-ARL-SL-BE
Aberdeen Proving Ground, MD 21005-5068

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TN-223

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

RVis was created to prototype a visualization tool for the vulnerability analyst community and to provide a starting point for
discussion on the uses and design of such a tool in the Real-Time Interactive Vulnerability Analyzer (RIVA)/Modular UNIX-
based Vulnerability Estimation Suite (MUVES). This document describes the initial requirements, design, and technical aspects
of the version that was demonstrated to a segment of the community in December 2003.

15. SUBJECT TERMS

visualization, MUVES, 3-D modeling, intermediate results, Cocoa

16. SECURITY CLASSIFICATION OF:
19a. NAME OF RESPONSIBLE PERSON
Jason L. Owens

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

17. LIMITATION
OF ABSTRACT

UL

18. NUMBER
OF PAGES

 22 19b. TELEPHONE NUMBER (Include area code)

410-278-6736
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

 iii

Contents

List of Figures iv

List of Tables iv

1. Project Background 1
1.1 Motive for Work..1

1.2 Choice of Development Environment...2

2. Initial Requirements 2

3. Design Description 3
3.1 Architecture Overview and Programming Tasks ..3

3.1.1 Results File Parsing ...3
3.1.2 Component Display...4
3.1.3 Interface Construction ...5

3.2 Functional Requirement Satisfaction ..5
3.2.1 Full Window Display ..5
3.2.2 Firing Point Detail ...6
3.2.3 TriView Manipulations ...7

3.3 Nonfunctional Requirement Support...7
3.3.1 Real-Time Manipulations With Feedback ..7
3.3.2 Results Accessibility ...8
3.3.3 Display Density ...9
3.3.4 Ease of Use..9

4. Initial Demonstration 10
4.1 Additional Feature Requests ...10

4.2 Current Analysis Process Concerns ..11

5. Future Work 11

Distribution List 13

 iv

List of Figures

Figure 1. A sample cell plot..1
Figure 2. Collaboration overview. ..4
Figure 3. Full window display. ...5
Figure 4. Firing point detail in 2-D and 3-D...6
Figure 5. Firing point overlay in 2-D..7
Figure 6. Shotline detail. ...8
Figure 7. Full window display with view options...9

List of Tables

Table 1. Functional and nonfunctional requirements. ..3

 1

1. Project Background

In August 2003, members of the Advanced Computer Systems Team of the U.S. Army Research
Laboratory’s Survivability/Lethality Analysis Directorate (SLAD) were tasked to continue
earlier work to better visualize results from the Modular UNIX*-based Vulnerability Estimation
Suite (MUVES). This work was produced using the Tool Command Language and the
Visualization ToolKit (VTK). The objective for this effort was to develop a useful prototype in
a rapid, iterative, and incremental manner. In addition, after prototyping was complete, a
dialogue with the target user community and further visualization efforts could be initiated.

1.1 Motive for Work
The current state-of-the-art for visualizing MUVES results files is two-dimensional (2-D) cell
plots. The cell plots represent color-coded values from a specific state vector,† from binary
values of hit or no-hit, to real-valued probabilities of kill. A cell plot directly corresponds to the
results of a view and its corresponding aim points and firing points. Thus, a view at 0° azimuth,
0° elevation would be looking straight on at the front of most models (see figure 1), and the cell
plot for a full analysis would look like the profile at that orientation. On the other hand, a side-
on view (90º, 0º) would produce a larger profile.

Figure 1. A sample cell plot.

Unfortunately, the current analysis runs in three dimensions (3-D) and operates on highly
detailed computer models of a target, whereas the visualization tools are in 2-D. This means that
the current tools (1) immediately throw away a large portion of the data and (2) reduce the
efficiency in which one can recognize and process information. Thus, a natural question presents
itself: “What can we show in 3-D?”

* UNIX is a registered trademark of The Open Group.
† A state vector contains a mapping of MUVES components to values for a particular aspect of interest (e.g., hit, probability

of kill, or loss of function for a particular firing point and its resulting trace path). Analyses typically contain multiple state
vectors containing specific “critical” components.

Residual Penetration
inside internal volume

 0 900 mm

RcHidujil pi-noinuion
insiUi: intiimd volume

QOUni

 2

1.2 Choice of Development Environment

To support the “rapid” portion of the previously stated project objective, Apple’s advanced
object-oriented (OO) framework, Cocoa, was chosen as the development environment for the
work (see http://developer.apple.com/cocoa [Apple Computer1]). Although other platforms were
initially considered for the task, there were several reasons for this choice. First, Cocoa is
arguably the fastest way to build powerful graphics-based applications. It is mature and
well-supported (having been born as NeXTSTEP), and it runs on the U.S. Army Research
Laboratory’s (ARL’s) fastest desktops, the PowerMac dual G5s. In addition, although Cocoa is
not platform-independent and uses a not-so-widely-employed (albeit powerful) language called
Objective-C, these limitations could also be considered strengths, depending on one’s point of
view. Finally, porting a well-designed application from one environment to another is
considered to be a small task relative to the original coding time, and refactoring while porting is
a useful technique for improving the code design efficiently.

Nonetheless, the authors believe that the next development environment should be totally cross-
platform and provide sufficient capability to develop user interfaces. Unfortunately, there are
not many environments that currently fall into this category. Trolltech’s QT and Sun’s Java are
the closest matches, and each has its own pros and cons (see http://www.trolltech.com
/products/qt/index.html [Trolltech AS2] and http://java.sun.com [Sun Microsystems3]).

2. Initial Requirements

Because the project began with the high-level goal of rapidly developing a usable prototype,
requirements were discussed only until both parties agreed on the initial features. Each
“iteration” of development was used to further clarify requirements, discuss new features, and
address any issues arising during development. Although this type of approach results in
relatively informal requirements, it also results in a product that better represents actual desired
features (as compared to approaches with a more formal requirements process). In addition, it
helps avoid the all-too-typical situation in which a user community has difficulty imagining and
identifying specific requirements and features (e.g., in the graphical user interface) for a tool that
does not yet exist.

Table 1 summarizes the functional and nonfunctional factors that ultimately drove RVis design
and development decisions.

1 Apple Computer. Cocoa. http://developer.apple.com/cocoa (accessed 15 April 2004).
2 Trolltech AS. Qt Overview. http://www.trolltech.com /products/qt/index.html (accessed 15 April 2004).
3 Sun Microsystems. Java Technology. http://java.sun.com (accessed 15 April 2004).

 3

Table 1. Functional and nonfunctional requirements.

Requirement
Type

Requirement
No.

Requirement

1a Render target in shaded real-time 3-D view.
1b Process and display MUVES intermediate and final results files (since each

file provides information the other does not).
1c Display state vectors for selection.
1d Display view data (firing points) in 2-D and 3-D.
1e Display the shotline traces in the 3-D view.
1f Display color-coded component interactions for a particular shotline and

state vector selection (e.g., “Critical Component PKs”).

Functional

1g Provide view manipulation capabilities, including camera orientation and
component visibility/translucency.

2a Make all manipulations as real-time as possible and provide feedback when
necessary.

2b Make all results accessible from within the program itself (i.e., no need to
look in the actual files).

2c Present a maximum amount of data without overloading the display.

Nonfunctional

2d Make the tool easy to learn and use.

3. Design Description

3.1 Architecture Overview and Programming Tasks

Figure 2 provides an overall picture of the RVis’ internal components and collaboration. The
code and programming tasks for the project were divided into three basic areas: (1) results file
parsing, (2) component display, and (3) actual interface construction (including the OpenGL
widget integration). These areas and the enhancement summaries are discussed in the next
subsections.

3.1.1 Results File Parsing

Results file parsing was perhaps the most time-consuming development task in the project.
Because files can be fairly large (100–500 MB) for average analyses, RVis initially scans and
indexes both files simultaneously and stores the index for future use. This means faster
application start-up and overall quicker response times while operating the tool. The most
difficult part of this task came in understanding the MUVES file formats because documentation
was quite minimal and the existing parsing routines were not suitable for this task. In addition to
parsing and indexing, RVis processes the data as needed at runtime into an appropriate
hierarchical data structure, for both browsing and facilitating shotline analysis.

 4

Results Index

Geometry
Manager

Region Manager

RVis Document

Data Views

TriView

Results
Hierarchy

Results Index

Results Index Results Index

Results Index

Loading Results &
Displaying Components

View / Explore
Analysis

generated by - saved to

manages/m
anipulates

Indexes Results Files,
generates roots for
Results Hierarchy

Reads / Parse
geometry or VTK files
to build components

Parses region
and organizes

geometry

Orchestrates all
interaction to

generate Results
Hierarchy

Handle event/
requests from
user interaction

Includes hierarchy view,
properties view, and the

component listing

Display 3D
geometry /

accept input
from user

Display results hierarchy, node
properties, component list, and
allow user to interact with the

data

Provides
all data
from
analysis

Figure 2. Collaboration overview.

3.1.2 Component Display

Component display was a slightly easier task, and RVis actually supports two kinds of input: (1)
native BRL-CAD geometry files and (2) preparsed VTK-format polygon files. In practice, one
should rarely use the first type because processing the U.S. Army Ballistic Research Laboratory-
Computer-Aided Design (BRL-CAD*) geometry into polygonal surfaces is quite time-
consuming (on the order of several hours, depending on complexity). However, two additional
command-line tools that perform two separate tasks are included. The first, bot_db, can output
VTK files for each region in a BRL-CAD model. The second, vtk_rv, can process those
individual VTK files (along with an appropriate region_map file) into binary RVis components.

* BRL-CAD is a registered trademark of ARL.

 5

RVis components can be read directly by the tool for quick model loading and contain additional
settings and data for use by the tool itself (e.g., object color, shell part, opacity, etc.).

3.1.3 Interface Construction

Although the current OpenGL widget, called TriView, was already partially developed before
the project began, it was enhanced to support some of the requirements. The newly included
features are trackball, field-of-view (zoom), and pan, as well as other technical capabilities, such
as supporting alternate geometries for live window resize and quasimodes (key-press/mouse
movement combinations). Other important widgets used throughout the interface are trees and
tables, which are requisite for the display of complex hierarchical and detailed data.

3.2 Functional Requirement Satisfaction

The following “graphical” explanation illustrates several views of the RVis tool and provides a
brief description of how each of the functional requirements enumerated in table 1 was satisfied.

3.2.1 Full Window Display

Figure 3 illustrates a standard view of the application execution. The main view on the right
satisfies the requirement to render a target in shaded real-time 3-D view (requirement 1a in
table 1). The two panels on the left of the main window satisfy the requirements to process and
display MUVES intermediate and final results files (requirement 1b in table 1) and to display
state vectors for selection (requirement 1c in table 1), respectively.

Figure 3. Full window display.

ooo i_^ fvii.rvproj

s,r-bo[il*_iii _
HE_nE lUl
C£_M(a 1
j.r.brinlP4 a
ILmitnjiiHnl

lR_dei[»}c1iH
a
a

jir.fttttr D
It_ti9hi.bdie a

a
ufiplidynf □ ™,„,. n

tiJ^e.pipf
a
D

bilgp.pump a
br««h D
».!,.,. O
AlUh D
cndr_luldi a
cmdr.luldijh

cnidr_p»nuDC

cmdr.uuchlx

cmdr.teirchlic

B
D
D
a
D
B

cou.fiHhn.gi

ciMnm^fMlfi

D
D
B
B

mv'it inditit n
^ Render Shell Campanenis

UielJ Opujiy

i-i

^ Hinder Internal Componeiiq

nmmiJOpMiiv

• o

Typ*

LDf

taltVrdv

DAL_kll4

LOI HfUduat^fn

LOI ^hfeiI^f^ed

Pt en*j nupu mnn

H {riiical cumpcn^ni pk^

HIT CNiical cumponfm hiii

Hii CNI4C1I fUMnponfm nuin hiU

HIE cnijful comporifni &[ull hiU

UM cniiul iHMiipaiHni kilt

HMH nkir 1

T*- 1
■_■

V^PiPoinl |1|lauOan4-7Qa.dUOQa.l

u IIIJouDon 4-113^.372040

» &Ampl(_i4:fn SCH

umpl«_i» sew

«d[npl«_ic| «J

^ Lanipl«_iC| VJ

Shoi Anyy&ti 1

! \ ^ Filing rmffl miauaan 1-1069 A6i Hi 1

1 ! ^ Ftnng FUJIH \i\lfKjaon l-iaiJ-t7ii'}l

1 1 ^ t-ifing foiK \4\lfKjnon l-iQi-Hii^^.

1 ! ^ Ftnng Fn^nr \i\laaaan l-im.^O\bi

! 1 ^ Filing rmffl |6|laulian 4-S6l.lA?414„

1 ! ^ Ftnng FQIM |7|lauUDnMl4.S&7iai,'

f « ^ Ftfing FiiJiH |A|launDnM7S-6t4Dll>,'

f 1 ^ Fifing ffi'M |9|laulian J-l?7M6q7fi7

1 < ^ Fmng Fiiiffl |lO]lM:dnan1-?41.93^AI0

1 1 »-tf «w iz a t\ 0 ^11 *-i. OMOoa 0'

1 1 »1^ iz60rlO drf 4-d.tOOaOD -

 6

3.2.2 Firing Point Detail

Figure 4 shows a detail of the main window and 2-D firing point display when a view has been
selected from the results hierarchy. This capability satisfies the requirement to display view data
(firing points) in 2-D and 3-D (requirement 1d in table 1). Note that the floating window in the
upper left corner displays a transparent 2-D view of the firing points in proper orientation, while
the 3-D view also displays firing point indicators relative to the actual target model. The
coloring is based on the well-tested “heated body” color scale. This scale is similar to modified
blackbody radiation and increases linearly in saturation, brightness, and hue. This functionality
gives the viewer a better chance to distinguish between similar values, especially in a shaded 3-D
environment.

Figure 4. Firing point detail in 2-D and 3-D.

Figure 5 shows another view of the 2-D firing point display. This time, the display has been
enlarged and made fully opaque for the purpose of selecting a firing point of interest. Figure 6
shows a close-up of the model display including the shotlines rendered for a particular firing
point. Notice that the components interacting with a shot trace are colored according to the value
assigned to them in the state vector. This functionality satisfies the requirements to display the
shotline traces in the 3-D view (requirement 1e in table 1) and to display the color-coded
component interactions for a particular shotline and state vector selection (requirement 1f in
table 1).

 7

Figure 5. Firing point overlay in 2-D.

3.2.3 TriView Manipulations

Figure 7 shows the satisfaction of the final functional requirement—to provide view
manipulation capabilities, including camera orientation and component visibility/translucency
(requirement 1g in table 1). The view manipulation modes are presented in a context-sensitive
pop-up menu available with the right button. Future versions of RVIs are planned to include the
ability to use keypresses to trigger a temporary manipulation mode, while still maintaining a
user-selected default mode.

3.3 Nonfunctional Requirement Support

Unlike the functional requirements, the stated nonfunctional requirements are difficult to
quantify without at least minimal user testing (for which RVis is not yet ready) and thus cannot
be directly satisfied (or illustrated) by a particular feature implementation. However, the
following subsections summarize the RVis design/development choices that were made in order
to support the intent of the nonfunctional requirements.

3.3.1 Real-Time Manipulations With Feedback

In support of the requirement to make all manipulations as real-time as possible and to provide
feedback when necessary (requirement 2a in table 1), users are now enabled to choose their own
“shell” representation of a target (i.e., picking only those external elements they would like to see

 8

Figure 6. Shotline detail.

to maintain orientation). This capability reduces the overall amount of geometry that is required
to be rendered each frame. In addition, “quick object” rendering is provided by the TriView
widget, which allows the programmer to specify simplified geometry for rendering during a live
resize. Some processing is also performed in multiple threads in order to take advantage of
multiple processor systems and to prevent the interface from feeling sluggish. (Note that
section 5 of this document discusses possibilities for future development of this feature.)

3.3.2 Results Accessibility

The current results hierarchy, in tandem with the properties drawer, textually satisfies the
requirement to make all results accessible from within the program itself (requirement 2b in
table 1). However, some details are not yet represented in graphical form, but they may not need
to be so. More user feedback will be necessary to determine any additions.

 9

Figure 7. Full window display with view options.

3.3.3 Display Density

In support of the requirement to present a maximum amount of data without overloading the
display (requirement 2c in table 1), the 3-D view of the target and shotlines already compresses
the amount of data one can digest into a manageable space (it’s virtually impossible to visualize
those relationships in one’s head just by reading the files). However, other efforts have been
made in the “only display what’s needed” approach. The option to display properties only when
they are relevant (by use of the Cocoa “drawer” component) minimizes extraneous display; the
use of an omnipresent floating 2-D firing point display enables the analyst to quickly select firing
points of interest and provides a visualization tool similar to the cell plots.

3.3.4 Ease of Use

In support of the final nonfunctional requirement to make the tool easy to learn and use
(requirement 2d in table 1), most key commands use easy-to-remember mnemonics (such as
pressing the “f” key to activate the firing point selection window). However, more work may
need to be done in this area because building the visualization projects themselves are difficult,
and not all options in the interface are readily apparent (e.g., the context-sensitive view menu).

 10

4. Initial Demonstration

In December 2003, the RVis prototype was demonstrated to a small group of vulnerability
analysts and other SLAD personnel. The demonstration served primarily to introduce the new
visualization concept to those who may not have been aware of its existence. It also proved to be
a good starting point for feedback on what other features may be needed to make the tool useful.

Because RVis represented a significant change from the classic business process, it would not
have been unusual for demonstration attendees to initially view the prototype with a degree of
caution. However, after some initial discussion about certain implementation choices (e.g., the
heated body coloring scale vs. the traditional rainbow scale), attendees generally seemed
impressed with the tool’s features.

Discussions during the meeting centered around the functionality of existing features, requests
for additional features to enhance the tool's utility, and concerns about the current state of the
analysis process. The next subsections summarize the latter two topics.

4.1 Additional Feature Requests

The following additional tool capabilities were requested during the demonstration.

• Handle averaging multiple firing point iterations, possibly over multiple runs, and provide
the capability to toggle between options.

• Provide for some visualization of air interaction. The system currently recognizes air but is
not drawing the geometry.

• Toggle spall visibility (in order to view main penetrator without clutter).

• Provide the ability to assign colors to various trace types (e.g., mass/velocity spall fragment
[MVSF] or casing fragments).

• Toggle trace contributions to a selected or group of selected components (i.e., show only
those traces that contribute to a component’s state) and toggle intermediate component
interaction visibility.

• Display a list of objects along a selected shotline.

• Generate screenshots for any particular view.

• Generate a movie. More user consultation would be needed to determine exactly how to
generate this movie (i.e., would it be just a recording of user actions or a flight along the
shotline?).

 11

• Provide a shotline radius setting. In addition, it may be useful to generate a shotline radius
based on penetrator/fragment volume.

• Provide color scale legends for any colored data.

4.2 Current Analysis Process Concerns

The following items were proposed during the meeting as being areas of concern about the
current analysis process.

• Selecting the generation of intermediate results (IR) files that RVis uses causes a
substantial increase in the runtime of the MUVES process.

• IR files are quite large.

Although these concerns are valid and should be considered in any future development work,
they may actually stem more from current MUVES configuration and hardware issues than from
the RVis implementation itself. For example, with regard to the slow runtime, the authors
postulate (but have not confirmed) that a significant amount of overhead is being spent
converting the data from binary to text prior to output. Another possibility is that MUVES is not
using buffered input/output. Also, with regard to large file sizes, some users’ definition of
“large” seems to relate more to the use of relatively small disk drives for MUVES runs and the
amount of text they are willing to look at in a text editor.

Thus, possible resolutions to these issues include (1) upgrading to more modern disk drives that
can better handle today’s larger files, (2) using an outboard process to get idle processors (at
least in multiprocessor machines) to compress the files and reduce runtime, and (3) producing a
binary version of the output file to avoid the overhead of converting the data to ASCII (with
appropriate postprocessing tools for effective examination of this data).

5. Future Work

Because RVis is a prototype (albeit a useful one), there is still much work to be done to make it a
full-fledged application. Besides the previously mentioned additional features that were
requested during the demonstration, there are some fundamental items still missing. The
following list highlights some of the areas identified for future enhancement and the estimated
task priority.

• Portability of RVis. Because RVis was built as a prototype, it may need to be ported to a
different language or application programming interface. Any major future development
on this tool will naturally take into consideration multiplatform portability as well as
interactions with future software, such as the RIVA/MUVES3 platform (high priority).

 12

• “Project Wizard” Capability. Currently, a project (the term used to describe all the files
needed to run a visualization session) must be cobbled together by hand; manually building
the directory structure and copying or generating the right files are time consuming and
error prone. A script or external program, which would run in the background and perform
all necessary tasks, could be created to make this process easier (low priority).

• Threaded Data Accesses to the Results Index. All data accesses to the results index must
be threaded. This should be done to ensure the user does not lose control of the
application, especially if there has already been interaction with the view. As analyses get
bigger, the index will take longer to load for any given firing point. In addition, loading
processes should be evidenced with appropriate feedback (e.g., a spinning beach ball or
progress bars) (medium priority).

• More View Manipulation Functions. “Snap-to” functions are needed to center the view
on areas of interest, thereby saving the user time in configuring the view for common
elements, such as penetrator entry point, spall origination points, or even framing
individual components (low priority).

• Built-In Simple Help or Tutorial Documentation. The help system could be as
straightforward as launching an HTML page or providing embedded tips with a key press
over an item of interest (medium priority).

• Enhanced TriView. TriView (the OpenGL widget) began as a simple extended Cocoa
component to quickly display geometry, but it was developed without clear design goals.
A reworked version with better design would prove more useful and reusable than the
current object. The main goal would be to provide a very thin platform-dependent
OpenGL view that relied on a platform-independent, scene-based object model. Not only
would it enforce OO paradigms, but it would also promote code portability (medium
priority).

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 13

 1 DEFENSE TECHNICAL
 (PDF INFORMATION CTR
 Only) DTIC OCA
 8725 JOHN J KINGMAN RD
 STE 0944
 FT BELVOIR VA 22060-6218

 1 COMMANDING GENERAL
 US ARMY MATERIEL CMD
 AMCRDA TF
 5001 EISENHOWER AVE
 ALEXANDRIA VA 22333-0001

 1 INST FOR ADVNCD TCHNLGY
 THE UNIV OF TEXAS
 AT AUSTIN
 3925 W BRAKER LN STE 400
 AUSTIN TX 78759-5316

 1 US MILITARY ACADEMY
 MATH SCI CTR EXCELLENCE
 MADN MATH
 THAYER HALL
 WEST POINT NY 10996-1786

 1 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CS IS R
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CI OK TL
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CS IS T
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

 1 DIR USARL
 AMSRD ARL CI OK TP (BLDG 4600)

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 14

 1 OASD C3I
 J BUCHHEISTER
 RM 3D174
 6000 DEFENSE PENTAGON
 WASHINGTON DC 20301-6000

 1 OUSD(AT)/S&T AIR WARFARE
 R MUTZELBURG
 RM 3E139
 3090 DEFENSE PENTAGON
 WASHINGTON DC 20301-3090

 1 OUSD(AT)/S&T LAND WARFARE
 A VIILU
 RM 3B1060
 3090 DEFENSE PENTAGON
 WASHINGTON DC 20310-3090

 1 UNDER SECY OF THE ARMY
 DUSA OR
 RM 2E660
 102 ARMY PENTAGON
 WASHINGTON DC 20310-0102

 1 ASST SECY ARMY
 ACQSTN LOGISTICS & TECH
 SAAL ZP RM 2E661
 103 ARMY PENTAGON
 WASHINGTON DC 20310-0103

 1 ASST SECY ARMY
 ACQSTN LOGISTICS & TECH
 SAAL ZS RM 3E448
 103 ARMY PENTAGON
 WASHINGTON DC 20310-0103

 1 DIRECTOR FORCE DEV
 DAPR FDZ
 RM 3A522
 460 ARMY PENTAGON
 WASHINGTON DC 20310-0460

 1 US ARMY TRADOC ANL CTR
 ATRC W
 A KEINTZ
 WSMR NM 88002-5502

 1 USARL
 AMSRD ARL SL M
 J PALOMO
 WSMR NM 88002-5513

 1 USARL
 AMSRD ARL SL EA
 R FLORES
 WSMR NM 88002-5513

 1 USARL
 AMSRD ARL SL EI
 J NOWAK
 FT MONMOUTH NJ 07703-5601

ABERDEEN PROVING GROUND

 1 US ARMY DEV TEST COM
 CSTE DTC TT T
 APG MD 21005-5055

 1 US ARMY EVALUATION CTR
 CSTE AEC SVE
 R BOWEN
 4120 SUSQUEHANNA AVE
 APG MD 21005-3013

 1 US ARMY EVALUATION CTR
 CSTE AEC SVE S
 R POLIMADEI
 4120 SUSQUEHANNA AVE
 APG MD 21005-3013

 1 US ARMY EVALUATION CTR
 CSTE AEC SV L
 R LAUGHMAN
 4120 SUSQUEHANNA AVE
 APG MD 21005-3013

 13 DIR USARL
 AMSRD ARL SL
 J BEILFUSS
 P DEITZ
 AMSRD ARL SL B
 J FRANZ
 M PERRY
 P TANENBAUM
 AMSRD ARL SL BB
 D BELY
 D FARENWALD
 S JUARASCIO
 M RITONDO
 AMSRD ARL SL BD
 R GROTE

NO. OF
COPIES ORGANIZATION

 15

 AMSRD ARL SL BE
 L ROACH
 AMSRD ARL SL E
 M STARKS
 AMSRD ARL SL EC
 J FEENEY
 E PANUSKA

NO. OF
COPIES ORGANIZATION

 16

 1 NAWC
 WEAPONS DIV
 CODE 418300D A WEARNER
 BLDG 91073
 1 ADMINISTRATION CIR
 CHINA LAKE CA 93555-6100

 1 USAF ARMAMENT CTR
 AAC/ENMA
 D MCCOWN
 101 W EGLIN BLVD
 EGLIN AFB FL 32542-5549

 1 USAF
 46 OG OGMLV
 B THORN
 104 CHEROKEE AVE
 EGLIN AFB FL 32542-5600

 1 USAF WRIGHT LAB
 46TH OG OGM AL AC
 M LENTZ
 2700 D ST BLDG 22B
 WRIGHT PATTERSON AFB OH
 45433-7605

ABERDEEN PROVING GROUND

 2 DIR USARL
 AMSRD ARL SL
 C HARDIN
 AMSRD ARL SL E
 D BAYLOR

