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1

SUMMARY REPORT ON A SEAMAP-C CHIRP DECONVOLUTION ALGORITHM
WITH DEMONSTRATIONS USING SYNTHETIC AND FIELD DATA

BACKGROUND

Side-scan sonar systems were first developed years ago to image seafloor geological features. The Uni-
versity of Hawaii developed the ability to also measure bathymetry with their SeaMarc side-scan system 
by using two rows of transducers on each side and measuring the angle of the reflected return. Since these 
early systems, there have been many side-scan systems using the same principles but with different sizes 
and frequencies for different applications. All of these systems transmit a narrowband sound pulse (ping) as 
the source. The spatial resolution of a side-scan sonar system using a narrowband ping is determined by the 
length of the ping and by the beam pattern from the transducer array. A very short ping will give the high-
est resolution. For example, the Seamap-C system typically uses pings from 2- to 10-ms long. A 2-ms ping 
gives a resolution along the swath of 1.5 m for a seafloor grazing ray and 1.06 m at a 45 deg slant angle. A 
10-ms pulse has a resolution of about 5 m at a 45 deg slant range. These resolutions are theoretical, ignoring 
the effects of noise and signal strength. 

Using a broadband chirp signal has two advantages regarding resolution and power over a continuous 
wave (CW) ping signal. The theoretical resolution limit of a broadband signal, according to the Rayleigh 
criterion, is approximately 
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where νb is the frequency bandwidth, V is the sound speed, and R is the resolution. This leads to a resolu-
tion of 
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which is, with a typical sound speed of 1,500 m/s and a bandwidth of 2 kHz, 0.75 m for a seafloor grazing 
ray or about 0.5 m at a 45 deg slant angle. This resolution does not depend on the length of the signal or 
its frequency, only the bandwidth, so a short chirp and a long chirp of the same bandwidth have the same 
theoretical resolution. The Seamap-C system can generate a chirp of up to 1 second long or 500 times as long 
as the shortest ping. A 1-second, 2-kHz bandwidth chirp gives not only twice the resolution but 500 times 
the power as the 2-ms ping. Using the Seamap-C system with a chirp signal combines the high resolution of 
smaller, high-frequency systems and the long range capability of larger, low-frequency systems. 

Datasonics, Inc. makes a commercially available chirp side-scan sonar system (Parent et al. 1993). This 
system uses a hardware deconvolution before the data are recorded. They also use a Gaussian frequency 
window to reduce the deconvolution side lobes. 
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SYNTHETIC DATA

Synthetic data are useful for testing the processing algorithms since it will be free of any noise, artifacts, 
or errors, and the environment can be simple and precisely known. Comparing processed synthetic data with 
the known environment should give exact agreement. The synthetic data program can be expanded to include 
off-beam reflections and the response of both arrays from a known bathymetry. The synthetic data are writ-
ten in the format that the Seamap-C system software writes and records data. This way every program that 
reads and processes the field data can be tested with synthetic data. 

The synthetic data algorithm produces the time series output from a single array along its beam axis 
with a chirped signal, either linear sweep or an arccosine sweep. The environmental response appears as 
reflections at different times and strengths. A linear sweep has a frequency that changes at a constant rate 
throughout the period of the sweep and is calculated thus: 

 a t t tc( ) sin ( ( ( ) / ( )))= + +2 21 2 1π ω ω ω  (1)

where ω1 is the start frequency, ω2 is the end frequency, and tc is the length of the chirp signal in seconds. 
This signal needs to be windowed to reduce the deconvolution side lobes. The program includes several 
time-domain windows as options. The synthetic data algorithm also includes some nonlinear chirps that do 
not need time-domain windowing so that the transducers can be driven at full power for the entire signal 
duration. One nonlinear chirp signal is produced by: 

 a a t tc= + − −sin ( ( ( ) cos ( ) / )).2 11 2 1π ω ω ω π  (2a)

This one has a slightly asymmetric spectrum with one sharp edge, yet its autocovariance function has small 
side lobes. Another nonlinear chirp signal is: 

 a t a t tc( ) sin ( ( ( ) cos ( ) / ))= + − −2 1 2 21 2 1π ω ω ω π . (2b)

Data from the Seamap-C system are compressed before being recorded by shifting the center frequency 
of the signal (basebanding) and calculating the analytical waveform at a much lower sampling rate (quadra-
ture decimation). The basebanding is done using: 

 a t ib t x t t h t i x t( ) ( ) ( )cos ( ) ( ) ( )s+ = 



∗ +2 20ω iin ( ) ( )ω0t h t



∗  (3)

where * denotes convolution, x(t) is the original time series data, ω0 is the center frequency of the chirp 
signal, h(t) is an ideal low-pass filter, and a(t) + ib(t) is the resulting analytic (complex) signal. The resulting 
signal is low-pass filtered and decimated to a sampling rate of 2,875 Hz. This is less than twice the Nyquist 
frequency, but is adequate since an analytic signal is recorded. In the engineering terminology, the real part 
of the analytic signal is I (in phase) and the imaginary part is Q (quadrature) in the engineering terminology 
of I and Q pairs. 

The synthetic data are produced by adding several chirp signals (a 10.5- to 12.5-kHz linear sweep) at 
different amplitudes and time delays. This is equivalent to convolving a simple Green’s function (Earth 
response to an impulse) with the chirp signal. The real-time signal at the original 46-kHz sampling rate is 
saved as a file. This signal is changed to an analytic signal by using the Hilbert transform of the real signal 
for the imaginary part. This analytic signal is frequency shifted (basebanded) using Eq. (3), low-pass filtered, 
and decimated by a factor of 16. The real and imaginary parts of the resulting signal, a and b of Eq. (3), are 
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saved as two separate files. These files simulate the data recorded in the field from one transducer array of 
the Seamap-C system. 

DECONVOLUTION

The long chirp signal must be removed from the data by deconvolution or some other source signal 
removal operation. Deconvolution of two signals is equivalent to convolving one signal with the inverse of 
the other. For a source signal v(t) and Earth response e(t) the recorded signal is 

 g t v t e t( ) ( ) ( )= ∗ . (4)

We can achieve the desired effect of deconvolution by convolving the recorded signal with the source, thus 
avoiding any division by zero problems: 

 Φvg t g t v t v t e t v t( ) ( ) ( ) ( ( ) ( )) ( )= ∗ − = ∗ ∗ −  (5)

 

= ∗ ∗ −
= ∗

e t v t v t
e t tvv

( ) ( ( ) ( ))
( ) ( ),Φ  

(6)

where Φvv is the autocorrelation function, and v  denotes the complex conjugate of v. Φvv, for a broadband 
signal, has the same time resolution as deconvolution. Convolution in the time domain is 

 g t g t g g t d1 2 1 2( ) ( ) ( ) ( ) ,∗ = −−∞
+∞∫ τ τ τ  (7)

which is similar to the cross covariance 

 g t g t g g t d1 2 1 2( ) ( ) ( ) ( ) ,⊗ = +−∞
+∞∫ τ τ τ  (8)

where ⊗ denotes cross covariance. So, convolution is equivalent to cross covariance with one of the time 
series reversed. This assumes that we know the exact signal that is transmitted. This will not be true in the 
field. While we will know the voltage and current in the transducer array during the transmit event, the actual 
acoustic signal in the water will be different because of nonlinear effects within the transducers. We may 
be able to measure these effects from calibration tests, or we may be able to back it out of field data by an 
inversion process (e.g. Wood 1999). 

The recorded data are in a different form than the transmitted or received acoustic signals. The base-
banding and quadrature decimation are described in the Synthetic Data section. The data and source can be 
reconstructed at the original sampling rate and frequency and then used to calculate the cross covariance, but 
this is unnecessary and slow but useful as a sanity check. Two better alternatives are to partially reconstruct 
the data and the transmitted signal as real-time series with a low center frequency, and then calculate the 
cross covariance, or else to deconvolve the complex, basebanded, quadrature-decimated data directly. 

The real data can be partially reconstructed by resampling the complex, basebanded signal at twice the 
rate then shifting the center frequency by 

 b t I t t Q t t( ) ( )cos ( )sin= ( ) + ( )2 2 4 2 2 4π π∆ ∆ , (9)

where ∆ is the new sampling rate, so shifting the bandwidth by ∆/4 (half the Nyquist frequency) places the 
lower edge of the frequency band at zero. The recorded source signal can be partially reconstructed in the 
same way and then convolved with b(t) to recover the Green’s function. This recovered Green’s function 
should be identical, except for the sampling rate, as that recovered from the original data and chirped source 



Dennis A. Lindwall4

signal (a in Eqs. (1) and (2)). The real-time series b(t) has the same number of samples as the original I(t) 
and Q(t) pairs, so the convolution calculation should be as fast as the complex convolution. 

The recorded data and source signal in the complex, basebanded, quadrature-decimated form can be 
deconvolved directly without any frequency shifting by convolving the complex data and signal (I and Q 
pairs). Complex convolution involves cross terms; some analysis programs may do this properly, but many 
analysis packages do not, and the algorithm must be correctly written. If Φds is the cross covariance of the 
complex data d and source s, then the real and imaginary parts of Φds are 

 Φ Φ Φ{ } { } { } { } { }real ds d real s real d imaginary s imaginary= +  (10)

 Φ Φ Φ{ } { } { } {imaginary ds d real s imaginary d imag= − iinary s real} { } .  (11)

As shown in the bottom plot of Fig. 4, the complex signal Φds has a central frequency of 0 Hz, so a 
real-time representation of this signal will only have a bandwidth of 1 kHz. To display the data with its full 
bandwidth and resolution, the sampling rate must be doubled, and the center frequency must be shifted as 
in Eq. (9). The Seamap-C system has a decimated, basebanded sampling rate of 2,875 Hz, so the frequency 
shift in Eq. (9) (∆/4) can be half that amount in order to center the spectrum in the new bandwidth. 

DEMONSTRATIONS

A 5-ms linear chirp from 10.5 to 12.5 kHz is shown in Fig. 1, with its basebanded form in Fig. 2 dem-
onstrating the difference in the frequencies and minimum sampling rate. The time series in Fig. 1 has a 
46-kHz sampling rate (the Seamap-C system sampling rate), which is nearly twice the Nyquist rate, but still 
reasonable for this signal. The basebanded signal is easily sampled at 2,875 Hz, which is what the Seamap-C 
system records. Figure 3 shows the 50-ms long chirp used for both the synthetics and the field test with the 
real-time series, sweeping from 10.5 to 12.5 kHz, at the top and the basebanded form on the bottom. The 
spectra of both the time series and the basebanded signal (Fig. 4) have the same shape but different central 
frequencies. The linear chirp in Fig. 3 is used to generate synthetic data with five simple reflections as a 
Green’s function (Fig. 5). Figure 6 shows the real (I or “in phase”) and imaginary (Q or “quadrature”) parts 
of the complex, synthetic data signal. These are called the I and Q pairs and are the data that are recorded in 
the field by the Seamap-C system. Lastly, the data are deconvolved by calculating the cross covariance of 
the simulated data with the chirp signal in both the high-frequency real format and the basebanded format. 
The two recovered Green’s functions from the original 46-kHz signal and the decimated, basebanded signal 
are compared in Figs. 7 and 8. Note that there is no window applied to the chirp signal, which causes the 
rough spectra (Fig. 4) and the large side lobes in the deconvolved data (Figs. 7 and 8). These noise effects 
are caused by the sharp edges in the time-domain signal (Figs. 1, 2, and 3) and can be reduced by either 
applying a time-domain window to the linear chirp or by using a nonlinear chirp. 

The time-domain window used for this example is a quarter-cosine window. There are other windows 
that give smaller side lobes for the autocorrelation function, but the quarter-cosine window has an autocor-
relation central peak that is only slightly wider than that for the unwindowed signal. Shown are the windowed 
46-kHz signal (top of Fig. 9), the basebanded, windowed signal (bottom of Fig. 9), and the spectra of the two 
(Fig. 10). Note how much smoother the spectra of the windowed signals are (Fig. 10) than the unwindowed 
signals (Fig. 4). New synthetic data were generated using the same five reflections as before in Fig. 4, but 
using the windowed signals (Fig. 9), and are shown as both the 46-kHz data and the basebanded data (Fig. 
11). The data were then deconvolved by calculating the cross covariance of the new simulated data and the 
windowed chirp signals in both the 46-kHz real format and the basebanded format. The data are shown as 
the two recovered Green’s functions from the 46-kHz signal (top of Fig. 12) and the decimated, basebanded 
signal (bottom of Fig. 12). The side lobes are much smaller than for the unwindowed case, and the smallest 
reflection is clearly distinguished from the side lobes. 
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chirp signal
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Figure 1. Time series of a linear 5 ms long chirp signal sweeping from 10.5 kHz to 12.5 kHz.
The horizontal axis is milliseconds and the sampling rate is 46 kHz. The period clearly
decreases from left to right. There are just over 10.5 cycles in the first ms and just under 12.5
cycles in the last ms. The apparent amplitude variations are a digitation effect. The chirp sig-
nal is normally much longer than 5 ms with the Seamap system (up to 1 full second) but the
individual cycles would not be resolvable on a page sized plot.
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Figure 2. Base banded  signal from Figure 1. This is the real part of the modulated signal
removed from the 11.5 kHz carrier signal as calculated by equation (3). This chirp signal
sweeps from -1 kHz to +1 kHz. The √2 amplitude reduction is a normalization factor in equa-
tion (3).

Fig. 1 — Time series of a linear 5-ms long 
chirp signal sweeping from 10.5 to 12.5 kHz. 
The horizontal axis is milliseconds and the 
sampling rate is 46 kHz. The period clearly 
decreases from left to right. There are just over 
10.5 cycles in the first ms and just under 12.5 
cycles in the last ms. The apparent amplitude 
variations are a digitation effect. The chirp 
signal is normally much longer than 5 ms with 
the Seamap-C system (up to 1 full second) but 
the individual cycles would not be resolvable on 
a page-sized plot.

Fig. 2 — Basebanded signal from Fig. 1. 
This is the real part of the modulated signal 
removed from the 11.5-kHz carrier signal as 
calculated by Eq. (3). This chirp signal sweeps 
from -1 to +1 kHz. The √2 amplitude reduction 
is a normalization factor in Eq. (3).
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Fig. 3 — The original chirp source time series and the real part (I ) 
of the basebanded source. This chirp sweeps from 10.5 to 12.5 kHz 
as in Figs. 1 and 2, but this is 50-ms long and will be used in the 
next examples.

Fig. 4 — Spectra of the original 10.5 to 12.5 
kHz chirp (top) and the basebanded chirp with a 
frequency range from –1.0 to +1.0 kHz (bottom). 
The lower amplitude of the basebanded spectrum 
is due to the √2 factors in Eq. (3).

-1.0

-0.5

0.0

0.5

1.0

0 10 20 30 40 50

-1.0

-0.5

0.0

0.5

1.0

original spectrum

8 10 12 14 kHz
0.000

0.005

0.010

basebanded spectrum

-2 0 2
0.000

0.005

0.010

frequency in kHz



Summary Report on a Seamap-C Chirp Deconvolution Algorithm 7

real (I) decimated data
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Fig. 5 — The original time series data (top) and the basebanded 
data (bottom). These data are calculated by adding a source 
time series for each of several impulses. The source chirp is 
50-ms long as in Fig. 3. The impulses are at 10.0, 15.2, 18.0, 
26.0, and 27.0 ms. Each has a different amplitude and are 
arranged so that the chirp signals overlap and interfere by 
varying degrees.

Fig. 6 — The real (I or “in phase”) and the imaginary 
(Q or “quadrature”) part of the quadrature decimated, 
basebanded data from Fig. 5. This data has been decimated 
by a factor of 16 so that there are 288 samples in each of 
the two time series rather than the 4,600 samples in the 
original 100-ms long real time series.
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Figure 7. The deconvolved data at the original frequency (top) and decimated and base-
banded (bottom). The main lobes are 1 ms wide and there are strong sidelobes. A time-
window on the chirp can reduce the sidelobes while giving wider main lobes.
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Figure 8. Enlargement of the deconvolved original waveform and the decimated,
basebanded data. The times and amplitudes agree with the original input parameters.

Fig. 7 — The deconvolved data at the original frequency 
(top) and decimated and basebanded (bottom). The main 
lobes are 1-ms wide and there are strong side lobes. A 
time window on the chirp can reduce the side lobes while 
giving wider main lobes.

Fig. 8 — Enlargement of the deconvolved original 
waveform and the decimated, basebanded data. 
The times and amplitudes agree with the original 
input parameters.
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Fig. 9 — The chirp source windowed by a quarter cosine; 
otherwise the parameters are the same as in Fig. 3
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Fig. 10 — Spectra of the windowed linear chirp in 
the original form (top) and after the basebanding 
frequency shift (bottom)
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Figure 11. The 10.5 to 12.5 kHz data using the windowed chirp from Figure 9 (top) as in
Figure 5. The response impulses are at 10.0, 15.2, 18.0, 26.0 and 27.0 ms. The base banded
data is shown in the bottom figure.
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Figure 12. The deconvolved response from the original data (top) and from the decimated,
basebanded data. The times and relative amplitudes agree with the original input parameters.

Fig. 11 — The 10.5- to 12.5-kHz data using the windowed 
chirp from Fig. 9 (top) as in Fig. 5. The response impulses 
are at 10.0, 15.2, 18.0, 26.0, and 27.0 ms. The basebanded 
data are shown in the bottom figure.

Fig. 12 — The deconvolved response from the original 
data (top) and from the decimated, basebanded data. The 
times and relative amplitudes agree with the original 
input parameters.
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Fig. 13 — The basebanded time series source (top), the basebanded 
spectrum (middle), and the deconvolved Green’s function using this 
source (bottom)
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Figure 13.  The base banded time series source (top), the base banded spectrum
(middle), and the deconvolved Green's function using this source (bottom).
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Fig. 14 — The basebanded time series of an alternative, nonlinear chirp 
signal (top), its spectrum (middle), and the deconvolved Green’s function 
from synthetic data generated with this source
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Figure 14. The base banded time series of an alternative, non-linear chirp signal
(top), it's spectrum (middle), and the deconvolved Green's function from synthetic
data generated with this source.
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Fig. 15 — Field data from the Norwegian Sea using a chirp signal (top) and after deconvolving the 
chirp signal (bottom). The horizontal scale is samples and the vertical is traces. The seafloor reflection 
is near the 200th sample and no time- or angle-dependent gain has been applied.
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A nonlinear chirp has a nonuniform frequency change. By selecting certain frequency shift schemes, 
one can reduce or eliminate the need for a time-domain window. Without a time-domain window, the signal 
is at full amplitude for its duration and is easier to generate electronically. Two different nonlinear chirps 
are shown in Figs. 13 and 14, along with their spectra and resulting Green’s functions. Both of these are 
imperfect, as can be seen by their asymmetrical spectra, but the resulting deconvolved Green’s functions are 
superior to the unwindowed, linear chirp solution (Fig. 8). Further development of nonlinear chirps should 
improve the spectral shapes and reduce the autocorrelation side lobes so that the deconvolved Green’s func-
tions will be even better. 

The Seamap group from the Naval Oceanographic Office (NAVOCEANO) collected several minutes of 
chirp data near the Norwegian coast during the summer of 1999. These data were basebanded and quadrature 
decimated as described in the Synthetic Data section. The transmitted chirp signal was recorded as voltage 
and current sent to the transducers. The voltage and current signals are somewhat different; the voltage was 
arbitrarily chosen for use as the transmitted signal. This demonstration only shows that this approach works 
and is not an optimal implimentation of the chirp nor the deconvolution algorithm. 
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Appendix A

ALGORITHMS IN THE IDL LANGUAGE

This is the file inputa.dat that is read by the synthetic data programs and sets several system and envi-
ronment parameters. 

11.5                         ; the central frequency of the chirp in kHz
1.0                          ; half the chirp bandwidth in kHz
50.0                         ; the chirp length in milliseconds
5                            ; the number of reflections (next 2 lines)
10.0,15.2,18.0,26.0,27.0     ; time delay in ms for the reflections
1.0,0.5,0.2,0.8,0.6          ; absolute amplitude of the reflections
16                           ; decimation factor

This is the program that generates the synthetic data using the chirp specified in the commented lines.
 

PRO chirp5a
; calculates and plots a chirp signal 
; using the system parameters of Seamap C
; (sample rate of 46 kHz)
; includes:       Quadrature modulation
;                 low pass filter
;                 decimated signal
;                 base banding using the center frequency (cfreq)
; reads input parameters from the  file ‘input.dat’
; the “data” can have several pulses at delay times 
; and amplitudes specified in the file ‘input.dat’
; time is in microseconds
; cfreq is center frequency in kilohertz
; del is half bandwidth of chirp (10.5 to 12.5 kHz
;          chirp has cfreq of 11.5 and del of 1.0)
; tlong is chirp length in milliseconds
; dtime is delay to start of chirp in milliseconds
; per is period in time steps (10 µs)
; nar is the time series length

ci = complex(0.0,1.0)
;pi = 3.141592654
pi = !DPI
sqrt2 = sqrt(2)
srate = 46000                     ; the sampling rate
sratek = srate / 1000.            ; the sampling rate in kilohertz
nar = 46000

flts = findgen(nar)
a = fltarr(nar)    ; chirped signal
as = fltarr(nar)    ; chirped source
b = fltarr(nar)    ; real spectrum of chirp signal
t = fltarr(nar)    ; time in microseconds
anal = complexarr(nar)     ; analytic signal
anals = complexarr(nar)     ; analytic source
analf = complexarr(nar)    ; fft of analytic signal

15
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base = complexarr(nar)     ; base banded signal
bases = complexarr(nar)     ; base banded source
basef = complexarr(nar)    ; fft of base banded signal
basesf = complexarr(nar)    ; fft of base banded source
rbase = fltarr(nar)        ; real part of base banded signal
rbases = fltarr(nar)       ; real part of base banded source
ibase = fltarr(nar)        ; imaginary part of base banded signal
ibases = fltarr(nar)       ; imaginary part of base banded source

t = flts * 1000. / srate

openr, 1, ‘inputa.dat’
readf,1,cfreq
readf,1,del
readf,1,tlong
readf,1,nd
dtime = fltarr(nd)
damp  = fltarr(nd)
readf,1,dtime
readf,1,damp
readf,1,decimate
close,1

print,’from inputa.dat’, cfreq,del,tlong,nd,decimate
print, ‘dtime input’,dtime
print, ‘damp input’,damp
nard = nar / decimate          ; length of decimated time series
nchirp = tlong * srate / 1000.    ; number of samples in chirp 
nchirp2 = tlong * srate / 500.    ; twice nchirp
nchirph = tlong * srate / 2000.   ; half nchirp
print,nchirp,nchirp2,nchirph
rbased = fltarr(nard)          ; real, decimated, base banded signal
rbasesd = fltarr(nard)         ; real, decimated, banded source
ibased = fltarr(nard)          ; imaginary, decimated, base banded signal
ibasesd = fltarr(nard)         ; imaginary, decimated, base banded source
td = fltarr(nard)              ; decimated time series (msec / decimate)
tf = t * 46. / 1000. - 23.             ; frequency scale (normal)
print,’tf info’,size(tf),tf(0),tf(45999),t(0),t(45999)
wqc = fltarr(nchirp)           ; quarter cosine window for chirp

tend  = float(nar) / float(srate)
tendm = tend * 1000.
dstart = fix(dtime * sratek)
sfreq = cfreq - del
efreq = cfreq + del
print,’tend stuff’,tend,tendm,dstart,sfreq,efreq

w = 1.0                        ; default to boxcar window
for i = 0, (nchirp/4)-1 do begin    ; this loop makes a 1/4 cosine window
  wqc(i) = (1./2.) - (1./2.) * cos(pi * i * 4. / nchirp)
  wqc(i + nchirp/4) = 1.0
  wqc(i + nchirp/2) = 1.0
  wqc(nchirp-1-i) = wqc(i)
endfor

;     uncomment the desired line to implement a window
;     and to chose the type of chirp or ping
for i = 0, (nchirp-1) do begin
  ii = float(i)
;  w = 0.5 + 0.5 * cos (pi * 2 * (ii - nchirph) / nchirp)  ; Hanning window
;  w = sin (pi * ii / nchirp)                              ; sine window
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;  w = wqc(i)                                               ; quarter cosine
;      next line for cw ping
;  per = w*sin(2*pi * (sfreq) *ii/sratek)
;    next line for linear chirp
;  per = w*sin(2*pi * (sfreq + ii *(efreq - sfreq) / nchirp2) *ii/sratek)
;    next line for crude nonlinear chirp
;  per = sin(2*pi*(sfreq+(2*del*acos(1.-ii/nchirp)/pi) ) *ii/sratek)
;    next line for nonlinear chirp tests, this one SEEMS like it 
;    should be better
  per = sin(2*pi*(sfreq+del*acos(1.-ii/nchirph)/pi) *ii/sratek)
;  per = sfreq+(del*acos(1.-ii/nchirph)/pi)
;  per = sfreq + ii *(efreq - sfreq) / nchirp2
  as(i) = per
  a(i+dstart(0)) = damp(0) * per
endfor

for n = 1, nd-1 do begin
  for k = 0, (nchirp-1) do begin
    kk = float(k)
;    w = 0.5 + 0.5 * cos (pi * 2 * (kk - nchirph) / nchirp) ; Hanning window
;    w = sin (pi * kk / nchirp)                             ; sine window
;    w = wqc(k)                                              ; quarter cosine
;    next line for linear chirp
;    per = w*sin(2*pi * (sfreq + kk *(efreq - sfreq) / nchirp2) *kk/sratek)
;    next line for crude nonlinear chirp
;    per = sin(2*pi*(sfreq+(2*del*acos(1.-ii/nchirp)/pi) ) *ii/sratek)
;    a(k+dstart(n)) = a(k+dstart(n)) + damp(n) * per
    a(k+dstart(n)) = a(k+dstart(n)) + damp(n) * as(k)
  endfor
endfor

anal = complex(a,hilbert(a,-1))
anals = complex(as,hilbert(as,-1))
analf = 2 * shift(fft(anals,-1), (1 + nar/2))
;analf = 2 * shift(fft(as,-1), (1 + nar/2))
base = sqrt2*a*cos(cfreq*t*2*pi)+ci*sqrt2*a*sin(cfreq*t*2*pi)
bases = sqrt2*as*cos(cfreq*t*2*pi)+ci*sqrt2*as*sin(cfreq*t*2*pi)
;base = anal * exp ( -ci * sfreq * t * 2*pi)
;bases = anals * exp ( -ci * sfreq * t * 2*pi)
;base = anal * exp ( -ci * cfreq * t * 2*pi)
;bases = anals * exp ( -ci * cfreq * t * 2*pi)
;basef = 2 * sqrt(nchirp) * shift(fft(base,-1), (1 + nar/2))
basef = 2 * shift(fft(base,-1), (1 + nar/2))
basesf = 2 * shift(fft(bases,-1), (1 + nar/2))

filt = digital_filter(0,1./decimate,50,nchirph/2)
help,base,bases
rbase = float(base)
ibase = imaginary(base)
rbases = float(bases)
ibases = imaginary(bases)
rbase = convol(rbase,filt,center=1,edge_wrap=1)
ibase = convol(ibase,filt,center=1,edge_wrap=1)
rbases = convol(rbases,filt,center=1,edge_wrap=1)
ibases = convol(ibases,filt,center=1,edge_wrap=1)
help,filt,rbase,ibase,rbases,ibases
print,t(500:504)
print,a(500:504)
print,rbase(500:504)
print,rbases(200:204)
;print,filt(458:462)
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print,float(basesf(2000:2004))

td = rebin(t,nard)
tfd = rebin(tf,nard)
rbased = rebin(rbase,nard)
ibased = rebin(ibase,nard)
rbasesd = rebin(rbases,nard)
ibasesd = rebin(ibases,nard)
print,per,nchirp,t(nar-1)

save, a, filename=’original.data’
save, as, filename=’original.source’
;save, rbase, filename=’basebanded.data’
save, base, filename=’basebandedc.data’
;save, rbases, filename=’basebanded.source’
save, bases, filename=’basebandedc.source’
save, rbased, filename=’basebanded_decir.data’
save, ibased, filename=’basebanded_decii.data’
save, rbasesd, filename=’basebanded_decir.source’
save, ibasesd, filename=’basebanded_decii.source’
save, t, filename=’time_signal.data’
save, td, filename=’time_signal_dec.data’

!p.background=255
!p.color=0
!p.font=0
!p.charsize=1.0
!p.thick=1.0
!p.ticklen=0.03
;!p.region = [0.0,0.0,6.0,11.0]
!p.position = [0.1,0.1,0.9,0.9]
!x.range = [0.0, 50.0]
!y.range = [-1.0, 1.0]

set_plot,’x’
window,2
plot, t, as, subtitle=’chirp signal’, xsty=5, ysty=5
axis, 0, 0, xax=0
axis, 0, 0, yax=0

!y.range = [-1.0, 1.0]
!x.range = [0.0, 50.0]
window,0
;plot, t, abs(base), subtitle=’abs of base banded signal’, xsty=5, ysty=5
plot, t, rbase, subtitle=’base banded signal’, xsty=5, ysty=5
;plot, t, a, subtitle=’original data’, xsty=5, ysty=5
axis, 0, 0, xax=0
axis, 0, 0, yax=0

;!x.range = [0.0, 0.2*tendm]
!x.range = [0.0, 50.0]
!y.range = [-1.0, 1.0]
window,3
;plot, t, abs(bases), subtitle=’abs of base banded source’, xsty=5, ysty=5
;plot, t, filt, subtitle=’filter vector’, xsty=5, ysty=5
plot, td, rbased, subtitle=’decimated I base banded signal’, xsty=5, ysty=5
axis, 0, 0, xax=0
axis, 0, 0, yax=0

;!y.range = [-1.0, 1.0]
;!x.range = [0.0, 40.0]
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;window,1
;plot, td, ibased, subtitle=’decimated Q base banded signal’, xsty=5, ysty=5
;plot, t, rbase, subtitle=’base banded data’, xsty=5, ysty=5
;plot, t, abs(base), subtitle=’abs of base banded data’, xsty=5, ysty=5
;axis, 0, 0, xax=0
;axis, 0, 0, yax=0

print,max(tf),max(abs(analf))
;!x.range = [-0.1, 0.1]
!y.range = [-0.0, 0.02]
!x.range = [9.0, 14.0]
window,1
;plot, tf, abs(basesf), subtitle=’base banded source spectrum’, xsty=5, ysty=5
plot, tf, abs(analf), subtitle=’original source spectrum’, xsty=5, ysty=5
axis, 0, 0, xax=0
axis, 0, 0, yax=0

set_plot,’CGM’
;device, binary=1
device, filename=’orig_data.cgm’
xs = !d.x_size
ys = !d.x_size
loadct,0
!x.range = [0.0, 100.0]
!y.range = [-3.0, 3.0]
plot, t, a, subtitle=’original data’, xsty=5, ysty=5
axis, 0, 0, xax=0
axis, 0, 0, yax=0
device, /close

device, filename=’chirp_signal.cgm’
!x.range = [0.0, 50.0]
!y.range = [-1.0, 1.0]
plot, t, as, subtitle=’chirp signal’, xsty=5, ysty=5
axis, 0, 0, xax=0
axis, 0, 0, yax=0
device, /close

device, filename=’base_banded_source.cgm’
!x.range = [0.0, 50.0]
!y.range = [-1.0, 1.0]
plot, t, rbases, subtitle=’base banded source’, xsty=5, ysty=5
axis, 0, 0, xax=0
axis, 0, 0, yax=0
device, /close

device, filename=’base_banded_data.cgm’
!x.range = [0.0, 100.0]
!y.range = [-3.0, 3.0]
plot, t, rbase, subtitle=’base banded data’, xsty=5, ysty=5
axis, 0, 0, xax=0
axis, 0, 0, yax=0
device, /close

device, filename=’abs_base_banded_data.cgm’
!x.range = [0.0, 40.0]
!y.range = [-1.0, 1.0]
plot, t, abs(base), subtitle=’base banded data’, xsty=5, ysty=5
axis, 0, 0, xax=0
axis, 0, 0, yax=0
device, /close
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device, filename=’real_deci_data.cgm’
!x.range = [0.0, 100.0]
!y.range = [-3.0, 3.0]
plot, td, rbased, subtitle=’real (I) decimated data’, xsty=5, ysty=5
axis, 0, 0, xax=0
axis, 0, 0, yax=0
device, /close

device, filename=’imag_deci_data.cgm’
!x.range = [0.0, 100.0]
!y.range = [-3.0, 3.0]
plot, td, ibased, subtitle=’imaginary (Q) decimated data’, xsty=5, ysty=5
axis, 0, 0, xax=0
axis, 0, 0, yax=0
device, /close

device, filename=’base_spec.cgm’
!x.range = [-3.0, 3.0]
!y.range = [-0.0, 0.02]
plot, tf, abs(basesf), subtitle=’base banded source spectrum’, xsty=5, ysty=5
axis, 0, 0, xax=0
axis, 0, 0, yax=0
device, /close

device, filename=’orig_spec.cgm’
!x.range = [8.0, 14.0]
!y.range = [-0.0, 0.02]
plot, tf, abs(analf), subtitle=’original source spectrum’, xsty=5, ysty=5
axis, 0, 0, xax=0
axis, 0, 0, yax=0
device, /close

;set_plot,’ps’
;device, filename=’chirpsignal.ps’
;plot, t, a, subtitle=’chirp’, xsty=5, ysty=5, /polar
;axis, 0, 0, xax=0, color=0
;axis, 0, 0, yax=0, color=0
;device, /close

END; chirp5a

This is the program that read the synthetic data generated by “chirp5a”, deconvolves the chirp signal, 
and makes numerous plots to show the original data, deconvolved data, and their spectra.

PRO decon5a

; deconvolves a signal (from the file ‘xxx.source’) 
; from time series data (from the file ‘xxx.data’)
; using the system parameters of Seamap C
; (sample rate of 46 kHz)
; includes:         reconstructed signal from decimated, I & Q data
;                   low pass filter
;                   decimated signal 
; reads input parameters from the  file ‘input.dat’
; the “data” can have several pulses at delay times 
; and amplitudes specified in the file ‘input.dat’
; time is in microseconds

nar = 46000
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srate = 46000                 ; the sampling rate
sratek = srate / 1000.        ; the sampling rate in kilohertz
sratekd = sratek/16.          ; the decimated sampling rate in kHz
srkdh = sratekd / 2.          ; half sratekd, used for band shifting
newbase = complexarr(nar)     ; reconstructed base banded data
newanal = complexarr(nar)     ; reconstructed analytic data
newdata = fltarr(nar)         ; reconstructed real data
rbase = fltarr(nar)
ibase = fltarr(nar)
rbases = fltarr(nar)
ibases = fltarr(nar)
flts = findgen(nar)
ci = complex(0.0,1.0)
;pi = 3.141592654
pi = !DPI
sqrt2 = sqrt(2)

openr, 1, ‘inputa.dat’
readf,1,cfreq
readf,1,del
readf,1,tlong
readf,1,nd
dtime = fltarr(nd)
damp  = fltarr(nd)
readf,1,dtime
readf,1,damp
readf,1,decimate
close,1
print,cfreq,del,tlong,nd
print, dtime
print, damp
sfreq = cfreq - del
efreq = cfreq + del
dnorm = float(2 * nar) / (tlong * 46.)
;dnorm = float(nar) / (tlong * 46.)
print,”decon normalizing factor”,dnorm
nard = nar / decimate
nard2 = nard * 2
narp = nar * 2                ; length of padded ts (for FFT decon)
nardp = narp / decimate       ; length of padded ts (for FFT decon)
nard2p = nardp * 2            ; length of padded ts (for FFT decon)
td2 = fltarr(2*nard)
resultbrd = fltarr(nard)      ; 
resultbid = fltarr(nard)      ; 
resultbd = complexarr(nard)   ; 

restore, filename=’original.data’
restore, filename=’original.source’
;restore, filename=’basebanded.data’
restore, filename=’basebandedc.data’
;restore, filename=’basebanded.source’
restore, filename=’basebandedc.source’
restore, filename=’basebanded_decir.data’
restore, filename=’basebanded_decii.data’
restore, filename=’basebanded_decir.source’
restore, filename=’basebanded_decii.source’
restore, filename=’time_signal.data’
restore, filename=’time_signal_dec.data’

tf = t * 46. / 1000. - 23.             ; frequency scale (normal)
tfd = rebin(tf,nard)                   ; frequency scale (decimated)
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rbase  = float(base)
ibase  = float(imaginary(base))
rbases = float(bases)
ibases = float(imaginary(bases))

!p.background=255
!p.color=0
!p.font=0
!p.charsize=1.0
!p.thick=1.0
!p.ticklen=0.03
;!p.region = [0.0,0.0,6.0,11.0]
!p.position = [0.1,0.1,0.9,0.9]
!x.range = [0.0, 100.0]
!y.range = [-3.0, 3.0]

set_plot,’x’
window,2
plot, t, a, subtitle=’original signal’, xsty=4, ysty=4
axis, 0, 0, xax=0
axis, 0, 0, yax=0

window,0
!x.range = [0.0, 50.0]
!y.range = [-2.0, 2.0]
plot, t, as, subtitle=’original source’, xsty=4, ysty=4
axis, 0, 0, xax=0
axis, 0, 0, yax=0

window,3
!x.range = [0.0, 100.0]
plot, td, rbased, subtitle=’decimated base banded real signal’, xsty=4, ysty=4
;plot, t, abs(base), subtitle=’base banded signal’, xsty=4, ysty=4
axis, 0, 0, xax=0
axis, 0, 0, yax=0

;window,6
;!x.range = [0.0, 100.0]
;plot, td, ibased, subtitle=’decimated base banded im signal’, xsty=4, ysty=4
;;plot, t, abs(base), subtitle=’base banded signal’, xsty=4, ysty=4
;axis, 0, 0, xax=0
;axis, 0, 0, yax=0

window,1
!x.range = [0.0, 50.0]
plot, td, rbasesd, subtitle=’decimated base banded source’, xsty=4, ysty=4
;plot, t, abs(bases), subtitle=’base banded source’, xsty=4, ysty=4
axis, 0, 0, xax=0
axis, 0, 0, yax=0

;window,0
;!x.range = [0.0, 50.0]
;plot, td, ibasesd, subtitle=’decimated base banded im source’, xsty=4, ysty=4
;;plot, t, abs(bases), subtitle=’base banded source’, xsty=4, ysty=4
;axis, 0, 0, xax=0
;axis, 0, 0, yax=0

info = size(a)
print,info
lag = lindgen(info(1)-2)
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;;resultc = fft(fft(a,-1)/fft(as,-1),1)/nar
;resultc = dnorm * c_correlateb(as,a,lag, /covariance)
;
;!x.range = [0.0, 40.0]
;!y.range = [-1.0, 1.0]
;window,6
;plot, t, abs(resultc), subtitle=’deconvolved original signal’, xsty=4, ysty=4
;;plot, t, resultc, subtitle=’deconvolved original signal’, xsty=4, ysty=4
;axis, 0, 0, xax=0
;axis, 0, 0, yax=0
;set_plot,’CGM’
;device, filename=’decon_orig_signal.cgm’
;xs = !d.x_size
;ys = !d.x_size
;loadct,0
;plot, t, abs(resultc), subtitle=’deconvolved original signal’, xsty=4, ysty=4
;axis, 0, 0, xax=0
;axis, 0, 0, yax=0
;device, /close

infod = size(rbased)
print,infod
lagd = lindgen(infod(1))
td2 = rebin(t,2*nard)

based = complex(rbased,ibased)
basesd = complex(rbasesd,ibasesd)
;basesd = complex(rbasesd,ibasesd) + 0.00001 * abs(randomn(seed,nard))

basedp = fltarr(nardp)     ; padded chirped signal
basesdp = fltarr(nardp)    ; padded chirped source
basedp(0:nard-1) = based
basesdp(0:nard-1) = basesd
help,basedp,basesdp
print,’del’,del,’srkdh’,srkdh
;resultbd = fft(fft(based,-1)/fft(basesd,-1),1)/nard
resultbrd = c_correlate(rbasesd,rbased,lagd, /covariance) + $
            c_correlate(ibasesd,ibased,lagd, /covariance)
resultbid = c_correlate(ibasesd,rbased,lagd, /covariance) - $
            c_correlate(rbasesd,ibased,lagd, /covariance)
resultbd = dnorm * complex(resultbrd,resultbid)
resultbrd2 = 2 * rebin(resultbrd,2*nard)
resultbid2 = 2 * rebin(resultbid,2*nard)
;resultbd2 = dnorm * complex(resultbrd2,resultbid2)
;resultbd2 = dnorm * complex(resultbrd2*cos(del*td2*2*pi),resultbid2*sin(del*td2*2*pi)
)
resultbd2 = dnorm * complex(resultbrd2*cos(srkdh*td2*2*pi),resultbid2*sin(srkdh*td2*2*
pi))
;resultbr = c_correlateb(abs(bases),abs(base),lag, /covariance)

set_plot,’x’
!x.range = [0.0, 40.0]
!y.range = [-1.0, 1.0]
window,4
;plot, td, dnorm*resultbrd, subtitle=’deconvolved, decimated, base banded’, xsty=4, 
ysty=4
;plot, td, abs(resultbd), subtitle=’deconvolved, decimated, base banded’, xsty=4, 
ysty=4
plot, td2, abs(resultbd2), subtitle=’deconvolved, decimated, base banded’, xsty=4, 
ysty=4
;plot, t, dnorm * resultbr, subtitle=’deconvolved base banded signal’, xsty=4, ysty=4
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axis, 0, 0, xax=0
axis, 0, 0, yax=0
set_plot,’CGM’
device, filename=’decon_bb_deci.cgm’
;plot, td, abs(resultbd), subtitle=’deconvolved, decimated, base banded’, xsty=4, 
ysty=4
plot, td2, abs(resultbd2), subtitle=’deconvolved, decimated, base banded’, xsty=4, 
ysty=4
axis, 0, 0, xax=0
axis, 0, 0, yax=0
device, /close

;   to reconstruct data to original frequency
;rbasen = rebin(rbased,nar)
;ibasen = rebin(ibased,nar)
;rbasesn = rebin(rbasesd,nar)
;ibasesn = rebin(ibasesd,nar)
;   to reconstruct data to twice decimated frequency
rbasen = rebin(rbased,2*nard)
ibasen = rebin(ibased,2*nard)
rbasesn = rebin(rbasesd,2*nard)
ibasesn = rebin(ibasesd,2*nard)

;    reconstruct to original frequency
;newbase = sqrt2*rbasen*cos(cfreq*t*2*pi)+sqrt2*ibasen*sin(cfreq*t*2*pi)
;newbases = sqrt2*rbasesn*cos(cfreq*t*2*pi)+sqrt2*ibasesn*sin(cfreq*t*2*pi)
;    reconstruct to bandwidth frequency
;newbase = sqrt2*rbasen*cos(del*td2*2*pi)+sqrt2*ibasen*sin(del*td2*2*pi)
;newbases = sqrt2*rbasesn*cos(del*td2*2*pi)+sqrt2*ibasesn*sin(del*td2*2*pi)
newbase = sqrt2*rbasen*cos(srkdh*td2*2*pi)+sqrt2*ibasen*sin(srkdh*td2*2*pi)
newbases = sqrt2*rbasesn*cos(srkdh*td2*2*pi)+sqrt2*ibasesn*sin(srkdh*td2*2*pi)
newdata = float(newbase)

set_plot,’x’
!x.range = [0.0, 100.0]
!y.range = [-3.0, 3.0]
window,7
;plot, t, newdata, subtitle=’reconstructed data’, xsty=4, ysty=4
plot, td2, newdata, subtitle=’reconstructed data’, xsty=4, ysty=4
axis, 0, 0, xax=0
axis, 0, 0, yax=0
set_plot,’CGM’
device, filename=’recon_data.cgm’
plot, td2, newdata, subtitle=’reconstructed data’, xsty=4, ysty=4
axis, 0, 0, xax=0
axis, 0, 0, yax=0
device, /close

info = size(newdata)
print,info
lagn = lindgen(info(1)-2)
resultc = 2 * dnorm * c_correlateb(newbases,newbase,lagn, /covariance)
newbasep = fltarr(nard2p)     ; padded chirped signal
newbasesp = fltarr(nard2p)    ; padded chirped source
newbasep(0:nard2-1) = newbase
newbasesp(0:nard2-1) = newbases + 0.001 * abs(randomn(seed,nard2))
help,newbasep,newbasesp
;resultc = fft(fft(newbase,-1)/fft(newbases,-1),1)/nard2
help,resultc

set_plot,’x’
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!x.range = [0.0, 40.0]
!y.range = [-1.0, 1.0]
window,5
plot, td2, abs(resultc), subtitle=’deconvolved reconstructed signal’, xsty=4, ysty=4
;plot, t, resultc, subtitle=’deconvolved reconstructed signal’, xsty=4, ysty=4
;plot, td2, resultc, subtitle=’deconvolved reconstructed signal’, xsty=4, ysty=4
axis, 0, 0, xax=0
axis, 0, 0, yax=0
set_plot,’CGM’
device, filename=’decon_recon_data.cgm’
plot, td2, abs(resultc), subtitle=’deconvolved reconstructed data’, xsty=4, ysty=4
axis, 0, 0, xax=0
axis, 0, 0, yax=0
device, /close

END; decon5a

This program reads the field data and the recorded chirp signal, deconvolves the chirp from the data and 
writes files that can be plotted as image files.

PRO rwseamap

pi = !DPI
short = 4000
srate = 46000                 ; the sampling rate
sratek = srate / 1000.        ; the sampling rate in kilohertz
sratekd = sratek/16.          ; the decimated sampling rate in kHz
srkdh = sratekd / 2.          ; half sratekd, used for band shifting

nsam = long(1)
ping = fltarr(8)

DVbot = fltarr(28000)
DVtop = fltarr(28000)
;DVdata = complexarr(14000)
ints = findgen(14000)
out = fltarr(14000)           ; abs of complex data 
;rbs = fltarr(14000)         ; real (I) of source
;ibs = fltarr(14000)         ; imaginary (Q) of source
;rbd = fltarr(14000)           ; real (I) of data
;ibd = fltarr(14000)           ; imaginary (Q) of data
;decon = complexarr(14000)
;deconr = fltarr(14000)
;deconi = fltarr(14000)
;lag = lindgen(14000)
outs = fltarr(short)           ; abs of complex data 
rbs = fltarr(short)         ; real (I) of source
ibs = fltarr(short)         ; imaginary (Q) of source
rbd = fltarr(short)           ; real (I) of data
ibd = fltarr(short)           ; imaginary (Q) of data
decon = complexarr(short)
deconr = fltarr(short)
deconi = fltarr(short)
lag = lindgen(short)
td2 = fltarr(2*short)
flts = findgen(short)
t = flts * 1000. / srate
td2 = rebin(t,2*short)
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DVdata = complexarr(short)

dnorm = 0.001

openr, 1, ‘port_xmt.bin’
openr, 2, ‘port_rcv.bin’
openw, 3, ‘outdata.bin’
openw, 4, ‘outdecon.bin’

for k = 0, 99 do begin

  readu,1,nsam
  nsamx = 2 * nsam
;  print, nsam, nsamx

  IQVbot = fltarr(nsamx)
  IQAbot = fltarr(nsamx)
  IQVtop = fltarr(nsamx)
  IQAtop = fltarr(nsamx)
  IQsource = complexarr(nsam)

  readu,1,IQVbot
  readu,1,IQAbot
  readu,1,IQVtop
  readu,1,IQAtop
  for i = 0, nsam-1 do begin
    IQsource(i) = complex(IQVbot(2*i),IQVbot(2*i+1))
;    IQsource(i) = complex(IQAtop(2*i),IQAtop(2*i+1))
    rbs(i) = IQVbot(2*i)
    ibs(i) = IQVbot(2*i+1)
  endfor
  
  readu,2,DVbot
  readu,2,DVtop
;  for i = 0, 13999 do begin
;    DVdata(i) = complex(DVbot(2*i),DVbot(2*i+1))
;  endfor
  for i = 0, short-1 do begin
    DVdata(i) = complex(DVbot(2*i),DVbot(2*i+1))
  endfor
  for i = 0, short-1 do begin
    rbd(i) = DVbot(2*i)
    ibd(i) = DVbot(2*i+1)
  endfor
  
;  help,rbs
;  help,rbd
;  help,ibs
;  help,ibd
  deconr = c_correlate(rbs,rbd,lag, /covariance) + $
           c_correlate(ibs,ibd,lag, /covariance)
  deconi = c_correlate(ibs,rbd,lag, /covariance) - $
           c_correlate(rbs,ibd,lag, /covariance)
  decon  = dnorm * complex(deconr,deconi)
  resultbrd2 = 2 * rebin(deconr,2*short)
  resultbid2 = 2 * rebin(deconi,2*short)
  resultbd2 = dnorm * complex(resultbrd2*cos(srkdh*td2*2*pi),resultbid2*sin(srkdh*td2*
2*pi))
             
  print,k,nsam,nsamx,max(abs(IQsource)),max(abs(DVdata)),max(abs(decon))
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  out = 20. * alog10(abs(DVdata) + 0.001)
  writeu,3,out
  
;  outs = 20. * alog10(abs(decon) + 0.001)
  outs = 20. * alog10(abs(resultbd2) + 0.001)
  writeu,4,outs

endfor

close,1
close,2
close,3
close,4

END



Appendix B

ALGORITHMS IN THE C LANGUAGE

This is the file makeData.c

/* file: makeData.c
written by: PSI
*/
//TOP
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <malloc.h>
#include “complex.h”
#include “windows.h”
#include “mdsp.h”
#include “fft.h”
#include “zmath.h”
#include “round.h”

void main(int argc, char *argv[]) {

 float pi;
 float sqrt2;
 float sratek;
 float Fs;
 float *b;
 float *t;
 float dt;
 float *dtime;
 float *damp;
 float *flts;
 float *td;
 float *tf;
 float *filt;
 float ftemp;

 float cfreq;
 float del;
 float tlong;
 float sfreq;
 float efreq;
 float w;
 float ii;
 float per;

 float kk;
 float f1;
 float f2;

29



Dennis A. Lindwall30

//VARS
 int nar;

 long int srate;
 long int nd;
 long int nard;
 long int nchirp;
 long int nchirp2;
 long int j, i, n, k;

 int rsize;
 int itemp;
 int filterSize;
 int decimate; 
 int NFFT;

 int *dstart;

 /* Temp arrays for FFTs */
 COMPLEX *FFT0;
 COMPLEX *FFT1;
 COMPLEX *FFT2;

 COMPLEX *CTEMP0;
 COMPLEX *CTEMP1;
 COMPLEX *CTEMP2;

 COMPLEX *a;
 COMPLEX *as;
 COMPLEX *a_c;
 COMPLEX *base;
 COMPLEX *base_c;
 COMPLEX *bases;
 COMPLEX *based;
 COMPLEX *based_c;
 COMPLEX *basesd;

 COMPLEX *cfilt;
 COMPLEX *fftOfFilter;
 COMPLEX *fftOfBBSignal;
 COMPLEX *fftOfBBSource;
 COMPLEX ctemp;
 COMPLEX ctemp2;

 FILE *in;

 /* Initialize variables. */
 pi = 3.14159265358979238462633833f;
 sqrt2 = (float)sqrt(2.0f);
 srate = 46000;
 Fs = srate;
 dt = 1.0/Fs;
 nar = 11500;

 /* Allocate arrays. */

 /* Intitial Source and Signal */
 a = (COMPLEX *)malloc(sizeof(COMPLEX)*nar);   
 as = (COMPLEX *)malloc(sizeof(COMPLEX)*nar);
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 /* Float arrays. */
 t = (float *)malloc(sizeof(float) * nar);  /* Time in microseconds. */
 td = (float *)malloc(sizeof(float) * nard);  /* Decimated time seres 
msec/decimate. */
 tf = (float *)malloc(sizeof(float) * nar);  /* Frequency scale (normal). 
*/

 /* Zero out all arrays. */
 for(j=0;j<nar;j++) {
  a[j] = cmplx(0.0,0.0);
  as[j] = cmplx(0.0,0.0);
  t[j] =  (float) j * dt; 
  tf[j] = t[j] * Fs - Fs/2.0;
 }

 /* Read input deck. */
 if (NULL == (in = (fopen(“inputa.dat”, “r”)))) {
  fprintf(stderr,”Error: Could not open file <%s> \n”, “inputa.dat”);
  exit(0);
        }

 /* Read values from file. */
 fscanf(in, “%f”, &cfreq); /* Center frequency. */
 fscanf(in, “%f”, &del);  /* Bandwidth */
 fscanf(in, “%f”, &tlong); /* Chirp length. */
 fscanf(in, “%d”, &nd);  /* # of reflectors */

 /* change units on input values MED */
 cfreq *= 1000.0; /* kHz to Hz */
 del *= 1000.0;  /* kHz to Hz */
 tlong /= 1000.0; /* ms to s */
 sfreq = cfreq - del/2;
 efreq = cfreq + del/2;

 /* Allocate dtime, damp and dstart arrays. */
 dtime = (float *)malloc(sizeof(float) * nd);
 damp = (float *)malloc(sizeof(float) * nd);
 dstart = (int *)malloc(sizeof(int) * nd);

 /* Read dtime array. */
 for(j=0;j<nd;j++) {
  fscanf(in, “%f”, &dtime[j]);
  dtime[j] /= 1000.0;
  dstart[j] = (int)(dtime[j] * Fs);
 }
 
 /* Read damp array. */
 for(j=0;j<nd;j++) fscanf(in, “%f”, &damp[j]);

 /* Read decimate value and close file. */
 fscanf(in, “%d”, &decimate);
 fclose(in);

 /* Define array parameters. */
 nard = nar/(int)decimate;  /* Length of decimated time series. */

 nchirp = (int) (tlong*Fs);  /* no. of samples in chirp */
 nchirp2 = 2*nchirp;

 /* Build the Source Chirp */
 w = 1.0f;
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 for(i = 0; i < nchirp; i++) {
  ii = (float) i;
  per = w*(float)sin( 2.0f*pi*( sfreq + ii * (efreq - sfreq)/nchirp2 ) * ii/
Fs);
  as[i] = cmplx(per,0.0);
 }
 //for(j=0;j<nar;j++) printf(“%f\t%f\n”, as[j].real, as[j].imag);

 /* Build the return by summing delayed copies of the source */ 
 for(n = 0; n < nd; n++) {
  for(k = 0; k < nchirp; k++) {
   kk = (float)k;
   per = damp[n]*w*(float)sin(2.0f*pi * (sfreq + kk * (efreq - sfreq)/
nchirp2) * kk/Fs);
   i = k+dstart[n];
   a[i] = cadd( a[i], cmplx(per,0.0) );
  } 
 }
 //for(j=0;j<nar;j++) printf(“%f\t%f\n”, a[j].real, a[j].imag);

 CTEMP0 = (COMPLEX *)malloc(sizeof(COMPLEX)*nar);
 CTEMP1 = (COMPLEX *)malloc(sizeof(COMPLEX)*nar);
 /*  Base Band */
 for(j=0;j<nar;j++){
  ctemp = cexp( cmplx(0.0, 2.0*pi*cfreq*t[j]) );
  ctemp = cmul(ctemp, cmplx(sqrt2,0.0));
  CTEMP1[j] = cmul( a[j], ctemp );
  CTEMP0[j] = cmul( as[j], ctemp );
 }
 //for(j=0;j<nar;j++) printf(“%f\t%f\n”, bases[j].real, bases[j].imag);
 //for(j=0;j<nar;j++) printf(“%f\t%f\n”, base[j].real, base[j].imag);

 /* build a 129pt Low Pas FIR filter */ 
 filterSize = 129;
 filt = fir_low(filterSize, 2.0*del/Fs, HAMMING);
 /* Make the filter complex */
 cfilt = malloc(sizeof(COMPLEX)*filterSize);
 for(j=0;j<filterSize;j++){
   cfilt[j] = cmplx(filt[j],0.0);
        }
 free(filt);  /* cfilt is the only one we need */

 /* Take everything into the frequency domain */
 NFFT = (int) near2(nar); /* find nearest power of 2 */

 bases = cconv1d(cfilt,CTEMP0, filterSize, nar);
 base = cconv1d(cfilt, CTEMP1, filterSize, nar);
 rsize = nar+filterSize-1;
 free(CTEMP0); 
 free(CTEMP1);

        basesd = (COMPLEX *)malloc(sizeof(COMPLEX) * nard); 
        based = (COMPLEX *)malloc(sizeof(COMPLEX) * nard); 
 itemp = 0;
 ftemp = 1.0/((float)decimate);
 for(j=0;j<nard;j++) {
    ctemp = cmplx(0.0,0.0);
    ctemp2 = cmplx(0.0,0.0);
    for(k = 0 ;k < decimate ;k++) {
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  ctemp = cadd(ctemp, bases[j*decimate+k]);
  ctemp2 = cadd(ctemp2, base[j*decimate+k]);
     }
           basesd[j] = cmul( cmplx(ftemp,0.0), ctemp);
    based[j] = cmul( cmplx(ftemp,0.0), ctemp2);
    itemp++;
 }
 //for(j=0;j<nard;j++) printf(“%f\t%f\n”,basesd[j].real,basesd[j].imag);
 //for(j=0;j<nard;j++) printf(“%f\t%f\n”,based[j].real,based[j].imag);

 free(bases);
 free(base);

/*************** NOW FOR DECON ******************/

 /* DCON in FREQUENCY DOMAIN */
 NFFT = 4*near2(nard);
 FFT0 = fft(basesd,nard,NFFT,-1.0,&itemp);
 FFT1 = fft(based,nard,NFFT,-1.0,&itemp);
 for(j=0;j<itemp;j++) {
           FFT1[j] = cmul(FFT1[j],conj(FFT0[j]));
        }
 base_c = fft(FFT1,NFFT,NFFT,1.0,&itemp);
 ctemp = cmplx( 1.0/((float)nar), 0.0);   /* Normalize */
 for(j = 0; j < NFFT; j++) {
             base_c[j] = cmul( ctemp, base_c[j]);
        }
 for(j=0;j<itemp;j++) printf(“%f\t%f\n”,base_c[j].real,base_c[j].imag);

 /* DCON IN TIME DOMAIN */
 rsize = nard+nard-1;
 CTEMP1 = (COMPLEX *) malloc(sizeof(COMPLEX)*nard);
 for(j=0;j<nard;j++) {
            CTEMP1[j] = conj(basesd[nard-j-1]);
        }
 base_c = cconv1d(based,CTEMP1,nard,nard);
// for(j=0;j<rsize;j++) printf(“%f\t%f\n”,base_c[j].real,base_c[j].imag);

 exit(0);

}

This is the file complex.c

#include <math.h>

struct dcomplex {
  double real;
  double imag;
};

struct complex {
  float real;
  float imag;
};
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typedef struct dcomplex DCOMPLEX;
typedef struct complex COMPLEX;

/**** Double Precision Versions *******************/

/* Make Complex */
DCOMPLEX dcmplx(double a, double b){
  DCOMPLEX c;
  c.real=a;
  c.imag=b;
  return c;
}

/* Addition */
DCOMPLEX dcadd(DCOMPLEX a, DCOMPLEX b){ 
   DCOMPLEX c;
   c.real = a.real + b.real;
   c.imag = a.imag + b.imag;
   return c;
}

/* Subtraction */
DCOMPLEX dcsub(DCOMPLEX a, DCOMPLEX b){ 
   DCOMPLEX c;
   c.real = a.real - b.real;
   c.imag = a.imag - b.imag;
   return c;
}

/* Multiplication */
DCOMPLEX dcmul(DCOMPLEX a, DCOMPLEX b){
   DCOMPLEX c;
   c.real=a.real*b.real-a.imag*b.imag;
   c.imag=a.imag*b.real+a.real*b.imag;
   return c;
}

/* multiply DCOMPLEX by real */
DCOMPLEX dcmulr(double a, DCOMPLEX b) {
   DCOMPLEX c;
   c.real = a * b.real;
   c.imag = a * b.imag;
   return c;
}

/* divide DCOMPLEX by real */
DCOMPLEX dcdivr(double a, DCOMPLEX b) {
   DCOMPLEX c;
   c.real =  b.real / a;
   c.imag =  c.imag / a;
   return c;
}
   
/* Conjugation */   
DCOMPLEX dconj(DCOMPLEX z){
 DCOMPLEX c;
 c.real = z.real;
 c.imag = -z.imag;
 return c;
}
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/* Exponentiation */
DCOMPLEX dcexp(DCOMPLEX z){
  DCOMPLEX c;
  double x,y,temp1,temp2;
  x = z.real;
  y = z.imag;
  temp1 = exp(x)*cos(y);
  temp2 = exp(x)*sin(y);
  c = dcmplx(temp1,temp2);
  return c;
}
  

/* Magnitude */
double dcabs(DCOMPLEX z){
   double x,y,ans,temp;
 
   x=abs(z.real);
   y=abs(z.imag);
   ans = sqrt(x*x+y*y);

//   if(x==0.0) ans = y;
//   else if (y == 0.0) ans = x;
//   else if (x > y) {
//      temp=y/x;
//      ans=x*sqrt(1.0+temp*temp);
//   }
//   else {
//      temp=x/y;
//      ans=y*sqrt(1.0+temp*temp);
//   }
   return ans;
}
/*********************************************/
/*** Single Precision versions ***************/
/*********************************************/

COMPLEX cmplx(float a, float b){
  COMPLEX c;
  c.real=a;
  c.imag=b;
  return c;
}

COMPLEX cadd(COMPLEX a, COMPLEX b){ 
   COMPLEX c;
   c.real = a.real + b.real;
   c.imag = a.imag + b.imag;
   return c;
}

COMPLEX csub(COMPLEX a, COMPLEX b){ 
   COMPLEX c;
   c.real = a.real - b.real;
   c.imag = a.imag - b.imag;
   return c;
}

COMPLEX cmul(COMPLEX a, COMPLEX b){
   COMPLEX c;
   c.real=a.real*b.real-a.imag*b.imag;
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   c.imag=a.imag*b.real+a.real*b.imag;
   return c;
}

/* multiply DCOMPLEX by real */
COMPLEX cmulr(float a, COMPLEX b) {
   COMPLEX c;
   c.real = a * b.real;
   c.imag = a * b.imag;
   return c;
}

/* divide DCOMPLEX by real */
COMPLEX cdivr(float a, COMPLEX b) {
   COMPLEX c;
   c.real =  b.real / a;
   c.imag =  c.imag / a;
   return c;
}
   
COMPLEX conj(COMPLEX z){
 COMPLEX c;
 c.real = z.real;
 c.imag = -z.imag;
 return c;
}

COMPLEX cexp(COMPLEX z){
  COMPLEX c;
  float x,y,temp1,temp2;
  x = z.real;
  y = z.imag;
  temp1 = exp(x)*cos(y);
  temp2 = exp(x)*sin(y);
  c = cmplx(temp1,temp2);
  return c;
}
  

float cabs(COMPLEX z){
   float x,y,ans,temp;
 
   x=abs(z.real);
   y=abs(z.imag);

   if(x==0.0) ans = y;
   else if (y == 0.0) ans = x;
   else if (x > y) {
      temp=y/x;
      ans=x*sqrt(1.0+temp*temp);
   }
   else {
      temp=x/y;
      ans=y*sqrt(1.0+temp*temp);
   }
   return ans;
}
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This is the file complex.h

#include <math.h>

struct complex {
  float real;
  float imag;
};

struct dcomplex {
  double real;
  double imag;
};

typedef struct dcomplex DCOMPLEX;
typedef struct complex COMPLEX;

DCOMPLEX dcmplx(double a, double b);
DCOMPLEX dcadd(DCOMPLEX a, DCOMPLEX b);
DCOMPLEX dcsub(DCOMPLEX a, DCOMPLEX b);
DCOMPLEX dcmul(DCOMPLEX a, DCOMPLEX b);
DCOMPLEX dcmulr(double a, DCOMPLEX b);
DCOMPLEX dcdivr(double a, DCOMPLEX b);
DCOMPLEX dconj(DCOMPLEX z);
DCOMPLEX dcexp(DCOMPLEX z);
double dcabs(DCOMPLEX z);

COMPLEX cmplx(float a, float b);
COMPLEX cadd(COMPLEX a, COMPLEX b);
COMPLEX csub(COMPLEX a, COMPLEX b);
COMPLEX cmul(COMPLEX a, COMPLEX b);
DCOMPLEX cmulr(float a, COMPLEX b);
DCOMPLEX cdivr(float a, COMPLEX b);
COMPLEX conj(COMPLEX z);
COMPLEX cexp(COMPLEX z);
float cabs(COMPLEX z);

This is the file conv1d.c

#include <malloc.h>
#include “complex.h”

float *conv1d(float *x, float *y, int Nx, int Ny) {

 register int i,j;
 float *z;
 int Nz;

 Nz = Nx + Ny - 1;
 z = malloc(sizeof(float)*Nz);

 for(j=0;j<Ny;j++) {
   for(i=0;i<Nx;i++){
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     z[i+j] += (x[i]*y[j]);
     }
 }
 
 return z;    

}

COMPLEX *cconv1d(COMPLEX *x, COMPLEX *y, int Nx, int Ny) {

 register int i,j;
 COMPLEX *z;
 COMPLEX ctemp;
 int Nz;

 Nz = Nx + Ny - 1;
 z = (COMPLEX *)malloc(sizeof(COMPLEX)*Nz);

 for(j=0;j<Ny;j++) {
   for(i=0;i<Nx;i++){
     ctemp = cmul(x[i],y[j]);
     z[i+j] = cadd(z[i+j],ctemp);
     }
 }
 
 return z;    

}

This is the file fft.c

#include <math.h>  /* pow and others */
#include <malloc.h>
#include <string.h>
#include <memory.h>
#include “zmath.h”
#include “round.h”
#include “complex.h”

/* most compilers have PI defined somewhere in math.h.  With gcc 
   it’s defined as M_PI.  Rather than try and figure it out what
   the name actually is we’ll just redefine it if it’s missing */

#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif

#define TRUE (1)
#define FALSE (0)

//int near2(int N);   /* next highest power of 2 */
//double dlogN(double x, int N);  /* log base N */
//double nint(double x);    /* nearest integer */
//double ceil(double x);   /* next highest integer */

COMPLEX *fft(COMPLEX *data, int Nx, int NFFT, float iSign, int *N) {
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   register int i,j,k;

   COMPLEX *F;   /* the FFTd data */
   COMPLEX W;   /* complex factor */
   COMPLEX ctemp;  /* temporary complex value */
   COMPLEX cnorm;

   float norm;

   int m,l,istep;
   int p,q;
   int *swap_tbl;
 

//   NFFT = near2(NFFT);
//   if(NFFT < Nx) NFFT = near2(Nx);   /* NFFT wasn’t specified or is < Nx 
*/

   *N = NFFT;      /* Return the FFT size as N */

   F = (COMPLEX *)malloc(NFFT*sizeof(COMPLEX));   /* the resorted array 
*/
   for(j=0;j<NFFT;j++){
  F[j] = cmplx(0.0,0.0);  /* initialze F */
   }
   memcpy(F,data,Nx*sizeof(COMPLEX));

   swap_tbl = malloc(NFFT*sizeof(int)); 
 

/* NEW GOOD WAY OF BIT REVERSING */
    p = NFFT/2;
    q = 1;
    swap_tbl[0] = 0;
    while(p >= 1) {

      for(i=0; i < q; ++i) 
         swap_tbl[i + q] = swap_tbl[i] + p;
      
      p /= 2;
      q *= 2;
    }

    for(i=0;i<NFFT;++i) {
       ctemp = F[i];
       q = swap_tbl[i];
       if(i < q) {
         F[i] = F[q];
         F[q] = ctemp;
       }
    }

  /* Ok. Now compute the FFT */

  l = 1;
  while(l < NFFT) {
    istep = 2*l;
    for(m = 0; m < l; m++) {
      W = cexp( cmplx(0.0,iSign*M_PI*m/l) );
      for(i = m; i < NFFT; i+=istep) {
        ctemp = cmul(F[i+l],W);
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        F[i+l] = csub(F[i],ctemp);
        F[i] = cadd(F[i],ctemp);
 
      } 
    }
    l = istep;

  } 

  return F; 

}

    

This is the file fft.h

void fork_calc(int lx, COMPLEX *cx, float signi);
DCOMPLEX *dfft(DCOMPLEX *data, int Nx, int NFFT, float iSign,int *N);
COMPLEX *fft(COMPLEX *data, int Nx, int NFFT, float iSign,int *N);

This is the file fir_low.c

#include <math.h>
#include <malloc.h>
#include “windows.h”

#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif

#define RECT (0)
#define HANN (1)
#define HAMMING (2)
#define BLACK (3)

float *fir_low(int N, float w0, int win) {

 register int j;
 float *x;  /* the Filter */
 float *w;  /* window */
 int q;

 if(N % 2) N--;
 q = N / 2;
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 x = malloc(sizeof(float)*(N+1));

 for(j=0;j<(N+1) ;j++) {
           x[j] = w0 * (float)(j - q);
 }

 sinc(x,N+1,1);

 switch(win) {
 case RECT:
  w = rect(N+1);
  break;
 case HANN:
  w = hann(N+1);
  break;
 case HAMMING:
  w = hamming(N+1);
  break;
 case BLACK:
  w = blackmann(N+1);
  break;
 default:
  w = rect(N+1);
  break;
 }

 for(j=0;j<(N+1);j++) {
   x[j] = x[j]*w0*w[j];
 }

 return x;
}

This is the file mdsp.h

#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif

#define RECT (0)
#define HANN (1)
#define HAMMING (2)
#define BLACK (3)

//DCOMPLEX *dfft(DCOMPLEX *data, int Nx, int NFFT, float iSign,int *N);
//COMPLEX *fft(COMPLEX *data, int Nx, int NFFT, float iSign,int *N);

float *conv1d(float *x, float *y, int Nx, int Ny);
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COMPLEX *cconv1d(COMPLEX *x, COMPLEX *y, int Nx, int Ny);
float *fir_low(int N, float w0, int win);
float *sinc(float *x, int Nx, int inPlace);

float *rect(int N);
float *hamming(int N);
float *hann(int N);
float *blackmann(int N);

This is the file round.c

double nint (double x) {

  double frac;
  double whole;
  double y;

  frac = modf(x,&whole);
  y = (frac < 0.5) ? whole : whole + 1;
  return y;
}

double floor (double x){
    long int n;
    double k;
    n = (long) x;
    if ((x-n) < 0) n--;
    k = (double) n;
    return k;

}

double ceil (double x) {
    long int n;
    double k;
    n = (long) x;
    if((x-n) > 0) n++;
    k = (double) n;
    return k;
}

This is the file round.h

#include <math.h>

double nint (double x);                 /* round to nearest integer */
double floor (double x);                /* round toward -infinity */
double ceil (double x);                 /* round toward infinity */
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This is the file sinc.c

#include <math.h>
#include <malloc.h>

#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif

float *sinc(float *x, int Nx, int inPlace) {

/**** build a SINC function from the array x */
/*  x is an array of floating point numbers */
/* Nx is the number of elements in x.  */
/* inPlace is a flag */
/*
/*  Makes sin(x)/x function.  If inPlace > 0,
 The operation is done in place and a pointer
 to x is returned.  Otherwise a pointer to
 a newly allocated array is returned 
*/

 int j;
 float *y;

 /* if we’re doing it in place make y point at x */
        if(inPlace)  y = x;
 /* otherwise allocate a new array */
 else   y = malloc(sizeof(float)*Nx);
    
 /* make the sinc function and catch zero divides */ 
 for(j = 0; j < Nx; j++) {
   if(x[j] == 0) y[j] = 1; 
          else y[j] = sin(M_PI*x[j])/(M_PI*x[j]);
        }

 return y; 

}

This is the file windows.c

#include <math.h>
#include <malloc.h>

#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif

/* N-point Hamming window */
float *hamming(int N) {
 register int j;
 float *w;
 float Nw;
 Nw = (float) (N-1);
 w = malloc(sizeof(float)*N); 
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 for(j=0;j<N;j++) {
   w[j] = 0.54 - 0.46*cos( 2.0*M_PI*((float)j)/Nw );
 } 
 return w;
}

/* N-point Hann window */
float *hann(int N) {
 register int j;
 float *w;
 float Nw;
 Nw = (float) (N+1);
 w = malloc(sizeof(float)*N); 
 for(j=0;j<N;j++) {
      w[j] = 0.5*(1.0 - cos( 2.0*M_PI*(float)(j+1)/Nw ));
 } 
 return w;
}

/* N-point Blackmann-Tukey window */
float *blackmann(int N) {
 register int j;
 float *w;
 float Nw;
 Nw = (float) (N-1);
 w = malloc(sizeof(float)*N); 
 for(j=0;j<N;j++) {
    w[j] = 0.42 - 0.5*cos( 2.0*M_PI*(float)j/Nw )  + 
           0.08*cos( 4.0*M_PI*(float)j/Nw );
    
 } 
 return w;
}

/* N-point Rectangle window */
float *rect(int N) {
 register int j;
 float *w;
 w = malloc(sizeof(float)*N); 
 for(j=0;j<N;j++)  w[j] = 1.0;
 return w;
}

This is the file windows.h

float *rect(int N);
float *hamming(int N);
float *hann(int N);
float *blackmann(int N);

This is the file zmath.c

#include <math.h>
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#include <round.h>

/************************************************************
  Find the next highest number which is a power of 2.  Used
  here to find an acceptable length for the FFT if the
  length of the input array isn’t a power of 2.
************************************************************/

int near2(int N){
    double n=0;
    int Q;
    while( ((double)N/pow(2.0,n)) > 1.0 ) n++;
    Q = (int) nint(pow(2,n));
    return Q;

}

/*********************************************************
  Log base N of a double.  Watch out for 0.
*********************************************************/

double dlogN(double x, int N){

    double y;
    y = log(x)/log(N);
    return y;

}

This is the file zmath.h

int near2(int N);
double dlogN(double x, int N);




