AD_____

Award Number: DAMD17-02-1-0626

TITLE: Ack-1 Tyrosine Kinase Regulates Integrin Signaling Leading to Breast Cell Migration

PRINCIPAL INVESTIGATOR: Katarzyna Modzelewska

CONTRACTING ORGANIZATION: University of Wisconsin-Madison Madison, WI 53706-1490

REPORT DATE: March 2004

TYPE OF REPORT: Annual Summary

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

20040917 046

REPORT DOCUMENTATION PAGE Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,				Form Approved	
			OMB No. 074-0188		
the data needed, and completing and reviewi reducing this burden to Washington Headqua	indification is estimated to average 1 hour per response ing this collection of information. Send comments regar iters Services, Directorate for Information Operations a ion Project (0704-0188), Washington, DC 20503	ding this burden estimate or any othe	er aspect of this collect	ion of information, including suggestions for	
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND			
······	March 2004	Annual Summary)3 - 28 Feb 2004)	
4. TITLE AND SUBTITLE			5. FUNDING N	UMBERS	
Ack-1 tyrosine Kinase Regulates Integrin Signaling Leading to Breast Cell Migration			DAMD17-02-1-0626		
6. AUTHOR(S)					
Katarzyna Modzelewsk	a				
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER		
University of Wisconsin-Madison					
Madison, WI 53706-1490					
E-Mail: kmodzelewska@wisc.edu					
9. SPONSORING / MONITORIN AGENCY NAME(S) AND AD		10. SPONSORING / MONITORING AGENCY REPORT NUMBER			
U.S. Army Medical Research and Materiel Command					
Fort Detrick, Maryla	nd 21702-5012				
11. SUPPLEMENTARY NOTES				******	
Original contains co	olor plates: ALL DTIC rep	roductions will 1	be in blac	k and white	
12a. DISTRIBUTION / AVAILABILITY STATEMENT				12b. DISTRIBUTION CODE	
Approved for Public	Release; Distribution Un	limited			
13. ABSTRACT (Maximum 200	Words)			· · · · · · · · · · · · · · · · · · ·	
Appropriate interactions be	etween breast cells and the ECM	via α2β1 integrin help	to establish n	ormal cellular structure and	
	nsformation to a carcinoma, these				
	heir specialization and lose contr				
and then migrate through the	he connective tissue environment	to form distant metas	tases. We have	ve previously found that	
	inces $\alpha 2\beta 1$ integrin-induced cell				
-	of this research I have determine		-		
	ctions with p130Cas and Crk occ				
	and Crk occurs in T47D cells in			•	
	a factor for the small GTPases Ra lation, since over expression of v				
	phorylation of these molecules is				
-	vestigating the role of Ack-1 in				
		1			
14. SUBJECT TERMS				15. NUMBER OF PAGES	
ACK-1, Non-Receptor Tyrosine Kinase, Integrin, RHO Family GTPASES,			PASES,	9	
Signaling			F	16. PRICE CODE	
17. SECURITY CLASSIFICATIO		19. SECURITY CLASSIF		20. LIMITATION OF ABSTRACT	
OF REPORT	OF THIS PAGE	OF ABSTRACT			
Unclassified NSN 7540-01-280-5500	Unclassified	Unclassif		Unlimited Idard Form 298 (Rev. 2-89)	
1011 1010-01-200-0000				ribed by ANSI Std. Z39-18	

٠

Table of Contents

•

over1	
F 2982	
able of Contents3	
ntroduction4	
ody5	
ey Research Accomplishments8	
eportable Outcomes8	
onclusions9	
eferences9	
ppendicesnon	e

Introduction

Appropriate interactions between breast cells and the extra cellular matrix (ECM) via $\alpha 2\beta 1$ integrin help to establish normal cellular structure and differentiation. During transformation to a carcinoma, these normal interactions with the ECM are profoundly altered, resulting in cells that lose their specialization and lose control of their growth. Ultimately, these cells become invasive, and then migrate through the connective tissue environment to form distant metastases (1,2). We have previously found that Ack-1 (Cdc42 Associated Kinase) tyrosine kinase enhances $\alpha 2\beta 1$ integrin-induced cell migration and regulates signaling components downstream of the integrin. The purpose of this research is to understand the mechanism by which Ack-1 is phosphorylated and how the kinase regulates integrin-dependent signaling leading to cell migration. To do that, I will investigate the role of FAK (Focal Adhesion Kinase) and Src in Ack-1 phosphorylation, as well as screen for Ack-1 binding partners and determine whether these interactions are collagen dependent and whether they play a role in cell migration.

Specific Aims and Research Accomplishments

1) Determine how Ack-1 is phosphorylated upon collagen stimulation and whether this phosphorylation is important in cell migration.

<u>Rationale</u>

Our preliminary results suggested that Ack-1 is phosphorylated upon activation of $\alpha 2\beta 1$ integrin but the mechanism by which this occurs is unknown. It has been established that integrin stimulation leads to activation of FAK and Src. Because Ack-1 participates in a complex with FAK and Src it may be regulated by FAK or Src in a collagen-dependent manner. I will test whether this is accomplished via direct phosphorylation by FAK or by FAK activation of Src, which in turn phosphorylates Ack-1. I will also investigate the importance of Ack-1 phosphorylation in collagen-induced migration.

Research Accomplishments

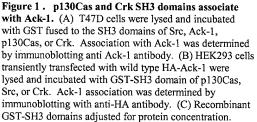
Since the last report I have not performed additional experiments to address this aim.

2) Define the molecular interactions of Ack-1 and establish their importance in Cdc42-dependent cell migration.

Rationale

In addition to its kinase domain Ack-1 contains a CRIB domain, which is responsible for its interaction with Cdc42 (3), an SH3 domain, and a C-terminus rich in prolines. SH3 domains are known to interact with proline rich motifs. Thus far there are have not been any molecules shown to interact with the Ack-1 SH3 domain. The proline rich region of Ack-1 interacts with clathrin, and is thought to bind to Src kinase (4,5). I will screen libraries of SH3 domains and proline rich domains to identify potential Ack-1 interacting partners. During this stage of my project, I will collaborate with the laboratory of Dr. Brian Kay who is an expert in combinatorial chemistry and specifically protein-protein interactions.

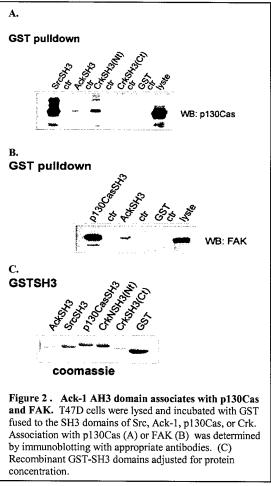
Research Accomplishments


Phage display

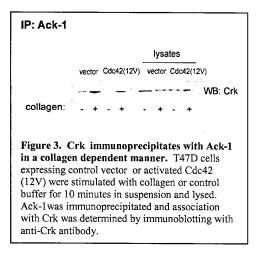
The phage display screen resulted in a peptide sequence that did not point me to any obvious candidates that might interact with Ack-1 and mediate its effects on cell migration. I decided not to pursue it any further and concentrate my efforts on the binding partners identified thus far.

Yeast two hybrid

The results from the yeast two hybrid screen generated several potential leads of which I have started to investigate one, E-cadherin, a receptor that mediates cell-cell interactions and affects cell migration. In my attempt to determine whether E-cedherin binds to Ack-1 in T47D cells, I found that it does not, at least not in response to collagen.


Modzelewska, Katarzyna

SH3 domain screen


I have determined that p130Cas and Crk SH3 domains associate with Ack-1 and that the SH3 domain of Ack-1 binds to p130Cas and FAK.

I have previously determined that p130 Cas coimmunoprecipitates with Ack-1 in a collagen dependent manner. I have also, shown that the SH3 domain of p130Cas can be immunoprecipitated with Ack-1 from cells. Here, I demonstrate that the GST fusion of p130Cas SH3 domain can pull down endogenous Ack-1 (Figure 1 A) or over expresses HA-Ack-1 (Figure 1 B) from cell lysates. In addition, the SH3 domain of Ack-1 fused to GST can also pull down p130Cas. These results suggest that the interaction between Ack-1 and p130 Cas can be mediated through both SH3 domain and the proline rich region of Ack-1.

During the SH3 screen, I also saw an interaction between the N-terminal domain of the adaptor molecule Crk and Ack-1 (Figure 1A). To determine whether this interaction is relevant *in vivo*, I investigated whether they interact in whole cells. I was able to co-immunoprecipitate Crk with Ack-1 from T47D cells in a collagen dependent manner (Figure 3). This suggests that Crk is an additional component of a protein complex that associates with Ack-1 and which is enhanced by collagen

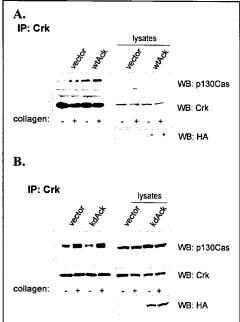
stimulation. This finding is relevant because Crk, in addition to p130Cas, has been show to play a key role in cell migration.

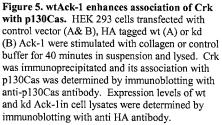
In addition, I have previously shown that FAK coimmunoprecipitates with Ack-1 in a collagen dependent manner.

Here I demonstrate that this interaction is mediated through the SH3 domain of Ack-1 (Figure 2B).

To obtain the above results, the SH3 domains were expressed as GST fusion proteins and purified from bacteria Figure 2 & 3 (C). Pull down assays were performed with each domain from T47D or 293 HEK cell lysates and association with p130Cas, FAK or Ack-1 was determined by immunoblotting with the appropriate antibody.

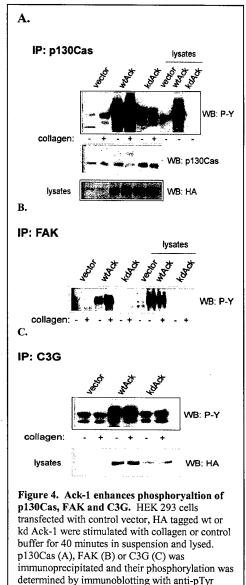
Modzelewska, Katarzyna


3) Determine whether p130Cas is a substrate for Ack-1 and identify whether additional binding partners of Ack-1 are substrates for the kinase.


Rationale

Our preliminary data suggests that Ack-1 interacts with p130Cas and also that p130Cas is phosphorylated in a collagen-dependent manner. The substrate domain of p130Cas is composed of 15 YXXP motifs that are potential phosphorylation sites. I will test whether p130Cas substrate domain serves as a substrate for the Ack-1 kinase. I will also investigate whether any other binding partner of Ack-1 identified during the library screens is a substrate for Ack-1 kinase.

<u>I have determined that over expression of Ack-1 leads to a</u> <u>substantial increase in the phosphorylation levels of p130Cas</u>, <u>FAK and C3G</u>.


To investigate the effect of Ack-1 on signaling molecules implicated in modulating cell migration I have made use of the 293 HEK cells, which are easier to transfect than T47D cells. Over expression of wild type Ack-1 in 293 cells resulted in hyper-phosphorylation of p130Cas, FAK and C3G (Figure 4). This suggests that Ack-1 either directly phosphorylates these molecules or that its kinase activity is

required to activate another kinase that in turn phosphorylates these molecules. At this point I do not have a clear idea which one is the case. I have performed initial experiments using PP2, the inhibitor of Src kinases but my results are inconclusive.

Because Ack-1 affects the

antibody. Expression levels of wt and kd Ack-1in

cell lysates were determined by immunoblotting

with anti HA antibody.

phosphorylation of several key molecules implicated in cell migration, I wanted to know whether the kinase plays a role in their downstream signaling. What I found is that over expression of Ack-1 not only leads to hyper-phosphorylation of p130Cas but it also enhances the complex between p130Cas and Crk (Figure 5). This interaction is often described as "a molecular switch" for cell migration, thus this result is consistent with the enhancement of cell migration in cells expressing Ack-1. Crk mediates the interaction between p130Cas and several other molecules involved in cell migration. One such molecule is C3G, and exchange factor for Rap and R-Ras. C3G is activated upon binding to p130Cas-Crk complex as well as by upon phosphorylation. I have found that Ack-1 enhances its phosphorylation (Figure 4) and currently I am in the process of determining whether Ack-1 affect its binding to the p130Cas-Crk complex and the activation of rap and R-Ras.

Key Research Accomplishments

- Found that Crk interacts with Ack-1 in cells in collagen dependent manner
- Determined that Crk and p130Cas SH3 domains interact with Ack-1
- Determined that Ack-1 SH3 domain interacts with p130Cas and FAK
- Established that p130Cas, FAK and C3G phosphorylation are enhanced by Ack-1
- Found that Ack-1 over expression enhances Crk binding to p130Cas

Reportable Outcomes

Guest review article in BBA Focal adhesion regulation of cell behavior Michele A. Wozniak, Katarzyna Modzelewska, Lina Kwong and Patricia J. Keely

Poster presentation The American Society for Cell Biology 43rd Annual Meeting December 13-17, 2003 San Francisco, CA

<u>Abstract</u>

Ack-1 complexes with FAK and p130Cas to mediate Cdc42-induced cell migration

Katarzyna Modzelewska, Radhika Desai, Laura Newman, Melanie Lo, Luv Javia, and Patricia Keely

Department of Pharmacology, University of Wisconsin, Madison

The loss of epithelial polarization and the acquisition of a migratory phenotype is a key determinant of breast cancer progression ultimately leading to invasion and metastasis. We have previously found that activation of Cdc42, a member of the Rho family of small GTPases, promotes integrin-mediated migration and invasion of breast epithelial cells across collagen matrices (Keely et al, 1997. Nature 390: 632). To elucidate the molecular basis for the effects of Cdc42, we tested whether Cdc42 regulates integrin signaling pathways that lead to cell migration. We found that Cdc42 becomes activated by and is a necessary component of the alpha2beta1 integrin signaling pathway leading to focal adhesion kinase (FAK) and p130Cas activation. Signaling from Cdc42 to FAK and p130Cas was functionally relevant. since dominant negative FAK (FRNK) and p130Cas (p130Cas-SH3) blocked Cdc42-induced cell migration. Moreover, we find a role for the Cdc42 effector, the tyrosine kinase Ack-1. Ack-1 became tyrosine phosphorylated following collagen stimulation, but this phosphorylation was surprisingly independent of Cdc42 activation. Over expression of wild-type Ack-1 significantly enhanced p130Cas and FAK phosphorylation and the kinase dead Ack-1 lead to a small increase in p130Cas and FAK phosphorylation. Consistent with these results, both wild type and kinase dead Ack-1 over expression enhanced Cdc42-induced migration, suggesting a novel role for Ack-1 in regulating cell migration. Finally, co-immunoprecipitation studies suggest the presence of a signaling complex between Ack-1, p130Cas, PI3-kinase, FAK, and Cdc42. Importantly, the formation of this complex was collagendependent, even in Cdc42(12V)-expressing cells. The interactions of Ack-1 with its binding partners p130Cas and FAK appear to be direct, since the SH3 domain of p130Cas could be co-immunoprecipitated with Ack-1 in cells and GST-p130CasSH3 could pull down Ack-1 from cell lysates. Conversely, the SH3 domain of Ack-1 pulls down both p130Cas and FAK. Our results suggest a signaling pathway

downstream of the alpha2beta1 integrin by which collagen stimulates the activation of Cdc42, the phosphorylation of Ack-1, and their association with p130Cas and FAK. These signaling events ultimately enhance cell migration.

Conclusions

I have found that in addition to p130Cas, FAK and Src, Ack-1 interacts also with the adaptor molecule Crk and that this interaction occurs in a collagen dependent manner. Additionally, I determined that Ack-1 associates with Crk via its proline region, with FAK via its SH3 domain and with p130 Cas through both the SH3 domain and the proline rich region. Furthermore, I could co-immunoprecipitated ack-1 with C3G and exchange factor for Rap and R-Ras, small GTPases involved in cell migration. Ack-1 not only forms a complex with these molecules but also enhances their phosphorylation. One functional outcome of such hyper-phosphorylation is an increase in binding of Crk to p130Cas in cells over expressing Ack-1. These results suggest that Ack-1 modulates phosphorylation of molecules involved in cell migration thereby affecting the downstream signaling pathways. I am in the process of elucidating the key signaling events modulated by Ack-1.

References

- 1. Owens, L., Xu, L., Craven, R., Dent, G., Weiner, T., Kornberg, L., Liu, E., and Cance, W. (1995) Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors.*Cancer Research* 55, 2752-2755
- 2. Tavassoli, F. A. (1992) Pathology of the Breast, Elsevier Science Pub Co, New York
- 3. Manser, E., Leung, T., Salihuddin, H., Tan, L., and Lim, L. (1993) A non-receptor tyrosine kinase that inhibits the GTPase activity of p21cdc42. *Nature* **363**, 364-367
- 4. Teo, M., Tan, L., Lim, L., and Manser, E. (2001) The Tyrosine Kinase ACK1 Associates with Clathrincoated Vesicles through a Binding Motif Shared by Arrestin and Other Adaptors. *J Biol Chem* 276(21), 18392-8.
- 5. Hopper, N. A., Lee, J., and Sternberg, P. W. (2000) ARK-1 inhibits EGFR signaling in C. elegans.*Mol Cell* **6**(1), 65-75.