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Our research effort over the last three years, has primarily focused on ex- 
ploring of combining topological information with geometrical features to char- 
acterize and represent 3-dimensional objects for classification/recognition and 
efficient storage in data bases. This is specifically carried out (3-D object or 
graphs of images) by well designed mappings from manifolds onto R and referred 
to as height functions. While the topology may indeed be parsimoniously and 
well reflected by these mappings, much of the local geometry is missing. These 
height function mappings are indeed commonly defined as equivalence relations 
which result in a quotient space of level sets of the surface, and which are eventu- 
ally graphically represented by the so-called Reeb Graphs. These, as described 
in more detail later, are indeed but a set of nodes and edges which bifurcate 
whenever a change of topology takes place. A natural follow up investigation is 
in attempting, perhaps at a slight additional cost, to further refine such a rep- 
resentation by trying to add on geometrical (more local) information as often 
required by problems in classification and recognition. Towards that end, and as 
later described, we introduce a generalized notion of a height function, together 
with a shading function as well as a support function, respectively reflecting 
topology, shape and continuity of the surface under analysis. In the process, 
we propose to modify the existing Reeb graph to a pseudo-weighted graph, as 
a novel compact representation well adapted to classification and recognition 
problems. The funding has helped our group in completing a productive and 
successful three years in publications as well as productive on the publication 
front [5, 12, 8, 11, 17, 18, 19, 20, 9, 10, 13, 14, 15, 16, 21, 22, 4, 2, 1, 1, 6, 7]. Our 
work has been recognized at a national and international level and has resulted 
in several invitations to INRJA (Sophia-Antipolis France), Liapunov Institute 
(Moscow State University), and a 3-Dimensional Imaging and Computer Vi- 
sion workshop at University of Padova (Padova,Italy), the Institute of Pure and 
Applied Mathematics at UCLA. In addition, it has helped us in securing funds 
from NATO to initiate collaborations between researchers at Moscow State Uni- 
versity (Dr. Minlos) and Institute for Information and Transmission Problems 
in Moscow, and INRJA at Sophia-Antipolis (Prance). In addition, a signifi- 
cant byproduct of this work has greatly contributed to a concerted effort to 
fight crime, in a project of Picture ID compression performed as a community 
outreach effort for the North Carolina Criminal Justice Information Network 
(NCCJIN). The reduction of a picture ID, thanks to the hierarchical image 
representation inspired by our graph representations, to about a 800 byte rep- 
resentation would indeed allow NCCJIN to safeguard their multimillion dollar 
investment in their low capacity radio network and manage to rapidly access 
data bases across the state and the nation. Test are still under way to transition 
this work and potentially serve as an example for the police forces across the 
nation or even the world. This work has been featured in several newspapers 
and magazines including the Design Engineer, Prism magazine etc. 

We include a Ph.D. dissertation as a detailed appendix to much of the work 
funded by this grant. 
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CHAPTER   1. 

Introduction 

With the increasing use of scanners to create images, there is a rising need for robust image denoising 

to remove inevitable noise in the measurements. Even with high-fidelity scanners, the acquired 

images are invariably noisy, and therefore require filtering. For instance, images extracted from 

volrnne data, that is obtained by MRI or CT devices, often contain amounts of noise that must 

be removed before further processing. Removing noise while preserving the details is, however, 

no trivial matter since sharp features are often blurred and therefore efficient image denoising 

techniques are needed. In this thesis, we propose robust variational models for image denoising 

by solving partial differential equations. The core idea behind our proposed approaches is to use 

geometric insight in helping construct regularizing functionals and avoiding a subjective choice of 

a prior in maximum a posteriori estimation. Using tools from robust statistics and information 

theory, we show that we can extend this strategy and develop two gradient descent flows for image 

denoising with a demonstrated performance. 

The major part of this thesis is devoted to a joint exploitation of geometry and topology of 

objects for as parsimonious as possible representation of objects and its subsequent application 

in object classification and recognition. The key idea consists of captiu-ing geometry along all 

topologically homogeneous parts of an object by way of level curves superimposed on a Reeb graph 

usually extracted by way of the object critical points. A Reeb graph is a topological representation 

of the connectivity of a surface between critical points which represent the nodes of the graph, 

and the edges of the graph represent the connected components of the siu-face. Specifically, given 

a function defined on a surface or 2-manifold, a Reeb graph may be used to track its connected 
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components as the pre-image of the function. For the example of using a height function, the 

Reeb graph would contain nodes for each of the contours for each level set generated by the 

height function. The resulting skeletal representation, however, is not rotationally invariant due 

to the rotational non-invariance of the height function. We propose a new methodology called 

geodesic shape distribution that Ufts this limitation and which we apply to three-dimensional object 

matching. The central idea is to encode a 3D shape into a ID geodesic shape distribution. Object 

matching is then achieved by calculating an information-theoretic measure of dissimilarity between 

resulting probability distributions. That is, the dissimilarity computations are carried out in a 

low-dimensional space of geodesic shape distributions. 

1.1    Framework and motivation 

1.1.1    Image denoising 

Image denoising refers to the process of recovering an image contaminated by noise. The challenge 

of the problem of interest lies in faithfully recovering the original image from the observed image, 

and furthering the estimation by making use of any prior knowledge/assumptions about the noise 

process. The problem of image denoising has been addressed using a number of different techniques 

including wavelets [49], order statistics based filters [17], PDE-based algorithms [30,76], and varia- 

tional approaches [26,27,6]. In particular, a large number of PDE-based methods have particularly 

been proposed to tackle the problem of image denoising [4,23,25] with a good preservation of edges. 

Much of the appeal of PD&based methods lies in the availability of a vast arsenal of mathematical 

tools which at the very least act as a key guide in achieving numerical accuracy as well as stabiUty. 

Partial diflFerential equations or gradient descent flows are generally a result of variational problems 

using the Euler-Lagrange principle [36]. 

Most medical imaging methods, for instance, produce full three-dimensional volumes. Tradi- 

tionally, the medical scans are viewed as a series of superposed two-dimensional slices of the full 3D 

volume, and are also perturbed by noise in the course of acquisition, transmission or processing. 

Figure 1.1 illustrates a 2D noisy slice of a 3D MR head. 
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3D object MR Image Noisy Image 

Figure 1.1: Noisy MR image. 

1.1.2    Object recognition 

Three-dimensional objects consist of geometric and topological data, and their compact represen- 

tation is an important step towards a variety of computer vision applications including indexing, 

retrieval, and matching in a database of 3D models. The latter will be the focus of Chapter 6, and 

the motivation behind considering 3D objects is illustrated in Figtire 1.2. 

3D models do not depend on the configuration of cameras, Ught sources, or surrounding objects. 

As a result, they do not contain reflections, shadows, occlusions, projections, or partial objects, 

which in turn greatly simplifies finding matches between objects of the same type. For example, it 

is plausible to expect that the 3D model of a Boeing747 contains exactly four engines. In contrast, 

any 2D image of this Boeing747 may contain fewer than fom: engines (if some of the engines are 

occluded), or it may contain "extra engines" appearing as the result of shadows. 

In other respects, representing and processing 3D models is more complicated than for sampled 

multimedia data. The main difficulty is that 3D surfaces rarely have simple parameterizations. 

Since 3D surfaces can have arbitrary topologies, many useful methods for analyzing other media 

(e.g., Fourier analysis) have no obvious analogs for 3D surface models. Moreover, the dimension- 

ality is higher, and this makes searches for pose registration, feature correspondences, and model 

parameters more difficult. 

In order to perform 3D matching and to carry out the experiments, first we need a database of 
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• 2D provides the grayscale/color information in the 
plane: lost of depth information 

• e.g.:   2D images of F-16s and MiG-23s look very 
similar, but in 3D are different 

• 3D is much more effective for recognition and dis- 
play 

• 3D applications: industry, medicine, search, video 
games and cinema 

Figure 1.2: Motivation of 3D matching. 

3D models, and a small subset of oiu: large database is depicted in Figure 1.3. We collected several 

himdred models which consist of military objects, human body parts, animals and other objects. 

There are two major techniques for 3D object recognition: feature-based and global methods 

as depicted in Figiure 1.4. Most three-dimensional shape matching techniques proposed in the 

literature of computer graphics, computer vision and computer-aided design are based on geometric 

representations which represent the features of an object in such a way that the shape dissimilarity 

problem reduces to the problem of comparing two such object representations. Featiure-based 

methods require that features be extracted and described before two objects can be compared. 

An alternative to feature-based representations is global methods. The idea here is to represent 

an object by a global measure or shape distribution defined on the surface of the object. The shape 

matching problem is then performed by computing a dissimilarity measure between the shape 

distributions of two arbitrary objects. 



1.1 Framework and motivation 
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Figure 1.3: Examples of 3D models. 
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3D Object Recognition 

Global Methods 

Shape Signature s 

Signature Matching s 

Feature-based Methods 

/ 
Graph Representation 

1/ Graph Matching 

Figure 1.4: 3D object matching diagram. 

1.1.3    Joint exploitation of geometry and topology 

Although topology is the study of the "shape" of curves and surfaces, topology typically is not 

concerned with the embedding of that curve or surface. For example, topology is concerned with 

the fact that if you remove a point from a circle, it becomes a line segment. This is true whether 

the circle is an ellipse or whether the circle has knots in it. In computer graphics, one cares about 

the embedding and geometry of a surface. If one were asked to create a digital representation of 

a coffee cup, no one would be happy if you returned a model that looked like a doughnut. Even 

though you have returned an object with the correct topological shape, the geometrical shape is 

incorrect. For computer graphics, we t3rpically are not concerned with purely topological aspects of 

a surface. Thus, the algorithms we introduce, are founded on computational topology, but consider 
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Figure 1.5: Topological equivalence of coflFee cup and doughnut. 

geometric aspects of the surface, for example, the geodesic distance is a global geometric measure. 

This interplay of geometry and topology is inherent in the discrete nature of the surfaces used in the 

field of computer graphics where great care is taken with the geometry of a surface, as the geometry 

plays such an important role in determining the appearemce of a surface. Although a coffee cup 

is topologically equivalent to a doughnut, geometrically the shapes differ as shown in Figure 1.5. 

And the difference in their appearance matters greatly when the goal is to acciurately represent the 

appearance of real world objects. Thus, a great deal of work in computer graphics has focused on 

geometric aspects of a surface, including geometry acquisition, geometry simplification, geometry 

smoothing and geometry compression. However, there is a direct relationship between the topology 

and the geometry of a sturface that cannot be ignored. Alternatively, many mathematicians and 

computational topologists axe concerned with studying piurely topological properties of a sm-face. 

This thesis takes a combined approach and identifies and localizes topological features within a 

surface by mixing topological and geometrical approaches. 

The connection between geometry and topology is given by a topological invariant called gernis. 

The genus of a surface counts how many "handles" or "holes" the surface has, and two surfaces 

having the same genus are called topologically equivalent. Genus is a global invariant for the surface 

and its scalar value provides one measure of the complexity of the surface (e.g., a genus zero shape 

is much less complex than a surface with higher genus). For example, the coffee cup and doughnut 

shown in Figiure 1.5 have the same genus equal to one. 
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1.2    Contributions 

The contributions of this thesis are as follows: 

«" Robust and efficient variational filters for image denoising: Using the theoretical fun- 

damentals of robust statistics, a variational filter referred to as a Huber gradient descent flow 

is proposed. It is a result of optimizing a Huber functional subject to some noise constraints, 

and it takes a hybrid form of a total variation diffusion for large gradient magnitudes and 

of a linear diffusion for small gradient magnitudes. Using the gained insight, and as a fur- 

ther extension, we propose an information-theoretic gradient descent flow which is a result 

of minimizing a functional that is a hybrid between a negentropy variational integral and a 

total variation. Illustrating experimental results demonstrate a much improved performance 

of the approach in the presence of Gaussian and heavy tailed noise. 

ra- A Topological Variational Model for Image Singularities: Image singularities are promi- 

nent landmarks and their detection, recognition, and classiflcation is a crucial step in image 

processing and computer vision. Such singularities carry important information for further 

operations, such as image registration, shape analysis, motion estimation, and object recog- 

nition. In this thesis, we propose a topological gradient descent flow for image singularities. 

The approach is expressed in the higher order variational framework as a minimizer of a vari- 

ational integral involving the gradient and the Hessian matrix of the height function defined 

on a manifold. We demonstrate through numerical simulations the power of the proposed 

technique in preserving image singularities. 

«■ Topological modeling of illuminated surfaces using Reeb graph: We introduce a reli- 

able and efficient feature based object representation for topological modeling of three di- 

mensional illuminated surfaces. The proposed approach encodes an object into the Reeb 

graph concept from computational topology. This skeletal structure is based on a general- 

ized height function in the light direction defined on an illuminated surface. In this thesis, 

the topological properties of the proposed representation are analyzed in the Morse theoretic 
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framework, and its close relationship to the shading problem is also highlighted. Some numer- 

ical simulations with synthetic and real 3D data are provided to demonstrate the potential 

of object singularities in topological modeling. 

ra- Geodesic Object Representation and Recognition: We propose a shape signature that 

captures the intrinsic geometric structure of 3D objects. The primary motivation of the 

proposed approach is to encode a 3D shape into a one-dimensional geodesic distribution 

function. This compact and computationally simple representation is based on a global 

geodesic distance defined on an object surface, and takes the form of a kernel density estimate. 

To gain further insight into the geodesic shape distribution and its practicality in 3D computer 

imagery, some numerical experiments are provided to demonstrate the potential and the 

much improved performance of the proposed methodology in 3D object matching. This 

is caxried out using an information-theoretic measure of dissimilarity between probabilistic 

shape distributions. 

«■ Distance Function-based Object Recognition: We introduce a topological approach to 

object recognition using a distance function. Similarly to the height function strategy which 

consists of reconstructing siu-face from its cross-sections, the key idea behind using a distance 

function is that a surface may be reconstructed from its intersections with concentric spheres 

centered at the centroid of the underlying surface. As the distance function traverses the 

surface and the number of intersecting contours changes for various distances (i.e. radii of 

concentric spheres) from the barycenter point, the topology of the surface varies as well. 

1.3    Thesis overview 

The organization of this thesis is as follows: 

Q The Background Chapter contains a brief review of essential concepts and definitions which 

we will refer to throughout the thesis, and presents a short summary of material relevant to 

variational methods, geometric modeling and computational topology. 
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□ In Chapter 3, we present a variational approach to maximum a posteriori estimation MAP 

estimation. The key idea behind this approach is to use geometric insight in helping construct 

regularizing functionals and avoiding a subjective choice of a prior in MAP estimation. Using 

tools from robust statistics and information theory, we show that we can extend this strategy 

and develop two gradient descent flows for image denoising with a demonstrated performance. 

□ In Chapter 4, we propose a geometric/topological variational model to preserve degenerate 

image singularities. Such singularities carry important information for a variety of image 

processing and computer vision operations, such as image registration, shape analysis, object 

recognition, etc. The approach is expressed in the higher order variational framework, and it 

is based on a variational integral involving the gradient and the Hessian matrix of the height 

function defined on a manifold. 

□ Chapter 5 is devoted to a formulation of object singularities in a Morse theoretic setting. 

Then, we analyze the Reeb graph representation in the shading problem framework, and we 

derive some relevant theoretical properties of the height function in the light direction of an 

illuminated 3D object. In addition, we prove that such a height function is closely related to 

the generalized bas-relief transformation. 

G In Chapter 6, we propose a new approach for object matching based on a global geodesic 

measure. The key idea behind oiu: methodology is to represent an object by a probabilistic 

shape descriptor called geodesic shape distribution that measures the global geodesic distance 

between two arbitrary points on the siurface of an object. In contrast to the Euclidean distance 

which is more suitable for linear spaces, the geodesic distance has the advantage of its ability 

to capture the (nonlinear) intrinsic geometric structure of the data. The geodesic shape 

distribution may be used to facilitate representation, indexing, retrieval, and object matching 

in a database of 3D models. More importantly, the geodesic shape distribution provides a new 

way to look at the object matching problem by imderstanding the intrinsic geometry of the 

shape. The matching task therefore becomes a one-dimensional comparison problem between 

probability distributions which is clearly much simpler than comparing 3D structiures. Object 
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matching can then be carried out by dissimilaxity naeasure calculations between geodesic shape 

distributions, and is in addition computationaJly efficient and inexpensive. 

□ Chapter 7 is devoted to the distance function-based approach to topological modeling using 

Morse theory. Despite the theoretical nature of the results presented in this Chapter, the 

key idea if to identify and encode regions of topological interest of 3D object in the Morse- 

theoretic framework. The main motivation behind using the distance function is its rotation 

invarieince which makes it more adapted to object recognition than the Morse height function. 

We prove that a surface may be reconstructed from its intersections with concentric spheres 

centered at the barycenter of the underlying siurface. The topological changes in the surface 

occur as we increase the value of the sphere radius. At singular points, the level curves of the 

distance function may split or merge which indicate topological changes. We also show that 

when a surface is embedded in a sphere, the height function and the distance function are 

equivalent in a Morse-theoretic setting, that is both functions have the same singularities. 

□ In the Conclusions Chapter, we summarize the contributions of this thesis, and we propose 

several future research directions that are directly or indirectly related to the work performed 

in this thesis. 
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CHAPTER  2 _  

Background 

This thesis addresses the application of computational geometry and topology algorithmJs to images 

and three-dimensional surfaces. The following background material is presented to provide context 

for this work. First, a representation of images in the continuous domain is presented along with 

some basic differential operators used throughout this work. Then, a discussion of the various 

surface representations of three-dimensional objects is presented. 

2.1    Continuous representation of images 

In the variational setting, an image is usually defined in the continuous domain which enjoys a 

large arsenal of analytical tools, and hence offers a greater flexibility. An image is therefore defined 

as a real-valued function n : fi —> R, where f) is a nonempty, bounded, open set in the real plane 

R^ (usually fi is a rectangle in R^). 

2.1.1    Differentiability of images 

A pixel location in Q is denoted by a; = (x, y), and the gradient of u is denoted by Vu = {ux, Uy)'^, 

where Ux and Uy are the first-order partial derivatives with respect to x and y respectively. These 

derivatives are illustrated in Figures 2.1(b) and (c). In image analysis, the image gradient defines the 

orientation of an edge at a given image point. The gradient orientation or direction 6 = atan(uj,/ua;) 

gives the orientation of the edge as shown in Figure 2.1(d). An edge in an image is a contotir across 

which the image intensity changes abruptly. Image edges are usually considered to be discontinuities 

13 
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of the image intensity function. The gradient magnitude ||Vu|| = W«| + u^ gives the strength of 

the edge, and it defines an edge image whose pixels are bright only near an edge as depicted in 

Figure 2.1(e). To detect edges of any orientation, first we compute the gradient of the image, then 

compute the gradient magnitude at every pixel, and then label as "edge pixels" all pixels whose 

gradient magnitude is above a pre-determined threshold. 

The Hessian matrix V^u of an image u is defined as the matrix of second-order partial derivatives 

and its Laplacian is defined as the divergence of the gradient or the trace of the Hessian matrix 

Au = V • (Vu) = div(V«) = Uxx + Uyy = Tr(V^ti). 

Another way to detect edges is to use zero-crossing of the Laplacian which crosses zero in the 

neighborhood of an edge, and this technique can be used without relying on a threshold. The 

Laplacian image is depicted in Figure 2.1(f). 

The Hessian matrix of an image consists of three terms Uxx, Uyy and Uxy The Laplacian ignores 

the third term and returns the average value of the second derivative when taking every orientation 

into account. While the Laplacian ignores one of them and considers every possible orientation 

at once, the Hessian takes all three terms into account and is orientation-dependent. The largest 

eigenvalue of the Hessian determines the orientation along which the second derivative is maximal, 

while the smallest eigenvalue of the Hessian returns the minimum of the second derivative. 

2.2    Three-dimensional surfaces 

Surfaces have been studied by mathematicians for centuries. Typically mathematicians conceive 

of surfaces as continuous, for example a surface may be defined as a continuous function of two 

variables. Each surface has a variety of attributes. For example, the surfaces typically used in 

computer graphics are oriented 2-manifolds with or without boundary. A 2-manifold is a surface 

where the local area around every point on the surface is Euclidean, meaning, around each point 
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(d) ataii{uy/ux) (e) IIVull (f) Au 

Figure 2.1: Image differential operators. 

the surface appears to be nearly flat, The world we live on is an excellent example of a 2-manifold. 

Manifolds are a preferable surface representation because the surface can be divided into regions 

called charts which allow 2-manifolds embedded in 3D to be flattened into a two dimensional domain 

(through parametrization). Surfaces used in computer graphics are typically oriented, this refers to 

the fact that the siurface has two sides. For example, a sphere has two sides, while a Mobius strip 

has only one side. Another attribute of surfaces is whether the surface is closed or with boundary. 

This refers to the number of open boundary components of a smrface. For example, an egg shell is 

closed but once it has been cracked open, it becomes a surface with boundaries. 

2.2.1    Image graph 

To apply and benefit from the tools of geometry in image analysis, it is convenient to consider the 

graph of an image u which is a surface (2-dimensional manifold) M C R^ defined as M = {{x, y, z) : 

z = u{x, y)} where z = u{x, y) is the gray level at position (x, y) on the image domain fi. An image 
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Figure 2.2: A facial image and its graph. 

and its surface representation are depicted in Figure 2.2. 

Inspired by this surface representation, the image denoising problem may be viewed as surface 

smoothing. This may be carried out by minimizing an energy functional with regularization terms 

that evolve the noisy surface to the optimal solution as depicted in Figme 2.3. 

In order to allow partial differentiation and consequently all the features of differential calculus 

on M, we need to consider a smooth image u, that is has continuous partial derivatives of all orders, 

so that the manifold M is differentiable. Thus the study of this differential manifold involves 

topology, since differentiability implies continuity. A conmion way to smooth an image u is to 

embed it into a family of images known as scale-space image. For example, a Gaussian scale-space 

image which is the result of convolving an image with the bivariate Gaussian density. A parametric 

representation of M is the Monge patch defined by r : fi -> M such that r{x,y) = {x,y,u{x,y)). 

Note that the patch r covers all M, that is, r{Q,) = M, and it is regular, that is, rx x ry ^ 0 ov 

equivalently, the Jacobian matrix of r has rank 2. Figure 2.4 illustrates a parametric representation 

of a surface. 

It is worth pointing out that the Monge patch r : fi -> M of a smooth image u : ^ -> E is a 

diffeomorphism because it is a smooth bijection, and its inverse r~^ is the restriction to M of the 
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(a) Noisy image (b) Filtered image 

(c) Noisy surface (d) Filtered surface 

Figure 2.3: Image denoising as surface evolution. 

smooth projection TT : fi x R —>^ fi, that is r  ^ = TTIM- 

Let p e M, then there exists {x, y) eO, such that p = r(x, y). Hence, the unit normal JV to M 

is given by 

(1) 
ivr/   \        Ar/   /■        \\ Tx >^ fy (    Ux,     Uy, 1) 
N{p) = N{r{x,y)) = <^ =  

ll»*^ ^ ''I'll y/l + ul + ul 

The unit normal is the most elementary differential characteristics of a surface and determines the 

tangent plane TpM at a surface point p = r{x, y). The tangent plane can be defined as the set of 

vectors that are orthogonal to the surface imit normal. Since r is regular, it follows that the unit 
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(a;,y)-plane ... 
surface 

Figure 2.4: Parametric representation of a surface. 

normal is well-defined everywhere, and therefore the image graph M is orientable. For notational 

convenience, the unit normal can be viewed as a mapping g : Q, -^S"^, called Gauss map of r and 

is defined as g{x,y) = N{r{x,y)), where S^ = {p G R^ : ||p|| = 1} is the unit sphere. Note that 

g{x, y) denotes the values of the unit Gauss map at p = r{x, y) as illustrated in Figure 2.5. 

Gauss map 

Figure 2.5: Illustration of the Gauss map. 
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2.2.2 Triangle mesh 

In computer graphics, 3D objects are usually represented as a triangle mesh M = (V, T), where 

V = {vi,.. .,Vjn} is the set of vertices, and T = {Ti,... ,T„} is the set of triangles. Triangle 

meshes axe used so frequently to represent surfaces in the discrete domain that most computer 

graphics hardware is optimized to render triangles. Example of triangle meshes are depicted in 

Figure 2.8. For triangulation, we use the barycentric subdivision illustrated in Figure 2.7. This 

technique consists in introducing a new vertex at the center of each triangle and a new vertex at 

the midpoint of each edge and drawing edges from the centroid of the triangle to each of the new 

midpoint vertices and to the original vertices. 

2.2.3 Scalar volume and isosurface 

Another common discrete surface representation is an isosurface in a scalar volume as pictured in 

Figure 2.8. A scalar volume consist of a regularly sampled 3D grid of scalar values. Scalar volumes 

aje tjrpically acquired from real world data from various sources, such as, magnetic resonance 

imaging (MRI) and computed Tomography (CT) imaging. These popular imaging techniques are 

used in a variety of medical and scientific applications to view and analyze three dimensional 

structures. 
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Figure 2.6: Triangle mesiies. 
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Figure 2.7: Baxycentric triangulation. 
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Figure 2.8: Volumetric surface. 
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Robust Variational Image Denoising 

In this chapter, we present a variational approach to MAP estimation [6,7]. The core idea behind 

this approach is to use geometric insight in helping construct regularizing functional and avoiding 

a subjective choice of a prior in MAP estimation [8]. Using tools from robust statistics and infor- 

mation theory, we show that we can extend this strategy and develop two gradient descent flows 

for image denoising with a demonstrated performance [8,9]. 

3.1    Introduction 

In recent years, variational methods and partial differential equations (PDE) based methods [57, 

61,1,65,2,74] have been introduced to explicitly account for intrinsic geometry to address a variety 

of problems including image segmentation, mathematical morphology, motion estimation, image 

classification, and image denoising [56,62,30,47,66,4]. The latter will be the focus of the present 

chapter. The problem of signal/image denoising has been addressed using a number of different 

techniques including wavelets [49], order statistics based filters [17], PDE-based algorithms [30, 

76], and variational approaches [26,27,6]. In particular, a large number of PDE-based methods 

have particularly been proposed to tackle the problem of image denoising [4,23,25] with a good 

preservation of edges. Much of the appeal of PDE-based methods lies in the availability of a vast 

arsenal of mathematical tools which at the very least act as a key guide in achieving numerical 

accuracy as well as stability. Partial differential equations or gradient descent fiows are generally 

a result of variational problems using the Euler-Lagrange principle [36]. One popular variational 

23 
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technique used in image denoising is the total variation based approach. It was developed in [65] to 

overcome the basic limitations of all smooth regularization algorithms, and a variety of numerical 

methods have also recently been developed for solving total variation minimization problems [43,24]. 

In the next section, a general formulation of signal/image denoising problem is stated. In 

Section 3.3, we briefly recall the MAP estimation technique, and in Section 3.4 we formulate the 

problem of MAP estimation in the calculus of variations setting. Section 3.5 is devoted to a robust 

variational formulation using concepts borrowed from robust estimation, followed by a probabiUstic 

interpretation of the nonlinear anisotropic diffusion in the the order statistics framework. In Section 

3.6, information-theoretic variational flows based on the differential entropy are proposed. In 

Section 3.7, we provide experimental results to demonstrate a much improved performance of the 

proposed gradient descent flows in image denoising. Finally, some conclusions and discussions are 

included in Section 3.8. 

3.2    Problem statement 

In all real applications, measurements are perturbed by noise. In the course of acquiring, transmit- 

ting or processing a digital image for example, the noise-induced degradation may be dependent or 

independent of data. The noise is usually described by its probabilistic model, e.g., Gaussian noise 

is characterized by two moments. Application-dependent, a degradation often yields a resulting 

signal/image observation model, and the most commonly used is the additive one, 

uo = u + r], (1) 

where the observed image uo includes the original signal u and the independent and identically 

distributed (i.i.d) noise process rj. 

Image denoising refers to the process of recovering an image contaminated by noise (see Fig- 

me 3.1). The challenge of the problem of interest lies in faithfully recovering the underlying sig- 

nal/image u from UQ, and furthering the estimation by making use of any prior knowledge/assumptions 

about the noise process 77. This goal is graphically and succinctly described in Figure 3.1. 
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Figure 3.1: Block diagram of image denoising process. 

3.3    MAP estimation: model-based approach 

In a probabilistic setting, the image denoising problem is usually solved in a discrete domain, and 

in this case an image is expressed by a random matrix -a = (uij) of gray levels. To account for 

prior probabilistic information we may have for u. a technique of choice is that of a maximum a 

posteriori estimation. Denoting by p{u) the prior distribution for the unknown image u, the MAP 

estimator is given by 

ti = argmax{logp(«oi«) + logp(w)}i (2) 
a 

where P{UQ\U) denotes the conditional probability of uo given u. 

A general model for the prior distribution p{'a) is that of a Markov random field (MRF) which 

is characterized by its Gibbs distribution given by [33] 

p(u) = - exp 
A 

where Z is a partition function and A is a ("onstant known as the temperature in the terminology 
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of physical systems. J^ is called the energy function and has the form J^{u) — "^^eC ^ciu), where C 

denotes a set of cliques (i.e. set of connected pixels) for the MRF, and Vc is a potential function 

defined on a clique. We may define the cliques to be adjacent pairs of horizontal and vertical pixels. 

Note that for large A, the prior probability becomes flat, and for small A, the prior probability 

exhibits sharp modes. 

Markov random fields have been extensively used in computer vision particularly for image 

restoration, and it has been estabUshed that Gibbs distributions and MRF's are equivalent ( e.g. 

see [33]). In other words, if a problem is defined in terms of local potentials then there is a simple 

way of formulating the problem in terms of MRF's. If the noise process rj is i.i.d. Gaussian, then 

we have 

p{uo\u) = Kexp (-"20-2°    ) ' 

where X is a normalizing positive constant, a^ is the noise variance, and | • | stands for the Euclidean 

norm or for the absolute value in the case of a scalar. Thus, the MAP estimator in (2) yields 

u = aigmm<T{u) +-\u-uo\'^> . (3) 

Image estimation using MRF priors has proven to be a powerful approach to restoration and 

reconstruction of high-quality images. Its major drawbax;k, besides its computational load, is the 

difficulty in systematically selecting a practical and reliable prior distribution. The Gibbs prior 

parameter A is also of particular importance since it controls the balance of influence of the Gibbs 

prior and that of the Hkelihood. If A is too small, the prior will tend to have an over-smoothing 

effect on the solution. Conversely, if it is too large, the MAP estimator may be unstable and it 

reduces to the maximum likelihood solution as A goes to infinity. Another difficulty in using a MAP 

estimator is the non-uniqueness of the solution when the energy function J^ is not convex. 

3.4    A vEiriational approach to MAP estimation 

Unknown prevailing statistics or underlying signal/image/noise models often make a "target" de- 

sired performance quantitatively less well defined. Specifically, it may be qualitative in liature (e.g.. 
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preserve high gradients in a geometric setting, or determine a worst case noise distribution in a sta- 

tistical estimation setting with a number of interpretations), and may not necessarily be tractably 

assessed by an objective and optimal performance measure. The formulation of such qualitative 

goals, is typically carried out by way of adapted functionals which upon being optimized, achieve 

the stated goal, e.g. a monotonically decreasing functional of gradient modifying a diffusion [61]. 

This approach is the so-called variational approach. It is commonly formulated in a continuous 

domain which enjoys a large arsenal of analytical tools, and hence offers a greater flexibility. An 

image is therefore defined as a real-valued function u : fi —»^ R, and fi is a nonempty, boimded, open 

set in R^ (usually fi is a rectangle in R^). Throughout, a; = (a;i,a;2) denotes a pixel location in fi, 

and II • II denotes the L^-norm. While the ultimate overall objective in the aforementioned formu- 

lation may coincide with that of a probabilistic formulation, namely the recovery of an underlying 

desired signal u, it is herein often imphcit and embedded in an energy functional to be optimized. 

Generally, the construction of an energy functional is based on some characteristic quantity spec- 

ified by the task at hand (gradient for segmentation, Laplacian for smoothing, etc.). This energy 

functional is oftentimes coupled to a regularizing force/energy in order to rule out a great number 

of solutions and to also avoid any degenerate solution. 

When considering the signal model (1), our goal may be succinctly stated as one of estimating 

the underlying image u based on an observation «o and/or any potential knowledge of the noise 

statistics to further regularize the solution. This yields the following fidelity-constrained optimiza- 

tion problem 

min   Tiu) , ^ 
(4) 

s.t.     ||u —uo|P = o'^ 

where J^ is a given functional which often defines, as noted above, the particular emphasis on the 

features of the achievable solution. In other words, we want to find an optimal solution that yields 

the smallest value of the objective functional among all solutions that satisfy the constraints. Using 

Lagrange's theorem, the minimizer of (4) is given by 

It = argmin < J^{u) +211^*- «o||^ \ , (5) 

where A is a nonnegative parameter chosen so that the constraint ||uo — it|p = a^ is satisfied. In 
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practice, the parameter A is often estimated or chosen a priori. 

Equations (3) and (5) show a close connection between image recovery via MAP estimation 

and image recovery via optimization of variational integrals. One may in fact reexpress (3) in an 

integral form similar to that of (5). 

A critical issue, however, is the choice of the variational integral J^, which as discussed later, is 

often driven by geometric arguments. Among the better known functionals (also called variational 

integrals) in image denoising are the Dirichlet and the total variation integrals defined respectively 

as 

^(w) = 1 f IVnpdx    and   TV{u) = f \Vu\dx, 
2 JQ JO 

where V« denotes the gradient of the image it. The total variation method basically consists in 

finding an estimate u for the original image u with the smallest total variation among all the images 

satisfying the noise constraint ||u-«o|P = o-^, where a is assumed known. Note that the parameter 

A controls the trade-off between noise removal and detail preservation. 

1 
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TV{ui) = 6 
TV{u2) = 6 
TV{ui) = 4 
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Figure 3.2: Total variation. 

The intuition for the use of the total variation integral is that it incorporates the fact that 

discontinuities are present in the original image u. It measures the jtunps of u, even if it is discon- 

tinuous as depicted in Figure 3.2 (courtesy of [75]). The total variation method has been used with 
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success in image denoising, especially for denoising images with piecewise constant features while 

preserving the location of the edges exactly [23]. 

The Dirichlet and total variation functional can be written is a generalized form given by 

J-(«) = / F(|V«|)dx, (6) 
Ju 

where F : R+ -^- R is a given smooth function called a variational integrand or Lagrangian [36]. 

Using (6), we hence define a functional 

A, 
C{u)   =   T{u) + -\\u-uo |2 

=   J (F{\Vu\) + ^\u-uoAdx, (7) 

which by the formulation in (5) becomes 

u = axg min C{u), (8) 

where X is an appropriate image space of smooth functions hke C^(r2), or the space BV{0.) of image 

functions with bounded variation, or the Sobolev space H^(f2) = W^'^{Q.). Note that BV{Q) is a 

Banach space with the norm ||u||By = ||«|lLi(n) + ^^(")> while H^{0.) is a Hilbert space with the 

norm||u||2,,(^) = ||u||2 + ||V«||2. 

3.4.1    Properties of the optimization problem 

A problem is said to be well-posed in the sense of Hadamard if (i) a solution of the problem 

exists, (ii) the solution is imique, (iii) and the solution is stable, i.e. depends continuously on the 

problem data. It is ill-posed when it fails to satisfy at least one of these criteria. To guarantee the 

well-posedness of our minimization problem (8), the following result provides some conditions. 

Proposition 3.1 Let the image space X be a reflexive Banach space, and let T he 

(i) weakly lower semicontinuous, i.e. if for any sequence («*) in X converging weakly to u, we have 

T{u) < liminffe_oo^(«'')- 

(ii) coercive, i.e. T{u) —> oo as ||u|| —> oo. 

Then the functional £ is hounded from helow and possesses a minimizer, i.e.  there exists u E X 
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such that C{u) = mix C Moreover, if T is convex and A > 0, then the optimization problem (8) 

has a unique solution, and therefore it is stable. 

Proof: Prom (i) and (ii) and the weak lower semicontinuity of the L^-norm, the functional C 

is weak lower semicontinuous, and coercive, i.e. C{u) —* oo as ||it|| —> oo. 

Let ti" be a minimizing sequence of C, i.e. £(it") —*■ mix C,- An immediate consequence of the 

coercivity of L is that u" must be bounded. As X is reflexive, thus n" converges weakly to u in X, 

i.e «" -^ ii. Thus t{u) < Uminf„_oo £(«") = infx C. This proves that C{u) = mix C. 

It is easy to check that convexity implies weakly lower semicontinuity. Thus the solution of the 

optimization problem (8) exists and it is unique because the L-^-norm is strictly convex. The 

stability follows using the semicontinuity of £ and the fact that u" is bounded. ■ 

3.4.2    Numerical solution: gradient descent flows 

To solve the optimization problem (8), a variety of iterative methods such as gradient descent [65], 

or fixed point method [43,24] may be applied. 

The first-order necessary condition to be satisfied by any minimizer of the functional £ given 

by (7) is that its first variation SC{u; v) vanishes at u in direction of v, that is 

SC{u; v) = -rC{u + ev) 
de 

= 0, (9) 
£=0 

and a solution u of (9) is called a weak extremal of £ [36]. 

Using (7) and (9), we obtain the first variation 5C{u;v) (see Appendix A for a proof) 

SC{u; v)   =     f i (^'|y^?*^Vu • Vv^ + A(M - UQ)V\ dx 

=   - f jdiv (^'y?'''Vu^ + X{u - uo)\vdx, (10) 

for all veX. 

Using the fundamental lemma of the calculus of variations, this vanishing first variation yields 
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an Euler-Lagrange equation as a necessary condition to be satisfied by minimizers of C. In mathe- 

matical terms, the Euler-Lagrange equation is given by 

- div f^'^^J'^^'Vu) + X{u - uo) = 0,    infi, (11) 

where "div" stands for the divergence operator. An image u satisfying (11) is called an extremal oi 

C. 

Note that |Vu| is not differentiable when Vu = 0 (e.g. flat regions in the image u). To overcome 

the resulting numerical diflficulties, we use the following slight modification 

|Vu|, = x/|V«|2 + e, 

where e is positive sufficiently small. 

Proposition 3.2 Let A = 0, and S be a convex set of an image space X. If the Lagrangian F is 

nonnegative convex and of class C^, then every weak extremal of C is a minimizer of C on S. 

Proof: The convexity of F yields 

F{y)>F{x) + F'{x){y-x),    Vx,y€R+. (12) 

By assumption u is a weak extremal of £, ie. SC{u; v) = 0 for all v e S. This implies that 

F'(|V«|) = 0. Therefore, using (12) we obtain 

f F{\Wv\)dx> f F{\Wu\)dx. 
Jo. Jo. 

This concludes the proof. ■ 

By further constraining A, we may be in a position to sharpen the properties of the minimizer, 

as given in the following. 

Proposition 3.3 Let A = 0, and S be a convex set of an image space X. If the Lagrangian F 

is nonnegative convex and of class C^ such that F'{0) > 0, then the global minimizer of C is a 

constant image. 
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Proof: Using (12), it follows that F{\S/u\) > F{0). Thus the constant image is a minimizer of 

C Since S is convex, it follows that this minimizer is global. ■ 

Proposition 3.4 Let A > 0, and S be a convex set of image space X. If the Lagrangian F is 

nonnegative strictly convex and of class C^, then an extremal u of C is the unique minimizer of C 

on S. 

Proof: Since u i—> ||«-uop is strictly convex when A > 0, then the functional C{u) is strictly 

convex on 5, that is 

C{v) > C{u) + VC{u) ■ {v - u). 

By assumption u is an extremal of £, thus C{v) > C{u), for allv^u. ■ 

Using the Euler-Lagrange variational principle, the minimizer of (8) may be interpreted as the 

steady state solution to the following nonlinear elliptic PDE called gradient descent flow 

ut - div(5r(|Vu|)Vu) - \{u - wo),    in fi x R+, (13) 

where g{z) = F'{z)/z, with 2; > 0, and assumed homogeneous Neumann boimdary conditions. A 

numerical implementation of this partial difierential equation is discussed in Appendix B. 

3.4.3    Illustrative cases 

The following examples illustrate the close connection between optimization problems of variational 

integrals and boundary value problems for partial differential equations in a no noise constraint 

case (i.e. setting A = 0): 

(a) Heat equation: Ut = Au is the gradient descent flow for the Dirichlet variational integral Viu). 

It is important to point out that the Dirichlet functional tends to smooth out sharp jumps 

because it controls the second derivative of image intensity i.e. its "spatial acceleration", and 

it diffuses the intensity values isotropically. Figure 3.4(b) shows this blurring effect on a clean 

image depicted in Figure 3.4(a). 
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(b) Perona-Malik (PM) equation: It has been shown in [77] that the PM diffusion Uf = div(5(|VM|)Vw) 

is the gradient descent flow for the vaiiational integral 

J-,,(„) =   /  Fr{\Vu\)dx, 
■In 

with sample Lagrangians F^f(z) = (■'^ log [l + z'^/c'^) or F'^{z) = c^ (l - exp (-z^/c^)), 

where z G M^ and c is a timing positive- constant. These Lagrangians are depicted in Fig- 

ure 3.3. 

Figure 3.3: Anisotropic Lagrangians. 

A minimization of such fimctionals encourages the smoothing of homogenuous/small gradient 

regions and the preservation of edges/high gradient regions. Note that ill-posedness of this 

formulation was addressed in a number of jjapers (e.g.. see [77]). A result of applying the PM 

flow with F^ to the original image in Figure 3.4(a) is illustrated in Figure 3.4(c). It is worth 

noting how the diffusion takes place throughout the homogeneous regions and not across the 

edges. 

c) Curvature flow: Ut = div(|^^) corresponds to the total variation integral. 
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While limiting spurious oscillations, TV optimization preserves sharp jumps as is often encountered 

in "blocky" signals/images. Figure 3.4(d) illustrates the output of the TV flow. 
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(b) Heat flow 

(c) Perona-Malik flow (d) TV flow 

Figure 3.4: Image evolution under (b) the heat flow, (c) Perona-Malik flow, and (d) total variation 
flow. 
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3.5    Robust variational approach 

3.5.1    Robustness for unknown statistics 

In robust estimation, for example, a case where even the noise statistics are not precisely known 

[42,49] arises. In this case, a reasonable strategy would be to assume that the noise is a member of 

some set, or of some class of parametric families, and to pick the worst case density {least favorable, 

in some sense) member of that set, and obtain the best signal reconstruction for it. Huber's 

e-contaminated normal set V^ is defined as [42] 

Ve = {(1 - e)# + ei7 :     He S}, 

where $ is the standard normal distribution, S is the set of all probability distributions symmetric 

with respect to the origin and e € [0,1] is the known fraction of "contamination". Huber found that 

the least favorable distribution in Ve which maximizes the asymptotic variance (or, equivalently, 

minimizes the Fisher information) is Gaussian in the center and Laplacian in the tails. The transi- 

tion between the two depends on the fraction of contamination e, i.e., larger fractions correspond 

to smaller switching points and vice versa. 

For the set Ve of e-contaminated normal distributions, the least favorable distribution has a 

density function 

Mz) = ((1 - e)/v/2^)exp(-pfc(z)), 

where pk is the Huber M-estimator cost function (see Figure 3.5) given by 

v2 

Pk{z) = < 
— if jzj < k 

^       k^ 
k\z\ ——   otherwise. 

Here A; is a positive constant determined by the fraction of contamination e by the equation 

2(m-n-k)]=^, (14) \   k ^7      1-e' 

where $ is the standard normal distribution function and <f) is its probability density function. It 

is clear that pk is a convex function, quadratic in the center and linear in the tails as illustrated in 

Figure 3.5. 
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^ 

V 

Figure 3.5: Huber function. 

Motivated by the robustness of the Huber M-filter in a probabiUstic setting and its resilience to 

impulsive noise, we propose a variational filter which, when accounting for these properties, leads 

to the following energy functional 

Tlkiu) = f pki\Vu\)dx. 
JQ. 

Note that the Huber variational integral is a hybrid of the Dirichlet variational integral (/9fc(|Vu|) oc 

|V«p/2 as fc ^ oo) and of the total variation integral (pfc(|Vw|) a |Vu| as A; -> 0). One may check 

that the Huber variational integral Ilk ■ H^{^) —>■ ^'^ is well defined, convex, and coercive. It 

follows from Proposition 1 that the minimization problem 

h-kiu) + ^h- «o|p} = arg^ min^^ ^ (pfcdV^I) + ^\u- «o|') dx       (15) 

has a solution. This solution is unique when A > 0. 

u = arg   min    < Tlkiu) + 7: ll'" 
ueHHU) 1 2" 

Proposition 3.5  The optimization problem (15) is equivalent to 

u = arg        min        \ — +      ( k\\Vu\ - 6 +-\u - uo\^] dx} (16) 
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Proof: For z fixed, define ^(0) = \0'^ + k\z - e\ on R. It is is clear that * is convex on 

E. It follows that 'J' attains its minimum at OQ such that ^'(^o) = 0 and *"(^o) > 0, that is 

6Q = k sign{z — k). Thus we have 

^(^o) = < 

fc2 

kz ——      a z > k 

— \i z = k 

' k^ 
—kz ——   a z < —k, 

2 

and therefore pk{z) = argminegK *(^). This concludes the proof. 

Using the Euler-Lagrange variational principle, a Huber gradient descent flow is obtained as 

ut = div(5fc(|Vu|)Vtx) - X{u - uo),    in f) x E+, (17) 

where gk is the Huber M-estimator weight function 

9k {z) = Oil-L = , 
1      if \z\ < k 
k 

■p-r   otherwise. 
\z\ 

For large A;, this flow yields an isotropic diffusion (heat equation when A = 0), and for small k, 

it corresponds to total variation gradient descent flow (curvature flow when A = 0). 

It is worth pointing out that in the case of no noise constraint (i.e. setting A = 0), the Huber 

gradient descent flow yields a robust anisotropic diffusion [20] obtained by replacing the diffusion 

functions proposed in [61] with robust M-estimator weight functions [42]. 

Recently, we proposed a smooth Huber variational integral [18] given by 

$(n) = / (p(\Vu\)dx, 
Jn 

where the Lagrangian ip is defined as 

-ct 

ipit)={ 

{t + af/3-ct 

if i < -a 

if -a < t <-b 

{t^ - b^)/2 + ((a - bf + 36c)/3   if -6 < t < 6 

-{t-a)^/S + ct iib<t<a 

c t otherwise. 
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with a = 3/2, 6 = 1, and c = 5/4. Its derivative cp' (also referred to as influence function in robust 

statistics) is depicted in Figure 3.6. The Huber influence function, however, is not diff'erentiable as 

shown in Figure 3.6. The differentiability of the influence function is of great importance since it 

implies the continuity of its first derivative which in turn implies the continuity of the confidence 

intervals in the data points. A more detailed description of the smooth Huber gradient descent 

flow will be reported elsewhere. 

 r 1 "T  1  1   

/ 
M 

/ 
/ Huber 

•*-i / 

'^^ 

/ 
- 

1        ...j  1  

Figure 3.6: Huber influence function and its smooth version. 

3.5.2    Perona-Malik equation: an estimation-theoretic perspective 

In a similar spirit as above, one may proceed to justify the Perona-Malik equation from a specific 

statistical model. Assuming an image u = (uy) as a random matrix with i.i.d. elements, the output 

of the Log-Cauchy filter [17] is defined as a solution to the maximum log-likelihood estimation 

problem for a Cauchy distribution with dispersion c and estimation parameter Q. In other words. 
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the output of a Log-Cauchy filter is the solution to the following robust estimation problem [17] 

min J^ log(c2 + (uy - Of) = min ^ Fc{uij - 0), 
i,j ».i 

where the cost function Fc coincides with the Lagrangian function which yields the Perona-MaUk 

equation. Hence, in the probabilistic setting the Perona-Malik flow corresponds to the Log-Cauchy 

filter.   Figure 3.7 illustrates the performance of the Log-Cauchy filter in removing heavy-tailed 

(impulsive) noise. 

Figure 3.7: Log-Cauchy filtering: (a) contaminated image with impulsive noise, (b) filtered image. 

3.6    Information based functionEds 

3.6.1    Information theoretic approach 

In the previous section, we proposed a least favorable distribution as a result of exercising our 

ignorance in describing that of an image gradient within a domain. Another effective way is to 

adopt a criterion which bounds such a case, namely that of entropy [32]. The maximum entropy 

criterion is indeed an important principle in statistics for modeling the prior probability p{u) of a 
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process u, and has been used with success in numerous image processing appUcations. The term is 

often associated with qualifying the selection of a distribution subject to some moments constraints 

(e.g. mean, variance, etc.), that is, the available information is described by way of moments of 

some known functions mr{u) with r = 1,..., s. Indeed coupling the finiteness of mr{u) for example 

with the maximum entropy condition of the data suggests a most random model p{u) with the 

corresponding moments constraints as a most adapted model (equivalently minimizing negentropy 

see e.g. [48]). 

min   / p{u) log p{u)du 

s.t.     Sp{u)du = 1 (1^) 

/ mr{u)p{u)du = /Xr,    r = 1,..., s 

Using Lagrange's theorem, the solution of (18) is given by 

p{u) = ;^ exp ^ - ^ XrViriu) \ (19) 

where Ar's are the Lagrange multipliers, and Z is a partition function. The resulting model p{u) 

given by (19) may hence be used as a prior in a MAP estimation formulation. 

3.6.2    Entropic gradient descent flow 

Motivated by the good performance of the maximum entropy principle in image/signal analysis 

applications and inspired by its rationale, we may naturally adapt it to describe the distribution of 

a gradient throughout an image. Specifically, the large gradients should coincide with tail events 

of this distribution, while the small and medium ones representing the smooth regions, form the 

mass of the distribution. Towards that end, we write 

W(n) = I H{\Vu\)dx =  I |Vu|log|Vu|da;. 
Ju Jn 

where H{z) = z\og{z), z>0. Note that -H{z) -^Oasz-^0. 

It follows from the inequality z log{z) < z^/2 that 

\niu)\ < I iVnpdx < ||w||^i(n) < oo,    V« € i?^(f2), 
JO. 
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where || • WH^IQ) denotes the if^-norm. Thus the negentropy variational integral H : H^{Cl) —* R 

is well defined. Note also that the inequality zlog{z) < z^/2 implies H{u) < T>{u), where !>(«) is 

the Dirichlet integral. One may check that the Lagrangian H is strictly convex, and coercive, i.e. 

H{z) —>• cx) as |z| —> oo. The following result follows from Proposition 1. 

Proposition 3.6 Let A > 0.  The minimization problem 

fi = arg   min    {^{{u) +-\\u-UQ\\'^\ = axg   min    \   {\Vu\\og\Vu\ +-\u-UQ\^] dx 
ueH^iil) 1^ 2 J u6Jfi(f2)7nV ^ / 

has a unique solution provided that \Vu\ > 1. 

Calling upon the Euler-Lagrange variational principle again, the following entropic gradient 

descent flow results 

ut = dw(^-^^^^^Wu)-Xiu-uo),    inf2xE+, 

with homogeneous Neumann boundary conditions. In addition, this energy spread of the gradient 

energy may be related to that sought by the total variation method, which in contrast allows for 

additional higher gradients. 

Proposition 3.7 Let u be an image. The negentropy variational integral and the total variation 

satisfy the following inequality 

H{u) > TV{u) - 1. 

Proof: Since the negentropy H is a convex function, the Jensen inequality yields 

/ H{\Vu\)dx   >   H( f \Vu\dxj 

=   H{TV{U)) 

=   TV{u)\ogTViu), 

and using the inequality z log{z) > z — 1 ior z > 0, we conclude the proof. ■ 

Remark: (See Figure 3.8) The following inequalities between Huber variational integral, total 

variation and negentropy integral hold 
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(i) If |Vu| € [0,e] then n{u) < TV{u) 

(ii) If |Vu| e (e, oo) then n{u) > TViu) 

(iii) If |Vn| e (e'=-^oo) and fc > 2 then H{u) < Tlkiu), 

where e is the Euler number (e = limn_oo(l + 1/n)" « 2.71). 
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Figure 3.8: Visual comparison of some variational integrands 

3.6.3    Improved entropic gradient descent flow 

To summarize and for a comparison sake, we show in Figure 3.8 the behavior of the variational 

integrands we have discussed in this paper. It can be readily shown [6] that a differentiable hybrid 

functional between the negentropy variational integral and the total veiriation may be defined as 

Hrviu) = 
n{u) if |Vu| < e 

2 TV{u) — meas(Q)e   otherwise, 

yielding an improved gradient descent flow. The quantity meas(J7) denotes the Lebesgue measure 

of the image domain fi. Note that HTV ■ H^i'^) -> M is well defined, diflterentiable, convex, and 
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coercive. It follows from Proposition 1 that the minimization problem 

^ "" ^^ueHMn) {^^^^"^ + 2II" ~ "oil / 

has a unique solution provided that A > 0. 

Figure 3.9 depicts the improved entropic Lagrangian HTV '■ ^'^ —^ K defined as 

(20) 

HTV{Z) = 
z log(z)   if z <e 

2z — e     o.w. 

Using the Euler-Lagrange variationaJ principle, it follows that the improved entropic gradient 

descent flow is given by 

^Ty(V«l), ut = V.f^^I^^Vu\-X{u-uo),    infixE+, 

with homogeneous Neumann boundary conditions. 

10 

> 

-2 

\Vu\ 

(21) 

Figure 3.9: Improved entropic Lagrangian. 
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3.7    Experimental results 

This section presents simulation results where Huber, entropic, total variation and improved en- 

tropic gradient descent flows are applied to enhance images corrupted by Gaussian and Laplacian 

noise. 

The performance of a filter clearly depends on the filter type, the properties of signals/images, 

and the characteristics of the noise. The choice of criteria by which to measure the performance 

of a filter presents certain difficulties, and only gives a partial picture of reality. To assess the per- 

formance of the proposed denoising methods, a mean square error (MSE) between the filtered and 

the original image is evaluated and used as a quantitative measture of performance of the proposed 

techniques. The regularization parameter (or Lagrange multipher) A for the proposed gradient 

descent fiows is chosen to be proportional to signal-to-noise ratio (SNR) in all the experiments. 

In order to evaluate the performance of the proposed gradient descent flows in the presence of 

Gaussian noise, the image shown in Figure 3.10(a) has been corrupted by Gaussian white noise 

with SNR = 4.79 db. Figure 3.10 displays the results of filtering the noisy image shown in Fig- 

ure 3.10(b) by Huber with optimal k = 1.345, entropic, total variation and improved entropic 

gradient descent flows. Qualitatively, we observe that the proposed techniques are able to suppress 

Gaussian noise while preserving important featiures in the image. The resulting mean square error 

(MSE) computations are depicted in Table 3.1. 

The Laplacian noise is somewhat heavier than the Gaussian noise. Moreover, the Laplace dis- 

tribution is similar to Huber's least favorable distribution [42] at least in the tails. To demonstrate 

the appUcation of the proposed gradient descent flows to image denoising, qualitative and quan- 

titative comparisons are performed to show a much improved performance of these techniques. 

Figure 3.11(b) shows a noisy image contaminated by Laplacian white noise with SNR = 3.91 db. 

The MSB's results obtained by applying the proposed techniques to the noisy image are shown 

in Table 3.2. Note that firom Figmre 3.11 it is clear that the improved entropic gradient descent 

flow outperforms the other flows in removing Laplacian noise. Comparison of these images clearly 

indicates that the improved entropic gradient descent flow preserves well the image structures while 

removing heavy tailed noise. 
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(a) Original image 

(c) Huber 

(b) Noisy image 

(d) Entropic 

(e) Total Variation (f) Improved Entropic 

Figure 3.10: Filtering results for Gaussian noise. 
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(a) Original image (b) Noisy image 

(e) Total Variation (f) Improved Entropic 

Figure 3.11: Filtering results for Laplacian noise. 
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PDE 
Mean Square Error (MSE) 

SNR = 4.79 SNR = 3.52   SNR = 2.34   1 

Huber 234.1499 233.7337 230.0263 
Entropic 205.0146 207.1040 205.3454 
Total Variation 247.4875 263.0437 402.0660 
Improved Entropic 121.2550 137.9356 166.4490 

Table 3.1: MSE's computations for Gaussian noise. 

PDE 
Mean Square Error (MSE) 

SNR = 6.33 SNR = 3.91    SNR = 3.05   1 
Huber 237.7012 244.4348 248.4833 
Entropic 200.5266 211.4027 217.3592 
Total Variation 138.4717 176.1719 213.1221 
Improved Entropic 104.4591 170.2140 208.8639 

Table 3.2: MSE's computations for Laplacian noise 

3.8    Discussions and conclusions 

In this chapter, we have explored a connection between maximum a posteriori estimation and the 

variational formulation based on the minimization of a given variational integral subject to some 

noise constraints. A robust filter called Huber gradient descent flow was proposed. It minimizes 

the Huber variational integral subject to some noise constraints. This filter behaves as the total 

variation anisotropic diffusion for small gradient magnitudes and as the isotropic diffusion for 

large gradient magnitudes. Another filter called entropic gradient descent flow derived from the 

maximum entropy principle is proposed. It minimizes the negentropy variational integral subject 

to some noise constraints. The proposed gradient descent flows has been applied to enhance images 

corrupted with Gaussian as well as Laplacian noise, and it has been shown that these proposed 

techniques preserve well details while removing noise. 



CHAPTER  4  

Topological Variational Model for Image 

Singularities 

In this Chapter, we propose a geometric/topological variational model to preserve degenerate image 

singularities [16]. Such singularities carry important information for a variety of image processing 

and computer vision operations, such as image registration, shape analysis, and object recognition. 

The approach is expressed in a higher order variational framework, and it is a result of minimizing 

a variational integral defined in terms of the gradient and the Hessian matrix of the height function 

defined on a manifold. 

4.1    Introduction 

Over the last decade, there has been a flurry of activity in applying nonlinear partial differential 

equations (PDEs) to image processing and computer vision. These approaches have been proposed 

to address the limitations of linear scale-space and to tackle a variety of imaging applications. 

Many of the these PD&based techniques are solutions to variational problems [56,7,8], and axe 

determined by geometric quantities. Such evolutions equations have blossomed in recent years, 

with striking applications to image denoising, image segmentation, curve evolution, and motion 

estimation. One of the most important property to be investigated through these geometric flows 

is the local behavior of image singularities, and hence the topology of the level sets of the image. 

Depending on whether the Hessian matrix of the image is singular or not, the critical points may 

48 
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be divided into two classes: degenerate and nondegenerate respectively [31]. The so-called Morse 

theory [3] studies the properties of a Morse function (i.e. a function that has only nondegenerate 

singular points) and it describes the topology changes of the level sets of this function at those 

singularities. Regular or noncritical points do not affect the number or genus of the components 

of the level sets. It can be shown that Morse functions are dense and stable in the set of all 

smooth functions, that is the structure of nondegenerate singularities does not change under small 

perturbations. The basic ingredients of Morse theory are Morse lemma and deformation lemma. 

The former states that in a neighborhood of a nondegenerate singularity, a function is reduced to 

a quadratic form in an appropriate system of coordinates, while the latter lemma essentially states 

that two level sets of a Morse function are topologically equivalent and can be deformed onto one 

another if there is no singularity between them. 

On the other hand, degenerate singularities are unstable, and their local behavior can be studied 

using catastrophe theory [22] which deals with such critical points. The essential characteristics of 

non-Morse function can be studied by embedding it into a smooth family of functions controlled 

by a certain parameter. This parameterized function can be regarded as a perturbed function, 

and topological changes may happen when changing the control parameter in such a way that a 

degenerate singularity may become nondegenerate. The idea behind this perturbation method is 

to show how degenerate singularities behave as the control parameter changes and therefore to 

reduce the general problem to the nondegenerate situation so that Morse theory can be applied. If 

we think of the control parameter as time, then geometric evolution equations can be regarded as 

such a smooth family of functions. These equations are flows resulting from geometrical variational 

problems, and are determined by geometric quantities. 

Geometry deals with shape, size and location of geometric elements, while topology is the con- 

nectivity of the geometric elements. In other words, the geometry of an object is its representation 

in space, while the topology is the interconnection of some geometrical objects. Furthermore, 

topology is a global property of a space and does not depend on local geometrical structure. 

This Chapter is outlined as follows: the next section is concerned with the problem formulation. 



4.2 Problem formulation ^^ 

followed by a geometric approach to image singularities. Section 4.3 describes a topological charac- 

terization of singularities in the Morse theory framework. Furthermore, using the concepts of height 

function and Gauss map, we show that almost all images are Morse functions. We also prove that 

images defined on the same domain are topologically equivalent. In Section 4.4, a topological vari- 

ational approach for image singularities is proposed. Section 4.5 is devoted to experimental results 

showing the methodology proposed in this Chapter. Finally section 4.6 presents some conclusions. 

4.2    Problem formulation 

Let u : f^ C R'^ -^ K be an image, where fi is an open bounded subset of R^ with Lipshitz boundary 

(usually fi is a rectangle). 

4.2.1    Geometric analysis of images 

To apply and benefit from the tools of geometry in image analysis, it is convenient to consider the 

graph of an image u which is a surface (2-dimensional manifold) U CR^ defined asU = {{x, y, z) : 

z = u{x,y)} where z = u{x,y) is the gray level at position {x,y) on the image domain Q. 

In order to allow partial differentiation and consequently all the features of differential calculus 

on U, we need to consider a smooth image u, that is has continuous partial derivatives of all 

orders, so that the manifold U is differentiable. Thus the study of this differential manifold involves 

topology, since differentiability implies continuity. A conamon way to smooth an image u is to 

embed it into a family of images known as scale-space image. For example, a Gaussian scale-space 

image which is the result of convolving an image with the bivariate Gaussian density. A parametric 

representation of U is the Monge patch defined by r : fi -> W such that r{x,y) = {x,y,u{x,y)). 

Note that the patch r covers all U, that is, r(fi) = U, and it is regular, that is, r^ x TJ, / 0 or 

equivalently, the Jacobian matrix of r has rank 2. 

It is worth pointing out that the Monge patch r : fi -+ W of a smooth image u : fi -> R is a 

diffeomorphism because it is a smooth bijection, and its inverse r~^ is the restriction to U of the 

smooth projection TT : IQ x R -^ fi, that is r~-^ = TT\U. 
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Let p eU, then there exists {x,y) € 0. such that p = r{x,y). Hence, the unit normal M toU 

is given by 

Since r is regular, it follows that the unit normal is well-defined everywhere, and therefore the 

image graph U is orientable. The unit normal can be viewed as a mapping g : Q, -* S'^{1), called 

Gauss map of r and defined as g{x,y) = J\f{r{x,y), where 5^(1) = {p e E^ : ||p|| = 1} is the unit 

sphere. 

4.2.2 Image singularities 

Let / : M -> R be a real-valued function defined on a smooth manifold M C R^. The function / 

is smooth if the function / o r : fi ^ R is smooth (in the ordinary Euclidean sense), where r is 

a smooth regular patch that covers all M, that is, r{Q,) = M. A point Po on M is a singularity 

or critical point of / if Po = r(rco,yo), for some {xo,yo) € Q, and the gradient of / o r at (xcyo) 

vanishes, i.e. V(/ o r(a;o, yo)) = 0. 

A singularity Po is nondegenerate if the Hessian matrix V^(/ o r{xo,yo)) is nonsingular. Oth- 

erwise this singularity po is degenerate. The nature of the Hessian matrix is directly related to the 

stabiUty of the singularity. Hence, critical points can be divided into two classes: degenerate and 

nondegenerate. The main theory about nondegenerate singularities is Morse theory that classifies 

all such points. The degenerate singularities are more difficult to handle and catastrophe theory 

deals with such points. 

4.2.3 Image singularities: a geometric approach 

A geometric characterization of image singularities is described by curvatures of the image graph. 

For a smooth image u, the Hessian matrix V^it provides information about the type of singularities, 

and also characterizes the shape of the image graph using the first and second fundamental forms 
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that can be formulated respectively as follows [29] 

/ = 

and 

Tx-rx   rx ■ ry \ _ I  1 + ul   UxUy 

Ty-Tx        Ty-Ty    j \    UxUy 1  + «y 

XX     N -Txy   \ 1 /    Uxx     Uxy    \ V^U 

iV-n„      J x/i+IV^    \     Ux,        Uyy     ; VA+TW|P yx    ^^ ' I yy   I v      '   ii       ii     \   "xy     "yy 

Note that det(I) = 1 + it^ + w^ ^ 0, and therefore the matrix J is nonsingular. 

The matrix S := I~^E is called the matrix of the shape operator and is given by 

I   sii   si2 \ _      1       I gi- fm   gm- fn 

\ S21   S22 J      ^9- f   yem- f£   en - fm 

The most important curvatures in surface theory are Gaussian and mean curvatures given 

respectively by 
r.      ,   /^x     (n-m? det(V2«) 
K = det{S) = 75- = ..,  , 11^ MONO = '^i'*2, 

and 

where /ci and K2 are the principal curvatures (eigenvalues of the matrix S), that is 

Ki = H- VH^ -K = Tr{S)/2 - v/(Tt(S)/2)2 _ det(S) 

and 

K2 = i? + VH-^-K = Tr{S)/2 + y(Tr(S)/2)2 - det(S'). 

The corresponding eigenvectors ei and 62 (i.e. S^ei = KICI and Se2 = K2e2) are called he principal 

directions, and are given by ei = (KI - S22, S21) and 62 = (K2 - S22, S2i)- These principal curvatures 

control the shape of the surface near an arbitrary point p as illustrated in Table 4.1. Note that the 

principal directions may not be unique. The signs the principal curvatures can be used to classify 

the local structure of the image graph. 
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Table 4.1: Local shape of a surface. 

A point p G M where both principal curvatures axe equal is called umbilic. Assume that 

«! < K2, that is, /ci and K2 are the minimal and maximal principal curvatures with associated 

principal directions ei and ea respectively. 

Definition 4.1 A point p EM is called a ridge point if K2 attains a local positive maximum in the 

direction of 62, i-e. 

K2{p) > 0,    V/C2(p) • 62 = 0    and   62 • V^KaCp) 62 < 0. 

The point p EM. is called a ravine point if Ki attains a local negative minimum in the direction of 

ex, i.e. 

Klip) < 0,    VKI(P) • ei = 0    and   ei • V^«;i(p) ei > 0. 

4.3    Topological analysis of images 

The purpose of Morse theory is to explain the presence and the stability of critical points in terms 

of the topology of the underlying smooth manifold. Topology is the property that determines which 
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parts of the shape of objects are connected to which other parts, while geometry determines where, 

in a given coordinate system, each part is located. The basic principle is that the topology of a 

manifold is very closely related to the critical points of a smooth function on that manifold. Morse 

theory studies the questions, what a manifold knows about the critical points of a Morse function, 

and what the Morse function knows about the manifold. 

4.3.1    Image singularities: a topological perspective 

A tjrpical problem in mathematics involves attempting to understand the topology, or large-scale 

structiue, of an object with Umited information. This kind of problem also occurs in mathematical 

physics, dynamic systenas and mechanical engineering. Morse theory, when applied to smooth man- 

ifolds such as a sphere or an image graph, provides a general tool of attacking this problem. Morse 

proved a major result that generalizes the straightforward result that the lowest-order nonvanish- 

ing term in the Taylor series describes the local behavior of a smooth function of single variable to 

functions of many variables. 

Definition 4.2 ^4 smooth function / : M —> R on a smooth manifold M is called a Morse function 

if all its singularities are nondegenerate. 

Nondegenerate singularities are isolated, that is, there cannot be a sequence of nondegenerate 

singularities converging to a nondegenerate singularity p. In other words, there is no other point 

in the neighborhood of p that is singular. This fact follows from the following Morse's lemma. 

Lemma 4.3 Iff : M —» R has a nondegenerate singularity atpQ € M, then there exists {XQ, yo) € fi 

such that Po = r{xo,yo), and f has the following representation 

f{p) = f o r{xo, yo) ±x''±y'' = /(po) ±x''±y^ 

for all p = r{x, y) € M, where r is a regular smooth path. 

Note that the only nondegenerate singularities are the minimum, maximum and saddle points as 

depicted in Figure 4.1.  On the other hand, Figure 4.2 illustrates a degenerate singularity (cusp 
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Figure 4.1: Nondegenerate singular points: Minimum, Maximum, Saddle. Bottom: corresponding 
gradient vector flows. 

point). As we can see, a cusp curve is the intersection of a surface with the plane at the the cusp 

point. 

Morse lemma says that near pg there is a smooth change of coordinates under which the resulting 

Taylor series of the Morse function / near Po is the pure quadratic function. 

Theorem 4.4 Morse functions are stable and dense in the set of all smooth functions. Equiva- 

lently, any smooth function can be converted into a Morse function as a result of a perturbation as 

slight as desired. 

This Morse's theorem says that a small, smooth perturbation of a Morse function yields another 

Morse function. The density means that there is a Morse function axbitraxily close to any non-Morse 

function. 
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Figure 4.2: Degenerate singularity: cusp point/curve 

4.3.2    Almost all images are Morse functions 

A height function defined on a smooth manifold M is a real-valued function /i: M -^> R such that 

h{x, y,z) = z for all (x, y, z) G M. Hence, h is the orthogonal projection with respect to the z-axis. 

Figure 4.3 shows a manifold and the critical points of its height function. These singular points are 

all nondegenerate. 

In particular, the height function defined on the graph ZY of an image u is given by h{r{x, y)) = 

u{x,y). Hence, the process for finding and classifying the singularities of the image u is the same 

as that for the singularities of h by changing its local coordinates. Let PQ be a nondegenerate 

singularity of h on the graph U of the image u. Then, there exists {XQ, yo) € Q. such that PQ = 

{xo,yo,u{xo,yo)). Morse lemma yields 

h{x, y, u{x, y)) = h{xo, j/o, u{xo, yo)) ±x'^ ± y"^,    V(a;, y) € Q., 

or equivalently. 

u{x, y) = u{xo, yo) ±x'^± y^,    V(x, y) € Ct. 
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Figure 4.3: A 3-D object and the critical points of its height function. 

Now we need to find out when a critical point for the height function is nondegenerate, since we 

are interested in functions whose critical points are nondegenerate. For this we use the concept of 

the Gauss map that assigns to each point p € W the point on the unit sphere that is parallel to the 

unit normal //{p). Since U is smooth, it follows that the Gauss map is smooth. The next result 

links the height function to the Gauss map. 

Proposition 4.5 The height function on the graph U of an image u is a Morse function if and 

only if the Gauss map is a regular patch. 

Proof: By definition the height function on the image graph is u. Thus, let {x, y) be a non- 

degenerate critical point of the image u, that is Vu{x,y) = 0 and det(V^it(x,y)) ^ 0. For the 

sake of simplicity, we project the Gauss map g centrally from the origin to the plane 2; = 1 to 

get g{x,y) = {—Ux,—Uy,l) which is the unnormalized surface normal. Hence, the cross product 

g^xg = - det(V^w) ^ 0, that is the Gauss map is a regular patch. The converse clearly holds as 

well. ■ 
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4.3.3    Topological equivalence of images 

Let u,v : Q C R"^ -^ R two smooth images defined on the same domain Q, and let r : Q -^ U 

and 8 : Q -^ V their respective Monge patches, where U and V are the image graphs of u and 

V respectively. Since a Monge patch of a smooth image is a diffeomorphism, it follows that the 

map sor~^ -.U-^Vis also a diffeomorphism. Hence the image graphs U and V are topologically 

equivalent, that is one can be transformed into the other. 

4.4    Image singularity-based flow 

Recall that by definition a degenerate singular point satisfies the conditions 

Vu = 0   and    det(V^u) = 0. 

Hence, we might formulate the degeneracy of a singularity in the calculus of variations framework 

[36] as an optimization problem given by 

mini f {{l-e)\Vu\ + e\det{S7\)\}dx,    e € [0,1] (2) 

Taking the first variation and using the identity ^det{M) = det(M)(M) ^ for a non-singular 

matrix M, we derive the Euler-Lagrange equation which can be solved using the following gradient 

descent flow given by 

..       ^vv   /^ V« \        ,    / det(V2u)  . A 
"* = ('- ^)^ • [W\) ~ l|det(V%)|^"^^' -u.y,u.^)) , 

where A = (^,2g|^, ^) is a second order differential operator. Here we assume homogeneous 

Dirichlet and Neumann boundary conditions u = tij, = 0, where u^, denotes the directional derivative 

of u in the direction of the unit normal u. 

4.5    Numerical simulations 

We demonstrate the performance of the proposed technique by applying it to real images. A test 

image of a fighter jet F16 is shown in Figure 4.4(a).  In order to extract the degenerate critical 
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points, we use a zero crossing technique to find the locations where both the gradient and the Hessian 

determinant of the image vanish. Figure 4.4(b) shows the extracted 330 degenerate singularities 

that are indicated by the sign "+" in the image. Figure 4.4(c) and 4.4(d) show the results of 

applying the heat flow and the proposed flow with their corresponding degenerate singularities. As 

we can see, the proposed flow preserves more degenerate critical points (178 landmarks), while for 

the heat flow the number of landmarks drops rapidly to 12. In Figure 4.5, we plot the number of 

degenerate singular points versus the iteration nmnber for the heat flow and the proposed technique, 

and it can be seen clearly that the proposed approach performs the best. 

(c) Heat flow (12 Landmarks)    (d) Proposed flow (178 Landmarks) 

Figure 4.4: Evolution of image singularities. 
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Figure 4.5: Number of degenerate singularities vs. iteration number. 

4.6    Conclusions 

We have presented an image singularity-based flow expressed in the calculus of variations frame- 

work. This approach is based on a variational functional that incorporates both differential ge- 

ometry and topology. The proposed model provides motivation for further investigation, and oiu: 

future eflForts will be focused in applying this approach to a variety of image processing and com- 

puter vision tasks such as image registration, motion estimation, shape from shading, and object 

recognition. 



CHAPTER  5 —— 

Topological Modeling of Illuminated Surfaces 

In this Chapter, we give a formulation of object singularities in a Morse theoretic setting. Then, 

we analyze the Reeb graph representation in the shading problem framework, and we derive some 

relevant theoretical properties of the height function in the Ught direction of an illuminated 3D 

object [18]. In addition, we prove that such a height function is closely related to the generalized 

bas-relief transformation. 

5.1    Introduction 

The Reeb graph concept is an efficient representation that captures the topological properties of 

three-dimensional (3D) objects. The vertices of the Reeb graph are the singular points of a function 

defined on the underlying surface of a 3D object [67,31]. The vertices of the Reeb graph are the 

singular points of a function defined on the underlying object [67,68,31]. These singularities are 

prominent landmarks and their detection, recognition, and classification is a crucial step in image 

processing and computer vision [31]. Such singularities carry important information for further 

operations, such as image registration, shape analysis, motion estimation, object recognition, and 

surface/image evolution [52,16]. Depending on whether the Hessian matrix of a function defined 

on the underlying object is singular or not, the critical points may be divided into two classes: 

degenerate and nondegenerate respectively [55,31]. The so-called Morse theory [55,31] studies the 

properties of a Morse function (i.e. a function that has only nondegenerate singular points) and 

it describes the topology changes of the level sets of this function at those singularities. Regular 

61 
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or noncritical points do not affect the number or genus of the components of the level sets. It 

can be shown that Morse functions are dense and stable in the set of all smooth functions, that is 

the structure of nondegenerate singularities does not change under small perturbations. The basic 

ingredients of Morse theory are Morse lemma and deformation lemma [55,31]. The former states 

that in a neighborhood of a nondegenerate singularity, a function is reduced to a quadratic form in 

an appropriate system of coordinates, while the latter lemma essentially states that two level sets 

of a Morse function are topologically equivalent and can be deformed onto one another if there is 

no singularity between them. The Reeb graph representation is a result of extracting and encoding 

the singular points of a Morse function defined on a 3D object. 

The rest of this Chapter is organized as follows. The next section is devoted to the topological 

characterization of object singularities with an emphasis on Morse theory and its implications, 

followed by a mathematical description of the Reeb graph representation for 3D data. In Section 

5.3, we establish a link between the shading problem and the height function in the light direction. 

Then, we derive some relevant properties of this height function, and we show its relation to the 

generalized bas-relief transformation. And finally in Section 5.4, we provide numerical simulations 

to show the appUcation and the power of object singularities in topological modeUng through the 

Reeb graph representation. 

5.2    Reeb graph representation 

5.2.1    Morse theory £uid singularities 

Morse theory explains the presence and the stability of critical points in terms of the topology 

of the underlying smooth manifold. Topology is the property that determines which parts of the 

shape of objects are connected to which other parts [38], while geometry determines where, in a 

given coordinate system, each part is located [29]. The basic principle is that the topology of a 

manifold is very closely related to the critical points of a smooth function on that manifold [55]. 

Let (^ : M -» M be a real-valued function defined on a smooth manifold M C M^. The function 

ip is smooth if the composition function y? o r : fi ^ R is smooth (in the ordinary Euclidean sense). 
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where r is a smooth regular parametrization of M (i.e. r : f) —> M"^). A point Po on M is a 

singularity or critical point of (p ii PQ = r{xo,yo), for some {xo,yo) €. fi, and the gradient oi (por 

at {xo,yo) vanishes, i.e. V((/?or(xo,t/o)) =0. 

A singular point PQ is nondegenerate if the Hessian matrix V^(v' o r{xo,yo)) is nonsingular 

[55,21,31]. 

Definition 5.1 .4 smooth function y? : M —> R on a smooth manifold M is called a Morse function 

if all its singular points are nondegenerate. 

Nondegenerate singularities are isolated, that is, there cannot be a sequence of nondegenerate 

singularities converging to a nondegenerate singularity p. This fact follows from a Morse lemma 

which says that near PQ there is a smooth change of coordinates under which the resulting Taylor 

series of the Morse function h near PQ is a pure quadratic function. Note that the only nondegenerate 

singularities are the minimum, maximum and saddle points. 

Another important result is Morse theorem which says that a small, smooth perturbation of a 

Morse function yields another Morse function. The density means that there is a Morse function 

arbitrarily close to any non-Morse function. 

5.2.2 Height function 

A height function on a smooth manifold M is a real-valued function /i: M —»• R such that h{x, y, z) = 

z for all {x,y,z) 6 M. Hence, h is an orthogonal projection with respect to the z-axis. Figure 5.1 

shows a 2D manifold (a double torus) and the critical points of its height function. These singular 

points are all nondegenerate. 

5.2.3 Reeb graph 

An interesting concept related to Morse theory and very useful to analyze a surface topology is the 

Reeb graph. The latter is defined as a quotient space M/~ with the equivalence relation given by 

p ~ q if and only if h{p) = h{q) and p,q belong to the same connected component of h~^{h{p)). 

In particular, each connected component is represented by a point in the Reeb graph as illustrated 
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Figure 5.1: A 3-D object and the critical points of its height function. 

in Figure 5.2. The left figure shows a torus with the critical points of its height function (Morse 

function). The figure in the middle illustrates the geometric featiues of the torus represented by 

cross-sections along its height. The right figure shows the topological features represented by the 

Reeb graph. By taking an appropriate number of cross-sections and smooth interpolation between, 

Shinagawa et al. [67, 68] proposed a Reeb graph based approach or so-called homotopy model 

for object reconstruction. The Reeb graph is a topological representation of an object (skeletal 

structure), and has the advantage to be stored or transmitted with a much smaller amount of data. 

Mathematically, a quotient space M/~ = {[p] : p € M} is the set of equivalence classes of the 

relation ~, where [p] = {g e M : q ~ p} is the equivalence class of p € M. Intuitively, M/~ is a 

space created by taking the space M and gluing p to any q that satisfies q ~ p. The classes [p] are 

the connected components for the Reeb graph, and being in the same component is an equivalence 

relation: 

qr^p <=^ h{q) = h{p) and p,q E ConComp{/i~^(/i(p))}, 

where ConComp{-} denotes the connected component.   In the Reeb graph representation, each 

connected component of a contour (i.e. h~^{z) where z = h{x,y,z)) corresponds to a point. 



5.3 Shading problem and height function 65 

Figure 5.2: Reeb graph representation of a torus. The dot • denotes a critical point of the height 
function. 

5.3    Shading problem and height function 

5.3.1    Shading function 

Shadows provide perceptually important information about the shape of an illuminated surface. 

Shadows occur when objects totally or partially occlude direct light rays from a light source. A 

shadow can be divided into two classes: self-shadow (or attached shadow) and cast shadow [41]. 

The former is a portion of a surface not illuminated by hght rays (i.e. facing away from the light 

source), while the latter is the area projected by the object in the direction of light source on the 

surface (extrinsic cast shadow) or projected on the surface itself (intrinsic cast shadow). Note that 

a convex object such as an egg-shell does not cast shadow on itself, that is there is no intrinsic cast 

shadow. Both shadows provide perceptually important information about the shape of the surface 

or object. These two types of shadows are illustrated in Figure 5.3(a) 

Let M be a Lambertian surface with unit constant albedo, that is, it reflects light equally in all 

directions. Assuming distant point source illumination in the direction L = {£i,£2,h)- The unit 

vector L e S^ (unit sphere) is pointing towards the light source. We define the shading function 

cr : M -+ R as the inner product a{p) = N{p) • L, where N is the surface unit normal (see 
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(a) (b) 

Figure 5.3: (a) Self-shadow and cast shadow, (b) illumination of a Lambertian surface. 

Figure 5.3(b)). It is important to note that the shading function has a similar definition to that of 

the surface curvatures such as the Gaussian curvature K : M -^ R. 

The zero-level set C = CT~^{0) of the shading function is called the horizon curve, that is, 

the set of points where the Ught direction is orthogonal to the surface. The set of points in the 

siurface not reached by the light rays (the part of the surface that is not illuminated), that is, 

E = {p e M : cr(p) < 0}, is called self-shadow. It is known that if the surface M is convex 

and illuminated in all directions, then the self-shadow is a coimected set. The converse problem, 

however, does not always hold. Ghomi [34,35] recently studied the question: does connectedness 

of the self-shadows imply convexity of the surface"!. Using Morse theory, Ghomi proved that the 

answer is yes provided that each self-shadow is simply connected. 

For almost all L E S^ the horizon curve is a regular curve. It can also be shown that if the 

horizon curve is connected, then it coincides with the boundary of the self-shadow [35]. 

In particular, if we consider the surface M as a graph of an image or function u : f) C M^ —> M, 

that is, M is a parametric surface given by a Monge patch r : M —>^ M, then for notational 

convenience, we may abbreviate <T o r to a, so that the shading function or shading image (i.e. the 

image of the Lambertian siuface) may be defined as c : fi —> R such that a{x, y) = N{x, y) ■ L = 

{-Uxh - «y^2,4)/\/l + "x + «y for all {x,y) E fi. In other words, a{x,y) will denote the values 

of the shading function at r{x,y). The shading image depends on the illumination, the properties 
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of the underlying surface and its orientation. It can be expressed as the angle a between the unit 

surface normal N and the direction of the light source L. 

The self-shadow image E = {(x,y) e f) : a{x,y) < 0} is defined as the orthographic projection 

of the self-shadow curve onto the image plane, that is, the {x, y)-plane. 

The local properties of the shading image are better described with respect to its local Gauge 

frame (??, ^) defined in terms of the normal and the tangent to the level sets of the shading image 

as 
Va ,     .      (Va)^ 

'n=r7=r-;    and   f =   .„  .  • 
|Va| ^       |Vcr| 

Figure 5.4 shows the normal and tangential vector fields of the shading image for a synthetic vase 

model. 
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Figure 5.4: (a) Shading image, (b) gradient vector field, (c) shading normal field, and (d) shading 
tangent field. 
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5.3.2    Height function in the direction of light 

The height function in the hght direction L of an illuminated surface M is given hy h{p) = p ■ L, 

for all peM. 

In particular, if M is a parametric surface given by r : f2 -» M such that r{x, y) = (x, y, u{x, y)) 

where « is a given image or a real-valued function, then the height function on M in the direction 

of light L is the composition of r with the orthogonal projection to the line spanned by L, and is 

defined as h{x, y) = r{x, y) • L = £ix + t,2y + hu{x, y). 

Denote by Ti the graph of the function h, and let qeU.lt is easy to verify that q = Zp, where 

Z is the matrix given by 
/ 

Z = 

1    0    0 \ 

0    1    0 

V 4   ^2   h ) 

Proposition 5.2 Assume that £3 ^ 0, and let N be the unit surface normal the surface H, we 

then have 

Proof: By definition, the unit normal to the surface H is given by 

N 
\fx ^ ^j/l 

\\\rxxry\\j 

( h    0    -ix -f.\ 

0    £3   -£2 

\ 0    0      1 

rx X r y 

\rx X r y\ 

I 
\Tx X r 

^   det(Z)Z-^iV, 
\Tx   X   T'yII J 

where r and f are the Monge patches for M and W respectively. 
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Proposition 5.3 Let (p, q) € M x H.    The point p is a on the self-shadow of M in the light 

direction L if and only if the point q is on the self-shadow ofH in the light direction L = ZL. 

Proof: The result follows using Proposition 5.2 and the following relation 

Thus, iV • L < 0 if and only if iV • L < 0. ■ 

It is interesting to point out that the height function in the direction of an arbitrary vector 

(a, 6, c) with c > 0 is also referred to as the generalized bas-relief transformation proposed by 

Belhumeur et al. [5] who have shown that there exists an ambiguity in determining the structure of 

the underlying surface since both the surface and its generalized bas-relief surface produce identical 

set of images under arbitrary illumination, and therefore they are indistinguishable for recognition 

purposes [5]. The above propositions prove that the generalized bas-reUef transformation is not 

the only one that produces the same set of images under arbitrary illumination as suggested in [5], 

and that the height function in the light direction on an illuminated surface is another alternative 

representation to further understand and investigate the shading problem. 

5.3.3    Singularities of the shading function 

The shading function of a manifold M is defined as a{p) = N{p) ■ L, where N is the surface unit 

normal, and L = (^1,^2,4) is a unit vector representing the light source direction. By a rigid 

motion, we may move M tangent to the {x, y)-plane at p = 0, so that M is locally a graph given 

by 2 = u{x,y) with M(0,0) = itx(0,0) = %(0,0) = 0. Thus, the unit normal can be written as 

N = {-Ux, -Uy, l)/Jl + u%-\-ul. To study the singularities of the shading function and therefore 

the singularities of of the Gauss map, it is more easy to simplify the expression of the unit normal 

by projecting centrally from the origin to the plane 2: = 1 to get {-Ux, -Uy, 1), and then project 

to the (x, y)-plane to get a simplified mapping referred to as the modified gauss map N defined as 
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N{x, y) = {-Ux, -Uy). Recall that a central projection of a point p = (x, y, z) G M onto the plane 

z = 1 is equal to (x/z, y/z, 1). 

The modified gauss map is singular when its Jacobian matrix Jj^ = -S7^u has rank less than 

2, that is, when det(V^«) = 0. On the other hand, assuming that the third component of the 

light direction is positive (i.e. ^3 > 0), the shading function is equivalent a shading function with 

light direction (^1,^2,1), where £1 and £2 are arbitrary and £3 = 1. Hence, the shading function 

simplifies to (T{X, y) = Nix, y) • L, where L = (^1, ^2)- The shading function is still denoted (T{X, y) 

for convenience. 

Proposition 5.4 Then the gradient of the shading function is given by 

Va{x,y) =-{V\{x,y))L. 

A critical point of the shading function satisfies (V^u)L = 0. At regular points of the shading 

function, the horizon curve is locally a smooth curve. 

Proof: Taking the gradient of the shading function, we get 

Va{x,y) = i-Uxxii - Uxy£2, -Uxy£\ - Uyyi^) = -{V\{x,y))L. 

Hence, Vcr(a:, y) = 0 if and only if {V'^u)L = 0. At a regular point, we have (V^tt)^ ^ 0, and using 

the implicit function theorem, it follows that the horizon curve is smooth in the neighborhood of a 

regular point. ■ 

The above result shows that the local orientation of the shading function is related to the local 

curvature of the underlying surface. Furthermore, in the orthonormal coordinate frame {61,62}, 

where ei and 62 are the principal directions, the Hessian matrix can be expressed as 

\ 0       /C2 

where KI and /C2 are the principal curvatures. Hence the gradient of the shading function be- 

comes Vcr = -Ki^i - Ki£i. At a singular point of the shading function, we have atan(K2/'«i) = 

— atan(^i/£2), that is the shape index of the siuface depends only on the fight coordinates. 



5.4 Experimental results 71 

The next result gives a necessary and sufficient condition for a nondegenerate singular point of 

the shading function. 

Proposition 5.5 The Hessian matrix of the shading function is given by 

o    ,       ,        /    ~Uxxx"\ ~ Uxxy''2     ~Uxxy''l ~ Uxyy^2 
V^a{x,y)= I 

\   ~Uxxy^l ~ IJ'xyyf-2    ~Uxyy''l ~ '^yyy^2 

The shadow function is a Morse function if and only i/det(V^(T) ^ 0. 

5.4 Experimental results 

The Reeb graph describes the topological structure of objects, and illustrates the topological 

changes occiured at singular points of the height function (i.e. topological changes of the level 

sets h~^{z) such as merging or sphtting). The topological structure offered by the Reeb graph is 

very useful for object reconstruction from real data sets such as computed tomography (CT) and 

magnetic resonance imaging (MRI) usually available as cross-sections. So we need to reconstruct 

the object from these cross-sections and using the a priori topological information given by the 

Reeb graph. Furthermore, the Reeb graph describes how the cells are glued to reconstruct an 

object surface. 

Figure 5.5 and Figure 5.6 illustrate the Reeb graph representations of two 3D models: the heart 

and the hand models. The vertices of these Reeb graphs are the singular points of the height 

function in the light direction L = (0,0,1). The polygonal mesh of the 3D heaxt model consists of 

861 vertices and 1717 faces (triangles), whereas the 3D hand object object is a laser scanner model 

consisting of 38219 vertices and 76438 faces. 

5.5 Conclusions 

Shadows provide perceptually important information about the shape of an illuminated surface. We 

have proposed a new surface representation function that provides a flexible and orientation-based 
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(a) 3D heart model (b) Polygonal mesh (c) Reeb graph 

Figure 5.5: Reeb graph of the heart model. 

(a) 3D hand model (b) Polygonal mesh (c) Reeb graph 

Figure 5.6: Reeb graph of the hand model. 
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model for geometric and topological modeling of surfaces. The geometric and topological properties 

of the proposed representation function have been analyzed in the Morse theory framework. 



CHAPTER  6 ——I 

Geodesic Matching of 3D Objects 

In this Chapter, we propose a new approach for object matching based on a global geodesic mea- 

sure. The key idea behind our methodology is to represent an object by a probabilistic shape 

descriptor called geodesic shape distribution [10] that measures the global geodesic distance be- 

tween two arbitrary points on the surface of an object. In contrast to the Euclidean distance which 

is more suitable for linear spaces, the geodesic distance has the advantage to be able to capture the 

(nonlinear) intrinsic geometric structure of the data. The matching task therefore becomes a one- 

dimensional comparison problem between probability distributions which is clearly much simpler 

than comparing 3D structures. Object matching can then be carried out by dissimilarity measure 

calculations between geodesic shape distributions, and is additionally computationally efficient and 

inexpensive. 

6.1    Introduction 

Three-dimensional objects consist of geometric and topological data, and their compact represen- 

tation is an important step towards a variety of computer vision appUcations including indexing, 

retrieval, and matching in a database of 3D models. The latter will be the focus of the present 

Chapter. There are two major steps in object matching. The first step involves finding a reliable 

and efficient shape representation or descriptor, and the second step is the design of an appropriate 

dissimilarity measure for object comparison between the shape representations. 

Most three-dimensional shape matching techniques proposed in the Uterature of computer 

74 
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graphics, computer vision and computer-aided design are based on geometric representations which 

represent the features of an object in such a way that the shape dissimilarity problem reduces to the 

problem of comparing two such object representations. Feature-based methods require that features 

be extracted and described before two objects can be compared. Among feature-based methods, 

one popular approach is graph matching, where two objects are represented by their graphs com- 

posed of vertices and edges. An efficient representation that captures the topological properties 

of 3D objects is the Reeb graph descriptor proposed by Shinagawa et al. [67,68]. The vertices of 

the Reeb graph are the singular points of a function defined on the imderlying object [67,68,31]. 

These singularities are prominent landmarks and their detection, recognition, and classification is 

a crucial step in image processing and computer vision [31]. Such singularities carry important 

information for further operations, such as image registration, shape analysis, motion estimation, 

object recognition, and surface/image evolution [53,21,52]. 

An alternative to feature-based representations, called shape distribution, is developed by Osada 

et al [59]. The idea here is to represent an object by a global histogram based on the Euclidean 

distance defined on the surface of an object. The shape matching problem is then performed by 

computing a dissimilarity measure between the shape distributions of two arbitrary objects. This 

approach is computationally stable and relatively insensitive to noise. Because of unsuitability of 

the Euclidean distance when dealing with nonlinear manifolds, the shape distribution, however, 

does not capture the nonlinear geometric structme of the data. 

The geodesic shape distribution may be used to facilitate representation, indexing, retrieval, 

and object matching in a database of 3D models. More importantly, the geodesic shape distribution 

provides a new way to look at the object matching problem by imderstanding the intrinsic geometry 

of the shape. 

Information-theoretic measures provide quantitative entropic divergences between two proba- 

bility distributions. A common entropic dissimilarity measure is the Kulback-Liebler (or directed) 

divergence [50] which has been successfully used in many applications including indexing and image 

retrieval [69]. Another entropy-based measure is the Jensen-Shannon divergence which may be de- 

fined between an arbitrary number of probability distributions [51]. Due to this generalization, the 
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Jensen-Shannon divergence may be used as a coherence measure between any number of distribu- 

tions and may be applied to a variety of signal/image processing and computer vision applications 

including graph matching [39], image edge detection [37] and segmentation of DNA sequences into 

homogenous domains [64]. 

The rest of this Chapter is organized as follows. The next section is devoted to the problem 

formulation. Section 6.3 describes some the related work to our proposed approach for 3D object 

matching. In Section 6.4, we describe the representation step of our proposed methodology. In 

Section 6.5, we present the Jensen-Shannon divergence measure and show its attractive properties 

as a dissimilarity measure between probability distributions. Section 6.6 presents an information 

geometric approach to geodesic shape distributions. In Section 6.7, we provide numerical simula- 

tions to show the power of the proposed shape measure for object matching. And finally, Section 

6.8 provides some conclusions. 

6.2    Problem formulation 

Three-dimensional objects are usually represented as polygonal or triangle meshes in computer 

graphics and geometric-aided design. A triangle mesh M is a pair M = (V,T), where V = 

{vi,..., Vm} is the set of vertices, and T = {Ti,..., r„} is the set of triangles. 

In scientific visualization and analysis, a triangle mesh is too large to be examined without 

simplification. One way to overcome this limitation is to represent a triangle mesh by its surface 

features that can easily be computed and can effectively characterize the global surface shape. The 

centroids of the set of triangles T are desirable features which may be computed efficiently and have 

a global significance for the surface shape representation as illustrated in Figure 6.1. In addition, 

there is a well defined correspondence between the centroid and the region (triangle) firom which 

it is computed as depicted in Figiure 6.1. It is important to point out that centroid-based methods 

have been used in a variety of computer vision appUcations including clustering, and one of the 

widely centroid-based technique used for cluster analysis in the K-mean algorithm [54]. 
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6.2.1    Global shape measure 

Let M = (V, T) be a triangle mesh. The centroid Cj of a triangle Tj is the mean of its vertices, that 

is, the point located at the center of the triangle. Note that the cardinality of the set of centroids 

C = {ci,..., Cn} of the triangle mesh M is equal to the cardinality of its set of triangles T. 

Unless we establish a meaningful measure of distance between the centroids of a triangle mesh, 

no meaningful exploration of the underlying structure of an object is possible. In order to take into 

account the interaction between the centroids, we compute a pairwise distance measure d{ci,Cj) 

from any centroid Cj to all the other centroids Cj G C. Figure 6.1 illustrates an arbitrary distance 

between two centroids. Notice that distance d need not be an EucUdean metric. 

Figure 6.1: Distance between two arbitrary centroids of a 3D camel. 

To obtain a global measmre of the shape M, we simply integrate over all centroids.   More 

precisely, we define a function / : C C M —> M such that 

^^^^^JclJ   ^^^'^i^^^^i' (1) 

where dcj denotes the area element that contains the centroid cj, that is, in the discrete domain, 

dcj = area{Tj) the area of the triangle Tj, and \C\ = Yl]=i area{Tj) is the total area of the surface 

M. The function / clearly represents a global measure or a distribution of the shape and therefore 
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to each 3D model M we will assign its global measure /. 

The problem addressed in this Chapter may now be concisely described by the following state- 

ment: Given two 3D objects Mi and M2 to be matched, find their global measures /i and h, and 

calculate how dissimilar these objects are based on a predefined dissimilarity measure D{fi,f2)- In 

other words, the dissimilarity between two objects measures "how different they are", and a smaller 

value of D means that the two objects are more similar. Figure 6.2 depicts a block-diagram of the 

proposed framework. 

Figure 6.2: Block-diagram of the proposed methodology. 
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6.2.2    Construction of a measure space 

A measure space on a 3D model M is given by the triple (C, B, fj), where 5 is a cr-algebra of subsets 

of C, and /Li is a measure defined on the set of triangles T as n{Tj) = area{Tj) = dcj. Note that 

n n 

ii{C) = M(U^=ITJ) = Y.ti{Tj) = Y^area{Tj) < oo, 

hence /ti is a cr-finite measure. 

If fi{C) = 1, then /x is a probability measure and therefore we may define a random vector 

X : C —> M^ such that X(c) represents the coordinates of the centroid c in the EucUdean space. 

The expected value of X is given by 

EiX) = mmfd{p,X{c)fdfi (2) 
pern Jc 

where d is a distance function defined along the surface M. This expected value provides a nice 

statistical interpretation of our global shape measure defined in Elquation (1). 

6.3    Related work 

In this section, we will review two representative methods for object matching that are closely 

related to our proposed approach. We briefly show their mathematical foundations and algorithmic 

methodologies as well as their Umitations. 

6.3.1    Reeb graph 

Morse theory explains the presence and the stability of critical points in terms of the topology of 

the underlying smooth manifold [55]. Topology is the property that determines which parts of the 

shape of objects are connected to which other parts [38], while geometry determines where, in a 

given coordinate system, each part is located [29]. The basic principle is that the topology of a 

manifold is very closely related to the critical points of a smooth function on that manifold. 

An interesting concept related to Morse theory and very useful to analyze a surface topology 

is the Reeb graph.   The latter is defined as a quotient space M/~ with an equivalence relation 
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given by p ~ g if and only if h{p) = h{q) and p, q belong to the same connected component of 

h~^{h{p)), where /i : M -> K is the height function such that h{x,y,z) = z for all ix,y,z) € M. 

In particular, each connected component is represented by a point in the Reeb graph as illustrated 

in Figure 6.3. The left figure shows a torus with the critical points of its height fimction (Morse 

function). The figure in the middle illustrates the geometric featiures of the torus represented by 

cross-sections along its height. The right figure shows the topological features represented by the 

Reeb graph. By taking an appropriate number of cross-sections and smooth interpolation between, 

Shinagawa et al. [67,68] proposed a Reeb graph based approach or so-called homotopy model for 

object reconstruction. 

Toms 

h 

Reeb Graph 

CZ?     €Z> 

C^    CO 

Figure 6.3: Reeb graph representation of a torus. 

Figure 6.4 illustrates the Reeb graph representation of a 3D hand model. The vertices of the 

Reeb graph are the singular points of the height function. The polygonal mesh of the 3D hand 

object object is a laser scanner model consisting of 38219 vertices and 76438 faces. 

Reeb graph has a nice mathematical definition that makes it very attractive from a theoretical 

point of view.   This representation, however, is not rotationally invariant.   This limitation lead 
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(a) 3D hand model (b) Reeb graph 

Figure 6.4: Reeb graph of the hand model. 

Hilaga et al to develop a geodesic-based Reeb graph technique [40]. In this approach a multires- 

olution Reeb graph is computed efficiently and a similarity distance is calculated to compare two 

Reeb graphs. 

6.3.2    Shape distribution 

Recently, Osada et al [59] proposed a shape distribution based approach for three-dimensional object 

matching. The key idea is to compute the Euclidean distance between all pairs of random points 

on the surface to obtain the so-called D2 shape histogram. Given a triangle Tj = {vji,Vj2,Vj2}, 

each random point is generated as 

Pj = (1 - \/ri)vji + Vrl(l - ri)vj2 + \/r{r2Vjz, 

where r\ and r2 are pseudo-random numbers between zero and the total cumulative area. Then, the 

comparison of objects is carried out by computing a dissimilarity measure between their D2 shape 

distributions. Figure 6.5 illustrates an eUipsoid and its D2 shape distribution. The main drawback 
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of the shape distribution approach, which is based on the Euchdean distance, is its inabiUty to 

capture the nonhnear structure of the data. 

-0.5. 

(a) EUipsoid 

0.5 1 1.5 2 

(b) D2 shape distribution 

Figure 6.5: D2 shape distribution of an ellipsoid. 

6.4    Proposed methodology 

The goal of our proposed approach may be described as follows: Given two 3D objects Mi and 

M2 to be matched, find their global measures or shape descriptors /i and /a, and calculate how 

dissimilar these objects using a dissimilarity measure JD(/I, /Z) that has to be quantified. The basic 

idea behind the shape descriptor is to characterize a 3D object with a one-dimensional function 

which will help us discriminate between objects in a database of 3D models. 

6.4.1    Global geodesic shape function 

The Reeb graph concept has been shown to be very effective in modeling 3D objects based on 

cross sections such as MRI or CT images. It is more appropriate to modeUng applications where 

the height is of special interest such as terrain imaging. The height function, however, has some 

limitations as an object signature for matching, indexing, or retrieval of arbitrary 3D objects. The 
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main reason is that the height function is not rotationally invariant. To overcome these Hmitations, 

we propose a global geodesic function defined on the object surface as follows. Let Ci and Cj be 

two points (centroids) on a manifold M. The geodesic distance g{ci,Cj) between Cj and Cj is the 

shortest length L{'y) = J^ IW{t)\\dt of a smooth curve 7 : [a,b] —> M such that 7(a) = Cj and 

7(6) = Cj. The geodesic distance may be locally viewed as the Euclidean dE{ci,Cj) = ||ci — Cj||, 

and is hence clearly invariant to rotation and translation. 

Inspired by the geodesic-based representation for 3D topology matching proposed by Hilaga et 

al. [40], we define a global shape function / : C -> R expressed in terms of a rotationally invariant 

(square) geodesic distance as follows 

/(Ci) = i^y   9{ci,Cjfdcj. (3) 

The primary motivation behind the geodesic distance is of overcoming the hmitations of the Eu- 

clidean distance which by virtue of its linearity in nature cannot account for nonlinear structures 

in the underlying object. 

Unhke the Euclidean distance which is basically a straight line between two points in 3D space, 

the geodesic distance captures the global nonlinear structure and the intrinsic geometry of the data 

as illustrated in Figure 6.6. This clearly shows that the EucUdean distance between two axbitrary 

points in a nonlinear manifold is just a straight segment connecting two points and does not reflect 

the nonlinear structure of the object, whereas the geodesic distance which is the shortest curve 

along the manifold connecting both points clearly captures the intrinsic geometry of the object. 

Geodesic distance calculation 

Given a set of centroids C = {ci,...,Cn} of a 3D object represented by a triangle mesh M, the 

geodesic distance calculation is based on a similar approach used for computing the isometric feature 

mapping (Isomap) for multidimensional scaling on nonlinear manifolds [71]. The algorithm has two 

main steps: 

(i) Construct a neighborhood graph by connecting a given centroid to its fc-nearest neigh- 

bors, and link these neighboring centroids by edges with weights equal to the Euclidean 

distances. 
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Euclidean distance 

Geodesic distance 

Figure 6.6: Euclidean vs. geodesic distance on a nonlinear manifold. 

(ii) Compute the geodesic distances (shortest paths) between all pairs of n points in the 

constructed graph using Dijkstra's or Floyd's algorithm 

Note that Step (i) may be alleviated by choosing a random subset of C in order to reduce the 

computational complexity of the geodesic calculation. 

Prom Equation (3), it is clear that a discrete form of the geodesic shape function can be written 

as 

•^^'^^-    \C\    -  llalli'    '     ^'••■'" ^' 

where G = (p?) is the (square) geodesic distance matrix of size n x n, and a = (ai,...,an) 

is an n X 1 vector of triangle areas, i.e.   Uj = area{Tj), and \C\ = Yl^i^-j = Iklli i^ ^^e total 

area. The geodesic distance matrix G = (5?) is symmetric with zeros in the diagonal, and positive 

off-diagonal elements 
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Triangle area calculation 

Denote by {vi,V2,vs} the vertices of an arbitrary triangle T of a given triangle mesh M. Using 

Newell method, the area of the triangle T can be computed as 

where iV = {Ni,N2,, N3) is the triangle normal vector with coordinates given by 

d 

Nl     =    X](yi-ynext(t))(^t + ^next(t)) 

d 

N2     =    ^i^i - ^next(i))(a;i + a;next(t)) 
t=l 

d 

N3    =    'Yl (^* ~ ^next(i)) (j/i + ynext(t)) 
1=1 

and {xi, Pi, Zi) are the coordinates of each vectex Vi (with dimension d = 3) of a triangle T. Note 

that «next(t) = (a;next(i),ynext(i),-2next(t)) denotes the next vertex in the list after vt, taking into 

account that vi follows the last vertex va- 

6.4.2    Global geodesic shape distribution 

Note that the geodesic shape function c£in be expressed as a geodesic shape vector X = {Xi,..., Xn}, 

where Xi = f{ci). This vector may be viewed as a shape descriptor that may be used for 3D shape 

comparison. 

Assume that the geodesic shape vector Af of an object M is a random sample with a common 

(unknown) probability density function p.   A common approach to approximate the probability 

density function p is through the kernel density estimation which is an important data analytic 

tool that provides a very effective way of showing structure in a data set [73]. The kernel density 

estimator p is given by 
1   _LL      /^_ Y.\ 

(5) 
1=1   ^     ' 

where K is the Gaussian kernel, and h is the bandwidth or window width to be estimated. A good 
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Figure 6.7: Effect of the bandwidth parameter h. 

selection rule of this bandwidth is given by 

h = 
243 R{K) 1/5 

0-, 

where R{K) = jK{t)'^dt, H2iK) = ft'^K{t)dt, and a = medj{\Xj - medi{Xi}\} is the median 

absolute deviation. The effect of the bandwidth parameter h is illustrated in Figure 6.7. 

Hence to each 3D object represented by a triangle mesh M, we associate a kernel density p 

which we will refer to as a geodesic shape distribution, and it is computed using the algorithm 

depicted in Figure 6.8. This probabilistic shape descriptor represents an object information and 

will be used in our matching experiments. Figure 6.9 depicts a 3D model of a tank and its geodesic 

shape distribution. 

6.4.3    Properties of geodesic shape signature 

In addition to its rotational, translational and scale invariance, the geodesic shape signature is 

also robust to resampling and simplification as illustrated in Figures 6.10 and 6.11. Note that 

for triangulation, we use the barycentric subdivision shown in the top row of Figure 6.10.  This 
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C ^ {Ci,...,Cn} 

g{ci,Cj)    Vi,j 

1 
^i^TciJ   ^^^' ^^^^ ^^^ 

Figure 6.8: Geodesic shape distribution algorithm. 

(a) (b) 

Figure 6.9: (a) 3D tank model, and its (b) geodesic shape distribution. 
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subdivision technique consists of introducing a new vertex at the center of each triangle and a new 

vertex at the midpoint of each edge and drawing edges from the centroid of the triangle to each of 

the new midpoint vertices and to the original vertices. 

:?^. 

■ni-iViikMiiiim 

Figure 6.10: Robustness and invariance. 

In order to compare two geodesic shape distributions and hence to measure the performance of 

the proposed scheme, we will describe in the next section an information-theoretic distance that 

quantifies the difference between two 3D shapes through their probabilistic shape descriptors. 

6.5    Probabilistic dissimilarity 

Let Ml and M2 be two 3D objects with geodesic shape distributions p and q respectively. In- 

formation theoretic measures provide quantitative entropic divergences between two probability 

distributions. A common entopic dissimilarity measure is Kulback-Liebler (KL) divergence K. de- 

fined as 

K(p,fl = /p(x)log,||ldx = E{log?||}. 

where E{-} denotes the expected value with respect to p{x). 
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(a) Ml (b)M2 

0 0.2 0.4 0.6 0.8 1 

(c) M3 (d) geodesic shape distributions 

Figure 6.11: Robustness and invariance (cont.). 

The KL dissimilarity measiure, however, is non-symmetric, unbounded, and undefined if p is 

not absolutely continuous with respect to q [37]. To overcome these limitations, we use the Jensen- 

Shannon divergence D given by 

Dip,q)   =    2 

„fp + q\      H{p)+H{q) 

where H(p) = — f p{x)log2p{x) dx is the differential entropy, which corresponds to Shannon's 

entropy in the discrete domain. Shannon's entropy is a measure of uncertainty, dispersion, in- 

formation, and randomness. The maximum uncertainty or equivalently minimum information is 

achieved by the uniform distribution. Hence, we can think of the entropy as a measure of uniformity 

of a probability distribution. Consequently, when uncertainty is higher it becomes more difficult to 

predict the outcome of a draw from a probability distribution. 



6.5 Probabilistic dissimilarity 90 

The Jensen-Shannon divergence is a statistical distance that is very useful in qu£intifying dif- 

ferences between probability distributions or densities. In other words, this dissimilarity measure 

quBJitifies differences in shape between two arbitrary objects. Unlike the KuUback-Leibler diver- 

gence, the Jensen-Renyi divergence has the advantage of being synunetric, always defined, and 

generalizable to any arbitrary number of probability distributions, with a possibility of assigning 

weights to these distributions [51]. Figure 6.12 shows a three-dimensional graph and a contour plot 

of the Jensen-Shannon divergence between two discrete Bernoulli distributions. 
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Figure 6.12: (a) 3D plot and (b) contour plot of the Jensen-Shannon divergence. 

The following result establishes the convexity of the Jensen-Shannon divergence. 

Proposition 6.1  The Jensen-Shannon divergence D(p,q) is a convex function ofp and q. 

In eiddition to its convexity property, the Jensen-Shannon divergence is shown to be an adapted 

measiure of disparity among probability distributions. Using the theory of majorization, it can be 

shown that the Jensen-Shannon divergence is bounded, and its upper bound is achievable. 

Proposition 6.2  The Jensen-Shannon divergence between two geodesic shape distributions p and 
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q is upper bounded 

£>(p,9)<log2(2) = l. 

6.6    Information-geometric approach to geodesic shape distribu- 

tions 

The Jensen-Shannon divergence 

D{p,g) = \ ,(„^),,(,/_±i)] 
satisfies the triangle inequality property 

D(j>l,P2) + D{p2,P3) > D(pi,P3) 

if and only if 

While the Jensen-Shannon divergence is not a metric, it can be shown that its square root 

y/D{-,-) is a metric between probability distributions. 

6.6.1    Statistical meinifolds 

A Riemannian manifold is a differentiable manifold equipped with a positive definite inner product 

< •, • >x- TxM X TxM -* R. The collection of all these inner products is called the Riemannian 

metric. An example of such a metric is the first fundamental form derived in the Appendix. 

Statistical Manifolds axe differentiable manifolds such that each point can be identified with a 

probability density with respect to a given measure, and a family of distributions correspond to 

a set of points which form a manifold. The theory of statistical manifolds also called information 

geometry was originally proposed by Rao [63] who considered a parametrized statistical model as a 

Riemannian manifold with the metric tensor given by the Fisher information metric. This metric 

defines a notion of a distance between two probabihty distributions. In other words, it measures 

"how far apart are these distributions ?". A good reference to information geometry is the book 

by Amari [19] who introduced a-connections and showed how they relate to asymptotic inference. 
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Let A^ be a difFerentiable manifold representing a statistical model M = {p{x\ 0) : 0 £ Q} 

of probability distributions p{x\ 0) parametrized by a real-valued vector 6. In other words, M is 

a parametric surface which can be represented as a Monge patch defined by r : 0 —> A^ such 

that r{d) = {0,p{x;e)). Note that the patch r covers all M, that is, r(e) = M. It is worth 

pointing out that the Monge patch r : 6 -+ A^ of a smooth probability density p{x; •) : 0 -> R is a 

diffeomorphism because it is a smooth bijection, and its inverse r~^ is the restriction to M of the 

smooth projection TT : 0 x R —> 0, that is r~^ = TTIM- 

The KuUback-Leibler divergence two points p{x; 0) and p{x\ 0') in M is given by 

where E{-} denotes the expected value with respect to p{x\ 0). 

When 0 and 0' are infinitesimally close to each other (i.e. 0' = 0 + e with e sufficiently small), 

it can be shown that 

K,{0,0') = \{0'- 0fi:{0W - «) + O{\\0' - 0\\^), 

where E(0) = {(Tij{0)) is the Fisher information metric tensor given by 

(Tij{0) = I p{x\ 0)di logp(a;; 0)dj \ogp{x; 0) dx = E{di \ogp{x; 0)dj logp{x; 0)}, 

and di logp(a;; 0) denotes the partial derivative with respect to the z-th component of the vector 0. 

6.6.2    Geodesic shape meinifold 

Let M = (V,T) be a triangle mesh, where V = {vi,...,Vm} is the set of vertices, and T — 

{ri,...,r„} is the set of triangles.   Denote by a the total area of the triangle mesh, that is 

To apply information geometry to our proposed geodesic shape distribution and using Equation 

(4), we may rewrite the geodesic kernel density in parametric form as 
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where 0 = (n, a) defines the distribution parameters: the number of triangles n and the surface 

total area a. The 3D object matching by the information geometric approach may be stated 

as follows: Given a database of 3D models {Mi,M2,---,Me}, the first step is to compute the 

corresponding parametrized probability shape distributions {p{x; 0i),p{x; 62), ■■ ■,p{x; Oe)}^ that is 

each 3D model can be viewed as a point in a set 5 = {p{x;0) : 0 e N x E+} embedded in the 

3D Euclidean space as displayed in Figure 6.13. This set <S of geodesic shape distributions forms a 

statistical model that carries the structure of a smooth manifold, and will be referred to as geodesic 

shape manifold. Note that the parameter 0 = (n, a) plays the role of coordinates of a geodesic 

shape density p{x; 0) E S. 

Figure 6.13: Illustration of geodesic shape statistical manifold. 

6.7    Experimental results 

Object matching experiments were performed using a database of 3D models collected online. 

Each model is represented as a triangle mesh. We conducted four sets of experiments. The first set 

consists of 3D airplane models as shown in Figure 6.14, and the second set consists of 3D tanks as 
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illustrated in Figure 6.15. 
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Figure 6.14: First set of experiments: 3D airplanes. 

The third set deals with objects that are topologically equivalent to a sphere (i.e. with genus 

equal to zero) as shown in Figure 6.16. The numerical results using the Jensen-Shanon dissimilarity 

measure are depicted in Table 6.1 where the grayscale colorbar displays the grayscale colormap of 

this dissimilarity matrix. This grayscale colormap ranges from white (maximum similaxity) to black 

(maximum dissimilarity), and passes through the gray colors indicating the values of the matching 
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Figure 6.15: Second set of experiments: 3D tanks. 

algorithm.   Note that the minimmn dissimilarity rate is about 9%, that is the matching rate is 

about 81%. 

The fourth set of experiments is similar to the third, except that the underlying objects are 

topologically different from than the ones in the third set of the experiments. Figure 6.17 shows 

a set of objects with genus equal to one. Matching is achieved by the minimum Jensen-Shannon 

distance computations as illustrated in Table 6.2.   Note that the minimum dissimilarity rate is 
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about 2%, that is the matching rate is about 98%. 
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[h!] 

Table 6.1: Jensen-Shannon dissimilarity results for the third set of experiments. 

Figure 6.16: Third set of experiments: 3D models and their geodesic shape distributions. 
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Table 6.2: Jensen-Shannon dissimilarity results for the fourth set of experiments. 

Figure 6.17: Fourth set of experiments: 3D models and their geodesic shape distributions. 
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6.8    Conclusions 

In this Chapter, we proposed an new methodology for object matching. The key idea is to encode 

a 3D shape into a ID geodesic shape distribution. Object matching is then achieved by calculat- 

ing an information-theoretic measure of dissimilarity between the probability distributions. That 

is, the dissimilarity computations axe carried out in a low-dimensional space of geodesic shape 

distributions. The main advantages of the proposed approach are: 

• The geodesic distance captures the intrinsic geometry of the data 

• The approach is simple and computationally inexpensive 

• The simulations results indicate the suitability of the proposed technique for object 

matching 

For future work, it would be of interest to incorporate topology into the proposed methodology 

through Morse singularities of the global geodesic shape function. Finally we note that while the 

experimental results presented in this section are very promising, significant additional performance 

gains are still possible. For example, our current way of selecting centroids as landmarks is rather 

one of many possible options and by no means the best option, and a multiresolution geodesic 

shape distribution may also provide better key to landmarks. 



CHAPTER  7  

Distance Function-based Object Recognition 

In this Chapter we propose a distance function-based approach to topological modeUng of 3D 

objects. Despite the theoretical nature of the results presented in this Chapter, the key idea is to 

identify and encode regions of topological interest of a 3D object in the Morse-theoretic framework. 

The main motivation behind using the distance function is its rotational invariance which makes 

it more adapted to object recognition than the Morse height function. We prove that a surface 

may be reconstructed from its intersections with concentric spheres centered at the baxycenter of 

the underlying surface. The topological changes in the surface occiu: as we increase the value of 

the sphere radius. At singular points, the level curves of the distance function may split or merge 

which indicate topological changes. We also show that when a surface is embedded in a sphere, the 

height function and the distance function are equivalent in a Morse-theoretic setting, that is both 

functions have the same singularities. 

7.1    Introduction 

In computer graphics applications, one is typically interested in locating geometric regions of topo- 

logical nature on a surface. The simplest non-trivial regions are areas with genus equal to one. 

Such regions are handles. As mentioned in Chapter 1, a handle intuitively corresponds to its def- 

inition per se. For example, a coffee mug with a handle has genus equal to one. Oiur challenge in 

this research effort is to present computational topology algorithms which are adapted to discrete 

surfaces and which simultaneously account for the geometry of a surface. The main objectives of 

100 
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this chapter consist of: 

• identifying regions of topological interest, that is where topology changes on a surface 

occur. Identifying the topology of a surface is tightly related to Morse theory which 

establishes a relationship of critical points of a smooth function defined on a smooth 

manifold to its connectivity. 

• coding a surface topology into a Reeb graph. The nodes of this graph represent the 

critical points of a function defined on the surface, and the edges in the graph represent 

the connected components of the surface between critical points. 

7.2    Topology identification 

Topology is a branch of mathematics dealing with quaUtative questions about geometrical struc- 

t\u:es. We do not ask: how big is it? but rather: does it have any holes in it? Is it all connected 

together, or can it be separated into parts? Geometry, on the other hand, deals with measuring and 

computing lengths, areas, volumes, angles etc., and that is actually where the word "geo-metry" 

comes from. The subject of topology is concerned with those features of geometry which remain 

unchanged after twisting, stretching or other deformations of a geometrical space. It includes such 

problems as distinguishing knots and classifying surfaces. One of the key tools used to study the 

topology of spaces is Morse theory which is the study of the relationship between functions on 

a space and the shape of the space. Although Morse theory can be applied to spaces of infinite 

dimension, we are particularly interested in the application of Morse theory to 2-manifolds. Based 

on the calculus of variations, Morse theory draws a relationship between critical points of a smooth 

function defined on a smooth manifold and the global topology of that manifold. To better under- 

stand Morse theory, we start by briefly introducing some basic definitions in differential geometry 

and topology. 

Definition 7.1 An abstract surface or 2-manifold is a topological space M such that each point of 

M has a neighborhood U inM homeomorphic to an open 2-disk D"^ in M^. 
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In other words, a 2-manifold is locally homeomorphic to an open disk D^. Homeomorphism is a 

continuous function defined between two spaces which is bijective and also has a continuous inverse. 

If M is a 2-manifold, then we can find a countable system of open sets Ui and homeomorphisms 

(pi-.Ui-* D^ such that M = Uif/j. This homeomorphism is illustrated in Figure 7.1. A collection 

of charts is called an atlas. A 2-manifold M may be embedded in R^ meaning that it has no 

self-intersections. 

\   , 
R2 

(o--) 
<-pi 

K J 

Figure 7.1: Definition of a 2-manifold. 

A 2-manifold is a surface where the local area around every point on the surface is Euclidean, 

meaning, aroimd each point the surface appears to be nearly flat. The world around us is an 

excellent example of a 2-manifold. Manifolds are a preferable surface representation because the 

surface can be divided into charts which allow 2-manifolds embedded in 3D to be flattened into 

a two dimensional domain (through parametrization). Surfaces used in computer graphics are 

typically oriented, this refers to the fact that the surface has two sides. For example, a sphere has 

two sides, while a Mobius strip has only one side. Another attribute of surfaces is whether the 

surface is closed or with boundary. This refers to the number of open boundary components of a 

surface. For example, an egg shell is closed but once it has been cracked open, it becomes a surface 

with boundaries. 
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We refer to a surface as a smooth and compact 2-manifold without boundary and possibly 

embedded in the Euclidean space R^. Mathematically, surfaces are often conceived of as continuous 

and smooth, i.e., one that has a sufficient number of partial derivatives. Smooth often refers 

to a surface with infinitely many partial derivatives, but in practice second-order derivatives are 

sufficient. In computer graphics we operate in a discrete setting, where only a finite number of 

samples are used to represent a surface. These surfaces are often continuous, but are only piece- 

wise Unear and are represented only by a discrete set of points which are connected together as 

triangles or polygons. 

7.2.1 Singulgir points 

Let ^ : M -> R be a real-valued function defined on a smooth manifold M C R^. The function ip 

is smooth if the composition function ip o fj,: U -^ R is smooth (in the ordinary Euclidean sense), 

where /* is a smooth regular parametrization of M (i.e. /x : C/ C R^ -» R^). A point Po on M is a 

singularity or critical point of y? if Po = /J-i^o, Vo), for some {XQ, yo) G U, and the gradient oiipofi 

at (a;o,yo) vanishes, i.e. V{(po fi{xo,yo)) = 0. 

A singularity Po is nondegenerate if the Hessian matrix V^((/? o fj,{xo,yo)) is nonsingular. Oth- 

erwise this singularity PQ is said to be degenerate. 

7.2.2 Morse function 

Morse theory explains the presence and the stability of critical points in terms of the topology of 

an underlying smooth manifold. Topology is the property that determines which parts of an object 

are connected to which other parts [38], while geometry determines where, in a given coordinate 

system, each part is located [29]. The basic principle is that the topology of a manifold is very 

closely related to the critical points of a smooth function on that manifold. 

Morse proved a major result which generalizes the straightforward result that the lowest-order 

nonvanishing term in a Taylor series describes the local behavior of a smooth function of a single 

variable to functions of many variables. 

Definition 7.2 A smooth function (^ : M —► R on a smooth manifold M is called a Morse function 
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if all its singularities are nondegenerate. 

Examples of nondegenerate singular points are shown in Figure 7.2. 

104 

Figure 7.2: Critical points. 

Nondegenerate singularities are isolated, that is, there cannot be a sequence of nondegenerate 

singularities converging to a nondegenerate singularity p. In other words, there is no other point 

in the neighborhood of p that is singular. This fact follows from the following Morse's lemma. 

Lemma 7.3 //^ : M —> R has a nondegenerate singularity atpo G M, then there exists {xo,yo) EO, 

such that PQ = r{xo, yo), and (p has the following representation 

(p{p) = (po r{xo, yo) ±x'^±y^ = v?(po) ±x^± y^, 

for all p = r{x,y) e M, where r is a regular smooth path. 

Note that the only nondegenerate singularities are the minimum, maximum and saddle points. By 

decomposing a smooth manifold along these singularities, its global shape and topology is revealed. 

Morse theory also presents methods to classify critical points. Specifically, by examining the number 

of negative eigenvalues of the Hessian, the critical point can be indexed. That is, a minimum has 

zero negative eigenvalues, a saddle point has one, and a maximum has two negative eigenvalues. 
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This analysis corresponds to the fact that a minimum has no downhill sides, while an isolated 

saddle point has two downhill sides, one parallel to the direction of the eigenvector associated with 

the negative eigenvalue and one anti-parallel. A maximum has downhill sides associated with both 

directions of both eigenvectors. 

7.2.3    Sard's theorem 

Let / : M —> M be a smooth function. A point p is called a regular point of / if the differential 

df : TpM ^ R is surjective, that is, the Jacobian matrix (3 x 1 in this case) has rank equal to 

dim(R) = 1. Otherwise, the point p is called a critical point. Denote by Crit(/) the set of critical 

points of /. 

Theorem 7.4 (Sard) The set /(Crit(/)) of critical values of f has measure zero in R (in the 

sense of Lebesgue measure). 

Corollary 7.5  The set R — /(Crit(/)) of regular values of f is dense in R. 

Note: / can be defined between two smooth manifolds with arbitrary dimensions, i.e., / : M —•• M. 

Definition 7.6 A smooth map f : M. —>■ M is called an immersion if at any point p E M, the 

differential df : TpM —> r^(p)M is injective, i.e., no nonzero vector maps to zero. If, moreover, f 

is a homeomorphism when considered as a map from M to /(M), we say that f is an embedding. 

7.2.4    Height function 

A classic result from Morse theory is that given a closed surface M and a Morse function / : M —> R, 

we can show that if this function has only two non-degenerate critical points then M is topologically 

equivalent to a sphere. For example, a typical Morse function is a height function, and if we consider 

such a function defined on a sphere, we can identify two critical points which corresponding to the 

maximum and minimum at the north and south pole of the sphere (see Figure 7.2). More precisely, 
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the the Euler characteristic of a surface is defined in terms of the number of critical points as 

follows: 

■)^ = ^minima — ^saddleTpoints + ^maxima. 

Another essential result from Morse theory shows that between critical points the topology of the 

manifold is guaranteed not to change (called the deformation lemma). 

To further illustrate the relationship of critical points and the global topology of a surface, 

consider the following geometric interpretation. Given a Morse function, / : M —> R which is a 

height function which may, for example, define parallel planes. A height function in the 2;-direction 

on a smooth manifold M is a real-valued function /i : M -^ E such that h{x,y,z) = z for all 

(x, y, z) € M. Hence, h is the orthogonal projection with respect to the z-axis. Figure 7.3 shows 

a 2D manifold (a double torus) and the corresponding critical points of its height function. These 

singular points are all nondegenerate. 

Maximum 

Saddle 

h 

Figure 7.3: A 3-D object and the critical points of its height function. 
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Now imagine a torus standing on its end (see Figure 7.2). When considering each of the tangent 

planes to the torus, the critical points may be identified as those at which tangent planes coincide 

with height planes of the Morse function. For example the torus, as we expected there will be 

critical points corresponding to the maximum and minimum (at the north and south poles of the 

torus) and the two saddle points at the handle. 

There is further geometric interpretation of Morse theory for a 2-manifold by correlating the 

tangent plane of the surface at each point to the planes defined by a height function. Specifically, 

we consider classifying critical points and trivial points (non-critical points). Similar to the method 

presented above, where we classify points based on their shape, we consider analyzing the local 

shape of the surface, by looking at the relationship between a small circular neighborhood of each 

point on the surface and the height planes of a height function. 

Morse lemma says that near PQ there is a smooth change of coordinates under which the resulting 

Taylor series of the Morse function h near PQ is the pure quadratic function. 

Theorem 7.7 Morse functions are stable and dense in the set of all smooth functions. Equiva- 

lently, any smooth function can be converted into a Morse function as a result of a perturbation as 

slight as desired. 

This Morse's theorem says that a small, smooth perturbation of a Morse ftmction yields another 

Morse function. The density means that there is a Morse function arbitrarily close to any non-Morse 

function. 

7.2.5    Generalized height function 

The height function in the direction of a vector v (we may assume v € §^, i.e. ||t;|| = 1) is defined 

as /lu : M -^ R such that hvip) =p-v. 

The level sets of the height function axe the intersections of M with planes orthogonal to v 

(considered as a line) as pictured in Figiu-e 7.4. Denote by Pz the plane at height z. The original 

object (surface) can be reconstructed if we know all its sections by these parallel planes (i.e. the 

surface is the union of these planes). 
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Figure 7.4: Illustration of the height function. 

Clearly, the level sets of the height function may have isolated points, or ciurves, or may contain 

an open subset of the plane. Furthermore, the level sets may be connected or disconnected, and 

the curves may have complicated singularities (e.g. generalized Monkey saddle surface). 

A point p is a critical point of h if and only if g{p) = ±v, where ±v is the point in RP^ 

corresponding to u € S^, that is, the inverse image g~^{±v) consists exactly of all points on the 

surface M whose tangent planes are orthogonal to v. Hence, p is a nondegenerate critical point of 

h if and only if it is a regular point for g. Therefore, ±v is a regular value of g if and only if all the 

critical points of h axe nondegenerate. 

Proposition 7.8  The height function h : M-^ R in the direction ofveS^ is a Morse function if 

and only if the corresponding point ±v is a regular value for the Gauss map g :M —* RP . 

Applying Sard's theorem to the map g, we conclude that the set of ±v for which the height function 

h is not a Morse function has measure zero in RP^. 
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7.2.6    Height function and immersion 

Defining a height function for a closed 2-manifold and examining its pre-image for various intervals 

along the 2;-direction, will create a sequence of closed contours on the surface. This corresponds to 

placing the closed 2-manifold in a tank and slowly immersing it in Uquid up to various heights by 

adding more and more water to the tank. The level set for a given height z will be the intersection 

of the surface with the top of the water (see Figure 7.5). We observe that as the surface is immersed 

in the water, the topology of the level sets change, i.e., the number of components of the level set 

changes for various heights. For example, imagine we are pouring water into a tank with the surface 

shown in Figure 7.5. As we first pour water in to level ZQ, we do not intersect the surface and the 

pre-image of our height function will be empty (it will have no contours). When the water first 

touches the surface at level zu the topology of the level set changes and the pre-image now consists 

of a single contour. As we continue pouring water into the tank, the topology of the level sets will 

continue to change. For example, when the water level first reaches a "hole" of one of the handles, 

the topology of the level set will change from a single contour to two. Finally, consider when we 

pour in the last of the water and the level set changes such that we once again have no contours. 

This analogy of immersing a surface in water is often used to describe the process of finding critical 

points in a surface. 

7.3    Topology coding 

7.3.1    Reeb graph 

An interesting concept related to Morse theory and very useful in analyzing a surface topology 

is the Reeb graph. The latter is defined as a quotient space M/~ with an equivalence relation 

given by p ~ q if and only if h{p) = h{q) and p, q belonging to the same cormected component 

of h~^{h{p)). In particular, each connected component is represented by a point in the Reeb 

graph as illustrated in Figure 7.6. The left figure shows a torus with the critical points of its 

height function (Morse function). The figure in the middle illustrates the geometric features of the 

torus represented by cross-sections along its height. The right figure shows the topological features 
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Figure 7.5: Surface immersed in water. 

captured by the Reeb graph. By talcing an appropriate number of cross-sections and a smooth 

interpolation in between, Shinagawa et al. [67,68] proposed a Reeb graph based approach or so- 

called homotopy model for object reconstruction. The Reeb graph is a topological representation of 

an object (skeletal structure), and has storage and transmission advantages due to a parsimonious 

data representation. 

Mathematically, a quotient space M/~ "= {\p] ■ P ^ M} is a set of equivalence classes with 

relation ~, and where [p] = {q € M : g ~ p} is the equivalence class of p € M. Intuitively, M/~ is 

a space created by taking the space M and gluing p to any q that satisfies q<^ p- The classes [p] are 

the connected components for the Reeb graph, and being in the same component is an equivalence 

relation: 

q ~ p 4=^ h{q) = h{p) and p, g G ConComp{/i~^(/i(p))}, 

where ConComp{-} denotes the connected component. In a Reeb graph representation, each con- 

nected component of a contour (i.e. h~^{z) where z = h{x, y, z)) corresponds to a point. 
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Figure 7.6: Reeb graph representation of a torus. 

7.4    Level sets around Morse points 

Let / : M ^ R be a Morse function defined on a compact surface M. The following result shows 

that a Morse function on a surface may determine the shape of the sturface. 

Proposition 7.9 If f :M 

morphic to the sphere S^. 

has exactly two nondegenerate singular points, then M is diffeo- 

Denote by Ma the sub-surface of M consisting of all points at which h takes values less than or 

equHil to a real number a 

Mo = {p € M : /(p) < a} 

and denote by La the set of points where the value of h is exactly a, that is La = f~^{a).  Note 

that when a is a regular value, the set La is a smooth curve of M and it is the boundary of MQ. 

Proposition 7.10 Let a < b be real numbers such that the function / : M ^ R has no critical 

value in the interval [a, b], then 
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(a) Level curves (b) Level curve La 

(c) Subsurface (d) Subsurface and Level curve 

Figure 7.7: Illustration of MQ and La 

(a) The level curves La = f~^{a) and Lj, = f~^(b) are diffeomorphic. 

(b) The subsurfaces MQ and Mb are diffeomorphic, with boundaries La and Lb respec- 

tively. 

Figure 7.8 shows the evolution of the subsurface Ma as the parameter a changes. If a < 

minpeM{/(p)}, then Ma = 0. And as we increase the parameter a, the subsurface Ma changes 

until it covers the entire surface M. We may think of the height function / : M —> R as dipping a 

doughnut into a cup of chocolate cream. 
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Figure 7.8: Evolution of MQ as a changes. 

7.4.1    Handle decompositions 

Let / : M —> M be a Morse function defined on a compact surface M. Each time the value of / passes 

through a critical value, a handle appears and is attached to the previously built-up subsurface. 

The index of the handle coincides with the index of the corresponding critical points, that is the 

number of negative eigenvalues of the Hessian matrix of /. For example, let Pi,P2,Ps,P4 be the 

critical points of a height function h:T -^R defined on a torus T, and denote by vi, V2, ^^3, V4 their 

critical values, i.e. h{pi) = Vi is the ^-coordinate of each point p^. We further assume that these 

critical values are ordered vi < V2 < vs < ^4, that is vi is the minimum value, V4 is the maximum 

value, and V3,V4 are the saddle values. 

To track the topological changes of the surface M, we look at how Ma changes as the parameter 

a increases. In the case of a torus, we start from a value less than vi, that is for a < wi we have 

Mo = 0. As soon as a passes vi, a 2-disk (upright bowl) pops out and we have Ma = D"^. This 
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2-disk corresponds to the minimum critical point of index 0 and is called 0-handle. Similarly, a 

1-handle corresponds to a saddle point and a 2-handle corresponds to a maximum critical point. 

Consequently, we deduce that any closed surface can be decomposed into a union of a finite 

number of 0-,l-, and 2-handles. In other words, any closed surface admits a handle decomposition. 

The diagram depicted in Figure 7.9 shows the sequence of steps in the gradual buildup of a 

torus, starting with a disk (or 0-handle), adding two consecutive 1-handles, and finally completing 

the torus with a 2-handle. 

Figure 7.9: handle decomposition. 

7.5    Distance function 

The concept of distance is central to topology, with the actual numeric values being of less im- 

portance. In fact, topologists often use a distance function, but the attributed numerical values 

have only secondary meaning. To illustrate this, suppose we are given an object in the ordinary 
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three-dimensional space, and a point outside the object, and the question is: does the object come 

arbitrarily close to this reference point?. This may be stated as: is the point a boundary point of 

the object? "Arbitrarily close" means that if one imagines a ball around the reference point, then 

the ball contains some points belonging to the object no matter how small the ball is. The actual 

distances between the points belonging to the object and the reference point do not matter, and 

there just have to be arbitrarily small values among them. 

The distance function is a function which has nondegenerate critical points, and it can be shown 

that almost all distance functions are Morse functions. In fact, for fixed v € M^, we may define a 

distance function of M to v as rft; : M —> R such that dv{p) = \\p — v|p. 

If a surface M is given in parametric form r{x, y) where {re, y} is the coordinate system, then 

the distance function may be expressed as dv{r{x, y)) = \\r{x, y) - vp. The first partial derivatives 

are given by dx = 2rx • {r(x,y) — q) and dy = 2ry ■ {r{x,y) — q). Hence d has a critical point at 

p = r{x, y) if and only if v — p is orthogonal to M at p, i.e. v — r(x, y) is parallel to the surface 

normal N. Thus u = r(x, y) + a iV. 

The distance function from the origin of a coordinate system is given by rf(a;, y) = ||r(a;, y)||^ = 

ic^ + y^ + «(a;, y)^. Its gradient is Vd(a;, y) = 2[(x, y) + u{x, y)Vu{x, y)], and its Hessian matrix is 

V'^u{x,y) = 2[(1 + \\'Vu{x,y)\\^)l2+u{x,y)(V^u{x,y))], where h is the 2 x 2 identity matrix. The 

second partial derivatives at a critical point can be easily derived as 

dxx = 2(ra; • rx + TXX • (r(x,y) - v)) = 2{rx -Vx-arxx- N). 

Hence, the Hessian matrix may be expressed in terms of the first and second fundamental forms as 

follows 

V2d = 2(J-aJ), 

where I and I are the first and second fundamental forms respectively. 

A degenerate critical point of the distance function satisfies det(V^d) = 0 if and only if 

det(V^ii) = l/o? = K1K2, where «i and K2 are the principal ciu-vatures. A point p € M is 

therefore a degenerate critical point of the distance function dv if and only if v is a focal point of 

(M,p). In addition, the Morse index of a nondegenerate critical point of the distance function dy 
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is equal to the number of focal points of (M,p) which lie on the segment from pto v. This can be 

shown using the Hessian matrix V^d since the number of its negative eigenvalues is equal to the 

number of eigenvalues of the JT (assuming that I is the identity matrix) which are > 1/a. 

Without loss of generality we choose v to be the centroid c of the surface M, and for simplicity we 

consider the centroid to be the origin of the Euclidean coordinate system as pictured in Figure 7.10. 

Hence the distance function becomes 

where p = {x, y, z). Note that for r > 0, the level sets {p € M : d{p) = r^} of the distance function 

are concentric spheres of radii r, and the object can be reconstructed if we know its intersections 

with these concentric spheres (see Figure 7.10). 

concentric 
spheres 

Figure 7.10: Illustration of the distance function. 
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7.6    Connection between height function and distance function 

For certain purposes such as terrain image reconstruction, the height function has nicer properties, 

while for others the distance function behaves better due mainly to its rotational invaxiance. There 

is, however, one situation when these two functions are essentially the same. Suppose that a surface 

M is embedded in a sphere S^ centered at the origin and with radius R (see Figure 7.11), then the 

height function hy and the distance function dv differ by a constant and therefore have the same 

critical points: 

Mp) = \\p-vf = \\vf + \\pf-2p-v^i\\vf + R')-2hvip). 

constant 

V 
<.,- 

Figure 7.11: Embedding of a 3D airplane into a sphere. 

The key idea behind using the distance function is to track the changes in topology as we 

cross a surface singularity. In the first step, we start with a sphere having a sufficiently small 

radius, and centered as the barycenter of the underlying surface, then we evolve this sphere by 

increasing its radius so that we will have a set of concentric spheres covering the entire surface. As 

we cross a surface singularity, a topological change of the level curves will take place as illustrated 
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Figure 7.12: Distance function defined on a torus. 

Figure 7.13: Distance function defined on a torus (cont.). 

in Figures 7.12, 7.13, and 7.14. The level curves for two 3D real data objects are pictured in 

Figure 7.15. In other words, some level curves may split or merge. We are essentially interested 

in these changes for topological modelling purposes which in turn may be explained by applying 

Morse theory to the distance function. 
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Figure 7.14: Distance function defined on a dimple. 

Figure 7.15: Isocontours of 3D real data. 



CHAPTER  8 '■  

Conclusions and Future Research 

This thesis has presented computational algorithms for variational image denoising, topological 

modeling, three-dimensional object recognition, and geometric matching. We have demonstrated 

the use of these algorithms through a variety of imaging and computer vision applications including 

image filtering, singularity extraction and evolution, topological modeling of illuminated surfaces, 

geodesic matching of triangle meshes, and distance function-based object recognition. The geomet- 

ric/topological algorithms are tailored for the discrete representation of surfaces as triangle meshes. 

We have demonstrated the effectiveness of the proposed methods through numerical simulations 

with synthetic and real data in 2D and 3D computer imagery. 

In the next Section, the contributions made in each of the previous chapters and the concluding 

results drawn from the associated research work are presented. Suggestions for future research 

directions related to this thesis are provided in Section 8.2. 

8.1    Contributions of the thesis 

8.1.1    Robust and efficient variational filters for image denoising 

Using the theoretical fundamentals of robust statistics, a variational filter referred to as a Huber 

gradient descent flow was proposed in Chapter 3. It is a result of optimizing a Huber functional 

subject to some noise constraints, and it takes a hybrid form of a total variation diffusion for large 

gradient magnitudes and of a linear diffusion for small gradient magnitudes. Using the gained 

insight, and as a further extension, we proposed an information-theoretic gradient descent flow 
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which is a result of minimizing a functional that is a hybrid between a negentropy variational 

integral and a total variation. Illustrating experimental results demonstrated a much improved 

performance of the approach in the presence of Gaussian and heavy-tailed (impulsive) noise. 

8.1.2 A topological variational model for image singularities 

Image singularities are prominent landmarks and their detection, recognition, and classification 

is a crucial step in image processing and computer vision. Such singularities carry important 

information for further operations, such as image registration, shape analysis, motion estimation, 

and object recognition. In Chapter 4, we proposed a topological gradient descent flow for image 

singularities. The approach is expressed in the higher order variational framework as a minimizer of 

a variational integral involving the gradient and the Hessian matrix of the height function defined on 

a manifold. We demonstrated through numerical simulations the power of the proposed technique 

in preserving image singularities. 

8.1.3 Topological modeling of illuminated surfaces using Reeb graph 

In Chapter 5 we introduced a reliable and efficient feature based object representation for topological 

modeling of three-dimensional illuminated surfaces. The proposed approach encodes an object 

into the Reeb graph concept from computational topology. This skeletal structure is based on a 

generalized height function in the light direction defined on an illuminated surface. The topological 

properties of the proposed representation were analyzed in the Morse theoretic framework, and its 

close relationship to the shading problem was also highlighted. Some numerical simulations with 

synthetic and real 3D data were provided to demonstrate the potential of object singularities in 

topological modeling. 

8.1.4 Geodesic object representation and recognition 

In Chapter 6 we proposed a shape signature that captures the intrinsic geometric structure of 

3D objects.   The primary motivation of the proposed approach is to encode a 3D shape into a 
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one-dimensional geodesic distribution function. This compact and computationally simple repre- 

sentation is based on a global geodesic distance defined on an object surface, and takes the form of 

a kernel density estimate. To gain further insight into the geodesic shape distribution and its prac- 

ticality in 3D computer imagery, some numerical experiments were provided to demonstrate the 

potential and the much improved performance of the proposed methodology in 3D object matching. 

This was carried out using an information-theoretic measure of dissimilarity between probabilistic 

shape distributions. 

8.1.5    Distance function-based object recognition 

In Chapter 7 we introduced a topological approach to object recognition using a distance function. 

Similarly to the height function strategy which consists of reconstructing surface from its cross- 

sections, the key idea behind using a distance function is that a surface may be reconstructed from 

its intersections with concentric spheres centered at the centroid of the underlying surface. The 

topological changes in the surface occur as we increase the value of the sphere radius. At singular 

points, the level curves of the distance function may split or merge which indicate topological 

changes. We also show that when a surface is embedded in a sphere, the height function and the 

distance function are equivalent in a Morse-theoretic setting, that is both functions have the same 

singularities. 

8.2    Future research directions 

Several interesting research directions motivated by this thesis are discussed next. In addition to 

designing new methodologies for image denoising and segmentation, we intend to accomplish the 

following projects in the near future: 

8.2.1    Attributed Reeb graph matching, indexing, and retrieval 

Recently we have been working on the representation, matching, indexing and retrieval in a database 

of 3D objects based on the topological and geometric information.  Building a database requires 
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collecting 3D models, computing their Reeb graph representations, and indexing in the data base 

based on an abstracted information given by their Reeb graphs. An appropriate and efficient rep- 

resentation of the Reeb graph is the attributed Reeb graph that represents topology and geometry 

in a compact representation, where vertices and edges have geometric attributes. In other words, 

we associate to the graph as much geometric information as possible that will be attached to the 

graph for further tasks such as matching, indexing and retrieval. 

8.2.2 Entropic minimum spanning Reeb trees for terrain image analysis 

The vertices of a Reeb tree can be characterized using the minimum spanning tree (MST) which 

aims to quantify spacial dot patterns by revealing hidden nearest-neighbor correlations; The MST 

representation is naturally translation and rotation invariant, and therefore constitutes a good can- 

didate for geo-registration and other image registration applications. The Jensen-Renyi divergence 

may be used as a robust dissimilarity measure between the Morse featmres of the target and the 

reference images. 

8.2.3 Divergence measures and information geometry 

There are many possibihties for extending the Jensen-Renyi divergence using more generalized 

entropy measures, and borrowing concepts from information geometry in order to fully employ the 

mathematical machinery of differential geometry and topology. Information geometry is the branch 

of probability theory dedicated to provide families of probability distributions with differential 

geometrical structures. One then uses the tools of differential geometry in order to have a clear 

and intuitive picture of a family of probabiUty distributions which form a differentiable manifold. 

Information geometry elucidates the geometric structure of such a manifold. 

Theoretically we hope to develop more rigorous analysis for the Jensen-Renyi divergence. It 

is also worthwhile to combine other computational techniques with our approach. Furthermore, 

we are planning to apply this divergence measure to other imaging applications including DNA 

segmentation, microarray images and independent component analysis. 
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APPENDIX  A. 

Appendix A 

The first variation of the functional J^{u) = J^ F{\Vu\) dx in the direction of v is given by 

SJ^{u; v) = —F{u + ev) 
de 

e=0 

= /-('f|Mv..v.V.. 
h\   |V"| J 

The following identity 

div(wVu) = div(Vu)u + Vu • Vv, 

yields 

[ ^^Vu.Vvd. = - f ,w(^^Vu)vd.+ f div(v^^Vu) d. 
JQ    |VU| Jn       V    |Vw| J JQ       \     |V«| J 

Using the divergence theorem for a vector field w 

/ div(to)dx =       w -uds 
Jfi Jdn 

where u is the outward unit normal vector (field) on dCl (the boundary of fi) and ds is an area 

element. Therefore 

/• ,.   / F'(|V«|)„ \ _, f     F'(|Vu|)„ 
k       \     |V«| J Jm      |Vu| 

If we assume homogenuous Neumann boundary conditions 

du 
Vu • 1/ = tti/ = -r— = 0, 

du 

then the first variation of J^ is reduced to 

SJ'iu- v) = - I div (J"'^^^^\v\ V dx,    "iveX 

which concludes the proof. 
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Appendix B 

A numerical implementation of the partial differential equation given by Eq. 13 is performed using 

an explicit scheme in time and location as follows. Let u^j be the approximation of u{x, y, t) on a 

grid {iAx,jAy,nAt). For simplicity we assume that Ax = Ay = h. Denote by 

u?,., - u? 
Dlu = ±'^''\     ''^    and   Dy^u = ±''^''\    "''' 

h "^ h 

the matrices of column differences and row differences respectively (i.e. backward and forward 

differences). 

Similarly, the central differences are given by 

Z)^„ = !^;W__<±i    and   Z)V„ = <2±i__!52zi. 
'^ 2h ^ 2h 

The operator div(5(|Vu|)Vu) on the right hand side of Eq. 13 is discretized using an upwind scheme 

as follows 

where minmod is a function that returns the argument with smallest absolute value when all the 

arguments are of the same sign and zero otherwise. The minmod function is a limiter whose goal 

is to prevent oscillations while maintaining the order of accuracy of the method, and it is defined 
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as 

minmo 
/sign(a) + sign(6)\    .    ,  . , ., 

d{a,b)   =    I ^-^-^ lmin(|a|,|6|) 

=   min(max(a, 0), max(6,0)) + max(min(a, 0), mm{b, 0)) 

0   ifa6<0 

=    la   if |a| < |fe| and a6 > 0 

b   if \a\ > \b\ and ab > 0. 

Figure (a) below depicts the gradient vector field of the minmod function (the background color 

indicates the value of the minmod function), and Figure (b) illustrates its contours. 

(a) 3D plot of the minmod function (b) level curves 
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Appendix C 

Surface Curvatures 

Let p 6 M. Let v € TpM = span{ra:,rj,} (we assume v a unit vector). By definition v € TpM if 

there exists a curve c : (-e, e) —» M for some e > 0 such that c(0) = p and c'(0) = v. In other words, 

the tangent space is the set of vectors orthogonal to the surface normal. Thus, the tangent plane 

at po is the set of points p such that N{p) ■ (p — po). Hence for the Monge patch, the equation of 

the tangent plane at a point {XQ, yo, u{xo, yo) is given hy z = u{xo, yo) + Vw(a;o, yo) -{x — XQ^y- yo). 

Let / : M -^^ R be a smooth function. The directional derivative of / at p in the direction of v 

is given by Vv/ = (/ o c)'(O), where c : (—e, e) —> M for some e > 0 is a curve such that c(0) = p 

and (/(O) = V. 

If / : M -^ R3, then the differential of / at p is the map df : TpM -^ M^ such that df{p) = V^/ 

for all v e TpM. 

If / : M —>^ M is a smooth function between two manifolds, then the differential of / at p is the 

linear map df : TpM -> T/(p)M. In particular, let v € TpM. Then VyN e TpM. Indeed, since 

<N,N>= 1, it follows that 0 = Vv <N,N>=2< V^iV, N >. Thus, VvN is orthogonal to 

N. 

The first fundamental form / : TpMxTpM -* R is a bilinear form such that I{v, w) =< v,w >, 

and its matrix with respect to the orthogonal basis {rx,ry} E TpM is given by 

Iirx,rx)   Iirx,ry) \ _ I ra:-rx   r^-ry 

I{ry, rx)   I{ry, Vy) I      \ryrx   ryVy 
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The matrix / is also called the metric or metric tensor, ajid it is the analogous of the speed in 

the case of space curves. This matrix determines all the intrinsic properties of the surface. These 

properties depend on the surface and do not depend on its embedding in space. Furthermore, the 

matrix / is invariant to rotation of the surface in space because it is defined in terms of inner 

products that are rotation invariant. 

The Weingaxten map (also called the shape operator) is a linear map W : TpM —> TpM 

such that W{v) = —V^AT. In terms of the basis {rx,ry} € TpM, we have W{rx) = —Nx and 

W{ry) = —Ny. These equations are called Weingarten equations and they express the derivatives 

of the normal to a surface using derivatives of the position vector. 

The second fundamental form ff : TpM x TpM —> R is a bilinear form such that E{v,w) = 

W{v) ■ w — — < Vt;iV, tu >, and its matrix with respect to the orthogonal basis {r^ry} € TpM 

is given by 

I S{rx,rx)   E{rx,ry) \       ( -Nx-rx   -Nx-ry 

\E{ry,rx)   S{ry,ry) j       \-Nyrx    -NyVy 

The matrix I is also invariant under rotation of the surface. 

The third fundamental form M : TpM x TpM —> R is a bilinear form such that M{v, w) = W{v) • 

W{w) =< S/vN,VwN >) and its matrix with respect to the orthogonal basis {vxify} € TpM is 

given by 

Virx,rx)   M{rx,ry) 

W{ry,rx)   M{ry,ry) 

The third fundamental form is given in terms of the first and second forms by # — 2HE + KI = 0, 

where H and K are the mean and Gaussian curvatures respectively. 

The Gaussian curvature is given by the determinant of W. The normal curvature of M in the 

direction v 6 TpM is K{V) = W{v)-v. Since v € TpM = spanfra;, r^}, it follows that v = arx+bry. 

Therefore the normal curvature in the direction v can be expressed as 

,  ,     „., - £a? + 2mab + nb'^ 
K{V) = W[v) • V = —5—-—— -5-, 

^  ' ^ ' ea2 + 2 fab + gb^ 

where e, / ajid g are the coefficients of the first fundamental form, and £, m and n are the coefficients 

of the second fundamentjJ form. The maximum and minimum values of the normal curvature at a 
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point on a regular surface are called the principal curvatures Ky and K2- 

Rodrigues curvature formula is given by dN + K,dr = 0, where KJ are the principal curvatures. 

The harmonic curvature of the principal ciu'vatures is defined as 

2   \ K 1 H/> J 

The extended Gaussian image is the reciprocal of the Gaussian curvature, that is 

dp) ^ 
Ki_K2 

Implicit surface curvatures 

Let [/ : r2 C M'^ —> R be a smooth function. An implicit surface is defined as a level set of the 

function U, i.e. U{x,y,z) = 0 (for instance). The [jrincipal curvatures and the principal directions 

of the level surface satisfy the following ecjuation 

-{l.-imi)iVUf)^e = .e^ 

where /a is a 3 x 3 identity matrix. 

Offset surface 

Let M C M"^ be a regular surface. The surface parallel to M at a distance t > 0 is the set 

M= {q: d{q,M) ^ t} 

The offset surface patch r at distance t to a surface M parametrized by r is defined as 

f (.'/:. y) = r(x. y) + t N{x, y), (1) 

where t is the distance of the parallel surface from the original one, and N is the unit surface 

normal of r. 


