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Executive Summary 

Therein we summarize the research results developed under ARO Grant number DAAD19-00-1- 
0473. The period of performance for this research award was from August 2000 to January 2004. 

The overall objective of this research was to contribute to the development of control algorithms for 
autonomous high-speed vehicles moving in uncertain and/or off-road environments. The motivation 
behind this research objective was the need of "intelligent" drivers that can be used to navigate and 
guide an autonomous vehicle in a high-threat environment, perform its assigned task (e.g., drop a 
munition or shoot a projectile), while at the same time minimizing exposure to potential threats 
and hazards. 

Given the previous overall objective, this research has focused on two areas: First, on the devel- 
opment of simple, albeit acctirate, mathematical models for the complex behavior arising between 
the wheel tires and the ground. The study of tire friction dynamics is brought about by the 
need of high-speed operation of the vehicle. These friction dynamics determine the forces acted 
upon the vehicle. In contrast to all other empirical results in the literature (most of which are 
valid only at steady-state), our developed tire friction models are sohdly based on first physical 
principles; they also capture transient dynamics which are important during high-speed and/or con- 
tinuously changing driving conditions. Second, on the development of optimal, maximum-velocity 
and minimum-time driving maneuvers ("optimal driving primitives") under friction constraints. 
These results are also novel in the sense that the tire/ground nonlinearities (i.e., saturating fric- 
tion) are explicitly accounted for. The numerical simulations show very reahstic behavior of the 
vehicle trajectory, in the sense that shding and skidding is often induced by the optimizer in order 
to achieve the control objective. This is not unlike the action of an expert human race driver who 
typically induces skidding and/or sliding to minimize time or maximize exit velocity from a corner. 

As a result of the support received from this award, two students received their M.S. degrees and 
one student will soon receive his Ph.D. Two book chapters, four archival journal publications and 
eight conference papers document the results of this work. 
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1    Introduction 

1.1    Motivation and Problem Statement 

The need for reducing the risk for human hves in operating machines in hazardous or hostile 
environments has lead to the development of unmanned and often autonomous vehicles for both 
commercial and military applications. The demand for completely autonomous machines and 
vehicles rises from the need for maximum performance and minimum error during operation which 
requires the elimination of the 'human factor' in the control loop. 

A class of vehicles that we envision to be completely automated in the future are ground wheeled 
vehicles (Fig. 1) that operate in hostile off-road environments (e.g., battlefields). A typical mission 
would be to drive the vehicle from point A to point B, avoiding any obstacles and minimizing the 
exposure to danger (Fig. 1). In general, minimization of the exposure to danger involves driving 
through the trajectory in minimum time or maximum average velocity. 

Figure 1: Military Off-Road Vehicle and Mission Map. 

The fastest off-road vehicles can be found in rally-cross races. Racing such a vehicle requires a great 
deal of practice and skill. In this research our plan is to develop controllers that operate as "intelli- 
gent rally/race-drivers" and imitate the driving techniques of race drivers that differ substantially 
from the techniques used by everyday drivers. It is evident, even to inexperienced drivers, that 
race driving involves operating the vehicle at the limits of its handUng capacity. For example, race 
drivers intentionally use skidding through corners to optimize their trajectory as far as travel time 
and velocity, and minimize reaction time of the vehicle for the next maneuver (Fig. 2). Such regions 
of operation are avoided by everyday drivers because of safety. Maneuvers in these regions require 
a great deal of skill to be performed in a controlled manner. Actually, the automotive industry's 
research focuses in developing control systems to prevent commercial vehicles from reaching such 
limits of operation. The situation is redically different for autonomous/unmanned military vehicles, 
where the primary objective is success of the mission. 

Before delving into the problem of designing "expert driving software agents" it is imperative to 



Figure 2: Rally-Race driving involves driving the race car to its handling limits. Race drivers 
intentionally invoke skidding in corners to optimize the trajectory and minimize reaction time for 
the maneuver to come. 

have a very good characterization of the forces developed between the vehicle wheels and the ground, 
as these forces are the main mechanism for controlling the vehicle. Previous results in the area of 
mobile robots have used several simphfying assumptions. A typical scenario involves a commanded 
(off-line) trajectory, communicated to the robot, and an on-board tracking control law to follow 
this trajectory in real-time. In essence, the trajectory generation and trajectory tracking problems 
are treated independently, based on the assertion that the vehicle will be successful in following 
the commanded path with arbitrary accuracy. Unfortunately, reality is not that accommodating. 
Neglected tire/ground dynamics may have a profound effect in the performance of the overall 
system. Therefore, in the past, control development for autonomous wheeled vehicles has been 
performed under the ideal assumption of no-slipping/no-sliding conditions. This no-shp/no-sUding 
assumption cannot be guaranteed a priori and, as a result, kinematic models developed under this 
ideal assumption are not accurate. In fact, no-slippage/no-skidding is never satisfied in practice as 
slippage is what actually generates friction [8]. In the extreme cases of interest to this research (i.e., 
high-speed driving, cornering with braking, etc) these simplistic models are inadequate to describe, 
even qualitatively, the ensuing motion; see for example Fig. 2. 

Driving under extreme (high-speed, high-load) conditions is a challenging problem. In particular, 
kinematic models of the vehicle (i.e., models where the wheel velocity is the control input) are 
inadequate. Dynamic models (i.e., where the control input is the torque delivered to the wheels) 
are needed instead. These models must be accompanied by reasonably accurate tire models to 
correctly predict the forces generated by the tires. Very accurate tire models have been developed 
for this purpose and used for vehicle simulation studies by car and tire manufacturers. However, 
these tire models are much too complex to be used for control purposes. 

Our research has focused on two areas: First, the understanding of the complex friction character- 
istics arising between the wheel tires and the ground. Departing from all prior major results in the 
literature we have proposed dynamic tire friction models that: (i) are sohdly based on first physical 
principles; (ii) capture transient d5aiamics which are important during high-speed and/or contin- 
uously changing driving conditions; and (iii) are simple enough to be used for control and friction 
estimation purposes. Second, the development of optimal maximum-velocity and minimum-time 
driving maneuvers ("optimal driving primitives") under friction constraints. These results are also 
novel in the sense that the tire/ground nonlinearities (i.e., saturating friction) are explicitly ac- 
counted for.  The numerical simulations show very realistic behavior of the vehicle trajectory, in 



the sense that sliding and skidding is often induced by the optimizer in order to achieve the con- 
trol objective. This is not unlike the action of an expert human race driver who typically induces 
skidding and/or sliding to minimize time or maximize exit velocity from a corner; see Fig. 2. 

1.2    Goals of this Report 

The main goal of this report is to summarize the results obtained under this research program. 
Since most of the technical results have appeared or will soon appear in over 15 archival journal and 
conference publications, below we only summarize these results and remark on their significance 
and their interrelationship. 

2    Summary of Work Accomplished 

The following research accomplishments were achieved over the duration of this project (August 
2000-January 2004). 

2.1    Theoretical Development and Experimental Validation of Mobile Robot 
Control Laws 

The assumption of no-slipping/no-slidding induces nonholonomic constraints in the motion of the 
vehicle. Even for this simplified case, the available control laws have not been compared in the 
past. In this work we performed a comprehensive investigation of several controllers developed 
in the literature for the special case of unicycle-type, nonholonomic wheeled mobile vehicles. In 
particular, we compared controllers from the two major classes of stabilizing controllers for these 
vehicles. Namely, time-varying controllers [9, 10, 11, 12, 13] and time-invariant, discontinuous 
controllers [14, 15, 16, 17, 18, 19, 20]. 

A comparative study of controllers for nonholonomic systems and, in particular, between time- 
varying and time-invariant controllers, had not been done in the literature prior to [1]. Moreover, 
the robustness properties of these controllers is still a topic under investigation. Our work provided 
a step towards this goal by comparing the stabilization and robustness properties of several time- 
varying and time-invariant controllers for a wheeled robot. 

Six controllers were tested. Two of them were time-invariant [16, 17] and the rest were time- 
varying (periodic) [12, 13, 9, 21]. Table 1 summarizes the controllers tested. All these controllers 
were implemented on a unicycle-type robot called Khepera, shown in Fig. 3(b). 

The Khepera robot is a product of the K-Team (http://www.k-team.coin). It is a mobile robot 
with two DC motor-driven wheels. The DC motors are connected to the wheels through a 25:1 
reduction gear box. Two incremental encoders are placed on the motor axes. The resolution of each 
encoder is 24 pulses per revolution of the motor axis. This corresponds to 24 x 25 = 600 pulses 
per revolution of the wheels or 12 pulses per milhmeter of wheel displacement. The algorithm for 
estimating the velocity from the encoder outputs is implemented on the robot. For DC motor speed 
control, a native PID controller is implemented on the Khepera robot. All one then needs to do in 
order to control Khepera, is to read position signals and issue velocity commands via the RS-232 
serial port. The maximum sampling rate can be upto lOOHz owing to the limitation of the RS-232 
serial communication (maximum is 4.8kbytes/s for the Khepera robot). For all experiments a 50Hz 
sampling was used. 



Table 1: Controllers Tested 
Controller Ref. Comments 

1 [22, 20] Discontinuous, Exponen- 
tial Convergence 

2 [18, 2o; Discontinuous, Bounded, 
Exponential Convergence 

3 [16] Two-stage switching, 
Time-Invariant controller 

4 [17] Time-Invariant, Polar Co- 
ordinates 

5 12 Time-Varying 
6 13] Time-Varying 
7 9 Time-Varying 
8 [21] Time-Varying, Exponen- 

tial Convergence 

The Khepara robot introduces many reahstic difficulties, such as different motor dynamics for 
the two wheels, time delay, quantization, sensor noise and saturation. The performance of each 
controller was tested with respect to convergence characteristics, speed of response, steady-state 
error, robustness to sensor noise, etc. Suggestions on how to improve each controller's performance 
were also presented. 

In addition to the six controllers of Table 1, two new controller for unicycle-type vehicles was 
proposed. The first controller is given by 

s(x) 
Ui = -kXi + fJ'   2   ,     2 ^2, 

s{x) 
U2 = -kxi - a—R K Xi (1) 

where s is given by s{x) :— x^ — (l/2)a;i2;2. The derivative of s is readily calculated as 

2.S = XiU2 - UiX2 (2) 

Here a;i,a:2 and xs are given by (see also Fig. 3(b)) 

a;i = a;cos7-F j/sin7,    X2 = 7, 

X3 = a; sin 7 — j/ cos 7 (3) 

A modification of the control law (1) in a neighborhood of the 2;3-axis is necessary, since this control 
law is not defined when xi — X2 = 0. The modification used here is similar to the one presented 
in [15]. The idea is to create a region around the a;3-axis where the control law (1) is not used. To 
this end, let the region T>^^ = {(xi, 0:2,2:3) : jr;] > 77 } where 

V 
Vx'i + : 

s 
(4) 

With a slight abuse of notation, we let I>^ denote the set I)^ = {{xx,X2,Xi) : /y = 0, s 7^ 0} — 
{{xi,X2,xz) : xi = 0:2 = 0, Xs ^ 0}. In the set 2?^, where |?7| is "large" we can apply, for instance, 
the control law, ui = ksSgn.{s) and U2 = 0 where ks is some constant chosen by the user. A simple 



(a) (b) 

Figure 3: (a) Definition of configuration variables, (b) The Khepera robot. 

calculation shows that with this control law the system will leave P^ in finite time. Moreover, it 

can be easily shown that the region V^ := 5R^\X'| is invariant. Thus, once the system enters Vfj 
stays there for all future times. Once in P^, the control law (1) can be used. 

The second controller is given by 

-/isati(s,i/) (5) ui = —fc- + /isat2(.s,i/),    U2 = -k- 

where u i/x| + X2 and A; and /x are constants satisfying 

H>2k>0,     if \ri\ < 1 

/x > -2k > 0,     if |r?| > 1 

The saturation functions satj (i = 1,2) are defined as 

satj(s,i') = 
sat 

\l/J   V 
sgn(s) 

if 

if 

(6a) 

(6b) 

(7) 

where sat(a;) ;= min{l, |a;|}sgn(2;). 

Figures 4 and 5 show selected trajectories with the control laws (1) and (5). Table 2 summarizes 
the experimental results of all controllers tested. In Table 2 the letters 'E', 'N', 'S' and 'L' stand for 
Easy, Normal, Singular and Long-distance missions respectively. 'E' stands for 'Excellent' which 
means good speed of response, no oscillations either in x, y or 7, reasonable control inputs and 
"natural" trajectories. 'G' stands for 'Good', which means that the convergence is acceptable, i.e., 
within 10 seconds. "S' stands for 'Slow', which means that it took the robot more than 20 seconds 
to converge. 'C' stands for 'Chattering', which means that trajectories converged, but there was 
too much chattering in the velocity commands. 'O' stands for 'Oscillatory', which means that the 
trajectory oscillated around the origin. 'U' stands for unstable/unsatisfactory response. 

As indicated by the table, Controller 2 gave the most satisfactory performance for all missions. Its 
speed of response and the velocity commands were always within acceptable limits. The imple- 
mentation complexity of all controllers was comparable, with the discontinuous Controller 1 and 3 

9 



50 

E 
E   -50 

50 

0 

E 
E   -50 

System I, Easy Mission 

Convergence : x.yy < 4 sec. ■ 

-150    -100      -50 0 
x[mm] 

50       100 

System II, Nomial Mission 

Convergence : x,y,Y< 4 sec. 

-160' ' ^- 
-150    -100     -50 

x[mm] 

50 

E   -50 

E   -50 

-100 

System i, Normal Mission 

No Convergence 

-150'  
-150     -100      -50 SO        100 

x[mm] 

System II, Singular Mission 

Convergence : x,yY < 4 sec. 

-150     -100     -50 0 50        100 
x|mm] 

Figure 4: Selected trajectories for Controller 1; from [1]. 

requiring the most care to avoid singularities. Controller 2 has a built-in mechanism that avoids 
singular regions. Controllers 2 and 4 generated natural trajectories, i.e., similar to what a human 
operator would attempt. However, Controller 4 was sensitive to sensor noise resulting in relatively- 
large hmit cycles of the heading angle around the origin. Time-varying controllers generated oscil- 
latory paths and all of them showed slow convergence, especially close to the origin. Among the 
time-varying controllers, Controller 8 exhibited the best performance and speed of response. The 
implementation of this controller presented the most difficulties, however, because of the require- 
ment to update the parameter A of the dilation operator (see [21]) using a Newton method at each 
time step. 

The results of this work have been documented in [1, 23, 24]. 

2.2    Development of Dynamic Friction Models for Longitudinal Motion 

The problem of predicting the friction force between the tire and the ground for wheeled vehicles 
is of enormous importance to automotive industry. Since friction is the major mechanism for 
generating forces on the vehicle, it is extremely important to have an accurate characterization of 
the magnitude (and direction) of the friction force generated at the ground/tire interface. However, 
accurate tire/ground friction models are difficult to obtain analytically. Subsequently, in the past 
several years, the problem of modehng and predicting tire friction has become an area of intense 
research in the automotive community. In particular, ABS and traction control systems, that 
enhanced the safety of modern passenger vehicles, rely on knowledge of the friction characteristics. 
Traction control systems reduce or eliminate excessive slipping or sliding during vehicle acceleration 
and thus enhance the controllability and maneuverabiUty of the vehicle. Traction control aims to 
achieve maximum torque transfer from the wheel axle to forward acceleration. Similarly, anti-lock 
braking systems (ABS) prohibit wheel lock and skidding during braking by regulating the pressure 

10 
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Figure 5: Selected trajectories for Controller 2; from [1]. 

applied on the brakes, thus increasing lateral stability and steerability, especially during wet and icy 
road conditions. As with the case of traction control, the main difficulty in designing ABS systems 
is the nonUnearity and uncertainty of the tire/road models. In either case, the friction force at the 
tire/road interface is the main mechanism for converting wheel angular acceleration or deceleration 
(due to the motor torque or braking) to forward acceleration of deceleration (longitudinal force). 

A common assumption in most tire friction models is that the normalized tire friction /x 

(j. 
F_ 

Fn 

Friction force 
Normal force 

is a nonlinear function of the normalized relative velocity between the road and the tire (slip 
coefficient s) with a distinct maximum; see Fig. 6. In addition, it is understood that /x also depends 
on the velocity of the vehicle and road surface conditions, among other factors (see [25] and [2]). 
The curves shown in Fig. 6 illustrate how these factors influence the shape of ^. 

The curves shown in Fig. 6 are derived empirically, based solely on steady-state (i.e., constant 
hnear and angular velocity) experimental data [2, 26] in a highly controlled laboratory environment 
or using specially designed test vehicles. Under such steady-state conditions, experimental data 
seem to support the force vs. slip curves of Fig. 6. In reality, the linear and angular velocities can 
never be controlled independently and hence, such idealized steady-state conditions are not reached 
except during the rather uninteresting case of cruising with constant speed. The development of 
the friction force at the tire/road interface is very much a dynamic phenomenon. In other words, 
the friction force does not reach its steady-state value shown in Fig. 6 instantaneously, but rather 
exhibits transient behavior which may differ significantly from its steady-state value. Experiments 
performed in commercial vehicles, have shown that the tire/road forces do not necessarily vary 
along the curves shown Fig. 6, but rather "jump" from one value to another when these forces are 
displayed in the /x — s plane [27]. In addition, in realistic situations, these variations are most likely 

11 



Table 2: Summary of Experimental Results. 

Ctr. Sys. E N S L Note 

1 
I E 0 0 0 Oscillatory 
II E E E E Good/Fast 

2 
I E 0 0 0 Oscillatory 
II E E E E Good/Fast/Bounded 

3 
I C C C 0 

Chattering 
II C C C C 

4 Polar E in X, y, 0 in 7 Good/Fast/Noise 
5 I/II G s s 0 Very Slow 

6 I U u u u Diverged 
II s s s s Very Slow 

7 I/II s s s 0 Very Slow 
8 I/II G G G G Good/Slow 

to exhibit hysteresis loops, clearly indicating the dynamic nature of friction. 

In this work, we studied in detail the existing tire friction models in the Uterature and we developed 
a new, velocity-dependent, dynamic friction model that can be used to describe the tire/road 
interaction for the longitudinal motion of a vehicle. The proposed model has the advantage that is 
developed starting from first principles based on a simple, point-contact dynamic friction model [28]. 
The parameters entering the model have a physical significance allowing the designer to tune the 
model parameters using experimental data. The proposed friction model is also velocity-dependent, 
a property that agrees with experimental observations. A simple parameter in the model can also 
be used to capture the road surface characteristics. Finally, in contrast to many other static models, 
our model is shown to be well-defined ever3rwhere (even at zero rotational or linear vehicle velocities) 
and hence, is appropriate for any vehicle motion situations as well as for control law design. This 
is especially important during transient phases of the vehicle operation, such as during braking or 
acceleration. 

The proposed tire friction model starts from the generalization of the following point contact friction 
model as proposed in [29] 

Z     =     Vr 
aolVr 

with 

(8) 

(9) 

(10) 

where CTQ is the rubber longitudinal lumped stiffness, ai the rubber longitudinal lumped damping, (72 
the viscous relative damping, /^c the normalized Coulomb friction, Hs the normalized static friction, 
(MC < Ms)) Vs the Stribeck relative velocity, F„ the normal force, Vr = roj — v the relative velocity, 
and z the internal friction state. The constant parameter a is used to capture the steady-steady 
friction/shp characteristic^. 

F   =   {aoz + cTiz + a2Vr) F„ 

■^The model in (9) differs from the point-contact LuGre model in [28] in the way that the function g{v) is defined. 
Here we propose to use a = 1/2 instead of a = 2 as in the LuGre point-contact model in order to better match the 
pseudo-stationary characteristic of this model (map s i-» F{s) ) with the shape of the Pacejka's model. 
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Figure 6: Typical variations of the tire/road friction profiles for different road surface conditions 
(a), and different vehicle velocities (b). Curves given by Harned et al. [2]. 

We have extended the point friction model (8)-(9) to a distributed friction model along the patch 
by letting z{<^, t) denote the friction state (deflection) of the bristle/patch element located at the 
point ( along the patch at a certain time t. At every time instant z{(,t) provides the deflection 
distribution along the contact patch. The model (8)-(9) can now be written as 

dz aolvrl 

rL 

(11) 

(12) F   =    f  dF{C,t), 
Jo 

with g{vr) defined as in (10) and where 

dF{C,t)=(aoz{C,t) + ai^iC,t) + a2V^dFn{C,t), 

where dF{^,t) is the differential friction force developed in the element dC and dF„(C,t) is the 
differential normal force applied in the element dC at time t. This model assumes that the contact 
velocity of each differential state element is equal to Vr. 

Assuming a steady-state normal force distribution dFn{C,t) — dFn{Cj and introducing a normal 
force density function fn{0 (force per unit length) along the patch, i.e., 

di^n(C) = /n(OdC 

one obtains the total friction force as 

F{t) = j (aoz(C,f) + ^i§^(C,«) + ^2t'r)/„(C)dC (13) 

Noting that^ C, = \ru)\, and that 
dz       \ __ ^^^C     ^^ 
'dt^'^'^'^dc'di'^'di' 

It is assumed here that the origin of the ^-frame changes location when the wheel velocity reverses direction, 
such that C = ru>, for LJ > 0, and C = —ruj, for w < 0. 
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we have that equation (11) describes a partial differential equation, i.e. 

|(C,<)M + |j(C<) = ».-^*,<) (14) 

that should be solved in both in time and space. 

The time steady-state characteristics of the model (11)-(12) are obtained by setting ff(Cj*) ^ 0 
and by imposing that the velocities v and LJ are constant. A simple calculation shows that 

ZssiO   =   sgn(«,)^^fl-e-^l=^l^)=C2(l-e=i<) (15) 
era    \ I 0^0 

where 

ci = - 
ak^r u)r 

C2 = sgn(«,)^^ (16) 

Notice that when u> = 0 (locked wheel case) the distributed model, and hence the steady-state 
expression (15) collapses into the one predicted by the standard point-contact LuGre model. This 
agrees with the expectation that for a locked wheel the friction force is only due to pure sliding. 

The steady-state value of the total friction force is calculated from (13) 

Fss^     f   {(roZss(0 +(T2Vr)fniOdC (17) 

and it depends on the normal force distribution. For example, for the constant distribution case, 
we have that Fss{s), can be computed as: 

• Driving case. In this case v < no, and the force at steady-state is given by 

Fd{s) = sgn{vr)Fn9{s) (l + J^{e-^ - 1)) + F„c72rws (18) 

with g{s) = fic+ i/J-s — /"c) e"!'"'^*/'"'!", for some constant uj, and s — 1 rui 

• Braking case.   Noticing that the following relations hold between the braking s^ and the 
driving Sd shp definitions, 

Sb 
ruJSd = vsb,        Sd = — 

Sb + 1 

the steady-state friction force for the braking case can be written as 

V o-oL\s\ J 

where g{s) — Hc+ (MS - Mc) e"!''*/"^!", for constant v, and s = ^ - 1. 

Note that the above expressions depend not only on the slip s, but also on either the vehicle velocity 
V or the wheel velocity w, depending on the case considered (driving or braking). Therefore static 
plots of F vs. s can only be obtained for a specified (constant) velocity. This dependence of 
the steady-state force/slip curves on vehicle velocity is evident in experimental data found in the 
literatmre. Nonetheless, it should be stressed here that it is impossible to reproduce such a curves 
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form experimental data obtained from standard vehicles during normal driving conditions, since 
V and oj cannot be independently controlled. For that, specially design equipment is needed. 
Figure 7(a) shows the steady-state dependence on the vehicle velocity for the braking case, using 
the data given in Table 3. 

Figure 7(a) shows the steady-state dependence on the vehicle velocity for the braking case, using 
the data given in Table 3. 

V = 9 m/sec 

y'''^                        V: = 18 nVsec                ■ — ___ 

>V^                                       V = 50 m/sec                               —■  

1 

/ 

0.1 0.2 0.3 0.4 0 0,1 0,2 0.3 0.4 0.5 0.6 0.7 0.8 0,9 1 

(a) (b) 

Figure 7: Static view of the distributed LuGre model with uniform force distribution (braking 
case) under: (a) different values for v, (b) different values for 9 with v = 20m/s = 72Km/h. These 
curves show the normalized friction ^i = F{s)/Fn, as a function of the slip velocity s. 

Table 3: Data used for the plots in Fig. 7 

Parameter Value Units 
c^o 181.54 fl/ml 
(^2 0.0018 [s/m] 
Mc 0.8 [-] 
Ms 1.55 H 
■^5 6.57 fm/sl 
L 0.2 [m 

It is clear that the distributed model captures reality better than the lumped, point contact model. 
It is also clear that in order to use the distributed model for control purposes it is necessary to 
choose a discrete number of states to describe the dynamics for each tire. This has the disadvantage 
that a possibly large number of states is required to describe the friction generated at each tire. 
Alternatively, one could define a mean friction state z for each tire and then derive an ordinary 
differential equation for z. This will simpUfy the analysis and can also lead to much simpler control 
design synthesis procedures for tire friction problems. 

To this end, let us define 

Z{t)     ^     ^   I    z{C,t)fn{OdC 
J^n Jo 

(20) 
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where F„ is the total normal force, given by 

i 

Fn^   J    fniOdC 
Jo 

Thus, 

m = ^£^^iC,t)fn{OdC (21) 

After several algebraic manipulations, one obtains the following lumped LuGre tire friction model 

E(t)    =    Vr - ^^r-Tz{t) - K{t)\ujr\z(t) (22) 

F{t)   =    {aQz{t) + ait(t) + a2Vr) Fn (23) 

where K{t) is defined as: 

«(0 = ;^ {[^(CO/n(C)]^^-^^(C,t)^^dc} (24) 

Although K. depends on the normal force distribution, it turns out that in practice the following 
constant expression 

<t) = '^,    KoG[l,2] (25) 

provides sufficiently accurate results. 

We validated the previous theoretical developments via a series of experimental results. Specifically, 
measurements were collected during three brakings of a specially equipped test vehicle (Fig. 8). 
The measurements for the three brakings were taken under the same vehicle operational and road 
conditions. We have used this data to identify the parameters of the average/lumped LuGre tire 
friction model. We then used these parameters to validate the dynamic friction model by comparing 
the time histories of the friction force predicted by oin model with the friction force measured during 
the experiments. 

The friction data were collected using the "BASIL" car which is a laboratory vehicle based on 
a Renault Megane 110 Kw. The car is equipped with several sensors to study the behaviour of 
the vehicle during braking and traction phases. A schematic of the completely equipped "BASIL" 
vehicle, along with the corresponding measurement parameters is given in Fig. 8. 

The comparison between the experimental results and the simulation results using the LuGre 
dynamic friction model for the three braking cases are shown in Figs. 10-11. 

These figures indicate that our proposed model captures very well both steady-state and transient 
friction force characteristics. 

The results of this work are documented in [30, 31, 3]. 

2.3    Development of Dynamic Friction Models for Longitudinal/Lateral Motion 

In this work we developed an extension to the LuGre dynamic friction model from longitudinal to 
longitudinal/lateral motion. Apphcation of this model to a tire yields a pair of partial diflferential 
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Figure 8: Sensors and measurement parameters; from [3]. 

equations that model the tire-road contact forces and aligning moment. By the introduction of a 
set of mean states we reduce the partial differential equation to a lumped model governed by a 
set of three ordinary differential equations. Such a lumped form describes the aggregate effect of 
the friction forces and moments and it can be useful for control design and on-Hne estimation. A 
method to incorporate wheel rim rotation is also discussed. 

We start by introducing a point LuGre 2D model. The proposed friction model is written as follows 

Zi     —     Vri-Coi{Vr)Zi 

Hi     =     —CTQiZi — CTliij — (J2iVri 

where, 

X{Vr)aoi 
^OiyVr) =  72  

l^ki 
i = x,y 

The scalar function X{vr) is given by 

X{u,u,f^*) 

and the function g{vr) by 

X{u) :-- 
\M? kn 
9{u) 

u\ giu) = MM+(\\MM  

where Mo is the matrix of static friction coefficients as in 

r(^)' 

M, fJ-sx        0 

0 fXgy 
>o, 

(26a) 

(26b) 

(27) 

(28) 

(29) 

(30) 
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Ts-k. 

Figure 9: View of the equipped wheel with the Wheel Force Transducer (WFT); variables measured 
and axis systems used are according to ISO 8855 specifications. Rim and wheel dynamics are 
neglected so that the FWT forces are related to the actual forces at the contact patch via a simple 
coordinate transformation; from [3]. 

Observe that the forces in the x and y directions are coupled due to A («,•). 

We next applied the previous LuGre friction model for 2D motion, in order to derive a model for 
the tire-road contact forces and moments due to friction. We follow an approach similar to that in 
[32, 33]. To this end, we assume that the contact patch of the tire (the area of contact with the 
road) is rectangular (Fig. 12). We divide the contact patch into infinitesimal elements. For each 
element we apply the point LuGre model for 2D motion of equations (26)-(27). In order to find the 
total forces and moments we then integrate the forces of each element along the patch. It should 
be mentioned that although we will keep referring to this friction model as 2D model, it will be in 
fact a 3-dof model since not only the longitudinal and lateral forces but the aligning moment will 
be captured as well. 

The distributed friction model is summarized by the following equations 

da:z(t,C) 
di H h. |wr| = Vri - Coi(Wr)Zi(i, C) dt dc 

Mi(*, C)     =     -O'OiZiit, C) - 0-H Q^ - 0-2iVri, 

where i = x,y. The total forces along the x and y directions are computed from 

rL 
i = x,y Fi{t)= [   /Xi(i,C)/„(C)dC, 

(31a) 

(31b) 

(32) 

where fniO is the normal load distribution (force per unit length) along the contact patch and L 
is the length of the patch. The force distribution along the y direction also results into a moment 
about the center of the patch (ahgning torque) given by 

M,(f) = -^ f,^{t,c)fn{c)(^^-<:yc (33) 
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Figure 10: Experimental and simulation results. Case (i): constant KQ = 1,2; from [3]. 

Here Vrx and Vry are the relative velocity components of the elements in the contact patch with 
respect to the ground, that is, 

U-ry 

=   ivr — vcos{a) 

=   —V sin(a) 
(34a) 

(34b) 

To evaluate this distributed model we compare it against other tire models. In particular, we have 
made comparison with Pacejka's Magic Formula (MF) model [5] under steady-state conditions. 
The results are shown in Figs. 13, 14 and 15. 

The previous distributed model (31) may not be easy to use for analysis and-most importantly- 
control design. For this reason, we also developed a lumped model, described by a single ordinary 
differential equation, which captures the "average" behavior of the internal friction states. It is 
used to approximate the longitudinal and lateral forces as well as the aligning torque as a function 
of these "average states," at least at steady-state. The approach used mimics the one used in 
Refs. [32, 33] for the longitudinal case. 

The average lumped model for the friction forces is summarized by the following equations. 

kit)     —     Vri-Coi{Vr)Zi{t)- Ki{t)\ujr\Zi{t) 

Fi{t)     =     -Fn{aoiZi{t)+CriiZi{t) + (72iVri), I — x,y. 

(35) 

(36) 
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11: Experimental and simulation results. Case (ii): varying KQ; from [3]. 

The average lumped model for the aligning torque is summarized by 

G \u)r\ 

+     0-2y ( 2^r 
G 

(37) 

(38) 

The results of this work have been documented in [4]. 

2.4    Exact Transient Tire Friction Dynamics for High-Speed Vehicles 

The LuGre dynamic point contact friction model for the two-dimensional translation of a body on a 
surface has been used to derive a model for the friction forces and moments at the contact patch of a 
tire. The resulting tire friction model is distributed, i.e., is described by a set of partial differential 
equations. Several approximations have been developed to approximate this distributed model 
using a set of ordinary differential equations. Such a lumped form makes the model more suitable 
for the development and implementation of on-line estimation and control algorithms [34, 35, 36]. 
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Figure 13: Steady-state forces for several constant values of the slip angle; from [4]. 

The main objective of the lumped model in [37, 38, 39] was to be able to capture the steady-state 
behavior of the distributed model exactly. Therefore, this model does not offer any guarantees on 
the accuracy of the transient dynamics. 

In this work the method of moments was used to derive a set of ordinary differential equations 
to describe the exact average dynamics of the distributed model. Three cases of normal load 
distribution were considered and compared with each other: uniform, trapezoidal and quartic load 
distribution. Simulations compared with existing approximate lumped models. 

The method of moments approach proceeds as follows. First, we define the pth moment of Zi{t,() 
for ( e [a, b] as follows 

J a 
'i = x,y (39) 
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Figure 14: Steady-State forces for several constant values of the longitudinal slip; from [4]. 

Taking the time derivative of M"^ yields, 

Ja 

dzi{t,C) 
dt 

C^dC 

^    (vri-Coi{Vr)Zi{t,0-\cor\^^^'\edC 

 Vri-Coi{Vr)   /    Zi{t,OCd(: 
Ja 

^+1 _ QP+1 

_,1,;'M£:0<;MC. 1/ Ja dC 
(40) 

Integrating by parts, (40) gives a recursive formula for the calculation of all moments M°'\ for p > 1 

Ml ab 
p,i. 

For p = 0 equation (40) yields 

(41) 

(42) 

Given any sufficiently smooth normal load distribution /„(C), we can approximate /„ with its Taylor 
series expansion as follows 

/n(c)==^x;c,c' (43) 
fc=0 

for some constants CQ, Ci,..., c„i. Note that the total normal load on the contact patch is given by 

Fn= \   /„(C)dC. (44) 
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Figure 15: Comparison between LuGre and Pacejka (Magic Formula) models. The values of the pa- 
rameters for the Magic Formula were taken from [5] and correspond to experimental data; from [4]. 

Using the definition of the moments Mp\, and using (43) the friction forces Fi{t) defined by 

Fi{t)=  f   Mi(i,C)/n(C)dC,    i = x,y 
Jo 

(45) 

can then be written as follows 

Fi (0    =    -/    icroiZi + c^ii^ + cr2iVri ] f„{C)dC 
dt 

=     -CFOi Y^ CkM^^i - an Y^ CkMl^i - CT2iVriFn 
fc=0 

Finally, the aUgning torque M^it) defined by 
rL 

S) = - f   %(i,C)/n 

k=0 

(C)(f-C)dC 

(46) 

(47) 

can be written in terms of the moments M"^ as 

■m m 

(48) 
fc=o fc=0 
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The normal load along the contact patch has a significant effect on the transient behavior of the 
friction forces and moments. Several normal load distributions have been used and are shown in 
Fig. 16, along with a schematic of a realistic load distribution obtained from experiments. 
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Figure 16: (a) Possible choices of /n(C); (b) Empirical plots of normal load distribution taken from 
[6]. 

The results of numerical simulations using different load distributions are shown in Fig. 17. We 
observe that the three normal load models converge to the same steady-state, as expected. How- 
ever, significant differences in the transient behavior of the three models are also evident. These 
differences are more apparent in the lateral force Fy and ahgning torque M^. The discrepancy is 
due to the fact that the normal load distribution /„(C), along with the distribution of the contact 
patch deflection Zi{tX), determine the amount of the total friction generated by each tire element 
along the contact patch length. 

This work has been documented in [40, 7]. 

2.5    Minimum-Time Vehicle Trajectory Optimization Subject to Friction Con- 
straints 

We can distinguish two main approaches followed in the literature to automate vehicle operation. 
The first approach is to use numerical optimization methods in order to derive the (open-loop) 
control inputs of the vehicle while driving through a specified path or within some specified state 
constraints while optimizing the time of travel. The second approach deals with the development 
of closed-loop control where state-feedback or output-feedback is used to achieve path tracking. 

In this work we have performed numerical optimization for a vehicle driving through different types 
of corners. This allows us to obtain the open-loop control inputs for both longitudinal and lateral 
control (longitudinal slip and steering angle) for those specific maneuvers. The control inputs 
obtained can be used directly to control the vehicle if we are confident about the accuracy of the 
vehicle model and the road description. Such inaccuracies will be dealt with in the future using 
adaptive control methods. For the time being, we assume that all model parameters are known. 
The optimal solution obtained can be used as a reference for a path tracking closed-loop controller. 

The main differences between our approach to numerical solution of the optimal maneuvering 
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Figure 17: Time histories for longitudinal/lateral forces and aligning torque (trapezoidal and quartic 
normal load distribution), left column: a = 4°, right column: a = 15°; from [7]. 

problem and those in the literature [41], [42] and [43] are as follow. In all the references above, the 
optimization problem is simplified by a change of the independent variable from time t to traveled 
distance s. This makes the optimal control problem one of fixed final time which is a lot easier to 
solve numerically. On the other hand this change of variables requires the introduction of a scaling 
factor including a singularity as mentioned in [42]. The singularity appears when the velocity vector 
of the car approaches the lateral direction of the vehicle. Such a situation (skidding) is very often 
intensionally initiated by off-road rally drivers and is expected to appear as part of the optimal 
solution. In Fl racing skidding is not intended and the optimal solution should be away from the 
singularity which makes the change of variable in [41], [42] and [43] acceptable. In our case, we 
want to explore the driving techniques of off-road racing and thus we use time t as the independent 
variable.  Suspension dynamics and longitudinal load transfer are also more dominant in off-road 
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scenarios where vehicles have "softer" suspensions and higher center of gravity. 

To this end we choose a "half-car" description of the vehicle dynamics including suspension dy- 
namics and exact longitudinal load transfer expression, contrary to the description of the vehicle in 
[42] where a 4-wheel vehicle model is used neglecting suspensions and using an approximation for 
the load transfer effects. Another difference in our approach is that of the choice of control inputs. 
In our case we introduce independent longitudinal control in the front and rear axles in order to 
allow race driving techniques, like "handbrake cornering" and "left foot braking" to appear in the 
optimal solution. Finally, in our approach we consider different optimization scenarios as far as the 
cost function is concerned. In particular we investigate optimal time cornering as well as optimal 
exit velocity cornering. 

A typical ground vehicle consists of a main body (frame, passenger area, engine, transmission) 
hnked to four wheels via the suspension system. Except from translation and yawing motion during 
travel, the suspended body performs pitching, rolling and vertical translation motions. The vehicle 
interacts with the environment through tire friction forces, which allow the vehicle to accelerate, 
decelerate and steer as well as aerodynamic drug and lift forces generated due to relative motion 
of the body and the atmosphere. Steering of the vehicle is generated typically by the front two 
wheels, although it is not unusual for steering to be generated by the rear or all four wheels. The 
power is transmitted from the engine to the wheels through the transmission system. Typically, 
for an off-road vehicle power is transmitted to all four wheels. 

A schematic of the half-car model is shown in Fig. 18. The equations of motion are given below. 

mx   =   fFxCos{'>p + 6)-fFysm{il) + 5) +fRa:Cosil) - fRySinip (49) 

mij   =   fFxSin{ip + S) +fpy cos{il; +5) +fji^ simp + fRy cos ip (50) 

Ji>   =   {fPy COS 5 + fpx sin S) £F - fny^R (51) 

iFiOF   =   TF-IFXT (52) 

IRUJR   =   TR- /RXT (53) 

In these equations m is the vehicle's mass, J is the polar moment of inertia of the vehicle, Jj, 
i = F,R are the moments of inertia of the front and rear wheels about the axis of rotation, r is 
the radius of each wheel, x and y are the cartesian coordinates of the C.G. in the inertial frame of 
reference, ip is the yaw angle of the vehicle, cji, i = F,R is the angular rate of the front and rear 
wheel. By fji, j — x,y and i = F,Rvfe denote the longitudinal and lateral friction of the front and 
rear wheels, respectively. In this model the inputs are the driving/braking torques Tp and TR at 
the front and rear wheels respectively, and S is the steering angle of the front wheel. 

The suspension dynamics are essentially added to the overall vehicle model. They allow one to 
incorporate the effects of dynamic normal load transfer from one wheel to the others during accel- 
eration/braking and cornering of the vehicle. Normal load transfer appears as a reaction to inertial 
forces during acceleration when the vertical distance of the center of gravity of the vehicle is taken 
into consideration. Normal load transfer may be expressed without introducing the additional 
suspension dynamics, but in this case it is expressed as a function of the derivatives of states of 
the vehicle model [8]. In some cases, the load transfer is approximated using the vehicle model's 
inputs and states, as in [44], [42] and [43]. In this work we have proposed to describe the dynamic 
normal load transfer by introducing the suspension dynamics. No approximation is necessary and 
the effect is completely described by the states of the system making it possible for the dynamic 
load transfer effect to be taken into consideration in a simulation scheme. Having already assumed 
a half-car model, we have investigated the normal load transfer in the longitudinal only direction, 
that ism load transfer from the front to the rear axle. 
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Figure 18: Bicycle Model 

In order to incorporate the effect of the transfer load during acceleration and deceleration, let 
z be the vertical displacement of the center of gravity of the vehicle and Q the pitch angle of the 
suspended mass as in Figure 19. The dynamics of the vertical and pitching motion of the suspended 
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Figure 19: Suspension Dynamics 

mass are described by the following equations. 

mz   =   fpz + IRZ - mg 

ly^    =    fRz(-R cos e - fpz^F cos 9 - Efnx {h + z) - S/iTa; (h + z) 

(54) 

(55) 

where, m is the vehicle mass (equal to the suspended mass after neglecting the wheel's mass), ly 
is the moment of inertial of the vehicle about the center of gravity and the y body axis.   By h 

27 



we denote the vertical distance of the C.G. from the ground in an equihbrium state where z = 0. 
By fiz i = F,Rwe denote the normal load forces at the front and rear axle respectively and by 
S/ix i = F,Rwe denote the projection of the total friction force of each wheel on the x longitudinal 
body axis. 

2//tE = IRX    and    HfFx = JFx cos 5 - fpy sin S (56) 

Consider now the equilibrium state (i, z, 6, § = 0) where 2 = 0 and 61 = 0. The normal load at 
each wheel is then the static distribution of the suspended weight to the front and rear axles, which 
depends on the longitudinal offset of the C.G. In particular we have that 

Now, given vertical displacement of the C.G. z and pitch angle 6 the normal load of each wheel is 
given by 

IFZ   =   /F2 - KpAzp - CpAzp (59) 

fRz   =   /RZ-KRAZB-CRAZR (60) 

where 

AzR = z + eRsine     ,     AzF = z-£psm9 

AzR = Z + IRCOSO e    ,    AzF = z-ipcose 9 

In order to simplify the calculations during the optimization we make some simphfying assumptions 
which lead to a model of reduced order. The system is presented in equations (49)-(53), (54) and 
(55) has Tp, TR and 5 as inputs. At this point we make the assumption that we can control the 
longitudinal slip at each wheel sp^ and SR^ directly. The equations of the system in this case will 
be 

mx   =   fFxCos{ij + 6)-fpy 81110) +5) + fRxCosi/j-fRySmtp (61) 

my   =   fFxSm{tP + S) +fpyCos{i; +S) + fR^smij+ fRy cos ij (62) 
J'4>   =    {fFyCos5 + fpxSm5)£p~fRy£R (63) 

The inputs of the system are now the longitudinal slip sp^ and SR^ of the front and rear wheel 
respectively and the steering angle 5 of the front wheel. We may still calculate the "real" inputs 
Tp and TR in order to find the angular velocity of each wheel from the known inputs sp^ and SR,. 

Differentiating and using equations (52) and (53) we can then calculate the required torques. 

Several driving maneuvers have been considered, i.e., 90° corners, U-turns and S-splits both for 
minimum time and maximum exit velocity.   It is noted that minimization of the exposiu-e to 
danger and reduction of the total mission time requires driving some portions of the trajectory in 
minimum time while other in maximum velocity.  Time minimization and velocity maximization 
are not necessary the same. Typically, the vehicle would drive faster on a straight path which might 
not be part of the optimal trajectory for total travel time minimization. 

The following boundary conditions have been used, which are summarized in Table 4. 

These conditions guai-antee that the car is traveling straight before and after the corner. The initial 
and final position of the car is within the width of the road. FinaUy, the longitudinal velocities at 
the initial and final time and the final time tf are left free. Some representative results from these 
optimizations are shown in Figs. 20. 
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90° corner 
x{t = 0) = -5 

1 < yit = 0)< 10 
< x{t = tf) < 10 
y{t = tf) = -5 
^{t = 0) = 0 
V;(i = 0) = 0 

V'(i = ^/) = 0 
y(i = 0) = 0 
^(^ = ^/) = 0 

Table 4: Boundary Conditions 
U-turn 

-10 < x{t = 0)  <   - 
y{t = 0) = -5 

8 < x(i = ty:) < 10 
y{t = tf) = -5 
V'(i = 0) = f 
■^(i = 0) = 0 

^(i = */) = -! 
^(i = i^) = 0 
^(i = 0) = 0 

S-tiirn 
a;(i = 0) = -14 

-10  < y{t = 0) < -? 
a;(i = tf) = 14 

8  <  2/(i = i^) < 10 
iP{t = 0) = 0 
rj;{t = 0) = 0 
^(i = tf)^0 
i>{t = tf) = 0 
y(t = 0) = 0 
y{t = tf)^0 

-10 -5 0 
«(m) 

5 10 

(a) 90° comer, minimum time 

I e 2-04 

t = 2.72 

(b) 90° comer, maximum exit velocity 

t    0 

(c) U-turn, minimum time (d) S-turn, minimum time 

Figure 20: Optimal vehicle trajectories. 
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