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1. Introduction 

The phenomenon of ricochet is an important consideration in ballistics.  While a large fraction of 
laboratory-generated ballistic data are gathered under idealized impact-conditions of normal 
incidence, the physical and mathematically probable reality is that virtually all ballistic impacts 
on the battlefield occur at some nontrivial level of impact obliquity (as measured from the target 
normal).  At low to moderate obliquity levels, the ballistic effect of the obliquity may only be 
that of an increased line-of-sight (LOS) thickness of the target.  However, depending upon the 
material properties of the rod and target, the geometry of the rod, the impact velocity, and yaw, 
there will exist a critical angle of obliquity at and beyond which the rod ricochets from the target 
surface.  

Ricochet has been a long studied phenomenon.  An excellent review of work in the area is 
provided as a chapter in Goldsmith’s review paper on projectile impact (1).  Much of the 
research in ricochet centers on compact projectiles or else on rigid projectiles.  A much smaller 
fraction of the work is focused on medium- and long-rod ricochet, where a different 
phenomenology often manifests itself. 

Radiographic evidence and hydrocode simulation of long-rod ricochet was presented by Jonas 
and Zukas (2) in 1978.  With experimental radiography and corroborating hydrocode simulation, 
they demonstrate how the rod can form a plastic hinge at the impact site (stationary with respect 
to the target) and deflect the rod from a rigid target surface.  As the intent of Jonas and Zukas 
was to demonstrate a hydrocode modeling capability, no analytical modeling or analysis was 
offered.   

In 1979, Tate (3) developed an early model for the ricochet of rods, in which the cylindrical rod 
(of square cross-section) responds as a rigid body away from the eroding tip.  Tate’s model 
allows for the local erosive deformation of the rod in the immediate vicinity of the impact.  The 
asymmetric forces acting on this deforming rod tip are evaluated to ascertain their capacity to 
induce a rotation sufficient to bring about ricochet during the limited time before the rod tip 
becomes fully engaged in the target.  While the model permits local deformation at the rod’s tip, 
affecting the line of action of the interaction force, ricochet is judged to occur only if the 
remainder of the rod is adequately rotated, in a rigid fashion about its center of gravity, so as to 
produce a net linear velocity in the rod tip parallel to the target surface.  Tate’s approach 
produces an analytical expression for the target obliquity angle θ CRIT, beyond which ricochet is 
predicted to occur.  That expression is given as 

Tate Model: 
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where ρR is the rod’s density, V is the striking velocity of the rod, Y is the yield strength of the 
rod, L and D are the rod’s length and diameter, respectively, and U is the initial penetration 
velocity of the rod into the target.  The analysis is based upon the impact of flat-nosed 
projectiles.  Note that the need for the penetration velocity U as input to the model requires an 
auxiliary calculation from a ballistic penetration model, such that U, in addition to the rod 
variables already listed, becomes a function of the target resistance H and the target density. 

One of the drawbacks of the Tate ricochet model is its failure to predict ricochet for the rigid-rod 
(i.e., U = V) scenario because of the method used to calculate the line of action of the interaction 
force.  Further, because of the model’s requirement to ricochet by way of rigid-rod rotation, 
ricochet becomes increasingly improbable as the rod length is increased.  The empirical 
observation of a plastic hinge in the rod does not play into the modeling phenomenology of the 
Tate ricochet model.  While perhaps relevant for lower velocity impacts, Tate’s model tends to 
require very high obliquities to predict ricochet, precisely because the model assumes a rigid-rod 
response in which the complete rod must acquire rotational motion, about its center of mass, in 
order for the rod nose to acquire its needed deflection velocity. 

Like Jonas and Zukas (2), Senf et al. (4) similarly showed in 1981 how the ricocheting rod can 
form a plastic hinge at the impact site to deflect the rod from a rigid target surface (figure 1).  
Such observations provided additional evidence that, even in the absence of erosion, a rigid rod 
assumption does not necessarily hold during the ricochet process.  Like Jonas and Zukas, the 
intent of Senf et al. was to demonstrate hydrocode modeling capability, and so no additional 
analysis was offered.  One important point to draw from their result, in distinction to Tate’s 
ricochet modeling, is that, when this plastic-hinge phenomenology is operational, an increase in 
the length of the rod is not necessarily an impediment to ricochet. 

Reid et al. (5) began to address, with analysis, the notion of the plastic hinge, traveling down the 
rod’s length, but stationary with respect to the target surface.  In their analysis, they simplified 
the problem to consider only the transverse bending forces and were able to analogize the 
problem to one of a transverse impact on the free end of a cantilever beam.  As such, their 
solution falls in the realm of mechanics of materials, and does not consider issues of momentum 
flux through the hinge region, which will be shown to exert influence at higher striking 
velocities.  From their analysis, they are able to predict that the hinge is able to progress down 
the rod only 41% of its length, before being arrested as the rod acquires the same rotational 
velocity as the material in the hinge.  While such an analysis helped to explain their own 
experimental data, it is at odds with the higher velocity experiments of Jonas and Zukas (2) and 
Senf et al. (4), wherein the hinge was observed to traverse the full length of the rod. 

Johnson et al. (6) studied ricochet interactions of plasticine (modeling clay) rods and targets.  
Based upon predictions from Tate’s ricochet model (3), Johnson et al. limited their testing to 
impact obliquities above 75°.  Photographic records of their testing reveal plastic-hinge behavior 
similar to that reported by Jonas and Zukas (2) and Senf et al. (4).  Despite this missed 
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Figure 1.  Spark cinematography of a 
ricocheting rod projectile, Senf 
et al. (4). 

opportunity to critically test aspects of the Tate model, the authors nonetheless conclude that 
“test results generally confirm [the Tate ricochet] equation” (even though ricochet by way of 
plastic hinge is not part of the Tate ricochet methodology).  Beyond correlation with the Tate 
model, empirical relations were presented between target imprint dimensions and striking 
velocity, as well as some time history data from specific tests. 

By 1983, several of the authors previously examining the ricochet problem combined efforts to 
produce new results.  The work of Johnson et al. (7) continued with the impact of plasticine rods, 
this time upon rigid targets, with new analysis brought to bear on the problem.  The impact 
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velocities were very low and impact obliquities were restricted to angles below 60°.  Their work 
seems to focus more on the related but distinct problem of rod buckling as the primary mode of 
deformation, rather than bending associated with ricochet deflection. 

Rosenberg et al. (8) revisited the ricochet problem in 1989.  They acknowledged adapting many 
of Tate’s (3) original premises, concerning the origins of the asymmetric force that acts upon the 
eroding tip of the impinging rod, as well as the assumed square cross section of the rod.  
However, the key point of departure for Rosenberg et al. is in assuming that the interaction force 
acts only upon the mass actively engaging the target, and not upon the wholly remaining rigid 
rod as Tate assumed.  Thus, in the Rosenberg model, the interaction force acts to linearly deflect 
rod-tip material in the transverse direction, rather than acting to apply a rotational moment upon 
the rigid rod, as in the Tate ricohet model.  This alteration, the authors indicate, is to account for 
“bending rods,” an allusion to the plastic-hinge phenomenon observed during rod ricochet by 
many authors.  The resulting ricochet criterion is given as 

Rosenberg Model: 

 
UV
UV

H
VR

−
+

>
2

CRIT
2tan ρθ , (2) 

where H is the target resistance.  Like Tate’s model, the Rosenberg model’s need for the 
penetration velocity U as input demands a further calculation that requires, in addition to those 
variables listed, knowledge of the rod strength Y and the target density.  The model was shown to 
have good prediction ability for length-to-diameter (L/D) ratio = 10 tungsten (W) rods launched 
against rolled homogeneous armor (RHA) targets at striking velocities between 600 and 1400 
m/s and target obliquities between 55 and 75°.   

The interaction methodology of Rosenberg et al., however, calculates the force interaction based 
upon a virgin, flat-nosed rod striking an erodible (but as yet undeformed) target.  Thus, it would 
seem that the methodology should only offer a prediction as to what happens to the initial flux of 
rod material against the target.  Once the initial tip of rod is deflected, for example, the geometric 
“initial conditions” of the remaining rod and gouged target surface are no longer in harmony 
with the model’s assumptions.  Such a situation indicates that the model would be unable to 
predict observed cases wherein the rod’s tip is sloughed off via ricochet followed by the 
remaining rod shank establishing penetration.  And like Tate’s model from which it derived, the 
methodology breaks down under conditions in which the rod remains rigid (i.e., when U = V) 
because of the manner in which the interaction force’s line of action is calculated. 

More recent studies of the ricochet phenomenon focus on spherical projectiles (9), rigid 
projectiles (10), computational methods (11), or else touch on ricochet only peripherally as part 
of a larger examination (12, 13).  None of these studies offer additional analytical modeling 
insight into the phenomenology of medium- and long-rod ricochet. 
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2. Model Construct 

In this report, a new ricochet model is developed and presented.  The fundamental premise of the 
proposed model is the assumption (borne out by repeated observation [2, 4, 6]) that ricochet 
occurs via a plastic hinge in the rod, located at, and stationary with respect to, the target 
interface, into which the moving rod feeds itself.  Unlike a mechanics-of-materials-based 
approach, the proposed model accounts for the momentum fluxes that enter and leave the hinge 
region.  And unlike approaches that seek to ascertain ricochet by examining the rod/target force 
interaction in the first few microseconds of impact, the current model bases its ricochet judgment 
on the answer to a different question:  can the interaction stresses and fluxes in the rod and target 
produce the forces and moments required to continuously sustain a plastic hinge at the rod target 
interface? 

While such an approach can be criticized for ignoring key influences, like the rod’s nose shape, 
other ricochet models likewise limit their utility by basing their predictions on one particular 
nose shape, namely, a flat-nosed rod.  Another deficiency of the current approach is the 
assumption that the rod is massive and long enough to ensure no change over time in the rod’s 
engagement-yaw angle, despite the interaction moment applied to the rod at the hinge.  In truth, 
any rotation of the rod prior to the moment that penetration is firmly established only aids the 
propensity to ricochet.  While such rotations are most significant for shorter rods, where the 
moment of rotational inertia is small, the current approach will nonetheless be unable to predict 
changes in the rod-pitch characteristics that might occur over the course of a single ballistic 
event.  In spite of this, or more precisely, because of it, the model should provide a conservative 
estimate of a rod’s propensity to ricochet (i.e., ricochet will be at least as likely as the model 
predicts.) 

While analytically based, the full model cannot, unfortunately, be distilled down to a single 
inequality, as can the models of Tate (3) or Rosenberg et al. (8) (however, a simplified version of 
the full model will be discussed later in this report.)  Nonetheless, the full model is represented 
by a handful of algebraic equations that must be simultaneously solved, subject to various 
constraints.  The algorithm was coded so that the predictive envelope of the model could be 
explored. 

Examining in figure 2 the macroscopic view of a ricochet event resulting from a steady-state 
plastic hinge, one may note some of the defining constructs of the proposed model.  All forces 
and moments shown in the figure represent forces and moments acting upon a control volume 
(shown shaded) of rod material that extends from the leading edge of the plastic hinge to the 
point where the ricocheted material becomes free-flying.  Along the length of the hinge, the 
target interacts with the rod material within the plastic hinge over an elliptical area of the target 
surface described by the projection of the rod’s cross section onto the target’s (original) surface.   
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Figure 2.  A macro-view of ricochet phenomenology, 
depicting forces and moments upon and 
fluxes through the plastic hinge contained 
within the shaded control volume of the rod. 

The center of this interaction ellipse is designated as point O and represents the intersection of 
the rod’s central axis with the target’s original surface.   

Referring to this figure, the circular cross-section rod, of density ρR, impacting with velocity V, at 
an angle of obliquity θ, applies some net level of compressive force f along the axis of rod 
(which intersects point O), upon the leading edge of the hinge.  There is also a clockwise 
bending moment M, about O, applied at the hinge’s leading edge, due to the stress-field gradient 
associated with rod bending at that location.  While the method does not solve the problem for 
the general multi-axial stress field, there are certain low-flux cases where accounting for the 
shearing traction T across the leading edge of the hinge becomes necessary, as well.  The trailing 
edge of the control volume (just beyond the plastic hinge), through which the ricocheted material 
exits, is assumed to be stress free.  Ricocheted material leaves the hinge with the same velocity it 
entered, namely V, representing a net rate of mass flux through the hinge of dm/dt mass per unit 
time.  The ricocheted material exits upon a trajectory at angle α with respect to the target surface.  
To the hinge, the target applies a compressive load of magnitude F through point O.  Allowing 
that the target may be plastically gouged under the elliptical footprint, the target force may be 
acting on a line at an angle η with respect to the target surface.  A positive moment MT, about O, 
will arise if the target’s stress field is skewed to the leading edge of the elliptical footprint of 
interaction.  The target moment may be positive, zero or negative, depending on the skew of the 
target stress field within the elliptical interaction footprint. 

2.1 Momentum and Moment of Momentum Balances 

Even without specifying the detailed nature of the stress fields at this point (i.e., limiting the 
view of ricochet to that presented in figure 2), the momentum and moment of momentum 
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balances may be composed by employing standard momentum analyses upon the shaded control 
volume of figure 2: 

Force/momentum-flux normal to f:   

 )cos()sin( αθηθ −+=+ mVTF , (3) 

force/momentum-flux normal to F: 

 [ ])sin()cos()cos()sin( ηθηαηθηθ +−+++=+ mVTf , (4) 

moment of momentum about O:   

 mVxxTMM fsT +=+ . (5) 

In equation 5, the term xs represents the perpendicular distance from point O to the face of the 
leading edge of the control volume (where shear traction T acts), and xf is the perpendicular 
distance from point O to the central trajectory axis of the ricocheting material (the line of action 
of the momentum efflux).  In all these equations, the momentum flux entering and exiting the 
control volume may be calculated as 

 0
2 AVmV Rρ= , (6) 

where A0 is the cross-sectional area of the rod, equal to πD2/4.  Equations 3−5 are the primary 
equations to be solved, with unknowns f, F, T, M, MT, α, and η.  Clearly, linkages between and 
constraints upon these variables will need to be constructed in order to obtain a solution.  While 
yet unknown, the distances xs and xf are calculable from geometric considerations. 

2.2 Plastic-Hinge Geometry 

A characterization of the plastic-hinge geometry needs to be put forth, in order to specify the 
distances xs and xf, which are moment arms for the shear traction and momentum efflux, 
respectively.  Furthermore, a specification of the hinge geometry will also be useful later in 
calculating the strains present within the plastic hinge.  The knowledge of strains in the rod may 
be used as an estimate as to whether a ricocheting rod retains its integrity as a rod, or alternately 
breaks into a spray of ricocheting fragments.   

Fully consistent with strength-of-materials beam theory, the starting and ending boundaries of 
the plastic hinge may be specified as planes perpendicular to the symmetry axes of the striking 
and ricocheting rod, respectively.  Beyond this, the sole geometric assumption that constrains the 
plastic hinge location is that the hinge be confined to distance from the target surface exactly 
equal to one rod diameter D (figure 3).  The reasoning is as follows:  as the ricocheting rod 
material within the hinge changes its trajectory through an angle of π/2 − θ  + α, it will at some 
point in that process flow parallel with the surface of the target plate (and the associated rod 
cross section will thus be perpendicular to the target surface.)  If the rod does not flatten 
significantly during the ricochet process, and if any plastic deformation of the target remains 
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Figure 3.  View of plastic-hinge geometry, depicting 
kinematic variables s1, s2, xs, and xf, in terms of D, 
α, and θ. 

measurably small, the rod cross section at that point in the hinge will necessarily span the 
distance from the target surface to a distance D from the surface.  It seems kinematically 
unlikely, then, that there would simultaneously exist an elastic rod cross section (outside of the 
hinge) that is fully entrained within a distance less than D from the surface.  This assumption, 
therefore, merely reflects the reasoning that any cross section of the rod fully entrained within a 
rod-diameter’s distance from the target is very likely in a plastic state and is thus part of the 
hinge.   

With this geometric assumption in place, the moment arms for the shear traction and momentum 
efflux, used in equation 5, may be determined, respectively, from figure 3 as 

 





 −=

2
tan

cos
1 θ

θ
Dxs , (7) 

and 

 





 −=

θ
α

cos
sin1

2
Dx f . (8) 

It is seen that, while xs is fully determined from the striking conditions of the impact, the value of 
xf is dependent upon the unknown ricochet angle, α. 

Likewise, from figure 3, the distances from the leading and trailing edges of the hinge to the 
average center of curvature for the hinge may also be determined, respectively, as  

 [ ]
( )αθ

αθ
θ tantan1

)2/tan(tan
cos1 +

−
=

Ds  (9) 
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and 

 
α
θ

cos
sin

12 ss = . (10) 

These values will later be used as part of a strain calculation. 

2.3 Stress and Strain Fields 

While the macroscopic view of figure 2 shows the forces and moments acting upon the control 
volume, it must be appreciated that these net forces and moments arise out of the detailed stress fields 
that are applied to the surface of the control volume.  While this model does not propose to solve 
exactly for what those stress fields must be, certain reasonable assumptions may be asserted as to the 
general form they take.  The specification of these stress field forms will permit their integration over 
surface areas of the control volume to yield the macroscopic forces (f, F, T) and moments (M, MT) 
that enter into the momentum balances of equations 3−5. 

Knowledge of strain fields, on the other hand, is not required in determining whether a ricochet 
solution is viable.  However, if a viable ricochet solution is found, the geometry of the resulting hinge 
may be used to estimate the local strain field in the rod.  Knowledge of this strain field and the 
material’s strain-to-failure properties, in turn, can provide useful information to estimate, for 
example, whether the ricocheting rod will retain the integrity of an intact rod, or whether it is likely to 
fracture into a spray of deflecting fragments.  Such knowledge would be useful in ascertaining the 
lethality of a threat projectile in a post-ricochet condition. 

2.3.1  Stress Field in Rod 

In traditional strength-of-materials theory, a plastic hinge that results from pure bending in a circular 
cross-section beam acquires a stress field in which exactly half of the beam’s cross section is in 
compression and half in tension.  In order for the stress state to represent a plastic hinge, all fibers in 
the cross section must be at the yielding stress Y.  And thus, the full cross section acquires a normal 
stress magnitude σ equal to Y, half of it in compression and half in tension.  Such a stress state 
produces a cross section that is in pure bending. 

In the case of an impacting rod, however, one expects an axial compressive component resulting 
from inertia of the decelerating rod as it strikes the target.  The proposed stress-state distribution that 
will allow both the presence of a plastic hinge, as well as a net axial force component f is described in 
figure 4.  In this cross section, all material elements possess a stress magnitude σ at the yield point, 
necessary to facilitate a plastic hinge.  However, unlike the traditional hinge, the fraction of the rod 
cross section under compression will not equal exactly 0.5, but rather fall in the range of 0.5–1.0, in 
order to produce a net axial compressive force f perpendicular to the cross section. 

The variable that will be used here to define the divide between compression and tension in the 
cross section will be the angle β which, as seen in figure 5, represents the half angle with vertex 
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Figure 4.  Detailed stress field (σ, τ) in the rod’s cross 
section at the onset of the plastic hinge, located at 
the control-volume boundary. 

at the center of the rod’s cross section, such that 2β is fully subtended by the tensile region of the 
cross section.  In order for the net force on the cross section to remain compressive, the angle β 
will fall in the range of 0 (full compression) to π/2 (equal compression and tension).  When the 
rod cross section is in full compression (β = 0) and in the absence of shear stress, the axial force f 
in the rod will be its maximum limiting value, 
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Figure 5.  Schematic depiction of variables β 
and δ, along with a graphical 
depiction of their influence upon the 
respective net rod and target forces, 
f and F. 
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 0max YAf = . (11) 

In general, however, the fraction of the rod diameter under compression may be given as 

 ( )βcos1
2
1

+=
D
xR , (12) 

which dictates that xR ≥ D/2 always.  The net compressive force on the cross section, relative to 
fmax, is given through integration as 

 ( )



 −−= ββ

π
σ 2sin211

max Yf
f , (13) 

as depicted in figure 5.  Similarly, a specification of β will define not only the axial rod force, but 
also the moment about the cross section’s neutral axis (the diameter dividing the cross section in 
two equal semicircles): 

 β
π

σ 2

max

sin
3
2

YDf
M

=
⋅

. (14) 

The rod’s net moment has been nondimensionalized by the product of the limiting rod force and 
rod diameter.  Because the axial stresses are acting perpendicular to the cross section, and point 
O in figure 2 was defined to represent the intersection of the rod’s central axis with the target 
surface, the moment M about the cross section’s neutral axis given in equation 14 is identical to 
the moment of these stresses acting about point O.  In the sense of figure 2, the moment M will 
always be positive in magnitude. 

In addition to the angle β exerting influence upon the axial force and moment, the  
axial-stress-state magnitude σ in the rod plays a role, as well.  While the basic tenet of a plastic 
hinge requires the stress state at all points in the cross section to be at yield, the presence of a 
multiaxial stress state (e.g., the presence of shear stress τ) will lower the axial component σ 
below the value of yield stress Y.  In particular, for the biaxial stress state envisioned, the 
relationship between σ, τ, and Y is governed from standard theory as 

 
2

1 





−=

Y
c

Y
στ , (15) 

where c = 1/2 for materials obeying a Tresca yield condition, or 1/ 3c =  for when the von 
Mises yield condition is applicable.  It is this shear stress τ, assumed for simplicity to be 
uniformly distributed over the cross section, which comprises the shear traction T depicted in 
figure 2, according to the relation 

 0AT τ= . (16) 
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2.3.2  Stress Field in Target 

As cited already, the interaction zone where the ricocheting rod and target interact is assumed to 
be limited to an elliptical footprint formed by projecting the rod’s circular cross section onto the 
target surface.  Such an ellipse has an eccentricity of sinθ and area A0/cosθ.  The center of this 
ellipse is denoted as point O, and also lies along the rod’s axis of symmetry.  When the target 
response is elastic, the interaction footprint represents (within the bounds of elastic deformation) 
the actual surface over which the actual compressive target stress σT may be applied to produce a 
net target force F normal to the target surface.   

The model also allows for a nonelastic target response, in which the net target force F is applied 
at an angle η with respect to the target normal, as shown in figure 2.  This condition is intended 
to represent the case where the target surface, as a result of the interaction with the rod, develops 
a significant surface gouge.  While, in reality, the actual stress increments are applied normal to 
this continuously varying gouge surface, the idealization here is that the bearing surface of the 
gouge may be effectively represented by a secondary ellipse, which is canted at an angle η with 
respect to the interaction ellipse on the target surface and whose normal projection is exactly 
onto the interaction ellipse on the target surface.  This secondary ellipse (the bearing surface) 
will always be smaller than (or equal to) the interaction ellipse on the target surface.  Its area is 
given by A0cosη/cosθ, with minor axis of length D and major axis of length D cosη/cosθ.  When 
η is identically zero (the elastic case), the target’s bearing surface and the interaction ellipse 
coincide.  Thus, the maximum force that may be applied by the target to the ricochet bearing 
surface will be given as 

 
θ
η

cos
cos

0max HAF = . (17) 

Equation 17 reveals that all other things equal, under this idealization, the allowable target force 
diminishes by a factor of cosη when the target is gouged.  While it might seem that such 
configurations are less prone to ricochet because of the lesser forces that can be supported, the 
reality is that the reorientation of the target force’s line of action by an angle η may actually 
decrease the magnitude of force required for ricochet to an extent where an elastically untenable 
ricochet becomes viable if the target is permitted to gouge. 

While the true interaction no doubt produces a complicated stress field on the bearing surface, 
the stress-field idealization employed for the target in this analysis is two-fold:  that any stress 
applied on the target’s planar bearing surface will be a uniform normal compressive stress of 
magnitude σT ; but that the actual area upon the elliptical bearing surface over which this normal 
compressive stress is applied could be a truncated fraction of the total bearing ellipse, with the 
truncation line being drawn parallel to the minor axis of the elliptical bearing surface (figure 6).  
Analogous to the technique used to define the stress state in the rod’s cross section, the angle 2δ ″ 
can be defined as the central angle fully subtended by the truncated region of the bearing surface 
ellipse.  If the truncated region encompasses the trailing edge of the ballistic interaction, such  
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Figure 6.  Detailed stress field (σT) imposed along elliptical 
bearing surface between target and rod. 

that the net force is skewed to the leading edge of the bearing surface, a net positive moment MT 
will be applied about center of the bearing surface ellipse (and thus about point O).  If the 
truncation encompasses the leading edge of ballistic interaction, the target moment MT, about O, 
will have negative sign. 

When the bearing surface is projected normal to itself upon the interaction ellipse on the target 
surface, the bearing surface angle δ ″ becomes, in the projection, δ ′, according to the relation 
tan δ ′ = tan δ ″cosη.  Likewise, when this truncated interaction ellipse is projected along the rod 
axis to a plane perpendicular to the rod’s axis, the interaction ellipse transforms to a circle, and 
the truncation angle δ ′ becomes δ in this circle, according to the relation tanδ ′ = tan δ cosθ.  
These geometric transformations from δ ″ to δ, by way of the combined transformation  
tan δ = tan δ ″cosη/cosθ, permit the mathematical relations developed for circular cross sections 
in equations 12−14 for the rod to be applied analogously to the elliptical bearing surface of the 
target, with a few notable differences.  For one, while the rod cross section has zones in 
compression and tension, the target’s bearing surface has zones in compression or alternately 
stress free.  Secondly, the angle β in the rod equations was limited in range to π/2, in order to 
constrain the rod to a net positive force f, whereas the range of δ may span from 0 to π while still 
keeping the net target force F in compression, as depicted in figure 5. 

In terms of the transformed truncation angle δ and normalized by the limiting target-bearing 
force Fmax, the force applied to the truncated bearing surface is 



 

 14

 ( )



 −−= δδ

π
σ 2sin2

2
11

max HF
F T , (18) 

as shown in figure 5.  Analogously, the magnitude of the moment of the target-bearing stresses 
about point O is given as 

 δ
π

σ
θη

2

max

sin
3
1

cos/cos HDF
M TT =

⋅
. (19) 

Here, the target moment is nondimensionalized by the product of the limiting target force and 
bearing surface’s major-axis dimension.  Again, the actual sign of the moment depends on 
whether the target stresses are skewed to the leading edge of the bearing surface (positive MT) or 
to the trailing edge (negative MT). 

Finally, the fraction of the major axis from the target’s interaction footprint that is under load is 
given by 

 ( )δ
θ

cos1
2
1

cos/
+=

D
xT . (20) 

2.3.3  Strain Field in Rod 

The strain field in the ricocheting rod may be estimated from the geometry of the hinge.  The 
distances s1 and s2 from the center of curvature of the hinge to the leading and trailing edges of 
the hinge were calculated in equations 9 and 10, and shown in figure 3.  The neutral fiber (line of 
zero stress), at the leading edge of the hinge, is therefore at a radius of curvature of s1 + xR (where 
xR is defined in equation 12.)  Similarly, the neutral fiber at the trailing edge of the hinge, in the 
absence of axial stress, is at a radius of s2 + D/2. 

Certain quantities, averaged over the plastic hinge, may be developed.  The radius of curvature to 
the average neutral fiber may be give by R, defined as 

 
2

)2/()( 21 DsxsR R +++
= . (21) 

Because the flow in the hinge turns through an angle of π/2 − θ + α, the estimated length of the 
neutral fiber over the extent of the hinge is 

 )2/(0 αθπ +−= Rl . (22) 

The radius of curvature of the neutral fiber, over the extent of the hinge, changes by a value of  

 )2/()( 21 DsxsR R +−+=∆ . (23) 

Thus, as a material element traverses a length l0 over the length of the hinge, it distorts in the 
transverse direction by a distance ∆R.  The tensorial plastic shear strain (i.e., one half the total 
shearing angle) that occurs within the hinge is therefore 
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0

1 tan
2xy

R
l

ε −  ∆
=  

 
. (24) 

Turning to the normal strain components, the average radius of curvature to the rod fiber under 
greatest compression (along those fibers closest to the center of curvature) may be given by s , 
defined as 

 
2

21 sss +
= , (25) 

while the average radius of curvature to the rod fiber under greatest tension (along those fibers 
farthest from the center of curvature) is Ds + .  Thus, the maximum compressive plastic strain in 
the hinge may be given as 

 )/ln( Rsc
x =ε , (26) 

while the maximum tensile plastic strain is specifiable as 

 ]/)ln[( RDst
x +=ε . (27) 

Because the neutral bending fiber in the rod, at radius of curvature R, will always be closer to the 
tensile boundary of the rod’s cross section (in order to keep the rod in net axial compression), the 
maximum compressive strain will always exceed in magnitude the maximum tensile strain.  
Thus, the maximum equivalent plastic strain in the rod (assuming plastic incompressibility) 
occurs in the compressed fiber of the rod closest to the hinge’s center of curvature, and may be 
given as 

 22
max 3/4 xy

c
x εεε ⋅+= . (28) 

By comparing these calculated strain values within the plastic hinge to the rod material’s  
strain-to-failure properties, an indication may be obtained of whether the ricocheting rod is likely 
to remain an intact rod or break into a spray of deflected fragments.   

2.4 Bounding Constraints (Inequalities) 

The following constraints provide bounds on some of the variables.  While not diminishing the 
number of problem unknowns, these constraints aid the solution by narrowing the domain over 
which valid solutions may be sought. 

2.4.1  Flow Turning Angle 

The total flow-turning angle π/2 − θ + α of a ricocheting rod is limited to an angle less than or 
equal to π/2.  This may be restated as  

α ≤  θ .                       (29) 
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The basis for this constraint is that, from the perspective of simple momentum transfer, the 
propensity of an impacting rod to dwell (i.e., flow-split, or pancake) on the target surface (with 
individual material particles turning through an angle π/2 or less would prevail before a rod 
would tend to ricochet through an angle greater than π/2. 

It was earlier shown that xR ≥ D/2.  Additionally, with equations 10 and 29, it may now be shown 
that s1 ≥ s2.  One may thus conclude that the transverse (shearing) displacement in the hinge, ∆R, 
from equation 23 will always be positive (implying a net counter-clockwise shearing moment in 
the sense of figure 2).  Such a conclusion implies that the shearing traction T on the plastic zone 
must always be positive in magnitude in order to produce the net counter-clockwise shearing 
moment about O per the sense of figure 2. 

2.4.2  Angle of Reflection 

The angle of reflection of a ricocheting rod will be less than or equal to the angle of striking 
incidence.  This criterion may be stated as  
 

α ≤ π/2 −θ .         (30)  
The basis for this constraint is that, for a strength-free rod made to ricochet off a rigid target, the 
angle of reflection will exactly equal the angle of incidence.  The addition of rod strength to the 
picture can only mitigate the angle of flow turning, which will therefore limit the angle of 
ricochet reflection to a value at or below the angle of striking incidence. 

2.4.3  Target Force Line of Action 

When the equations were developed for the stresses and forces developed by the target upon the 
ricocheting rod, an artifice was developed for the case of a plastic target response, in the form of 
a target-load bearing surface, canted by an angle η with respect to the target surface.  It was 
noted that the bearing surface was an idealization to represent the case where the target surface 
develops a significant surface gouge.  While, in reality, actual force increments are applied 
normal to this continuously varying gouge surface, the idealization posits that the target stresses 
are coaligned, perpendicular to the canted, and planar bearing surface.  Such an idealization 
permits rapid integration of the net force F from the idealized stress field. 

The artifice of this canted bearing surface notwithstanding, the geometry of an actual gouge is 
seen to place an additional constraint on the ricochet process.  If an actual (assumed symmetric) 
ricochet gouge forms, such that an angle ξ is formed at the gouge lip with respect to the  
target-surface plane, then the surface normals throughout the gouge will span the angular range 
of −ξ to +ξ with respect to the target normal (figure 7).  The line of action of the net target force 
F (which acts at angle η), being an integration of the normal forces increments dF over the actual 
bearing surface (the gouged crater), must also fall in the range −ξ to + ξ, because there are no 
force increments having a line of action outside of this range.  Thus, |η | ≤ ξ. 



 

 17

F

η

η

θ

ξ

α
O

MT

θ

−ξ

dF

 

Figure 7.  Geometrical underpinnings of the α > |η| 
constraint. 

With respect to the trajectory of material exiting this gouged crater, the material scraping its way 
along the shallow crater toward the trailing edge of the gouge would exit the gouge with a 
trajectory aligned at an angle ξ (or > ξ if it “bounced” off the gouge) with respect to the surface 
of the target.  This exit trajectory is defined by the angle α, and thus α ≥ ξ. 

Combining these two results yields an additional bounding constraint on the solution of the 
ricochet equations, namely  

 
|η | ≤ α.        (31) 

 

2.5 Definitive Constraints (Equalities) 

With the descriptions of the stress states in the rod and target, one may envision that substitutions 
could be made into the original three momentum and moment-of-momentum equations so that 
the original set of unknown variables (f, F, T, M, MT, α, and η) would be replaced with the 
following six unknown variables:  σ, β, σT, δ, α, and η (note that τ is not an additional unknown 
because the knowledge of σ completely defines it in terms of equation 15).  Three additional 
definitive constraints are required to bring the number of equations in line with the unknowns.  
The problem transformation from expressions in force to expressions in stress facilitates the 
expression and justification of these constraints.   
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To understand, however, the rationale for these constraints, one must first understand how the 
moment of momentum equation 5 drives the ricochet solution down one of two primary paths, 
which the author terms “high-flux” and “low-flux” solutions.  Each of these two paths brings a 
different set of forces into play.  The term xf V dm/dt represents the moment about O that results 
from the momentum efflux of material as it exits the hinge (momentum entering the hinge has no 
moment because of how point O is defined).  While the moment of the efflux can, in the 
theoretical sense, diminish to zero if the rod is, for example, without strength and ricochets at the 
striking angle (when α = π/2 − θ at which point xf approaches zero), the moment of the efflux is 
always non-negative and largely determined by the striking velocity V of the rod.  All other 
terms in this equation are moments that derive from applied forces.  While MT can be positive or 
negative, depending on the skew of the target stress, the terms M and Txs are have been shown 
strictly non-negative, owing to the kinematics of material flow through the hinge.   

When the momentum efflux is large, the resulting moment must be counterbalanced by the rod 
moment M and a positive target moment MT.  The presence of shear traction in the rod T actually 
works against the high-flux balance of moments, and thus hinders the formation of a ricochet 
hinge.  On the other hand, when the momentum efflux is small, the problem approaches that of a 
quasi-static nature, and a natural balance must be established in which the rod moment M is 
countervailed by a negative target moment MT and/or shearing moment Txs.  It is not surprising, 
therefore, that the definitive constraints to be introduced will be different for high-flux and  
low-flux conditions.  In the algorithmic implementation, the sign of the target moment MT is used 
to differentiate the high-flux condition (MT > 0) from the low-flux condition (MT ≤ 0). 

2.5.1  High-Flux Constraints 

The definitive high-flux constraints are as follows: 

                                                       High-Flux Constraint 1:  σ = Y,                                            (32) 

                                          High-Flux Constraint 2:  Either α = 0 or σT = H ,                             (33) 

and  

                                            High-Flux Constraint 3:  Either η = 0 or δ = 0.                               (34) 

The first constraint reflects the observation that the presence of shear traction hinders the 
formation of a high-flux plastic hinge.  It is thus assumed that τ  will equal zero in the high-flux 
condition.  And when τ = 0, it follows directly that σ = Y. 

The second constraint reflects the understanding that, for high-flux conditions, increasing σT 
and/or α will serve, respectively, to balance and/or mitigate the moment of momentum that 
results from the high rate of rod material flowing through the control volume.  However, only the 
increase of σT serves that balance, while simultaneously minimizing the plastic work done on the 
deforming rod.  Increasing α represents an increase in the overall plastic work rate, as the total 
turning of the rod that is continuously fed through the hinge is given by the angle π/2 − θ  + α.  
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Thus, in achieving the required moment-of-momentum balance, the target will first attempt to 
employ a redistribution of elastic target stresses while retaining the α = 0 condition that 
minimizes plastic work on the rod.  Only when the target stress redistributions (in both 
magnitude and skew) are no longer able to, on their own, provide that balance (implying the 
target stress has reached its limiting value of σT  = H) will the target attempt to achieve the 
balance through an increase in α.  The second high-flux constraint captures this transitional 
behavior.   

Note however, as α is increased, that the ricochet solution is still elastic from the perspective of 
the target because, while the target stress of the bearing surface may be at the level of imminent 
yield (σT = H), the area of the bearing surface is still less than the full elliptical footprint if the 
target stress is skewed (as defined by a nonzero value of δ).  Were the target to be deforming 
plastically, the complete interaction ellipse would necessarily be engaged in the target.  And this 
brings us to the third high-flux constraint, which defines the nature of plastic ricochet as possibly 
occurring only when the full interaction ellipse is engaged by the target.  And thus, a ricochet 
solution is either elastic (η = 0) or else the full interaction ellipse is engaged (δ = 0).  

Note also that the target force line-of-action bounding constraint |η | ≤ α, discussed in the prior 
section of this report, guarantees that for a transition-to-target plasticity to occur (η ≠ 0), there 
must already exist a level of rod rebound (α > 0). 

 

2.5.2  Low-Flux Constraints 

The definitive low-flux constraints are as follows: 

                                                         Low-flux constraint 1:  α = 0,                                            (35) 

                                                         Low-flux constraint 2:  η = 0,                                            (36) 

and 

                                            Low-flux constraint 3:  either σ = Y or δ = 0.                                 (37) 

As mentioned in the discussion of the high-flux condition, increasing α represents an increase in 
the work performed in deforming the ricocheting rod.  Its introduction in the high-flux solution 
was predicated on the inability of the target stress to produce enough moment about O to counter 
the moment produced by the α = 0 momentum flux.  In low-flux cases, however, the flux 
moment is, by definition, small.  And so increasing α beyond zero does little to affect the 
moment balance (i.e., its introduction is not necessary to achieve the moment balance, as in the 
high-flux case), but does so at the expense of increased plastic work on the rod.  Thus, the first 
constraint reflects the intent to minimize the work performed on the ricocheting rod because it 
does not otherwise preclude a balance to the moment-of-momentum equation. 
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The second constraint follows immediately from the first, based on the prior developed target 
force line-of-action bounding constraint (|η | ≤ α). 

The third constraint is not technically based, but reflects the realization that the current model, 
for low-flux solutions, cannot judiciously ascertain what proportion of counter-clockwise 
moment (about O) arises from shear stress in the rod vs. stress skewing in the target.  The 
practical solution embodied in this constraint is that the counter-clockwise moment may arise 
from one source, or the other, but not both. 

In light of this third constraint, the methodology attempts two solutions for these low-flux cases:  
one that solves for a negative MT while holding T equal to zero (implying τ = 0, and thus σ = Y); 
and the other that solves for a positive T while holding MT equal to zero (implying σT uniformly 
distributed over the interaction footprint, and thus δ = 0).  If both approaches provide a viable 
ricochet solution, that which is seen to perform the smallest amount of elastic work on the target 
is adopted as the preferred ricochet solution.  Since, for elastic deformation, the target 
displacement will be proportional to the elastic strain and thus proportional to the stress, the 
criterion for minimum work on target is that solution which minimizes F·σT. 

2.6 Ballistic Response Criteria 

The ascertainment of a viable ricochet solution depends on the successful solution of 
equations 3−5, subject to the definitions, constraints, and assumptions inherent in the supporting 
equations that followed.  Even so, a solution strategy is not plainly obvious because of the highly 
nonlinear nature of coupled equations, which are nonetheless algebraic in nature.  It is not the 
intent of this report to lay out a flow chart of algorithmic details, but several comments are in 
order here with regard to putting ricochet in the larger ballistic context. 

Whether or not a viable ricochet solution is found, there exists the possibility that an alternative 
nonpenetrating ballistic solution, involving dwell of the penetrator, may be likewise viable.   
While one could adopt an approach that, for example, looks to the respective target stress to 
gauge whether ricochet or dwell is more likely, the current model instead adopts the hypothesis 
that a ricochet solution is always preferable to a dwell solution because ricochet will involve less 
plastic work in bending the penetrator than dwell would in eroding it.  In either event, the target 
stress must remain on the verge or below the target-resistance value of H in order to be a viable 
nonpenetrating solution. 

There will also exist conditions when a high-flux, low-flux, or dwell solution is sought, but for 
which no viable nonpenetrating (ricochet or dwell) solution is found.  In these cases, the 
appropriate conclusion is that the ballistic scenario proceeds as a penetration event.
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3. Model Solutions 

In this section, model results will be displayed that demonstrate the capacity of the model.  In the 
results presented here, the Tresca yield criterion has been assumed for the penetrator material, 
such that c = 0.5 in equation 15.   

One method of presentation that is very informative is a phase diagram of ballistic response, in 
which the predicted ballistic response is plotted on a two-dimensional graph that spans the 
engagement obliquity on one axis and another ballistic variable of interest on the other axis.  The 
ballistic responses that one observes in these phase diagrams are given by the 2- or 3-letter 
designations described in table 1.  These phases describe whether the ballistic engagement is 
predicted to result in penetration, dwell, or ricochet.  If it results in ricochet, the ricochet mode is 
more precisely delineated in terms of rod response, target response, and momentum-flux mode.  
While the target-response and flux-mode designations are technically very specific, the  
rod-response designation is somewhat arbitrary and is meant to denote whether the stress-state in 
the rod may be primarily characterized by bending or compression.  The arbitrary cutoff selected 
is that if the axial force in the rod exceeds 50% of the theoretical maximum value of fmax, then 
the rod’s mode is denoted as “compressive.”  Otherwise, the mode is denoted as “bending.”  This 
50% cutoff value, in the absence of shear traction, corresponds roughly to a value of β equal to 
66°.   

Table 1.  Ballistic-response and ricochet mode designations. 

Ballistic Response Modes:       
Pen.  penetration 
D  dwell (flow splitting) 
“xyz”  ricochet designation (as follows): 

x (rod response):       
B  bending 0 < f ≤ 0.5·fmax    (β > ~66°) 
C  compressive 0.5·fmax < f < fmax (β < ~66°) 
y (target response):       
R  rigid  σT < H, α = 0, η = 0 (δ ≥ 0) 
Y  at yield  σT = H, α ≥ 0, η = 0 (δ ≥ 0) 
P  plastic  σT = H, α > 0, η ≥ 0 (δ = 0) 
z (flux mode):        
(blank)  high-flux τ = 0, MT > 0  
*  low-flux 1 τ > 0, MT = 0 (δ = 0) 
−   low-flux 2 τ = 0, MT ≤ 0 (σ = Y) 
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Figure 8 shows, for example, the ballistic phase diagram as a function of target resistance and 
impact obliquity for the impact of a steel rod (ρR = 7800 kg/m3) of strength 1 GPa, when 
impacting a target at 1000 m/s.  The figure shows several trends including a critical engagement 
angle (to produce ricochet) that drops from ~85° to –50° as the target resistance is increased from 
0.1 to 9 GPa.  Beyond a resistance of 4.9 GPa, penetration is no longer possible as the rod either 
dwells upon or ricochets from the target surface. 
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Figure 8.  Phase diagram of ballistic response as 
a function of H and θ, for engagement 
where ρR = 7800 kg/m3, Y = 1 GPa, 
and V = 1000 m/s. 

In figure 9, the same rod density and impact velocity are examined, though this time with a fixed 
target resistance of 2 GPa, and with the variation in rod strength studied between limits of 0.01 
and 10 GPa.  The transition from penetration to ricochet is strongly cusped at a rod strength level 
of ~0.2 GPa.  Above this rod strength, the target resistance H is the primary determinant of the 
ricochet threshold.  However, on the low-Y side of the cusp, it is the rod’s relative lack of strength 
that governs the shape of the ricochet curve, as it tries to penetrate in almost a liquid-jet-like 
manner.  Because a rod’s speed remains unchanged during ricochet, stagnation stresses do not play 
a role.  And thus, from equations 11, 13, and 14, a strength-free rod is unable to exert axial force f 
or bending moment M toward balancing the momentum and moment-of-momentum equations. 
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Figure 9.  Phase diagram of ballistic response as 
a function of Y and θ, for engagement 
where ρR = 7800 kg/m3, H = 2 GPa, 
and V = 1000 m/s. 

In figure 10, a more complicated result (i.e., with many ricochet response modes) is presented 
wherein the striking velocity V is varied for the impact of a hypothetical aluminum (Al) rod  
(ρR = 2700 kg/m3) with strength Y = 1.2 GPa onto a target possessing a resistance of  
H = 1.25 GPa.  Figures 10a, 10b, and 10c show, respectively, the rod response, target response, 
and flux mode of the ricochet solution, whereas figure 10d integrates these results onto a single 
graph.  While it may seem unusual to predict ricochet at very small obliquities, for cases when 
the impact velocity is small, the experiments of Reid et al. (5) show exactly such ricochet 
behavior at impact obliquities of 10° and even for “normal” impacts.  While Reid et al. called 
these results “buckling” rather than “ricochet,” ricochet would tend to be a better description, as 
buckling, used in the traditional sense, would occur mid-length along the column.  Their data, by 
contrast, clearly shows the rod deformation at the striking end of the rod, where one would 
expect a hinge to form.  The residual curling of the rod tip they observe is likely an artifact of a 
residual-stress-induced moment as the rod material exits the hinge.  Such residual moments are 
not addressed in the theory presented here, as the rod material is explicitly assumed stress-free as 
it exits the hinge.  In any event, predictions of ricochet at small obliquity should not be a cause of 
undue modeling concern. 

While the diagrams of figures 8−10 depict the ricochet, dwell, or penetration phases that are 
predicted by the model for various engagement conditions, more detailed data are also available 
from the model.  Take the problem modeled in figure 10, for example, and confine the 
examination to a striking velocity of 700 m/s.  For this striking velocity, figure 11 depicts many 
of the relevant ricochet variables as a function of the striking obliquity θ.  Figure 11a depicts the 
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Figure 10.  Phase diagram of ballistic response as a function of V and θ for engagement where ρR = 2700 kg/m3, 
Y = 1.2 GPa, and H = 1.25 m/s.  The figures depict (a) the rod response, (b) the target response,  
(c) the flux mode, and (d) integrated ricochet response.
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Figure 11.  Ricochet variables as a function of θ  for the case where V = 700 m/s, ρR = 2700 kg/m3, Y = 1.2 
GPa, and H = 1.25 m/s.  The figures depict (a) ricochet and line-of-force angles, (b) target forces 
and stresses, (c) strains, and (d) locations of stress-transition. 
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angle of ricochet from the target surface, α, and the target force line-of-action angle, η.  Figure 
11b depicts the target force and stress, as well as the net rod force, all of which have been 
nondimensionalized by their limiting value.  Figure 11c shows the strain component maxima that 
would result from the ricochet predictions and Figure 11d shows the stress-reversal location in 
the rod cross section (from tension “−” to compression “+”) and the stress-truncation location in 
the target interaction ellipse (from compression “+” to stress-free “ ”).  At the top of each of 
these figures are the letter designations BP, BY, and BR, denoting the respective regions of 
ricochet mode associated with the graph variables.  The disparity between the target force, 
F/Fmax, and target stress, σT/H, curves is indicative of a target force that is not acting over the 
complete elliptical bearing surface [in fact, (F/Fmax)/(σT/H) represents the fractional area of the 
target’s elliptical bearing surface that is subjected to σT]. 

4. Observations on Model Behavior 

4.1 Ricochet-Mode Transition 

Though the rationality of model response was not ensured during model development, the model 
was subsequently observed to transition smoothly from one ricochet mode to another.  For 
example, in the transition from a yielding to a rigid target, the ricochet angle drops smoothly to 
zero (figure 11a).  Likewise, on the verge from plastic to yielding ricochet, the line of target 
force action smoothly transitions towards η = 0.  Figure 11b similarly shows continuous 
behavior in the target forces and stresses.  However, a small dislocation is observed in the net rod 
force across the plastic-to-yielding transition.  This dislocation in net rod force arises from a 
similar jump in xR (figure 11d).  Likewise, a jump in xR will cause a dislocation in the rod strains, 
as well, as observed in figure 11c.  The origins of such a dislocation are not immediately clear. 

Another exception to smooth transition behavior is between the low-flux modes denoted “∗” and 
“−”.  The jagged response, seen in figure 10a, across the compressive vs. bending transition of 
the rod, is specifically attributable to the flux-mode transition from “∗” to “−”.  This jagged 
response is understandable from a modeling point of view, given the model’s simplifying 
“either/or” assumption embodied in low-flux constraint 3.  A truly accurate low-flux description 
would, without doubt, entail simultaneous elements of both rod shear and target moment, 
explicitly precluded by the low-flux constraint 3.   

Fortunately, none of these transition dislocations has been observed to produce any aberrant 
dislocations in the ricochet vs. no-ricochet predictions, instead limiting themselves to 
dislocations in the predicted mode of ricochet or some of the model variables of ricochet.  
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4.2 Behavior of Strain 

The use of strain calculation was cited earlier as a means of determining whether the ricocheting 
rod is likely to remain an intact rod or break into a spray of deflected fragments.  The possibility 
of either of these results was empirically demonstrated very clearly by Jonas and Zukas (2) 
wherein rod fracture during a ricochet event could be brought on with a slight increase in striking 
velocity.  Their observation is compatible with the current model behavior, which shows the 
ricochet angle α increasing with increasing striking velocity (all other things equal, once the 
target reaches the yield condition).  Plastic strain, in turn, increases with increasing α, and so 
likewise the propensity for rod failure during ricochet increases with striking velocity.  Even in 
the absence of an increasing α (i.e., when the target is rigid and α remains zero), the maximum 
strain in the rod increases with increasing striking velocity because of a shift in location of the 
neutral bending fiber of the rod.   

4.3 Influence of Rod Aspect (L/D) 

In Tate’s ricochet model (3), rod aspect is explicitly tied in to the prediction of ricochet because 
the model posits that, for ricochet to occur, the rigid body constituting the rod must rotate away 
from a penetrating orientation.  The longer the rod length (for a fixed rod diameter), the more 
difficult this task becomes, as the more rotational inertia must be overcome in that rotation 
process.  By contrast, the current model carries no explicit influence of rod length or aspect.  
This absence comes from the assumptions adopted by the model that govern the nature of 
ricochet.  In particular, the current model calculates the ability to sustain ricochet in a  
steady-state capacity (by way of a plastic hinge), and in that sense the model applies to rods of 
arbitrarily large length. 

In reality, ricochet is likely a combination of these behaviors.  While a hinge may be trying to 
establish itself in the moments following the oblique impact of a rod upon target (current model 
assumption), simultaneously there are bending moments and shear forces working to rotate the 
rod away from a penetrating orientation (the Tate assumption).  It seems likely that as rod aspect 
(L/D) becomes large, assumptions akin to those in the current modeling must prevail, whereas 
the opposite seems likely for rods of low aspect (where rod rotation becomes easier than  
plastic-hinge formation).  If this is the case, then there exists an intermediate range of rod aspect 
ratios where neither of the two approaches wholly suffices. 

While no constructive solution is offered here to address (or even define) this intermediate range 
of rod aspect ratios, it should be obvious that it is never harder to ricochet a finite length rod 
compared to its arbitrarily long counterpart.  And in that sense, the predictions of the current 
model should represent a conservative estimate of the ricochet threshold. 

4.4 Nose-Shape Effects 

It has already been mentioned how the nose shape of a rod can play a key role in ricochet.  A 
conical nose, for example, while conducive to good aerodynamics, is more prone to ricochet than 
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a flat-nosed projectile, which can “bite” into the target surface more readily.  Already mentioned 
is how the current model’s methodology does not treat those initial moments following impact, 
where deforming rod-nose geometry is a key influence.  Rather, the current model attempts to 
answer the question, should ricochet be initially established, of whether the rod and target 
stresses can maintain this condition indefinitely.  By contrast, models like those of Tate (3) and 
Rosenberg et al. (8) account for a nose-shape effect, but only for the very specific case of a 
square cross-section rod with a flat nose. 

For cases with a hard target material (relative to the rod), the ability for the rod nose to “bite” 
into the target is minimized.  Thus, differentiation in rod response as a function of nose shape is 
perhaps lessened as a result.  But for engagements with hard rods (relative to target), the 
influence of nose shape must remain a significant one, and the current sustained-ricochet analysis 
will not substitute for appropriate analysis of nose-shape influence. 

4.5 Interaction Footprint Influence 

One of the assumptions comprising the current ricochet model is the size of the interaction 
footprint where rod and target material physically interact.  In the model, this zone is defined as 
an elliptical area formed by the projection of the rod’s cross section, along the rod’s trajectory, 
onto the target surface.  For a rigid-target ricochet scenario, this interaction zone definition seems 
logical and appropriate, as it defines all the points on the target’s surface that are in the direct 
path of oncoming rod material. 

However, the situation becomes murkier for the case of ricochet when the target no longer 
remains rigid.  In the model, the possibility of a gouged bearing surface between rod and target is 
allowed for, yet the specified size of the interaction footprint remains unchanged.  In reality, and 
especially for softer targets (e.g., Al), the target gouge that can accompany a ricochet can be 
quite significantly larger than this envisioned interaction footprint.  The effect of permitting a 
larger interaction footprint in the model is that some engagement conditions, for which ricochet 
would previously have been precluded, are now capable of it.  This premise was successfully 
play-tested in the model, though results are not presented because no rational scheme has yet 
been developed to suggest how large the interaction footprint might logically be extended, and 
under what conditions. 

5. Simplified Model With Closed-Form Solution 

One of the primary drawbacks of the model, as described, is the inability to present the critical 
obliquity for ricochet in terms of a closed-form solution.  A remedy is sought to this deficiency, 
through a judicious application of simplifying assumptions to the model.  While not capturing 
the complete nuance of the full model, the intent here is for the simplified model to, nonetheless, 
capture the essence of the phenomenology intrinsic to plastic-hinge ricochet. 
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Examine the three founding equations to the model (i.e., equations 3−5).  Equation 3 is 
constrained by the resistance of the target, H, which limits the allowable magnitude of the  
target-interaction force, F.  Equation 4 is constrained by the requirement that the net axial rod 
force f be compressive (> 0), while at the same time being limited in magnitude to a force 
governed by the rod strength Y.  However, the nature of the plastic hinge is that all particles in 
the rod, as they enter hinge, will be in a state of yield.  The net magnitude of force f is therefore 
not determined by the stress state in the hinge (which is always yielding), but rather by the 
location of the so-called neutral fiber, which divides the compressively yielding side of the rod’s 
cross-section from the side that is yielding in tension.  In the typical case, f is primarily a driven, 
rather than a driving, quantity.  However, there are exceptional cases where Y is so small that it 
cannot support the magnitude at which f otherwise needs to be driven to sustain ricochet.  For 
example, the low-Y solutions depicted in figure 9 show a sharp change in behavior below the 
cusp at Y = 0.18 GPa.  The behavior in this domain is driven by the allowable magnitude of f. 

Equation 5, the moment equation, is perhaps the weakest link of the three equations.  
Admittedly, the force equations must make certain assumptions about the size of the interaction 
footprint in order to link the material strengths to the permissible forces f and F.  However, the 
moment equation, in addition to these same assumptions, must also assume the stress distribution 
within that interaction footprint as well as the plastic-hinge geometry.  If a simplified treatment 
were to discard one of the governing relations, therefore, the moment equation would make the 
best candidate.  It is this approach that is adopted for the simplified solution. 

Still, the number of unknowns needs to be significantly reduced in order to solve the equations.  
The easiest first step is to assume that the shear traction T is identically zero because its 
introduction into the general model was predicated on the need to provide a moment balance for 
certain low-flux cases.  With the moment balance eliminated, the need for T is readily dispensed 
with.  Next, judging from the relatively small contribution that target-gouging ricochet had in the 
solved examples described for the full model (not to imply that gouging ricochet is not a 
significant possibility in reality, but rather that it didn’t appear to manifest greatly in the model), 
elastic-target ricochet would be a reasonable simplifying assumption, implying η = 0.  A 
simplification that is harder to justify (which is nonetheless adopted) is that there is no rebound 
of the rod from the target surface following ricochet, such that α = 0. 

With these assumptions, the force equations 3 and 4 may be solved independently and the results 
combined simply.  First consider the target-force equation 3, under the simplifying assumptions 
T = α = η = 0: 

 mVF =θtan . (38) 

The upper-limiting target-force value, Fmax, at the point of incipient yield is known from equation 
17, while equation 6 defines the axial momentum flux rate in the rod.  Applying the constraint 
Fmax ≥ F, for the case where η = 0, it may thus be deduced from equation 38 that 
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This is the criterion, under the simplifying assumptions, that will guarantee that the target’s 
resistance is not exceeded in achieving a ricochet.   

On the other hand, it must simultaneously be guaranteed that the net rod force f remains between 
the bounds 0 to fmax.  Consider then, the rod-force equation 4, also under the simplifying 
assumptions T = α = η = 0: 

 )sin1(sin θθ −= mVf . (41) 

For the lower constraint, f ≥ 0, equation 41 would indicate that θCRIT( f ) ≤ 90°.  This result merely 
indicates that a negative f is not even possible under the simplifying assumptions.  For the upper 
constraint fmax ≥ f, it may be deduced from equation 41, with the use of equations 6 and 11, that 

 
1

2)CRIT( 1sin
−









+≥

V
Y
R

f ρ
θ . (42) 

This is the criterion, under the simplifying assumptions, that will guarantee that the compressive 
force in the rod does not exceed the permissible limit in achieving a ricochet.  However, both 
equations 40 and 42 must simultaneously be satisfied in order to facilitate ricochet.  Fortunately, 
the merging of these two criteria is trivially straightforward, to yield the simple ricochet model as 
simple model: 
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While equation 43 achieves only a semblance of the full ricochet model, it does so in a single 
closed-form equation that is much more comparable in spirit to the Tate or Rosenberg model 
forms.  To see how this model compares to the full model, the engagements analyzed with the 
full model by way of figures 8−10 are shown in comparison to the simple model in figure 12.  It 
is observed that, for the most part, the simple model trends closely to the full model’s 
predictions.  Those regions where the full model shows a greater propensity to ricochet arise 
from relaxations on the constraint, which characterizes the simple model, α = η = 0.  Conversely, 
those regions where the full model has a lesser propensity to ricochet vis-à-vis the simple model 
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Figure 12.  Comparison of full ricochet model to the simple model for prior cases where (a) H is varied, (b) Y is 
varied, and (c) V is varied. 

arise from the added constraint that the moment equation puts upon the target stress field, which 
is not factored into the simple model. 

One final note is that, even with the simple form of the model, the strain calculations in the 
plastic hinge may proceed according to the established methodology.  In particular, the kinematic 
relations given by equations 9 and 10 may be applied to obtain s1 and s2, respectively, all the 
while incorporating the α = 0 assumption inherent to the simple model.  The net rod force f may 



 

 32

be evaluated from the simplified version of equation 4, and β may then be back-calculated from 
equation 13.  With β calculated, the rod’s neutral fiber embodied in the variable xR may be 
obtained from equation 12.  Armed with s1, s2, and xR, the strain relations delineated in equations 
21−28 may be applied as before to evaluate the strain, using the result to evaluate the likelihood 
of a ricocheting rod retaining its integrity or, alternately, fracturing into pieces.  

6. Comparison to Other Models 

It is useful to know how the current model compares to, for example, the Tate (3) and Rosenberg 
(8) ricochet models.  Already mentioned was the fact that neither of these other models is able to 
predict ricochet for engagement conditions that would otherwise meet the criterion of rigid-body 
penetration.  Beyond this distinction, however, it is still illuminating to compare behaviors in 
other ballistic regimes, as well. 

Thus, the engagements analyzed with the full model by way of figures 8−10 are shown in 
comparison to the Tate model in figure 13, and in comparison to the Rosenberg model in  
figure 14.  Note that, in addition to the model parameters used by the current model, the 
Rosenberg model additionally requires the target density, while the Tate model additionally 
requires both the target density and the rod’s aspect ratio (L/D).  Thus, in the comparisons, the 
Tate and Rosenberg models are run against targets of density nominally that of both steel  
(7800 kg/m3) and Al (2700 kg/m3).  Additionally, the Tate model results are calculated against 
rods of two aspect ratios L/D = 10 and L/D = 30, respectively. 

For the engagements depicted in figures 13a and 14a, in which the target resistance H is varied as 
a model parameter, the Rosenberg model and the current model actually track in relative concert.  
The Tate model is less sensitive to changes in H, as such changes affect not the interaction force 
magnitude (which is given by Y), but only that force’s line of action, via changes in the U/V 
ratio. 

For the engagements depicted in figures 13b and 14b, in which the target resistance Y is varied as 
a model parameter, the Rosenberg model no longer closely tracks the current model.  At low 
values of Y, where it was earlier observed for the current model that ricochet is driven by Y, it is 
the Tate model that somewhat follows the trend of the current model.  For values of Y 
immediately beyond the cusp in the current model’s treatment (where ricochet was earlier 
observed to be driven by H), the Rosenberg model is observed to briefly track the current model 
predictions.  However, as rod strength Y is further increased, both the Tate and Rosenberg 
models diverge strongly from the current ricochet prediction, as conditions conducive to  
rigid-body penetration are approached.  When conditions are actually met that would otherwise 
(i.e., in the absence of target obliquity) permit rigid-body penetration (Y ≥ 3.35 GPa against Al 
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Figure 13.  Comparison of full ricochet model to the Tate model (3) for prior cases where (a) H is varied, (b) Y is 
varied, and (c) V is varied. 

and Y ≥ 5.9 GPa against steel), neither the Tate nor Rosenberg models are able to predict viable 
ricochet. 

For the engagements depicted in figures 13c and 14c, it is the striking velocity V that is varied as 
a model parameter.  While the same basic trend is exhibited by all the models (that of increasing 
the critical ricochet angle with increasing striking velocity), there are significant disparities in the
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Figure 14.  Comparison of full ricochet model to the Rosenberg model (8) for prior cases where (a) H is varied, 
(b) Y is varied, and (c) V is varied. 

magnitude of the critical ricochet angle, especially as the striking velocity is decreased below 
1000 m/s.  For example, at a 500-m/s striking velocity, the current model predicts ricochet for 
engagements at ~16° obliquity, whereas the Rosenberg model, if applied to a hypothetical Al 
target (ρ = 2700 g/cm3, H = 1.25 GPa) would require triple the obliquity, namely 49°, in order to 
achieve ricochet.  The disparity with the Tate model is even greater at that striking velocity, with 
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critical ricochet obliquities above 60°, for rods of L/D = 10 or greater, against targets over the 
density range from Al to steel.   

In general, it would appear that the current model shows a greater propensity to ricochet than 
either the Tate (3) or Rosenberg (8) models, most especially the Tate model.  However, there are 
a number of regimes studied in which the current model behaves in many ways as the simpler 
Rosenberg model. 

7. Comparison to Data 

In the course of this investigation, several experimental studies were undertaken to probe the 
realm of ricochet.  The results are presented here, and compared with the current ricochet model 
in both the full and simple forms, as well as with the models of Tate (3) and Rosenberg et al. (8). 

In one study, 14.5-mm caliber B32 penetrators were shot against 1.75-in-thick (nominal) Al of 
Brinell hardness (BHN) 110, at various obliquities.  The B32 is an armor-piercing projectile, 
weighing 63.5 g, consisting of a 53 mm, 41 g hardened steel (Rockwell C 65) core surrounded by 
a brass jacket.  In a related study of B32 penetration (14), this projectile was successfully 
characterized as a cylindrical homogeneous steel penetrator (ρ = 7850 kg/m3), 66.5 mm long  
× 12.45 mm diameter, with a yield strength Y of 4.46 GPa.  That characterization has been 
retained for the current study on ricochet.  The BHN 110 Al target is characterized with a 
resistance  
H = 2.03 GPa, in accordance with Tate’s formulation: 
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where E = 75 GPa, and σ  = σULT = 0.363 GPa.  Owing to the pointed tip of the rigidly 
penetrating B32 projectile, a target shape factor of kT = 0.15 was adopted in the associated 
penetration calculation (14). 

The results of the 12 tests are described in table 2, while the data and associated predictions are 
shown in figure 15.  The solid curved line is a prediction of the dividing line between partial 
penetration and perforation of the target plate, using a penetration model (14, 15) that is 
unrelated to the ricochet predictions.  It accurately separates the perforation data from the  
partial-penetration data.  The full-model prediction is shown as a dotted line, while the  
simple-model prediction is shown with a dashed line.  For striking velocities in the vicinity of 
600 m/s, either form of the current model accurately predicts the dividing line between ricochet 
and penetration.  However, at the 1000-m/s striking velocity, the data were more prone to 
ricochet than indicated by the model, with a disparity of ~15° between the full-model prediction 
(67.5°) and the actual (~52.5°) critical ricochet obliquity, θCRIT.  Interestingly, the simple model 
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Table 2.  Experimental result for B32 test series. 

Vs  
(m/s) 

θ  
(deg) 

Result 

1019 0 Perforation, Vr not obtained 
999 0 Perforation, Vr = 815 m/s 
991 30 Perforation, Vr = 726 m/s 
538 30 Partial penetration 
583 45 Ricochet 

1004 45 Perforation, Vr = 543 m/s* 

1003 50 Perforation, Vr = 561 m/s* 

596 50 Ricochet 
1005 55 Ricochet 
619 55 Ricochet 
595 60 Ricochet 
999 60 Ricochet 

Notes:  *Projectile core fractured.  Vr obtained via momentum average of 
residual-fragment velocities. 
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Figure 15.  Results of B32 ricochet testing 
with comparison to 
ricochet/penetration predictions. 

prediction, at 61.5°, fell closest to the data, within 10° of the actual critical ricochet obliquity at 
that striking velocity.  Possible reasons for the disparity might include some or all of the 
aforementioned ideas, including short rod aspect ratio, interaction footprint size for hard rods on 
soft targets, as well as nose-shape effects for a rod that is anything but flat-nosed.   
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By comparison, the Tate and Rosenberg models predict no ricochet for any of these 
engagements, because of the rigid-rod nature of the ballistic engagement (i.e., when U equals V, 
θCRIT → 90° in these models).  Therefore, despite the current model’s disparity noted with respect 
to the data at 1000 m/s, the results are actually quite encouraging. 

In a second study, 65 g, L/D = 15 tungsten alloy (WA) rods were shot against 2-in-thick 
(nominal) Al (BHN 190), at various obliquities.  These hardened rods (Rockwell C 35.5) had 
hemispherical noses and were of dimension 102.3 × 6.81 mm.  Their composition was 93% W, 
4.9% Ni, and 2.1% Fe.  In the modeling, the rod has a density of 17600 kg/m3 and a strength of 
Y = 1.1 GPa.  The BHN 190 Al target (ρ = 2700 kg/m3, E = 75 GPa, and σULT = 0.627 GPa) is 
modeled with a target resistance of 3.16 GPa, in accordance with equation 44.  A total of 12 tests 
were conducted in this phase of the ricochet study. 

The test results are given in table 3, while the data and model predictions are shown in figure 16.  
The curve dividing the “partial penetration” and “perforation” domains was predicted by a 
penetration model of the events (14, 15).  For those data which did not exhibit ricochet, this 
dividing line prediction accurately characterized all the ballistic data.  The full model for ricochet 
was used to generate the curve that separates the “ricochet” domain from the others.  The actual  

Table 3.  Experimental result for L/D = 15 tungsten-rod test series. 

Vs  
(m/s) 

θ  
(deg) 

Result 

691 35 Partial penetration + ricochet* 
628 25 Partial penetration 

1198 50 Perforation, Vr = 986 m/s† 

1293 70 Partial penetration 
907 40 Perforation, Vr = 255 m/s† 

1402 70 Perforation, Vr = 893 m/s† 

937 50 Ricochet
 

1079 55 Ricochet*
 

686 15 Partial penetration 
1295 65 Perforation, Vr = 812 m/s† 
836 20 Perforation 

1088 65 Ricochet 
Notes:  *Ricochet resulted from rod delving into target and later reemerging out 

front surface. 
†Projectile core fractured.  Vr denotes largest velocity among the  

residual-fragments. 
 

data show a significantly greater propensity to ricochet than predicted by the model.  There are 
three ricochet data in the 900–1100 m/s striking velocity range that ricocheted at striking 
obliquities 10–20° less oblique than the model predicted, with critical ricochet angles as low as 
50°. 
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Figure 16.  Results of L/D = 15 WA rod tests with 
comparison to ricochet/penetration 
predictions from the full-model currently 
proposed. 

Further, there is one low-obliquity (35°) test at 691-m/s striking velocity, in which the impacting 
rod apparently fractured early in the penetration such that one segment of the rod penetrated the 
target partially and embedded itself, while the other segment reemerged through the target 
surface after penetrating in a submerged manner (all the while turning its trajectory).  This test 
result is characterized in figure 16 as “partial penetration + ricochet.”  Likewise the ricochet 
datum at 1079 m/s and 55° obliquity also penetrated the target in a submerged manner prior to 
reemerging through the front of the target surface.  This datum is one that had been predicted to 
perforate the target.   

These “delving” ricochets, as they might be called, are clearly operating under a different 
ricochet phenomenology than the plastic-hinge approach put forward in the current model.  Most 
likely, for these delving ricochets, the surface interaction, while not producing ricochet directly, 
introduces a large yaw as the rod begins to delve below the target surface.  The flow pattern 
around the highly yawed projectile likely introduces a significant lateral force that continuously 
pushes the rod tip away from its local trajectory.  The net effect is a delving ricochet, in which 
the rod takes an arcuate trajectory beneath the surface of the target, before reemerging from the 
front surface. 

Even the ricochet data that did not manifest as delving ricochets operated a bit outside of the 
phenomenology proposed in the current ricochet model.  Namely, the gouges associated with the 
plastic ricochets at 937- and 1088-m/s striking velocity were much larger than the interaction 
footprint proposed in the model.  For the 50 and 65° obliquity at which these two tests were 
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respectively conducted, the interaction footprint should have been 10.6 and 16.1 mm in respective 
length, while in fact, the experimental record records the gouge lengths as 119 and  
111 mm long, respectively.  Now, it cannot necessarily be supposed that the instantaneous 
interaction footprint in these experiments was an order of magnitude larger than hypothesized by 
the model.  An equally, perhaps, more plausible possibility is that a smaller interaction footprint 
rode itself along the target surface over time, as the trajectory of the rod changed under the forces 
and moments to which it was subjected.  Such a sliding footprint would leave a residual gouge for 
the post-test examination that is larger than the instantaneous interaction footprint.   

In any event, there is a disparity noted, not only between the predicted and actual critical ricochet 
angles, but also in the ricochet phenomenologies proposed by the model vis-à-vis those noted 
experimentally, including delving ricochet and extended ricochet gouges, not accounted for in the 
model.  Anecdotal experience suggests that the delving-ricochet phenomenon is far more prevalent 
in Al, soil and other soft targets than, for example, in steel targets.  Despite these noted 
shortcomings, a comparison of the model to the existing Tate and Rosenberg models shows the 
current model on a footing closest to the experimental reality.  Figure 17 shows that comparison 
between the full model and the various other ricochet models, including the simple, Tate and 
Rosenberg models.  In many regards, the current model follows the trend of the Rosenberg model.  
However, the current model is seen to track closer to the data than the other models, especially at 
the higher velocities.  As before with the B32 tests, the simple model for ricochet tracks closest of 
all to the ricochet data, though just by a slight margin compared with the full model. 
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Figure 17.  Comparison of model predictions for 
the current ricochet model (both full 
and simple forms), the Tate as well 
as the Rosenberg models against the 
results of L/D = 15-WA rod tests. 
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8. Conclusions 

A rod-ricochet model has been proposed, based upon the premise that ricochet occurs by way of 
a plastic hinge in the rod, located at and stationary with respect to the target interface, into which 
the moving rod feeds itself.  Unlike the Tate ricochet model (3), which gauges whether initial 
interaction forces are sufficient to rotate the rod as a rigid body from the target interface, or the 
Rosenberg model (8) which examines whether the forces from the rod-tip interaction are 
sufficient to deflect the tip from a penetrating trajectory, the current model bases its ricochet 
judgment on the answer to a different question:  Can the interaction stresses and fluxes in the rod 
and target produce the forces and moments required to continuously sustain a plastic hinge at the 
rod/target interface? 

While analytically based, the full model proposed here cannot be distilled down to a single 
inequality, as in the case of the models of Tate or Rosenberg et al.  One reason is that, in the full 
model currently proposed, the prediction of ricochet feasibility is not prescribed as a mere 
constraint on rod strength or target resistance.  Rather, a multiplicity of requirements involving 
dynamic force and moment equilibrium as well as kinematic constraints must be simultaneously 
satisfied for each and every considered configuration.  Despite these added complexities in the 
modeling premise, the model is still represented by a handful of algebraic equations that must be 
simultaneously solved.   

Nonetheless, a simple version of the full ricochet model was also developed, which satisfies the 
core force relations of the full model while dispensing with the moment relation and simplifying 
the constraints.  Like the Tate and Rosenberg models, this simple version of the current ricochet 
model is expressible in terms of a single closed-form inequality relation. 

Oblique-impact testing spanning the ricochet threshold was conducted for two separate ballistic 
threats, including the B32 14.5-mm bullet, as well as an L/D = 15-W rod.  In general, the data 
from the 24 tests showed a greater propensity to ricochet than predicted by any of the models 
examined.  However, the current model in its simple form proved the best predictor of ricochet, 
in comparison to the full model, the Tate ricochet model and the Rosenberg model. 

Possible reasons for the disparity between model and data were discussed, including aspect ratio 
and nose-shape effects of the rod, as well as the assumed size of the interaction footprint between 
rod and target.  Additionally, some of the experimental data witnessed a delving ricochet, in 
which the rod reemerged from front surface of the target, following an arcuate trajectory beneath 
the surface of the Al target.  Such ricochets would seem to fall outside the realm of plastic-hinge 
phenomenology described in the current model.  Despite these disparities however, the overall 
trend of the model was in line with the experimental data, and with an apparent improvement 
over the earlier models cited. 
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  G CAMPBELL MZ436 30 44 
  D DEBUSSCHER MZ436 20 29 
  J ERIDON MZ436 21 24 
  W HERMAN MZ 435 01 24 
  S PENTESCU MZ436 21 24 
  STERLING HTS MI  48310-3200 
 
 1 GENERAL RESEARCH CORP 
  T MENNA 
  PO BOX 6770 
  SANTA BARBARA CA  93160-6770 
 
 1 RAYTHEON MSL SYS CO 
  T STURGEON 
  BLDG 805 MS D4 
  PO BOX 11337 
  TUCSON AZ  85734-1337 
 
 5 INST FOR ADVANCED TECHNOLOGY 
  S J BLESS 
  J CAZAMIAS 
  J DAVIS 
  H FAIR 
  D LITTLEFIELD 
  3925 W BRAKER LN STE 400 
  AUSTIN TX  78759-5316 
 
 1 INTERNATIONAL RESEARCH ASSOC 
  D ORPHAL 
  4450 BLACK AVE 
  PLEASANTON CA  94566 

 2 ITT SCIENCES AND SYSTEMS 
  J WILBECK 
  J KILPATRICK 
  600 BLVD SOUTH 
  STE 208 
  HUNTSVILLE AL  35802 
 
 1 KAMAN SCIENCES CORP 
  D JONES 
  2560 HUNTINGTON AVE STE 200 
  ALEXANDRIA VA 22303 
 
 7 KAMAN SCIENCES CORP 
  J ELDER 
  R HENDERSON 
  D PYLES 
  F SAVAGE 
  J A SUMMERS 
  T MOORE 
  T YEM 
  600 BLVD S STE 208 
  HUNTSVILLE AL  35802 
 
 1 D R KENNEDY AND ASSOC INC 
  D KENNEDY 
  PO BOX 4003 
  MOUNTAIN VIEW CA  94040 
 
 1 LOCKHEED MARTIN ELEC  
  AND MSLS 
  G W BROOKS 
  5600 SAND LAKE RD MP 544 
  ORLANDO FL  32819-8907 
 
 1 LOCKHEED MARTIN MISSILE 
  & SPACE 
  W EBERLE 
  PO BOX 070017 
  HUNTSVILLE AL 35807 
 
 3 LOCKHEED MISSILE AND SPACE CO 
  M LEVIN ORG 81 06 BLDG 598 
  M MCHENRY  
  T A NGO ORG 81 10 BLDG 157 
  111 LOCKHEED WAY 
  SUNNYVALE CA  94088 
 
 4 LOCKHEED MISSILE AND SPACE CO 
  J ANDERSON 
  W KNUDSON 
  S KUSUMI 0 81 11 BLDG 157 
  J PHILLIPS 0 54 50 
  PO BOX 3504 
  SUNNYVALE CA  94088 
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 1 LOCKHEED MISSILE AND SPACE CO 
  R HOFFMAN 
  SANTA CRUZ FACILITY 
  EMPIRE GRADE RD 
  SANTA CRUZ CA  95060 
 
 1 MCDONNELL DOUGLAS 
  ASTRONAUTICS CO 
  B COOPER 
  5301 BOLSA AVE 
  HUNTINGTON BEACH CA  92647 
 
 2 NETWORK COMPUTING  
  SERVICES INC 
  T HOLMQUIST 
  G JOHNSON 
  1200 WASHINGTON AVE S 
  MINNEAPOLIS MN  55415 
 
 3 GD OTS 
  D MATUSKA 
  M GUNGER 
  J OSBORN 
  4565 COMMERCIAL DR A 
  NICEVILLE FL  32578 
 
 1 PHYSICAL SCIENCES INC 
  P NEBOLSINE 
  20 NEW ENGLAND BUS CTR 
  ANDOVER MA  01810 
 
 2 GD OTS 
  D BOEKA 
  N OUYE 
  400 ESTUDILLO AVE 
  STE 100 
  SAN LEANDRO CA  94577-0205 
 
 1 RAYTHEON ELECTRONIC SYSTEMS 
  R LLOYD 
  50 APPLE HILL DR 
  TEWKSBURY MA  01876 
 
 1 ROCKWELL INTERNATIONAL 
  ROCKETDYNE DIV 
  H LEIFER 
  16557 PARK LN CIRCLE 
  LOS ANGELES CA  90049 
 
 1 SAIC 
  M W MCKAY 
  10260 CAMPUS POINT DR 
  SAN DIEGO CA  92121 

 1 SHOCK TRANSIENTS INC 
  D DAVISON 
  BOX 5357 
  HOPKINS MN  55343 
 
 1 J STERNBERG 
  20 ESSEX LN 
  WOODBURY CT  06798 
 
 2 SOUTHERN RESEARCH INSTITUTE 
  L DECKARD 
  D SEGERS 
  PO BOX 55305 
  BIRMINGHAM AL  35255-5305 
 
 5 SRI INTERNATIONAL 
  J COLTON 
  D CURRAN 
  R KLOOP 
  R SEAMAN 
  D A SHOCKEY 
  333 RAVENSWOOD AVE 
  MENLO PARK CA  94025 
 
 1 BAE SYSTEMS ANALYTICAL  
  SOLUTIONS 
  M RICHARDSON 
  1525 PERIMETER PKWY STE 500 
  HUNTSVILLE AL  35806 
 
 1 ZERNOW TECHNICAL SVCS INC 
  L ZERNOW 
  425 W BONITA AVE STE 208 
  SAN DIMAS CA  91773 
 
 1 R JAMESON 
  624 ROWE DR 
  ABERDEEN MD  21001 
 

ABERDEEN PROVING GROUND 
 
 70 DIR USARL 
  AMSRD ARL SL B 
   P TANENBAUM 
  AMSRD ARL SL BB 
   D BELY 
   G BRADLEY 
   M BURDESHAW 
   R DIBELKA 
   E HUNT 
   D FARENWALD 
   D DIETRICH 
   M O’MALLEY 
   J ROBERTSON
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  AMSRD ARL SL BD 
   R GROTE 
   L MOSS 
   J POLESNE 
  AMSRD ARL WM BC 
   A ZIELINSKI 
  AMSRD ARL WM BE 
   R SAUCIER 
  AMSRD ARL WM MB 
   W DEROSSET  
   G GAZONAS 
   C HOPPEL 
  AMSRD ARL WM MC  
   E CHIN 
   J LASALVIA 
  AMSRD ARL WM T  
   B BURNS 
   T W WRIGHT  
   W GILLICH 
  AMSRD ARL WM TA 
   M ZOLTOSKI 
   T HAVEL  
   M BURKINS 
   N GNIAZDOWSKI 
   W A GOOCH 
   E HORWATH 
   D KLEPONIS 
   B LEAVY 
   M NORMANDIA 
   J RUNYEON 
   G SILSBY 
  AMSRD ARL WM TB  
   P BAKER 
   R BITTING 
   R LOTTERO 
   J STARKENBERG 
  AMSRD ARL WM TC 
   R COATES 
   J BARB 
   N BRUCHEY 
   M FERMEN-COKER 
   E KENNEDY 
   K KIMSEY 
   L MAGNESS 
   D SCHEFFLER 
   S SCHRAML 
   B SORENSEN 
   R SUMMERS 
   W WALTERS 
   G RANDERS-PEHRSON LLNL  

  AMSRD ARL WM TD 
   S SCHOENFELD 
   S R BILYK 
   T W BJERKE 
   D CASEM 
   J CLAYTON 
   D DANDEKAR 
   Y I HUANG 
   K IYER 
   H KANG 
   H W MEYER 
   M RAFTENBERG 
  AMSRD ARL WM TD 
   E RAPACKI  
   M SCHEIDLER 
   S SEGLETES (3 CPS) 
   T WEERISOORIYA 
  AMSRD ARL WM TE  
   J POWELL 
   A PRAKASH 
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 2 AERONAUTICAL AND MARITIME 
  RESEARCH LABORATORY 
  S CIMPOERU 
  D PAUL 
  PO BOX 4331 
  MELBOURNE VIC 3001 
  AUSTRALIA 
 
 1 DSTO AMRL 
  WEAPONS SYSTEMS DIVISION 
  N BURMAN (RLLWS) 
  SALISBURY 
  SOUTH AUSTRALIA 5108 
  AUSTRALIA 
 
 1 ROYAL MILITARY ACADEMY 
  G DYCKMANS 
  RENAISSANCELAAN 30 
  1000 BRUSSELS 
  BELGIUM 
 

1 BULGARIAN ACADEMY 
  OF SCIENCES 
  SPACE RESEARCH INSTITUTE 
  V GOSPODINOV 
  1000 SOFIA PO BOX 799 
  BULGARIA 
 
 1 CANADIAN ARSENALS LTD 
  P PELLETIER 
  5 MONTEE DES ARSENAUX 
  VILLIE DE GRADEUR PQ J5Z2 
  CANADA 
 
 1 DEFENCE RSCH ESTAB SUFFIELD 
  D MACKAY 
  RALSTON ALBERTA  
  TOJ 2NO RALSTON 
  CANADA 
 
 1 DEFENCE RSCH ESTAB SUFFIELD 
  C WEICKERT 
  BOX 4000 MEDICINE HAT 
  ALBERTA TIA 8K6 
  CANADA 
 
 1 DEFENCE RSCH ESTAB VALCARTIER 
  ARMAMENTS DIVISION 
  R DELAGRAVE 
  2459 PIE X1 BLVD N 
  PO BOX 8800 
  CORCELETTE QUEBEC GOA 1R0 
  CANADA 

 1 CEA 
  R CHERET 
  CEDEX 15 
  313 33 RUE DE LA FEDERATION 
  PARIS 75752 
  FRANCE 
 
 1 CEA CESTA 
  A GEILLE 
  BOX 2 LE BARP 33114 
  FRANCE 
 
 5 CENTRE D'ETUDES DE GRAMAT 
  C LOUPIAS 
  P OUTREBON 
  J CAGNOUX 
  C GALLIC 
  J TRANCHET 
  GRAMAT 46500 
  FRANCE 
 
 6 CENTRE DE RECHERCHES 
  ET D'ETUDES D'ARCUEIL 
  D BOUVART 
  C COTTENNOT 
  S JONNEAUX 
  H ORSINI 
  S SERROR 
  F TARDIVAL 
  16 BIS AVENUE PRIEUR DE 
  LA COTE D'OR 
  F94114 ARCUEIL CEDEX 
  FRANCE 
 
 1 DAT ETBS CETAM 
  C ALTMAYER 
  ROUTE DE GUERRY BOURGES 
  18015 
  FRANCE 
 
 1 ETBS DSTI 
  P BARNIER 
  ROUTE DE GUERAY 
  BOITE POSTALE 712 
  18015 BOURGES CEDEX 
  FRANCE 
 
 1 FRENCH GERMAN RESEARCH INST 
  P-Y CHANTERET 
  CEDEX 12 RUE DE I'INDUSTRIE 
  BP 301 
  F68301 SAINT-LOUIS 
  FRANCE 
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 5 FRENCH GERMAN RESEARCH INST 
  H-J ERNST 
  F JAMET 
  P LEHMANN 
  K HOOG 
  H F LEHR 
  CEDEX 5 5 RUE DU GENERAL 
  CASSAGNOU 
  SAINT LOUIS 68301 
  FRANCE 
 
 1 CONDAT 
  J KIERMEIR 
  MAXIMILIANSTR 28 
  8069 SCHEYERN FERNHAG 
  GERMANY 
 
 1 TDW 
  M HELD 
  POSTFACH 13 40 
  D 86523 SCHROBENHAUSEN 
  GERMANY 
 
 1 DIEHL GBMH AND CO 
  M SCHILDKNECHT 
  FISCHBACHSTRASSE 16 
  D 90552 ROETBENBACH AD PEGNITZ 
  GERMANY 
 
 4 ERNST MACH INSTITUT 
  V HOHLER 
  E SCHMOLINSKE 
  E SCHNEIDER 
  K THOMA 
  ECKERSTRASSE 4 
  D 7800 FREIBURG I BR 791 4 
  GERMANY 
 
 3 FRAUNHOFER INSTITUT FUER 
  KURZZEITDYNAMIK 
  ERNST MACH INST 
  H ROTHENHAEUSLER 
  H SENF 
  E STRASSBURGER 
  KLINGELBERG 1 
  D79588 EFRINGEN KIRCHEN 
  GERMANY 

 3 FRENCH GERMAN RESEARCH INST 
  G WEIHRAUCH 
  R HUNKLER 
  E WOLLMANN 
  POSTFACH 1260 
  WEIL AM RHEIN D 79574 
  GERMANY 
 
 2 IABG 
  M BORRMANN 
  H DORSCH 
  EINSTEINSTRASSE 20 
  D 8012 OTTOBRUN B MUENCHEN 
  GERMANY 
 
 1 INGENIEURBUERO DEISENROTH 
  AUF DE HARDT 33 35 
  D5204 LOHMAR 1 
  GERMANY 
 
 1 NATIONAL GEOPHYSICAL 
  RESEARCH INSTITUTE 
  G PARTHASARATHY 
  HYDERABAD-500 007 (A P) 
  INDIA 
 
 5 RAFAEL BALLISTICS CTR 
  E DEKEL 
  Y PARTOM 
  G ROSENBERG 
  Z ROSENBERG 
  Y YESHURUN 
  PO BOX 2250 
  HAIFA 31021 
  ISRAEL 
 

1 SOREQ NUCLEAR RESEARCH  
  CENTRE 
  ISRAEL ATOMIC ENERGY  
  COMMISSION 
  Z JAEGER 
  81800 YAVNE 
  ISRAEL 
 
 1 TECHNION INST OF TECH 
  FACULTY OF MECH ENGNG 
  S BODNER 
  TECHNION CITY 
  HAIFA 32000 
  ISRAEL 
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 1 ESTEC CS 
  D CASWELL 
  BOX 200 NOORDWIJK 
  2200 AG 
  NETHERLANDS 
 
 2 EUROPEAN SPACE AGENCY ESTEC 
  L BERTHOUD 
  M LAMBERT 
  POSTBUS BOX 299 NOORDWIJK 
  NL2200 AG  
  NETHERLANDS 
 
 4 PRINS MAURITS LABORATORY 
  H REITSMA 
  E VAN RIET 
  H PASMAN 
  R YSSELSTEIN 
  TNO BOX 45 
  RIJSWIJK 2280AA 
  NETHERLANDS 
 
 1 ROYAL NETHERLANDS ARMY 
  J HOENEVELD 
  V BURCHLAAN 31 
  PO BOX 90822 
  2509 LS THE HAGUE 
  NETHERLANDS 
 
 1 INSTITUTE OF PHYSICS 
  SILESIAN TECH UNIVERSITY 
  E SOCZKIEWICZ 
  44 100 GLIWICE 
  UL KRZYWOUSTEGO 2 
  POLAND 
 
 1 INST OF CHEM PHYS 
  A YU DOLGOBORODOV 
  KOSYGIN ST 4 V 334 
  MOSCOW 
  RUSSIA 
 
 4 INST OF CHEM PHYS 
  RUSSIAN ACADEMY OF SCIENCES 
  G KANEL 
  A MOLODETS 
  S AZORENOV 
  A UTKIN 
  142432 CHERNOGOLOVKA 
  MOSCOW REGION 
  RUSSIA 

 1 INSTITUTE OF EARTH’S CRUST 
  P I DOROGOKUPETS 
  664033 IRKUTSK 
  RUSSIA 
 
 3 INSTITUTE OF MECH ENGNG 
  PROBLEMS 
  V BULATOV 
  D INDEITSEV 
  Y MESCHERYAKOV 
  BOLSHOY 61 VO 
  ST PETERSBURG 199178 
  RUSSIA 
 
 1 INSTITUTE OF MINEROLOGY  
  AND PETROGRAPHY 
  V DREBUSHCHAK 
  UNIVERSITETSKI PROSPEKT 3 
  630090 NOVOSIBIRSK 
  RUSSIA 
 

2 IOFFE PHYSICO TECHNICAL  
  INSTITUTE 
  DENSE PLASMA DYNAMICS 
  LABORATORY 
  E DROBYSHEVSKI 
  A KOZHUSHKO 
  ST PETERSBURG 194021 
  RUSSIA 
 
 1 IPE RAS 
  A BOGOMAZ 
  DVORTSOVAIA NAB 18 
  ST PETERSBURG 
  RUSSIA 
 
 2 LAVRENTYEV INST 
  HYDRODYNAMICS 
  L MERZHIEVSKY 
  V SILVESTROV 
  630090 NOVOSIBIRSK 
  RUSSIA 
 
 1 MOSCOW INST OF PHYS 
  AND TECH 
  S UTYUZHNIKOV 
  DEPT OF COMPUTATIONAL 
  MATHEMATICS 
  DOLGOPRUDNY 1471700 
  RUSSIA 
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1 RESEARCH INST  
  OF MECH 
  NIZHNIY NOVGOROD  
  STATE UNIVERSITY 
  A SADYRIN 
  P GAYARINA 23 KORP 6 
  NIZHNIY NOVGOROD 603600 
  RUSSIA 
 
 2 RUSSIAN FEDERAL NUCLEAR  
  CENTER VNIIEF 
  L F GUDARENKO 
  R F TRUNIN 
  MIRA AVE 37 
  SAROV 607190 
  RUSSIA 
 

1 ST PETERSBURG STATE  
  TECHNICAL UNIVERSITY 
  FACULTY OF PHYSICS  
  AND MECHANICS 
  DEPT OF THEORETICAL MECHANICS 
  ATTN A KRIVTSOV 
  POLITECHNICHESKAYA ST 29 
  195251 ST PETERSBURG 
  RUSSIA 
 
 1 SAMARA STATE AEROSPACE UNIV 
  L LUKASHEV 
  SAMARA 
  RUSSIA 
 
 1 UNIVERSIDAD DE CANTABRIA 
  FACULTAD DE CIENCIAS 
  DEPARTMENTO DE FISICA  
  APLICADA 
  J AMOROS 
  AVDA DE LOS CASTROS S/N 
  39005 SANTANDER 
  SPAIN 
 
 1 DYNAMEC RESEARCH  
  A PERSSON 
  PO BOX 201 
  S 151 23 SODERTALJE 
  SWEDEN 

 7 FOI 
  SWEDISH DEFENCE  
  RESEARCH AGENCY 
  GRINDSJON RESEARCH CENTRE 
  L GUNNAR OLSSON 
  B JANZON 
  G WIJK 
  R HOLMLIN 
  C LAMNEVIK 
  L FAST 
  M JACOB 
  SE 147 25 TUMBA 
  SWEDEN 
 
 2 SWEDISH DEFENCE RSCH ESTAB 
  DIVISION OF MATERIALS 
  S J SAVAGE 
  J ERIKSON 
  STOCKHOLM S 17290 
  SWEDEN 
 
 2 K AND W THUN 
  W LANZ 
  W ODERMATT 
  ALLMENDSSTRASSE 86 
  CH 3602 THUN 
  SWITZERLAND 
 
 2 AWE 
  M GERMAN 
  W HARRISON 
  FOULNESS ESSEX SS3 9XE 
  UK 
 
 1 CENTURY DYNAMICS LTD 
  N FRANCIS 
  DYNAMICS HOUSE 
  HURST RD 
  HORSHAM 
  WEST SUSSEX RH12 2DT 
  UK 
 
 5 DERA 
  I CULLIS 
  J P CURTIS Q13 
  A HART Q13 
  K COWAN Q13 
  M FIRTH R31 
  FORT HALSTEAD 
  SEVENOAKS KENT TN14 7BP 
  UK 
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 1 UK MINISTRY OF DEFENCE 
  G CAMBRAY 
  CBDE PORTON DOWN SALISBURY 
  WITTSHIRE SPR 0JQ 
  UK 
 
 2 UNIVERSITY OF KENT 
  PHYS LABORATORY 
  UNIT FOR SPACE SCIENCES 
  P GENTA 
  P RATCLIFF 
  CANTERBURY KENT CT2 7NR 
  UK 
 
 7 INST FOR PROBLEMS IN 
  MATERIALS SCIENCE 
  S FIRSTOV 
  B GALANOV 
  O GRIGORIEV 
  V KARTUZOV 
  V KOVTUN 
  Y MILMAN 
  V TREFILOV 
  3 KRHYZHANOVSKY STR 
  252142 KIEV 142 
  UKRAINE 
 
 1 INSTITUTE FOR PROBLEMS  
  OF STRENGTH 
  G STEPANOV 
  TIMIRYAZEVSKAYU STR 2 
  252014 KIEV 
  UKRAINE 
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