
Naval Research Laboratory
Stennis Space Center, MS 39529-5004

NRL/FR/7430--04-10,039

Summary Report on a Seamap-C
Chirp Deconvolution Algorithm with
Demonstrations Using Synthetic
and Field Data

DENNIS A. LINDWALL

Seafloor Sciences Branch
Marine Geosciences Division

September 13, 2004

Approved for public release; distribution is unlimited.

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

3. DATES COVERED (From - To)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

6. AUTHOR(S)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

10. SPONSOR / MONITOR’S ACRONYM(S)9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR / MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area
code)

b. ABSTRACT c. THIS PAGE

18. NUMBER
OF PAGES

17. LIMITATION
OF ABSTRACT

Summary Report on a Seamap-C Chirp Deconvolution Algorithm with
Demonstrations Using Synthetic and Field Data

Dennis A. Lindwall

Naval Research Laboratory
Marine Geosciences Division
Stennis Space Center, MS 39529-5004 NRL/FR/7430--04-10,039

Approved for public release; distribution is unlimited.

Unclassified Unclassified Unclassified
UL 47

Dennis A. Lindwall

(228) 688-5306

Seamap-C
Side-scan sonar system

01-04-1999 to 30-01-2000

Chirp signal
Synthetic data

Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5660

This report describes several ways to generate a chirp signal for the Seamap-C side-scan sonar system and then to remove the chirp signal
from the field data to produce high-resolution seafloor images. Synthetic data are generated using one of several chirps according to the system
specifications, data collection methods, and preliminary processing of the Seamap-C system. These synthetic data files, as well as field data, are
read by the deconvolution program, which removes the known source signal. Several chirp signals are compared to demonstrate the tradeoffs
between resolution and noise levels.

62435N

74-6632-00

ONR

13-09-2004 NRL Formal Report

N0001402WX30017

CONTENTS

BACKGROUND .. 1

SYNTHETIC DATA ... 2

DECONVOLUTION .. 3

DEMONSTRATIONS .. 4

ACKNOWLEDGMENTS .. 14

REFERENCES ... 14

APPENDIX A — Algorithms in the IDL Language ... 15

APPENDIX B — Algorithms in the C Language ... 29

iii

Summary Report on a Seamap-C Chirp Deconvolution Algorithm 1

Manuscript approved February 20, 2004.

1

SUMMARY REPORT ON A SEAMAP-C CHIRP DECONVOLUTION ALGORITHM
WITH DEMONSTRATIONS USING SYNTHETIC AND FIELD DATA

BACKGROUND

Side-scan sonar systems were first developed years ago to image seafloor geological features. The Uni-
versity of Hawaii developed the ability to also measure bathymetry with their SeaMarc side-scan system
by using two rows of transducers on each side and measuring the angle of the reflected return. Since these
early systems, there have been many side-scan systems using the same principles but with different sizes
and frequencies for different applications. All of these systems transmit a narrowband sound pulse (ping) as
the source. The spatial resolution of a side-scan sonar system using a narrowband ping is determined by the
length of the ping and by the beam pattern from the transducer array. A very short ping will give the high-
est resolution. For example, the Seamap-C system typically uses pings from 2- to 10-ms long. A 2-ms ping
gives a resolution along the swath of 1.5 m for a seafloor grazing ray and 1.06 m at a 45 deg slant angle. A
10-ms pulse has a resolution of about 5 m at a 45 deg slant range. These resolutions are theoretical, ignoring
the effects of noise and signal strength.

Using a broadband chirp signal has two advantages regarding resolution and power over a continuous
wave (CW) ping signal. The theoretical resolution limit of a broadband signal, according to the Rayleigh
criterion, is approximately

2
3

2
3

2
3νb V

R

R
V

= () = ,

where νb is the frequency bandwidth, V is the sound speed, and R is the resolution. This leads to a resolu-
tion of

R V

b
= ν

which is, with a typical sound speed of 1,500 m/s and a bandwidth of 2 kHz, 0.75 m for a seafloor grazing
ray or about 0.5 m at a 45 deg slant angle. This resolution does not depend on the length of the signal or
its frequency, only the bandwidth, so a short chirp and a long chirp of the same bandwidth have the same
theoretical resolution. The Seamap-C system can generate a chirp of up to 1 second long or 500 times as long
as the shortest ping. A 1-second, 2-kHz bandwidth chirp gives not only twice the resolution but 500 times
the power as the 2-ms ping. Using the Seamap-C system with a chirp signal combines the high resolution of
smaller, high-frequency systems and the long range capability of larger, low-frequency systems.

Datasonics, Inc. makes a commercially available chirp side-scan sonar system (Parent et al. 1993). This
system uses a hardware deconvolution before the data are recorded. They also use a Gaussian frequency
window to reduce the deconvolution side lobes.

Dennis A. Lindwall2

SYNTHETIC DATA

Synthetic data are useful for testing the processing algorithms since it will be free of any noise, artifacts,
or errors, and the environment can be simple and precisely known. Comparing processed synthetic data with
the known environment should give exact agreement. The synthetic data program can be expanded to include
off-beam reflections and the response of both arrays from a known bathymetry. The synthetic data are writ-
ten in the format that the Seamap-C system software writes and records data. This way every program that
reads and processes the field data can be tested with synthetic data.

The synthetic data algorithm produces the time series output from a single array along its beam axis
with a chirped signal, either linear sweep or an arccosine sweep. The environmental response appears as
reflections at different times and strengths. A linear sweep has a frequency that changes at a constant rate
throughout the period of the sweep and is calculated thus:

 a t t tc() sin ((() / ()))= + +2 21 2 1π ω ω ω (1)

where ω1 is the start frequency, ω2 is the end frequency, and tc is the length of the chirp signal in seconds.
This signal needs to be windowed to reduce the deconvolution side lobes. The program includes several
time-domain windows as options. The synthetic data algorithm also includes some nonlinear chirps that do
not need time-domain windowing so that the transducers can be driven at full power for the entire signal
duration. One nonlinear chirp signal is produced by:

 a a t tc= + − −sin ((() cos () /)).2 11 2 1π ω ω ω π (2a)

This one has a slightly asymmetric spectrum with one sharp edge, yet its autocovariance function has small
side lobes. Another nonlinear chirp signal is:

 a t a t tc() sin ((() cos () /))= + − −2 1 2 21 2 1π ω ω ω π . (2b)

Data from the Seamap-C system are compressed before being recorded by shifting the center frequency
of the signal (basebanding) and calculating the analytical waveform at a much lower sampling rate (quadra-
ture decimation). The basebanding is done using:

 a t ib t x t t h t i x t() () ()cos () () ()s+ =

∗ +2 20ω iin () ()ω0t h t

∗ (3)

where * denotes convolution, x(t) is the original time series data, ω0 is the center frequency of the chirp
signal, h(t) is an ideal low-pass filter, and a(t) + ib(t) is the resulting analytic (complex) signal. The resulting
signal is low-pass filtered and decimated to a sampling rate of 2,875 Hz. This is less than twice the Nyquist
frequency, but is adequate since an analytic signal is recorded. In the engineering terminology, the real part
of the analytic signal is I (in phase) and the imaginary part is Q (quadrature) in the engineering terminology
of I and Q pairs.

The synthetic data are produced by adding several chirp signals (a 10.5- to 12.5-kHz linear sweep) at
different amplitudes and time delays. This is equivalent to convolving a simple Green’s function (Earth
response to an impulse) with the chirp signal. The real-time signal at the original 46-kHz sampling rate is
saved as a file. This signal is changed to an analytic signal by using the Hilbert transform of the real signal
for the imaginary part. This analytic signal is frequency shifted (basebanded) using Eq. (3), low-pass filtered,
and decimated by a factor of 16. The real and imaginary parts of the resulting signal, a and b of Eq. (3), are

Summary Report on a Seamap-C Chirp Deconvolution Algorithm 3

saved as two separate files. These files simulate the data recorded in the field from one transducer array of
the Seamap-C system.

DECONVOLUTION

The long chirp signal must be removed from the data by deconvolution or some other source signal
removal operation. Deconvolution of two signals is equivalent to convolving one signal with the inverse of
the other. For a source signal v(t) and Earth response e(t) the recorded signal is

 g t v t e t() () ()= ∗ . (4)

We can achieve the desired effect of deconvolution by convolving the recorded signal with the source, thus
avoiding any division by zero problems:

 Φvg t g t v t v t e t v t() () () (() ()) ()= ∗ − = ∗ ∗ − (5)

= ∗ ∗ −
= ∗

e t v t v t
e t tvv

() (() ())
() (),Φ

(6)

where Φvv is the autocorrelation function, and v denotes the complex conjugate of v. Φvv, for a broadband
signal, has the same time resolution as deconvolution. Convolution in the time domain is

 g t g t g g t d1 2 1 2() () () () ,∗ = −−∞
+∞∫ τ τ τ (7)

which is similar to the cross covariance

 g t g t g g t d1 2 1 2() () () () ,⊗ = +−∞
+∞∫ τ τ τ (8)

where ⊗ denotes cross covariance. So, convolution is equivalent to cross covariance with one of the time
series reversed. This assumes that we know the exact signal that is transmitted. This will not be true in the
field. While we will know the voltage and current in the transducer array during the transmit event, the actual
acoustic signal in the water will be different because of nonlinear effects within the transducers. We may
be able to measure these effects from calibration tests, or we may be able to back it out of field data by an
inversion process (e.g. Wood 1999).

The recorded data are in a different form than the transmitted or received acoustic signals. The base-
banding and quadrature decimation are described in the Synthetic Data section. The data and source can be
reconstructed at the original sampling rate and frequency and then used to calculate the cross covariance, but
this is unnecessary and slow but useful as a sanity check. Two better alternatives are to partially reconstruct
the data and the transmitted signal as real-time series with a low center frequency, and then calculate the
cross covariance, or else to deconvolve the complex, basebanded, quadrature-decimated data directly.

The real data can be partially reconstructed by resampling the complex, basebanded signal at twice the
rate then shifting the center frequency by

 b t I t t Q t t() ()cos ()sin= () + ()2 2 4 2 2 4π π∆ ∆ , (9)

where ∆ is the new sampling rate, so shifting the bandwidth by ∆/4 (half the Nyquist frequency) places the
lower edge of the frequency band at zero. The recorded source signal can be partially reconstructed in the
same way and then convolved with b(t) to recover the Green’s function. This recovered Green’s function
should be identical, except for the sampling rate, as that recovered from the original data and chirped source

Dennis A. Lindwall4

signal (a in Eqs. (1) and (2)). The real-time series b(t) has the same number of samples as the original I(t)
and Q(t) pairs, so the convolution calculation should be as fast as the complex convolution.

The recorded data and source signal in the complex, basebanded, quadrature-decimated form can be
deconvolved directly without any frequency shifting by convolving the complex data and signal (I and Q
pairs). Complex convolution involves cross terms; some analysis programs may do this properly, but many
analysis packages do not, and the algorithm must be correctly written. If Φds is the cross covariance of the
complex data d and source s, then the real and imaginary parts of Φds are

 Φ Φ Φ{ } { } { } { } { }real ds d real s real d imaginary s imaginary= + (10)

 Φ Φ Φ{ } { } { } {imaginary ds d real s imaginary d imag= − iinary s real} { } . (11)

As shown in the bottom plot of Fig. 4, the complex signal Φds has a central frequency of 0 Hz, so a
real-time representation of this signal will only have a bandwidth of 1 kHz. To display the data with its full
bandwidth and resolution, the sampling rate must be doubled, and the center frequency must be shifted as
in Eq. (9). The Seamap-C system has a decimated, basebanded sampling rate of 2,875 Hz, so the frequency
shift in Eq. (9) (∆/4) can be half that amount in order to center the spectrum in the new bandwidth.

DEMONSTRATIONS

A 5-ms linear chirp from 10.5 to 12.5 kHz is shown in Fig. 1, with its basebanded form in Fig. 2 dem-
onstrating the difference in the frequencies and minimum sampling rate. The time series in Fig. 1 has a
46-kHz sampling rate (the Seamap-C system sampling rate), which is nearly twice the Nyquist rate, but still
reasonable for this signal. The basebanded signal is easily sampled at 2,875 Hz, which is what the Seamap-C
system records. Figure 3 shows the 50-ms long chirp used for both the synthetics and the field test with the
real-time series, sweeping from 10.5 to 12.5 kHz, at the top and the basebanded form on the bottom. The
spectra of both the time series and the basebanded signal (Fig. 4) have the same shape but different central
frequencies. The linear chirp in Fig. 3 is used to generate synthetic data with five simple reflections as a
Green’s function (Fig. 5). Figure 6 shows the real (I or “in phase”) and imaginary (Q or “quadrature”) parts
of the complex, synthetic data signal. These are called the I and Q pairs and are the data that are recorded in
the field by the Seamap-C system. Lastly, the data are deconvolved by calculating the cross covariance of
the simulated data with the chirp signal in both the high-frequency real format and the basebanded format.
The two recovered Green’s functions from the original 46-kHz signal and the decimated, basebanded signal
are compared in Figs. 7 and 8. Note that there is no window applied to the chirp signal, which causes the
rough spectra (Fig. 4) and the large side lobes in the deconvolved data (Figs. 7 and 8). These noise effects
are caused by the sharp edges in the time-domain signal (Figs. 1, 2, and 3) and can be reduced by either
applying a time-domain window to the linear chirp or by using a nonlinear chirp.

The time-domain window used for this example is a quarter-cosine window. There are other windows
that give smaller side lobes for the autocorrelation function, but the quarter-cosine window has an autocor-
relation central peak that is only slightly wider than that for the unwindowed signal. Shown are the windowed
46-kHz signal (top of Fig. 9), the basebanded, windowed signal (bottom of Fig. 9), and the spectra of the two
(Fig. 10). Note how much smoother the spectra of the windowed signals are (Fig. 10) than the unwindowed
signals (Fig. 4). New synthetic data were generated using the same five reflections as before in Fig. 4, but
using the windowed signals (Fig. 9), and are shown as both the 46-kHz data and the basebanded data (Fig.
11). The data were then deconvolved by calculating the cross covariance of the new simulated data and the
windowed chirp signals in both the 46-kHz real format and the basebanded format. The data are shown as
the two recovered Green’s functions from the 46-kHz signal (top of Fig. 12) and the decimated, basebanded
signal (bottom of Fig. 12). The side lobes are much smaller than for the unwindowed case, and the smallest
reflection is clearly distinguished from the side lobes.

Summary Report on a Seamap-C Chirp Deconvolution Algorithm 5

chirp signal

0 1 2 3 4 5

-1.0

-0.5

0.0

0.5

1.0

Figure 1. Time series of a linear 5 ms long chirp signal sweeping from 10.5 kHz to 12.5 kHz.
The horizontal axis is milliseconds and the sampling rate is 46 kHz. The period clearly
decreases from left to right. There are just over 10.5 cycles in the first ms and just under 12.5
cycles in the last ms. The apparent amplitude variations are a digitation effect. The chirp sig-
nal is normally much longer than 5 ms with the Seamap system (up to 1 full second) but the
individual cycles would not be resolvable on a page sized plot.

0 1 2 3 4 5

-1.0

-0.5

0.0

0.5

1.0

Figure 2. Base banded signal from Figure 1. This is the real part of the modulated signal
removed from the 11.5 kHz carrier signal as calculated by equation (3). This chirp signal
sweeps from -1 kHz to +1 kHz. The √2 amplitude reduction is a normalization factor in equa-
tion (3).

Fig. 1 — Time series of a linear 5-ms long
chirp signal sweeping from 10.5 to 12.5 kHz.
The horizontal axis is milliseconds and the
sampling rate is 46 kHz. The period clearly
decreases from left to right. There are just over
10.5 cycles in the first ms and just under 12.5
cycles in the last ms. The apparent amplitude
variations are a digitation effect. The chirp
signal is normally much longer than 5 ms with
the Seamap-C system (up to 1 full second) but
the individual cycles would not be resolvable on
a page-sized plot.

Fig. 2 — Basebanded signal from Fig. 1.
This is the real part of the modulated signal
removed from the 11.5-kHz carrier signal as
calculated by Eq. (3). This chirp signal sweeps
from -1 to +1 kHz. The √2 amplitude reduction
is a normalization factor in Eq. (3).

Dennis A. Lindwall6

Fig. 3 — The original chirp source time series and the real part (I)
of the basebanded source. This chirp sweeps from 10.5 to 12.5 kHz
as in Figs. 1 and 2, but this is 50-ms long and will be used in the
next examples.

Fig. 4 — Spectra of the original 10.5 to 12.5
kHz chirp (top) and the basebanded chirp with a
frequency range from –1.0 to +1.0 kHz (bottom).
The lower amplitude of the basebanded spectrum
is due to the √2 factors in Eq. (3).

-1.0

-0.5

0.0

0.5

1.0

0 10 20 30 40 50

-1.0

-0.5

0.0

0.5

1.0

original spectrum

8 10 12 14 kHz
0.000

0.005

0.010

basebanded spectrum

-2 0 2
0.000

0.005

0.010

frequency in kHz

Summary Report on a Seamap-C Chirp Deconvolution Algorithm 7

real (I) decimated data

20 40 60 80 100

-2

0

2

imaginary (Q) decimated data

0 20 40 60 80 100

-2

0
time in ms

0 80 100

-2

0

2

4

0 20 40 60 80 100

-2

0

2

Fig. 5 — The original time series data (top) and the basebanded
data (bottom). These data are calculated by adding a source
time series for each of several impulses. The source chirp is
50-ms long as in Fig. 3. The impulses are at 10.0, 15.2, 18.0,
26.0, and 27.0 ms. Each has a different amplitude and are
arranged so that the chirp signals overlap and interfere by
varying degrees.

Fig. 6 — The real (I or “in phase”) and the imaginary
(Q or “quadrature”) part of the quadrature decimated,
basebanded data from Fig. 5. This data has been decimated
by a factor of 16 so that there are 288 samples in each of
the two time series rather than the 4,600 samples in the
original 100-ms long real time series.

Dennis A. Lindwall8

20 40 60 80 100
0.0

0.5

1.0

20 40 60 80 100
0.0

0.5

1.0

Figure 7. The deconvolved data at the original frequency (top) and decimated and base-
banded (bottom). The main lobes are 1 ms wide and there are strong sidelobes. A time-
window on the chirp can reduce the sidelobes while giving wider main lobes.

10 20 30
0.0

0.5

1.0

10 20 30
0.0

0.5

1.0

Figure 8. Enlargement of the deconvolved original waveform and the decimated,
basebanded data. The times and amplitudes agree with the original input parameters.

Fig. 7 — The deconvolved data at the original frequency
(top) and decimated and basebanded (bottom). The main
lobes are 1-ms wide and there are strong side lobes. A
time window on the chirp can reduce the side lobes while
giving wider main lobes.

Fig. 8 — Enlargement of the deconvolved original
waveform and the decimated, basebanded data.
The times and amplitudes agree with the original
input parameters.

Summary Report on a Seamap-C Chirp Deconvolution Algorithm 9

Fig. 9 — The chirp source windowed by a quarter cosine;
otherwise the parameters are the same as in Fig. 3

0 50

-1.0

-0.5

0.0

0.5

1.0

0 10 20 30 40 50

-1.0

-0.5

0.0

0.5

1.0

Fig. 10 — Spectra of the windowed linear chirp in
the original form (top) and after the basebanding
frequency shift (bottom)

original spectrum

8 10 12 14
0.000

0.005

0.010

basebanded spectrum

0.000

0.005

0.010

-2 0 2
frequency in kHz

Dennis A. Lindwall10

0 80 100

-2

0

2

4

0 20 40 60 80 100

-2

0

2

Figure 11. The 10.5 to 12.5 kHz data using the windowed chirp from Figure 9 (top) as in
Figure 5. The response impulses are at 10.0, 15.2, 18.0, 26.0 and 27.0 ms. The base banded
data is shown in the bottom figure.

0 10 20 30 40
0.0

0.5

1.0

0 10 20 30 40
0.0

0.5

1.0

Figure 12. The deconvolved response from the original data (top) and from the decimated,
basebanded data. The times and relative amplitudes agree with the original input parameters.

Fig. 11 — The 10.5- to 12.5-kHz data using the windowed
chirp from Fig. 9 (top) as in Fig. 5. The response impulses
are at 10.0, 15.2, 18.0, 26.0, and 27.0 ms. The basebanded
data are shown in the bottom figure.

Fig. 12 — The deconvolved response from the original
data (top) and from the decimated, basebanded data. The
times and relative amplitudes agree with the original
input parameters.

Summary Report on a Seamap-C Chirp Deconvolution Algorithm 11

Fig. 13 — The basebanded time series source (top), the basebanded
spectrum (middle), and the deconvolved Green’s function using this
source (bottom)

0 1 0 2 0 3 0 4 0 5 0

-1.0

-0.5

0.0

0.5

1.0

-4 -2 0 2 4
0.000

0.005

0.010

0 1 0 2 0 3 0 4 0
0.0

0.5

1.0

Figure 13. The base banded time series source (top), the base banded spectrum
(middle), and the deconvolved Green's function using this source (bottom).

Dennis A. Lindwall12

Fig. 14 — The basebanded time series of an alternative, nonlinear chirp
signal (top), its spectrum (middle), and the deconvolved Green’s function
from synthetic data generated with this source

0 1 0 2 0 3 0 4 0 5 0

-1.0

-0.5

0.0

0.5

1.0

-4 -2 0 2 4
0.000

0.005

0.010

0 1 0 2 0 3 0 4 0
0.0

0.5

1.0

Figure 14. The base banded time series of an alternative, non-linear chirp signal
(top), it's spectrum (middle), and the deconvolved Green's function from synthetic
data generated with this source.

Summary Report on a Seamap-C Chirp Deconvolution Algorithm 13

Fig. 15 — Field data from the Norwegian Sea using a chirp signal (top) and after deconvolving the
chirp signal (bottom). The horizontal scale is samples and the vertical is traces. The seafloor reflection
is near the 200th sample and no time- or angle-dependent gain has been applied.

Dennis A. Lindwall14

A nonlinear chirp has a nonuniform frequency change. By selecting certain frequency shift schemes,
one can reduce or eliminate the need for a time-domain window. Without a time-domain window, the signal
is at full amplitude for its duration and is easier to generate electronically. Two different nonlinear chirps
are shown in Figs. 13 and 14, along with their spectra and resulting Green’s functions. Both of these are
imperfect, as can be seen by their asymmetrical spectra, but the resulting deconvolved Green’s functions are
superior to the unwindowed, linear chirp solution (Fig. 8). Further development of nonlinear chirps should
improve the spectral shapes and reduce the autocorrelation side lobes so that the deconvolved Green’s func-
tions will be even better.

The Seamap group from the Naval Oceanographic Office (NAVOCEANO) collected several minutes of
chirp data near the Norwegian coast during the summer of 1999. These data were basebanded and quadrature
decimated as described in the Synthetic Data section. The transmitted chirp signal was recorded as voltage
and current sent to the transducers. The voltage and current signals are somewhat different; the voltage was
arbitrarily chosen for use as the transmitted signal. This demonstration only shows that this approach works
and is not an optimal implimentation of the chirp nor the deconvolution algorithm.

ACKNOWLEDGMENTS

Thanks to CAPT Charles Hopkins, Program Manager at the Space and Naval Warfare Systems Com-
mand (SPAWAR) for his generous support. Ken Sharp, Maurice Thiele, Paula Costello, and G.W. Landrum
at NAVOCEANO provided all of the essential technical information concerning the Seamap-C system and
collected the field data. Maria Kalcic of the Naval Research Laboratory directed the project, and along with
Edit Bourgeois of the University of New Orleans, and Andrew Martinez of Tulane University, New Orleans,
Louisiana, provided many helpful ideas concerning the data processing and deconvolution. The translations
of the IDL language programs into the C language were done at Planning Systems Inc., Slidell, Louisiana,
by Mike Duncan and Pat McDowell. Funding was provided by the SPAWAR program element PMW 185.

REFERENCES

Parent, M.D., C. Fang, T.F. O’Brien, and W.W. Danforth, “First Results of a Deep Tow Chirp Sonar Seafloor
Imaging System,” Proceedings of the Offshore Technology Conference, OTC 7115, 1993.

Wood, W.T., “Simultaneous Deconvolution and Wavelet Inversion as a Global Optimization,” Geophysics,
V. 64, p 1108, 1999.

Appendix A

ALGORITHMS IN THE IDL LANGUAGE

This is the file inputa.dat that is read by the synthetic data programs and sets several system and envi-
ronment parameters.

11.5 ; the central frequency of the chirp in kHz
1.0 ; half the chirp bandwidth in kHz
50.0 ; the chirp length in milliseconds
5 ; the number of reflections (next 2 lines)
10.0,15.2,18.0,26.0,27.0 ; time delay in ms for the reflections
1.0,0.5,0.2,0.8,0.6 ; absolute amplitude of the reflections
16 ; decimation factor

This is the program that generates the synthetic data using the chirp specified in the commented lines.

PRO chirp5a
; calculates and plots a chirp signal
; using the system parameters of Seamap C
; (sample rate of 46 kHz)
; includes: Quadrature modulation
; low pass filter
; decimated signal
; base banding using the center frequency (cfreq)
; reads input parameters from the file ‘input.dat’
; the “data” can have several pulses at delay times
; and amplitudes specified in the file ‘input.dat’
; time is in microseconds
; cfreq is center frequency in kilohertz
; del is half bandwidth of chirp (10.5 to 12.5 kHz
; chirp has cfreq of 11.5 and del of 1.0)
; tlong is chirp length in milliseconds
; dtime is delay to start of chirp in milliseconds
; per is period in time steps (10 µs)
; nar is the time series length

ci = complex(0.0,1.0)
;pi = 3.141592654
pi = !DPI
sqrt2 = sqrt(2)
srate = 46000 ; the sampling rate
sratek = srate / 1000. ; the sampling rate in kilohertz
nar = 46000

flts = findgen(nar)
a = fltarr(nar) ; chirped signal
as = fltarr(nar) ; chirped source
b = fltarr(nar) ; real spectrum of chirp signal
t = fltarr(nar) ; time in microseconds
anal = complexarr(nar) ; analytic signal
anals = complexarr(nar) ; analytic source
analf = complexarr(nar) ; fft of analytic signal

15

Dennis A. Lindwall16

base = complexarr(nar) ; base banded signal
bases = complexarr(nar) ; base banded source
basef = complexarr(nar) ; fft of base banded signal
basesf = complexarr(nar) ; fft of base banded source
rbase = fltarr(nar) ; real part of base banded signal
rbases = fltarr(nar) ; real part of base banded source
ibase = fltarr(nar) ; imaginary part of base banded signal
ibases = fltarr(nar) ; imaginary part of base banded source

t = flts * 1000. / srate

openr, 1, ‘inputa.dat’
readf,1,cfreq
readf,1,del
readf,1,tlong
readf,1,nd
dtime = fltarr(nd)
damp = fltarr(nd)
readf,1,dtime
readf,1,damp
readf,1,decimate
close,1

print,’from inputa.dat’, cfreq,del,tlong,nd,decimate
print, ‘dtime input’,dtime
print, ‘damp input’,damp
nard = nar / decimate ; length of decimated time series
nchirp = tlong * srate / 1000. ; number of samples in chirp
nchirp2 = tlong * srate / 500. ; twice nchirp
nchirph = tlong * srate / 2000. ; half nchirp
print,nchirp,nchirp2,nchirph
rbased = fltarr(nard) ; real, decimated, base banded signal
rbasesd = fltarr(nard) ; real, decimated, banded source
ibased = fltarr(nard) ; imaginary, decimated, base banded signal
ibasesd = fltarr(nard) ; imaginary, decimated, base banded source
td = fltarr(nard) ; decimated time series (msec / decimate)
tf = t * 46. / 1000. - 23. ; frequency scale (normal)
print,’tf info’,size(tf),tf(0),tf(45999),t(0),t(45999)
wqc = fltarr(nchirp) ; quarter cosine window for chirp

tend = float(nar) / float(srate)
tendm = tend * 1000.
dstart = fix(dtime * sratek)
sfreq = cfreq - del
efreq = cfreq + del
print,’tend stuff’,tend,tendm,dstart,sfreq,efreq

w = 1.0 ; default to boxcar window
for i = 0, (nchirp/4)-1 do begin ; this loop makes a 1/4 cosine window
 wqc(i) = (1./2.) - (1./2.) * cos(pi * i * 4. / nchirp)
 wqc(i + nchirp/4) = 1.0
 wqc(i + nchirp/2) = 1.0
 wqc(nchirp-1-i) = wqc(i)
endfor

; uncomment the desired line to implement a window
; and to chose the type of chirp or ping
for i = 0, (nchirp-1) do begin
 ii = float(i)
; w = 0.5 + 0.5 * cos (pi * 2 * (ii - nchirph) / nchirp) ; Hanning window
; w = sin (pi * ii / nchirp) ; sine window

Summary Report on a Seamap-C Chirp Deconvolution Algorithm 17

; w = wqc(i) ; quarter cosine
; next line for cw ping
; per = w*sin(2*pi * (sfreq) *ii/sratek)
; next line for linear chirp
; per = w*sin(2*pi * (sfreq + ii *(efreq - sfreq) / nchirp2) *ii/sratek)
; next line for crude nonlinear chirp
; per = sin(2*pi*(sfreq+(2*del*acos(1.-ii/nchirp)/pi)) *ii/sratek)
; next line for nonlinear chirp tests, this one SEEMS like it
; should be better
 per = sin(2*pi*(sfreq+del*acos(1.-ii/nchirph)/pi) *ii/sratek)
; per = sfreq+(del*acos(1.-ii/nchirph)/pi)
; per = sfreq + ii *(efreq - sfreq) / nchirp2
 as(i) = per
 a(i+dstart(0)) = damp(0) * per
endfor

for n = 1, nd-1 do begin
 for k = 0, (nchirp-1) do begin
 kk = float(k)
; w = 0.5 + 0.5 * cos (pi * 2 * (kk - nchirph) / nchirp) ; Hanning window
; w = sin (pi * kk / nchirp) ; sine window
; w = wqc(k) ; quarter cosine
; next line for linear chirp
; per = w*sin(2*pi * (sfreq + kk *(efreq - sfreq) / nchirp2) *kk/sratek)
; next line for crude nonlinear chirp
; per = sin(2*pi*(sfreq+(2*del*acos(1.-ii/nchirp)/pi)) *ii/sratek)
; a(k+dstart(n)) = a(k+dstart(n)) + damp(n) * per
 a(k+dstart(n)) = a(k+dstart(n)) + damp(n) * as(k)
 endfor
endfor

anal = complex(a,hilbert(a,-1))
anals = complex(as,hilbert(as,-1))
analf = 2 * shift(fft(anals,-1), (1 + nar/2))
;analf = 2 * shift(fft(as,-1), (1 + nar/2))
base = sqrt2*a*cos(cfreq*t*2*pi)+ci*sqrt2*a*sin(cfreq*t*2*pi)
bases = sqrt2*as*cos(cfreq*t*2*pi)+ci*sqrt2*as*sin(cfreq*t*2*pi)
;base = anal * exp (-ci * sfreq * t * 2*pi)
;bases = anals * exp (-ci * sfreq * t * 2*pi)
;base = anal * exp (-ci * cfreq * t * 2*pi)
;bases = anals * exp (-ci * cfreq * t * 2*pi)
;basef = 2 * sqrt(nchirp) * shift(fft(base,-1), (1 + nar/2))
basef = 2 * shift(fft(base,-1), (1 + nar/2))
basesf = 2 * shift(fft(bases,-1), (1 + nar/2))

filt = digital_filter(0,1./decimate,50,nchirph/2)
help,base,bases
rbase = float(base)
ibase = imaginary(base)
rbases = float(bases)
ibases = imaginary(bases)
rbase = convol(rbase,filt,center=1,edge_wrap=1)
ibase = convol(ibase,filt,center=1,edge_wrap=1)
rbases = convol(rbases,filt,center=1,edge_wrap=1)
ibases = convol(ibases,filt,center=1,edge_wrap=1)
help,filt,rbase,ibase,rbases,ibases
print,t(500:504)
print,a(500:504)
print,rbase(500:504)
print,rbases(200:204)
;print,filt(458:462)

Dennis A. Lindwall18

print,float(basesf(2000:2004))

td = rebin(t,nard)
tfd = rebin(tf,nard)
rbased = rebin(rbase,nard)
ibased = rebin(ibase,nard)
rbasesd = rebin(rbases,nard)
ibasesd = rebin(ibases,nard)
print,per,nchirp,t(nar-1)

save, a, filename=’original.data’
save, as, filename=’original.source’
;save, rbase, filename=’basebanded.data’
save, base, filename=’basebandedc.data’
;save, rbases, filename=’basebanded.source’
save, bases, filename=’basebandedc.source’
save, rbased, filename=’basebanded_decir.data’
save, ibased, filename=’basebanded_decii.data’
save, rbasesd, filename=’basebanded_decir.source’
save, ibasesd, filename=’basebanded_decii.source’
save, t, filename=’time_signal.data’
save, td, filename=’time_signal_dec.data’

!p.background=255
!p.color=0
!p.font=0
!p.charsize=1.0
!p.thick=1.0
!p.ticklen=0.03
;!p.region = [0.0,0.0,6.0,11.0]
!p.position = [0.1,0.1,0.9,0.9]
!x.range = [0.0, 50.0]
!y.range = [-1.0, 1.0]

set_plot,’x’
window,2
plot, t, as, subtitle=’chirp signal’, xsty=5, ysty=5
axis, 0, 0, xax=0
axis, 0, 0, yax=0

!y.range = [-1.0, 1.0]
!x.range = [0.0, 50.0]
window,0
;plot, t, abs(base), subtitle=’abs of base banded signal’, xsty=5, ysty=5
plot, t, rbase, subtitle=’base banded signal’, xsty=5, ysty=5
;plot, t, a, subtitle=’original data’, xsty=5, ysty=5
axis, 0, 0, xax=0
axis, 0, 0, yax=0

;!x.range = [0.0, 0.2*tendm]
!x.range = [0.0, 50.0]
!y.range = [-1.0, 1.0]
window,3
;plot, t, abs(bases), subtitle=’abs of base banded source’, xsty=5, ysty=5
;plot, t, filt, subtitle=’filter vector’, xsty=5, ysty=5
plot, td, rbased, subtitle=’decimated I base banded signal’, xsty=5, ysty=5
axis, 0, 0, xax=0
axis, 0, 0, yax=0

;!y.range = [-1.0, 1.0]
;!x.range = [0.0, 40.0]

Summary Report on a Seamap-C Chirp Deconvolution Algorithm 19

;window,1
;plot, td, ibased, subtitle=’decimated Q base banded signal’, xsty=5, ysty=5
;plot, t, rbase, subtitle=’base banded data’, xsty=5, ysty=5
;plot, t, abs(base), subtitle=’abs of base banded data’, xsty=5, ysty=5
;axis, 0, 0, xax=0
;axis, 0, 0, yax=0

print,max(tf),max(abs(analf))
;!x.range = [-0.1, 0.1]
!y.range = [-0.0, 0.02]
!x.range = [9.0, 14.0]
window,1
;plot, tf, abs(basesf), subtitle=’base banded source spectrum’, xsty=5, ysty=5
plot, tf, abs(analf), subtitle=’original source spectrum’, xsty=5, ysty=5
axis, 0, 0, xax=0
axis, 0, 0, yax=0

set_plot,’CGM’
;device, binary=1
device, filename=’orig_data.cgm’
xs = !d.x_size
ys = !d.x_size
loadct,0
!x.range = [0.0, 100.0]
!y.range = [-3.0, 3.0]
plot, t, a, subtitle=’original data’, xsty=5, ysty=5
axis, 0, 0, xax=0
axis, 0, 0, yax=0
device, /close

device, filename=’chirp_signal.cgm’
!x.range = [0.0, 50.0]
!y.range = [-1.0, 1.0]
plot, t, as, subtitle=’chirp signal’, xsty=5, ysty=5
axis, 0, 0, xax=0
axis, 0, 0, yax=0
device, /close

device, filename=’base_banded_source.cgm’
!x.range = [0.0, 50.0]
!y.range = [-1.0, 1.0]
plot, t, rbases, subtitle=’base banded source’, xsty=5, ysty=5
axis, 0, 0, xax=0
axis, 0, 0, yax=0
device, /close

device, filename=’base_banded_data.cgm’
!x.range = [0.0, 100.0]
!y.range = [-3.0, 3.0]
plot, t, rbase, subtitle=’base banded data’, xsty=5, ysty=5
axis, 0, 0, xax=0
axis, 0, 0, yax=0
device, /close

device, filename=’abs_base_banded_data.cgm’
!x.range = [0.0, 40.0]
!y.range = [-1.0, 1.0]
plot, t, abs(base), subtitle=’base banded data’, xsty=5, ysty=5
axis, 0, 0, xax=0
axis, 0, 0, yax=0
device, /close

Dennis A. Lindwall20

device, filename=’real_deci_data.cgm’
!x.range = [0.0, 100.0]
!y.range = [-3.0, 3.0]
plot, td, rbased, subtitle=’real (I) decimated data’, xsty=5, ysty=5
axis, 0, 0, xax=0
axis, 0, 0, yax=0
device, /close

device, filename=’imag_deci_data.cgm’
!x.range = [0.0, 100.0]
!y.range = [-3.0, 3.0]
plot, td, ibased, subtitle=’imaginary (Q) decimated data’, xsty=5, ysty=5
axis, 0, 0, xax=0
axis, 0, 0, yax=0
device, /close

device, filename=’base_spec.cgm’
!x.range = [-3.0, 3.0]
!y.range = [-0.0, 0.02]
plot, tf, abs(basesf), subtitle=’base banded source spectrum’, xsty=5, ysty=5
axis, 0, 0, xax=0
axis, 0, 0, yax=0
device, /close

device, filename=’orig_spec.cgm’
!x.range = [8.0, 14.0]
!y.range = [-0.0, 0.02]
plot, tf, abs(analf), subtitle=’original source spectrum’, xsty=5, ysty=5
axis, 0, 0, xax=0
axis, 0, 0, yax=0
device, /close

;set_plot,’ps’
;device, filename=’chirpsignal.ps’
;plot, t, a, subtitle=’chirp’, xsty=5, ysty=5, /polar
;axis, 0, 0, xax=0, color=0
;axis, 0, 0, yax=0, color=0
;device, /close

END; chirp5a

This is the program that read the synthetic data generated by “chirp5a”, deconvolves the chirp signal,
and makes numerous plots to show the original data, deconvolved data, and their spectra.

PRO decon5a

; deconvolves a signal (from the file ‘xxx.source’)
; from time series data (from the file ‘xxx.data’)
; using the system parameters of Seamap C
; (sample rate of 46 kHz)
; includes: reconstructed signal from decimated, I & Q data
; low pass filter
; decimated signal
; reads input parameters from the file ‘input.dat’
; the “data” can have several pulses at delay times
; and amplitudes specified in the file ‘input.dat’
; time is in microseconds

nar = 46000

Summary Report on a Seamap-C Chirp Deconvolution Algorithm 21

srate = 46000 ; the sampling rate
sratek = srate / 1000. ; the sampling rate in kilohertz
sratekd = sratek/16. ; the decimated sampling rate in kHz
srkdh = sratekd / 2. ; half sratekd, used for band shifting
newbase = complexarr(nar) ; reconstructed base banded data
newanal = complexarr(nar) ; reconstructed analytic data
newdata = fltarr(nar) ; reconstructed real data
rbase = fltarr(nar)
ibase = fltarr(nar)
rbases = fltarr(nar)
ibases = fltarr(nar)
flts = findgen(nar)
ci = complex(0.0,1.0)
;pi = 3.141592654
pi = !DPI
sqrt2 = sqrt(2)

openr, 1, ‘inputa.dat’
readf,1,cfreq
readf,1,del
readf,1,tlong
readf,1,nd
dtime = fltarr(nd)
damp = fltarr(nd)
readf,1,dtime
readf,1,damp
readf,1,decimate
close,1
print,cfreq,del,tlong,nd
print, dtime
print, damp
sfreq = cfreq - del
efreq = cfreq + del
dnorm = float(2 * nar) / (tlong * 46.)
;dnorm = float(nar) / (tlong * 46.)
print,”decon normalizing factor”,dnorm
nard = nar / decimate
nard2 = nard * 2
narp = nar * 2 ; length of padded ts (for FFT decon)
nardp = narp / decimate ; length of padded ts (for FFT decon)
nard2p = nardp * 2 ; length of padded ts (for FFT decon)
td2 = fltarr(2*nard)
resultbrd = fltarr(nard) ;
resultbid = fltarr(nard) ;
resultbd = complexarr(nard) ;

restore, filename=’original.data’
restore, filename=’original.source’
;restore, filename=’basebanded.data’
restore, filename=’basebandedc.data’
;restore, filename=’basebanded.source’
restore, filename=’basebandedc.source’
restore, filename=’basebanded_decir.data’
restore, filename=’basebanded_decii.data’
restore, filename=’basebanded_decir.source’
restore, filename=’basebanded_decii.source’
restore, filename=’time_signal.data’
restore, filename=’time_signal_dec.data’

tf = t * 46. / 1000. - 23. ; frequency scale (normal)
tfd = rebin(tf,nard) ; frequency scale (decimated)

Dennis A. Lindwall22

rbase = float(base)
ibase = float(imaginary(base))
rbases = float(bases)
ibases = float(imaginary(bases))

!p.background=255
!p.color=0
!p.font=0
!p.charsize=1.0
!p.thick=1.0
!p.ticklen=0.03
;!p.region = [0.0,0.0,6.0,11.0]
!p.position = [0.1,0.1,0.9,0.9]
!x.range = [0.0, 100.0]
!y.range = [-3.0, 3.0]

set_plot,’x’
window,2
plot, t, a, subtitle=’original signal’, xsty=4, ysty=4
axis, 0, 0, xax=0
axis, 0, 0, yax=0

window,0
!x.range = [0.0, 50.0]
!y.range = [-2.0, 2.0]
plot, t, as, subtitle=’original source’, xsty=4, ysty=4
axis, 0, 0, xax=0
axis, 0, 0, yax=0

window,3
!x.range = [0.0, 100.0]
plot, td, rbased, subtitle=’decimated base banded real signal’, xsty=4, ysty=4
;plot, t, abs(base), subtitle=’base banded signal’, xsty=4, ysty=4
axis, 0, 0, xax=0
axis, 0, 0, yax=0

;window,6
;!x.range = [0.0, 100.0]
;plot, td, ibased, subtitle=’decimated base banded im signal’, xsty=4, ysty=4
;;plot, t, abs(base), subtitle=’base banded signal’, xsty=4, ysty=4
;axis, 0, 0, xax=0
;axis, 0, 0, yax=0

window,1
!x.range = [0.0, 50.0]
plot, td, rbasesd, subtitle=’decimated base banded source’, xsty=4, ysty=4
;plot, t, abs(bases), subtitle=’base banded source’, xsty=4, ysty=4
axis, 0, 0, xax=0
axis, 0, 0, yax=0

;window,0
;!x.range = [0.0, 50.0]
;plot, td, ibasesd, subtitle=’decimated base banded im source’, xsty=4, ysty=4
;;plot, t, abs(bases), subtitle=’base banded source’, xsty=4, ysty=4
;axis, 0, 0, xax=0
;axis, 0, 0, yax=0

info = size(a)
print,info
lag = lindgen(info(1)-2)

Summary Report on a Seamap-C Chirp Deconvolution Algorithm 23

;;resultc = fft(fft(a,-1)/fft(as,-1),1)/nar
;resultc = dnorm * c_correlateb(as,a,lag, /covariance)
;
;!x.range = [0.0, 40.0]
;!y.range = [-1.0, 1.0]
;window,6
;plot, t, abs(resultc), subtitle=’deconvolved original signal’, xsty=4, ysty=4
;;plot, t, resultc, subtitle=’deconvolved original signal’, xsty=4, ysty=4
;axis, 0, 0, xax=0
;axis, 0, 0, yax=0
;set_plot,’CGM’
;device, filename=’decon_orig_signal.cgm’
;xs = !d.x_size
;ys = !d.x_size
;loadct,0
;plot, t, abs(resultc), subtitle=’deconvolved original signal’, xsty=4, ysty=4
;axis, 0, 0, xax=0
;axis, 0, 0, yax=0
;device, /close

infod = size(rbased)
print,infod
lagd = lindgen(infod(1))
td2 = rebin(t,2*nard)

based = complex(rbased,ibased)
basesd = complex(rbasesd,ibasesd)
;basesd = complex(rbasesd,ibasesd) + 0.00001 * abs(randomn(seed,nard))

basedp = fltarr(nardp) ; padded chirped signal
basesdp = fltarr(nardp) ; padded chirped source
basedp(0:nard-1) = based
basesdp(0:nard-1) = basesd
help,basedp,basesdp
print,’del’,del,’srkdh’,srkdh
;resultbd = fft(fft(based,-1)/fft(basesd,-1),1)/nard
resultbrd = c_correlate(rbasesd,rbased,lagd, /covariance) + $
 c_correlate(ibasesd,ibased,lagd, /covariance)
resultbid = c_correlate(ibasesd,rbased,lagd, /covariance) - $
 c_correlate(rbasesd,ibased,lagd, /covariance)
resultbd = dnorm * complex(resultbrd,resultbid)
resultbrd2 = 2 * rebin(resultbrd,2*nard)
resultbid2 = 2 * rebin(resultbid,2*nard)
;resultbd2 = dnorm * complex(resultbrd2,resultbid2)
;resultbd2 = dnorm * complex(resultbrd2*cos(del*td2*2*pi),resultbid2*sin(del*td2*2*pi)
)
resultbd2 = dnorm * complex(resultbrd2*cos(srkdh*td2*2*pi),resultbid2*sin(srkdh*td2*2*
pi))
;resultbr = c_correlateb(abs(bases),abs(base),lag, /covariance)

set_plot,’x’
!x.range = [0.0, 40.0]
!y.range = [-1.0, 1.0]
window,4
;plot, td, dnorm*resultbrd, subtitle=’deconvolved, decimated, base banded’, xsty=4,
ysty=4
;plot, td, abs(resultbd), subtitle=’deconvolved, decimated, base banded’, xsty=4,
ysty=4
plot, td2, abs(resultbd2), subtitle=’deconvolved, decimated, base banded’, xsty=4,
ysty=4
;plot, t, dnorm * resultbr, subtitle=’deconvolved base banded signal’, xsty=4, ysty=4

Dennis A. Lindwall24

axis, 0, 0, xax=0
axis, 0, 0, yax=0
set_plot,’CGM’
device, filename=’decon_bb_deci.cgm’
;plot, td, abs(resultbd), subtitle=’deconvolved, decimated, base banded’, xsty=4,
ysty=4
plot, td2, abs(resultbd2), subtitle=’deconvolved, decimated, base banded’, xsty=4,
ysty=4
axis, 0, 0, xax=0
axis, 0, 0, yax=0
device, /close

; to reconstruct data to original frequency
;rbasen = rebin(rbased,nar)
;ibasen = rebin(ibased,nar)
;rbasesn = rebin(rbasesd,nar)
;ibasesn = rebin(ibasesd,nar)
; to reconstruct data to twice decimated frequency
rbasen = rebin(rbased,2*nard)
ibasen = rebin(ibased,2*nard)
rbasesn = rebin(rbasesd,2*nard)
ibasesn = rebin(ibasesd,2*nard)

; reconstruct to original frequency
;newbase = sqrt2*rbasen*cos(cfreq*t*2*pi)+sqrt2*ibasen*sin(cfreq*t*2*pi)
;newbases = sqrt2*rbasesn*cos(cfreq*t*2*pi)+sqrt2*ibasesn*sin(cfreq*t*2*pi)
; reconstruct to bandwidth frequency
;newbase = sqrt2*rbasen*cos(del*td2*2*pi)+sqrt2*ibasen*sin(del*td2*2*pi)
;newbases = sqrt2*rbasesn*cos(del*td2*2*pi)+sqrt2*ibasesn*sin(del*td2*2*pi)
newbase = sqrt2*rbasen*cos(srkdh*td2*2*pi)+sqrt2*ibasen*sin(srkdh*td2*2*pi)
newbases = sqrt2*rbasesn*cos(srkdh*td2*2*pi)+sqrt2*ibasesn*sin(srkdh*td2*2*pi)
newdata = float(newbase)

set_plot,’x’
!x.range = [0.0, 100.0]
!y.range = [-3.0, 3.0]
window,7
;plot, t, newdata, subtitle=’reconstructed data’, xsty=4, ysty=4
plot, td2, newdata, subtitle=’reconstructed data’, xsty=4, ysty=4
axis, 0, 0, xax=0
axis, 0, 0, yax=0
set_plot,’CGM’
device, filename=’recon_data.cgm’
plot, td2, newdata, subtitle=’reconstructed data’, xsty=4, ysty=4
axis, 0, 0, xax=0
axis, 0, 0, yax=0
device, /close

info = size(newdata)
print,info
lagn = lindgen(info(1)-2)
resultc = 2 * dnorm * c_correlateb(newbases,newbase,lagn, /covariance)
newbasep = fltarr(nard2p) ; padded chirped signal
newbasesp = fltarr(nard2p) ; padded chirped source
newbasep(0:nard2-1) = newbase
newbasesp(0:nard2-1) = newbases + 0.001 * abs(randomn(seed,nard2))
help,newbasep,newbasesp
;resultc = fft(fft(newbase,-1)/fft(newbases,-1),1)/nard2
help,resultc

set_plot,’x’

Summary Report on a Seamap-C Chirp Deconvolution Algorithm 25

!x.range = [0.0, 40.0]
!y.range = [-1.0, 1.0]
window,5
plot, td2, abs(resultc), subtitle=’deconvolved reconstructed signal’, xsty=4, ysty=4
;plot, t, resultc, subtitle=’deconvolved reconstructed signal’, xsty=4, ysty=4
;plot, td2, resultc, subtitle=’deconvolved reconstructed signal’, xsty=4, ysty=4
axis, 0, 0, xax=0
axis, 0, 0, yax=0
set_plot,’CGM’
device, filename=’decon_recon_data.cgm’
plot, td2, abs(resultc), subtitle=’deconvolved reconstructed data’, xsty=4, ysty=4
axis, 0, 0, xax=0
axis, 0, 0, yax=0
device, /close

END; decon5a

This program reads the field data and the recorded chirp signal, deconvolves the chirp from the data and
writes files that can be plotted as image files.

PRO rwseamap

pi = !DPI
short = 4000
srate = 46000 ; the sampling rate
sratek = srate / 1000. ; the sampling rate in kilohertz
sratekd = sratek/16. ; the decimated sampling rate in kHz
srkdh = sratekd / 2. ; half sratekd, used for band shifting

nsam = long(1)
ping = fltarr(8)

DVbot = fltarr(28000)
DVtop = fltarr(28000)
;DVdata = complexarr(14000)
ints = findgen(14000)
out = fltarr(14000) ; abs of complex data
;rbs = fltarr(14000) ; real (I) of source
;ibs = fltarr(14000) ; imaginary (Q) of source
;rbd = fltarr(14000) ; real (I) of data
;ibd = fltarr(14000) ; imaginary (Q) of data
;decon = complexarr(14000)
;deconr = fltarr(14000)
;deconi = fltarr(14000)
;lag = lindgen(14000)
outs = fltarr(short) ; abs of complex data
rbs = fltarr(short) ; real (I) of source
ibs = fltarr(short) ; imaginary (Q) of source
rbd = fltarr(short) ; real (I) of data
ibd = fltarr(short) ; imaginary (Q) of data
decon = complexarr(short)
deconr = fltarr(short)
deconi = fltarr(short)
lag = lindgen(short)
td2 = fltarr(2*short)
flts = findgen(short)
t = flts * 1000. / srate
td2 = rebin(t,2*short)

Dennis A. Lindwall26

DVdata = complexarr(short)

dnorm = 0.001

openr, 1, ‘port_xmt.bin’
openr, 2, ‘port_rcv.bin’
openw, 3, ‘outdata.bin’
openw, 4, ‘outdecon.bin’

for k = 0, 99 do begin

 readu,1,nsam
 nsamx = 2 * nsam
; print, nsam, nsamx

 IQVbot = fltarr(nsamx)
 IQAbot = fltarr(nsamx)
 IQVtop = fltarr(nsamx)
 IQAtop = fltarr(nsamx)
 IQsource = complexarr(nsam)

 readu,1,IQVbot
 readu,1,IQAbot
 readu,1,IQVtop
 readu,1,IQAtop
 for i = 0, nsam-1 do begin
 IQsource(i) = complex(IQVbot(2*i),IQVbot(2*i+1))
; IQsource(i) = complex(IQAtop(2*i),IQAtop(2*i+1))
 rbs(i) = IQVbot(2*i)
 ibs(i) = IQVbot(2*i+1)
 endfor

 readu,2,DVbot
 readu,2,DVtop
; for i = 0, 13999 do begin
; DVdata(i) = complex(DVbot(2*i),DVbot(2*i+1))
; endfor
 for i = 0, short-1 do begin
 DVdata(i) = complex(DVbot(2*i),DVbot(2*i+1))
 endfor
 for i = 0, short-1 do begin
 rbd(i) = DVbot(2*i)
 ibd(i) = DVbot(2*i+1)
 endfor

; help,rbs
; help,rbd
; help,ibs
; help,ibd
 deconr = c_correlate(rbs,rbd,lag, /covariance) + $
 c_correlate(ibs,ibd,lag, /covariance)
 deconi = c_correlate(ibs,rbd,lag, /covariance) - $
 c_correlate(rbs,ibd,lag, /covariance)
 decon = dnorm * complex(deconr,deconi)
 resultbrd2 = 2 * rebin(deconr,2*short)
 resultbid2 = 2 * rebin(deconi,2*short)
 resultbd2 = dnorm * complex(resultbrd2*cos(srkdh*td2*2*pi),resultbid2*sin(srkdh*td2*
2*pi))

 print,k,nsam,nsamx,max(abs(IQsource)),max(abs(DVdata)),max(abs(decon))

Summary Report on a Seamap-C Chirp Deconvolution Algorithm 27

 out = 20. * alog10(abs(DVdata) + 0.001)
 writeu,3,out

; outs = 20. * alog10(abs(decon) + 0.001)
 outs = 20. * alog10(abs(resultbd2) + 0.001)
 writeu,4,outs

endfor

close,1
close,2
close,3
close,4

END

Appendix B

ALGORITHMS IN THE C LANGUAGE

This is the file makeData.c

/* file: makeData.c
written by: PSI
*/
//TOP
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <malloc.h>
#include “complex.h”
#include “windows.h”
#include “mdsp.h”
#include “fft.h”
#include “zmath.h”
#include “round.h”

void main(int argc, char *argv[]) {

 float pi;
 float sqrt2;
 float sratek;
 float Fs;
 float *b;
 float *t;
 float dt;
 float *dtime;
 float *damp;
 float *flts;
 float *td;
 float *tf;
 float *filt;
 float ftemp;

 float cfreq;
 float del;
 float tlong;
 float sfreq;
 float efreq;
 float w;
 float ii;
 float per;

 float kk;
 float f1;
 float f2;

29

Dennis A. Lindwall30

//VARS
 int nar;

 long int srate;
 long int nd;
 long int nard;
 long int nchirp;
 long int nchirp2;
 long int j, i, n, k;

 int rsize;
 int itemp;
 int filterSize;
 int decimate;
 int NFFT;

 int *dstart;

 /* Temp arrays for FFTs */
 COMPLEX *FFT0;
 COMPLEX *FFT1;
 COMPLEX *FFT2;

 COMPLEX *CTEMP0;
 COMPLEX *CTEMP1;
 COMPLEX *CTEMP2;

 COMPLEX *a;
 COMPLEX *as;
 COMPLEX *a_c;
 COMPLEX *base;
 COMPLEX *base_c;
 COMPLEX *bases;
 COMPLEX *based;
 COMPLEX *based_c;
 COMPLEX *basesd;

 COMPLEX *cfilt;
 COMPLEX *fftOfFilter;
 COMPLEX *fftOfBBSignal;
 COMPLEX *fftOfBBSource;
 COMPLEX ctemp;
 COMPLEX ctemp2;

 FILE *in;

 /* Initialize variables. */
 pi = 3.14159265358979238462633833f;
 sqrt2 = (float)sqrt(2.0f);
 srate = 46000;
 Fs = srate;
 dt = 1.0/Fs;
 nar = 11500;

 /* Allocate arrays. */

 /* Intitial Source and Signal */
 a = (COMPLEX *)malloc(sizeof(COMPLEX)*nar);
 as = (COMPLEX *)malloc(sizeof(COMPLEX)*nar);

Summary Report on a Seamap-C Chirp Deconvolution Algorithm 31

 /* Float arrays. */
 t = (float *)malloc(sizeof(float) * nar); /* Time in microseconds. */
 td = (float *)malloc(sizeof(float) * nard); /* Decimated time seres
msec/decimate. */
 tf = (float *)malloc(sizeof(float) * nar); /* Frequency scale (normal).
*/

 /* Zero out all arrays. */
 for(j=0;j<nar;j++) {
 a[j] = cmplx(0.0,0.0);
 as[j] = cmplx(0.0,0.0);
 t[j] = (float) j * dt;
 tf[j] = t[j] * Fs - Fs/2.0;
 }

 /* Read input deck. */
 if (NULL == (in = (fopen(“inputa.dat”, “r”)))) {
 fprintf(stderr,”Error: Could not open file <%s> \n”, “inputa.dat”);
 exit(0);
 }

 /* Read values from file. */
 fscanf(in, “%f”, &cfreq); /* Center frequency. */
 fscanf(in, “%f”, &del); /* Bandwidth */
 fscanf(in, “%f”, &tlong); /* Chirp length. */
 fscanf(in, “%d”, &nd); /* # of reflectors */

 /* change units on input values MED */
 cfreq *= 1000.0; /* kHz to Hz */
 del *= 1000.0; /* kHz to Hz */
 tlong /= 1000.0; /* ms to s */
 sfreq = cfreq - del/2;
 efreq = cfreq + del/2;

 /* Allocate dtime, damp and dstart arrays. */
 dtime = (float *)malloc(sizeof(float) * nd);
 damp = (float *)malloc(sizeof(float) * nd);
 dstart = (int *)malloc(sizeof(int) * nd);

 /* Read dtime array. */
 for(j=0;j<nd;j++) {
 fscanf(in, “%f”, &dtime[j]);
 dtime[j] /= 1000.0;
 dstart[j] = (int)(dtime[j] * Fs);
 }

 /* Read damp array. */
 for(j=0;j<nd;j++) fscanf(in, “%f”, &damp[j]);

 /* Read decimate value and close file. */
 fscanf(in, “%d”, &decimate);
 fclose(in);

 /* Define array parameters. */
 nard = nar/(int)decimate; /* Length of decimated time series. */

 nchirp = (int) (tlong*Fs); /* no. of samples in chirp */
 nchirp2 = 2*nchirp;

 /* Build the Source Chirp */
 w = 1.0f;

Dennis A. Lindwall32

 for(i = 0; i < nchirp; i++) {
 ii = (float) i;
 per = w*(float)sin(2.0f*pi*(sfreq + ii * (efreq - sfreq)/nchirp2) * ii/
Fs);
 as[i] = cmplx(per,0.0);
 }
 //for(j=0;j<nar;j++) printf(“%f\t%f\n”, as[j].real, as[j].imag);

 /* Build the return by summing delayed copies of the source */
 for(n = 0; n < nd; n++) {
 for(k = 0; k < nchirp; k++) {
 kk = (float)k;
 per = damp[n]*w*(float)sin(2.0f*pi * (sfreq + kk * (efreq - sfreq)/
nchirp2) * kk/Fs);
 i = k+dstart[n];
 a[i] = cadd(a[i], cmplx(per,0.0));
 }
 }
 //for(j=0;j<nar;j++) printf(“%f\t%f\n”, a[j].real, a[j].imag);

 CTEMP0 = (COMPLEX *)malloc(sizeof(COMPLEX)*nar);
 CTEMP1 = (COMPLEX *)malloc(sizeof(COMPLEX)*nar);
 /* Base Band */
 for(j=0;j<nar;j++){
 ctemp = cexp(cmplx(0.0, 2.0*pi*cfreq*t[j]));
 ctemp = cmul(ctemp, cmplx(sqrt2,0.0));
 CTEMP1[j] = cmul(a[j], ctemp);
 CTEMP0[j] = cmul(as[j], ctemp);
 }
 //for(j=0;j<nar;j++) printf(“%f\t%f\n”, bases[j].real, bases[j].imag);
 //for(j=0;j<nar;j++) printf(“%f\t%f\n”, base[j].real, base[j].imag);

 /* build a 129pt Low Pas FIR filter */
 filterSize = 129;
 filt = fir_low(filterSize, 2.0*del/Fs, HAMMING);
 /* Make the filter complex */
 cfilt = malloc(sizeof(COMPLEX)*filterSize);
 for(j=0;j<filterSize;j++){
 cfilt[j] = cmplx(filt[j],0.0);
 }
 free(filt); /* cfilt is the only one we need */

 /* Take everything into the frequency domain */
 NFFT = (int) near2(nar); /* find nearest power of 2 */

 bases = cconv1d(cfilt,CTEMP0, filterSize, nar);
 base = cconv1d(cfilt, CTEMP1, filterSize, nar);
 rsize = nar+filterSize-1;
 free(CTEMP0);
 free(CTEMP1);

 basesd = (COMPLEX *)malloc(sizeof(COMPLEX) * nard);
 based = (COMPLEX *)malloc(sizeof(COMPLEX) * nard);
 itemp = 0;
 ftemp = 1.0/((float)decimate);
 for(j=0;j<nard;j++) {
 ctemp = cmplx(0.0,0.0);
 ctemp2 = cmplx(0.0,0.0);
 for(k = 0 ;k < decimate ;k++) {

Summary Report on a Seamap-C Chirp Deconvolution Algorithm 33

 ctemp = cadd(ctemp, bases[j*decimate+k]);
 ctemp2 = cadd(ctemp2, base[j*decimate+k]);
 }
 basesd[j] = cmul(cmplx(ftemp,0.0), ctemp);
 based[j] = cmul(cmplx(ftemp,0.0), ctemp2);
 itemp++;
 }
 //for(j=0;j<nard;j++) printf(“%f\t%f\n”,basesd[j].real,basesd[j].imag);
 //for(j=0;j<nard;j++) printf(“%f\t%f\n”,based[j].real,based[j].imag);

 free(bases);
 free(base);

/*************** NOW FOR DECON ******************/

 /* DCON in FREQUENCY DOMAIN */
 NFFT = 4*near2(nard);
 FFT0 = fft(basesd,nard,NFFT,-1.0,&itemp);
 FFT1 = fft(based,nard,NFFT,-1.0,&itemp);
 for(j=0;j<itemp;j++) {
 FFT1[j] = cmul(FFT1[j],conj(FFT0[j]));
 }
 base_c = fft(FFT1,NFFT,NFFT,1.0,&itemp);
 ctemp = cmplx(1.0/((float)nar), 0.0); /* Normalize */
 for(j = 0; j < NFFT; j++) {
 base_c[j] = cmul(ctemp, base_c[j]);
 }
 for(j=0;j<itemp;j++) printf(“%f\t%f\n”,base_c[j].real,base_c[j].imag);

 /* DCON IN TIME DOMAIN */
 rsize = nard+nard-1;
 CTEMP1 = (COMPLEX *) malloc(sizeof(COMPLEX)*nard);
 for(j=0;j<nard;j++) {
 CTEMP1[j] = conj(basesd[nard-j-1]);
 }
 base_c = cconv1d(based,CTEMP1,nard,nard);
// for(j=0;j<rsize;j++) printf(“%f\t%f\n”,base_c[j].real,base_c[j].imag);

 exit(0);

}

This is the file complex.c

#include <math.h>

struct dcomplex {
 double real;
 double imag;
};

struct complex {
 float real;
 float imag;
};

Dennis A. Lindwall34

typedef struct dcomplex DCOMPLEX;
typedef struct complex COMPLEX;

/**** Double Precision Versions *******************/

/* Make Complex */
DCOMPLEX dcmplx(double a, double b){
 DCOMPLEX c;
 c.real=a;
 c.imag=b;
 return c;
}

/* Addition */
DCOMPLEX dcadd(DCOMPLEX a, DCOMPLEX b){
 DCOMPLEX c;
 c.real = a.real + b.real;
 c.imag = a.imag + b.imag;
 return c;
}

/* Subtraction */
DCOMPLEX dcsub(DCOMPLEX a, DCOMPLEX b){
 DCOMPLEX c;
 c.real = a.real - b.real;
 c.imag = a.imag - b.imag;
 return c;
}

/* Multiplication */
DCOMPLEX dcmul(DCOMPLEX a, DCOMPLEX b){
 DCOMPLEX c;
 c.real=a.real*b.real-a.imag*b.imag;
 c.imag=a.imag*b.real+a.real*b.imag;
 return c;
}

/* multiply DCOMPLEX by real */
DCOMPLEX dcmulr(double a, DCOMPLEX b) {
 DCOMPLEX c;
 c.real = a * b.real;
 c.imag = a * b.imag;
 return c;
}

/* divide DCOMPLEX by real */
DCOMPLEX dcdivr(double a, DCOMPLEX b) {
 DCOMPLEX c;
 c.real = b.real / a;
 c.imag = c.imag / a;
 return c;
}

/* Conjugation */
DCOMPLEX dconj(DCOMPLEX z){
 DCOMPLEX c;
 c.real = z.real;
 c.imag = -z.imag;
 return c;
}

Summary Report on a Seamap-C Chirp Deconvolution Algorithm 35

/* Exponentiation */
DCOMPLEX dcexp(DCOMPLEX z){
 DCOMPLEX c;
 double x,y,temp1,temp2;
 x = z.real;
 y = z.imag;
 temp1 = exp(x)*cos(y);
 temp2 = exp(x)*sin(y);
 c = dcmplx(temp1,temp2);
 return c;
}

/* Magnitude */
double dcabs(DCOMPLEX z){
 double x,y,ans,temp;

 x=abs(z.real);
 y=abs(z.imag);
 ans = sqrt(x*x+y*y);

// if(x==0.0) ans = y;
// else if (y == 0.0) ans = x;
// else if (x > y) {
// temp=y/x;
// ans=x*sqrt(1.0+temp*temp);
// }
// else {
// temp=x/y;
// ans=y*sqrt(1.0+temp*temp);
// }
 return ans;
}
/***/
/*** Single Precision versions ***************/
/***/

COMPLEX cmplx(float a, float b){
 COMPLEX c;
 c.real=a;
 c.imag=b;
 return c;
}

COMPLEX cadd(COMPLEX a, COMPLEX b){
 COMPLEX c;
 c.real = a.real + b.real;
 c.imag = a.imag + b.imag;
 return c;
}

COMPLEX csub(COMPLEX a, COMPLEX b){
 COMPLEX c;
 c.real = a.real - b.real;
 c.imag = a.imag - b.imag;
 return c;
}

COMPLEX cmul(COMPLEX a, COMPLEX b){
 COMPLEX c;
 c.real=a.real*b.real-a.imag*b.imag;

Dennis A. Lindwall36

 c.imag=a.imag*b.real+a.real*b.imag;
 return c;
}

/* multiply DCOMPLEX by real */
COMPLEX cmulr(float a, COMPLEX b) {
 COMPLEX c;
 c.real = a * b.real;
 c.imag = a * b.imag;
 return c;
}

/* divide DCOMPLEX by real */
COMPLEX cdivr(float a, COMPLEX b) {
 COMPLEX c;
 c.real = b.real / a;
 c.imag = c.imag / a;
 return c;
}

COMPLEX conj(COMPLEX z){
 COMPLEX c;
 c.real = z.real;
 c.imag = -z.imag;
 return c;
}

COMPLEX cexp(COMPLEX z){
 COMPLEX c;
 float x,y,temp1,temp2;
 x = z.real;
 y = z.imag;
 temp1 = exp(x)*cos(y);
 temp2 = exp(x)*sin(y);
 c = cmplx(temp1,temp2);
 return c;
}

float cabs(COMPLEX z){
 float x,y,ans,temp;

 x=abs(z.real);
 y=abs(z.imag);

 if(x==0.0) ans = y;
 else if (y == 0.0) ans = x;
 else if (x > y) {
 temp=y/x;
 ans=x*sqrt(1.0+temp*temp);
 }
 else {
 temp=x/y;
 ans=y*sqrt(1.0+temp*temp);
 }
 return ans;
}

Summary Report on a Seamap-C Chirp Deconvolution Algorithm 37

This is the file complex.h

#include <math.h>

struct complex {
 float real;
 float imag;
};

struct dcomplex {
 double real;
 double imag;
};

typedef struct dcomplex DCOMPLEX;
typedef struct complex COMPLEX;

DCOMPLEX dcmplx(double a, double b);
DCOMPLEX dcadd(DCOMPLEX a, DCOMPLEX b);
DCOMPLEX dcsub(DCOMPLEX a, DCOMPLEX b);
DCOMPLEX dcmul(DCOMPLEX a, DCOMPLEX b);
DCOMPLEX dcmulr(double a, DCOMPLEX b);
DCOMPLEX dcdivr(double a, DCOMPLEX b);
DCOMPLEX dconj(DCOMPLEX z);
DCOMPLEX dcexp(DCOMPLEX z);
double dcabs(DCOMPLEX z);

COMPLEX cmplx(float a, float b);
COMPLEX cadd(COMPLEX a, COMPLEX b);
COMPLEX csub(COMPLEX a, COMPLEX b);
COMPLEX cmul(COMPLEX a, COMPLEX b);
DCOMPLEX cmulr(float a, COMPLEX b);
DCOMPLEX cdivr(float a, COMPLEX b);
COMPLEX conj(COMPLEX z);
COMPLEX cexp(COMPLEX z);
float cabs(COMPLEX z);

This is the file conv1d.c

#include <malloc.h>
#include “complex.h”

float *conv1d(float *x, float *y, int Nx, int Ny) {

 register int i,j;
 float *z;
 int Nz;

 Nz = Nx + Ny - 1;
 z = malloc(sizeof(float)*Nz);

 for(j=0;j<Ny;j++) {
 for(i=0;i<Nx;i++){

Dennis A. Lindwall38

 z[i+j] += (x[i]*y[j]);
 }
 }

 return z;

}

COMPLEX *cconv1d(COMPLEX *x, COMPLEX *y, int Nx, int Ny) {

 register int i,j;
 COMPLEX *z;
 COMPLEX ctemp;
 int Nz;

 Nz = Nx + Ny - 1;
 z = (COMPLEX *)malloc(sizeof(COMPLEX)*Nz);

 for(j=0;j<Ny;j++) {
 for(i=0;i<Nx;i++){
 ctemp = cmul(x[i],y[j]);
 z[i+j] = cadd(z[i+j],ctemp);
 }
 }

 return z;

}

This is the file fft.c

#include <math.h> /* pow and others */
#include <malloc.h>
#include <string.h>
#include <memory.h>
#include “zmath.h”
#include “round.h”
#include “complex.h”

/* most compilers have PI defined somewhere in math.h. With gcc
 it’s defined as M_PI. Rather than try and figure it out what
 the name actually is we’ll just redefine it if it’s missing */

#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif

#define TRUE (1)
#define FALSE (0)

//int near2(int N); /* next highest power of 2 */
//double dlogN(double x, int N); /* log base N */
//double nint(double x); /* nearest integer */
//double ceil(double x); /* next highest integer */

COMPLEX *fft(COMPLEX *data, int Nx, int NFFT, float iSign, int *N) {

Summary Report on a Seamap-C Chirp Deconvolution Algorithm 39

 register int i,j,k;

 COMPLEX *F; /* the FFTd data */
 COMPLEX W; /* complex factor */
 COMPLEX ctemp; /* temporary complex value */
 COMPLEX cnorm;

 float norm;

 int m,l,istep;
 int p,q;
 int *swap_tbl;

// NFFT = near2(NFFT);
// if(NFFT < Nx) NFFT = near2(Nx); /* NFFT wasn’t specified or is < Nx
*/

 N = NFFT; / Return the FFT size as N */

 F = (COMPLEX *)malloc(NFFT*sizeof(COMPLEX)); /* the resorted array
*/
 for(j=0;j<NFFT;j++){
 F[j] = cmplx(0.0,0.0); /* initialze F */
 }
 memcpy(F,data,Nx*sizeof(COMPLEX));

 swap_tbl = malloc(NFFT*sizeof(int));

/* NEW GOOD WAY OF BIT REVERSING */
 p = NFFT/2;
 q = 1;
 swap_tbl[0] = 0;
 while(p >= 1) {

 for(i=0; i < q; ++i)
 swap_tbl[i + q] = swap_tbl[i] + p;

 p /= 2;
 q *= 2;
 }

 for(i=0;i<NFFT;++i) {
 ctemp = F[i];
 q = swap_tbl[i];
 if(i < q) {
 F[i] = F[q];
 F[q] = ctemp;
 }
 }

 /* Ok. Now compute the FFT */

 l = 1;
 while(l < NFFT) {
 istep = 2*l;
 for(m = 0; m < l; m++) {
 W = cexp(cmplx(0.0,iSign*M_PI*m/l));
 for(i = m; i < NFFT; i+=istep) {
 ctemp = cmul(F[i+l],W);

Dennis A. Lindwall40

 F[i+l] = csub(F[i],ctemp);
 F[i] = cadd(F[i],ctemp);

 }
 }
 l = istep;

 }

 return F;

}

This is the file fft.h

void fork_calc(int lx, COMPLEX *cx, float signi);
DCOMPLEX *dfft(DCOMPLEX *data, int Nx, int NFFT, float iSign,int *N);
COMPLEX *fft(COMPLEX *data, int Nx, int NFFT, float iSign,int *N);

This is the file fir_low.c

#include <math.h>
#include <malloc.h>
#include “windows.h”

#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif

#define RECT (0)
#define HANN (1)
#define HAMMING (2)
#define BLACK (3)

float *fir_low(int N, float w0, int win) {

 register int j;
 float *x; /* the Filter */
 float *w; /* window */
 int q;

 if(N % 2) N--;
 q = N / 2;

Summary Report on a Seamap-C Chirp Deconvolution Algorithm 41

 x = malloc(sizeof(float)*(N+1));

 for(j=0;j<(N+1) ;j++) {
 x[j] = w0 * (float)(j - q);
 }

 sinc(x,N+1,1);

 switch(win) {
 case RECT:
 w = rect(N+1);
 break;
 case HANN:
 w = hann(N+1);
 break;
 case HAMMING:
 w = hamming(N+1);
 break;
 case BLACK:
 w = blackmann(N+1);
 break;
 default:
 w = rect(N+1);
 break;
 }

 for(j=0;j<(N+1);j++) {
 x[j] = x[j]*w0*w[j];
 }

 return x;
}

This is the file mdsp.h

#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif

#define RECT (0)
#define HANN (1)
#define HAMMING (2)
#define BLACK (3)

//DCOMPLEX *dfft(DCOMPLEX *data, int Nx, int NFFT, float iSign,int *N);
//COMPLEX *fft(COMPLEX *data, int Nx, int NFFT, float iSign,int *N);

float *conv1d(float *x, float *y, int Nx, int Ny);

Dennis A. Lindwall42

COMPLEX *cconv1d(COMPLEX *x, COMPLEX *y, int Nx, int Ny);
float *fir_low(int N, float w0, int win);
float *sinc(float *x, int Nx, int inPlace);

float *rect(int N);
float *hamming(int N);
float *hann(int N);
float *blackmann(int N);

This is the file round.c

double nint (double x) {

 double frac;
 double whole;
 double y;

 frac = modf(x,&whole);
 y = (frac < 0.5) ? whole : whole + 1;
 return y;
}

double floor (double x){
 long int n;
 double k;
 n = (long) x;
 if ((x-n) < 0) n--;
 k = (double) n;
 return k;

}

double ceil (double x) {
 long int n;
 double k;
 n = (long) x;
 if((x-n) > 0) n++;
 k = (double) n;
 return k;
}

This is the file round.h

#include <math.h>

double nint (double x); /* round to nearest integer */
double floor (double x); /* round toward -infinity */
double ceil (double x); /* round toward infinity */

Summary Report on a Seamap-C Chirp Deconvolution Algorithm 43

This is the file sinc.c

#include <math.h>
#include <malloc.h>

#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif

float *sinc(float *x, int Nx, int inPlace) {

/**** build a SINC function from the array x */
/* x is an array of floating point numbers */
/* Nx is the number of elements in x. */
/* inPlace is a flag */
/*
/* Makes sin(x)/x function. If inPlace > 0,
 The operation is done in place and a pointer
 to x is returned. Otherwise a pointer to
 a newly allocated array is returned
*/

 int j;
 float *y;

 /* if we’re doing it in place make y point at x */
 if(inPlace) y = x;
 /* otherwise allocate a new array */
 else y = malloc(sizeof(float)*Nx);

 /* make the sinc function and catch zero divides */
 for(j = 0; j < Nx; j++) {
 if(x[j] == 0) y[j] = 1;
 else y[j] = sin(M_PI*x[j])/(M_PI*x[j]);
 }

 return y;

}

This is the file windows.c

#include <math.h>
#include <malloc.h>

#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif

/* N-point Hamming window */
float *hamming(int N) {
 register int j;
 float *w;
 float Nw;
 Nw = (float) (N-1);
 w = malloc(sizeof(float)*N);

Dennis A. Lindwall44

 for(j=0;j<N;j++) {
 w[j] = 0.54 - 0.46*cos(2.0*M_PI*((float)j)/Nw);
 }
 return w;
}

/* N-point Hann window */
float *hann(int N) {
 register int j;
 float *w;
 float Nw;
 Nw = (float) (N+1);
 w = malloc(sizeof(float)*N);
 for(j=0;j<N;j++) {
 w[j] = 0.5*(1.0 - cos(2.0*M_PI*(float)(j+1)/Nw));
 }
 return w;
}

/* N-point Blackmann-Tukey window */
float *blackmann(int N) {
 register int j;
 float *w;
 float Nw;
 Nw = (float) (N-1);
 w = malloc(sizeof(float)*N);
 for(j=0;j<N;j++) {
 w[j] = 0.42 - 0.5*cos(2.0*M_PI*(float)j/Nw) +
 0.08*cos(4.0*M_PI*(float)j/Nw);

 }
 return w;
}

/* N-point Rectangle window */
float *rect(int N) {
 register int j;
 float *w;
 w = malloc(sizeof(float)*N);
 for(j=0;j<N;j++) w[j] = 1.0;
 return w;
}

This is the file windows.h

float *rect(int N);
float *hamming(int N);
float *hann(int N);
float *blackmann(int N);

This is the file zmath.c

#include <math.h>

Summary Report on a Seamap-C Chirp Deconvolution Algorithm 45

#include <round.h>

/**
 Find the next highest number which is a power of 2. Used
 here to find an acceptable length for the FFT if the
 length of the input array isn’t a power of 2.
**/

int near2(int N){
 double n=0;
 int Q;
 while(((double)N/pow(2.0,n)) > 1.0) n++;
 Q = (int) nint(pow(2,n));
 return Q;

}

/***
 Log base N of a double. Watch out for 0.
***/

double dlogN(double x, int N){

 double y;
 y = log(x)/log(N);
 return y;

}

This is the file zmath.h

int near2(int N);
double dlogN(double x, int N);

